

This is a postprint version of the following published document:

López-Gómez, J., et al. Exploring stream parallel patterns in
distributed MPI environments, In: Parallel computing, 84, May 2019,
Pp. 24-36
DOI: https://doi.org/10.1016/j.parco.2019.03.004

© 2019 Elsevier B.V. All rights reserved.

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

https://doi.org/10.1016/j.parco.2019.03.004
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Exascale programIng models for extreme data processing • Preprint

Exploring stream parallel patterns in
distributed MPI environments

Javier López-Gómez, Javier Fernández Muñoz, David del Rio Astorga, Manuel F. Dolz, J. Daniel García

University Carlos III of Madrid, Spain
{jalopezg,jfmunoz}@inf.uc3m.es, drio@pa.uc3m.es, dolzm@icc.uji.es, jdgarcia@inf.uc3m.es

Abstract

In recent years, the large volumes of stream data and the near real-time requirements of data streaming applications have exacerbated the need for
new scalable algorithms and programming interfaces for distributed and shared-memory platforms. To contribute in this direction, this paper
presents a new distributed MPI back end for GrPPI, a C++ high-level generic interface of data-intensive and stream processing parallel patterns.
This back end, as a new execution policy, supports distributed and hybrid (distributed+shared-memory) parallel executions of the Pipeline and
Farm patterns, where the hybrid mode combines the MPI policy with a GrPPI shared-memory one. These patterns internally leverage distributed
queues, which can be configured to use two-sided or one-sided MPI primitives to communicate items among nodes. A detailed analysis of the
GrPPI MPI execution policy reports considerable benefits from the programmability, flexibility and readability points of view. The experimental
evaluation of two different streaming applications with different distributed and shared-memory scenarios reports considerable performance gains
with respect to the sequential versions at the expense of negligible GrPPI overheads.

Keywords Parallel Patterns, Stream Processing, Distributed Patterns, C++ Programming, Generic Programming

Formal publication https://doi.org/10.1016/j.parco.2019.03.004

I. Introduction

Numerous scientific experiments, ranging from particle accelerators
to environmental sensors, are nowadays generating large volumes of
streaming data which has to be processed in near real-time. To en-
able the next generation of scientific discoveries, several challenges
have been identified in the high performance computing (HPC) do-
main to handle the high throughput rates and low latency demands
of data stream processing applications (DaSP) [1]. These challenges,
envisioned to fill the gap in managing and processing streaming
data, focus on the research of scalable and efficient streaming algo-
rithms, programming models, languages and runtime systems for
this type of applications. For that, considerable efforts in the HPC
software stack for DaSP are required to face such incessant growth
of streaming data [2].

To achieve the scalability goal, multiple shared-memory multi-
core platforms are required to increase performance in this kind
of applications. In this sense, the de facto programming models
for distributed- and shared-memory platforms are, respectively, the
MPI [3] and OpenMP [4] interfaces, which can be used in conjunction
to enable hybrid parallelism. Regardless of their efficiency, both
interfaces offer low-level abstractions and demand considerable
expertise on the application and system domains to fine-tune the
target application [5]. An opportunity to relieve this burden is to use
pattern-based programming models, which encapsulate algorithmic
aspects following a building blocks approach. Generally, parallel
patterns offer an alternative to implement robust, readable and
portable solutions, hiding away complexities related to concurrency
mechanisms, synchronizations or data sharing [6]. In this respect,
some pattern-based interfaces and libraries from the state-of-the-art,
e.g. FastFlow [7], Muesli [8] or SkePU 2 [9], already support clusters
of multi-core machines and make use of scheduling algorithms to

improve load balancing among nodes.
To pave the way towards HPC scalable programming models for

DaSP, in this paper we extend our C++ generic and reusable paral-
lel pattern interface (GrPPI) [10] with a new MPI back end, which
enables the execution of some streaming patterns on distributed plat-
forms. Basically, GrPPI accommodates a unified layer of generic
and reusable parallel patterns on top of existing execution environ-
ments and pattern-based frameworks. This layer allows users to
make their applications independent of the parallel programming
framework used underneath, thus providing portable and readable
codes. With this first version of the MPI back end, we support the
distributed and hybrid execution of the Pipeline and Farm stream
patterns. To support hybrid scenarios, the back end combines an
intra-node shared-memory execution policy that if needed, is used
to run multiple Pipeline or Farm operators inside an MPI process
using OpenMP, C++ Threads or Intel TBB. Specifically, this paper
contributed to the following:

• We present the new GrPPI MPI execution policy for distributed
and hybrid environments for both Pipeline and Farm parallel
patterns.

• We describe the design of the GrPPI interface and the MPI
policy internals to allow the distributed and hybrid execution
of DaSP applications.

• We present the distributed multiple-producer/multiple-consu-
mer queues for the GrPPI stream operators. These queues allow
the transferring of data items using two-sided (send/receive)
and one-sided (get/put/fetch-and-op/ compare-and-swap) MPI
primitives.

• We evaluate the distributed Pipeline and Farm stream patterns
from the usability and performance points of view using two

1

https://doi.org/10.1016/j.parco.2019.03.004

III BACKGROUND

streaming applications: i) a video processing applications and ii)
an application that renders Mandelbrot frames. This evaluation
is carried out under different hybrid configurations.

• We analyze the pattern usability in terms of lines of code and
cyclomatic complexity, and perform a side-by-side comparison
of both GrPPI and MPI programming interfaces.

In general, this paper extends the results presented in [11] with i)
the implementation of the communication channels using one-side
MPI primitives; ii) the extended evaluation using a video processing
application; and iii) the analysis and comparison of both distributed
queue communication models (two-sided and one-sided) under the
different application scenarios.

The rest of this paper is organized as follows. Section II revis-
its some related works in the area. Section III reviews some basics
about the stream patterns targeted in this paper and describes the
GrPPI interface in detail. Section IV describes in detail the MPI
queues with its two communication nodes: two-sided and one-sided.
Section V describes the user interface of the proposed MPI back end,
along with the algorithm that distributes operators among MPI pro-
cesses. Section VI evaluates the performance of a stream-processing
application under different distributed and hybrid configurations
and the interface usability. Finally, Section VII closes the paper with
a few concluding remarks and future works.

II. Related work

In the literature, a considerable collection of research works can be
found about data stream processing in scientific HPC applications
targeted to distributed platforms. We classify these works in the fol-
lowing two categories: i) stream processing engines and frameworks;
and ii) pattern-based programming environments for distributed
systems.

Regarding the first category, we identify some popular stream
processing engines such as Storm [12], Spark [13] and Flink [14]
targeted to clusters and cloud environments. Basically, these en-
gines offer APIs that allow programmers to implement their appli-
cations as directed flow graphs, the nodes being operators and the
edges stream flows. Depending on how these operators and flows
are arranged, different and complex operations for splitting/join-
ing the streams, and filtering data can be performed. While these
stream engines are mainly Big Data and IoT-oriented, we also find
HPC-oriented stream programming frameworks. A key example
is StreamIt [15], a language that enables high performance of large
streaming applications by efficiently mapping processes to a wide
range of environments, including shared-memory architectures and
HPC clusters. Another example is MPIStream, a prototype library
implemented atop MPI, which provides an interface to existing MPI
applications to adopt the streaming model [16, 17]. Basically, MP-
IStream provides a lightweight approach to link MPI processes with
different tasks by using four basic concepts of stream processing:
communication channels, data producer/consumer, data streams
and stream operations.

On the other hand, we encounter pattern-based parallel program-
ming frameworks tackling distributed systems. For instance, the
authors of Fastflow in [18] report an extension of this library target-
ing cluster multi-core workstations, where the ZeroMQ library is

used as the external asynchronous communication layer. Another
example is Eden [19], an extension providing patterns in Haskell
which gives support for parallel and distributed environments. In
this library, processes communicate through unidirectional channels
that are defined by programmers while specifying data dependen-
cies. Similarly, JaSkel [20] provides sequential, concurrent, and dis-
tributed versions of the pipeline and farm skeletons, being possible
to deploy them on both cluster and grid infrastructures.

Alternatively, we also find parallel-pattern programming frame-
works which make use of MPI for targeting distributed platforms.
An example is SkeTo [21], a C++ library coupled with MPI that of-
fers operations for parallel data structures such as lists, trees, and
matrices, however, it lacks stream-oriented patterns. In a similar
way, the Muesli skeleton library [22] offers a large collection of pat-
terns through C++ methods implemented in OpenMP and MPI, for
multi-core and cluster platforms, respectively. The major supported
patterns are distributed arrays and matrices for data parallelism;
and pipelines and farms for stream-oriented parallelism. Another
contribution is MALLBA [23], a library that provides a collection
of high-level skeletons for combinatorial optimization which deals
with parallelism in a user-friendly and efficient manner. MALLBA
leverages NetStream, a custom MPI abstraction layer that takes care
of primitive data type marshaling and synchronization between
processes running in distributed machines. Finally, we highlight
DASH [24], a C++ template library that offers distributed data struc-
tures and parallel Standard template library (STL) algorithms via a
compiler-free Partitioned Global Address Space (PGAS) approach.

Given the foregoing, we identify an important gap between the
MPI community and stream processing needs of today’s scientific
applications [1]. In this sense, the objective of the new GrPPI MPI
back end is twofold. On the one hand, GrPPI offers a high-level
C++ interface of parallel patterns that improves both application
flexibility and source code readability [10]. On the other hand, the
use of GrPPI MPI back end transparently enables the execution of
streaming C++ application on HPC distributed platforms, as GrPPI
hides away the complexity related to communication and process
synchronization.

III. Background

In this section, we describe the necessary background about the
Pipeline and Farm streaming parallel patterns tackled in this paper
and review the GrPPI parallel pattern interface, where the new
distributed MPI back end has been implemented.

III.1 Streaming parallel patterns

In general, DaSP applications can be seen as data-flows in the form
of directed acyclic graphs (DAG), where the root nodes (producers)
receive items from some given input stream, intermediate nodes
perform some kind of operation on them, and leaf nodes (consumers)
dump processed items onto an output stream. To accelerate these
applications, the nodes, or operators, can be executed in parallel
as long as data item dependencies are preserved. A common and
simple DAG construction in DaSP is the Pipeline pattern, where the
operators in a topological sort have data item dependencies only
with the previous operator. Another common construction is the
Farm pattern, where an operator is replicated n times to increase its

2

IV MPI COMMUNICATION QUEUES III.2 GrPPI, a generic parallel pattern interface

throughput, so multiple stream items can be computed in parallel.
The formal definitions of the Pipeline and Farm patterns are the
following:

Pipeline This pattern processes the items appearing on the input
stream in several parallel stages. Each stage of this pattern
processes data produced by the previous stage in the pipe and
delivers results to the next one. Provided that the i-th stage in a
n-staged Pipeline computes the function fi : α → β, the Pipeline
delivers the item xi to the output stream applying the function
fn(fn−1(. . . f1(xi) . . .)). The main requirement of this pattern is
that the functions related to the stages should be independent
among them, i.e., they can be computed in parallel without side
effects. The parallel implementation of this pattern is performed
using a set of concurrent entities, each of them taking care of a
single stage. Figure 1(a) shows the Pipeline diagram.

Farm This pattern computes in parallel the function f : α → β
over all the items appearing in the input stream. Thus, for each
item xi on the input stream the Farm pattern delivers an item
to the output stream as f (xi). In this pattern, the computations
performed by the function for the input stream items should be
completely independent of each other, otherwise, it cannot be
processed in parallel. Thus, the function f can be computed in
parallel by the different concurrent entities. Figure 1(b) depicts
the Farm diagram.

As stated, these patterns can be composed among them to produce
more efficient applications. Basically, the compositions supported be-
tween the Pipeline and Farm patterns are those in which the Pipeline
stages can be parallelized individually using the Farm pattern. Thus,
if a Pipeline stage corresponds with a pure function, this can be com-
puted in parallel following a Farm construction. Throughout this
paper, we denote the sequential stages of a Pipeline with “p”, the
Farm stages with “f” and the communication between two stages
with the symbol “|”. For instance, a Pipeline comprised of 4 stages,
where the second and the third are Farm stages, is represented by
“(p|f|f|p)”.

(a) Pipeline pattern. (b) Farm pattern.

Figure 1: Pipeline and Farm pattern diagrams.

III.2 GrPPI, a generic parallel pattern interface

Regarding the parallel pattern interface, we have leveraged GrPPI,
a generic and reusable parallel pattern interface for C++ applica-
tions [10]. This interface takes full advantage of modern C++ fea-
tures, metaprogramming concepts, and generic programming to act

as a switch between the OpenMP, C++ threads and Intel TBB par-
allel programming models. Its design allows users to leverage the
aforementioned execution frameworks in a single and compact in-
terface, hiding away the complexity behind the use of concurrency
mechanisms. Furthermore, the modularity of GrPPI permits to eas-
ily integrate new patterns, while combining them to arrange more
complex constructions. Also, it allows the integration of new execu-
tion policies based on distributed and shared-memory programming
models. Thanks to this properties, GrPPI can be used to implement
a wide range of existing stream-processing and data-intensive ap-
plications with relatively small efforts, having as a result portable
codes that can be executed on multiple platforms. Figure 2 depicts
the general view of the GrPPI library.

Figure 2: GrPPI architecture.

Listing 3 shows both Pipeline and Farm GrPPI C++ pattern pro-
totypes. Note the use of templates with simple and variadic (pa-
rameter pack) parameters as universal references, allowing to pass
any callable object (e.g., a functor or lambda expression) for the pat-
tern operators. Note as well that the first parameter indicates the
execution policy that shall be used to execute the operators.

template <typename E, typename G, typename ... O>
void pipeline(E execution_policy, G && generator, O &&

... operators);

(a) Pipeline pattern.

template <typename O>
void farm(int num_replicas, O && operator);

(b) Farm pattern.

Figure 3: Pipeline and Farm GrPPI pattern interfaces.

IV. MPI communication queues

Communication channels are fundamental in distributed DaSP ap-
plications. For instance, a stream operator running on a node needs
to receive items from the previous operator mapped on another node,
perform some computation on them, and send them to the next oper-
ator. Thus, to enable stream parallelism across nodes in our new MPI

3

IV.1 Two-sided communication queues IV MPI COMMUNICATION QUEUES

execution policy, we determine the need for communication chan-
nels in the form of First-In-First-Out (FIFO) queues. For that, given
that MPI does not natively support distributed queues, we propose
two different implementations using one-sided and two-sided MPI
communications primitives. Basically, these queues encapsulate the
communications among MPI processes running stream operators.
This way, the pattern implementations only make use of the public
queue functions, e.g., the MPI queue producer side calls push in
order to enqueue an item which should be sent to the next operator;
while the consumer side calls to pop so as to dequeue an item by
receiving it from the previous operator.

Considering the possible arrangements between the Pipeline and
Farm GrPPI patterns, we identify four different communication
scenarios:

• Single-Producer, Single-Consumer (SPSC): two consecutive Pipe-
line stages (p|p).

• Single-Producer, Multiple-Consumer (SPMC): a Pipeline stage to a
set of Farm replicas (p|f).

• Multiple-Producer, Single-Consumer (MPSC): a set of Farm replicas
to a Pipeline stage (f|p).

• Multiple-Producer, Multiple-Consumer (MPMC): a set Farm repli-
cas to another set of Farm replicas (f|f).

Internally, these queues call to the corresponding MPI primitives
depending on the selected communication mode; for two-sided
we use MPI_Send and MPI_Recv, while for one-sided we leverage
MPI_Get and MPI_Put. In the following sections, we explain in
detail the implementation of these communication modes in our
MPI distributed queues.

IV.1 Two-sided communication queues
As mentioned, the two-sided communication mode is implemented
on top of send and receive MPI primitives, using the MPI interface
provided by the Boost MPI library [25]. To illustrate the behaviour of
this queue, left-hand side of Figures 4(a) and 4(b) show, respectively,
the queue diagrams in the SPSC and MPMC scenarios.1 As shown
in the MPMC queue producer side, the queue creates a controller
thread per producer process (T0,1) in order to overlap communi-
cations with the operator computations. The queue also selects a
controller thread that acts as the orchestrator, which is responsible
for managing the queue by keeping track of the items available in
each producer and forwarding consumer item requests to a given
producer. For the SPSC queue, however, since the producer and con-
sumer processes are known in advance, the communications can be
overlapped with computations by directly using MPI asynchronous
send/receive primitives. Therefore, no controller threads in the pro-
ducer side are needed to manage the queue when dealing with SPSC
scenarios.

To implement the aforementioned behavior, both producer and
consumer MPI queue sides communicate following a specific proto-
col depending on the queue scenario (see right-hand side Figures 4(a)
and 4(b) for SPSC and MPMC, respectively). This communication
protocol is comprised of the three following phases:

1We consider the SPMC and MPSC scenarios are implemented using the MPMC queue
mode, as these cases can be seen as specializations of MPMC.

• Configuration phase: The goal of this phase is to determine
whether the queue should be run in SPSC or MPMC mode. If
there exist only one producer and one consumer, then the queue
is configured as SPSC; otherwise, it is set as MPMC. At the be-
ginning of this phase, both producers and consumers initialize
their queue sides according to the operator type (Pipeline stage
or Farm replica). From this point on, all processes exchange
different configuration messages with the orchestrator process
so as to select the queue mode. First, the consumers and pro-
ducers send the respective messages reg_recv<id, type> and
reg_send<id> for registering themselves to the orchestrator.
Additionally, consumers indicate the orchestrator their type, i.e.
Pipeline stage or Farm replica. Next, the orchestrator config-
ures the queue as SPSC or MPMC depending on the number of
registered consumers and producers, and communicate them
the acknowledge queue scenario (ack<mode>). Finally, producer
processes launch the corresponding controller threads if the
queue is configured as MPMC.

• Communication phase: A different communication protocol is
used depending on the queue mode. If the queue is configured
as SPSC, the producer process asynchronously sends the items
to the consumer. Otherwise, if the queue is set to MPMC
mode, the orchestrator thread waits for messages coming from
producers and consumers. Producers send notify_item<id>
messages to inform about a new available item, while consumers
send item_req<id> to ask the orchestrator for an item. When
the orchestrator receives a new request, it serves the item directly
or forwards the request to another producer, following the same
order in which the producer notifications arrived.

• Termination phase: Similar to the previous phase, a different
finalization protocol is used depending on the queue mode. For
the SPSC mode, as soon as the producer finishes its operation,
it sends the end-of-stream (EOS) message to the consumer. On
the contrary, for the MPMC mode, the orchestrator waits for
EOS messages from all producers, including its own termination
item. When this happens, the orchestrator sends to each of the
consumers the EOS message to finalize the communication.

Thanks to these queues, stream operators run by MPI processes
are able to transmit items according to the stream flow dictated by a
concrete Pipeline construction, which can be composed of different
Farm patterns. Note that if a process uses multiple queue instances
simultaneously, MPI tags, instead of multiple communicators, are
used to reference each of them.

IV.2 One-sided communication queues
To support the one-sided communication mode we leverage both
MPI_Get and MPI_Put primitives. This type of communication was
defined in the MPI 2 standard by introducing Remote Memory Ac-
cess (RMA), also called one-sided communications because they
require only one process to transfer data [26]. One-sided communi-
cation allows a process (origin) to read/write memory of a target
process. For physical layers that support RDMA, e.g. Infiniband, the
target process does not need to intervene during the communication.
This fact benefits our distributed queue as a consumer is able to
fetch a new item directly from the memory of a producer. Note that,

4

IV MPI COMMUNICATION QUEUES IV.2 One-sided communication queues

(a) SPSC queue diagram and communication protocol. (b) MPMC queue diagram and communication protocol.

Figure 4: SPSC and MPMC two-side queues for the MPI execution policy.

in this case, we employ the MPI C API since the Boost MPI library
does not provide support for one-sided operations.

Figure 5: MPMC one-side queue schema.

To communicate data items among stream operators, we leverage
MPI windows for two different purposes: data and control. Figure 5
depicts the general schema of a one-sided communication queue
and the use of such windows. As can be seen, producers use data
windows to store the serialized data (items) which are transmitted
through the nodes executing consecutive stream operators. Alterna-
tively, control windows are used to keep track of the data window
head and tail pointers. Further, the process acting as the queue
controller stores a circular list of (rank, o f f set, length) tuples to de-
scribe available data in one of the producers. This way, each time
a data item becomes available in a producer, it is annotated in the
list. When a consumer requests a new element, it retrieves the first
tuple in the list and reads length bytes, starting at o f f set from the

data window of the process with rank rank.
Control windows also store two bitmaps which are used to anno-

tate the waiting producers and consumers that cannot introduce or
consume an element because their queue is already full or empty. In
these cases, when a producer or a consumer cannot push/pop an
element from the queue, it is annotated as a waiting process in the
bitmap, blocking the process on a receive primitive. Afterwards,
when an item is consumed (or new data becomes available), the
consumer (or producer) will send a wake-up message to one of
the waiting processes to notify that the queue is ready. This tech-
nique avoids unnecessary communications to repeatedly check if
new items can be consumed or produced.

To enable the one-sided model, we have defined a protocol allow-
ing to instantiate queues and create the necessary memory windows.
This communication protocol is comprised of the three following
phases:

• Initialization phase: The initialization stage in charge of gen-
erating the corresponding communicators for the processes
involved in sending/receiving items to/from a queue. In this
stage, each of the processes constructs a bitmap in which each
bit indicates whether a particular queue is referenced. A queue
is referenced if the process uses it either for producing (send-
ing) or consuming (receiving) items. Next, these bitmaps are
shared among all the processes using the MPI_Allgather prim-
itive. Afterwards, all the processes involved in a queue call the
MPI_Comm_create_group function providing a group generated
using the received bitmaps. Finally, the processes involved in
this new communicator initialize their respective windows us-
ing the collective communication primitive MPI_Win_create.

• Communication phase: Once the queue is initialized, it can
start communicating elements from/to multiple producers/con-
sumers. Figure 6 illustrates two examples of communication
from both the producer and consumer side. The first step for a
producer to store a new data item is to check whether the data

5

V THE GRPPI MPI EXECUTION POLICY

(a) Producer-side communication protocol. (b) Consumer-side communication protocol.

Figure 6: MPMC one-side queues for the MPI execution policy.

window has some space left. If the window is full, the producer
sets the bit corresponding to its rank in the controller (producer-
wait bitmap) and waits until receiving a message indicating that
a consumer obtained an item from its data window. Afterwards,
the producer may try to introduce a new data item in its internal
data queue. If the queue is not full, the producer stores the data
item in such queue and tries to introduce the tuple correspond-
ing to the location of the item in the metadata queue (at the
controller). Similarly to introducing the item in the data queue,
the producer checks whether the metadata queue is full. This
way, after introducing the location in the metadata queue, the
item becomes available for the consumer processes. Finally, the
producer checks the consumer-wait bitmap and sends a wake
up message to one of the waiting consumers, if any.

With regards to the consumer process (see Figure 6(b)), the first
step is to obtain an item location from the metadata queue.
When the queue is empty, the consumer sets its corresponding
bit in the consumer bitmap (stored in the controller) and waits
for a wake up message from a producer. After receiving the
message, the consumer process tries to obtain an item location.
If the consumer is able to obtain a data location from the queue,
it will try to read the corresponding data from the data window
of the process that stores the item. Finally, this process selects a
waiting producer to send a wake-up message.

• Finalization phase: Finally, to control the end of the stream,
the controller process exposes an atomic counter of producers
that have not generated the end-of-stream item yet. A producer
that reaches the end-of-stream decrements this counter, and

sends the end-of-stream message to all of the consumers if there
are no other producers left. After all the consumers receive
this message, the queue object may be destroyed. As part
of the destructor, RMA windows are deallocated using the
MPI_Win_free primitive. MPI_Win_free is a collective call that
acts as a barrier, so producers memory will not be released until
all the involved processes call the queue destructor.

In general, the one-sided MPI queue mode avoids the use of the
send/receive primitives, as the consumers have access to the mem-
ory window exposed by the producers where data items reside.
Further, the one-sided queue mode avoids the use of the orchestrator
thread used in the two-sided mode. However, to leverage the one-
sided communications potential, a network with RDMA support is
required. Also, for multi-threaded stream operators, the memory
window cannot be opened/accessed by multiple threads simulta-
neously, turning hybrid (distributed + shared-memory) scenarios
more difficult to implement and requiring the use of synchroniza-
tion primitives (locks). This fact, however, does not occur in the
two-sided queue mode, where the use of the thread safety support
(MPI_THREAD_MULTIPLE) combined with tags and group communi-
cators eases the internal implementation of the distributed MPMC
queues and the programmability of multi-threaded stream operators.

V. The GrPPI MPI execution policy

As previously stated, the goal of GrPPI is to accommodate a layer
of parallel patterns between developers and existing parallel pro-
gramming frameworks. So far, GrPPI only supports shared-memory

6

V THE GRPPI MPI EXECUTION POLICY V.1 User interface

execution policies, such as C++ Threads, OpenMP and Intel TBB. To
extend GrPPI in order to support distributed platforms, we have in-
corporated the MPI execution policy which, at this moment, allows
users to execute the Pipeline and Farm stream patterns on multi-core
clusters. In this section, we describe in detail the basic elements of
the MPI execution policy: the user interface and mapping algorithm.

V.1 User interface

Given the GrPPI design, where each execution policy is implemented
using a C++ class, for the new MPI policy we also designed its class.
This is because each of these classes contains the framework-specific
pattern implementations along with the configuration parameters
for that policy. Basically, GrPPI pattern interfaces are overloaded
with a different implementation for each of the available execution
policies. With it, when the user code is compiled, the specific pat-
tern implementation is selected depending on the execution policy
passed as argument (see the execution_policy parameter in the
Pipeline interface in Figure 3). Listing 1 shows an excerpt of the MPI
execution policy class.

As observed, the execution policy constructors receive the program
arguments directly. Additionally, the second argument determine the
preferred communication mode using an enumerate that can take
the values one_sided or two_sided. To support hybrid scenarios,
both constructors can additionally receive a local shared-memory
execution policy. This local policy will be used to run multiple
Pipeline stages/Farm replicas (also referred to as stream operators)
inside the same process. Therefore, operators assigned to the same
process will be executed in sequential or in parallel depending on
the selected shared-memory execution policy.

Listing 1: GrPPI MPI execution policy class.

1 template<typename LocalPolicy = parallel_execution_native>
2 class parallel_execution_mpi {
3 ...
4 public:
5 parallel_execution_mpi(int argc, char** argv,
6 CommMode comm_mode = one_sided,
7 LocalPolicy local_exec_policy =

parallel_execution_native{});
8 parallel_execution_mpi(
9 CommMode comm_mode = one_sided,

10 LocalPolicy local_exec_policy =
parallel_execution_native{});

11 ...
12 };

As shown in Listing 2, the GrPPI Pipeline pattern leverages the
new MPI execution policy class for its execution. Note that the
policy is constructed at the declaration using both argc and argv
arguments. This Pipeline is comprised of three stages in the form
(p|f|p), where the first and third stages run in series, while the
second executes two replicas of the same operator using the Farm
pattern. Assuming that the program is run by 4 MPI processes, the
first and last respectively execute the generator and consumer stages,
while the second and third will compute each of the Farm replicas.
It is important to remark that items transiting from one stage to the
next are sent and received through the MPI communication queues
implemented within the policy back end.

Listing 2: Example of GrPPI distributed Pipeline.

1 grppi::parallel_execution_mpi ex{argc, argv, grppi::
two_sided};

2 grppi::pipeline(ex,
3 [x=1,n]() mutable -> optional<double> {
4 if (x<=n) return x++;
5 else return {};
6 },
7 grppi::farm(2,[](double x) {
8 return x*x;
9 }),

10 [](double x) { cout << x << endl; }
11);

V.2 Mapping stream operators onto processes

The MPI execution policy also embeds a mapping algorithm to
assign stream operators onto MPI processes. Basically, this algorithm
calculates at the beginning of the Pipeline execution the total number
of operators involved in it, considering both the number of stages
and Farm replicas. Afterwards, it computes the number of operators
that should be run per MPI process (opp). By default, the operators
are distributed homogeneously using the formula:

opp =
num_ops

num_procs
(1)

However, the user can override this value by calling the function
set_grouping_granularity(int ops_per_proc), part of the MPI
execution policy class. Next, each of the MPI processes calculates,
using its rank, the range of operators that should be executed with
the following formula:

Range(rank) =

{
{rank ∗ opp, ((rank + 1) ∗ opp)− 1} if rank 6= num_procs − 1
{rank ∗ opp, num_ops − 1} if rank = num_procs − 1

(2)

According to this formula, if the opp value is set by default i.e. with
Eq. 1, all processes execute the same number of operators except
the last, which executes all remaining operators. Otherwise, if opp
has been set by the user and is bigger than that set by default, then
some of the last processes might not execute any operator. Note as
well that the mapping algorithm selects consecutive operators to be
mapped onto MPI processes, i.e. following the same order as they
appear in the Pipeline pattern.

Figure 7 depicts a four-stage Pipeline composed of two Farm
patterns in the second and third stages, running with 5 replicas each.
In this case, the grouping granularity or opp has been computed
by default using Eq. 1. Given that, each process executes the 3
consecutive operators corresponding to those returned by Eq. 2.
Thus, the same MPI process can execute, using the local shared-
memory policy, both Pipeline stages and/or Farm replicas.

All in all, this MPI execution policy allows GrPPI patterns to be
executed on distributed multi-core platforms, exploiting both inter
and intra-node parallelism. Also, thanks to its operator mapping
algorithm, it is able to automatically distribute operators following
the logical streaming order.

7

VI EXPERIMENTAL EVALUATION

Figure 7: Distribution of stream operators onto processes with opp = 3.

VI. Experimental evaluation

In this section, we perform an experimental evaluation of the GrPPI
MPI back end from the performance and interface productivity
points of view. For this evaluation, we employ the following hard-
ware and software components:

• Target platform. The evaluation has been carried out on two
different cluster platforms:

Tucan This platform is a homogeneous eight-node cluster,
each node comprising 2× Intel Xeon Harpertown E5405 with 4
cores (total of 8 cores) running at 2.00 GHz, 12 MB of L2 cache
and 8 GB of DDR3 RAM. The OS is a Linux Ubuntu 16.04.3 LTS
with the kernel 4.4.0-97. Nodes are interconnected using a 1
Gigabit Ethernet switch.

Tintorrum This platform is another homogeneous eight-node
cluster, where each node is equipped with an Intel Xeon West-
mere E5645 comprised of 6 cores running at 2.40 GHz, 12 MB of
L3 cache and 48 GB of DDR3 RAM. The OS is CentOS 6.6 with
the kernel 2.6.32-504. The nodes in this cluster are connected
through an InfiniBand QDR network using Mellanox MTS3600
switch.

• Software. We leveraged the new GrPPI MPI back end built
on top of GrPPI v0.4 [27], along with the respective shared-
memory and distributed-memory back ends, C++11 threads
and MPI-3.1, implemented by OpenMPI 3.1.2. Note that the
MPI back end was implemented using the Boost MPI v1.66.0.
The C++ compiler used to assemble GrPPI was GCC v6.3.0
which already supports the C++14 standard.

• Use cases. To evaluate both the Pipeline and Farm distributed
patterns, we leverage two different use cases:

Video-App The video processing use case is a synthetic
streaming application in charge of applying a Gaussian blur
and a Sobel filter over a set of images and generating an out-
put video file with the resulting images. The pipeline of this
application is composed of the four stages: i) a generator, which
returns the file names of the different images to be processed;
ii) a Gaussian blur filter; iii) a Sobel operator; and iv) a con-
sumer, which turns each to the processed images to an output
video frame. Note that the blur and Sobel filter, i.e., second and
third stages of the pipeline, can be executed in parallel using
the Farm pattern. This is because the images are completely
independent of each other.

Concretely, this synthetic benchmark will be used to evaluate
both distributed Pipeline and Farm patterns under different
configurations of kernel size for the Gaussian blur and Sobel
operators and number of processes/threads per process on the
Farm patterns computing both blur and Sobel filters.

Mandelbrot The Mandelbrot use case is a streaming applica-
tion that computes Mandelbrot set images for building a fractal
zoom animation and applying the Gaussian blur filter on each
of the generated frames. Concretely, this Pipeline-based appli-
cation consists of the following stages: i) a Generator, which
returns monotonically linear increasing zoom values; ii) a Man-
delbrot stage, receiving zoom values for computing the Mandel-
brot frame corresponding to such zoom value; iii) a Gaussian
blur filter, receiving the frames from the previous stage and ap-
plying the Gaussian blur filter using a 3×3 pixels kernel; iv) a
consumer, which dumps each of the frames onto the disk using
the BMP format. In this use case, since the animation frames
can be computed independently, both Mandelbrot and Gaussian
blur Pipeline stages can be replicated by means of the Farm pat-
tern, so they can process individual frames. Thus, several com-
positions may arise depending on the parallelization of these
stages, i.e., (p|p|p|p), (p|f|p|p), (p|p|f|p), and (p|f|f|p).

8

VI EXPERIMENTAL EVALUATION VI.1 Performance analysis of Video-App

As is generally known, the Mandelbrot set is the set of com-
plex numbers c for which the function fc(z) = z2 + c does not
diverge when iterated from z = 0, i.e., for which the sequence
fc(0), fc(fc(0)), etc., remains bounded in absolute value. Thus,
Mandelbrot images may be created by sampling the complex
numbers and determining, for each sample point c, whether
the result of iterating the above function goes to infinity. Af-
terwards, treating the real and imaginary parts of c as image
coordinates (x + yi) on the complex plane, pixels may then be
colored according to how rapidly the sequence z2

n + c diverges.
This is key to understand the heterogeneous nature of this oper-
ation, where the divergence speed at the point of interest and
zoom value dictate the number of iterations to compute a given
frame. On the contrary, the Gaussian blur operator has an al-
most homogeneous workload to process each of the frames.

In the following sections, we analyze the performance and the
productivity of the GrPPI distributed Pipeline and Farm patterns
using the above-mentioned benchmarks with varying configurations
of parallelism degree w.r.t. the number of MPI processes and worker
threads used in Farm stages. Also, we evaluate the performance
of both MPI queue communication modes, i.e. two-sided and one-
sided. Finally, we evaluate the productivity of the GrPPI interface
on the Mandelbrot use case by means of analyzing the number of
lines of code (LOCs) and the Cyclomatic Complexity Number (CCN)
required to implement the application with and without GrPPI.

VI.1 Performance analysis of Video-App

In this section, we evaluate the performance of Video-App with using
images of size 400 × 400 pixels on both Tucan and Tintorrum

platforms. Figure 8 shows the speedup obtained for both MPI queue
communication modes w.r.t. the number of threads per node on
Tucan. It is important to remark that each experiment runs as many
operators (Pipeline stages and Farm replicas) as the total number of
threads executed across nodes. As can be observed, both MPI queue
communication modes (Figures 8(a) and 8(b)) scale w.r.t. the number
of nodes and threads used. Since MPI one-sided communications
over Ethernet are implemented by means of TCP/IP segments, both
one-sided and two-sided versions perform similarly. Additionally,
the speedup attained by MPI using a single node is equal to the
shared memory back end; this is because of the MPI back end
delegates completely on the shared memory back end when running
on one node.

Figure 9 shows the results for the same experiment on the Tin-
torrum platform using the InfiniBand network. As it can be no-
ticed, the efficiency obtained for both MPI queue communication
modes and for all number of threads per core is higher than the
efficiency attained on Tucan. This improvement is given by the bi-
section network bandwidth of InfiniBand over Ethernet. It can also
be clearly seen that the one-sided communication mode outperforms
the two-sided mode; this is because the RDMA capability is natively
supported by the InfiniBand interconnect technology. This capabil-
ity prevents the processes sharing memory windows from being
directly involved in the communications, as it RDMA is handled at
the hardware level.

VI.1.1 Performance analysis of Mandelbrot

In this section, we evaluate the performance and the scalability of
the Mandelbrot application implemented with the GrPPI inter-
face using the MPI policy along with the shared-memory back end
based on C++11 threads. Basically, we analyze the behavior of the
two-sided communication MPI back end using equal and adjusted
number of replicas on the Farm operators. Next, we analyze the per-
formance on Tucan and Tintorrum platforms using both one-sided
and two-sided communication modes with the best configuration of
the number of replicas from the previous experiment.

Figure 10 depicts the speedup scaling when using from 1 to 8
Tucan nodes and executing from 1 to 8 threads per node for square
frame resolutions 400 w.r.t. the sequential application. In this first
experiment attempt (see Figure 10(a)), we set the same number of
Farm replicas in both Mandelbrot and Gaussian blur stages. As
can be seen, for 1, 2 and 4 nodes, the application linearly scales
with the number of threads per node, having a sustained efficiency
of roughly 47 %. However, for 8 nodes the performance scaling
degrades from 6 threads per node on since the Mandelbrot stage
causes a major bottleneck in the Pipeline due to unbalanced stage
throughputs. The maximum efficiency, in this case, is 35 %. This is
because the Mandelbrot workload per frame is much higher than
applying the Gaussian blur operator.

To deal with this unbalance, we have empirically calculated the
ratio between the Mandelbrot and blur stages throughputs, which
served us to determine the optimal number of replicas in their
corresponding Farm stages. Basically, we have calculated this ratio
using average throughputs of both stages for the different frame
resolutions. Using this ratio, we assign 1 blur replica per each 25
Mandelbrot replicas. Nevertheless, this ratio does not deliver ideal
throughputs given the heterogeneous nature of the Mandelbrot set
workload. Figure 10(b) shows the performance achieved for the
different number of nodes and threads per node experiments and
using the aforementioned ratio. As observed, from 1 to 4 nodes,
the efficiency significantly improves w.r.t. the previous experiment,
from 47 % to 80 %. On the other hand, for 8 nodes, the application
shows worse performance when using more than 6 threads per
core. This degradation is mainly due to the difference between
the stage workload and the inherent communication overheads.
For this reason, for large frame sizes the performance attained is
slightly better, as the parallel computations pay off the required
data serialization and transfer times. In any case, for 8 nodes, the
efficiency obtained using balanced Farm stages increases from 35 %
to 70 %.

To extend our evaluation, we now compare the performance of the
balanced Farm stages using both MPI communication modes: two-
sided and one-sided on Tucan and Tintorrum platforms. Figure 11
shows the speedup scaling on Tucan using the aforementioned com-
munication modes. As observed, the performance obtained on both
two-sided and one-sided communication modes is quite similar for
all number of nodes, scaling mostly linearly with increasing number
of threads per node. Contrarily, the same experiment performed
on Tintorrum, as shown in Figure 12 reveals that using one-sided
communications improve the speedup scaling. As stated in the pre-
vious section, this is due to the RDMA capability of InfiniBand and
the higher bisection bandwidth of the Tintorrum network. There-
fore, this kind of streaming communication-intensive applications

9

VI.2 Productivity analysis VI EXPERIMENTAL EVALUATION

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8

Sp
ee

du
p

Cores/threads per node

Shared Mem.

MPI: 1 node

MPI: 2 node

MPI: 4 node

MPI: 8 node

(a) Speedup using two-sided communications.

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8

Sp
ee

du
p

Cores/threads per node

Shared Mem.

MPI: 1 node

MPI: 2 node

MPI: 4 node

MPI: 8 node

(b) Speedup using one-sided communications.

Figure 8: Speedup of the image use case using images of size 400 × 400 on Tucan.

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6

Sp
ee

du
p

Cores/threads per node

Shared Mem.

MPI: 1 node

MPI: 2 node

MPI: 4 node

MPI: 8 node

(a) Speedup using two-sided communications.

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6

Sp
ee

du
p

Cores/threads per node

Shared Mem.

MPI: 1 node

MPI: 2 node

MPI: 4 node

MPI: 8 node

(b) Speedup using one-sided communications.

Figure 9: Speedup of the image use case using images of size 400 × 400 on Tintorrum.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8

Sp
ee

du
p

Cores/threads per node

Shared Mem.

MPI: 1 node

MPI: 2 node

MPI: 4 node

MPI: 8 node

(a) Speedup using equal number of replicas per Farm.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8

Sp
ee

du
p

Cores/threads per node

Shared Mem.

MPI: 1 node

MPI: 2 node

MPI: 4 node

MPI: 8 node

(b) Speedup using adjusted number of replicas per Farm.

Figure 10: Speedup of the Mandelbrot use case with equal and adjusted number of replicas.

strongly benefits from very high throughput and very low latency
networks, such as InfiniBand or Intel Omni-Path.

From these experiments, we can also conclude that the proposed
GrPPI interface can aid in implementing distributed stream scientific
applications at the expense of negligible overheads. In a separate
experiment, we evaluated the overhead introduced by GrPPI w.r.t.
using MPI directly. This overhead was less than 0.1 %.

VI.2 Productivity analysis

To analyze the productivity and usability of the GrPPI pattern inter-
face and the new MPI back end, we make use of the Lizard analyzer
tool [28] to obtain two well-known metrics: Lines of Code (LOCs)
and the McCabe’s Cyclomatic Complexity Number (CCN) [29]. Basi-
cally, we leverage these metrics to analyze the different versions of

10

VII CONCLUSIONS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8

Sp
ee

du
p

Cores/threads per node

Shared Mem.

MPI: 1 node

MPI: 2 node

MPI: 4 node

MPI: 8 node

(a) Speedup using two-sided communications.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8

Sp
ee

du
p

Cores/threads per node

Shared Mem.

MPI: 1 node

MPI: 2 node

MPI: 4 node

MPI: 8 node

(b) Speedup using one-sided communications.

Figure 11: Speedup of the Mandelbrot use case on Tucan.

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6

Sp
ee

du
p

Cores/threads per node

Shared Mem.

MPI: 1 node

MPI: 2 node

MPI: 4 node

MPI: 8 node

(a) Speedup using two-sided communications.

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6

Sp
ee

du
p

Cores/threads per node

Shared Mem.

MPI: 1 node

MPI: 2 node

MPI: 4 node

MPI: 8 node

(b) Speedup using one-sided communications.

Figure 12: Speedup of the Mandelbrot use case on Tintorrum.

the Mandelbrot use case, i.e., with and without using the GrPPI
interface. Table 1 summarizes the percentage of additional LOCs
introduced into the sequential source code in order to implement the
parallel versions using MPI and the GrPPI interface, along with their
corresponding CCNs. As observed, implementing more complex
compositions via MPI leads to larger and more complex source codes,
while for GrPPI the number of additional LOCs remains constant.
This difference is mainly due to the communication queues required
to implement the Farm pattern. Focusing on GrPPI, we observe that
the parallelization effort is almost negligible: even the most com-
plex composition increases nearly 4.2 % the LOCs. Also, switching
GrPPI to use a particular execution policy just needs changing a
single argument in the pattern function call. Regarding the cyclo-
matic complexity for MPI, we observe that their CCNs are roughly
proportional to the LOCs percentage increase. On the contrary, the
GrPPI interface has constant CCNs for all Pipeline compositions.

Finally, we perform a side-by-side comparison between the Boost
MPI using one-side primitives and the GrPPI interfaces for imple-
menting a simplified version of the Mandelbrot use case. As can be
seen in Listing 13(a), the MPI implementation clearly distinguishes
the instructions and communications that have to be performed by
each of the processes.2 On the other hand, the GrPPI code, shown

2For the sake of simplicity, we have replaced the use of queues by synchronous
communications, so no computations overlap communications in this case.

Table 1: Percentage of additional LOCs w.r.t. the sequential version and
CCNs for the Pipeline compositions.

Pipeline % additional LOCs CCN
composition MPI GrPPI MPI GrPPI

(p|p|p|p) +10.3 % +4.2 % 9 7
(p|f|p|p) +130.4 % +4.2 % 38 7
(p|p|f|p) +130.4 % +4.2 % 38 7
(p|f|f|p) +185.8 % +4.2 % 58 7

in Listing 13(b), focuses more on the application algorithm structure
rather than on the inter-process communications. In a nutshell, al-
though both interfaces provide high-level interfaces, we conclude
that the pattern implementations offered by GrPPI help improving
both productivity and maintainability. This is mainly to the algo-
rithm encapsulation provided by the design pattern approach.

VII. Conclusions

In this paper, we have extended GrPPI, a generic and reusable par-
allel pattern interface, with a new MPI back end, which enables the
execution of the Pipeline and Farm stream patterns on distributed
platforms. To support hybrid scenarios, the back end also combines
an intra-node shared-memory execution policy that if needed, is

11

REFERENCES REFERENCES

1 std::vector<color> image;
2 if (world.rank() == 0) { // Zoom generator
3 for(int frame= 0; frame < num_frames; frame++) {
4 zoom-= zoom * 0.1;
5 world.send(world.rank()+1, 0, zoom);
6 }
7 }
8 else if (world.rank() == 1) { // Mandelbrot stage
9 for(int frame= 0; frame < num_frames; frame++) {

10 world.recv(world.rank()-1, 0, zoom);
11 image = mandelbrot(height, width, poi_x, poi_y, zoom);
12 world.send(world.rank()+1, 0, image);
13 }
14 }
15 else if (world.rank() == 2) { // Blur stage
16 for(int frame= 0; frame < num_frames; frame++) {
17 world.recv(world.rank()-1, 0, image);
18 image = blur(height, width, kernel, image);
19 world.send(world.rank()+1, 0, image);
20 }
21 }
22 else if (world.rank() == 3) { // Consuming stage
23 for(int frame= 0; frame < num_frames; frame++) {
24 world.recv(world.rank()-1, 0, image);
25 save_bmp(height, width, image);
26 }
27 }

(a) Boost MPI implementation.

1 int frame= 0;
2 int num_frames= 1000;
3 // Main pipeline
4 grppi::pipeline(mpi_exec,
5 // Zoom generation
6 [&]() -> std::experimental::optional<double> {
7 if (frame++ == num_frames) return {};
8 zoom-= zoom * 0.1;
9 return zoom;

10 },
11 // Farm mandelbrot stage
12 grppi::farm(4,
13 [&](auto zoom){
14 return mandelbrot(height, width, poi_x, poi_y, zoom

);
15 }
16),
17 // Farm blur stage
18 grppi::farm(4,
19 [&](auto image){
20 return blur(height, width, kernel, image);
21 }
22),
23 // Consuming stage
24 [&](auto image){
25 save_bmp(height, width, image);
26 }
27);

(b) GrPPI implementation.

Figure 13: Boost MPI and GrPPI implementations of the Mandelbrot use case.

used to run multiple Pipeline and/or Farm operators inside the same
MPI process. In general, the compact design of GrPPI facilitates
the development of data streaming applications, improving flexi-
bility and portability, while exploiting both inter- and intra-node
parallelism. Additionally, we have provided support for two commu-
nication mechanisms among stream operators on top of two-sided
and one-sided MPI primitives.

As demonstrated throughout the experimental evaluation, both
the Video-App and the Mandelbrot use cases, implemented with
the distributed Pipeline and Farm patterns, attains considerable
speedup gains compared with the corresponding sequential ver-
sion. We have also demonstrated that the proposed communica-
tion mechanisms attain the same performance using an Ethernet
interconnection network; while for high-throughput and low latency
networks that support RDMA, the one-sided mode outperforms the
two-sided communication mode. In any case, as seen through the
evaluation, it is always important to balance Pipeline stages accord-
ing to the stage workloads in order to better exploit the available
resources. We also proved that leveraging GrPPI reduces consider-
ably the number of LOCs and cyclomatic complexity with respect to
implementing them using directly MPI. Additionally, thanks to the
qualitative comparison of the two high-level interfaces, GrPPI and
MPI, we conclude that GrPPI leads to more structured and readable
codes, and thus, improves their general maintainability. All in all,
the implementation of a distributed back end by means of MPI has
been mainly motivated by the scaling needs and development of
new programming models for DaSP scientific applications. Further-
more, our interest with this back end comes from the wide adoption
of MPI in today’s supercomputers, which currently has no standard

support for stream processing [16]. For these reasons, we believe
that the presented back end can greatly aid in developing stream
applications in C++.

As future work, we plan to support new algorithms for mapping
operators onto processes and introduce a new operator to allow users
to replace the by default execution policy of a concrete operator
in a Pipeline stage. We also plan to implement other streaming
patterns, such as the Filter or Stream-Reduce constructions, within
the MPI execution policy and improve the communication queues
to use one-sided MPI communications.

Acknoledgments

This work was partially supported by the EU project ICT 644235
“RePhrase: REfactoring Parallel Heterogeneous Resource-Aware
Applications” and the project TIN2013-41350-P “Scalable Data Man-
agement Techniques for High-End Computing Systems” from the
Ministerio de Economía y Competitividad, Spain.

References

References

[1] G. Fox, S. Jha, L. Ramakrishnan, Stream2016: Streaming require-
ments, experience, applications and middleware workshop,
Tech. rep., Lawrence Berkeley National Laboratory (10 2016).
doi:10.2172/1344785.

12

http://dx.doi.org/10.2172/1344785

REFERENCES REFERENCES

[2] S. Kamburugamuve, S. Ekanayake, M. Pathirage, G. Fox, To-
wards high performance processing of streaming data in large
data centers, in: 2016 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), IEEE,
Chicago, USA, 2016, pp. 1637–1644. doi:10.1109/IPDPSW.
2016.103.

[3] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, The MIT
Press, Massachusetts, USA, 2014.

[4] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald,
R. Menon, Parallel Programming in OpenMP, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2001.

[5] F. Cappello, D. Etiemble, Mpi versus mpi+openmp on ibm sp
for the nas benchmarks, in: Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing, SC ’00, IEEE Computer Society,
Washington, DC, USA, 2000, pp. 12–12.
URL http://dl.acm.org/citation.cfm?id=370049.370071

[6] M. McCool, J. Reinders, A. Robison, Structured Parallel Pro-
gramming: Patterns for Efficient Computation, 1st Edition,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2012.

[7] A. Marco, D. Marco, K. Peter, T. Massimo, Fastflow: HighLevel
and Efficient Streaming on Multicore, Wiley-Blackwell,
2017, Ch. 13, pp. 261–280. arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1002/9781119332015.ch13, doi:10.
1002/9781119332015.ch13.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781119332015.ch13

[8] P. Ciechanowicz, M. Poldner, H. Kuchen, The Münster Skeleton
Library Muesli: A comprehensive overview, ERCIS Working
Papers 7, University of Münster, European Research Center for
Information Systems (ERCIS) (2009).
URL https://ideas.repec.org/p/zbw/ercisw/7.html

[9] A. Ernstsson, L. Li, C. Kessler, Skepu 2: Flexible and type-
safe skeleton programming for heterogeneous parallel systems,
International Journal of Parallel Programming 46 (1) (2018)
62–80. doi:10.1007/s10766-017-0490-5.
URL https://doi.org/10.1007/s10766-017-0490-5

[10] D. del Rio Astorga, M. F. Dolz, J. Fernández, J. D. García, A
generic parallel pattern interface for stream and data processing,
Concurrency and Computation: Practice and Experience Online
(2017) e4175–n/a. doi:10.1002/cpe.4175.

[11] J. F. Muñoz, M. F. Dolz, D. del Rio Astorga, J. P. Cepeda, J. D.
García, Supporting mpi-distributed stream parallel patterns in
grppi, in: Proceedings of the 25th European MPI Users’ Group
Meeting, EuroMPI’18, ACM, New York, NY, USA, 2018, pp.
17:1–17:10. doi:10.1145/3236367.3236380.
URL http://doi.acm.org/10.1145/3236367.3236380

[12] S. T. Allen, M. Jankowski, P. Pathirana, Storm Applied: Strate-
gies for Real-time Event Processing, 1st Edition, Manning Pub-
lications Co., Greenwich, CT, USA, 2015.

[13] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, I. Stoica, Apache spark: A unified
engine for big data processing, Commun. ACM 59 (11) (2016)
56–65. doi:10.1145/2934664.

[14] S. Papp, The Definitive Guide to Apache Flink: Next Generation
Data Processing, 1st Edition, Apress, Berkely, CA, USA, 2016.

[15] W. Thies, M. Karczmarek, S. Amarasinghe, Streamit: A lan-
guage for streaming applications, in: R. N. Horspool (Ed.),
Compiler Construction, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2002, pp. 179–196.

[16] I. B. Peng, S. Markidis, R. Gioiosa, G. Kestor, E. Laure, MPI
streams for HPC applications, CoRR abs/1708.01306. arXiv:
1708.01306.
URL http://arxiv.org/abs/1708.01306

[17] I. B. Peng, S. Markidis, E. Laure, D. Holmes, M. Bull, A data
streaming model in mpi, in: Proceedings of the 3rd Workshop
on Exascale MPI, ExaMPI ’15, ACM, New York, NY, USA, 2015,
pp. 2:1–2:10. doi:10.1145/2831129.2831131.
URL http://doi.acm.org/10.1145/2831129.2831131

[18] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick,
M. Torquati, Targeting distributed systems in fastflow, in: Pro-
ceedings of the 18th International Conference on Parallel Pro-
cessing Workshops, Euro-Par’12, Springer-Verlag, Berlin, Hei-
delberg, 2013, pp. 47–56. doi:10.1007/978-3-642-36949-0_
7.
URL http://dx.doi.org/10.1007/978-3-642-36949-0_7

[19] R. Loogen, Y. Ortega-mallén, R. Peña marí, Parallel functional
programming in eden, J. Funct. Program. 15 (3) (2005) 431–475.
doi:10.1017/S0956796805005526.
URL https://doi.org/10.1017/S0956796805005526

[20] J. F. Ferreira, J. L. Sobral, A. J. Proenca, Jaskel: a java skeleton-
based framework for structured cluster and grid computing, in:
Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE
International Symposium on, Vol. 1, IEEE, Singapore, 2006, pp.
4 pp.–304. doi:10.1109/CCGRID.2006.65.

[21] K. Matsuzaki, H. Iwasaki, K. Emoto, Z. Hu, A library of con-
structive skeletons for sequential style of parallel programming,
in: Proceedings of the 1st International Conference on Scalable
Information Systems, InfoScale ’06, ACM, New York, NY, USA,
2006. doi:10.1145/1146847.1146860.
URL http://doi.acm.org/10.1145/1146847.1146860

[22] P. Ciechanowicz, M. Poldner, H. Kuchen, The Münster Skeleton
Library Muesli: A comprehensive overview, Working Papers,
ERCIS - European Research Center for Information Systems 7,
Westf. Wilhelms-Univ., Münster (2009).
URL http://hdl.handle.net/10419/58419

[23] E. Alba, G. Luque, J. Garcia-Nieto, G. Ordonez, G. Leguizamon,
MALLBA: a Software Library to Design Efficient Optimisation
Algorithms, Int. J. Innov. Comput. Appl. 1 (1) (2007) 74–85.
doi:10.1504/IJICA.2007.013403.

13

http://dx.doi.org/10.1109/IPDPSW.2016.103
http://dx.doi.org/10.1109/IPDPSW.2016.103
http://dl.acm.org/citation.cfm?id=370049.370071
http://dl.acm.org/citation.cfm?id=370049.370071
http://dl.acm.org/citation.cfm?id=370049.370071
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119332015.ch13
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119332015.ch13
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119332015.ch13
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119332015.ch13
http://dx.doi.org/10.1002/9781119332015.ch13
http://dx.doi.org/10.1002/9781119332015.ch13
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119332015.ch13
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119332015.ch13
https://ideas.repec.org/p/zbw/ercisw/7.html
https://ideas.repec.org/p/zbw/ercisw/7.html
https://ideas.repec.org/p/zbw/ercisw/7.html
https://doi.org/10.1007/s10766-017-0490-5
https://doi.org/10.1007/s10766-017-0490-5
http://dx.doi.org/10.1007/s10766-017-0490-5
https://doi.org/10.1007/s10766-017-0490-5
http://dx.doi.org/10.1002/cpe.4175
http://doi.acm.org/10.1145/3236367.3236380
http://doi.acm.org/10.1145/3236367.3236380
http://dx.doi.org/10.1145/3236367.3236380
http://doi.acm.org/10.1145/3236367.3236380
http://dx.doi.org/10.1145/2934664
http://arxiv.org/abs/1708.01306
http://arxiv.org/abs/1708.01306
http://arxiv.org/abs/1708.01306
http://arxiv.org/abs/1708.01306
http://arxiv.org/abs/1708.01306
http://doi.acm.org/10.1145/2831129.2831131
http://doi.acm.org/10.1145/2831129.2831131
http://dx.doi.org/10.1145/2831129.2831131
http://doi.acm.org/10.1145/2831129.2831131
http://dx.doi.org/10.1007/978-3-642-36949-0_7
http://dx.doi.org/10.1007/978-3-642-36949-0_7
http://dx.doi.org/10.1007/978-3-642-36949-0_7
http://dx.doi.org/10.1007/978-3-642-36949-0_7
https://doi.org/10.1017/S0956796805005526
https://doi.org/10.1017/S0956796805005526
http://dx.doi.org/10.1017/S0956796805005526
https://doi.org/10.1017/S0956796805005526
http://dx.doi.org/10.1109/CCGRID.2006.65
http://doi.acm.org/10.1145/1146847.1146860
http://doi.acm.org/10.1145/1146847.1146860
http://dx.doi.org/10.1145/1146847.1146860
http://doi.acm.org/10.1145/1146847.1146860
http://hdl.handle.net/10419/58419
http://hdl.handle.net/10419/58419
http://hdl.handle.net/10419/58419
http://dx.doi.org/10.1504/IJICA.2007.013403

REFERENCES REFERENCES

[24] K. Fuerlinger, T. Fuchs, R. Kowalewski, DASH: A C++ PGAS
Library for Distributed Data Structures and Parallel Algo-
rithms, in: 2016 IEEE 18th International Conference on High
Performance Computing and Communications; IEEE 14th
International Conference on Smart City; IEEE 2nd Interna-
tional Conference on Data Science and Systems (HPCC/S-
martCity/DSS), IEEE, Sydney, Australia, 2016, pp. 983–990.
doi:10.1109/HPCC-SmartCity-DSS.2016.0140.

[25] D. Gregor, M. Troyer, Boost MPI (2017).
URL https://www.boost.org/doc/libs/1_65_0/doc/html/
mpi.html

[26] W. Gropp, R. Thakur, An evaluation of implementation options
for mpi one-sided communication, in: B. Di Martino, D. Kran-
zlmüller, J. Dongarra (Eds.), Recent Advances in Parallel Virtual
Machine and Message Passing Interface, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2005, pp. 415–424.

[27] C. Computer Architecture, S. (ARCOS), Generic Reusable
Parallel Pattern Interface - GrPPI, https://github.com/
arcosuc3m/grppi/, online; accessed 5 May 2018 (2018).

[28] Terry Yin, Lizard: an Cyclomatic Complexity Analyzer Tool,
https://github.com/terryyin/lizard, online; accessed 5
May 2018 (2018).

[29] T. J. McCabe, A complexity measure, IEEE Trans. Softw. Eng.
2 (4) (1976) 308–320. doi:10.1109/TSE.1976.233837.

14

http://dx.doi.org/10.1109/HPCC-SmartCity-DSS.2016.0140
https://www.boost.org/doc/libs/1_65_0/doc/html/mpi.html
https://www.boost.org/doc/libs/1_65_0/doc/html/mpi.html
https://www.boost.org/doc/libs/1_65_0/doc/html/mpi.html
https://github.com/arcosuc3m/grppi/
https://github.com/arcosuc3m/grppi/
https://github.com/terryyin/lizard
http://dx.doi.org/10.1109/TSE.1976.233837

	portadilla_postprint_Elsevier
	Exploring_stream_parallel_patters_in_distributed_MPI_environments.pdf
	Introduction
	Related work
	Background
	Streaming parallel patterns
	GrPPI, a generic parallel pattern interface

	MPI communication queues
	Two-sided communication queues
	One-sided communication queues

	The GrPPI MPI execution policy
	User interface
	Mapping stream operators onto processes

	Experimental evaluation
	Performance analysis of Video-App
	Performance analysis of Mandelbrot

	Productivity analysis

	Conclusions

