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A model of the expansion of a plasma in a magnetic nozzle in the full magnetization limit is

presented. The fully magnetized and the unmagnetized-ions limits are compared, recovering the

whole range of variability in plasma properties, thrust, and plume efficiency, and revealing the

differences in the physics of the two cases. The fully magnetized model is the natural limit of

the general, 2D, two-fluid model of Ahedo and Merino [Phys. Plasmas 17, 073501 (2010)], and it is

proposed as an analytical, conservative estimator of the propulsive figures of merit of partially

magnetized plasma expansions in the near region of the magnetic nozzle.VC 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4941975]

I. INTRODUCTION

From the inception of the magnetic nozzle1 (MN), there

has been a growing interest in their capability to accelerate a

plasma “contactlessly” in advanced electric propulsion.

Examples of next-generation plasma thrusters based on MNs

that are actively being developed include the Helicon Plasma

Thruster2,3 (HPT), the Electron-Cyclotron-Resonance

thruster4,5 (ECRT), the Applied-field MPD thruster6

(AF-MPDT), and the Variable Specific Impulse Rocket

(VASIMR).7 In the usual design, a MN consists in an axi-

symmetric, divergent magnetic field that guides the super-

sonic expansion of a hot plasma jet. The quasineutral plasma

gains axial kinetic energy at the expense of its internal

energy, thanks to the self-consistent ambipolar electric field.

The reaction to the magnetic forces that shape the plasma

expansion is felt on the magnetic circuit of the thruster as

“magnetic thrust.” MNs are also a topic of research in the

field of advanced plasma material processing,8 where their

non-propulsive use allows to control the flux of plasma to

the substrate.

In a previous work,9 the DIMAGNO model of the

plasma expansion in a divergent MN was presented. This 2D

two-fluid model treats electrons as a fully magnetized spe-

cies, whereas heavier ions, on the other hand, are allowed to

have arbitrary magnetization. The method of characteristics

is used to integrate the hyperbolic equations of supersonic

ions. DIMAGNO was instrumental to study the acceleration

mechanisms and forces on the plasma,9,10 the development

of electric currents and electric fields, and the downstream

detachment of the plasma from the MN.11–13 This model has

revealed the richness of 2D phenomena in the expansion,

which are unaccessible to paraxial 1D models. The

DIMAGNO model was also used to investigate the condi-

tions for the formation of double-layer structures14 and the

effects of electron cooling and ion thermal energy.15

While the finite ion magnetization regimes have already

been analyzed, the fully magnetized ions limit (FMIL)

remains to be explored. There are two reasons for this: first,

finite ion magnetization covers all cases of practical interest,

as extremely high magnetic fields are required to keep ions

magnetized into the far downstream expansion region; and

second, the FMIL is not a regular limit of the DIMAGNO

formulation. In this limit, the character of ion equations

degenerates as the Mach characteristic lines no longer

carry any useful information, thus requiring a different inte-

gration approach. Nonetheless, being able to compare the

unmagnetized-ions limit (UMIL) and the FMIL would pro-

vide valuable insight on the physics of the MN, as they are

the extremes of the operation range of the device.

Following this motivation, the paper presents and dis-

cusses the FMIL of the 2D fluid formulation of Ref. 9.

Contrary to the finite ion-magnetization case, the FMIL

results in a set of completely algebraic equations and thus is

simple and fast to compute. The UMIL and the FMIL are

then compared to quantify the influence of the level of ion

magnetization on the 2D plasma expansion and the propul-

sive figures of merit of the MN. In particular, it is shown that

the thrust gain is rather independent of the ion magnetization

degree in the near expansion region, and that the FMIL

yields a conservative value of the thrust gain and the plume

efficiency for all possible ion magnetizations. In view of this

result, the 2D FMIL solution is proposed for the quick esti-

mation of the propulsive performance of the MN in the

general case.

In this regard, there are several models in the literature

that present some degree of similarity with the FMIL model

presented here. First, Andersen et al.1 applied the well-

known paraxial (i.e., quasi-1D) model of the expansion of a

gas in a channel of slowly varying area to a MN, providing

algebraic expressions for the axial profiles of the mean ion

velocity and plasma density. This model coincides with the

radially averaged equations of the DIMAGNO model and

can be used to estimate thrust with good accuracy within the

near expansion of the MN. However, the radial variability of

plasma properties, the development of electric currents in the

plasma, plume efficiency, and plasma detachment cannot be

computed with a quasi-1D model. Second, Fruchtman

et al.16 also studied the paraxial approximation. Beyond

reproducing the solution of Andersen et al., they postulated a
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self-similar expansion of the plasma density radial profile in

an attempt to recover some of the radial features of the

expansion and derive a formula for the magnetic thrust.

Third, Little and Choueiri17 took the 2D DIMAGNO model

of Ref. 9 as their starting point and applied several simplify-

ing assumptions in order to derive an approximate, “less

numerical” solution which can be used for quick computa-

tions of the plasma response and the propulsive figures of

merit.

The rest of the paper is structured as follows. Section II

derives the FMIL model from the general fluid equations and

briefly discusses the numerical solution. Section III explores

and compares the plasma properties and propulsive perform-

ance at the UMIL and FMIL. Section IV discusses the

applicability and limitations of the FMIL to describe plasma

expansions with finite ion magnetizations and comments fur-

ther on the differences with the works in the literature enum-

erated above. Finally, conclusions of this work are gathered

in Section V.

II. 2D MODEL OF THE FULLY MAGNETIZED PLASMA
EXPANSION

The derivation of the FMIL model commences with the

complete 2D equations of the full two-fluid model of Ref. 9.

Where not specified, the conventional notation defined

therein will be used here too. The model describes the

steady-state expansion of hot electrons, “e,” and single-

charged cold ions, “i,” in an externally applied magnetic

field, B. The plasma is assumed to be quasineutral

(ni ’ ne � n), collisionless and low-beta (i.e., negligible

induced magnetic field effects), and to have a clean lateral

boundary with vacuum. For simplicity, electrons will be

treated as an isotropic, isothermal species so that Te ¼ const,

with Te ¼ pe=n, although other thermodynamic models are

available.14,15 Furthermore, electrons are assumed to be fully

magnetized and to have negligible inertia according to the

following scaling: ue �
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
� eBR=me, where R is the

initial plasma tube radius that serves as the macroscopic

length of the problem. Note that the last ordering states that

‘e ¼
ffiffiffiffiffiffiffiffiffiffi
Teme

p
=ðeBÞ � R, where ‘e is the electron Larmor ra-

dius. Under these hypotheses, the continuity and momentum

equations for ions and electrons read:

r � ðnuiÞ ¼ 0; r � ðnueÞ ¼ 0; (1)

miðui � rÞui ¼ �er/þ eui � B; (2)

0 ¼ �Ter lnðn=n0Þ þ er/� eue � B: (3)

The equations above can be normalized with R, mi, e, and Te.

Likewise, we may normalize density with a reference value

n0, e.g., its value at the center of the throat. The isothermal

sound velocity of the plasma cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
and the longitudi-

nal ion Mach number M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2zi þ u2ri

p
=cs are defined in the

usual way.

As shown in Ref. 9, the electron equations can be

directly integrated into algebraic expressions. In particular,

the azimuthal projection of Eq. (3) indicates that the electron

streamtubes coincide with the magnetic streamtubes, with

u?e ¼ 0. Then, the parallel and perpendicular components of

Eq. (3) provide two conservation laws along electron

streamtubes

Te ln
n

n0
� e/ ¼ He wð Þ; (4)

euheB ¼ �Te
@ ln n=n0ð Þ

@1?
þ e

@/
@1?

� � @He

@1?
¼ �rB

dHe

dw
; (5)

where w is the streamfunction of the applied magnetic field

(i.e., rw ¼ rB1?), and �HeðwÞ=e is the thermalized poten-

tial of each streamtube. Finally, using the solenoidal charac-

ter on the B field (r � B ¼ 0), the electron continuity

equation in Eq. (1) can be written as a third conservation law

along w

nuke=B ¼ GeðwÞ; (6)

with GeðwÞ being the electron-to-magnetic flux ratio at each

streamtube.

From the four scalar ion equations, however, only the

first integrals associated to the conservation of canonical

angular momentum and mechanical energy along ion stream-

tubes (which can differ from the electron/magnetic stream-

tubes) can be found,9 and in general, a numerical scheme

must be employed to integrate the ion motion in the meridio-

nal plane. The method of characteristics was chosen in Ref.

9, which exploits the fact that physical information is carried

only along the characteristic lines in the hyperbolic problem

of the supersonic expansion of ions: while the ion stream-

lines transmit information on ion mechanical energy and ca-

nonical momentum, the Mach lines convey information on

the electric potential and electron pressure.

The level of ion magnetization is measured by the non-

dimensional ion gyrofrequency parameter at center of the

throat section, X̂i0 ¼ eB0R=
ffiffiffiffiffiffiffiffiffiffi
Temi

p
. The general model of

Ref. 9 admits any finite value of X̂i0. The FMIL corresponds

to taking X̂i0 ! 1 and presents a number of profound con-

sequences on the structure of the equations and the physics

of the expansion.

First, as indicated by the azimuthal ion equation, ions

are now fully attached to the magnetic lines, with u?i ¼ 0

just like the electrons before. Moreover, comparing the ad-

vective and the magnetic term in Eq. (2), uhi � M2X̂
�1

i0 cs, so

uhi vanishes in the limit X̂i0 ! 1. Observe that, in the ab-

sence of initial ion swirl (uhi ¼ 0 at z¼ 0), the ion azimuthal

current jhi is also zero in the whole plasma domain in the

UMIL, since ion separation does not induce any uhi when

B ! 0 in that case. Hence, only when X̂i0 is finite and non-

zero uhi > 0 develops downstream, and therefore, a maximal

uhi exists for some value of X̂i0. This value of uhi is small in

all cases of practical interest.9 Second, from Eq. (5), the

azimuthal electron velocity scales as uhe / X̂
�1

i0 cs, so this

drift can also be neglected in first approximation in the

FMIL. Hence, ions and electrons move along magnetic lines

with a velocity OðcsÞ and one may simply write
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ui ¼ ui1k; ue ¼ ue1k; (7)

where 1k ¼ B=B. Third, like with electrons, it is now possi-

ble to reduce the ion continuity equation in Eq. (1) to

nui=B ¼ GiðwÞ; (8)

and the parallel projection of Eq. (2) yields again the equa-

tion of ion mechanical energy, which is conserved along the

ion/electron/magnetic streamtubes

1

2
miu

2
i þ e/ ¼ Hi wð Þ: (9)

Finally, the perpendicular component of Eq. (2) in terms of

the magnetic field curvature, jB, provides an expression for

the magnetic force on ions

euhiB ¼ jBmiu
2
i þ e

@/
@1?

: (10)

In summary, we have 4 algebraic equations (Eqs. (4),

(6), (8), and (9)) for 4 unknowns (ui, ue, n, /), with 4 integra-

tion functions of w (He, Ge, Gi, Hi) that are calculated from

the initial (i.e., throat) conditions. Given these and the geom-

etry of the external magnetic field, these equations can be

readily solved to obtain directly the full 2D plasma response.

In fact, the evolution of these plasma properties along each

streamline w ¼ const is completely independent from neigh-

boring lines, and therefore, the flow field can be solved in a

line-by-line basis, regardless of the complexity of the geome-

try of the MN. For this reason, it is convenient to express the

solution as a function of w and a new independent variable

k ¼ Bðz;wÞ=Bð0;wÞ, i.e., the magnetic field on each stream-

line normalized with its value upstream, Bð0;wÞ. For

instance, solving for uiðk;wÞ one finds

1

2
mi u2i k;wð Þ � u2

i 0;wð Þ
� �

� Te ln
ui k;wð Þ
ui 0;wð Þ ¼ �Te ln k: (11)

This equation is indeed the exact 2D version of the equiva-

lent 1D equation proposed by Andersen et al. and later by

Fruchtman et al. Once uiðk;wÞ is known, the solutions for /,
n, and ue in terms of ðk;wÞ are straightforward. The solution
of the 2D plasma expansion is therefore equivalent to solving

a 1D expansion for each streamline.

Observe that when uið0;wÞ ¼ const, i.e., when the ion

velocity is uniform at the throat, uiðk;wÞ becomes only a

function of k. As a consequence, nðk;wÞ=nð0;wÞ and

/ðk;wÞ � /ð0;wÞ are also only functions of k. In other

words, the 2D evolution of these plasma variables depends

only on the relative drop of magnetic field along each line,

and the plasma profiles are self-similar over k ¼ const surfa-

ces. These convex surfaces are not normal to the magnetic

streamlines in general and are shown in Fig. 1 in Section III.

Note also that geometric self-similarity over z ¼ const

planes (used in the derivation of the model of Fruchtman

et al.) is therefore not strictly satisfied neither in the FMIL

nor for any finite value of X̂i0.

As a last (and uncoupled) step, Eqs. (5) and (10) yield

the magnetic force terms, uheB and uhiB. Note that, while uhe

and uhi go to zero in the FMIL, these magnetic forces are fi-

nite. Indeed, the magnetic force on electrons depends essen-

tially on the electron pressure nTe, and the magnetic force on

ions on the ion inertia and the curvature of the magnetic

lines.

The streamline independence of the FMIL contrasts

with the finite-ion-magnetization case, where each point

influences the whole domain within its downstream Mach

cone. Mathematically, in the FMIL the Mach lines have

disappeared, leaving only the streamlines as characteristic

lines. Therefore, the problem degenerates into a single-

characteristic hyperbolic one in this limit. Physically, this

agrees with the negligible role of the perpendicular pressure

and electric field terms with respect to the magnetic ones

when X̂i0 ! 1; in a finite-ion-magnetization case, these

pressure terms are responsible for carrying the information

in the Mach directions.

Observe also that since the FMIL turns the plasma

expansion into a single-characteristic hyperbolic problem

even when ions are subsonic, it is easy to compute the sub-

sonic convergent part of the MN, a task that required a sepa-

rate numerical method in the finite-ion-magnetization case.

III. RESULTS

To analyze the differences between the FMIL and

UMIL, this section compares the expansion of a given

plasma under the two limits. The X̂i0 ! 1 limit is computed

solving the equations described above, whereas the X̂i0 ! 0

limit is integrated with the DIMAGNO code.9 For the sake

of illustration, the magnetic field of a single current loop of

radius RL ¼ 3:5R located at z¼ 0 is used. For this particular

MN, the turning point (i.e., the location where the outermost

magnetic line carrying plasma turns around) is located at

about z ¼ 16R and r ¼ 23R. The following radial profile for

density, potential, and velocity is imposed in the two cases at

the magnetic throat (z¼ 0) between r¼ 0 and R

n ¼ n0 exp ð�ar2=R2Þ; / ¼ 0;

uzi ¼ uze ¼ 1:01cs; uri ¼ ure ¼ 0; (12)

where a is a parameter that controls the shape of the profile

(a ¼ 3 ln 10 is chosen here), and the 1.01 value is to ensure

supersonic conditions for the method of characteristics in the

UMIL case. Moreover, an electron theta-pinch equilibrium

and no ion swirl are enforced at the throat

euheB ¼ 2aTer=R2; uhi ¼ 0: (13)

The values of n, /, ui, and ue change monotonously with

X̂i0, so the FMIL and UMIL cover their full range of vari-

ability. The results of the two simulations are displayed in

Fig. 1, and the major differences between the two ion mag-

netization limits are described below. In all cases, the varia-

tions grow downstream:

1. The radial plasma density profile is less focused around

the axis the higher X̂i0 is, as seen in Fig. 1(a). The effect

is large already at x ¼ 15R, where the density difference

at the periphery is about 2 orders of magnitude. It is
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stressed that the plasma density is not geometrically self-

similar over z ¼ const planes in either case.

2. Since / is merely a function of n on each electron stream-

line (Eq. (4)), the ambipolar electric potential / largely

differs between the UMIL and FMIL, too. The direction

of the electric field changes as well, from highly perpen-

dicular in the UMIL to essentially parallel in the FMIL, as

can be inferred from the isopotential lines of Figs. 1(b)

and 1(c). Observe that in the FMIL the isopotential lines

coincide with the self-similarity lines k ¼ const, which

are shown in Fig. 1(c).

3. An ion velocity difference of about 15% between the

two limits occurs at the plasma periphery, with the FMIL

displaying a lower velocity there. Since ui grows withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2e/=mi

p
(Eq. (9)), this is in agreement with the

reduced rarefaction and lower potential drop observed

above. Figure 1(d) shows also that ion velocity at the axis

is slightly larger in the FMIL.

4. The direction of the ion flow changes substantially as

depicted in Fig. 1(d). While the UMIL ions separate soon

from the magnetic lines and therefore diverge less, the

FMIL ions are fully attached and no separation occurs as

a consequence of the FMIL model assumptions them-

selves. Indeed, this phenomenon is the primary cause for

the differences in density and velocity profiles observed

in points (1) and (3).

5. No separation means that no longitudinal electric currents

form in the plasma in the FMIL. In contrast, in the UMIL

local currents exist even if the plasma jet is globally

current free,9 as can be seen in Fig. 1(c). The condition

jz ¼ jr ¼ 0 is referred to as local current ambipolarity
and is generally invoked a priori in ambipolar diffusion

models. The initial conditions of Eq. (12) suffice to guar-

antee local current ambipolarity in the whole plasma

domain in the FMIL but not for finite values of X̂i0. The

formation of longitudinal (meridian) currents is indeed a

common occurrence in axisymmetric plasmas with finite

ion magnetization. While in the present collisionless

model the currents are caused by the divergent magnetic

geometry, they have been found also for cylindrical, colli-

sional plasmas in a uniform magnetic field.18

6. Evidently, since there is no ion separation in the FMIL,

plasma detachment does not occur, and ions return along

the magnetic lines, canceling thrust. In contrast, plasma

FIG. 1. Comparison of the FMIL and UMIL simulations. Figure (a) displays the radial density profile at various values of z. Here, rtube is the radius of the last

plasma tube at each z ¼ const section. Solid lines denote the FMIL and dashed lines the UMIL. Figures (b) and (c) display the ambipolar electric potential in

the UMIL and FMIL cases, respectively. Isopotential curves, spaced in increments of ed/=Te ¼ 1, are shown as black lines. The arrowed white lines of Figure

(c) show the longitudinal electric currents that develop in the plasma, which become of the order of half the ion flux downstream.9 Figure (d) shows the relative

difference in ion velocity, dui=ui ¼ ðui;F � ui;UÞ=ui;F, where subindices F and U denote the FMIL and UMIL, respectively. Ion streamlines have been drawn in

solid line for the FMIL and in dashed line for the UMIL. The blue lines that intersect the MN axis are k ¼ const lines.
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detachment is guaranteed in finite-ion-magnetization

cases, thanks to the growing ion inertia and the decreasing

magnetic strength. In fact, very large values of X̂i0 are

required to keep ions attached beyond the MN turning

point; as an example, a plasma with X̂i0 ¼ 200 has a

downstream detachment behavior closer to the UMIL

than the FMIL.13

These observations indicate that the 2D character of the

plasma in the MN changes considerably already in the near

region of the expansion when X̂i0 ! 1 with respect to the

cases with finite X̂i0. It is worth explaining these differences

from the viewpoint of the perpendicular balance of forces in

the plasma. In a low-ion-magnetization plasma (and in gen-

eral, in finite X̂i0 cases sufficiently far downstream), the

magnetic force on ions is negligible, and the dominant forces

on them are electric. These forces are in charge of opening

them radially to maintain quasineutrality in the whole do-

main, and from this condition comes the necessary radial

drop in density to create the self-consistent radial electric

field. Ion deflection in this case is seen to be insufficient to

match the magnetic lines downstream,13 and ion separation

occurs. On the other hand, in the FMIL ion deflection is

guaranteed by the magnetic force. Indeed, in this limit

deflection is perfect, in the sense that ions are forbidden to

separate at all from the turning magnetic lines. The perpen-

dicular electric field becomes irrelevant and exists only

when there is a differential drop in plasma density between

neighboring lines due to the expansion itself.

Note that in all cases, however, the longitudinal force

that accelerates ions downstream is electric, associated to the

ambipolar potential drop that develops along the expansion.

Therefore, the plasma acceleration mechanism still relies on

the ambipolar electric field which scales as the electron tem-

perature, Te.

The diamagnetic axial force �euheBr is essential in the

operation of the MN, as the associated reaction force (which

is felt on the MN generator) is the magnetic thrust.9,11 The

ion axial magnetic force euhiBr is however paramagnetic and

causes drag (i.e., negative thrust). Actually, the thrust func-

tion F(z), which indicates the thrust force generated up to at

a z ¼ const section (denoted as Sz), can be computed as the

integral of the total plasma momentum that traverses that

section, or equivalently, as initial thrust at the throat F0 ¼
Fð0Þ plus the integral of the total axial magnetic force on the

plasma in the volume Vz delimited by the throat and Sz (see

Eqs. (42) and (43) of Ref. 9). In other words, assuming Br >
0 in the divergent MN without loss of generality

FðzÞ ¼ 2p
ð

Sz

nðTe þ miu
2
ziÞrdr ¼ F0 �

ð
Vz

jhBrdV; (14)

where the plasma pressure at the plasma-vacuum boundary

has been assumed negligible. Using Eqs. (4), (5), (9), and

(10), it is possible to obtain a compact expression for the

thrust function in the UMIL (U) and the FMIL (F) cases

FU zð Þ ¼ F0 �
ð
Vz

Te
@n

@1?
sin aBdV; (15)

FF zð Þ ¼ F0 �
ð
Vz

Te
@n

@1?
þ nmijBu2i

� �
sin aBdV; (16)

where sin aB ¼ Br=B. Comparing these two formulas, it is

clear that the electron contribution produces positive mag-

netic thrust in both cases, whereas ions cause a negative con-

tribution in the FMIL as expected. As a side note, this ion

contribution is missed in the model of Fruchtman et al.,
where the mijiu

2
i term in their Eq. (2) (our Eq. (10)) is not

included (an aspect inherited from Ref. 19). Since this is the

dominant term in the perpendicular momentum equation of

the inertia-driven, supersonically divergent ions, this over-

sight also changes the character of the ion swirl motion,

from essentially zero (due to the conservation of ion angular

canonical momentum around the axis9) to a pure E�B drift

in their model.

Likewise, the plume efficiency function gplumeðzÞ defined
in Ref. 9, which accounts for divergence losses, can be cal-

culated as follows:

gplumeðzÞ ¼
ð

Sz

nu3
zirdr

.ð
Sz

nu2i uzirdr: (17)

The thrust gain FðzÞ=F0 and gplumeðzÞ are shown in Fig. 2 for

the FMIL and UMIL simulations.

The most outstanding aspect of Fig. 2(a) is that the

thrust gain F=F0 in the near region expansion depends only

weakly on the value of X̂i0. While a higher ion magnetiza-

tion means a lower thrust gain, the differences are modest

before the turning point, and only become apparent further

downstream. Indeed, the negative ion contribution of Eq.

(16) is small in the near expansion region, but dominates

downstream where aB is large, and partially cancels thrust in

FIG. 2. Thrust gain function FðzÞ=F0

(a) and plume efficiency function

gplumeðzÞ (b) in the FMIL (solid lines)

and the UMIL (dashed lines). Thrust

predicted by the radially averaged, par-

axial 1D model based on the value of

B=B0 at the axis is shown in (a) as a

red dashed-dotted line.
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the FMIL. The similarity of F=F0 in the two limits is also

due to the axial ambipolar acceleration of ions being essen-

tially unaffected by the ion magnetization in the near expan-

sion, as discussed above.

In fact, the thrust function is successfully approximated

by 1D models in the near region for this very reason. It can

be shown that for an isothermal plasma, the 1D model of

Andersen et al.1 leads after some manipulation to the follow-

ing formula of thrust gain as a function of the Mach number:

F

F0

¼ M2 þ 1

2M
; (18)

and M is related to the area expansion ratio (B0=B in a 1D

model) by Eq. (11) applied at the axis. The 1D thrust gain is

plotted on Fig. 2(a) for comparison. Visibly, this model pro-

vides an optimistic value of F=F0 with respect to the two 2D

simulations. This is partly due to the 1D model ignoring the

radial or divergence losses in the expansion, accounted for

by gplume (a purely 2D result), and also due to the plasma

profiles not being self-similar over z ¼ const surfaces, a con-

dition upon which the radially averaging of plasma profiles

in 1D models is based.

Regarding the plume efficiency in Fig. 2(b), it is again

observed that a higher X̂i0 yields a lower gplume, as could

have been anticipated by the analysis of the ion streamline

deflection above. A high value of this figure of merit is

strongly related to the successful detachment of the plasma

from the MN, which is hindered by a large X̂i0. Finally, it

should be noted that the X̂i0 ! 1 and X̂i0 ! 0 constitute,

respectively, the lower and upper limits for both the thrust

gain and the plume efficiency at each z for a given plasma.

IV. DISCUSSION

For a quick estimation of MN performance and for pre-

liminary thruster design, a simple model of the plasma

expansion in the near region of a given magnetic field is use-

ful. While the FMIL model is of course only strictly applica-

ble when X̂i0 ! 1, it is an excellent candidate for those

tasks given its mathematical simplicity, physical consis-

tency, and its capability to provide acceptable (and conserva-

tive) estimates of the thrust gain F=F0ðzÞ and the plume

efficiency gplumeðzÞ regardless of the actual value of X̂i0.

Indeed, in the example simulations of Section III, the differ-

ences in F=F0 and gplume between the UMIL and FMIL are

smaller than 2% and 4%, respectively, at z ¼ 15R. The

plasma density n and the ion velocity ui can also be esti-

mated in this way for finite values of X̂i0, although a higher

error is committed near the periphery of the plasma.

Naturally, the magnitude of the error depends on the actual

value of X̂i0 and on how far downstream the FMIL model is

used.

Notwithstanding this, there are several limitations that

should be taken into account when applying the FMIL solu-

tion to finite-X̂i0 cases. First and foremost, errors in all varia-

bles become large beyond the region of the turning point,

where ion separation is substantial, and usage of the model

in that region should be avoided unless X̂i0 is sufficiently

high. The conditions for ion separation derived in Ref. 13

can help to decide upon the applicability of the FMIL solu-

tion at a given z ¼ const section. Second, the model does not

recover the radial relative focalization of the plasma density

around the axis observed in finite X̂i0 cases.9 Third, the

potential map / obtained in the X̂i0 ! 1 limit is an inad-

equate substitute for that of a low-X̂i0 case, where the per-

pendicular electric field is much larger and becomes a

fundamental feature of the expansion due to its central role

in ion deflection and ion separation. Fourth, the plasma elec-

tric currents are zero in the FMIL. In the case of the electron

azimuthal current, the product �euheB varies little with X̂i0

and can be used to approximate other cases. To recover the

ion magnetic force and the plasma currents in finite-ion-mag-

netization cases, the full 2D fluid model is required. Finally

but fundamentally, the FMIL model cannot be used to study

plasma detachment in finite-X̂i0 cases, which is one of the

crucial processes that takes place in a propulsive MN.

To conclude this section, we further comment on the dif-

ferences between this exact 2D FMIL solution and the ap-

proximate MN model of Little and Choueiri,17 who derived

an approximate solution of the 2D model of Ref. 9, with the

goal of finding a more algebraic and thus quicker solution.

However, the set of expressions they obtain are not compact

and simple, and their derivation employs a set of conflicting

hypotheses: On the one hand, the model assumes a priori
that ion velocity is parallel to B and forces local current

ambipolarity in the flow (i.e., as in the X̂i0 ! 1 limit). On

the other hand, the magnetic force on ions is deemed negligi-

ble (i.e., as in the limit X̂i0 ! 0). As a result, the electric

field alone must create the required normal force to deflec-

tion streamlines so they artificially match the magnetic

streamsurfaces. The electric field calculated in this way is

largely overestimated and yields an incorrect electric potential

/. The next consequence is that density, computed from /,
does not fulfill the continuity equation in their solution, and

ad-hoc correcting factors for /, n, and M must be added to

recover mass conservation and match the solution of Ref. 9.

V. CONCLUSIONS

This paper has explored the fully-magnetized-ions limit

of the plasma expansion in a magnetic nozzle, based on the

X̂i0 ! 1 limit of the general 2D fluid model of Ref. 9. In

this limit, ion and electron streamlines coincide with the

magnetic lines and no information is transmitted along Mach

lines. The 2D model becomes fully analytical and can be

solved in a line-by-line basis, with completely algebraic con-

servation equations.

The comparison of the FMIL with the unmagnetized-

ions case has revealed the complete range of variability of

plasma properties for a given MN and plasma conditions at

the throat. Variations grow downstream and, in particular,

near the plasma periphery; they become large in the neigh-

borhood of the MN turning point and beyond. Electric cur-

rents go to zero in the FMIL, and the nature of ion deflection

changes from electrically driven to magnetically driven, but

the longitudinal ambipolar electric field is still the main lon-

gitudinal ion acceleration mechanism.
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Interestingly, the differences in thrust and plume effi-

ciency functions between the X̂i0 ! 1 and X̂i0 ! 0 are

small in the near expansion. This allows one to use the FMIL

solution to yield a conservative approximation of the propul-

sive figures of merit in finite-X̂i0 cases. Therefore, the ana-

lytical FMIL model is proposed as a simple model for fast

MN calculations. The limitations of the model for this task

have been discussed; in particular, it cannot be used to study

downstream plasma detachment—a task that requires the full

2D fluid model. The model compares favorably in terms of

simplicity and consistency with previous, related works in

the literature.

Finally, it is worth noting that the 2D FMIL model

opens the way to study fully magnetized plasma expansions

in 3D magnetic nozzles. This is of particular interest in the

study of plasma jet magnetic deflection, which can enable

contactless thrust vector control with a steerable MN.20
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