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Orientational and positional ordering properties of liquid crystal monolayers are examined by means
of Fundamental-Measure Density Functional Theory. Particles forming the monolayer are modeled
as hard parallelepipeds of square section of size ¢ and length L. Their shapes are controlled by the
aspect ratio k = L/o (>1 for prolate and <1 for oblate shapes). The particle centers of mass are
restricted to a flat surface and three possible and mutually perpendicular orientations (in-plane and
along the layer normal) of their uniaxial axes are allowed. We find that the structure of the monolayer
depends strongly on particle shape and density. In the case of rod-like shapes, particles align along
the layer normal in order to achieve the lowest possible occupied area per particle. This phase is a
uniaxial nematic even at very low densities. In contrast, for plate-like particles, the lowest occupied
area can be achieved by random in-plane ordering in the monolayer, i.e., planar nematic ordering
takes place even at vanishing densities. It is found that the random in-plane ordering is not favorable
at higher densities and the system undergoes an in-plane ordering transition forming a biaxial ne-
matic phase or crystallizes. For certain values of the aspect ratio, the uniaxial-biaxial nematic phase
transition is observed for both rod-like and plate-like shapes. The stability region of the biaxial ne-
matic phase enhances with decreasing aspect ratios for plate-like particles, while the rod-like particles
exhibit a reentrant phenomenon, i.e., a sequence of uniaxial-biaxial-uniaxial nematic ordering with
increasing density if the aspect ratio is larger than 21.34. In addition to this, packing fraction inversion
is observed with increasing surface pressure due to the alignment along the layers normal. At very
high densities the nematic phase destabilizes to a nonuniform phases (columnar, smectic, or crys-
talline phases) for both shapes. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4876719]

Il. INTRODUCTION

Understanding the ordering properties of liquid crystals
in restricted geometry is still a challenging problem.! It is
well known that the confinement of rod-like or plate-like par-
ticles into two dimensions has great impact on the phase be-
haviour of the system. For example, the isotropic-nematic
phase transition of three-dimensional (3D) hard ellipsoids is
of first order,” but when the centers of mass and orienta-
tions of the long axis of the particles are restricted to be on
a plane, which corresponds to a two-dimensional (2D) sys-
tem of hard ellipses, a continuous isotropic-nematic phase
transition can be observed (via a Kosterlitz-Thouless discli-
nation unbinding type mechanism with a nematic phase ex-
hibiting only quasi-long-range orientational order?). The de-
fect structure of a 2D nematic phase is also nontrivial.* In
addition to this, the dynamics of 2D hard ellipses shows pe-
culiarities in the rotational and translational diffusions and in
the glassy behaviours.”-3 Recently, a two-step glass transition
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has been observed in a monolayer of colloidal ellipsoids con-
fined between two glass walls. In the first step, an orienta-
tional glass emerges with increasing density, which is related
to orientational arrest of the particles, while in the second the
system becomes translationally frozen at higher densities.” '
The structural and dynamical properties of 2D and even 1D
complex fluids have recently become experimentally accessi-
ble due to the development of nanofluidics and optical trap-
ping methods. Liquid-crystal monolayers can be prepared by
confining colloidal particles between parallel walls'!*!? or by
spreading colloidal nanoparticles or amphiphilic molecules at
the air/liquid interface.'®'* This makes it possible to study
the competition between the orientational and packing en-
tropies in restricted geometries.'> Even the ordering effect
of surface patchiness has been examined in a monolayer of
nanoplatelets. '

The difference between the phase behaviours of molec-
ularly thick films (Langmuir monolayers) and that of col-
loidal monolayers confined between two parallel planes is
mainly due to the fact that the amphiphilic molecules are al-
lowed to rotate out from the air/liquid interface, while the
colloids can rotate only in the plane parallel to the confin-
ing walls. The consequence is that the phase behaviour of

© 2014 AIP Publishing LLC
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Langmuir monolayers can be much richer than that of 2D col-
loidal systems. For example, upon compression, only a few
phases (isotropic, nematic, solid) may occur if the confined
particles have only 2D orientational freedom,% % !7 while sev-
eral additional, tilted, or not tilted, phases can be present in
the case of Langmuir monolayers with out-of-plane rotational
freedom'®2° due to their intermediate quasi-two-dimensional
character (i.e., 2D in translations and 3D in orientations).
Therefore, it is worth studying the effect of the orientational
freedom and its coupling with the translational part on the
ordering properties of simple model systems. A model of
confined hard particles is ideal, since it is amenable to the-
oretical analysis and, as is well known from numerous stud-
ies on liquid-crystalline ordering, can give rise to nontrivial
behaviour.

In our study, we examine the phase behaviour of uniaxial
hard parallelepipeds confined such that their centers of mass
are forced to be on a plane, while they are allowed to rotate
out of the plane. Our aim is to determine the effect of the ad-
ditional, out-of-plane, orientational freedom on the stability
of the isotropic, nematic, and solid phases of 2D hard rect-
angles. Depending on the aspect ratio of the parallelepipeds,
it is possible to study the phase behaviour of both rod-like
(prolate shaped) and plate-like (oblate shaped) particles. In
the case of rod-like particles, steric (excluded volume) inter-
actions favour orientational ordering along the layer normal
even at low densities, because out-of-plane ordering produces
low surface coverage. However, the situation is very differ-
ent in the case of oblate shapes, because when particles lie
on the plane the occupied area on the surface is increased.
Therefore, steric interactions act on the plate-like particles so
as to promote rotation out of the confining plane. In such situ-
ation biaxial nematic ordering may emerge in the monolayer,
because both symmetry axes of the particles can be ordered
at high surface coverage. We pay special attention to the de-
termination of the stability region of biaxial nematic phase
for both shapes. Note that the biaxial nematic phase has been
only stabilized in systems of biaxial hard particles,?!* while
our model system is uniaxial and the confinement gives rise
to biaxial ordering.

The article is arranged as follows: Sec. II is devoted
to presenting the model for the monolayer and the density-
functional theory (DFT) and related tools used to calculate
phase diagrams; in Sec. II A we focus on the nematic phases,
while in Sec. II B we present details on the bifurcation anal-
ysis used to calculate the spinodal instabilities of the ne-
matic phase with respect to nonuniform phases. The results
are shown in Sec. III for prolate (Sec. III A) and oblate
(Sec. III B) particle geometries. Some conclusions are drawn
in Sec. IV.

(a)

ﬁ —_—

(b) g .
=
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Il. ZWANZIG MODEL FOR 3D HARD RODS
PROJECTED ON A PLANE

We use a Zwanzig approximation, where particles are re-
stricted to orient along x, y, and z axes only. The model is de-
fined by three parallelepipedic species of length L and square
cross-sectional area o> (o being the particle breadth). The as-
pect ratio k = L/o can be larger (prolate geometry) or smaller
(oblate geometry) than unity. The three species are labelled
as x, y, and z, meaning that the longest (prolate shape) and
shortest (oblate shape) axis of the particles is parallel to the
x, y, or z Cartesian axes. The particle centers of mass are
restricted to lie on a plane perpendicular to z and located at
z = 0. Therefore, the 3D density profiles are

pPP(x, v, 2) = pP(x, )8(2),

with 8(z) the Dirac-delta function. p?®(x, y) is the 2D den-
sity profile of species v on the plane. There are three possible
projections of the particles on the plane (Fig. 1): two rectan-
gles, with their distinct axis parallel to x or y, of width o and
length L, and a square of side-length o. Thus, our model be-
comes effectively a 2D ternary mixture of two species of mu-
tually perpendicular hard rectangles and a third species con-
sisting of hard squares.

The DFT theory for the 2D ternary mixture model de-
fined above can be obtained from the Fundamental-Measure
DFT expression for a system of 3D hard parallelepipeds in the
Zwanzig approximation, as we now show. The excess part of
the latter has the form

FPURS] /dx/dy/dz @3p(x,y,2), (2)

where ®3p(x, y, z) is the excess part of the free-energy den-
sity (see Ref. 25 for details). This functional fulfills the di-
mensional crossover property: when the constrained density
profiles (1) are inserted into (2), one obtains the free-energy
functional of the 2D projected fluid,

FEOU( )] — FE[[ 2] / dx / dy ®op(x, y),

3)

with ®,p(x, y) the excess part of the free-energy density of
the 2D ternary mixture,?

V=1Xx,Y,2, (1)

ni(F)ngy(r)

Dop(r) = L= ()

—no(r) In[1 — na(r)] + “)

where the notation r = (x, y) has been used. The weighted
densities are given by

> / dr'pfP e —r) ()

={x,y,z}

ng(r) =

FIG. 1. Possible orientations of confined (a) prolate and (b) oblate uniaxial parallelepipeds in the Zwanzig approximation. The projection of the original
particles onto a plane is shown in dark. Different species are correspondingly labelled and their characteristic lengths are also shown.
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with

(1) 1 (o} oy
() =30 (3 —kl)s (5 —l).
1 X Y (6)
() = 38 (“7 - |x|) © (“7 - |y|),

0P (r)=0 (0— - |x|) ® (i - |y|)

v 2 2 ’
O(x) is the Heaviside function and we have defined o/ = o
+ (L —0)8,,, with §,, the Kronecker delta. Note that
w = {x, y} while v = {x, y, z}. The ideal part of the free-
energy is

pralodl= Y [ drlPom P - 11 )

v={x,y,z}

Note that we have dropped the thermal volume A inside the
logarithm of Eq. (7) as it does not affect the phase behaviour
of the system.

A. The nematic phase

For uniform density profiles we have p?? = y, p,p, with
p2p = N/A the total surface density and y,, the molar fraction
of species v, which satisfies the constraint ) y, = 1. For a
general biaxial nematic phase, Ny, we parameterize y, as

J. Chem. Phys. 140, 204906 (2014)

where Q, € [—1/2, 1] is the usual uniaxial nematic order pa-
rameter and O, = ¥, — Y, measures the biaxiality in the x —
y plane. The uniaxial nematic phase N, has Q, = 0. In terms
of the order parameters, the ideal and excess parts of the free-
energy density in reduced units become

Fi
p Ada =p* |:111,0 — 14 Z Y(Qu, Op) Iny,(Qy, Qb):|

V=X,y,Z
BFexa * K()O*)Z
=—p"In[l =n(Q]+ ——~——
A ! 1= (0w
(.2 1 0 ol Q
X = - - - u - - )
9 K K 4 K b
©)
with A the total area of the system, and p* = pypa (with

= Lo the area of the rectangular species x and y) a
scaled 2D density and ¥ = L/o the aspect ratio. The uniform
limit of the weighted density n,(r) is the packing fraction
= % >, way (with a, = a, = Lo and a, = ¢%), which de-

pends on Qy:
* 1
n(Qu)=%[ +——2( )Qu] (10)

Minimization of the total free energy BFa/V = B(Fi
+ Fex)a/V with respect to the order parameters Q, and Q
gives a pair of nonlinear equations that have to be solved
iteratively,

1 — e Hi1(Qu, Ov) cosh[ Hy(Q,, O)]
1+ 2¢=H1(Qus Ob) cosh[Hy(Qu, Op)]

u =

(11)
2¢~H1(Qu. Ob) sinh[ H,(Q,., Q1]

1 + 2¢=Hi(Qu. Q) cosh[Ha(Qy, Ov)]

where we have defined

Op =

_~ (4N, 1422 (1]
1—77(Qu)< ‘z>{ *5( *r( ‘E>Qu>

(1—%) Qu>2—%(1—%)2Q§”’ (12)

_1=0u O _1=00 Oy
Yx = 3 +77 Yy = 3 _7,
3
1+20,
=
|
Hi(Qu, Ov) =
Kkp* 1
L I (I
10w [9( T
I . Kkp* { 1\?
2(Qu, Ov) = 20 = 10wl < - ;) Ob.

The N,-N,, bifurcation can be calculated by solving Eq. (11), expanded up to first order with respect to Qy,. After some algebra,

we arrive at the nonlinear equation

f(S,K)ES(KZ—l)—Z—eXp{ICI:

for the variable s = popo /(1 — papo?) [note that p* = sk/(1
+ 5)]. In case the transition is continuous, this analysis would
give the exact properties of the N,-N}, phase transition. The

(s(A+x~H+ 1)

1—x1

—q}za (13)

phase boundary in the density-aspect ratio plane is given by
a curve s(x) or p*(k); the uniaxial order parameter Q, and
the packing fraction n at bifurcation can be calculated as a
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function of s as
3

Bl s(k2—1)

Qu=1 : n=<1+s)1(s+i).

Kk +1
(14)

The asymptotic limit k — O (infinitely thin plates) of
Eq. (13)is |s| —2 = e, the solution s, of which gives n,
= (|sq] — 2)/(|s4] — 1) = 0.01681. The other asymptotic limit
of (13) for prolate particles, k — oo (needles), will be dis-
cussed later. Note that full free-energy minimisations were
performed, which ruled out a first-order transition and con-
firmed the above continuous-transition scenario.

The critical end-point (sg, k() of the transition curve
N,-Ny, if it exists, can be found from the solution to the equa-
tions

0
S (s0, ko) = %(So, ko) = 0, (15)
which results in the following transcendental equation:
1 _ {(1 +250)(3+250)[2+(3+250)s50] _1}
4so(1+50)> 2(1450) ’
1+ 2s9
ko=1+_-———. 16
0 2s0(1 + 50) (16)

Solving for prolate parallelepipeds (« > 1), we obtain the so-
lutions pj = 0.52427 and «¢ = 21.33910. No solution has
been found for oblate parallelepipeds.

B. The nematic to non-uniform phases instabilities

The Fourier transforms of the direct correlation functions
can be written as

32Dop(p*, {Qa))

—C(g, p*, {Qu)) = Z ongong

o.p

@ (@0 (q),

a7

where g = (gx, g,) is the wave vector. The Fourier transforms
of the weighting functions are given by

NOY - o, o,
®,”’(q) = Xo 4> ) xo\ a5 )

) o.x O.,V
&M(g) = o) xi (qx7“> X0 <qy7”>,
e , o oy
&M(g) = o) xo <qx7> X1 <‘b’7>,

R o.x O.)'
dP(g) = ololxi (qx7”> X1 <qy7”),

with xo(x) = cosx and x;(x) = sin (x)/x. The instabilities of
the nematic phase against spatially nonuniform fluctuations
can be found from the equations

T(q,p". {Qu) =0, V,T(qg,p",{Q})=0, (19)

where

8w
T(q, p*, {Qu}) = det [pL — (g, P, {Qa})i|,

"

M,V =X,Y,2, (20)
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and “det” denotes a determinant. Thus, we obtain the values
of p; and gqq at bifurcation, and the order parameters {Q, }
come from Eq. (11). In practical terms we proceed by fix-
ing the direction of the wavevector as follows: (i) ¢ = (0, q),
which implies columnar (C) symmetry if Oy > 0 or plastic
(K) symmetry if Oy, = 0; (ii) ¢ = (g, 0), which implies smec-
tic (S) symmetry if Qy > 0. The C phase is defined as a 2D
layered phase in which the 2D nematic director is parallel to
the layers (or columns) while in the S phase the director is
perpendicular to the layers. The value of ¢ can be obtained by
solving Eq. (19).

lll. RESULTS

In this section, we present the results for the model as
obtained from (i) minimization of the free-energy density and
(i1) bifurcation analysis of the continuous N,-Nj, transitions
for rods and plates or the spinodal instabilities from uniform
to nonuniform phases. The phase behaviour of prolate and
oblate particles are explained in different sections.

A. Prolate particles

Figure 2(a) contains the results obtained from the solu-
tions of Eq. (11) for the equilibrium order parameters Q, and
Oy as a function of p* for particles with aspect ratios 1 < «
< 20. In this range of ¥ we always find that O, = 0, i.e., the
N, is the only stable phase. As can be seen from the figure,
the uniaxial order parameter Q, increases from zero and sat-
urates with p*. The system does not exhibit any orientational
ordering phase transition (at zero density the order parame-
ter departs from zero with a finite derivative). The order of
rods builds up continuously with density along the direction
perpendicular to the monolayer. The N, phase is depicted in
Fig. 3(a), where the cross sections of particles are sketched:
the most populated species corresponds to squares, while the
probabilities to find rectangular species pointing along x or y
are equal.

The inset of Fig. 2(a) shows that p* is a monotonically
decreasing function of « for fixed value 0.3 < Q, < 0.6.
As rods become longer, a fixed amount of nematic order re-
quires a lower density. For higher values of Q, this is not true
(see main figure); however, when using papo? (mean particle
number in a fraction o%/A of the total area A) instead of p* as a
density variable the trend is restored, since the ratio ppo?/p*
= k! decreases strongly with «. Finally, the empty circle
in Fig. 2 represents the location of the N,-C,K bifurcation as
calculated from the bifurcation analysis. We will return to this
point later.

In Fig. 2(b) we plot Q, as a function of the packing frac-
tion 7. Now the curves do not intersect each other for any «,
but for large « (~20) they exhibit a loop (see inset). The loop
is not a signature of any phase transition, and is simply related
with the dependence of n with the order parameter Q,, as is
explained in the following. From Eq. (10) we can approximate
n(Qu) ~ 2%(1 — Quwhenk™ ' «1—Q,.If Q, ~ 1, taking
into account that Q, is a monotonically increasing function of
p*, the lowering of 1 — Q, can compensate, for certain values
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FIG. 2. (a) Uniaxial parameter Q, as a function of the scaled density p* for different values of x (labelled in the figure). Inset: p* as a function of « for various
values of Q, (correspondingly labelled). (b) Q, as a function of packing fraction . Inset: detail of the curve corresponding to k = 20. The empty circle in both
panels represents the location of the N,-C,K bifurcation as calculated from the bifurcation analysis.

of p*, the increment of the latter, giving a decrease in 1. Fur-
ther, when k~! >> 1 — Q,, we have n(Q,) ~ %(1 +20.), an
increasing function of p*.

When the aspect ratio « is high enough (for k > «y
=~ 21.339) two solutions of Eq. (13) exist, associated with two
N,-Ny bifurcation points. Therefore, the sequence N-Ny-N,
is obtained as a function of density. To analyse this in more
detail, the free energies of the N, and N, phases as a func-
tion of p* were calculated. The results are plotted in Fig. 4(a)
for k = 40. Both N,-Nj, transitions are continuous. The inset
shows the order parameters Q, and Qy as a function of p*.
The mean-field behaviour Qy ~ |p* — pi|'/? as p* — pf is
confirmed, where p corresponds to any of the two bifurca-
tion values. In Fig. 3(b), the particle cross sections for the Ny,
phase are sketched in a situation where the majority of rect-

-yt ¢
i
(]

FIG. 3. Sketch of cross-sectional particle configurations in the N, phase
[(a) for prolate and (c) for oblate particles] and Ny, phase [(b) for prolate
and (c) for oblate particles].

angular species point to the x axis, Qp, ~ Y, (i.e., the biaxial
parameter is almost saturated; note that it can only saturate in
a system of plates).

We can explain the presence of the reentrant Ny, phase as
follows. The strictly 2D fluid composed of hard-rectangular
particles exhibits a continuous I-N,, transition at a packing
fraction that decreases with aspect ratio as nop = 2/(k + k1)
(in the Zwanzig approximation). For the 3D Zwanzig rod fluid
with centers of mass constrained on a plane, the packing frac-
tions of parallelepipeds with rectangular projection, 7., = 1,
+ 1y, and square projection, 7, can be computed as

2p*
3

77xy(Qu) = (px + py)LO = (1 - Qu)v

) @1
n:(0u) = po? = L-(1420,).
3k

For highly elongated particles the total packing fraction can
be approximated as n(Qy) 2 1.,(Qy) When the uniaxial order
parameter is not too high (note that, for large «, 7, is small
and there are very few squares—i.e., rods standing up—on the
plane). In turn this quantity will eventually be equal to n,p for
some values of p*, and the first N,-Nj, transition will occur
(note that Q, is a function of p* as obtained from the free-
energy minimization with respect to the order parameters). As
the density is further increased, the fraction of squares on the
plane will increase (since rods will pack better in a stand-up
configuration), and at the same time the fraction of rectangles
on the plane will decrease, its density becoming again lower
than n,p: the second Np-N, transition will take place.

We expect the same phase behaviour for freely rotating
rods. In particular, a reentrant N, phase might be found for
high enough aspect ratios and in the range of packing frac-
tions when the inequality pA(Qy) > nyp is fulfilled. Here
A(Q,) is the mean particle area obtained by projecting the
volume of a particle that forms an angle 6 with respect to
the layer normal on the layer perpendicular to the nematic
director, and averaging with respect to the equilibrium angu-
lar distribution function A(6) corresponding to the equilibrium
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0.5 ———T—
| (b) ’

FIG. 4. (a) Free energies of the N, (dashed curve) and Ny, (solid curve) phases as a function of p* for k = 40. Inset: Order parameters Q, and Q, (correspond-
ingly labelled) as a function of p* for the N, (dashed curve) and N, (solid curve) phases. Open circles indicate the bifurcation points. (b) Packing fraction n(Q,)
as a function of the reduced pressure p* = Bpa for different values of « (as labelled in the figure). The N, and N;, branches are plotted with dashed and solid

curves, respectively.

order parameter Q,. A(Qy) certainly depends on p*, since Qy
is a function of p*. In Fig. 4(b), we plot the packing fraction n
as a function of pressure for different values of « in the range
1.5 < k < 40. For k < 10 the curves are always concave,
while for higher values of k concavity is lost in some range of
pressures (at high enough pressures concavity is recovered).
This behaviour is a direct consequence of the loop exhibited
by the packing fraction n(Q,) as p* is increased, as explained
above. For k > K the curves exhibit a clear maximum in the
region where the Ny, phase is stable (see the solid curves cor-
responding to ¥ = 30, 40). When the rotational symmetry is
broken in the xy plane there is a clear gain in surface area per
particle, i.e., more particles can be packed with N, symmetry.

The bifurcation values of packing fraction 1 and scaled
density popo2, as obtained from the solution of (13), are plot-
ted in Figs. 5(a) and 5(b) as a function of x~!. As mentioned
before, no solutions of Eq. (13) exist when k < k since 7,

015
— T 0.
N (@)
AN J
L “ i
O
— — 0.02 a
N, o
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FIG. 5. (a) The N,-Ny, bifurcation values of the packing fraction 7 as a func-
tion of the inverse aspect ratio ! found from the solution of Eq. (13).
(b) Bifurcation values for papo2. (c) Uniaxial order parameter Q, along the
Ny-Np spinodal.

the packing fraction of hard squares is of the order of 7,, and
the gain in excluded volume obtained by orienting the rectan-
gular species along x (yx > y,) is not enough to compensate
the loss in mixing entropy. As can be seen from Fig. 5(b), the
behaviour of the lower and upper bifurcation curves are dif-
ferent in the Onsager limit x — oo. Note that, for ¥ > 1,
Eq. (13) reduces to

sk2 =2 = XKt (22)

The lower branch can be obtained from (22) by defining the
new variable # = sk? and taking the limit k — oo, which
results in the solution & = 2 4 e. Therefore, the asymptotic
behaviour of the lower branch is s, & p\}o2 = (2 + ¢)/«2. To
find the asymptotic behaviour of the upper branch we define
another variable, T = s«x. Note that T — oo when ¥k — o0,
so that Eq. (22) becomes Tk = e”. A fixed point algorithm
7, = 3 In(k7,_) with initial guess to = 1/2 provides

In(In(x/ 2))i| } 23)

1
W= {1n(/c/2) +In(In(k/2)) + O [ In(ic/2)

which, for ¥ > 1, asymptotically gives

= ,,1520 T, ~ %{1n(1</2) + In(In(x /2))}. 24)
Thus, we have s, &~ pino? = t*/k — 0 when k — oo. It is
interesting to note that s; ~ (3 + e)¢*> and s, ~ —% In(2t) (we
have defined = «~!). We then obtain s{(t) ~2(2+ e)t and
5~ —% In(2¢) for the first derivatives of these functions, and
we find s{(r) — 0 and s/ (f) — oo when r — 0. These limits,
together with the limits s, ,(f) — 0, can be checked to hold
numerically from Fig. 5(b) (note that papo? ~ s for k > 1).
Taking into account Eq. (14) we find that n;(¢) ~ 2t — 0 and
Mu(t) ~ =5 In(2t) — 0, when t — 0, for the lower and upper
branches of packing fractions at bifurcation. In the same limit
we have n;(t) ~ 2 and n(r) ~ —% In(2¢) — oo, which again
can be verified from Fig. 5(a). In the inset of 5(c) we plot the
uniaxial order parameter Q, along the N,-N, bifurcation, as
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FIG. 6. (a) n — « phase diagram of rods in the Zwanzig approximation. The
stability region of the Ny, phase is shaded in grey and bounded by the solid
line. The symbol labels the critical end-point. The dashed line represents the
Ny-(C,K) spinodal. (b) Uniaxial order parameter Q, along the latter spinodal.
(c) Detail of the N,-(C,K) packing fraction spinodal (dashed curve) and pe-
riod in reduced units of the nonuniform phases at bifurcation (solid curve).
(d) The free-energy difference between the C and K phases (® = fFa/V,
Adcg = Pc — Pk) as a function of the two-dimensional packing fraction,
nHs = puso 2, for a one-component fluid of hard squares of sizes o.

obtained from Eqgs. (13) and (14). It is interesting to note the
relatively low value of the order parameter (Q, = 0.36417) at
the point where the Ny, solution first bifurcates in the Onsager
limit (k — 00).

We have also performed a bifurcation analysis to study
the instability of the nematic against spatially nonuniform
fluctuations, such as columnar (C) or crystal (K) fluctuations.
We solved Egs. (11) and (19) to find the values of packing
fraction n, order parameter Q, and wave number g = 27/d
(with d the periodicity of the density modulation along a given
direction) at bifurcation. The results are plotted in Figs. 6(b)
and 6(c) for 1 < k < 4. As can be seen, the spinodal values
of the packing fraction do not change too much as « is varied
[see dashed line in panel (c)]. The same behaviour occurs with
the period in reduced units d/o as a function of « [solid line
in panel (c)]. This periodicity corresponds to that of the C or
K phases with a high proportion of hard squares [see the evo-
lution of the order parameter Q, along the spinodal in panel
(b)]. For larger values of «, as Q, — 1, the packing fraction
tends asymptotically to that of the N-(C,K) bifurcation of the
one-component fluid of hard squares, i.e., « = 1 (note that the
C and K phases bifurcate at the same point).

All of the above results, i.e., those for the N,-N;, continu-
ous transition (Fig. 5), and those from the bifurcation analysis
to nonuniform phases, are collected in Fig. 6(a), which is the
complete phase diagram in the n — « plane. The only remain-
ing question is the relative stability of the C and K phases at
high densities. For the one-component fluid of hard squares,
both phases bifurcate at nys = Puso? = 0.5381. The C phase
is more stable up to ngs ~ 0.75, beyond which the K phase
becomes stable up to close packing [see Fig. 6(c)]. In our sys-
tem (a ternary mixture of hard squares and mutually orthog-
onal hard rectangles) and for high enough « (in particular for
k > 4), we expect the same phase behaviour due to the small
fraction of rectangular species at densities close to the spin-
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odal instabilities (when Q, ~ 1). For 1 <« < 4 a free-energy
minimization of the ternary mixture is needed to elucidate this
question. However, we expect that the C phase will be the
most stable phase, due to the fact that it is difficult to pack a
ternary mixture of anisotropic species within a regular crys-
talline lattice.

B. Oblate particles

The phase behaviour of oblate particles is characterized
by a much wider region of stability of the N}, phase. This in
turn can be explained by resorting to Figs. 2(c) and 2(d). Now
the projection of the parallelepipedic species z (now o > L
and consequently k < 1) form squares with surface area o .
The other two species, x and y, are rectangles with mutually
orthogonal orientations of side-lengths o and L, with particle
areas (Lo) much lower than that of the z-species, in particular
when « is small enough. Therefore, as density is increased, the
averaged excluded volume is lowered when the main particle
axis lies in the xy plane, and the uniaxial order parameter Q,
decreases from zero and tends asymptotically to —0.5 for high
enough densities. Furthermore, since the system is quasi-two-
dimensional, it exhibits a Ny-N, continuous phase transition
at packing fractions ~n,p (the packing fraction of the strictly
two-dimensional fluid of hard rectangles).

This behaviour is shown in Fig. 7, where the free-energy
branches of the N, and N, phases are plotted as a function
of p*. The inset shows the evolution of the order parame-
ters Qy and Oy, as a function of the same variable. Oy, departs
from zero at the N,-Ny bifurcation point. Beyond this point
the Ny, is the most stable phase up to densities corresponding
to the instabilities of the Ny phase against spatially nonuni-
form fluctuations. These densities are calculated via the bifur-
cation analysis of Sec. II B, and are plotted in the phase dia-
gram of Fig. 8(a). Note the strong oscillations exhibited by the
spinodal curve when 1 < k! < 4 i.e., the interval in which
the biaxial order parameter Q, is zero, see panel (c)]. This

R

FIG. 7. Free energies of N, (dashed curve) and Ny, (solid curve) phases as a
function of p* for k=1 = 10. The open circle indicates the bifurcation point.
Inset: The evolution of the order parameters Q, and Qy as a function of p*
along the N, (dashed curve) and Ny, (solid curve) branches.
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FIG. 8. (a) n — « phase diagram of rods in the Zwanzig approximation. The
dashed line represents the location of the continuous N,-Ny, transition, while
the spinodal curve for the N, 1, instability against non-uniform (C, K, or S)
phases is shown with solid line. (b) Uniaxial order parameter Q, along the
Ny-Np transition (solid curve) and its asymptotic value for x — 0 (dashed
curve). (¢) Uniaxial (solid curve) and biaxial (dashed curve) order parameters
along the spinodal curve corresponding to nonuniform phase instabilities.

is because of the vanishingly small fraction of squares, with
the rectangular species being parallel to the x or y axes with
equal probability. Thus, when the particle anisotropy grows,
it becomes more difficult to commensurate the characteristic
lengths of both rectangular species within the single lattice
parameter of a nonuniform phase [C, K, or smectic (S)]. The
oscillations could have different origins: (i) when the ratio be-
tween the long and short edges of the rectangles is close to an
integer number, square clusters can be formed by joining the
rectangles along their long sides. These clusters in turn can be
accommodated into an square crystalline superlattice. (ii) The
transitions to nonuniform phases could change from continu-
ous to first order, with the coexisting density corresponding

J. Chem. Phys. 140, 204906 (2014)

to the N, phase located well below that estimated from the
bifurcation analysis. (iii) The relative stability of C, S, and K
phases could strongly change with . In Fig. 8(b), the uniaxial
order parameter Q, along the N-Nj, bifurcation is plotted. It
is important to note that, in the asymptotic limit k — 0, we
have O, — —0.4873, i.e., biaxial ordering appears in particle
configurations with a residual proportion of hard squares.

Finally, in Fig. 9(a) we plot Ap*, i.e., the difference
between the spinodal curves corresponding to the three-
dimensional Zwanzig oblate particles with their centers of
mass located on a plane and the strictly two-dimensional sys-
tem of Zwanzig hard rectangles. As we can see, the N,-Ny,
transition curve practically coincides with that of the I-N in
2D. The difference between the spinodal curves correspond-
ing to transitions to nonuniform phases is larger for 1 <
k! <2, ie., in the region where the strong oscillations in
the spinodal take place. In the main figure of Fig. 9(b) we
plot, for comparison, the nonuniform phase spinodals corre-
sponding to the plates monolayer (empty circles) and to the
two-dimensional hard rectangles (solid circles). The conclu-
sion is that they are practically the same. The inset in panel
(b) shows the Ny-N;, spinodals for both systems. The main
difference is related to the asymptotic limit « — 0. For the
two-dimensional system, the usual Onsager result n — 0 re-
sults, while for the monolayer of plates the system retains a
residual packing fraction n, = 0.01681, a result directly con-
nected with the non-perfect uniaxial ordering (Q, # —0.5) of
plates, as already discussed above.

IV. CONCLUSIONS

Taking advantage of the 3D — 2D dimensional crossover
property of the fundamental measure density functional for
the Zwanzig model, we have studied the phase behaviour of a
monolayer of rod-like or plate-like uniaxial particles. We have
focused, in particular, on their orientational ordering proper-
ties. Despite the fact that particles are uniaxial (they have only
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FIG. 9. (a) Difference Ap™* between the transition and spinodal curves of confined plates. Main figure: Difference between the density of the N,-Nj, transition
in 3D and that of the I-N,, transition in 2D. Inset: Difference between the N, ,-(C,K,S) spinodals in 3D and (I,N,)-(C,K,S) spinodals in 2D. (b) Packing fractions
n corresponding to the instability with respect to nonuniform phases for the monolayer of plate-like particles (empty circles) and for a strictly two-dimensional
model (solid circles). Inset: The packing fractions corresponding to the Ny -Nj, (solid) and I-Ny, (dashed) transitions for the monolayer and the two-dimensional
model, respectively. The asymptotic packing fraction n, (see the text) is shown with dotted line.
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two characteristic lengths L and o), we have shown the pres-
ence of a Ny-Ny, phase transitions for both particle geometries.
For rod-like geometry, the Ny, is a reentrant phase, since its
region of stability in the phase diagram (aspect ratio-density
plane) is always surrounded by that of the N, phase. For this
geometry the N-Nj, transition is continuous and the two Nj;-
Ny, transitions bounding the region of Ny, stability meet at the
critical end-point (ko, pg). For k < k¢ only the N, is stable.
For particles with large aspect ratio, there is inversion in the
packing fraction with respect to the uniaxial order parame-
ter. For plate-like geometry, there exists a single continuous
transition line separating the regions of N, and Ny, phase sta-
bilities. This line crosses the spinodal instability to nonuni-
form phases at higher densities. The crossing point is approx-
imately located at k = 0.3. Therefore, below this aspect ratio,
the Ny, is stable at high enough densities until a point where
stability with respect to C, S, or K phases is lost. Above this
aspect ratio the N, is the only stable orientationally-ordered
phase; at higher densities it again looses stability with respect
to nonuniform phases. We have shown that the phase diagram
of monolayers of plate-like particles is very similar to that
of the strictly two-dimensional hard rectangular fluid in the
restricted-orientation approximation.

At present Monte Carlo simulations of freely-rotating
hard oblate ellipsoids with centers of mass confined on a plane
are being carried out.’® We expect to find a qualitative agree-
ment between the results obtained from the present model and
the simulations.
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