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Abstract

We consider a class of relations which includes irreflexive
preference relations and interdependent preferences. For this
class, we obtain necessary and sufficient conditions for
representation of the relation by two numerical functions in the
sense of a < x if and only if u(a) < v(x).
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1 Introduction

This work coucerns the existence of a numerical representation for a class of
relations which includes irreflexive preference relations and interdependent
preferences.

As it is well known, if X is a conuected and separable topological space,
continuous preference orderings on X always have utility representations.
(Eilenberg (1941)). The assumption of connectedness is not necessary in
the setting of metric spaces; this fact is a consequence of a result of Debreu
(1954) which establishes that if X is perfectly separable, every continuous
preference ordering is representable by an utility function. However, as it
was noted by Monteiro (1987). the above results may not be useful in infinite
dimensional spaces because we lack. i general, the separability of the space:
lie proved that a continuous preference relation on a path connected space
hias a continuous utility representation if and only if it is countably bounded.

If the preference is given by an asymmetric binary relation, it is not
possible to have an utility representation but it has been suggested by some
authors that a preference relation on a set X could be represented with
the help of two real valued functions u and v, where v(2) and u(z) can be
interpreted as the lower and upper bounds of the utility perceived of the
objet x (see Fishburn (1973) and Doignon et al. (1984)).

The representation by two numerical functions generalizes the classical
utility function theory. because it allows the relation “~" (absence of strict
preference) not to be trausitive. which seems more in accordance with eco-
nomic choices, since r ~ y may correspond not only to true indifference
between 2 and y. but also to an inability to choose between them. This
type of relations are pseudotransitives; that is, if 2 < y <y’ < z then z < =.
Pseudotransitivity implies the transitivity of the strict preference < but does
not imply the transitivity of the indifference. Bridges (1983) is the first inter-
ested in the existence of a continuous representation in the case of a binary
preference relation defined on a closed convex set of IR" and Chateauneuf
(1987) gives, in terms of stroug separability, necessary and sufficient con-
ditions for the existence of representation of a pseudotransitive preference
relation by two continuous functions in a counected topological space.

11 the recent literature about walrasian equilibrium (see Florenzano (1990),
Yannelis (1991)) it is frequent to consider interdependent preferences (the




preference of an agent depend of the choice of the rest of the agents) or

preferences with externalities. For example, if we consider a set of n agents

and X; represents the consumption set of the agent z, the preferences of the

agent ¢ are given by a correspondence P; defined on the cartesian product
n

of the consumption sets A = HX,' into X;. If « = (ay,---,a,) € A, Py(a)
is interpreted as the set of coil—slumptions ¢ € X; which the agent ¢ prefers
(strictly) to a; when the consuinption of the agent k # ¢ is aj. It is usual to
consider a condition of irreflexivity expressed by a; ¢ P;(a) (or even more, a;
is not in the convex hull of P;(«)). Formally, this class of relation is a subset
< of A x X,, that is <= {(¢.2):2 € Pi(e)} = {(a,2);a < z}. We have an
analogous situation if a factor is the consumption set of an agent and the
rest of the factors represents the set of possible externalities. Although these
preferences don’t have an utility representation, in some cases they can be
represented by two numerical functions.

To formalize these ideas, if A and X are topological spaces, we say that
the relation “<"C A x X has a numerical representation if there exist two
functions u: A — R, v : X — R such that ¢« < z if and only if u(a) <
v(z). This kind of representation is useful, for instance, to characterize the
optimal allocations: the allocation ¢ € A is optimal if and only if the “more
prefered” set P(a) = {r € X;¢ <z} is empty and it occurs when u{a) is an
upper bound of v.

In this work we consider the class of relations, between two topological
spaces, which verify a property of irreflexivity which generalizes the ordinary
ureflexivity for a binary relation on a set; this class includes the class of
intercdependent preferences or preferences with externalities. For this class,
we give necessary conditions for the existence of a continuous numerical rep-
resentation and we prove that these conditions are sufficient in the setting of
path connected topological spaces. '

2 Definitions and notations

A relation between two sets A and X is a subset P of AxX. When (a,z) € P,
we write ¢ < 2. The notation x < « signifies that (a,z) ¢ P. We say that
the relation is representable by two functions u : A — R, v: X — R if




a < z is equivalent to u(a) < v(z). The relation is said a biorder if for all
a,be A, x,y € X, the property

[@ < 2,0 <y| = a <y orb=<z holds
That property can be also expressed by
b<y<a<r= b=z

I a relation is representable by two functions is, obviously, a biorder. A
relation between A and X induces relations <, on A and <3 on X on the
natural way

a =2y bif and only if z X a implies z < b;a,b€ A,z € X

r=yif andonly if y <Xcimplies s Xc¢;2,y € X,c€ A

The relations <, <, are preorders on A and X respectively. They are
complete preorders if and only if < is a biorder. Iu this case, the strict
relations associated to <), <, are defined by

a <, b if there exists @ € X such that « < 2 < b;a, b€ A

2 <oy if there exists « € A such that 2 <a < y;2,y € X

I A and X are topological spaces, the relation < is continuous if the sets
(ap:—) = {@ € Xiap < 2} and (—,2¢) = {a € A;a < 24} are open in X
and A. respectively, for all ¢y € A,z € X

A preorder < on a set Y is countably bouuded if there is some countable
subset 3 of Y such that for all y € Y there exist by,b; € B with b <Xy < b,.

3 Results

In this work we consider the class of relations “<"C A x X verifying the
following property:

For all @ € A, there exists 2, € X such that 2, < ¢ and for all z € X,
there exists a, € A such that r < a,. (1]

This class of relations includes the class of binary irreflexive relations on
a set and the class of interdependent preference relations.
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Proposition 1 If there exists a representation u,v of <, then

1) u is a psevdoutility for <y, that is ¢ <; b = ula) < u(b) for all
a,be A

2) v is a pseudoutility for <,, that is 2 <, y = v(z) < v(y) for all
r,y € X,

3) the complete preorders <,, <, are countably bounded.

Proof. It is clear, from our definition of <, <, <,, that the parts (1) and (2),
are true. Let us prove the part (3). To show that < is countably bounded,
we can suppose that u is a bounded function; if we denote [ = i2£ u(a) and
a
S = sup u(a), we have two possibilities:
u€A
a)if § = niax u(a)., there exists ap; € A such that S = u(ay;) and then
ac:

u(a) < 8 = u(ay): from the part (1) we have ¢ = apy, that is, <, is upper
countably bounded.

b) if u has not maximum, for each n € IN we can choose s,, € A such

.1 : .
that w(s,) > S~ =. If « € A, there exists ng € IV such that u(a) <
n
1

S — — < w8y, )s then, a =< s,, and =<, is upper countably bounded by the
g

set {8, }nen-

In the analogous way. we can also Lhave either a,, € A with I = u(a,,) or
a countably set {/,} to prove that =<, is lower countably bounded. Then, <,
is countably bounded.

Proposition 2 [fA and X are connected spaces and the relation < verifying
[1] is veprescntable by two continuous functions u.v, then <y, <, and < are
continuous.

Proof. \We prove that <, is continuous. If b € (a,—);, there exists r € X
such that « < 2 < b. For condition [1]. there is 2, € X such that , = « and
then v(a,) < u(u) < v(a) < u(b). Since v is continuous and X is connected,
it follows that there exists = € X such that

v(,) Lule) < v(z) < v(z) < u(d)

From continuity of u, one deduces the existence of a neighborhood U of
b such that u(c) > v(z) if ¢ € U. Hence a < 2 <X ¢ or equivalently ¢ <, cif
ceU.




We have shown that (a,—); is open. In the analogous way we can prove
that («—,a), is open and then it is proved that <, is continuous. The proof
of continuity of <, and < is similar.

Our aim is to prove that the necessary conditions above established are
also sufficient in the setting of path counected topological spaces. The idea
is to prove that there exists a connected and separable subset of A where
the relation is representable and to show after that this representation can
be extended. If A’ C A and X’ C X, the restricted relation <'=< NA’ x X’
induces <] and <j. Note that in general <} and <} do not coincide with
<) NA’xX A" and <, NX' x X', respectively, as we see in the following example.

Example 3 Let A = X = [1,10] and ¢« < 2 if and anly if a® < z. Let
A" = X' = [1,3]: we have 2 <, 3 because there exists 2 € A such that
2 <2 X3 (any v such that 4 < 2 £9) but we don’t have 2 <] 3.

Proposition 4 Let “<"C A x X « biorder verifying the condition [1] such
that <. =y, <, are continuous. If A" C A and X' C X are connected and A’
bounds =y and X' bounds <, then, <=<], <2=<

Proof. Let us remark that the relation <’ verifies also the condition [1]:
since < verifies the condition [l] and X’ bounds =<,, for each « € A’ there
exist ¥, € X, 2/ € X' such that

!
¥ =0, Ra= 1, <a

ua

It is similar to prove that for each & € X', there is ¢}, € A" such that o X .

Let us show now that « <y b < « <} bfor all ¢,b € A’. If a <, b; there
exists € X such that ¢ < » < b: since X' bounds <,, v <, 2’/ for some
o€ X andthena <o <, 0 = a<a’

From condition [1] we have 2/ € X’ such that 2/ < a <2 = 2] <, z.
Moreover if z € X' is such that 2 ¢ (¢, =), : fe<r=: <1

Then, X' = [(¢,—) N X'| U [(«,2)2 N X']; that is, X' is the union of
two non empty open sets. Since X' is connected, there is y' € X’ such that
Y E(a. =) N{—0)) =a<y <2 3b=a<y b= a<}b

It follows that <;=<] and in the similar way it is showed that <,=<,.

Note that if X' = X (respectively A’ = A) then <, is always identical to
< (respectively <3=<).




Theorem 5 Let A be a path connected space, X a connected space and “<”C
A x X verifying the condition [1]. There exists a continuous representation
w,v of < if and only if

a) < is a biorder.

b) the complete preorders <\, =X, are countably bounded.

¢) the relations <, <y, <, are continuous.
Moreover, when such a representation exists, there exists one such that u and
v are utility functions for, repectively. the complete preorders <, and =<,.

Proof. The necessary conditions have already been proved. Let us now turn
to the sufficiency part.

The space A is path connected; then, by using a result of Monteiro (1987),
there exists a connected and separable subset of A, A, which bounds <, (Let
a € X;if {2, }en is a countable set which bounds =<y, for each n > 1, let f,
be a path conuecting « to 1,. We define Y = U £.10,1]; the set ¥ bounds

n€lN
=<; and it is path connected, then it is connected; moreover, it is separable

Lecause if A is a countable dense subset of [0,1], the set | ] f.(A) is dense
ngiN
m )

The relation =<, is continuous and <;=={; by applying the classical result
of Eilenberg (1941), there exists v’ : A’ — [0,1] such that ¢« <] b <=
u'(a) < u'(D) for all «,b € A’, that is v’ is a continuous utility representation
for <.

The function «’ can be extended to A: for each a € A, the sets {¢’ €
Aa" <) a} and {’ € A'ia <) '} are non empty (A’ bounds <) and closed
sets on A'. Since A’ 1s counected, there is @ € A’ such that @ ~; a. Let us
define u(a) = v'(a). We have, for all u.b € A,

0 <1 bea = b (a) <u(b) &= ula) < ulb)

that Is, v is an utility representation for <;. It is not difficult to prove that
for all a € IR, the sets {a € A;u(a) > a} and {¢ € A;u({a) < a} are closed;
then v is continuous.

Now. we define v : X — [0.1] by

o(2) = 0 ¢f there is not a € A such that a <z
vix) = sup{u{e),u € A,a < a2} in other case




The pair u,v is a representation of < on A x X: let ¢ € A,z € X such
that « < x; from condition [1], ¥ < a, from some ¢, € A and then ¢ <; «;.
Moreover, if ¢ € A is such that ¢ ¢ («~,z),a < 2 X ¢ => a <; ¢. Then,
A = (~,2) 0 (¢,—)y; that is, A is the union of two non empty open sets;
since A is connected, there is b € A such that « <, b < 2 = u(a) < u(d) <
v(z) = u(a) < v(z).

Reciprocally, if < «, there are two possibilities: if there is not b € A such
that b < 2 = v(2) = 0 = v(a) < u(e); if there is b € A such that b < =z,
we have b <2 Xa = b <, ¢« = u(b) < u(a) for all b < 2 = v(2) < u(a).

The function v is a continuous utility representation for <;: let z <3 y;
there are two possibilities: if there is not ¢ € A such that « < z = v(z) =
0 = v(2) < v(y); if thereexists « € Asuchthat e <r = e <2 Xy =
¢ <y = v(r) < v(y). Reciprocally, if y <5 2, there exists ¢« € A such
that y < ¢ < = v(y) € u(a) < v(2) = 1(y) < v(x). Moreover, v is
continuous because the sets {z € X;v(z) > e} and {2 € X;v(z) < a} are
open for all a € IR.

4 TFinal remarks

We remark that our theorem generalizes the Chateauneuf’s result in the
sense that we allow relations between two different spaces A and X and even
in the case where A = X, we don’t require the relation be irreflexive. By
other side. our characterization is iu terms of the property of being countably
bounded instead of the property of strong separability used by Chateauneuf.
We remark that strong separability implies that the associate preorders are
countably bounded and in general they are not equivalents. However, as
a consequence of the result, we see that in the hypothesis of the theorem
both properties are equivalents. In infinite dimensional spaces, the strong
separability can be difficult to test and sometimes the property of being
countably bounded can be easy to test; this is tlie case when the spaces are
compact or g-compact. As a consequence, we see that if A is a o-compact
and path connected space, every biorder in A x X with continuous associate
preorders is representable by two continuous functions. As a particular case,
every complete and coutinuous preorder in A is representable by a continuous
utility function.
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