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(lástima que no pueda adjuntar un GIF); Pau, que acaba de llegar (como
quien dice) y ya pasa todos los tests con claridad; Vicky, talento en estado
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Y gracias a ti, papá (y a Laura), guardo tantas conversaciones, tantas
reflexiones, he aprendido tanto, que el cientı́fico que hay en mı́ deberı́a
citarte en todos sus artı́culos. Y Smith (alias Miguel Soto) del que he
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• Tamarit, Ignacio, José A. Cuesta, Robin IM Dunbar, and An-
gel Sánchez. Cognitive resource allocation determines the or-
ganization of personal networks. Proceedings of the National
Academy of Sciences 115, no. 33 (2018): 8316-8321. DOI:
10.1073/pnas.1719233115.

The author of this thesis is the first author of this publication. The material
from this source included in this thesis is not singled out with typographic
means and references.

The results presented in Chapter 4 are partly contained in a pre-print
available at the personal web page of the supervisor of this thesis Angel
Sánchez:



vi

• Tamarit, Ignacio, Marı́a Pereda, José A. Cuesta, Robin IM Dunbar,
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Summary

This thesis set out to contribute to the realm of social physics, with a partic-
ular focus on human social networks. Our approach, however, is somewhat
different from what is typical in disciplines such as complex systems or sta-
tistical physics. Rather than simplifying the features of the constituents of
our system (people), and stressing their rules of interaction, we focus on
better understanding those very same constituents, modelling them as so-
cial atoms. Our rationale is that a better understanding of such an atom
may shed light on how (and why) it interacts with other atoms to form
social collectives.

Given its robustness and the evolutionary roots of its premises, we use
the Social Brain Hypothesis as our departure point. This theory states that
the evolutionary drive behind the development of large brains in humans
was the need to process social information and that the limited capacity of
our brains imposes a limit to the number of relationships we can manage—
the so-called “Dunbar’s number”, roughly 150. Moreover, evidence keeps
revealing that these relationships are further organised in a series of hierar-
chically inclusive layers with decreasing emotional intensity, whose sizes
exhibit a more or less constant scaling. Notwithstanding the empirical ev-
idence, neither the presence of scaling in the organisation of personal net-
works nor its connection with limited cognitive skills had been explained
so far.

In Chapter 2 we present a mathematical model that solves this puzzle.
The assumptions of the model are quite simple, and well founded on em-
pirical evidence. Firstly, the number of relationships we maintain tends
to be stable on average. Secondly, these relationships are costly, and our
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resources are limited. With these two premises, our results show that the
hierarchical organisation emerges naturally from the principle of maximum
entropy. Not only that, but we also predict a hitherto unnoticed regime of
organisation whose existence we prove using several datasets from com-
munities of immigrants.

The former model considers that relationships can only belong to a
discrete set of categories (layers). In Chapter 3 we extend it so that rela-
tionships are classified in a continuum. This modification allows us to test
the model with data from very different sources such as online communica-
tions, face-to-face contacts, and phone calls. Our results show that the two
regimes of organisation found in the previous model persist in this vari-
ant, and reveal the underlying existence of a (universal) scaling parameter
which does not depend on any particular number of layers.

To incorporate these ideas into socio-centric models, we build on the
so-called Structural Balance Theory. This theory, underpinned by psycho-
logical motivations, posits that the structure of social networks of positive
and negative relationships are highly interdependent. However, the theory
has received little empirical validation, and negative social relationships
are poorly understood—both from an ego-centric and a socio-centric per-
spective. For that reason, we turn to developing an experimental software
in order to gather data within a school.

In Chapters 4 and 5 we present results from these experiments. In
Chapter 4 we analyse the socio-centric networks using machine learning
techniques and find that the structure of positive and negative networks
is indeed very much connected. Besides, we study the two types of net-
works separately, showing that they exhibit quite distinct features and that
gender effects in negative social networks are weak and asymmetrical for
boys and girls. In Chapter 5, on the other hand, we focus on the structure
of negative personal networks. Remarkably, using data from two differ-
ent experimental settings, we show that the structure of personal networks
of negative relationships mirrors that of the positive ones and exhibits a
similar scaling—albeit their size is significantly smaller.

Chapter 6 summarises our results and presents future (and current) lines
of investigation. Among them, we outline a model of a social fluid that
uses the insights gained with this thesis to build a model of social collec-
tives as ensembles of personal networks. This model is compatible, at the
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micro-level, with the observations of the social brain hypothesis, and, at
the macro-level, with the premises of the structural balance theory.





Contents

Agradecimientos (Acknowledgements) i

Published and submitted content v

Summary vii

1 Introduction 1
1.1 The Social Brain Hypothesis . . . . . . . . . . . . . . . . 4

1.1.1 Dunbar’s number . . . . . . . . . . . . . . . . . . 6
1.1.2 Hierarchical structure . . . . . . . . . . . . . . . . 6
1.1.3 Personal relationships in the digital world . . . . . 8
1.1.4 Costs and benefits . . . . . . . . . . . . . . . . . 9
1.1.5 Individual differences in network composition . . . 10
1.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . 11

1.2 Models of social networks: a brief review . . . . . . . . . 12
1.2.1 Social networks as complex systems . . . . . . . . 13
1.2.2 Sociological models: Structural Balance Theory . 16
1.2.3 Models connected to the SBH . . . . . . . . . . . 18
1.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . 19

1.3 Summary and objectives . . . . . . . . . . . . . . . . . . 20

2 The social atom 23
2.1 Model description . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Maximum entropy distribution . . . . . . . . . . . 24
2.1.2 Application to ego-networks . . . . . . . . . . . . 27



xii CONTENTS

2.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Empirical validation . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Bayesian estimate of the parameter . . . . . . . . 31
2.2.2 Standard regime . . . . . . . . . . . . . . . . . . 35
2.2.3 Inverse regime . . . . . . . . . . . . . . . . . . . 37

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 A continuous interpretation of the social atom 45
3.1 Model description . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 A continuum of circles . . . . . . . . . . . . . . . 47
3.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Bayesian estimate of the parameter in the contin-
uum case . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Mobile phones dataset . . . . . . . . . . . . . . . 52
3.2.3 Face-to-face contacts dataset . . . . . . . . . . . . 56
3.2.4 Facebook dataset . . . . . . . . . . . . . . . . . . 59

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 The interplay between positive and negative relationships: an
empirical study 65
4.1 Description of the study . . . . . . . . . . . . . . . . . . . 66
4.2 Network analysis . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Gender effects . . . . . . . . . . . . . . . . . . . 70
Network composition . . . . . . . . . . . . . . . . 71
Reciprocity . . . . . . . . . . . . . . . . . . . . . 73

4.3 Interplay between positive and negative networks . . . . . 75
4.3.1 Machine Learning approach . . . . . . . . . . . . 77
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 The structure of negative personal networks 83
5.1 Analysis of personal networks . . . . . . . . . . . . . . . 84

5.1.1 Degree distributions . . . . . . . . . . . . . . . . 84



CONTENTS xiii

5.1.2 Overlapping of networks and social circles . . . . 86
5.2 The atomic organisation of negative relationships . . . . . 87

5.2.1 Assignment of costs . . . . . . . . . . . . . . . . 88
5.2.2 Model fitting . . . . . . . . . . . . . . . . . . . . 89
5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Further evidence: an additional experiment . . . . . . . . 92
5.3.1 Experimental design . . . . . . . . . . . . . . . . 93
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusions and future work 101
6.1 The social atom . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 Continuous interpretation . . . . . . . . . . . . . 103
6.1.2 The structure of negative personal networks . . . . 104
6.1.3 Further applications of the model and future work . 105

6.2 Atomic (social) ensembles . . . . . . . . . . . . . . . . . 106
6.2.1 Homophily and gender effects . . . . . . . . . . . 106
6.2.2 Interplay between positive and negative networks . 107
6.2.3 Future work . . . . . . . . . . . . . . . . . . . . . 108

Machine Learning to deal with missing data . . . . 108
The social fluid . . . . . . . . . . . . . . . . . . . 108

6.3 Data collection and experiments . . . . . . . . . . . . . . 111
6.3.1 Fighting Bullying with BraveUp: future work . . . 112

A Appendix A 115

B Appendix B 129

C Appendix C 137

D Appendix D 143

References 145





1
Introduction

“Words are a pretty fuzzy substitute for mathematical equations.”

Onum Barr
Foundation and Empire, Isaac Asimov (1952)

The 19th century witnessed some of the most exciting scientific debates
in history. On the one hand, Darwin and his evolutionary theory challenged
the very conception of what it meant to be human—were we nothing but
evolved primates? On the other hand, a series of social scientists, led by
Compte and Quetelet, launched the shocking idea that human behaviour
could be governed by universal laws such as those of physics (Lazarsfeld,
1961; Ball, 2002)—we did not even have free will!? The former led to a
revolution in the biological sciences, the latter to the birth of a new disci-
pline: social physics.

Quantification in the social sciences (that started in the 17th century
with the political arithmeticians (Lazarsfeld, 1961)) had reached a point of
maturity that allowed it to start rubbing shoulders with that of the natural
sciences. The main reason was that important regularities (mostly Gaus-
sian curves) had been detected in human behaviour. These regularities,
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unveiled by the laws of probability (and what we now know as statistics),
allowed the scientist of the time to speculate with the possibility that hu-
man affairs were subject to fundamental laws (Ball, 2002).

In a perhaps unexpected twist of events, the ideas behind social physics
lay at the foundation of statistical mechanics—and not otherwise. By the
second half of the 19th century, Maxwell and Boltzmann, fathers of sta-
tistical mechanics, were inspired by the use of probabilistic methods in
the social sciences to abandon a completely deterministic picture of nature
and embrace the rules of probability (Ball, 2002)—and the law of large
numbers. Boltzmann himself compares molecules to individuals1:

“The molecules are like so many individuals, having the most various
states of motion, and the properties of gases only remain unaltered because
the number of these molecules which on the average have a given state of
motion is constant.”

These ideas undoubtedly inspired Asimov to conceive, by 1940s, his
notion of a psychohistory, a mathematical theory of human processes that,
when applied to a sufficiently large number of individuals (as in a Galactic
Empire), would be able to predict, with tremendous precision, the fate of
society (Asimov, 1951). But this was only science-fiction. The develop-
ment of social physics in the first half of the 20th century was a daunting
task.

Bernard and Killworth (1979) reviewed the state-of-the-art of this disci-
pline in a paper with an eloquent title: “Why are there no social physics?”.
The authors point out two main causes for this lack of success. Firstly, that
all we can observe from social systems are details, not mean behaviours,
which makes complicated to infer the laws underpinning them2. Secondly,
that we only have access to snapshots, not steady-states, of a dynamic
system—with an unknown time-scale. Notwithstanding the difficulties,

1The quote is extracted from (Ball, 2002), that attributes it to a paper (in German) by
Boltzmann: L. Boltzmann, Weitere Studien über das Wärmegleichegewicht unter Gas-
moleküulen, in: F. Hasenöhrl (Ed.), Wissenschaftliche Abhandlungen, Vol. 1, Leipzig,
1909, p. 317.

2 Interestingly, the great physicist Richard Feynman makes a very similar point when
explaining how complicated it is to infer the laws of nature. He compares it with learning
the rules of chess only having access, from time to time, to see some valid positions in a
chessboard: defjam99b, “Feynman :: Rules of Chess”, Youtube video, 2:48, published on
21 Feb. 2007, https://www.youtube.com/watch?v=o1dgrvlWML4

https://www.youtube.com/watch?v=o1dgrvlWML4
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they firmly defend the need to pursue a true social physics, characterised
by quantitative models able to make predictions (not obvious from the for-
mulation of the model) and be tested against the empirical evidence.

Research from the late 20th and early 21st centuries foreshadow a
promising future for social physics. Scientists have (somewhat) embraced
interdisciplinarity, the science of complex systems has experienced noto-
rious advances, and there is increasing availability of data. As a conse-
quence, several successful models have been proposed3 and the field of
social physics (together with computational social sciences) is in vogue
(Castellano et al., 2009; Lazer et al., 2009; Conte et al., 2012; Stauffer,
2013; Holovatch et al., 2017).

This is the framework where this work belongs. In particular, we will
focus on studying the composition of personal networks4 (micro-system)
and their connection to social networks (macro-system). Our approach,
nonetheless, is slightly different from what disciplines such as complex
systems or statistical physics tend to take. Instead of assuming a hyper-
simplified version of the constituents of our system (people) and focusing
on their rules of interaction5, we will focus precisely on better understand-
ing the individual behaviour of those constituents, the social atoms.

Our rationale is that a better understanding of this atom may shed light
on how (and why) it interacts with other atoms to form social collectives.
Additionally, as we shall see in the next section, the way we humans or-
ganise our social relationships is deeply connected to the size of our brains,
and exhibits pervasive (yet not well understood) regularities. Therefore, it
is a hardly mutable feature that must be taken into account if we want to
build robust collective models from first principles.

3In a way, statistical physics is paying back its debt with social physics, see for exam-
ple (Castellano et al., 2009).

4 We acknowledge that our use of some terms might not be entirely consistent with
other disciplines, and apologise in advance if that confuses the reader. Unless otherwise
specified, we may use the names ego-centric and personal networks indistinctly through-
out the text. Either case, we refer to how a focal individual (that we shall call ego) is
connected to other individuals, independently of how these other individuals relate to
each other.

5 This is precisely the basic principle of the book entitled The social atom (Buchanan,
2008), one of the reasons why we chose the same term in this thesis.
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1.1 The Social Brain Hypothesis

The intelligence of primates surpasses that of other mammals (Roth and
Dicke, 2012). Great apes and eventually humans rest at the top of the list
of the most intelligent animals in the world—along with dolphins6. Intelli-
gence is a clear advantage in competitive, hostile environments but it also
comes at a cost. In order to develop complex cognitive skills the brain must
increase its size, and the brain is a very costly organ. For example, even
though our brain represents only about 2% of our body weight, it consumes
nearly 20% of the calories we intake (Aiello and Wheeler, 1995). There-
fore, there must be a strong evolutionary drive fostering the development
of such a demanding organ7.

Traditionally, there has been a consensus that our brain evolved to pro-
cess information of ecological significance (Dunbar, 1998); this is called
the ‘Ecological Hypothesis’. The ability to process such information would
enable us, for example, to create mental maps of territory or to find food
in complex environments, which are definite advantages. In the 1970s
Humphrey (1976) proposed an alternative theory. In his view, it is the com-
plexity of social living that requires higher intellectual abilities, and what
ultimately provides primates with a competitive leverage—it is worth not-
ing that dolphins also display complex social behaviours. Benefits derived
from these faculties include better protection against predators or caring of
the offspring. As it was the case of the Ecological Hypothesis, the ability
to cohabit and coordinate with conspecifics also requires the processing of
complex information, hence the larger brains.

Along these lines, Whiten and Byrne (1988) build their ‘Machiavel-
lian Intelligence Hypothesis’. Under this hypothesis, the ultimate drive
behind brain development lies in the contentious facet of social relation-

6Dolphins are well known to have extraordinary intelligence. Here is an entertaining,
educational video summarising some of their outstanding skills: TED-ed, “How smart
are dolphins? - Lori Marino”, Youtube video, 4:50, published on 31 Aug. 2015, https:
//www.youtube.com/watch?time_continue=108&v=05PpTqtGhGU.

7The webpage of the Smithsonian National Museum of Natural History of-
fers a fantastic overview of brain development in humans; “Bigger Brains: Com-
plex Brains for a Complex World”, The Smithosonian Institution’s Human Ori-
gins Program, last accessed 13 December 2018, http://humanorigins.si.edu/
human-characteristics/brains.

https://www.youtube.com/watch?time_continue=108&v=05PpTqtGhGU
https://www.youtube.com/watch?time_continue=108&v=05PpTqtGhGU
http://humanorigins.si.edu/human-characteristics/brains
http://humanorigins.si.edu/human-characteristics/brains
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ships. The principal argument is that abilities such as hiding intentions
or plotting strategies would favour primates in gaining social power, thus
granting their (genetic) survival. The theory is inspired, among others, by
the experimental work of Frans de Waal at the Arnhem Zoo and published
in his book ‘Chimpanzee politics’ (Waal, 1982). For years, Waal and his
team collected data on the behaviour of a colony of chimpanzees residing
in the zoo. At first sight, the behaviour of a colony of chimpanzees might
seem boring and predictable—they merely lay around, eat, and eventually
have sex or a fight. But the situation changes drastically when one takes a
closer look. What Waal and colleagues observed was a very complex so-
cial environment, a world full of alliances, betrayals, strategic behaviour,
and power struggles often related to sex. Such is the sophistication of these
behaviours that Waal (1982) himself does not hesitate to write that “entire
passages of Machiavelli seem to be directly applicable to chimpanzee be-
haviour.”

Dunbar (1992) culminates these ideas by relating the size of different
groups of primates directly to the size of their neocortex—the region of the
brain that concentrates the highest cognitive faculties. The primary objec-
tive of this work was to quantitatively compare the two prevailing theories:
the social and the ecological. Both theories tried to explain brain devel-
opment as a requisite to process information, but differed on what type
of information provided higher gains. To compare the two of them, Dun-
bar (1992) used a collection of data on 38 genera of non-human primates.
Among these data is the size of different areas of the brain, mean group
size, expansion of their territories, and dietary habits. The main result of
his analysis is that only the social hypothesis is compatible with the obser-
vations. In particular, he finds a highly significant log-linear relationship
(r2 = 0.76, p < 0.001) between the relative size of the neocortex to the rest
of the brain (neocortex ratio, CR) and the mean group size (N):

log10(N) = 0.093 + 3.389log10(CR) (1.1)

Furthermore, his results suggest that a) “Large groups are probably cre-
ated by the hierarchical clustering of smaller cliques” and b) “the cognitive
limitations lie in the quality of the relationships involved in the structuring
of these cliques” (Dunbar, 1992). As we shall see, these ideas about hierar-
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chization and quality (intensity) of relationships are thoroughly developed
in later works.

1.1.1 Dunbar’s number

Shortly after the publication of his 1992 paper, Dunbar (1993) extrapolates
the results found for non-human primates to the case of humans. Applying
equation 1.1 to humans (with a neocortex ratio of CR = 4.1) predicts a
group size of 147.8 with a 95% confidence interval of (100.2,231.1) —it
is customary to round this figure up to 150 for simplicity.

The same study (Dunbar, 1993) confirms the prediction by comparing
it with typical sizes of modern and historical hunter-gatherer societies and
sizes of independent units in modern armies. Subsequently, many stud-
ies have supported this result with data from face-to-face interactions (Hill
and Dunbar, 2003; Roberts et al., 2009), online social networks (Gonçalves
et al., 2011; Haerter et al., 2012; Dunbar et al., 2015), or (cross-cultural)
telephone records (Mac Carron et al., 2016; Wang et al., 2016). Simi-
larly, recent studies endorse not only the validity of the prediction but the
predominance of social versus ecological factors in the stability of social
groups (Casari and Tagliapietra, 2018). The robustness of this phenomenon
and the popularity of the theory have propitiated the number 150 to be cur-
rently known as ‘Dunbar’s number’, and entails the consolidation of the
so-called ‘Social Brain Hypothesis’ (SBH) — which supersedes other so-
cial hypothesis8.

1.1.2 Hierarchical structure

In principle, the prediction above applies to social groups whose stability
depends on broad personal knowledge and frequent face-to-face interac-
tions. However, Dunbar (1993) examined different types of social units and
found that all of them seem to have distinctive sizes. These could be either
smaller substructures, such as overnight camps (30− 50), or more mas-
sive superstructures, such as tribal groups (1000− 2000). Dunbar (1998)

8Yet some authors may refer to it indistinctly as the ‘Machiavellian Hypothesis’
(Gavrilets and Vose, 2006), and even Dunbar himself may cite (Whiten and Byrne, 1988)
when describing the SBH—see (Zhou et al., 2005) for an example.
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elaborates on this observation and associate them characteristic numbers:
5 (support cliques), 12− 15 (sympathy groups), 35− 50 (bands, overnight
camps), 150 (active network size), 500 (mega-bands), and 2,000 (tribes).
According to Dunbar (1998), these groups represent “points of stability or
clustering in the degrees of familiarity within the broad range of human
relationships, from the most intimate to the most tenuous”. So it is the
quality (i.e. the degree of intensity or intimacy) of the relationships what
determines the different groupings.

The interpretation of these groups as clusters in the degree of famil-
iarity was validated shortly afterwards in an experimental study (Hill and
Dunbar, 2003) based on the sending of Christmas cards in the United
Kingdom—a deep-rooted tradition that is still in force. The study found
that the size of the active network of the participants was 153.5±84.5 (ver-
ifying the prediction of 150) and that it was structured into clusters of re-
lationships conforming to their emotional intensity9. The sizes of these
clusters were consistent with the sizes of human collectives found in pre-
vious studies (5,12−15,35−50)—organised from the most intense to the
weakest relationships. The authors consequently conclude that “emotional
closeness may be the key parameter underlying the hierarchical differenti-
ation of social networks” (Hill and Dunbar, 2003).

It is important to note that the group sizes characterised in previous
works referred to human collectives of historical societies. Hill and Dun-
bar (2003), on the other hand, analyse the intensity of relationships of indi-
viduals belonging to modern Western societies. The authors suggest “that
the cognitive constraints on network size may apply universally to all mod-
ern humans” (Hill and Dunbar, 2003), thus making a conceptual leap from
collectives to individuals—regardless of the size of the population to which
they belong.

The hierarchical nature of the diverse human groupings (or, equiva-
lently, of the relationships that an individual maintains within his or her
social network) was analysed in detail by Zhou et al. (2005). To do so, they
gathered data on the sizes of personal networks reported in the literature.
The studies selected record data from different countries and obtained with
different methodologies. More than 60 samples and the data from (Hill and
Dunbar, 2003) were re-analysed employing more sophisticated techniques.

9Reported by the participants on a scale 1-10
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In this manner, they identified “a discrete hierarchy of group sizes with a
preferred scaling ratio close to three” so that “humans spontaneously form
groups of preferred sizes organised in a geometric series approximating
3− 5, 49− 15, 30− 45, etc.” (Zhou et al., 2005). More specifically, they
found a scaling of 3.2 with a significance of 0.99310.

The robustness of the analysis and its high degree of statistical signif-
icance led Zhou et al. (2005) to conclude that the scaling ratio must be a
universal aspect of human personal networks: “it may be that the abso-
lute values of the group sizes are less important than the ratios between
consecutive group sizes”. In this way, the smallest group (support clique)
would function as a seed from which the following levels (or layers) arise
by applying the scaling11. The same type of analysis has been replicated in
independent studies with similar results. Concretely, Hamilton et al. (2007)
analysed the structure of 1189 groups belonging to 339 hunter-gatherer so-
cieties and found the same auto-similar structure with a mean scaling of
3.60 (3.23−4.02, 95% bootstrapped confidence limits).

1.1.3 Personal relationships in the digital world

During the last decade, the irruption of the Internet and the online social
networks have favoured the availability of extensive data about our social
relationships. Although digital platforms have undoubtedly increased our
connectivity, the number of active relationships we maintain in them, their
intensity, and their substructure, follow the same patterns found in face-to-
face interactions (Dunbar et al., 2015). A number of examples in the liter-
ature demonstrate the existence of this phenomenon. Evidence come from
large datasets from Facebook (Arnaboldi et al., 2013), Twitter (Gonçalves
et al., 2011; Arnaboldi et al., 2013), telephone records (Mac Carron et al.,
2016) and even from an online game (Pardus12) that recreates a virtual,
futuristic society (Fuchs et al., 2014). Additionally, these studies unveiled
the existence of a new group with size 1.5. These are the individuals with

10They do not report confidence intervals.
11Interestingly, studies have shown that human conversational groups tend to split when

they are larger than about four people (Dunbar et al., 1995), what would naturally yield
core groups with the usual size of a support clique.

12Pardus – Massive Multiplayer Online Browser Game, last accessed 13 December
2018, https://www.pardus.at/.

https://www.pardus.at/
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whom we would have maximum intensity relationships (such as romantic
partners or best friends), above the level of a support clique—note that the
size of this group respects the scaling of ∼ 3 to the rest.

While the scaling factor found in the different studies exhibits some
variability (always between 2 and 4), the empirical evidence keeps reveal-
ing the same type of hierarchical organisation. Interestingly, recent studies
show that this structure (with constant scaling ∼ 2.5) is also present in
groups of non-human primates (Dunbar et al., 2018). Hence, what these
studies suggest is that the layered structure is a universal feature strongly
rooted in our psychology (Fuchs et al., 2014).

1.1.4 Costs and benefits

The different layers display marked differences regarding emotional close-
ness, but also in time devoted to relationships. Of all the time we ded-
icate to our social life, approximately 40% is dedicated to people in our
most intimate circle (support clique), 20% to close relationships (sympa-
thy group), and the remaining 40% to the rest of relationships (Sutcliffe
et al., 2012)—progressively devoting less to those more distant. More-
over, as expected, the time we devote to our social relationships correlates
strongly with their proximity and stability (Oswald et al., 2004; Roberts
et al., 2009; Pollet et al., 2013). Once again, similar results apply to rela-
tionships mediated by technology (Miritello et al., 2013; Saramäki et al.,
2014).

But, why do we invest time and resources in relationships? What bene-
fits do we get from them? In general terms, our network supports us (Fried-
man and Taylor, 2012), controls the information we receive (Zhang et al.,
2007), conditions our academic or work performance (Sparrowe et al.,
2001), and may even be crucial to our health (Valente, 2010). All of this is
dependent on the intensity of the relationships. For instance, while closer
relationships provide us with more significant support in situations of need
(Burton-Chellew and Dunbar, 2014), less intense relationships are espe-
cially relevant when it comes to getting information from distant regions
of our network and finding job opportunities (Granovetter, 1977). Like-
wise, our tendency to show altruistic behaviour towards others decreases
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with the intensity of the relationship13 (Curry et al., 2013), probably as
a consequence of our confidence that such actions will be reciprocated in
the future (Burton-Chellew and Dunbar, 2014). In summary, the different
layers seemingly correspond to different equilibria between the investment
needed to maintain them and the benefits derived from them.

1.1.5 Individual differences in network composition

It is important to note that the observed regularities are found on aver-
age; thus, there can be considerable variability between one person and
another. In the last few years, several studies have deepened in the charac-
terisation of such differences in network size and composition. Stiller and
Dunbar (2007) showed that individual differences in network size could be
potentially explained by specific mental skills such us ‘mentalising’ (the
ability to read and understand the mental states of other individuals) and
memory14. Furthermore, studies combining neuroimaging techniques and
cognitively demanding tasks were able to show that individual differences
in the volume of the orbitofrontal cortex (a specific region of the neocor-
tex) explained differences in mentalising skills, and those, in turn, were
able to explain differences in network size (Powell et al., 2012). The same
brain regions have been shown to play a crucial role in emotional process-
ing and various forms of empathy—see (Lewis et al., 2011) and references
therein for details. These findings provide fine-grained support to the SBH
by connecting neurological features, cognitive skills, and network size at
the individual’s level.

Numerous other factors influence the composition of personal networks.
Extraverts, for example, tend to have larger social networks than introverts.
Nonetheless, the emotional proximity of their relationships is lower on av-
erage (Pollet et al., 2011) in agreement with the existence of a fixed amount
of ‘social capital’ that extraverts would choose to spread more thinly—see
also (Miritello et al., 2013). Additionally, personal networks are typically

13There exists, however, a ‘kinship premium effect’. Within each layer, altruistic be-
haviour is always higher towards kin than towards non-kin.

14Funnily, chimpanzees can even outperform humans in some similar tasks: New Sci-
entist , “Chimps outperform humans at memory task, Youtube video, 0:52, published on
3 Dic. 2007, https://www.youtube.com/watch?v=nTgeLEWr614&feature=youtu.
be.

https://www.youtube.com/watch?v=nTgeLEWr614&feature=youtu.be
https://www.youtube.com/watch?v=nTgeLEWr614&feature=youtu.be
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homophilous for gender, ethnicity, age, religion, education, and social val-
ues (Dunbar, 2018). All these factors mould an individual’s social be-
haviour, which happens to be very stable. In this regard, Saramäki et al.
(2014) found that we humans have very robust communication patterns,
a sort of ‘signature’ that is distinctive to each of us and that remains un-
changed even though the people with whom we relate vary over time.

1.1.6 Discussion

In a nutshell, the big picture drawn by the SBH over the years is that
we humans typically deal with a set of about 150 relationships (friends
and family) which are organised in a series of inclusive layers of increas-
ing size but decreasing emotional intensity. Approximately, the sizes of
these inclusive layers follow a sequence with a fixed scaling ratio close to
three: (1.5),5,15,50, and 15015. These groups are known as Dunbar’s cir-
cles16 and reflect marked differences in trust, tendency towards altruistic
behaviour, time invested, and emotional closeness.

Such a widespread theory17 could not be exempt from some critical po-
sitions, and some authors keep defending the ecological hypothesis rather
than the social (DeCasien et al., 2017). The interested reader is referred
to (Dunbar and Shultz, 2017) for a review of the different ecological and
social explanations proposed to the date. Recently, Acedo-Carmona and
Gomila (2016) wrote an entire paper devoted to critically review Dun-
bar’s social brain hypothesis. Regarding the empirical evidence, Acedo-
Carmona and Gomila (2016) declare that: “much of the evidence amassed

15As already mentioned, the sequence can be extended (500,1500, · · · ) as long as the
relationships do not require active maintenance. For example, using surveys on a large
sample (+2000), Lubbers et al. (2019) found that Spaniards have an average of 536 ac-
quaintances.

16In fact, the view of personal networks as concentric circles around the ego has a
long tradition in the psychology literature, see for example (Kahn and Antonucci, 1980).
Interestingly, a similar view was employed by the very founder of social network analysis
(in the 1930s) Jacob Moreno in what he calls social atom (Moreno, 1947).

17Its popularity has caused it to be often misused to refer various, often vague, ideas
and hypothesis (Dunbar and Shultz, 2017). It is therefore relatively easy to find ”straw
man arguments” trying to disprove it. For example: Brad McCarty, “Maintaining Re-
lationships: The Fallacy of Dunbars Number, FullContact, last accessed 13 December
2018, https://www.fullcontact.com/blog/maintaining-relationships/.

https://www.fullcontact.com/blog/maintaining-relationships/
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over the years is still valid, but some of the claims derived from it turn out
to be too simplistic”. In particular, they believe that the search for social
universals should focus on the motivation that leads us to form robust so-
cial bonds. Also, that “the pursuit of ‘magic numbers’ (5−15−50−150) in
effective social configurations overlooks the vast diversity of human social
life” (Acedo-Carmona and Gomila, 2016). In our opinion, based on the lit-
erature, the SBH does deal with these issues, but, even more importantly,
the accumulated empirical evidence (which is not called into question but
disregarded as ‘magic numbers’) is independent of possible explanations
for it.

The SBH is an active research area with relevant open questions. De-
spite the overwhelming empirical evidence, the origin of a layered discreti-
sation with constant scaling is unknown. Zhou et al. (2005) already noted
this: “the fundamental question, then, is to determine the origin of this dis-
crete hierarchy. At present, there is no obvious reason why a ratio of three
should be important.” This assertion was still valid at the time we began
our work.

Another open question is to determine the relationship between the
composition of personal networks and the different configurations of so-
cial collectives—an aspect that is also highlighted by Acedo-Carmona and
Gomila (2016). In this sense, our work intends to lay the foundations of
a theory that describes social groups as ensembles of personal networks
which are compatible with the observations of the SBH. In other words,
we will propose how social collectives can be formed out of a well-defined
social atom. Before that, it is imperative that we review some of the theo-
ries that have been introduced in the literature to explain the formation of
social networks.

1.2 Models of social networks: a brief review

The analysis and modelling of social networks is a vast field with a marked
interdisciplinary character. Disciplines such as Statistical Physics and Com-
puter Science (Toivonen et al., 2009), Economics (Goyal, 2012; Vega-
Redondo, 2007; Jackson, 2010), Statistics (Snijders, 2011), or Sociology
(Wasserman and Faust, 1994; Carrington et al., 2005) have devoted quite
some effort to create plausible models of social networks. However, it is
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beyond the scope of this thesis to do a comprehensive review of such a vast
stream of literature. We rather focus on a more humble goal, namely to
offer a global perspective of the different lines of research and techniques
used in literature, with a special focus on the literature of complex systems,
sociology, and the models that take into account the premises of the SBH.

1.2.1 Social networks as complex systems

From the complex systems (physics-oriented) literature, there is a some-
what recent review on social networks by Toivonen et al. (2009). In their
paper, Toivonen et al. (2009) review, classify, and compare a total of nine
different network models, and organise them in two principal categories:
“network evolution models” (NEMs) and “nodal attribute models” (NAMs).
The defining feature of NEMs is that the addition or removal of new links
is based on structural (local) properties of the network. On the contrary,
the link formation in NAMs depends exclusively on attributes of the nodes
and not on the network structure—they are, to some extent, based on the
concept of homophily (McPherson et al., 2001).

Besides the types of models mentioned above, the field of complex
systems has produced other kinds of models, for example, what we shall
call structural network models (SNMs) (Watts et al., 2002; Ravasz and
Barabási, 2003; Jo et al., 2018). Their defining feature is (broadly speak-
ing) that they focus on structural properties of the networks (such as the
existence of communities) instead of the micro-mechanisms behind those
properties. A general feature of the models reviewed in (Toivonen et al.,
2009) is their emphasis on how local mechanisms of network formation
can lead to producing a global, realistic structure.

Toivonen et al. (2009) point to two main mechanisms behind the NEMs
they analyse: triadic closure and global attachment. The former consists of
any local rule that increases the probability for two actors to be connected
if they have friends in common. This mechanism is implemented to repro-
duce the high transitivity (clustering) observed in real social networks—
that is, if i is connected to j, and j is connected to k, then it is very likely
that i is also connected to k. Indeed, many other models introduce to some
extent a similar rule in a more direct (Murase et al., 2014; Klimek et al.,
2016) or indirect manner (Ilany and Akcay, 2016; Antonioni et al., 2014).
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In the case of the NAMs, however, the transitivity is usually implicit, ei-
ther because homophily is itself a transitive property (as in social/physical
distance models (Boguná et al., 2004; Murase et al., 2014)) or because it
is introduced otherwise in the probability of two actors getting acquainted
(Jin et al., 2001).

The global attachment rule is introduced to reproduce the “small world”
property of social networks (Watts and Strogatz, 1998), namely that the
distance between any two actors in a social network is surprisingly small
(Milgram, 1967)—the so-called six degrees of separation. The way of im-
plementing it may differ from one model to another, but it mostly consists
of including a non-zero probability for random connections or rewirings
(Klimek et al., 2016; Murase et al., 2014).

In dynamical models, links are constantly being added to the networks,
and a third mechanism is needed to avoid the formation of complete graphs.
According to Toivonen et al. (2009), there are two main techniques to
prevent this from happening: link deletion and node deletion. The link
deletion mechanism implies that each link has a given probability of be-
ing deleted at each time step while introducing node deletion results in all
links of a node being deleted (for instance as if the node had dead (Ilany
and Akcay, 2016)).

As we have seen, mechanisms like triadic closure, homophily (or dis-
tance of any kind), global rewirings and node (or link) deletion could be
regarded as standard methods in the literature about social networks. How-
ever, some other interesting approaches have been proposed. That is the
case of (Ilany and Akcay, 2016), where the emergence of social structure
is explained through a process of social inheritance—although they focus
on the social networks of other animals, not humans. Their model assumes
simple neutral demography and focuses on the process of inheritance of
social connections from parents, that is, the likelihood of a newborn A
connecting with another individual B depends on the relationship between
A’s mother and B.

Another technique that is becoming popular in recent years is the use
of multiplex networks. For example, in (Murase et al., 2014) the society is
modelled as a multilayered structure, where the layers represent different
contexts and the probability of making a new connection (undirected and
weighted) is higher if two nodes are geographically close—so it is related



1.2 Models of social networks: a brief review 15

to models based on a (metric) distance, see also (Barthélemy, 2011; Sni-
jders, 2011). The overlapping structure of communities and the Grannovet-
erian (Granovetter, 1977) structure of social networks (i.e. communities of
nodes strongly interconnected that connect through weak links to the rest
of the network) are some of the features well replicated by their model. A
more recent example can be found in (Klimek et al., 2016). In that work,
society is understood as a dynamic, co-evolving18 multiplex network, and
the model is used to explore the community sizes distributions of different
layers. Both (Murase et al., 2014) and (Klimek et al., 2016) combine fea-
tures from NAMs and NEMs, including triadic closure, global attachment
and homophily.

Toivonen et al. (2009) included in their review two models from the
field of exponential random graphs (ERGMs) (Holland and Leinhardt, 1981)
which are defined by a probability distribution of graphs. Even though
these type of models may be considered to fall under the category of sta-
tistical models (Snijders, 2011), they are intimately related to (statistical)
physics. Indeed, they offer the best prediction of network properties sub-
ject to constraints (via the maximum entropy principle) as the Boltzmann
distribution does with macroscopic observables (such as pressure or tem-
perature) subject to restrictions (such as the conservation of the total en-
ergy in a closed system) (Park and Newman, 2004). Other than ERGMs,
the field of Statistics has produced a considerable amount of models and
techniques applied to social networks—see (Snijders, 2011) for a compre-
hensive review.

Another powerful stream of models of network formation comes from
the field of Economics (Goyal, 2012; Vega-Redondo, 2007; Jackson, 2010).
The distinctive feature of this approach is that the creation of links is based
on costs and benefits, and game-theoretic techniques are used. The focus
of these models is usually to study the efficiency, stability and equilibria
of networks conditioned to some strategic interaction, and tend to opt for
analytical methods. This tendency often leads to somewhat simple net-
work configurations (such as stars or complete graphs) not representative
of more general and complex social structures. For that reason, we shall
not discuss them in more detail. However, it is a very active field, and it

18This coevolution refers to coupled dynamics in both the intra-inter layer structure and
the internal states of the nodes
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is beyond discussion the importance of cost-benefit considerations in the
formation of real social networks—see also section 1.1.4.

1.2.2 Sociological models: Structural Balance Theory

Let us now turn our focus to Sociology and other related fields such as
Social Psychology and Anthropology. Indeed, ever since the seminal work
by psychiatrist Jacob Moreno (Moreno, 1934; Newman, 2018), these fields
have led the development of social networks models and their analysis
(Wasserman and Faust, 1994). Concretely, we will discuss one of the most
influential theories in the realm of network analysis: the Structural Bal-
ance Theory (SBT) (Heider, 1946; Cartwright and Harary, 1956), that as
we will see, is related to some of the result of this thesis.

The theory was first proposed by (Heider, 1946) and generalised, math-
ematically19, by Cartwright and Harary (1956). It relies on the existence
of two fundamental types of relations, positive and negative, that char-
acterise our relationships with other people—or with impersonal entities.
Importantly, for any of these positive/negative relations there exists an ex-
act opposite; examples are like/dislike, love/hate, and so forth. So, sticking
to Heider’s notation, we will refer to these relations as L (positive/like) and
∼ L (negative/dislike).

Heider (1946) analysed the consistency of the relation between two
people, P and O, and their relation with an entity (or another person), X.
Let us illustrate this with one example. Imagine that P and O have a good
relationship (L). However, while P really loves bullfighting (X), O is a
convinced activist for animal rights—hence, she hates (∼ L) bullfighting.
They had just never talked about it until one day the topic comes out in a
conversation. What happens then? In Heider’s view, there is no balance,
and this would create a sort of tension20 that would either change the rela-
tionship between P and O or their respective attitudes towards bullfighting.

19Let us notice that even though he was a psychologist, and not a mathematician, the
original paper by Heider (1946) was already written with a somewhat mathematical for-
mulation.

20This tension can be understood as a sort of cognitive dissonance (Festinger, 1957).
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In his own words: “If no balanced state exists, then forces21 towards this
state will arise” (Heider, 1946).

Cartwright and Harary (1956) used a graph-theoretical (network) ap-
proach to generalise Heider’s ideas to social (signed, directed) networks.
For the simplest case of a (undirected) triplet P-O-X (think now of X as an-
other person), the result is that it is balanced if and only if the product22 of
the signs of their (three) relations is positive. Notice that the triplet P-O-X
is a cycle of length three. To generalise Heider’s notion of balance to more
general graphs, they defined that a graph is balanced if (and only if) all
of its cycles are positive—semi cycles if the graph is directed. They also
proved some interesting theorems. For this thesis, the most relevant states
that a signed, undirected graph “is balanced if and only if its points can be
separated into two mutually exclusive subsets such that each positive line
joins two points of the same subset and each negative line joins points from
different subsets” (Cartwright and Harary, 1956). Therefore, it predicts an
entirely polarised social structure.

To review the consequences and further developments of the SBT could
very much be the topic of an entire thesis. The (somewhat strong) result
that networks should be polarised in two groups (Cartwright and Harary,
1956) in order to achieve balance was later on generalised via the concept
of clusterabilty (Wasserman and Faust, 1994), so that more than two groups
(with only positive relationships within) were permissible. Even the crit-
ical concept of transitivity originates in Heider’s theory (Wasserman and
Faust, 1994). However, the theory has received little empirical validation
(Feng et al., 2018). One important reason is that antipathetic relationships
have received much less attention than sympathetic ones, and are not yet
well understood (Card, 2010; Feng et al., 2018).

Nevertheless, the analysis of antipathetic relationships is nowadays re-
ceiving far more attention and, regarding the theory of social balance, we
can find very recent mixed shreds of evidence concerning its validity (Card,
2010; Huitsing et al., 2012; Feng et al., 2018; Kirkley et al., 2019). As

21It is worth noticing the use of the term force here—see also section 6.2.3
22With the usual algebraic rules: (+)(+) = (+), (−)(−) = (+), and (+)(−) = (+).
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a consequence, other theories such as the Status Theory (ST) (Leskovec
et al., 2010b) have been proposed23, yielding slightly different predictions.

1.2.3 Models connected to the SBH

Given the amount of empirical evidence supporting the SBH, there are rel-
atively few studies that take its ideas (somewhat) explicitly into account to
recreate the structure of social networks24. We have found only two mod-
els that include the idea of limited cognitive capacity. The first one is from
Jin et al. (2001). Their model relies on three basic principles that are easily
understood from a social point of view: “(1) meetings take place between
pairs of individuals at a rate that is high if a pair has one or more mutual
friends and low otherwise; (2) acquaintances between pairs of individuals
who rarely meet decay over time; (3) there is an upper limit on the number
of friendships an individual can maintain” (Jin et al., 2001). The first one is
a type of triadic closure, but the second and the third introduce interesting
features qualitatively shared with the SBH. The decay of friendships and
kin relationships over time has been, for example, experimentally studied
in (Roberts and Dunbar, 2011a) and the upper limit on the number of bonds
is nothing but a reflection of a limited cognitive capacity (Dunbar, 1993).

Another more recent model by Antonioni et al. (2014) considers that
actors have a limited amount of social energy that they can spend on main-
taining their social relationships, in clear consonance with the SBH. The
model also includes a geometric distance between actors and a mecha-
nism for triadic closure, called synergy, consisting of reducing the cost
of a link if the involved actors have common friends. In both references
(Jin et al., 2001; Antonioni et al., 2014) the models can reproduce high
clustering and community structure, and the intuitive ideas behind them
are especially suitable to our interests. However, none of them introduce
(or explore the emergence of) the hierarchical layered structure found in
empirical studies—see section 1.1.2.

23This theory also relies on the idea that networks of positive and negative relations are
highly interdependent, but it interprets positive (out) links as signalling lower status, and
negative (out) links as indicators of a higher (perceived) status.

24We refer here to models that aim to recreate social structure. Notice that concepts
related to the SBH have been used with other modelling purposes in the literature, see for
example (Gonçalves et al., 2011; Omodei et al., 2017).
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From the perspective of what we called SNMs (structural network mod-
els), one recent reference is worth noticing. Harré and Prokopenko (2016)
introduced a model “able to combine a specific socio-cognitive mechanism
with the discrete scale invariance observed in ethnographic studies” (Harré
and Prokopenko, 2016)—with explicit mention to the SBH. In our opinion,
however, their proposal is a mathematically sound description of a hierar-
chically layered social network but does not provide further insights into
the causes or consequences of that structure. We recall that once SNMs
assume as facts some observed properties of the networks, its primary util-
ity should be to replicate realistic social networks and to provide tools for
further applications. Nevertheless, their work is the only model we have
found that focuses explicitly on the premises of the SBH to model a global
social structure.

1.2.4 Discussion

Our goal in this section was to set up a solid background before designing
our models. The literature review, although not comprehensive, provided
us with at least a hint of the vast amount of publications relating to social
networks and the main ideas behind them. As we have seen, the mod-
els from the physics-oriented fields seem to be the ones that stress more
the importance of finding plausible mechanisms. However, they typically
introduce ad-hoc (plausible, nonetheless) mechanisms with the specific in-
tention of recreating a particular property such as community structure,
high clustering, degree correlations, small world, and so forth25.

We believe that a more consistent approach, based on first principles,
is needed, allowing us to advance our understanding of social structures
cumulatively—so that the different laws and mechanisms that are found
have to be preserved in future models, just as they are in physics. Most im-
portantly, such models must yield testable predictions (Bernard and Kill-
worth, 1979). In our opinion, the SBH is an excellent starting point as it
provides a solid evolutionary and experimental foundation for how we hu-
mans manage our social relationships. Following this guideline, another

25Surprisingly, none of the models we have reviewed aims to reproduce the surpris-
ingly low levels of reciprocity typically found in experimental studies. See for example
(Almaatouq et al., 2016; Huitsing et al., 2012) and Chapter 4.
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line of research that we consider particularly inspiring is the SBT, since
it is based on aspects inherent to human psychology, and therefore hardly
mutable. Interestingly, it is unclear how both theories relate to each other.
Even though the SBH has its roots in a machiavellian view of human re-
lationships, little is known about the organisation of negative personal net-
works, and whether or not they follow a similar pattern of organisation has
not been determined.

As we have seen, the more realistic a social network model, the more
complicated it becomes. Hence, an ideal model of social networks would
likely consist of a directed, weighted, multilayer, time-dependent graph,
with several mechanisms regarding link formation and deletion. Although
possible, we must not forget that models are useful as long as they sim-
plify reality while capturing some of its essential features. Perhaps, the
network approach to the social structure must be superseded by another
type of models. We intend to establish the basis that permits us to model
human groupings as collectivities of individuals (atoms) who are subject
to follow precise rules, based on first principles inherited from the evolu-
tionary nature of our brains (and our sociality), and psychological forces.
Let us now describe, more precisely, what the goals of this thesis are.

1.3 Summary and objectives

The SBH states that our brains became large as a result of the need to pro-
cess social information (Dunbar, 1998). However, their size and capacity
are finite, which imposes a limit on the number of relationships we can
handle (Dunbar, 1993)—150, Dunbar’s number. Connected to this theory,
a gargantuan amount of empirical evidence shows that, not only do we have
an upper limit to the number of relationships we can manage, but also that
these relationships are further organised, according to their intensity, in a
series of hierarchically inclusive layers with a characteristic scaling ratio
close to three (Hill and Dunbar, 2003; Roberts et al., 2009; Haerter et al.,
2012; Gonçalves et al., 2011; Dunbar, 2014; Sutcliffe et al., 2012; Dun-
bar, 2014; Hill and Dunbar, 2003; Dunbar et al., 2015; Zhou et al., 2005).
Notwithstanding the empirical evidence, neither the hierarchical organisa-
tion nor its connection with cognitive constraints has been explained so
far.
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In Chapter 2 we will present a mathematical model that solves this
puzzle. The model is based on the facts that we have a limited cognitive
capacity, and that maintaining relationships is costly. Even though this
model is presented taking into account the discrete nature of the layers in
which we typically organise relationships, in Chapter 3 we will show that
it can be naturally extended to a continuum of layers, revealing that the
patterns behind the SBH are indeed more general.

To advance in our understanding of the structure of human collectives,
we must then incorporate these ideas in an adequate socio-centric model.
To that end, we rely on the ideas from the SBT (Heider, 1946; Cartwright
and Harary, 1956), precisely because psychological motivations also un-
derpin them. This is crucial to our interests, since, ultimately, we intend to
be able to explain human collectives (or at least their main characteristics)
from immutable factors that define our social behaviour—thus the concept
of the social atom. Nevertheless, the networks (both personal and socio-
centric) of negative relationships are yet poorly understood, and we faced
the need to undertake our own experimental research.

In Chapters 4 and 5 we will present results from these experiments,
in which we collected data on positive and negative relationships within a
school. In Chapter 4 we will analyse the main features of these networks,
and use machine learning techniques to explore the interplay between the
positive and negative ones. Chapter 5, on the other hand, will focus on the
structure of negative personal networks and its connection with the SBH.

Finally, Chapter 6 will serve as a summary of our results and will intro-
duce some of the lines of research that open as a consequence of this work.
Importantly, we will outline a model that collects the insights of this thesis
and depicts social collectives as ensembles of personal networks, providing
a proof-of-concept of the ideas here presented.





2
The social atom

“The bonds between ourselves and another person exists only in
our minds. Memory as it grows fainter loosens them, and
notwithstanding the illusion by which we want to be duped and
which, out of love, friendship, politeness, deference, duty, we
dupe other people, we exist alone. Man is the creature who
cannot escape from himself, who knows other people only in
himself, and when he asserts the contrary, he is lying.”

Marcel Proust
In Search of Lost Time Vol. VI: The Sweet Cheat Gone (1925)

In this chapter we develop a mathematical model of the building blocks
of social systems (social atoms) that should serve to connect the individ-
ual and collective perspectives of human societies. Indeed, whatever the
(global) social structure is, it must comply with the (local) organisation of
the ego-networks—just as any physical object must be consistent with its
atomic composition. As we will show below, our model not only accounts
for the layered structure described in section 1.1, but also predicts the ex-
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istence of a hitherto unnoticed, different regime. Indeed, we will see that
depending on the relation between cost and available relationships, an in-
verted structure may arise in which layers with larger emotional content
are also larger in size.

2.1 Model description

In a population of N individuals, relationships (links) can be established
out of a set of r different categories (that we will later refer to as “layers”)
according to the strength of the links. This is the problem that we want to
model, but in its bare bones, this amounts to distributing a certain number
of balls (links) in urns (layers)—in effect, a multinomial distribution. Of
itself, this distribution yields no structure whatsoever, but it is a reasonable
prior to assume as the default. In this setting, the probability that there are
`k balls in urn k ∈ {1,2, . . . ,r} is

P0(`̀̀|N) =
(N −1)!(r + 1)−N+1

`1!`2! · · ·`r!(N −1− `1− `2− · · ·− `r)!
, (2.1)

where `̀̀ = (`1, `2, . . . , `r).
Let us now assume that there is a cost sk associated to each ball placed

in urn k. Urns are initially indistinguishable, so without loss of generality
we can sort them by decreasing costs, smax > s2 > · · · > smin. We now look
for a probability distribution that is constrained to have a fixed average
number of balls L and a fixed average amount of resources S to afford its
costs, that is,

r∑
k=1

E(`k) =L,

r∑
k=1

skE(`k) = S. (2.2)

2.1.1 Maximum entropy distribution

In order to add this information to our prior (Eq. 2.1), the procedure to
follow is the maximum entropy principle (Jaynes, 2003; Sivia and Skilling,
2006), as it is the only way to guarantee a posterior distribution that is
compatible with the prior, compatible with the additional information, and
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unbiased (Jaynes, 2003; Caticha and Giffin, 2006). In other words, the
posterior P(`̀̀|S,L,N) is obtained through maximisation of

S [P] =
∑
`̀̀

− log
[
P(`̀̀|S,L,N)

P0(`̀̀|N)

]
− τ̂− γ̂

r∑
k=1

`k − µ̂

r∑
k=1

sk`k

P(`̀̀|S,L,N),

(2.3)
where τ̂, γ̂ and µ̂ are Lagrange multipliers associated, respectively,
to the normalisation of P(`̀̀|S,L,N) and to the two constraints (2.2).
The Lagrange multipliers must be determined a posteriori by enforcing
P(`̀̀|S,L,N) to satisfy those same constraints. The posterior distribution
obtained through this method is

P(`̀̀|S,L,N) = Z(γ̂, µ̂,N)−1
(
N −1
`̀̀

)
exp

 r∑
k=1

(−γ̂− µ̂sk)`k

 , (2.4)

Z(γ̂, µ̂,N) =
∑
`̀̀

(
N −1
`̀̀

)
exp

 r∑
k=1

(−γ̂− µ̂sk)`k

 . (2.5)

In terms of the ‘partition function’ Z(γ̂, µ̂,N), the two constraints (2.2)
become

−
∂

∂γ̂
logZ(γ̂, µ̂,N) =L, −

∂

∂µ̂
logZ(γ̂, µ̂,N) = S. (2.6)

Besides, if we extend this partition function with new variables βββ =

(β1, . . . ,βr) as

Z(γ̂, µ̂,N,βββ) =
∑
`̀̀

(
N −1
`̀̀

)
exp

 r∑
k=1

(−γ̂− µ̂sk −βk)`k

 , (2.7)

we can obtain E(`k) through

E(`k) = −
∂

∂βk
logZ(γ̂, µ̂,N,βββ)

∣∣∣∣∣
βββ=0

. (2.8)

These expressions to compute L, S, and E(`k) are particularly simple
once we realise that

Z(γ̂, µ̂,N,βββ) =
∑
`̀̀

(
N −1
`̀̀

) r∏
k=1

(
e−γ̂−µ̂sk−βk

)`k
=

1 +

r∑
k=1

e−γ̂−µ̂sk−βk

N−1

,

(2.9)
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for then

L =
(N −1)

∑
k e−γ̂−µ̂sk

1 +
∑

k e−γ̂−µ̂sk
, S =

(N −1)
∑

k smine−γ̂−µ̂sk

1 +
∑

k e−γ̂−µ̂sk
, (2.10)

and

E(`k) =
(N −1)e−γ̂−µ̂sk

1 +
∑

k e−γ̂−µ̂sk
. (2.11)

Dividing S and E(`k) by L we obtain

S

L
=

∑
k smine−µ̂sk∑

k e−µ̂sk
,

E(`k)
L

=
e−µ̂sk∑
k e−µ̂sk

. (2.12)

The first of these two equations allows us to determine µ̂ as a function of
S/L, and then we can use this value to obtain γ̂ from the first of Eqs. (2.10)
as

e−γ̂ =
L

(N −1−L)
∑

k e−µ̂sk
. (2.13)

As a matter of fact, we can use identity (2.13) to simplify the posterior
distribution (2.4). To begin with,

Z(γ̂, µ̂,N) =

1 + e−γ̂
r∑

k=1

e−µ̂sk

N−1

=

(
1 +

L

N −1−L

)N−1

=

(
1−

L

N −1

)−N+1

.

(2.14)

Thus, denoting L ≡
∑

k `k,

P(`̀̀|S,L,N) =

(
1−

L

N −1

)N−1 (
N −1
`̀̀

)
e−γ̂Le−µ̂

∑
k sk`k

=

(
1−

L

N −1

)N−1−L (
N −1
`̀̀

)(
L

N −1

)L e−µ̂
∑

k sk`k(∑
k e−µ̂sk

)L ,

(2.15)

and using (
N −1
`̀̀

)
=

(
N −1

L

)(
L
`̀̀

)
. (2.16)
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we arrive at the desired, simplified posterior distribution

P(`̀̀|S,L,N) = B(L,L/N,N)
(
L
`̀̀

)
e−µ̂

∑
k sk`k(∑

k e−µ̂sk
)L , (2.17)

with B(x, p,n) =
(
n
x

)
px(1− p)n−x the binomial distribution, and where the

constraint L =
∑

k `k 6 N −1 is to be understood in P(`̀̀|S,L,N).
Lastly, let us remark that this result is similar if we consider small

populations. If N is so small that everyone knows everybody else, then
L→ N −1. In this limit B(L,L/(N −1),N −1)→ δL,N−1, therefore

lim
L→N−1

P(`̀̀|S,L,N) =

(
N −1
`̀̀

)
e−µ̂

∑
k sk`k(∑

k e−µ̂sk
)N−1 ,

r∑
k=1

`k = N −1. (2.18)

2.1.2 Application to ego-networks

Notice that the model presented is fully general and applies to any situation
in which a certain number of items of any sort have to be assigned to some
categories with different costs —in fact, equation 2.17 describes a distri-
bution that measures the likelihood of different allocations of balls to urns
with different costs. However, based on what we described in section 1.1,
its connection with the organisation of links within ego-networks is rather
natural.

Although relationships change over time (they strengthen or weaken,
new ones are created, and some old ones fade (Saramäki et al., 2014)),
each individual handles a certain average number of links L at any one
time (Sutcliffe et al., 2012). These relationships are further organised into
different layers (urns, `k) according to the emotional strength (or close-
ness) of the links (see for example (Dunbar, 2018; Kawachi and Berkman,
2001) and references therein). Additionally, studies of both offline and
online social networks indicate that time invested in interacting with in-
dividual alters seems to determine the emotional strength of the relation-
ship (the higher the investment, the closer the relationship) (Oswald et al.,
2004; Sutcliffe et al., 2012), and is thus largely responsible for their lay-
ered structure (Sutcliffe et al., 2012; Hill and Dunbar, 2003; Dunbar et al.,
2015; Mac Carron et al., 2016; Roberts and Dunbar, 2015; Dunbar, 2018;
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Hall, 2018). These investments reflect the costs, sk, that individuals have
to make to create functional relationships. If we further assume a limited
(cognitive) capacity S of individuals to handle relationships (Hill and Dun-
bar, 2003; Powell et al., 2012), we have a problem to which the previous
model applies. In what follows, we will analyse which kind of testable pre-
dictions can be inferred from the organisation of links in an ego-network
implied by the model.

2.1.3 Results

We explore the emergence of structure using the equation (2.11) for the
expected number of links in each layer. The ratio of this quantity between
consecutive layers is

E(`k+1)
E(`k)

= eµ̂|∆sk |, (2.19)

where |∆sk| = |sk+1− sk| > 0 is the cost difference between them. Equation
2.19 identifies two distinct regimes according to whether µ̂ > 0 or µ̂ < 0:

• If µ̂ > 0, then E(`k+1) > E(`k), and the most expensive layers will
be less populated than the less expensive ones. We will call this the
standard regime.

• If µ̂ < 0, then E(`k+1) < E(`k), and the most expensive layer will be
the most populated one. We will call this the inverse regime.

Let us now consider the special case in which the cost decreases lin-
early with the layer, sk = smax − (smax − smin)(k − 1)/(r − 1), with smax >
smin > 0. In that case

Ω(µ̂) =

r∑
k=1

e−µ̂sk = e−µ̂smax

r−1∑
k=0

(
eµ̂(smax−smin)/(r−1)

)k
= (2.20)

=e−µ̂smax
eµ̂(smax−smin)r/(r−1)−1
eµ̂(smax−smin)/(r−1)−1

, (2.21)

and

σ ≡
S

L
= −

∂

∂µ̂
logΩ(µ̂) = smax +

smax− smin

r−1

(
eµ

eµ−1
−

rerµ

erµ−1

)
, (2.22)
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where we define µ ≡ µ̂(smax− smin)/(r−1) for convenience1. Then

smax−σ

smax− smin
= f (µ) ≡ eµ

(r−1)erµ− re(r−1)µ+ 1
(r−1)(erµ−1)(eµ−1)

. (2.23)

Function f (µ) monotonically increases from its smallest value lim
µ→−∞

f (µ) =

0 (corresponding to σ = smax) up to lim
µ→∞

f (µ) = 1 (corresponding to σ =

smin). As smin < σ < smax, µ can take any value −∞ < µ <∞. Since

lim
µ→0

f (µ) =
1
2
, (2.24)

whenever smin < σ < (smax + smin)/2 we have that µ > 0. On the other hand,
if (smax + smin)/2 < σ < smax then we have that µ < 0 (see Fig. 2.1).

Hence, which regime an individual belongs to depends on σ (the ratio
S/L) and this in turn depends on the total number of social relationships
that an individual has. If L is large this structure will be standard. This
is what has been observed in most studies analysing the organisation of
ego-networks (see section 1.1), and it is what seems reasonable to expect:
the less costly a relationship is the more of them you can have. If, on the
contrary, L is small, the structure is inverted. In other words, the more
time or cognitive capacity that an individual has, the more he/she is able to
devote to strengthening all his/her relationships.

Following the customary use in the anthropological literature, we de-
fine circle k as including all links from layers 1,2, . . . ,k. Thus, we use the
term circle as a proxy for proximity, so that egos have closer (more costly)
relationships with alters in the inner circles than those in the outer circles.
The expected fraction of links in layer k is given by

εk ≡
E(`k)

L
=

ekµ− e(k−1)µ

erµ−1
, (2.25)

so the fraction of links in circle k is then

χk =

k∑
j=1

εk =
1

erµ−1

k∑
j=1

(e jµ− e( j−1)µ) =
ekµ−1
erµ−1

. (2.26)

In the standard regime (µ > 0) χk ≈ e(k−r)µ, and we recover the constant
1Notice that the choice |∆sk | = 1 implies that µ̂ = µ, so in (Tamarit et al., 2018) we used

both interchangeably.
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Figure 2.1: The two regimes as a function of the mean cognitive cost
allocatable per link. a, Dependency of the parameter µ with the ratio S/L.
The blue line represents the typical dependency of the parameter with the
mean cognitive cost S/L that an individual can spend in maintaining a link. As
a reference, it has been computed with (2.23) for r = 5 circles and ∆sk = 1, but
it is representative of the expected behaviour. Given a fixed cognitive capacity
S, increasing L implies moving to the left in the graph. The particular value of
S/L determines the value of µ. Dotted lines represent example cases (fixed
S); in green, an individual with “few” alters (inverse regime; µ = −0.92), in
red, the limit case (change of regime; µ = 0), and, in black, an individual with
“many” alters (standard regime; µ = 1.10). b, Expected regimes as a function
of µ, presented through the fraction of links in every circle. The colors follow
the specifications given in (a). That is, the black line represents the standard
regime, the red the limit case, and the green one the inverse regime. Solid
dots represent the expected fraction of links in each circle for the different
examples.

scaling ratio χk+1/χk ≈ eµ between consecutive circles that has been ex-
tensively reported in the literature (Hill and Dunbar, 2003; Dunbar et al.,
2015). However, in the inverse regime (µ < 0) χk quickly approaches 1 as k
increases, implying that most links are within the innermost circle. There-
fore, a second, as yet unnoticed, regime is predicted in which the structure
is reversed—the more demanding the layers, the more populated they are.

This regime is expected to arise when the ratio S/L is particularly
large. That would be the case, for instance, of individuals living in small
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populations or within limited social environments. Assuming that the ca-
pacity of those individuals is similar to the capacity of individuals else-
where, the reduced number of possible relationships should be translated
into an inversion of their circles, making apparent the inverse regime
predicted by the model. This phenomenon can in fact be observed in
data collected during an oceanic scientific expedition (Bernard and Kill-
worth, 1973) and, perhaps, within a community of immigrants (Granovet-
ter, 1977)—but it seems that neither of these studies were aware of this.

2.2 Empirical validation

We test our model (see Fig. 2.2 for an schematic representation) on five
communities. One is a community of college students (where we expect
the standard regime to predominate) and the other four are communities of
immigrants (where we expect the inverse regime to be more common be-
cause they are likely to lack opportunities to make friendships outside their
respective communities). Note that we use the term community here in a
broad sense, as a group of people living in the same place or having a par-
ticular characteristic in common. Importantly, our model is defined at the
individual level, and the background information (such as the community
an individual belongs to) is merely used to conjecture what regime should
prevail in each case. Before we analyse any data, let us describe how the
model is fitted2.

2.2.1 Bayesian estimate of the parameter

The data we will analyse come from surveys in which the participants rate
their relationships on a Likert scale with different levels. We use these
answers as a proxy for the intensities of the links and build a vector (`̀̀ =

(`1, `2, . . . , `r)) for each participant accordingly —`1 being the number of
strongest relationships and `r the number of weakest ones. The likelihood

2All numerical analysis are carried out in Python with the packages
scipy.optimize and scipy.integrate (see the documentation for de-
tails). The code and the data used in the paper are available at https:
//github.com/1gnaci0/Cognitive

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.fsolve.html
https://github.com/1gnaci0/Cognitive
https://github.com/1gnaci0/Cognitive
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linear decrease in cost
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circle 1
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STANDARDINVERSED

maximum entropy

FRACTION OF LINKS IN CIRCLE kC

PRIORA

Figure 2.2: Schematic representation of the model. A, There are r social
layers and individuals distribute their links among them. Without further as-
sumptions, and given that there are N individuals in the population, the prior
distribution of links in layers (given by the vector `̀̀ = (`1, . . . , `r)) is a random
choice. B, Maintaining a link in a layer k has a cost sk. This cost limits the num-
ber of relationships that can be formed. Assuming that an individual maintains
on average L links incurring an average cost S, we can use the maximum en-
tropy principle to incorporate that information into a posterior distribution. The
parameter µ is a function of S/L. C, We consider the special case in which the
cost decreases linearly with the layer. This simplification allows us to find an
exact expression for the fraction of links in a given circle k, with a single param-
eter (µ). D, Depending on the value of the parameter µ, two distinct regimes
arise: standard and inverse. This constitutes a prediction of our model.
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for `̀̀ (hence also for L =
∑

k `k) is given by

P(`̀̀|L,µ,N) = B(L,L/(N −1),N −1)
(

eµ−1
eµr −1

)L (
L
`̀̀

)
exp

µ r−1∑
k=0

k`k+1

 .
(2.27)

Our goal is to determine P(L,µ|`̀̀ ,N) using Bayesian inference. To this aim
we choose a neutral uniform prior for the parameters µ and L. Thus,

P(L,µ|`̀̀ ,N) =
N(

L
`̀̀

)
Ξ(`̀̀)

P(`̀̀|L,µ,N), (2.28)

with

Ξ(`̀̀) =

(
L
`̀̀

)−1 ∫ N−1

0
dL

∫ ∞

−∞

dµP(`̀̀|L,µ,N). (2.29)

The factor N in the numerator of (2.28) arises from∫ N−1

0
B(L,L/(N −1),N −1)dL =

1
N
. (2.30)

Now, if we denote

Ft(R) ≡
∫ t

0

(
1− e−µ

1− e−µr

)L

e−µR dµ, (2.31)

then

Ξ(`̀̀) =

∫ ∞

−∞

(
eµ−1
eµr −1

)L

eµL1 dµ

=

∫ ∞

0

(
eµ−1
eµr −1

)L

eµL1 dµ+

∫ ∞

0

(
1− e−µ

1− e−µr

)L

e−µL1 dµ

= F∞(L2) + F∞(L1),

(2.32)

where

L1 ≡

r−1∑
k=0

k`k+1, L2 ≡ L(r−1)−L1 =

r−1∑
k=0

k`r−k. (2.33)
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Summarising, P(L,µ|`̀̀ ,N) = P(L|`̀̀ ,N)P(µ|`̀̀), where

P(L|`̀̀ ,N) = NB(L,L/(N −1),N −1), (2.34)

P(µ|`̀̀) = Ξ(`̀̀)−1
(

eµ−1
eµr −1

)L

eµL1 . (2.35)

The maximum likelihood estimate for L is obviously L = L. That for
µ can be obtained differentiating

log P(µ|`) = µL1 + L log(eµ−1)−L log(eµr −1)− logΞ(`̀̀), (2.36)

which leads to

L1

L
=

r−1∑
k=1

k
`k+1

L
=

eµ

eµ−1
−

rerµ

erµ−1
= (r−1) f (eµ). (2.37)

This equation is identical to (2.23) if we use `̀̀ as estimates for E(`̀̀). For the
results presented in this chapter, we estimate µ by solving equation 2.37 —
we use the function fsolve (Python) with tolerance 10−6 for the relative
error between two consecutive iterates.

Finally, the 1−2δ confidence interval for µ, given `̀̀, is obtained through
the cumulative distribution

G(t|`̀̀) =

∫ t

−∞

P(µ|`̀̀)dµ. (2.38)

The extremes of the confidence interval [t1, t2] are obtained by solving
G(t1|`̀̀) = δ, G(t2|`̀̀) = 1−δ. Notice that G(t|`̀̀) can be obtained as

G(t|`̀̀) =


F∞(L1)−F−t(L1)
F∞(L1) + F∞(L2)

, t < 0,

F∞(L1) + Ft(L2)
F∞(L1) + F∞(L2)

, t > 0.
(2.39)

The results presented in this chapter consider δ = 0.025 (95% confi-
dence interval). To compute these integrals for finite values of t we use
the function quad (Python). For t→∞ we evaluate them using a Gauss-
Laguerre quadrature with 150 points. Overflows in (2.31) due to the ex-
ponentials are avoided by evaluating the logarithm of the integrand, and
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the singularity at µ = 0 is avoided by Taylor expanding e−µr and e−µ up to
third order. Likewise, the singularity at µ = 0 of (2.26) is avoided by us-
ing the Taylor expansion χk ≈ k/r + (k/2r)(eµ−1)(k− r) for |eµ−1| ≤ 10−6.
The extremes of the confidence interval [t1, t2] are then obtained by solving
G(t1|`̀̀) = δ and G(t2|`̀̀) = 1− δ —we use again the function fsolve with
tolerance 10−6.

2.2.2 Standard regime

We begin analysing data from a group of students from a major Middle
Eastern university (Almaatouq et al., 2016). In this survey, 84 students
(60% female and 40% male) volunteered to participate. Each participant
was presented with a list of the other 83 participants, and was asked about
his/her relationship with each one of them. The question we are interested
in was stated as follows: “How close are you to this person?” And the
options were: “0- I do not know this person”; “1- I recognize this per-
son but we never talked”; “2- Acquaintance (we talk or hang out some-
times)”; “3- Friend”; “4- Close Friend”; “5- One of my best friends”. For
each participant we store the number of answers of each type in an array
(`̀̀ = (`1, `2, . . . , `6)), so that `6−k is the number of type k answers. These
numbers are our representation of the layers. For the analysis we present
here we excluded the cases scored with either 0 (no relation whatsoever) or
1 3. The latter are excluded for two reasons: (a) recognising someone but
having never talked with them hardly counts as a meaningful relationship;
(b) there surely are other people outside this sample that the surveyed sub-
jects recognise but never talked to, but are not part of the survey4 (limited
to the 84 students).

The results are summarised in Fig. 2.3. Most individuals (∼ 98%) have
a value of µ > 0, meaning that their circles show the standard structure
(Fig. 2.3b), as expected. These values of µ (Fig. 2.3a) are grouped around
a central value µ = 0.978, corresponding to a scaling ratio of x ≡ eµ = 2.66

3Also, the model presents singularities when all the relationships happen to be in either
the first layer (then f (µ) = 0, which holds for µ→ −∞) or the last layer (then f (µ) = 1,
which holds for µ→ +∞). The data from this survey includes one individual (id 80) with
this sort of structure, so we excluded this datum from our analysis.

4For completeness, in Appendix A.2 we show a complete set of figures considering
also these answers. The results are similar.
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Figure 2.3: Summary of the results for the community of students. a,
Distribution of the parameter estimates for the community of students (n = 83).
The black, dashed line indicates the typically observed scaling ratio eµ = 3
(µ = 1.099). The red, dashed line marks the change of regime µ = 0. In
the analysis of the community of students we did not take into account the
scores 0 and 1. We also excluded one individual who had no alters in the
considered layers (see section 2.2.2). b, Representative fitting for an individ-
ual exhibiting the standard regime, with layers `̀̀ = (2,3,10,21) and estimated
parameter µ = 0.846. Solid dots represent experimental data, blue dashed
lines represent the graph of equation (2.26) with the corresponding estimated
parameter, and shaded regions show the 95% confidence interval for that es-
timate (see section 2.2.1). c, Representative fitting for an individual exhibit-
ing the inverse regime, with layers `̀̀ = (26,15,11,5) and estimated parameter
µ = −0.503. Solid dots, blue dashed lines, and shaded regions have the same
interpretation as in b. A comprehensive set of figures, including fittings for
every subject, is available in Appendix A.2.

(3.13 if we average the x’s instead), in agreement with previous studies
(Hill and Dunbar, 2003; Dunbar et al., 2015; Zhou et al., 2005; Mac Carron
et al., 2016). However, the data also allow us to detect a small proportion
(∼ 2%) of individuals whose networks lie within the inverse regime (Fig.
2.3c).
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2.2.3 Inverse regime

In order to elicit the inverse regime we focus on four different communi-
ties of immigrants.The first derives from a sociological study conducted in
2008 in Roses (Mestres et al., 2012), a small town of about 20 000 inhab-
itants in Girona (Catalonia, Spain). This study sampled (n = 25) personal
networks within a community of approximately 80 Bulgarian immigrants.
The remaining three derive from a different study carried out in Barcelona
(Catalonia, Spain) (Molina et al., 2015; Molina and Pelissier, 2010). In
this case, the focal groups were communities of Chinese (sampled n = 21),
Sikh (n = 24), and Filipino immigrants (n = 25), each numbering some
thousands of individuals. As we shall see below, even though the total size
of these communities is much larger than in the case of the Bulgarians,
their idiosyncrasy and the way they are formed strongly endorse the idea
that their individuals also count on limited options to create relationships.

The data were collected in a similar way between November 2008 and
April 2009 in all four immigrant studies, using the open source software
EgoNet5. In the case of the Bulgarians, the following name generator was
used (Mestres et al., 2012): “Tell us about 30 people who you know on
a first name basis, with whom you have had contact in at least the last
two years and who you could contact again if necessary. It is important
that all categories of contacts (family, friends, workmates [. . . ]) be rep-
resented”. For the remaining three communities, the name generator was
(Molina et al., 2015; Molina and Pelissier, 2010): “Tell us 30 people you
know by name, and vice versa. It can be everyone. Try to mention peo-
ple important for you, but also other people not so close but whom you
meet frequently. Try to use pseudonyms, but be sure you can recognize
them later.” In both cases each participant rated the perceived closeness
of their relationship with each alter. The options were: “1- Not close at
all”; “2- Not very close”; “3- Quite close”; “4- Close”; “5- Very close”.
With this information we create an array as before. This kind of generators
tends to elicit strong links at the beginning, but the list is long enough to
gather information from other types of relationships, including weak links

5“EgoNet”, Sourceforge, last accessed 21 December 2018 https://sourceforge.
net/projects/egonet/

https://sourceforge.net/projects/egonet/
https://sourceforge.net/projects/egonet/
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(Molina and Pelissier, 2010). Thus, this methodology would be able to
capture either the standard or the inverse regimes.

Although there are differences among the sampled groups, all of them
belong to well differentiated communities within their respective social en-
vironments, which tend to use and preserve their native languages and tra-
ditions, and form a support network for their members. Indeed, one of
the main mechanisms for the formation of these communities is that the
individuals already settled in the hosting location serve as links for those
yet to come. This process facilitates the integration of the newcomers in
the host country in terms of professional and housing opportunities, among
others (see (Mestres et al., 2012; Molina et al., 2015; Molina and Pelissier,
2010)). All these facts suggest that these communities form independent,
smallscale social environments within their places of residence—hence
perfect candidates for the context in which an inverse regime might hold.

Figure 2.4 summarises our results for these communities. Remarkably,
75% of the networks analysed lie within the inverse regime with µ < 0,
confirming our hypothesis. Furthermore, the remaining 25% present values
of µ very close to 0, significantly lower than in the case of the community
of students (compare Figs. 2.3 and 2.4).

The case of the Bulgarians (Figs. 2.4A and 2.4a) is particularly striking
since this percentage goes up to 96% of the networks. As noted before,
this sample was taken from a community of only about 80 individuals, a
small population by any standards. Indeed, the researchers of the original
study (Mestres et al., 2012) concluded that the context of Roses allowed
the community to form a denser and more homogeneous ethnic network
than in larger towns (i.e. Barcelona).

The Sikhs (Figs. 2.4B and 2.4b) and the Chinese (Fig. 2.4C and 2.4c)
show similar percentages, 88% and 86% respectively, whereas for the Fil-
ipino community (Figs. 2.4D and 2.4d) this number is significantly lower
(68%). These differences might be a consequence of a number of sociolog-
ical and cultural factors that we shall not discuss here (see (Mestres et al.,
2012; Molina et al., 2015; Molina and Pelissier, 2010) and Appendix A.1
for details). In either case, our results suggest that the subjective number
of available contacts is in fact smaller than average in all the communities,
resulting in a predominance of inverted personal networks. It is important
to stress that the type of structure that was predicted, hierarchical inclusive
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Figure 2.4: Summary of the results for the communities of immigrants.
Upper panels show the distributions of the parameter estimates for the com-
munities of immigrants. The red, dashed lines mark the change of regime (i.e.
µ = 0). A, Distribution of the parameter estimates for the community of Bulgar-
ians (n = 25). B, Distribution of the parameter estimates for the community of
Sikhs (n = 24). C, Distribution of the parameter estimates for the community of
Chinese (n = 21). D, Distribution of the parameter estimates for the community
of Filipino (n = 25). Lower panels show representative examples of fittings for
individuals in each community. Solid dots represent experimental data, blue
dashed lines represent the graph of (2.26) with the corresponding estimated
parameter, and shaded regions show the 95% confidence interval for that es-
timate (see section 2.2.1). a, Example of fitting for an individual in the commu-
nity of Bulgarians with layers `̀̀ = (15,6,5,4,0) and µ = −0.616. b, Example of
fitting for an individual in the community of Sikhs with layers `̀̀ = (13,12,3,2,0)
and µ = −0.727. c, Example of fitting for an individual in the community of
Chinese with layers `̀̀ = (15,12,3,0,0) and µ = −0.934. d, Example of fitting
for an individual in the community of Filipino with layers `̀̀ = (13,6,7,3,1) and
µ = −0.496. A comprehensive set of figures, including fittings for every subject,
is available in Appendix A.2.

layers of increasing intensity with increasing size, had been so far only
anecdotally suggested in the literature (Bernard and Killworth, 1973; Gra-
novetter, 1977).
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2.3 Discussion

One possible criticism of these results is that they may be an artifact of
the way the questions are posed in the surveys—people are usually asked
to classify their relationships in predefined categories. However, as we
described in Section 1.1, other approaches used in the literature yield much
the same pattern in different types of data sets: online social networks such
as those based on Twitter or Facebook as well as those based on phone
calls (Dunbar et al., 2015; Mac Carron et al., 2016) show exactly the same
layered organisation as we find in self-rated questionnaire-based ratings
(Hill and Dunbar, 2003; Sutcliffe et al., 2012; Zhou et al., 2005).

Another possible criticism could be that the data we used in our empir-
ical validation was obtained using different methodologies. Nevertheless,
there are examples in the literature that suggest that the influence of the
different protocols is not significant. Studies with larger source popula-
tions (i.e. more choices available) (Powell et al., 2012; Dunbar and Spoors,
1995) have shown that, even when using an open-ended method, individu-
als only list about 10-30 people, and the structure found was still the stan-
dard regime. This is because imposing a cut-off on a standard network does
not change it into an inverse structure: this is clear from Fig. 2.3b where
a cut-off at, say, layer 2 or 3 would not change the form of the distribution
into that shown in Fig. 2.3c (see also the examples given by (Saramäki
et al., 2014)). Notice that the name generator used with the groups of im-
migrants had a limit of 30 names, and we nonetheless found both standard
and inverse regimes. Additionally, the data reported in the shipboard sur-
vey mentioned above (Bernard and Killworth, 1973), where individuals
living in a boat were asked about their relationships with other members of
the expedition (a protocol similar to that employed with the community of
students that we use in this paper), suggest average sizes of 14.6 and 26.7
individuals for the first and second circles respectively, much as would be
expected for an inverse regime. The inverse regime is precisely what we
would have expected to emerge in this setting. Therefore, although further
studies should investigate the impact of different protocols, there is no a
priori reason to suppose that either methodology would bias the results in
any particular direction.
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Notice that all distributions (see Fig. 2.3a and the upper panels in Fig.
2.4) show a large dispersion, implying that the structure of circles is quite
personal (and depends, among other things, on the individual’s number of
links). This confirms an earlier empirical finding suggesting that individ-
uals allocate their social effort in quite different and consistent ways, such
that each is characterised by a kind of “social signature” (Saramäki et al.,
2014). In fact, taking both results together, the parameter of our model may
serve as a quantitative characterization of such a fingerprint—we explore
this phenomenon in more detail in the next chapter.

It may be surprising that there are individuals whose ego-networks
show an organisation opposite to what is typical in their contexts. There
are several reasons why this might be so, all of which derive from the fact
that the potential size of the ego-network is constrained. As such, these
are predictions of the model that could be tested. One is that an individ-
ual’s cognitive capacity (the ability to manage many relationships, which
is a function of an individual’s brain size (Powell et al., 2012; Kanai et al.,
2012; Kwak et al., 2018) or intellectual ability (Dunbar, 2015) or the time
costs of investment in ties (Oswald et al., 2004; Pollet et al., 2013)) are lim-
ited or because the available population is small (for geographical or, as in
the case our immigrant samples, social reasons). As we saw in section 1.1,
network size might also vary with personality differences. Introverts, for
example, typically have significantly smaller ego-centric social networks
than extraverts (Pollet et al., 2011). In such cases, introverts have smaller
but emotionally more intense relationships on average than extraverts, or
those with large networks, who seem to spread their available cognitive
capital more thinly (Pollet et al., 2011; Roberts et al., 2009). This seems
to be due to a constraint on available social time that applies across all
individuals (Miritello et al., 2013).

Additionally, our model predicts how the increasing availability of on-
line social networks may affect the way we handle our relationships. Since
these technologies reduce the effective cost of maintaining some relation-
ships, it should be easier for individuals to establish larger networks and
this should promote the standard regime. However, if online relationships
are cheaper to maintain because they obviate the costly business of phys-
ically meeting up with an alter (Pollet et al., 2013), it follows that any in-
crease in online network size will be associated with a reduction in average
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tie strength. This would incentivise weak relationships, which might well
be another reason why the inverse regime has remained largely unnoticed
until now—see next Chapter.

Lastly, from a socio-centric perspective, our model suggests a way to
identify whether an interconnected set of individuals (i.e. a community
in the technical network analysis sense) is “small” or not, namely accord-
ing to the regime of their ego networks. Consider as a reference a layered
structure `̀̀ = (5,10,35,100) (giving the typical structure of circles: 5, 15,
50, 150), and an arbitrary linear decrease in the costs. In such setting
we find that the change of regime happens at a network size of 88, and
that there is a maximum network size of 220 (a value close to the maxi-
mum observed network size of ∼ 250 (Hill and Dunbar, 2003; Pollet et al.,
2011)). We also find that communities with sizes less than or equal to 55
members will have most of their contacts in the inner circle (thus, forming
an absolutely cohesive group). This latter finding is of particular interest,
because groupings of ∼ 50 occur frequently in small scale traditional so-
cieties: this is the typical size of huntergatherer bands (overnight camp
groups), a grouping of special functional importance in terms of foraging
and protection against predators (Lehmann et al., 2014). It also represents
the primary functional social grouping in personal social networks, being
the set of alters to whom an Ego devotes most of his social time and effort
(Sutcliffe et al., 2012; Roberts et al., 2009). More interestingly, perhaps,
communities built up on a mixture of the two regimes might exhibit quite
different properties from the socio-centric point of view. They might also
gell less well and hence be less stable. Exploring these differences may
shed light, for instance, into our understanding of the internal structure of
human societies and the reasons why natural communities fission when
they do (Dunbar and Sosis, 2018).

2.4 Conclusions

We introduce a simple model of how individuals manage their relation-
ships which depends only on the individual and his/her environment and
not on the links among his/her alters (see Fig. 2.2 for an schematic rep-
resentation of the model). Individuals are the ultimate constituents of any
social system, so the mathematical description we provide is a suitable rep-
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resentation of a social atom. The model naturally reproduces the layered
structure of personal social networks in which each successive layer in-
cludes disproportionately more alters, and reveals an unexpected finding,
namely, that in a proportion of cases an inverse structure emerged in which
more alters are found in the inner layers. These inverse structure networks
are associated with smaller than usual networks, and seen to imply that in-
dividuals have a (more or less) fixed quantity of cognitive capital (indexed
as time available for investing in alters) which they can either spread thinly
among many alters or thickly among fewer alters.

More importantly, perhaps, our model unveils the nature of the perva-
sive scaling between consecutive layers that we described in section 1.1.
We can now affirm, mathematically, that: when individuals handle a fixed
number of relationships (on average) (Hill and Dunbar, 2003; Saramäki
et al., 2014; Wang et al., 2016), which are not equally costly (Oswald et al.,
2004; Sutcliffe et al., 2012), and they have a constrained capacity (on aver-
age) to manage them (Dunbar, 1993; Miritello et al., 2013), then the most
likely organisation of these relationships (dictated by the maximum en-
tropy principle) exhibits a constant scaling (Zhou et al., 2005; Hamilton
et al., 2007; Dunbar et al., 2015)—given the particular ratio S/L for hu-
mans. Our results strongly support the SBH by mathematically connecting
two of its most contrasted empirical facts, namely ’Dunbar’s number’ (L,
which arises from cognitive constraints) and the hierarchical organisation
of personal networks.





3
A continuous interpretation of the social
atom

To infinity and beyond!

Buzz Lightyear
Toy Story (1995)

The model we introduced in Chapter 2 represented relationships as dis-
crete categories according to their intensity. In physics, atoms have a simi-
lar discretisation in the energy levels (layers in the social version) at which
electrons (alters) can orbit around nuclei (egos). This is due to the very
nature of energy, which can only be exchanged through discrete packages
called quanta. In the case of the social atom, however, this was just a
modelling decision. In this chapter we build on the discrete version of the
model and create a variant in which ties are classified in a continuum; the
layers are no longer needed. The two structural regimes obtained when
there are discrete layers also arise in this version which, importantly, relies
on the same principles.
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3.1 Model description

In section 2.1, relationships could only belong to a set of r discrete cate-
gories (layers) that were defined based on their intensity. This approach is
particularly convenient when such intensity is measured in Likert scales, as
it is often the case when data is obtained via questionnaires—see section
2.2. However, there are alternative ways of measuring tie strength which
do not rely on a discrete scale. Good examples are frequency of contact
(Roberts et al., 2009), time spent together (Mastrandrea et al., 2015), or
number of messages (information) exchanged (Saramäki et al., 2014; Dun-
bar et al., 2015). Even though some of these quantities could be technically
regarded as discrete, the fact that they consist of hugely many possibilities
makes this viewpoint rather unpractical. More importantly, these measures
do not have clear maxima and minima to play the role of the first and last
layers, respectively. This calls for a generalisation of the model to make it
capable of dealing with a continuum of tie strengths.

Our goal is to build a model similar to the one we introduced in Chap-
ter 2 but in which the intensity of the relationships is captured by any (pos-
itive) real number instead of a discrete set of layers. Generally speaking,
an excellent way to obtain such a continuous model is to develop a discrete
version first and then, at the right time, take the appropriate limits (Jaynes,
2003; Sivia and Skilling, 2006). Consequently, our starting point will be
the posterior distribution found in section 2.1 (equation 2.17 ),

P(`̀̀|S,L,N) = B(L,L/N,N)
(
L
`̀̀

)
e−µ̂

∑
k sk`k(∑

k e−µ̂sk
)L ,

which, assuming that costs vary linearly, could be written as (equa-
tion 2.27)

P(`̀̀|L,µ,N) = B(L,L/(N −1),N −1)
(

eµ−1
eµr −1

)L (
L
`̀̀

)
eµL1 ,

with µ ≡ µ̂(smax− smin)/(r−1), L =
∑r

k=1 `k, and L1 =
∑r−1

k=0 k`k+1.
We can modify this model into one with a continuum of layers by con-

sidering r→∞, so that the relationships are now labelled by a continuous
index t ≡ (k−1)/(r−1) ∈ [0,1]. Notice that t = 0 corresponds to smax and
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t = 1 to smin, so the parameter t can be interpreted as a measure of distance
to the ego. The transformation r`k ∼ `(t) changes `k into a density of links
`(t)dt. Hence,

L→ lim
r→∞

r∑
k=1

`k =

∫ 1

0
`(t)dt ≡ L̃, (3.1)

and

µL1→ µ lim
r→∞

r−1∑
k=0

k`k+1 = η

∫ 1

0
t`(t)dt ≡ ηL̃1. (3.2)

where η ≡ µ(r − 1). Moreover, when the number of layers r is large, the
probability that two individuals coexist in the same layer goes to zero, so
`k would be either 0 or 1 for all k. Noticing this we can write

(
L
`̀̀

)
= L!.

Although the above approach is entirely valid, taking the limit on
eq. 2.27 results in a cumbersome expression—more technically, in a distri-
bution of path integrals. The way to overcome this complication is to take
the limit elsewhere (Jaynes, 2003). Actually, our main objective is to find
an expression for the expected value of the number of alters with whom
an ego has a relationship of intensity t (the equivalent in the continuum to
equations 2.25 and 2.26), and a way to properly fit the model to experimen-
tal data, `(t). As we show below, we can achieve this goal without having
to deal with a continuous version of equation 2.27.

3.1.1 A continuum of circles

When considering a discrete number of layers we found that the expected
fraction of links in layer k was given by eq. 2.25

εk =
ekµ− e(k−1)µ

erµ−1
,

and, consequently, the fraction of links in circle k (eq. 2.26) was

χk =
ekµ−1
erµ−1

.

Taking the limit r→∞ transforms these expresions into

εk→ ε(t)dt =
ηeηt

eη−1
dt, (3.3)
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and

χk→ χ(t) =
eηt −1
eη−1

, (3.4)

respectively.
As it can be readily noticed, these expressions are the continuous equiv-

alent to those in the discrete case. In particular, χ(t) (eq. 3.4) is the cumu-
lative distribution of the fraction of links with whom an ego has a relation-
ship with proximity less or equal than t, that is, a continuous interpretation
of the circles. In order to analyse its scaling properties, we compute the
logarithmic derivative

χ̇(t)
χ(t)

=
ηeηt

eηt −1
, (3.5)

which asymptotically behaves as

χ̇(t)
χ(t)
≈η (η→∞), (3.6)

χ̇(t)
χ(t)
≈0 (η→−∞). (3.7)

Therefore, for large, positive values of ηwe obtain that χ(t+dt)/χ(t)≈ eηdt.
Recall that in the discrete version of the model we found that χk+1/χk ≈ eµ,
for large, positive values of µ—see section 2.1.3. To compare these
two results, notice that if we now discretise the continuum version we
have that dt ≈ 1/(r− 1) (the distance between consecutive layers), so that
eηdt ≈ eη/(r−1) ≡ eµ. Hence, the results are equivalent, but, contrary to what
happened in the discrete case, this scaling does not depend on any partic-
ular choice of r—a clear advantage of its continuous counterpart. How-
ever, since η is only defined for r → ∞ the particular values of µ and η
are not directly comparable. A (very) rough estimate of how both param-
eter compare can be achieved by considering 1 + ηd t ≈ eµ, which leads to
η ≈ (r−1)(eµ−1). Since the typical scaling found in discrete settings with
r = 4 is about eµ ≈ 3 (see section 1.1 and (Dunbar et al., 2015)), then we
should expect η ≈ 6 in continous settings—or at least something in that
order of magnitude.

On the other hand, when the parameter takes large, negative values,
we have that χ̇(t) ≈ 0. Since χ(t) is a cumulative distribution this result
implies that χ(t) ≈ χ(0) = 1, so all relationships happen to have maximum
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intensity—or, equivalently, maximum closeness to the ego. Hence, the two
regimes persist although there are no longer any layers, and the parameter
η has a similar interpretation as µ had in the discrete case. Indeed, in
section 2.1.3 we showed that the parameter µ and the ratio σ = S/L were
connected through equation (2.23)

smax−σ

smax− smin
= eµ

(r−1)erµ− re(r−1)µ+ 1
(r−1)(erµ−1)(eµ−1)

≡ f (µ).

Now, in the continuum limit, this expression becomes

smax−σ

smax− smin
=

eη

eη−1
−

1
η
≡ g(η), (3.8)

and connects η and σ similarly. Notice that,

lim
η→−∞

g(η) = 0, lim
η→0

g(η) =
1
2
, lim

η→+∞
g(η) = 1,

and g′(η) > 0 (for all η ∈ R), so equation (3.8) has a unique solution for
smin 6 σ 6 smax. Small values of σ lead to solutions with η > 0 and corre-
spond to the standard regime, whereas, when σ is large, the solutions are
η < 0 and correspond to the inverse one.

3.2 Data analysis

As we showed in the previous section, it is possible to build a model based
on the same principles as the one introduced in Chapter 1, but able to fit
continuous data. In this section we illustrate this by using data from phone
calls (Saramäki et al., 2014), face-to-face contacts (Isella et al., 2011), and
interactions between Facebook users (Arnaboldi et al., 2012). Before that,
let us describe in detail how the fits are made1.

3.2.1 Bayesian estimate of the parameter in the continuum case

Similarly to what we did in section 2.2.1, our goal is to determine
P(L,η|`(t),N) using Bayesian inference. We follow the same strategy as

1All numerical analyses are carried out in Python with the packages
scipy.optimize and scipy.integrate (see the documentation for details).

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.fsolve.html
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before and start off from the expressions we obtained in the discrete case
(eq. 2.35), where P(L,µ|`̀̀ ,N) = P(L|`̀̀ ,N)P(µ|`̀̀) with

P(L|`̀̀ ,N) = NB(L,L/(N −1),N −1),

P(µ|`̀̀) ∝
(

eµ−1
eµr −1

)L

eµL1 .

In the limit r→∞, we can use the expressions 3.1 and 3.2 to obtain the
new distribution

P(L,η|L̃, L̃1,N) =
N

N −1
B(L̃,L/(N −1),N −1)P(η|L̃, L̃1

)
, (3.9)

where

P(η|L̃, L̃1) = Ω(L̃, L̃1)−1
(

η

eη−1

)L̃
eηL̃1 , (3.10)

and

Ω(L̃, L̃1) ≡
∫ ∞

−∞

(
η

eη−1

)L̃
eηL̃1 dη. (3.11)

The equation 3.10 represents a well-defined, tractable distribution that
enables us to find the value of η given some data—thus, fully characterising
eqs 3.3 and 3.4. Therefore, as anticipated, we do not need to deal with a
continuous version of eq. 2.27 at all. Additionally, in the notation of this
posterior distribution we have made clear the fact that conditioning is not
on `(t) itself, but simply on the two integrals

L̃ =

∫ 1

0
`(t), L̃1 =

∫ 1

0
t`(t)dt. (3.12)

The maximum likelihood estimate for L is given by L = L̃, and differ-
entiating

log P(η|L̃, L̃1) = L̃
[
logη− log(eη−1) +η

L̃1

L̃

]
− logΩ(L̃, L̃1) (3.13)

with respect to η we obtain the corresponding one for η

L̃1

L̃
=

eη

eη−1
−

1
η
, (3.14)
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which, compared to eq. (3.8), provides the interpretation

g(η) =
smax−σ

smax− smin
=

L̃1

L̃
. (3.15)

The above equation 3.15 enables us to estimate the value of the pa-
rameter given empirical data. However, let us remark that the values of
smax and smin must be now determined using information external to the
problem, an issue that was not present when we considered a discrete set
of layers—see Chapter 2, section 2.1. Recall that smax defines the max-
imum possible intensity of a relationship, whereas smin defines the mini-
mum intensity necessary to consider that there is a relationship whatsoever.
That is, these values establish the scale with which to measure the strength
of relationships. When we considered a discrete setting, fixing the num-
ber of layers r and assuming that the intensities (costs) vary linearly was
enough to have such a scale—the price to be paid was the dependence of
the model on the number of layers. However, in a setting with no layers
this scale must be imposed via smin and smax. Therefore, to fit the con-
tinuous variant, we first need to (externally) determine what smax and smin
are for each individual. Once this is done, we can use the transformation
ti = (smax − si)/(smax − smin) (∈ [0,1]) to find `(ti), and solve eq. 3.15 nu-
merically to get the maximum likelihood estimate for η. For the results
we introduce in this chapter we use the function fsolve (Python) (with
tolerance 10−6) to that end—as we did in the previous chapter.

The way to compute the confidence intervals for the parameter estimate
is equivalent to what we described in section 2.2.1. If we introduce the
function

Φ(R) ≡
∫ t

0

(
η

1− e−η

)L̃
e−Rη dη, (3.16)

then the 1−2δ confidence interval for η, given L̃ and L̃1, is obtained through
the cumulative distribution

Γ(t|L̃, L̃1) =

∫ t

−∞

P(η|L̃, L̃1)dη. (3.17)
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More precisely, the confidence interval is [t1, t2], where Γ(t1|L̃, L̃1) = δ,
Γ(t2|L̃, L̃1) = 1−δ, and Γ(t|L̃, L̃1) can be obtained as

Γ(t|L̃, L̃1) =


Φ∞(L̃1)−Φ−t(L̃1)

Φ∞(L̃1) +Φ∞(L̃− L̃1)
, t < 0,

Φ∞(L̃1) +Φt(L̃− L̃1)
Φ∞(L̃1) +Φ∞(L̃− L̃1)

, t > 0.

(3.18)

All the results we present in this chapter consider δ = 0.025 (95% con-
fidence interval), and are found numerically following the exact same pro-
cedure we described at the end of section 2.2.1.

3.2.2 Mobile phones dataset

The first dataset that we analyse corresponds to the one used by Saramäki
et al. (2014)2, and contains the phone activity of 24 individuals during 18
months. At the beginning of the study, all participants (12 males, 12 fe-
males, ages 17-19) were in their final year of secondary school, so that
about six months later they transitioned into either University (18 of them)
or labour market. The data from the phones (which were given for free to
the participants together with 500 free monthly voice minutes and unlim-
ited text messages) were complemented with three questionnaires, one at
the beginning of the study, another one at month 9, and a last one at month
18. With this information, the authors were able to merge phone numbers
that belonged to the same person, and, most importantly, to conclude that
the number of calls was a reliable estimate of the emotional closeness of
the relationships—see (Saramäki et al., 2014) for details.

Saramäki et al. (2014) studied the communication patterns of the par-
ticipants by dividing the dataset into three time intervals (T1,T2,and T3) of
six months each. For each time interval, they counted the number of calls
from each ego to each alter and subsequently ranked the latter based on
this number. Then, the fraction of calls as a function of this rank is used
as a representation of the communication pattern of the ego. The main
result of their study is that, even though the composition of personal net-
works varies considerably over time, these patterns are consistent across

2The data were originally collected for another study by Roberts and Dunbar (2011b).
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the different time windows. They named these patterns social signatures
and conjectured that they were likely a consequence of a constraint on the
available resources (time and cognitive skills) necessary to manage rela-
tionships.

To analyse the data we first aggregate them into the same time windows
used by Saramäki et al. (2014), so that we end up with a list (per time
window) of pairs (ai,Ni) for each ego, where ai is a given alter and Ni
is the total number of calls made to that alter. As we explained in section
3.2.1, prior to fitting the model we need to determine what smin and smax are
for each participant (at each time window). To that end, we first select the
minimum and the maximum number of calls each ego made on each month
to any alter. Then, the smin for each of the time windows is computed as
the sum of the monthly minima and, similarly, the smax is computed as the
sum of the maxima. The heuristics behind this decision is simple. If a
person could make a maximum of Nmax phone calls (at a given month) to
a given alter, it is reasonable to assume that the maximum number of calls
he or she could have made to a single alter during the time window under
consideration is given by the sum of the maximum number of monthly calls
made in that same time interval to any person—and equivalently for smin.
Once we fix the values of smin and smax, we filter out any interaction below
smin and fit the model as explained in section 3.2.1.

Figure 3.1 summarises our results. As we can see in panels A-D, the
distributions of the parameter estimates are centred around values in good
agreement with the predicted η ≈ 6—see section 3.2.1. Additionally, the
model is able to capture individual’s nuances (panels a-d), and the fittings
are, generally speaking, strikingly good—see Appendix B.1.1 for a com-
prehensive set of figures, including fittings for every subject at every time
window. Furthermore, we find a very high, significant correlation between
the estimated parameter for each ego and the number of alters in his or her
network (L̃). More precisely: ηT1 ∼ L̃T1 (r = 0.84, p < 10−6), ηT2 ∼ L̃T2 (r =

0.52, p < 10−3), ηT3 ∼ L̃T3 (r = 0.81, p < 10−5) and ηT1∪T2∪T3 ∼ L̃T1∪T2∪T3

(r = 0.83, p < 10−6)—Pearson’s r coefficients, 2-tailed tests. This fact fur-
ther endorses the claim that the amount of resource available to form rela-
tionships is a seemingly fixed quantity that individuals spread according to
the maximum entropy principle (Tamarit et al., 2018).
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Figure 3.1: Summary of the results for the mobile phones dataset. Up-
per panels show the distributions of the parameter estimates for the different
time windows—see section 3.2.2 for details. The red, dashed lines mark the
change of regime (i.e. η = 0). A, Distribution of the parameter estimates for the
first time window (months 1-6); mean = 7.52, median = 5.32, std = 5.07. B, Dis-
tribution of the parameter estimates for the second time window (months 6-12);
mean = 8.32, median = 8.00, std = 3.31. C, Distribution of the parameter esti-
mates for the second time window (months 12-18); mean = 8.48, median = 7.00,
std = 4.56. D, Distribution of the parameter estimates for the full time window
(months 1-18); mean = 9.07, median = 8.75, std = 3.92. Lower panels show the
fittings for the same indvidual (ego “e12”) at each of the time windows. Solid
dots represent experimental data, blue dashed lines represent the graph of
(3.4) with the corresponding estimated parameter, and shaded regions show
the 95% confidence interval for that estimate (see section 3.2.1). a, Example
of fitting for an individual (“e12”) in the first time window. Estimated η = 3.55,
95% confidence interval (1.82,5.77), L̃ = 21. b, Example of fitting for an indi-
vidual (“e12”) in the second time window. Estimated η = 7.38, 95% confidence
interval (5.18,10.34), L̃ = 33. c, Example of fitting for an individual (“e12”) in the
third time window. Estimated η = 11.79, 95% confidence interval (7.87,17.69),
L̃ = 23. d, Example of fitting for an individual (“e12”) in the full time window.
Estimated η = 9.77, 95% confidence interval (6.83,13.95), L̃ = 30. A compre-
hensive set of figures, including fittings for every subject at all time windows,
is available in Appendix B.1.1.
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Lastly, we analyse if the parameter η may serve as a quantitative char-
acterisation of the social signatures—see also the discussion in section 2.3.
In their paper, Saramäki et al. (2014) used the Jensen-Shannon divergence
(JSD) (Lin, 1991) to measure the shape difference (distance) between sig-
natures. Sticking to their notation, let di j

ab denote the JSD distance between
the signature of ego i in time a and ego j in time b. They used this measure
to compute the variation between the signatures of the same ego (i) in con-
secutive time windows as dii

12 ≡ dsel f
12 (i) and dii

23 ≡ dsel f
23 (i). For comparison,

they also computed the reference distances dre f
22 (i) = 1

Negos−1
∑

j,i di j
22, and

dre f
33 (i) = 1

Negos−1
∑

j,i di j
33 , and found that these reference distances were

consistently higher than the ones between signatures of the same ego—see
(Saramäki et al., 2014) for details.

We perform a parallel analysis using the relative change between two
different values of η as a measure of the “distance” between them. That
is, keeping the notation used by Saramäki et al. (2014), we have that the

self-distances are given by dsel f
12 (i) ≡

|ηi
1−η

i
2|

|ηi
1|

, and dsel f
23 (i) ≡

|ηi
2−η

i
3|

|ηi
2|

, whereas

the reference distances are dre f
22 (i) = 1

Negos−1
∑

j,i
|ηi

2−η
j
2|

|ηi
2|

, and dre f
33 (i) =

1
Negos−1

∑
j,i
|ηi

3−η
j
3|

|ηi
3|

. Following (Saramäki et al., 2014), we then create a

distribution of self-distances dsel f =
⋃Negos

i {dsel f
12 (i),dsel f

23 (i)} and another of

reference distances dre f =
⋃Negos

i {dre f
22 (i),dre f f

33 (i)}—a total of 48 points per
distribution.

In Fig. 3.2 we show the resulting distributions of the self-distances
(dsel f ) and the reference ones (dre f ). The distribution dre f is again consis-
tently higher than that of dsel f —which is confirmed by a Mann-Whitney
U test yielding p < 10−3 (two-sided). Therefore, the different egos tend to
have a persistent value of η just like they have a persistent social signature.
Given that the central premise of our model is that the resources available
to create relationships are limited (see section 2.1), this result reinforces
the conjecture made by Saramäki et al. (2014), that is, that the existence of
social signatures is a consequence of this very constraint.
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Figure 3.2: Evidence of the persistence of η through time windows. The
boxplot to the left (blue) shows the distribution of distances between the pa-
rameter estimates for the same individual at consecutive time intervals (dsel f ).
The boxplot to the right (orange) shows the distribution of reference distances
between the parameter estimate for each individual and the rest of the popula-
tion (dre f ). In both cases, the solid dots represent the empirical points—jittered
for a better visualisation. The distances in dre f are consistently higher than
those in dsel f , meaning that the individual’s η tends to be persistent across
time intervals—see section 3.2.2 for details.

3.2.3 Face-to-face contacts dataset

In this section we analyse data3 from face-to-face interactions that took
place during a scientific conference4 held in Turin, Italy, between June

3Downloaded from: “DATASET: Hypertext 2009 dynamic contact network”,
Sociopatterns, last accessed 24 January 2019, http://www.sociopatterns.org/
datasets/hypertext-2009-dynamic-contact-network/.

4“Hypertext 2009: 20th ACM Conference on Hypertext and Hypermedia”, last ac-
cessed 24 January 2019, http://www.ht2009.org/.

http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/
http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/
http://www.ht2009.org/
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29th and July 1st in 2009 (Isella et al., 2011). The data were collected
using proximity sensors that voluntary participants (n = 111, about 75%
of the attendees) had embedded in their conference badges. The sensors
recorded interactions over intervals of 20s when two or more participants
were facing each other at less than about 1.5−2m—see (Alani et al., 2009;
Van den Broeck et al., 2010; Cattuto et al., 2010; Isella et al., 2011) for
technical details. With this information, we can build the network of inter-
actions for each participants using the time spent together as a proxy of the
intensity of the implied relationships.

The high temporal resolution of the data permits us to characterise the
values of smin and smax in several ways. One natural option is to aggregate
the data over one day (Isella et al., 2011), and use a similar rule to the one
we applied in section 3.2.2. That is, use the sum of the maximum time
spent with any alter on each day as smax, and the sum of the minima as
smin. However, during a conference, many different time restrictions may
apply to the attendees, such as having an agenda of presentations to attend
or deliver. As a consequence, the aforementioned heuristic may not apply
here, since it is very likely the case that it was not entirely up to the partic-
ipants with whom to spend their time at a given moment. Furthermore, we
do not have any information on the interactions with the 25% of individu-
als who were at the venue but chose not to participate. These facts impose
clear limitations to the conclusions we can draw from applying our model,
and they are hardly avoidable. We, therefore, adopt a rather cautious po-
sition and do not aggregate the data on daily time windows. Instead, we
simply take smax as the maximum time spent (and recorded) with one alter
during the whole conference, and smin as the minimum one5. Additionally,
we exclude all participants who had less than five alters in their networks,
ending up with a total of 95 valid cases.

Our results (see Fig. 3.3a) show a long-tailed distribution for the pa-
rameter estimates with a clear peak close, once again, to the predicted
η ≈ 6, which suggests that the overall behaviour of the contact patterns
seems to agree with our model.

5For completeness, in Appendix B.1.2 we show the results considering the same ap-
proach as in section 3.2.2 regarding smax and smin. The individual fittings are slightly
worse and the distribution of the parameter estimates is centred around a higher value
η ≈ 14.
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Figure 3.3: Summary of the results for the face-to-face contacts dataset.
a, Distribution of the parameter estimates for the face-to-face contacts dataset
(n = 95). The red, dashed line marks the change of regime η = 0; mean = 9.08,
median = 7.35, mode = 5.54, std = 5.86 b, Representative fitting for an individ-
ual in the face-to-face contacts dataset (chosen at random from those with a
strictly positive 95% confidence interval). Solid dots represent experimental
data, blue dashed lines represent the graph of equation (3.4) with the corre-
sponding estimated parameter, and shaded regions show the 95% confidence
interval for that estimate (see section 3.2.1). Estimated η = 11.12, 95% confi-
dence interval (6.74,18.34), L̃ = 15. See Fig. B.6 (Appendix B.1.3) for a sample
of 24 other fittings chosen randomly from the entire population.

However, even though some fittings are remarkably good (see Fig.
3.3b), they are mostly not as good as they were in the mobile phones
dataset—see Fig. B.6 in Appendix B.1.3. As we explained above, these
data are inherently noisy and assessing the intensity of the relationships (or
even merely of the interactions) based solely on time spent together during
a conference can be misleading. Ideally, we would need this type of data
but from individuals in their daily lives, so that the interactions recorded
would better correspond to decisions of the individual. Nevertheless, even
with the mentioned limitations, the model is still capable to partially cap-
ture the patterns of face-to-face interactions.
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3.2.4 Facebook dataset

If we compare the results from sections 3.2.2 and 3.2.3 (see Figs. 3.1a
and 3.3a) we can appreciate how, as the sample size increases, the distri-
bution of the parameter estimates seems to smooth around a well-defined
central value of η ≈ 6. If that is the case, it would be a clear indication that
the parameter of the model is indeed capturing a real feature of the way
individuals manage relationships.

To further explore this possibility, we analyse a larger dataset of inter-
actions in Facebook6 (Arnaboldi et al., 2012). This dataset was obtained
using a crawler on April 2008 and comprises data on roughly 3 million
Facebook users and 23 million edges. Importantly, it also contains the
number of interactions (photo comments or Wall posts) between users. The
data is divided into four different time windows (referred to the time of the
crawl): last month, last six months, last year and all—which contains all
the interactions among the users since they established their links (Arn-
aboldi et al., 2012).

To analyse the structure of the personal networks in Facebook, Arn-
aboldi et al. (2012) filtered the data to retain only active, relevant users from
which the relative frequency of contact with all his or her alters could be
adequately assessed—see (Arnaboldi et al., 2012) for details. The result-
ing dataset contains about 90.000 users and 4.5 million links7. Applying
two different clustering techniques, k-means (Wang and Song, 2011), and
DBSCAN (Ester et al., 1996), they found that the structure of personal net-
works of Facebook users consists of a set of 4 concentric, inclusive circles
according to the intensity of their links, and that the sizes of these circles
exhibited a more or less constant scaling ratio close to 3—thus, resembling
what is found in offline social networks (Dunbar et al., 2015).

Since clustering algorithms find an optimal partition of personal net-
works into four circles with a scaling of approximately 3, our model should
yield a distribution of parameters centred around 6. In this case, we use

6This data used to be available, under request, at http://current.cs.ucsb.edu/
socialnets/ under the name “Anonymous regional network A”. However, as of January
24, 2019, it seems that the web is no longer available. We are very thankful to Prof. Ben
Zhao for granting us access to the data.

7We are very thankful to Dr Valerio Arnaboldi for sharing with us the final, curated
dataset precisely as they used it in their paper.

http://current.cs.ucsb.edu/socialnets/
http://current.cs.ucsb.edu/socialnets/
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again that, for each individual, smax is simply given by his or her most
intense interaction, and smin by the least intense one—with this decision,
we can use the same data as Arnaboldi et al. (2012) without any further
pre-processing. Figure 3.4 confirms our hypothesis, showing a smooth
distribution with mean = 8.25, median = 7.17, and mode = 5.48. Interest-
ingly, the size of this sample allows us to find, for the first time, individuals
exhibiting an inverse regime with η < 0. More precisely, we find 256 users,
about 0.3% of the population, exhibiting this type of structure—in fact, for
only 7 of them (0.007%) the 95% confidence interval does not include the
zero. In Figs 3.4b and 3.4c, we show representative fittings of individuals
in the standard and the inverse regime, respectively. Let us remark that,
not only does our model capture the typical structure of personal networks
as Arnaboldi et al. (2012) do, but it also unveils that the inverse regime
(Tamarit et al., 2018) is equally present in digital communications.

3.3 Discussion

In this chapter, we have presented an extension of the model introduced in
Chapter 2 that treats the intensity (i.e. the cost) of the links as a continuous
variable. Even though this new model does not rely on a specific number
of layers, its behaviour is qualitatively identical to its discrete counterpart.
Remarkably, our experimental results show that the estimates of this new
parameter (η ≈ 6) are consistent with what is typically observed in discrete
settings (µ ≈ 1). Consequently, one may wonder whether the organisation
of personal networks has a discrete (as empirical evidence has suggested)
or continuous nature.

Given the abundant empirical evidence for the existence of discrete
layers (and the results we will present in Chapter 5), we are inclined to
think that, in effect, there is some characteristic discretization8. However,
this discretisation will hardly be perfect and may be subject to fluctuations.
Moreover, even if the (psychological) organisation of the networks were
perfectly discrete, it would be difficult for all people within the same layer
to receive precisely the same attention (number of calls, contact time, and

8 Perhaps as a consequence that it may be easier to deal with relationships if we some-
how organise them into categories.
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Figure 3.4: Summary of the results for the Facebook dataset. a, Distribu-
tion of the parameter estimates for the Facebook dataset (n = 98258). The red,
dashed line marks the change of regime η = 0; mean = 8.25, median = 7.17,
mode = 5.48, std = 4.91 b, Representative fitting for an individual exhibiting
the standard regime (chosen at random from those with a strictly positive 95%
confidence interval). Solid dots represent experimental data, blue dashed lines
represent the graph of equation (3.4) with the corresponding estimated param-
eter, and shaded regions show the 95% confidence interval for that estimate
(see section 3.2.1). Estimated η = 11.64, 95% confidence interval (7.62,17.79),
L̃ = 21. c, Example of fitting for an individual exhibiting the inverse regime (cho-
sen at random from those with a strictly negative 95% confidence interval).
Solid dots, blue dashed lines, and shaded regions have the same interpre-
tation as in b. Estimated η = −1.34, 95% confidence interval (−2.71,−0.08),
L̃ = 30. See Fig. B.7 (Appendix B.1.4) for a sample of 24 other fittings chosen
randomly from the entire population.

so on) at all times, which would cause continuous fluctuations. Let us
emphasise that under no circumstances are both results incompatible, since
our (continuous) model does not assume at any time that the distribution
of intensities is continuous, but only that it can be so—which allows us to
adjust this type of data. Importantly, the principles underlying both types
of structures are indeed the same, namely that relationships are costly and
that the resources we can devote to them are limited.
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Getting rid of the layers allowed us to find a parameter with a universal
character, but the price to pay was that the scale in which the intensity
of the relations is measured (i.e. smin and smax) had to be inferred with
information external to the problem. This creates an additional challenge
when fitting the data, and decisions have to be made based on plausible
reasons—but there might be other possibilities. This might well be one of
the reasons why the individual fittings seem to be somewhat worse than
the ones we showed in the previous chapter, and it is an issue that deserves
further attention.

It should be noted, however, that the model considers that the effort
devoted to relationships is a perfect indicator of their intensity, while the
different types of information with which we have measured these efforts
(number of calls, face-to-face contact, and number of messages exchanged)
are nothing more than proxies. In particular, we may be observing only one
of the channels through which relationships are maintained, and including
all the data of contacts among people through any means could improve
the results. On the other hand, it is more than likely that not all communi-
cations made have the same intensity, even if they last the same, which is
a significant source of noise for our model. In any case, given the simplic-
ity of the model and the particularities of the data, the fits are remarkably
good. Furthermore, the aggregate distribution of the parameter estimates
(which might compensate individual errors) exhibits a clear shape centred
around the expected value of η ≈ 6, which is a remarkable result.

Lastly, let us note that even in the case that there were no layers at
all the continuous model still inherits a somewhat discrete feature, namely
smin. Indeed, any effort devoted below this threshold would not contribute
to creating a relationship at all, as if there was a minimum quantum of
attention needed to develop a bond.

3.4 Conclusions

The model of social atom presented in (Tamarit et al., 2018) can be ex-
tended into one that considers the intensity (i.e. the cost) of the links as a
continuous, instead of discrete, variable—hence, using no layers. The two
regimes found in (Tamarit et al., 2018) hold again in this version of the
model, with similar interpretations. For consistency with the results ob-
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tained in the discrete variant, the new model predicts a value of its (unique)
parameter of η ∼ 6. We confirm this prediction using three different data
sets coming from phone records (Saramäki et al., 2014), face-to-face con-
tacts (Isella et al., 2011), and interactions in Facebook (Arnaboldi et al.,
2012). As the sample size increases, the distributions of estimated param-
eters smooth around a well-defined central value of η ≈ 6. The existence
of a characteristic value of the parameter at the population level indicates
that the model is capturing a universal feature on how humans manage
relationships.

Even though populations seem to group around a central value of the
parameter, each estimate serves as a sort of social fingerprint that distin-
guishes the individual’s behaviour. This result supports the hypothesis that
the very existence of social signatures is a consequence of having to al-
locate finite resources into different relationships (Saramäki et al., 2014).
Lastly, our analyses also confirm the results found in (Arnaboldi et al.,
2012), that is, that the structure of online personal networks mirrors those
in the off-line world (Dunbar et al., 2015). Importantly, our model does
not depend on any sort of clustering technique and, besides reproducing
the same global picture found in (Arnaboldi et al., 2012), also captures a
small fraction (0.3%) of networks in the inverse regime—which is seen
here for the first time in online communications.





4
The interplay between positive and negative
relationships: an empirical study

“It doesn’t matter how beautiful your theory is, it doesn’t matter
how smart you are. If it doesn’t agree with experiment, it’s
wrong.”

Richard Feynman

In Chapters 2 and 3 we have shown how a mathematical model, based
on simple assumptions on the amount of resource available to sustain re-
lationships, was able to reproduce the way we humans organise our social
world. However, little has been said about the global structures (i.e. so-
cial networks) that arise when these personal networks interconnect with
each other. Likewise, so far we have mainly been discussing sympathetic
relationships, leaving aside antipathetic ones. In this chapter, we begin
to tackle these questions using a novel dataset gathered with our own
experiments—and experimental software. Importantly, the characteristics
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we found in this study will be most useful as a reference for a possible
theory of social structure based on our ”social atom”.

4.1 Description of the study

We present results from a sociometric study conducted in a school1

(Madrid, May 2017) with students from grades 5 to 11—the highest level
offered in the school. The total number of students within this range was
322, of whom 321 (195 males) agreed to participate, and 308 ended up par-
ticipating. The range of ages was 10− 19 with an average of 13.42± 2.12
(see table 4.1 for a summary of the characteristics of the participants).

To collect the social information, we asked the participants six ques-
tions about both their positive and negative2 relationships within the
school. The questions we used were in Spanish (see Appendix C.1), so
we provide here a translated version (the abbreviations after each question
will be used to refer to it hereafter):

• If you had a serious personal problem, which other schoolmates
would you be willing to share it with? (SP)

• If there are schoolmates that you wouldn’t want (by any means) they
had to leave the school, please mark them. (DL)

• If you could choose with whom to seat at the lunch table (indepen-
dently of the actual size of the tables), who would you choose? (LT)

• If there are schoolmates with whom you’d rather not do any kind of
activity, please mark them. (DN)

• If you had to complete an assignment in the school, who would you
like to work with? (Mark ‘None’ if you’d rather work on your own)
(WW)

1The study was approved by the Ethics Committee of the Universidad Carlos III de
Madrid and the school gathered parental consent agreements for all the participants.

2Throughout this and the following chapter we call positive to sympathetic relation-
ships, and negative to antipathetic ones.
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• Mark the schoolmates with whom you’d rather not work in a school
assignment (regardless of your personal relationship with them).
(DW)

To carry out the study we divided the participants into groups (about
25 participants per group) and scheduled a time when their teachers had to
bring them to the computer room of the school. Once there, after a brief
presentation of the activity by the researcher, they were instructed to en-
ter an online platform (ConectAula) that we had previously developed (see
Appendix C.2 for details) and answer the survey. The online platform al-
lowed the participants to quickly find and select any other student while
keeping their identities anonymous to the researchers. They could nomi-
nate as many alters as they wanted in each question and, to facilitate the
process, each of the questions was displayed together with a drop-down
button organising the possible answers (i.e. all the participants with the ex-
ception of the ego herself) with the same structure of grades and groups as
in the school (see Appendix C.2 for details). At any given moment, at least
one researcher and one teacher were present in the room, and occasionally
assisted the students who had troubles understanding a question. This pro-
cedure was repeated during three consecutive days (the whole activity took
about 30-45 minutes per group to be completed) and enabled us to collect
308 surveys —that is, 96 % of the total population.

4.2 Network analysis

The answers provided by the students allow us to recreate the social struc-
ture of the school (see Fig. 4.1). For each of the questions, we create a
directed network in which there is an edge from node i to node j if stu-
dent i nominated student j in that particular question. We refer to these
networks as: SP (share problem), DL (don’t leave), LT (lunch table), WW
(work with), DW (don’t work), and DN (do nothing). For example, if stu-
dent i nominated student j as someone with whom he or she would like to
seat at the lunch table, then there will be a directed edge from i to j in the
network LT.

In addition to the collected networks, we build the new ones: IPN (in-
tersection of positive networks, a directed edge from i to j exists if i marked
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Table 4.1: Descriptive statistics of participants

Grade Average age (std. err.) Group Participants (male)

5 10.29 (0.46)
A 22 (14)
B 23 (15)

6 11.36 (0.47)
A 22 (11)
B 23 (14)

7 12.47 (0.62)
A 23 (12)
B 24 (16)

8 13.61 (0.63)
A 23 (13)
B 28 (21)

9 14.60 (0.69)
A 27 (15)
B 25 (18)

10 15.60 (0.64)
A 25 (13)
B 23 (16)

11 16.58 (0.87)
A 8 (1)
B 13 (7)
C 12 (9)

321 (195)

j in all positive networks), IPN* (similar to IPN but excluding the answers
to the question WW), UPN (union of positive networks, a directed edge
from i to j exists if i marked j in at least one positive network), INN (inter-
section of negative networks, a directed edge from i to j exists if i marked j
in all negative networks), and UNN (union of negative networks, a directed
edge from i to j exists if i marked j in at least one negative network).

Some of the features of these networks are summarised in Table 4.2. In
particular, we show the experimental values for the average degree (num-
ber of links coming in/out a given node), the average reciprocity (fraction
of links coming out a node that are also coming in), the assortativity coffi-
cient (Newman, 2003) (tendency of nodes to create relationships with other
nodes of the same gender, class3, or grade), the number of weakly/strongly
connected components (sets of nodes that can reach each other via links),
and the number of nodes—see Appendix C.3 for a more technical descrip-
tion of the different quantities.

Notice that the number of nodes is slightly smaller in three of them.
The reason is that some of the 308 questionnaires gathered had missing

3We refer to a class as the grade plus the group. For example: Grade 7, group A.
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M
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Figure 4.1: Representation of the SP network. The nodes are coloured
according to the grade they belong to, and their size is proportional to their
in-degree. Inset: relationships within the 8th grade with nodes coloured ac-
cording to their gender (red for girls and blue for boys). The entire visualisa-
tion makes apparent the fact that relationships tend to occur between students
belonging to the same grade and having the same gender—see also Table
4.2.

information, resulting in a different number of nodes in each of the net-
works. Many approaches can be adopted to deal with this missing data to
minimise its impact in the estimation of network measures (Robins et al.,
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2004; Kossinets, 2006; Huisman, 2009). In the worst case scenario, we
have complete information of 305 out the 308 who actually answered from
the 322 potential participants. Since the fraction of nodes for which we
don’t have information is negligible (∼ 5%), and they are missing at ran-
dom, we merely exclude these nodes from our analyses.

Firstly, let us notice that the values shown in Table 4.2 are in good
agreement with other studies carried on in similar settings (Almaatouq
et al., 2016; Huitsing et al., 2012; Rambaran et al., 2015). Generally speak-
ing, the negative networks show a higher level of fragmentation than the
positive ones, as they systematically have a larger number of connected
(weakly and strongly) components. Notice in this regard that the only net-
work that shows complete cohesiveness is UNN. Interestingly, the average
degree of this network is ∼ 15, which is precisely the typical size of a sym-
pathy group— the second layer in Dunbar’s circles (see section 1.1 and
(Dunbar, 2018)). We will delve deeper into this fact in the next chapter.

In this chapter, we will focus on investigating the explanatory factors
in the formation of the different networks, and on the structural connec-
tion that exists between the two types, positive and negative. The levels
of assortativity shown in Table 4.2 indicate (see also Fig. 4.1) that all re-
lationships tend to happen between individuals within the same grade (or
age)—which is somewhat natural, acknowledging that they share plenty of
school-related activities. They also show the presence of a strong gender
homophily (McPherson et al., 2001) effect for the positive networks, and a
small (but significant) heterophily effect for the negative ones. Investigat-
ing these phenomena is the focus of the next section.

4.2.1 Gender effects

The gender homophily in social relationships, that is, the tendency for pos-
itive relationships to occur between individuals of the same sex, is a well
documented empirical fact, especially among young people, but persis-
tent also across ages (Stehlé et al., 2013; Roberts et al., 2008; Shrum et al.,
1988; Laniado et al., 2016). Antipathetic relationships, however, have been
shown to be much less gendered than positive ones (Dijkstra et al., 2007;
Card, 2010; Berger and Dijkstra, 2013), and seem to be more affected by
other factors such as status dissimilarity (Berger and Dijkstra, 2013). In
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Table 4.2: Summary of network measures. Summary of network mea-
sures (see Appendix C.3 for a brief description of these quantities) for the
collected networks (upper table) and the constructed ones (lower table)—see
section 4.2. The numbers in parenthesis show the standard errors of the dif-
ferent measures.

Avg. degree Reciprocity Assortativity #Connected components #Nodes

in out Avg. Gender Grade Class Weakly Strongly N

SP (+) 6.23 (5.39) 6.23 (3.24) 0.45 (0.24) 0.46 (0.02) 0.84 (0.01) 0.61 (0.01) 1 17 307
DL (+) 10.96 (9.48) 10.96 (4.69) 0.45 (0.21) 0.23 (0.02) 0.87 (0.01) 0.60 (0.01) 1 29 308
LT (+) 8.17 (5.48) 8.17 (4.04) 0.47 (0.21) 0.33 (0.02) 0.88 (0.01) 0.64 (0.01) 1 15 308

WW (+) 6.55 (5.52) 6.55 (3.90) 0.36 (0.22) 0.28 (0.02) 0.91 (0.01) 0.67 (0.01) 2 27 307
DW (-) 6.83 (8.19) 6.83 (4.84) 0.18 (0.16) -0.09 (0.02) 0.93 (0.01) 0.55 (0.01) 6 110 308
DN (-) 5.97 (7.81) 5.97 (4.67) 0.19 (0.18) -0.08 (0.02) 0.84 (0.01) 0.46 (0.01) 6 124 305

IPN (+) 2.58 (3.04) 2.58 (2.04) 0.33 (0.29) 0.58 (0.03) 0.93 (0.01) 0.71 (0.02) 20 182 306
IPN* (+) 3.70 (3.79) 3.70 (2.29) 0.40 (0.28) 0.55 (0.03) 0.92 (0.01) 0.68 (0.01) 7 111 307
UPN (+) 14.92 (9.09) 14.92 (5.97) 0.54 (0.16) 0.21 (0.01) 0.85 (0.01) 0.58 (0.01) 1 1 308
INN (-) 3.77 (5.63) 3.77 (3.38) 0.13 (0.16) -0.11 (0.03) 0.93 (0.01) 0.55 (0.02) 22 195 305
UNN (-) 9.04 (9.88) 9.04 (6.04) 0.23 (0.18) -0.07 (0.02) 0.86 (0.01) 0.49 (0.01) 1 63 308

this section, we analyse to what extent such effects are present in our data,
disentangling the existing differences between the social behaviour of boys
and girls.

Network composition

We begin by analysing differences in group size between girls and boys.
To that end, we perform a (two-tailed) Wilcoxon signed-ranks test on each
of the networks’ degree distributions —see Table 4.3. The results for the
out-degrees reveal that girls nominate a significantly higher number of al-
ters (p < 0.05) in all the negative networks (DW, DN, INN and UNN) and
in IPN, that is, the most restrictive positive one. In the case of the negative
networks, our analysis does not support what is observed in a meta-study
on antipathetic relationships, where Card (2010) observed quite the oppo-
site, a small but reliable tendency for boys to have more antipathetic rela-
tionships. Nevertheless, the effect we detect is rather low and may have no
impact on the overall conclusions of this meta-study.

The analysis of the in-degree distributions reveals a significant ten-
dency for boys to receive more nominations in the network DW, so that
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Table 4.3: Average degrees by gender. The table shows the average in/out
degrees of the different networks split by gender. The significance of the dif-
ferences between boys and girls is assessed using a (two-tailed) Wilcoxon
signed-ranks test—see 4.2.1 for details.

Average out-degree Average in-degree

Female Male Total Significance Female Male Total Significance

Collected
SP (+) 5.98 6.39 6.23 0.945 6.77 5.89 6.23 0.084
DL (+) 9.80 11.68 10.96 0.338 10.80 11.06 10.96 0.323
LT (+) 8.05 8.25 8.17 0.649 7.58 8.54 8.17 0.036

WW (+) 6.87 6.35 6.55 0.296 6.93 6.31 6.55 0.198

DW (-) 7.70 6.29 6.83 0.042* 6.19 7.24 6.83 0.047*
DN (-) 7.00 5.33 5.97 0.024* 6.03 5.94 5.97 0.945

Constructed
IPN (+) 2.82 2.43 2.58 0.023* 3.07 2.28 2.58 0.001**

IPN* (+) 3.92 3.56 3.70 0.054 4.14 3.43 3.70 0.015*
UPN (+) 13.84 15.58 14.92 0.242 14.49 15.18 14.92 0.166

INN (-) 4.03 3.60 3.77 0.041* 3.68 3.82 3.77 0.667
UNN (-) 10.71 8.01 9.04 0.008** 8.53 9.36 9.04 0.188

* p < 0.05, ** p < 0.01

they are more likely to be avoided in work-related activities4. Girls, how-
ever, are significantly more nominated in the networks IPN and IPN*, so
that they receive strong positive nominations more often. The fact that girls
tend to choose and be chosen more often in the most restrictive positive net-
works supports the claim that girls (women in general) tend to invest more
in close relationships with a higher level of intimacy (Vigil, 2007; Dunbar,
2018).

We now analyse the differences in the composition of the personal net-
works of boys and girls. When examining gender effects, it is essential to
make this distinction clear, since there are typically significant asymme-
tries regarding the social behaviour of both genders (Dijkstra et al., 2007;
Vigil, 2007; Dunbar, 2018). Additionally, several factors must be con-
trolled for, such as the relative proportion of girls/boys in the population, or

4According to informal conversations with some of the teachers in the school, this is
very likely because boys tend to be less organised in work-related activities.



4.2 Network analysis 73

other possible effects present, such as a tendency to have friends/enemies
of the same age—as the high values of the assortativity by grade (see Table
4.2) indicate in our data. To detect possible asymmetries in gender effects,
while controlling for as many factors as possible, we create an ad-hoc null
model to compare against the empirical data. For each of the networks, we
randomise the edges preserving the source nodes (and all its attributes) but
replacing the target nodes at random with others who belong to the same
class as they do—excluding the source node (ego) if necessary to avoid
self-loops. Then, for each realisation, we count the average number of
links from male-to-male, male-to-female, female-to-female, and female-
to-male, and create a distribution based on 10000 runs.

The 95% (two-tailed) confidence intervals of these distributions are
shown, together with the experimental values, in Fig. 4.2. We can appre-
ciate how both boys and girls exhibit very significant gender homophily
effects in all positive relationships, in agreement with previous works (Di-
jkstra et al., 2007; Vigil, 2007; Dunbar, 2018). The situation with antipa-
thetic relationships is more subtle. As we observed in Table 4.2, there
exists a small but significant negative gender homophily (a sort of het-
erophily) effect in these networks. Nevertheless, as shown in Fig 4.2, this
effect is solely due to the nominations made by girls, who tend to nom-
inate more boys than what would be expected by the null model. Boys,
however, show complete neutrality in this regard. Let us remark that un-
ravelling this asymmetry was only possible with the aid of a somewhat
refined null model.

Reciprocity

The overall levels of reciprocity shown in Table 4.2 are, although strikingly
low, in good agreement with other studies for both positive and negative re-
lationships (Almaatouq et al., 2016; Huitsing et al., 2012). In this section,
our goal is to disentangle the possible differences between males and fe-
males. Similarly to what we did in section 4.2.1, we need to find a suitable
null distribution for the average reciprocity of individuals with sex A to-
wards individuals with sex B —that is, the fraction of links that As would
return to Bs if no gender effect was present. To do that, we first select all
the nodes with sex A. Then, for each of these nodes, we count the number
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Figure 4.2: Differences in out-degrees by sex. Solid crosses represent the
observed average values. The boxplots represent the expected distribution
(null model) of the average out degrees if edges where chosen independently
of the sex of the target node —see section 4.2.1. The vertical, dashed lines
separate the regions of positive networks (left) and negative networks (right).

nB of links received from nodes with sex B and select the same number nB
of links at random (without replacement) from all his/her incoming links.
That is, the null model considers that the ego is blind to the gender of
his or her incoming ties—notice that all remaining attributes of the alters
(such as the class and group they belong to) remain unchanged. Lastly, we
just compute the fraction of all these ‘new relationships’ that are reciprocal
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to obtain one value of the desired distribution, and repeat the process for
10000 runs.

Our results show that (Figs. 4.3A and 4.3C) boys reciprocate other boys
within the range expected by the null model (ci = 95%), except for a small
but significant over-reciprocation in the networks DL, LT, WW, and UPN.
Notice in particular that there is no gender effect in either the negative
networks or the most intense positive ones —IPN, IPN*, and, arguably,
SP. Moreover, this pattern is opposite to that exhibited for reciprocation
towards females (Fig. 4.3C), which shows a significant tendency to under-
reciprocate positive relationships in DL, LT, WW, and UPN, and no effects
for the rest of the networks.

The situation is rather different for the girls —see Figs. 4.3B and 4.3D.
In Fig. 4.3B we can observe how the positive relationships between girls
tend to be much more reciprocal than what would be expected according
to the null model. Again, the situation is the opposite when it comes
to reciprocating links coming out from boys (Fig. 4.3D), with stronger
under-reciprocation effects. Regarding the negative networks, there is a
small, but significant, tendency to under-reciprocate other girls in WW
and UNN, and to over-reciprocate the boys in the same networks.

4.3 Interplay between positive and negative networks

As we have shown, the negative and positive networks in our study ex-
hibit quite different patterns. However, both types of networks shall be
structurally interdependent as suggested by theories such as the Structural
Balance Theory (SBT) (Heider, 1946; Cartwright and Harary, 1956) or the
Status Theory (ST) (Leskovec et al., 2010b). Very briefly (see also sec-
tion 1.2), the former states that triads are stable as far as the product of the
“signs” of its links is positive, whereas the latter considers that the signs
of the links are a consequence of differences in subjective “status” of the
nodes—that is, a positive link from node i to node j is signalling that i
considers that j has higher status than himself, and a negative link is sig-
nalling the opposite. Both theories draw predictions about the “directions”
in which a given network might evolve, so cross-sectional studies (like
the one we present here) are insufficient to explore their validity (Ram-



76 The interplay between positive and negative relationships: an empirical study

SP DL LT WW IPN IPN* UPN DW DN INN UNN
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

av
er

ag
e 

re
cip

ro
cit

y

A male reciprocate male

SP DL LT WW IPN IPN* UPN DW DN INN UNN
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B female reciprocate female

SP DL LT WW IPN IPN* UPN DW DN INN UNN
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

av
er

ag
e 

re
cip

ro
cit

y

C male reciprocate female

SP DL LT WW IPN IPN* UPN DW DN INN UNN
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D female reciprocate male

Figure 4.3: Differences in reciprocity by sex. Solid crosses represent the
average values of reciprocity observed in our data. The boxplots represent
the expected distribution (null model) of the average reciprocity if edges where
chosen independently of the sex of the target node. The vertical, dashed lines
separate the regions of positive networks (left) and negative networks (right).

baran et al., 2015). Nevertheless, according to either theory, each of the
network types should contain latent information about the links in the op-
posite one. We tackle this issue from a machine learning approach with
the goal of quantifying the amount of information that each network type
contains about the other. Structural information on negative relationships
has already been shown to have predictive power on positive ones in on-
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line social networks (Leskovec et al., 2010a), but we are not aware of any
similar analysis being performed in off-line, face-to-face relationships.

4.3.1 Machine Learning approach

The task we want to accomplish is similar to the link prediction prob-
lem (Liben-Nowell and Kleinberg, 2007) or the sign prediction problem
(Leskovec et al., 2010b), and can be defined as follows: given any two
nodes i and j, we want to predict whether a (directed) link from i to j
exists or not, based solely on local, structural properties (predictors) of
the nodes. We use three different sets of predictors. First, the out-degree
of each node (i and j) plus the number of individuals that both have nomi-
nated in common —we call this set “out” for brevity. Second, the in-degree
of each node plus the number of individuals that nominate both of them si-
multaneously (“in”). And third, the first and the second altogether (“in &

out”). Notice that the information we use is simply what would be needed
to compute the Jaccard index5 of the sets of in and/or out edges of any
two nodes. The input information is drawn from each of the networks de-
scribed in Table 4.2 separately, and the target network (for which we want
to predict the existence of links) is either UPN (positive relationships) or
UNN (negative relationships)—adding up a to a total of 66 different cases.

To guarantee the robustness of our results we trained six state-of-the-art
machine learning classification algorithms: CART (Therneau and Atkin-
son, 1997), Pruned Trees (Therneau and Atkinson, 1997), Random Forest
(Liaw and Wiener, 2002), SVM with radial kernels and SVM with linear
kernels (Dimitriadou et al., 2011). Since we consider that being able to
predict an existing link is as important as predicting a non-existing one
(i.e. type I and type II errors are equally important), we chose accuracy
(also known as classification rate) as the performance metric for model
selection—it accounts for the ratio of correctly classified instances. The
estimation of the performance metrics was done using a nested 10-fold
cross-validation scheme (Varma and Simon, 2006; Anderssen et al., 2006),
whereas a 10-fold cross-validation (Hastie et al., 2001) was used to train
the classifiers. To prevent sampling biases during the training, the datasets
were balanced so that the two classes (exiting link, non-existing link) were

5The Jaccard index of two sets A and B is defined as J(A,B) = |A∩B|/|A∪B|.
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present in the same proportion. We use all the instances of the class with
the minimum size (exiting link), and sample at random the same number
of cases from the other one (non-existing link)—notice that this implies
that the baseline accuracy is 50%. Although Pruned Trees, Random For-
est, and SVM with radial kernels yielded the best predictions, with similar
performances, all the considered algorithms produced comparable results,
confirming the desired robustness.

4.3.2 Results

In Fig. 4.4 we show the accuracy of the (best) trained models for each of
the classification tasks. The first thing to be noticed is that the performance
is strikingly high, reaching accuracy levels of 92% in both UPN and UNN.
This is a much higher value than those obtained in other attempts made
on off-line positive networks (using information of the same network) (Al-
maatouq et al., 2016), and similar to those obtained for the simpler task of
sign prediction on on-line settings (Leskovec et al., 2010a). In all cases,
with the only exception of the one using information from UPN to predict
UPN itself (see Fig. 4.4A), the “in” set was a better predictor than the “out”
one —and both performed worse than the “in & out”, as could be expected.
This is a quite interesting result since it is showing that there is more infor-
mation about the relationship between two individuals in the set of people
considering them as friends (enemies) than in the group of people that they
regard as friends (enemies). This points to a sort of assymetry that is not
accounted for in neither the SBT (Cartwright and Harary, 1956) nor the
ST (Leskovec et al., 2010b). Interestingly, the information about incoming
ties is typically available also for non-respondents in sociometric surveys.
Hence, our machine learning approach could be prove to be a powerful
tool to deal with missing information in these studies, thus minimising the
impact that missing information may have on the inferred network metrics.

As could be expected the prediction task is better accomplished
when the input information comes from the same type of network (posi-
tive/negative) as the one we want to predict—compare Figs. 4.4A and 4.4B
column-wise. But, importantly, our results also show that each type of net-
work contains (very) much information about the other one, confirming
the hypothesis that their structure is interdependent. More precisely, the
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Prediction of UPN

SP DL LT WW IPN IPN* UPN DW DN INN UNN
input network
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Figure 4.4: Accuracy in links prediction. The colour of the bars indicates
the type of information (see legend) given to the algorithms for the prediction
task (see section 4.3.1). The bars to the left of the dashed, grey lines use
information from networks of positive relationships, while the bars to the right
use information provided by negative ones. A, Prediction of links in the network
of positive relationships, UPN. The highest level of accuracy (92%) is found
when the input information comes from the same network, UPN. When the
information comes from the networks of negative relationships the maximum
(86%) is achieved using UNN for the input information. B, Prediction of links
in the network of negative relationships, UNN. The maximum accuracy (92%)
is achieved using the same UNN for the input information. When positive
networks are used to predict this negative one, the maximum (87%) is reached
using information from UNN.

existence of (positive) links in the network UPN is predicted with an ac-
curacy of 86% when the input information comes from the network UNN.
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Conversely, the existence of (negative) links in the network UNN is pre-
dicted with an accuracy of 87% when the input information comes from
the network UPN. Notice that the results are symmetrical, so that positive
networks contain as much information on negative ones as otherwise.

4.4 Discussion

In this chapter we have presented results from the first of a series of on-
going (longitudinal) sociometric studies that aim, among other things, to
contribute to the growing literature on negative social relationships (Card,
2010). The software we developed to that effect (Conectaula, see Ap-
pendix C.2 for more info) enabled us to quickly collect high-quality data
while preserving the privacy of the participants. Importantly, the partic-
ipants could select as many other alters as they wanted from the entire
pool, so we capture the entire social structure of the school—rather than
relationships among people in the same class or grade. Since the data we
have used were collected from boys and girls from a school (ages 16-19),
our findings and their possible implications must be understood within that
context.

Let us remark that the randomisation method we used to unravel the
gender effects (see section 4.2.1) has proven to be a compelling technique.
While other methods (Freeman, 1978; Shrum et al., 1988; Dijkstra et al.,
2007; Roberts et al., 2008) rely on assumptions about the underlying dis-
tributions, or the linearity of the relationship between variables, the one we
employed here does not use any information that was not initially present
in the data. Also, it allows to control for as many factors as possible and
can detect asymmetrical effects—a fact that had been vastly overlooked
until somewhat recently (Dijkstra et al., 2007). Furthermore, this method-
ology can be extended naturally to analyse any other type of homophily in
social networks (McPherson et al., 2001).

Notice that the information we used to predict the existence of (di-
rected) links comes exclusively from the personal networks of the partici-
pants. Indeed, either of the sets employed (in, out, and in & out) consists of
nominations that the participants made or received, that is, is solely based
on their social relationships. As we have seen (section 4.3), this local in-
formation was enough to predict (directed) links with accuracy levels of
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92%. Strikingly, the same information produced accuracy levels of about
87% when predicting links in a different network, with opposite sign—let
us notice that this numbers would very likely be even higher if we had
combined information from both types of networks to predict the structure
of one of them.

The implications of this result are profound. On the one hand, it
confirms the hypothesis that positive and negative networks are not inde-
pendent, but closely intertwined (Cartwright and Harary, 1956; Leskovec
et al., 2010b). On the other hand, it conveys the message that the structure
of social networks is very well explained as the interconnection of personal
networks—notice in this regard that the algorithms we used had no infor-
mation about either the gender or the age of the participants. Hence, rather
than viewing (local) personal networks as subsets of a social (global) net-
work, social networks shall be best understood as ensembles of personal
networks.

Since the accuracy reached is strikingly high the use of these techniques
for dealing with missing information in sociometric studies (Robins et al.,
2004; Kossinets, 2006; Huisman, 2009) is a promising line of research.
This, nonetheless, might also raise ethical questions. Indeed, even though
one person decides not to participate in a given study, the set of nomina-
tions made towards him or her (in) constitutes a powerful predictor of his or
her relationships. A similar concern has been raised for online platforms,
the so-called shadow profile hypothesis (Garcia, 2017). This theory states
that it is possible to know very much about non-users of these platforms if
we know their acquaintances well enough. Our analysis reveals that this
issue should also be considered when dealing with off-line data, such as
the ones obtained via surveys.

4.5 Conclusions

Our results confirm the existence of relevant gender effects in social net-
works, both in the composition of the personal networks and on the reci-
procity of the relationships (Shrum et al., 1988; Dijkstra et al., 2007;
Roberts et al., 2008; Card, 2010; Berger and Dijkstra, 2013; Stehlé et al.,
2013; Laniado et al., 2016). On the one hand, networks of sympathetic
(positive) relationships exhibit strong homophily effects, which are mostly
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symmetrical for boys and girls. On the other hand, negative relationships
show much weaker and asymmetrical effects. In our study, the tendency
is for girls to have a slightly higher number of antipathetic relationships
with boys than what would be expected according to a (sophisticated) null
model.

Although gender is a relevant characteristic, the use of machine learn-
ing techniques reveals that most of the information that determines the
existence of links (and therefore the overall structure of the networks) is
contained in the way in which the various personal networks are inter-
twined. Hence, we propose that social networks shall be best understood
as ensembles of personal networks (or social atoms)—instead of consid-
ering personal networks as mere subsets of a larger system. The same
techniques also reveal that the configurations of the networks of sympa-
thetic and antipathetic relationships are highly interdependent, which con-
firms the underlying hypothesis of theories such as the Social Balance The-
ory (Cartwright and Harary, 1956) or the Status Theory (Leskovec et al.,
2010b).



5
The structure of negative personal networks

“Keep your friends close, but your enemies closer.”

Michael Corleone
The Godfather: Part II (1974)

The structure and composition of affiliative (sympathetic) personal net-
works has been studied in considerable detail (Dunbar, 2018). In contrast,
far less attention has been given to negative relationships (Card, 2010) and
the precise composition of negative personal networks is not yet well un-
derstood. Interestingly, in Chapter 1 (section 1.1) we saw that the Social
Brain Hypothesis grew out of a Machiavelian perspective of human social-
ity (Humphrey, 1976; Whiten and Byrne, 1988; Dunbar, 1993), so the way
we handle antagonistic relationships might also have been key to the de-
velopment of large brains. If so, the model of social atom we introduced
in Chapter 2 should also apply to describe the organisation of negative per-
sonal networks.
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5.1 Analysis of personal networks

In this chapter, we continue analysing data from the study presented in
Chapter 4. In particular, we will focus on the structure and composition of
personal networks, with emphasis on the antipathetic ones. Further support
for our results and conclusions will be provided by additional evidence
obtained in a different, specifically designed, study.

5.1.1 Degree distributions

The information needed to characterise the composition of an ego net-
work (from the ego point of view) is encoded in his or her out-degree
distribution—or embeddedness. Indeed, the number of relationships re-
ported by the ego in each of the networks (SP, DL, WW, LT, DN, and DW)
encodes how he or she internally organises his or her social world. In Table
5.1 we can see that these numbers exhibit a very clear pattern of correla-
tions. Networks are positively correlated if they belong to relationships of
the same type (both positive or both negative) and, interestingly, not cor-
related otherwise. Hence, there is no connection between the number of
reported positive relationships and the number of reported negative ones,
suggesting that positive and negative networks are handled separately.

Even though the participants reported an unconnected number of posi-
tive and negative relationships, the overall structure of the emergent social
networks is highly interdependent (see Chapter 4). From a socio-centric
perspective, the best way to characterise an ego is to look at his or her in-
degree (or popularity), since it reflects how others see him or her. What we
observe (see Table 5.1) is that the in-degree distributions are (highly) posi-
tively correlated if they belong to the same type and, unlike the out-degree
distributions, negatively otherwise. Hence, individuals who are popular in
a network of positive relationships tend to be so in all of them, and not
‘popular’ in negative ones—and vice versa for individuals who are listed
frequently in a network of negative relationships. Note that in section 4.3
we saw that information about the in-degree was more relevant than that
about the out-degree when trying to predict links, which is consistent with
the correlation patterns we find here.
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5.1.2 Overlapping of networks and social circles

If we focus on the sympathetic networks, we can appreciate how the an-
swers (out edges) overlap to a great extent (see Fig. 5.1), meaning that the
participants typically nominated the same alter in more than one network.
In fact, as we noticed in section 4.2, if we consider the network constructed
as the union of all the positive networks (UPN), we see that the average de-
gree becomes 14.92 (see Table 4.2) as opposed to 31.91, which would be
the expected value if the networks were entirely disjoint.

Recall (see section 1.1) that number (∼ 15) is precisely the typical size
of the sympathy group, which could be defined as ‘all the people whose
death tomorrow would cause great distress’(Buys and Larson, 1979; Dun-
bar, 2018). Remarkably, as we showed in Table 4.2, this network is the only
one with a single strongly connected component (SCC)—see Appendix
C.3 for a succinct definition. Therefore, relationships at this level explain
how the entire social network achieves cohesiveness.

Since the network UPN includes the sympathy groups of the students,
we explore whether there is any evidence for the first of the circles, the
support network (Dunbar, 2018), in our data. This network represents the
closest relationships of ego, his or her primary source of emotional support,
advice, and assistance in time of need, and has a typical size of ∼ 5 (Dunbar
and Spoors, 1995; Hill and Dunbar, 2003). Among all the questions we
asked, the one with the closest meaning is the question about sharing a
severe personal problem—SP. The average degree, in this case, is 6.23
(see Table 4.2), which would be in good agreement with the commonly
observed value of ∼ 5.

Let us move to the focus of this chapter, namely negative relationships.
In fig 5.1 we can appreciate how the networks DN and DW also over-
lap to a great extent and do not overlap (Jaccard = 0.05) with the posi-
tive relationships—which was not unexpected. Additionally, the union of
the negative networks (UNN) has degree 9.04 and the most intense one
(DN) has an average degree of 5.97. A meta-study on antipathetic relation-
ships(Card, 2010) showed that unlimited choice procedures and the use of
less intense items assessing dislike (for example, least like instead of en-
emy) lead to a higher prevalence of antipathetic relationships. Therefore,
it is reasonable to expect that we would have obtained a higher number of
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Figure 5.1: Network overlap (I). The numbers in each separate region show
the number of edges common to the corresponding overlapping networks. The
areas are depicted for illustrative purposes and do not reflect the exact sizes
of the networks. Colour codes in the right indicate which network appears in
each plot.

antagonistic relationships if more questions designed to elicit weak, nega-
tive relationships had been included. In section 5.3 we present results from
a different experiment designed to explore this hypothesis and the finer
structure of personal networks of antipathetic relationships.

5.2 The atomic organisation of negative relationships

The model we presented in Chapter 2 (and similarly in Chapter 3) predicts
that the distribution of the intensities (i.e. in terms of emotional closeness
(Dunbar, 2018)) of human relationships may exhibit two distinct patterns,
namely, hierarchical inclusive layers with a constant scaling (µ > 0) or a
tendency to accumulate very intense relationships leaving aside less sig-
nificant ones (µ < 0).

This pattern is a consequence of the different costs associated with the
different types of relationships(Oswald et al., 2004; Takano, 2018) —the
closer the relationship, the more costly. Since negative social relationships
also come at a cost (time and cognitive wise), the model should be able
to capture how we organise them. Unfortunately, the experiment we in-
troduced in Chapter 4 did not include any direct measure of the intensity
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of the reported relationships. Hence, to fit the model to these data we first
need to assign a weight to each of the links of any given ego.

5.2.1 Assignment of costs

In his classic paper, Granovetter (1977) classified reciprocal links as
‘strong ties’ and non-reciprocal links as ‘weak ties’. Further studies (Fried-
kin, 1980) have confirmed this result—unsurprisingly, perhaps, a relation-
ship that is mutual is stronger than one that is not. In addition, Granovetter
(1977) noted that relationships become stronger if people share many dif-
ferent activities and interests; this is called the multiplexity of a tie. The
concept of weak and strong (Granovetter, 1977) is defined from a struc-
tural, socio-centric viewpoint. However, the emotional closeness of a re-
lationship is one of the best indicators of the strength of the social tie it
forms (Marsden and Campbell, 1984; Granovetter, 1977). Since we have
information on both the reciprocity and the multiplexity of the relation-
ships (see also Chapter 4), we build on these two ideas to create a measure
of the intensity of the links.

When relationships happen in a single (directed) network their reci-
procity is characterised in a binary way, that is, links are either reciprocal
(strong) or they are not (weak). On the other hand, when there are mul-
tiple networks (layers) reciprocity can occur at least at three levels; a link
can be reciprocated in the same layer (S ), in a different layer (O), or not
reciprocated at all (N). From a social perspective these three types of be-
haviours are rather different, since a reciprocal link from the same network
(S ) is signalling a relationship that is not only mutual, but also agreed in
its nature. Hence, we consider that links reciprocated at the same layer
(S ) have a higher value (intensity, strength) than those reciprocated in any
other layer (O). Similarly, we also consider that the latter (O) have a higher
value than those not reciprocated at all (N).

The previous ordering of S ,O and N can be naturally extended to set-
tings in which relationships may be formed out of more than one of these
types of links—as it is the case in our data. All we have to do is to agree on
how to compare any two pairs of these combinations. For example, we all
would agree that a relationship based on four (as in our positive networks)
S links has a higher value than one based on a single, non-reciprocated
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link (N). To extend this idea we choose a very simple decision algorithm:
Take any two sets with elements ∈ {S ,O,N}. Then, the one with more S s is
assigned the highest value. If a draw happens then the one with more Os
has a higher value. If a draw still happens then the one with more Ns has
a higher value—in case of a draw in all categories assign them the same
value.

If we apply the former rule to a single network, we recover the no-
tion of strength from Granovetter (1977), where only two types of links
can happen, S (reciprocal) or N (non-reciprocal), and S is considered
stronger. Adding an extra layer induces six different possibilities, and
the above described algorithm results in the following (unique) ordering:
{S ,S } > {S ,N} > {S } > {O} > {N,N} > {N}. Since we have two negative
networks (DN and DW), we can use this ordering as a proxy for the in-
tensity of the (negative) relationship between any two individuals. Simi-
larly, considering four layers (the number of positive networks in our data)
results in a (unique) sequence of twenty ordered strengths: {S ,S ,S ,S } >
{S ,S ,S ,N} > · · · > {N,N} > {N}. These ordered sets of strengths can be
used to measure the intensity of the relationships—which we choose to
decrease linearly for convenience (see section 2.1.3).

5.2.2 Model fitting

The number of alters with whom an ego has a relationship of maximum
strength ({S ,S } or {S ,S ,S ,S }) can now be assigned to his or her `1, and so
on until the number of relationships with strength {N} (assumed to have the
lowest cost) is attached to `r—see section 2.1 to refresh the notation. So,
at this point, we have all the information needed to fit the model as we did
in Chapter 2—see section 2.2.1. However, in this chapter we will proceed
in a slightly different way. The reason behind this variation is that we want
to further explore the existence of a particular value of the parameter µ that
characterises populations—the model per se is a model of individuals, not
communities.

Recall that the value of µ is determined by the value of S/L according
to (see Chapter 2, equation 2.23)

s1−S/L

s1− sr
= f (µ) ≡ eµ

(r−1)erµ− re(r−1)µ+ 1
(r−1)(erµ−1)(eµ−1)

,
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were s1 is the cost associated with `1 (the most expensive), sr the cost
associated with `r (the least expensive), and r is the number of considered
layers. The former expression leads to a linear relationship between S
and L given by S = (s1− f (µ)(s1− sr))L ≡ g(µ)L. For the analysis shown
in this chapter we choose, without loss of generality, a linear decrease in
the costs with, s1 = 1, sr = 0.1, and r = 4, and estimate S and L for each
individual as S ≡ S =

∑r
k=1 sk`k and L ≡ L =

∑r
k=1 `k respectively —which

are indeed the maximum likelihood estimators.
The slope of the linear regression, let’s say x, is used to estimate µ by

numerically solving the equation g(µ) = x. The 99% confidence interval
for the slope is computed using Bca Bootstrap (Bishara and Hittner, 2012;
DiCiccio and Efron, 1996) (nsamples = 106), and this interval is used to
compute the 99% confidence interval for the estimated µ. Importantly, this
estimation is based on information from the entire population. Therefore,
if the linear regression produces significant results, the estimate would rep-
resent a characteristic value of µ for that particular population.

Notice that the actual number of layers in which we divided the positive
(r = 20) and the negative (r = 6) relationships is not considered here—
we consider r = 4. The reason is that the value of µ depends some-
what arbitrarily on the number of categories (layers) in which we split
the relationships—see also Chapter 3. To facilitate the comparison with
the empirical results observed for Dunbar’s circles we choose r = 4 to es-
timate the parameter. Note, however, that the observed value of r = 4 for
the empirical data is not arbitrary, as it seems to be the optimised value for
large datasets (Mac Carron et al., 2016; Dunbar et al., 2015).

5.2.3 Results

In Figs. 5.2A and 5.2B we show the scatter plots of the pairs (L,S ) for the
positive and the negative relationships. As we can see, in both cases the
values are clustered around straight lines, with R2 = 0.77 for the positive
relationships and R2 = 0.73 for the negative ones, in agreement with the
model—see section 5.2.2. The slopes of these lines determine the charac-
teristic value of µ for both types of relationships in the school population.
The positive relationships turn out to be centred around a value of µ+ = 0.67
([0.60,0.75]99%) and the negative ones around µ− = 1.05 ([0.88,1.46]99%).
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Figure 5.2: Parameter estimates for positive and negative relationships
(I). A, Linear regression S ∼ L for the positive relationships (n = 300, the indi-
viduals with no relationships have been excluded). The fitted line (R2 = 0.77)
has a slope of 0.32 ([0.31,0.35]99%), resulting in an estimated value of µ+ = 0.67
([0.60,0.75]99%) —see Methods. The green, shadowed region corresponds to
the 99% confidence interval for the slope. An outlier with L = 51,S = 13.5 has
been excluded in the plot but taken into consideration in the fitting. B, Lin-
ear regression S ∼ L for the negative relationships (n = 284). The fitted line
(R2 = 0.73) has a slope of 0.24 ([0.19,0.28]99%), which results in an estimated
value of µ− = 1.05 ([0.88,1.46]99%) —see Methods. The purple,shadowed re-
gion corresponds to the 99% confidence interval for the slope. An outlier with
L = 85,S = 12.6 has been excluded in the plot but taken into consideration in
the fitting. C, Scatter plot of pairs of parameters. The figure shows the pairs
(µ+,µ−) for the 268 cases for which we can estimate both µ+ and µ− for the
same individual —see Methods . The Pearson correlation coefficient is small
(r = 0.14) and, although p = 0.03, the 99% confidence interval ([−0.01,0.28]99%)
crosses zero.

Notice that the confidence intervals of the estimates for both types of rela-
tionships do not overlap, so the hypothesis that both values are indeed the
same should be rejected.

The values of the estimated parameters are close to the typically ob-
served scaling of circles (Zhou et al., 2005; Dunbar, 2018) ∼ 3, which
would correspond to µ ≈ 1.01. The positive networks, however, exhibit a
slightly lower value, 0.67, which would indicate a higher tendency to sta-
blish strong relationships over acquaintances. In any case, both types of
networks exhibit a preferred, positive scaling, which translates into per-
sonal networks typically organised with disproportionally more weak rela-
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tionships than strong ones(Hill and Dunbar, 2003; Dunbar, 2016; Tamarit
et al., 2018).

Positive and negative relationships seem to be characterised by particu-
lar (and different) values of the parameters, but there also exists variability
across individuals—notice the dispersion of points in Figs. 5.2A and 5.2B.
Next, we analyse if there is any connection between the parameters esti-
mates of a given individual in the different networks (µ+ and µ−). In Fig.
5.2C we show the scatter plots for the cases in which we can estimate both
µ+ and µ− for the same individual1. Although there exists a weak corre-
lation (r = 0.14, p = 0.03), the 99% confidence interval ([−0.01,0.28]99%)
includes the zero, so the the hypothesis that there exists no correlation can
not be rejected —and in any case it is weak. In agreement with the fact
that the out-degree distributions are not correlated (see Table 5.1), this re-
sult endorses that the internal organisation of positive and negative personal
networks follow independent (but similar) patterns for every individual.

5.3 Further evidence: an additional experiment

So far we have presented results from a single sociometric study conducted
in a school. We have focused on analysing the structure of personal net-
works of positive and negative relationships, and found that the similari-
ties between them are considerable. More importantly, perhaps, we have
shown that our model of the social atom (Tamarit et al., 2018) also applies
to antagonistic relationships. Notice that the implications of this result are
profound, since we present (at least) prima facie evidence that an equiva-
lent pattern to Dunbar’s circles also exists for negative relationships.

We acknowledge, nevertheless, that the study we have presented has
limitations that may weaken the conclusions we can draw from it. Firstly,
the intensity of the links had to be inferred from indirect measures such
as multiplexity and reciprocity (see section 5.2.1), and, although these
measures are reasonable proxies (Marsden and Campbell, 1984; Fried-

1The individuals’ parameters are estimated as explained in section 5.2.2 but using
simply the corresponding value S/L of the individual—not the estimated slope of the
regression. We excluded values for which either L = 0 or |µ| > 10 —which are consid-
ered divergences. The confidence interval for the Pearson correlation coefficient is also
computed used Bca Bootstrap (nsamples = 106).
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kin, 1980; Granovetter, 1977), it is uncertain to what extent this particular
choice may impact the results. Additionally, some of the questions indi-
cated a higher level of proximity (for example SP) so, according to our
model and the underlying theory, should incur in a higher cost. Secondly,
the number of questions about positive and negative relationships was not
balanced, so the results for both networks are hardly comparable. Most of
these limitations are due to the fact that the experiment was designed hav-
ing other research questions in mind—see also Chapter 4. To overcome
this issue and assess the robustness of the (bold) results we present in this
chapter, we performed a second study designed to measure the intensities
in a more clean and balanced manner.

5.3.1 Experimental design

The new study was performed in December 2018 (13-21) in the same
school we described in Chapter 4. This time, the teachers were instructed
to independently carry out the data collection using Conectaula (see Ap-
pendix C.2). The pool of participants included 432 individuals (179 males)
from grades 5-11 (ages ranging 10-17), but one of the courses (grade 11)
ended up not doing the study. Eventually, we collected data from 343 stu-
dents (148 males). The questionnaire included several questions organised
in three main sections: social information, educational attainment, and use
of technologies—it took about 30 minutes to be completed. This study is
part of a set of experiments in which we explore the formation and diffusion
of social norms. Here, we will briefly describe the main results regarding
the organisation of antipathetic and sympathetic personal networks. Unfor-
tunately, the file the school uploaded with the personal information of the
students had a format error. As a consequence, the identifiers of the par-
ticipants do not match the ones from our previous study— and we cannot
treat this as a longitudinal study.

The new questionnaire was designed having several desiderata into ac-
count. Our goal was to get information about the entire personal network
of the students in a weighted manner, so that no external assignment of in-
tensities was in order—see section 5.2.1. Ideally, students would select any
other peer in the school and “rate” his or her relationship with that person
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in a Likert scale. Our software, however, does not provide that feature 2,
so we opted for a simplified, direct set of questions divided in two parallel
blocks of positive and negative relationships3:

The questions regarding positive relationships were as follows (see Ap-
pendix D.1 for the original version in Spanish):

rWho are your friends at school?

rr Considering your friends: With whom do you have a closer rela-
tionship?

rrr Finally, among your closest friends: who would you say are
your best friends? (We are referring to those people with whom you
are ”flesh and bone”).

Negative relationships were asked in the following way:

☠ Which schoolmates you do not quite like or do not have a good
relationship with?

☠☠ Considering people you do not quite like: who do you dislike
or do you usually have problems with?

☠☠☠ Lastly, considering people you dislike: is there any person
with whom you have a particularly bad or problematic relationship?

As can be observed, in both cases the structure of the questions is inclu-
sive, reflecting how the social circles were defined in section 2.1.3. First we
ask about the relationships (positive/negative) of lesser intensity and pro-
gressively increase the level of proximity. Therefore, it is to be expected
that if a person is marked in a category of higher intensity (i.e. rrr ), he
or she has also been marked in the categories of lower intensity (i.e. rr,
and r ).

2We have collaborated in the design of a questionnaire for the company BraveUp
which will include this option. See Chapter 6, section 6.3.1 for details.

3Each question was displayed on a different page. The students had to click “next”
(“back”) to proceed between questions.
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5.3.2 Results

In Fig. 5.3 we see how the intersection patterns of the different networks
reflect the inclusive nature of the questions. In the positive networks (Fig.
5.3B), 89% of the most intense relationships (rrr) were also selected as
medium (rr) and low (r), and 95% of the medium ones (rr) were in-
cluded also as low (r). The results regarding negative relationships (Fig.
5.3B) show that 62% of the most intense (negative) relationships were re-
ported also in the lower categories, and 76% of the medium ones were
reported as low. Compared to the results obtained for sympathetic rela-
tionships (Fig. 5.3B), this result indicates that the inclusive nature of the
questions was worse understood. In addition, in Fig. 5.3C we can see how
a small proportion (1.9%) of links were reported as both positive and neg-
ative, indicating the presence of some noise in the data—but lower than in
the previous study.

Assigning a weight to the relationships is straight forward thanks to the
new set of questions. The intensity of a (directed) link is simply taken to
be the highest level reported. For consistency, we will refer to the different
levels as layers, and to its inclusion as circles—see Chapter 2. The average
number of alters (and its standard deviation) in the positive layers was `+

1 =

4.44 (5.25), `+
2 = 3.73 (4.07), and `+

3 = 10.23 (7.69). Notice that the most
intense relationships show again an average value ∼ 5, and the overall size
of the personal networks is 18.53 (10.80), close to 15. Additionally, `+

2 is
the least populated layer reflecting that relationships tend to group in either
the first layer (support clique) or the third (the rest of the sympathy group).

The average values for the negative relationships are `−1 = 0.91 (1.66),
`−2 = 1.44 (2.61), and `−3 = 4.52 (7.41), thus, on average, the total number
of negative relationships is 6.86 (08.49), a lower value than in our previous
study, 9.04—see section 5.1.2. Actually, the network DN had itself an
average degree of 5.97, so it seems that the refinement of the questions has
lead to a higher resolution in the most intense relationships, not the less
intense ones—perhaps, the first item (k) was already direct enough to elicit
strong relationships.

In a nutshell, in section 5.2.3 we obtained one main result: positive and
negative relationships were organised around distinct, uncorrelated values
of the parameter (µ > 0). That is, the organisation of antipathetic personal
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Figure 5.3: Network overlap (II). All figures are Venn diagrams of the num-
ber of edges common to the corresponding overlapping networks. A, Over-
lapping of negative networks. B, Overlapping of positive networks. C, Non-
overlap of positive and negative networks.

networks mirrored that of the sympathetic ones. The results from the sec-
ond study confirm this fact. Both types of relationships fit remarkably
well (R2

+ = 0.82 and R2
− = 0.85) to straight lines with distinct values of the

parameters (µ+ = 0.38, µ− = 0.96)—see caption in Fig. 5.4 for details. Fur-
thermore, Fig. 5.4C reveals, as it did in section 5.2.3, that the pairs (µ+,µ−)
are not correlated; hence, both networks are organised independently.

5.4 Discussion

In this chapter we have presented results on the organisation of positive
and negative personal networks. The data we used was obtained in two
separate studies (with different sets of questions) performed in the same
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Figure 5.4: Parameter estimates for positive and negative relationships
(II). This figure is equivalent to Fig. 5.2 but with data from a second study—
see section 5.3 and 5.2.2 for details. A, Linear regression S ∼ L for the positive
relationships (n = 342). The data are grouped around a straight line (R2 = 0.82)
with estimated value of µ+ = 0.38 ([0.09,0.50]99%) —see section 5.2.2. The
green, shadowed region corresponds to the 99% confidence interval for the
slope. B, Linear regression S ∼ L for the negative relationships (n = 312). The
fitted line (R2 = 0.85) results in an estimated value of µ− = 0.96 ([0.62,1.44]99%).
The purple,shadowed region corresponds to the 99% confidence interval for
the slope. C, Scatter plot of pairs of parameters. The figure shows the pairs
(µ+,µ−) for the 226 cases for which we can estimate both µ+ and µ− for the
same individual. The Pearson correlation coefficient is very small (r = 0.07)
and the 99% confidence interval ([−0.12,0.28]99%) broadly crosses zero—so
there is no correlation.

school—sample sizes ∼ 300. In both cases, the average number of positive
relationships converged to ∼ 15, the typical size of sympathy groups, and
the number of most intimate ones was compatible with the typical size of
the support networks(Dunbar, 2018) ∼ 5.

It is remarkable that these numbers arise in a setting in which the uni-
verse was restricted to schoolmates, without considering family members
and other possible relationships from outside the school. However, ours
is not the only setting in which a restrictive social environment exhibits
numbers in agreement with these social circles—see also Chapters 2 and
3. A good example is provided by on-line social networks (OSN) such as
Facebook or Twitter, in which this precise structure has also been found
(Dunbar et al., 2015). In this case, it is likewise unlikely that all social
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relationships of the individuals occur within the boundaries of such plat-
forms.

Both the school and the OSN can be regarded as closed, social envi-
ronments in which an individual establishes relationships in a very con-
centrated social environment. The fact that the structure of (positive) per-
sonal networks in such settings resembles that of an entire, open social
environment suggests that this pattern of relationships, the circles and their
characteristic sizes (or their scaling), act as a sort of “template” that is re-
produced at different scales, in different environments(Fuchs et al., 2014;
Saramäki et al., 2014).

More surprising is the finding that personal networks of negative rela-
tionships are organised similarly. In other words, that an equivalent pattern
to Dunbar’s circles also exists for negative relationships. However, the
size of the negative networks was significantly lower in both studies, and
the central value of µ− was higher than µ+. These two facts taken together
suggest that the amount of energy we devote to negative relationships is
somewhat lower than the one we dedicate to positive ones. Nevertheless,
it is a bit far-fetched to ensure that the intensities of the bonds, as we have
measured them, are also comparable in their costs, so the only thing we
can affirm is that the size of negative personal networks is smaller than the
corresponding for positive (Card, 2010).

Our results further suggest that, from the ego’s viewpoint, positive and
negative networks are intrinsically different, working as separate, but self-
consistent, social environments. As we have seen, their degree distribu-
tions were not correlated, and both exhibited different, but self-consistent
scaling patterns. Thus, from the individuals’ perspective, positive and neg-
ative relationships seem to be idiosyncratically different. In the light of
the model described in the introduction (Tamarit et al., 2018), these results
have a precise interpretation. If we assume that individuals devote a cer-
tain amount of resource to each of the different social environments, then,
the internal organization of such networks would still be governed by Eq.
2.17. That is, in each of these contexts, a given amount of resource has to
be allocated among the different relationships as if that particular context
was the only one available.

A good example of this would be precisely the scenario on which this
(and the previous) chapter focuses: a school. Although students may cer-
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tainly have relationships outside the centre, the school’s social ecosystem
functions as an independent entity in which they spend a given amount of
time and are forced to interact socially with a more or less stable set of in-
dividuals. These are the individuals with whom they share most common
interests (the homophily effect (McPherson et al., 2001)) and hence are the
individuals they feel most emotionally engaged with.

Nevertheless, if we aggregate all possible social contexts, and their as-
sociated costs, we would recover an identical situation where the cost of a
relationship is the combination of the ones in the different contexts, and the
total limitation of resource is given by the overall capacity of the individ-
ual. Indeed, the resulting personal networks would be organised similarly.
Furthermore, if the actual equilibrium between resource (S) and size of
the personal network (L) occurs around a value ofL = 150, with estimated
parameter µ ∼ 1, then the expected numbers in an hypothetical distribution
of alters into four layers would be very similar to the so called Dunbar’s
circles(Zhou et al., 2005): 5, 15, 50, 150. Therefore, the model gives a
plausible explanation for the ubiquity of this type of structure and connects
it to an overall limitation on humans’ relationships.

The reason why there appears to be a discretisation in the structure of
egocentric networks of this kind is uncertain. Indeed, the model allows for
any number of layers (or even a continuum, see Chapter 3) and there is
no a priori reason to choose one over the other. The dual interpretation of
personal networks, that is, whether they have a precise discrete structure
or they are a continuum (or, perhaps, both), is an interesting question to be
addressed. To shed light on this issue, any closed, social environment in
which one can measure the intensity of the relationships of the individuals
can be used to test the hypothesis that we indeed use a sort of discrete,
social template to manage the complexities of social interaction.

5.5 Conclusions

The structure of personal networks of antipathetic relationships mirrors
that of the positive ones. Both types of relationships are well described by
the social atom model (Tamarit et al., 2018), and each of them seems to
be characterised by a different (population-level) positive estimate of the
parameter. Interestingly, there exists no correlation between the parame-
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ter estimates of different networks, so individuals handle them as separate
entities—or social environments.

The average number of negative relationships reported is consistently
lower than the number of sympathetic ones. The latter tends to be sta-
ble around the typical size of sympathy groups (15), and, remarkably, the
number of most intense positive relationships was also consistent (in two
different settings) with the standard figure for support groups, 5.

We argue that the composition of all kinds of personal networks (on-
line, offline, workplace, positive, negative, etc.) seems to be governed
by a sort of (psychological) social template that humans adapt to differ-
ent contexts, with different cognitive demands. The resource allocation
within contexts, however, is equally governed by the model presented in
this thesis—although the model is indifferent to the precise sizes of the
networks.



6
Conclusions and future work

“It seems that if one is working from the point of view of getting
beauty in one’s equations, and if one has really a sound insight,
one is on a sure line of progress.”

Paul Dirac
The evolution of the physicists picture of nature (1963)

This thesis set out to contribute to the realm of social physics, with
a special focus on human social networks. In particular, we developed
a model of how humans handle social relationships (based on the Social
Brain Hypothesis) which has proven to be strikingly accurate and with
high predictive power. Building on that seminal theory, we extended our
research to cover a continuum description of layers, the structure of per-
sonal networks of negative relationships, and the role that negative social
relationships have in the overall structure of the social networks. Here we
summarise in some detail those main results and outline some further lines
of research that open as a consequence of this work.
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6.1 The social atom

In Chapter 2 we introduced a model that explains the organisation of per-
sonal networks as a resource allocation problem. The problem is that of
splitting a given amount of resource (S) among a number (L) of relation-
ships that incur in different costs. The allocation of resources determines
the proximity, or emotional closeness, of these relationships, which are
organised according to the maximum entropy principle. Eventually, the
organisation of personal networks depends on a single parameter, µ, which
characterises two distinct types of behaviours depending on the ratio S/L.

When µ > 0 (S/L low) the model reproduces pervasive experimental
evidence showing that humans organise relationships in a series of hier-
archical circles (with characteristic sizes) of increasing size but decreas-
ing intensity, or proximity—we call this the standard regime. These so-
cial circles (“Dunbar’s circles”) typically exhibit a more or less constant
scaling ratio ∼ 3, and represent an internal structure to the so call “Dun-
bar’s number”. On the other hand, when µ < 0 (S/L large) we have that
few strong relationships are greatly favoured instead of a larger number of
acquaintances—we call this the inverse regime. This new type of organ-
isation was predicted by the model and confirmed empirically using data
from four different communities of immigrants (Tamarit et al., 2018).

Two different empirical pieces of evidence, namely “Dunbar’s number”
and “Dunbar’s circles”, are intimately related to the SBH. However, it was
unclear how both facts related to each other. The hierarchical organisation
of personal relationships (Dunbar’s circles) has, a priori, nothing to do with
the existence of an upper limit to the number of these relationships (Dun-
bar’s number). Furthermore, the existence of a constant scaling remained
a conundrum (Zhou et al., 2005). Our model provides a precise, mathe-
matical interpretation of how these phenomena emerge from the roots of
the SBH. More precisely, as we described in Chapter 2: “when individu-
als handle a fixed number of relationships (on average) (Hill and Dunbar,
2003; Saramäki et al., 2014; Wang et al., 2016), which are not equally
costly (Oswald et al., 2004; Sutcliffe et al., 2012), and they have a con-
strained capacity (on average) to manage them (Dunbar, 1993; Miritello
et al., 2013), then the most likely organisation of these relationships (dic-
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tated by the maximum entropy principle) exhibits a constant scaling (Zhou
et al., 2005; Hamilton et al., 2007; Dunbar et al., 2015)”.

Importantly, the internal organisation of personal networks seems to
depend entirely on the ego (and the availability of relationships), and not
on the structure of the (emergent) social system. It is a local property, ex-
plained by a (cognitive) constraint that applies to all individuals indepen-
dently. Therefore, it is appropriate to talk of our model as a representation
of a social atom, not only because it reproduces a structure of layers and
energies that could resemble physical particles, but primarily because it de-
scribes the cornerstone of any social system: how individuals handle their
relationships.

6.1.1 Continuous interpretation

As we have seen, the typical structure of the personal networks consists
of a discrete set of hierarchically inclusive layers with specific sizes (Zhou
et al., 2005). Consequently, the model we first developed in (Tamarit et al.,
2018) considered a discrete set of categories (layers). In Chapter 3 we pre-
sented an alternative version of this model in which layers were no longer
needed and relationships were classified on a continuous scale. The two
regimes found in the discrete version also exist in its continuous variant.
Remarkably, since the continuous version was built upon the discrete one,
we could estimate how the constant scaling of ∼ 3 (µ ≈ 1) translated in
this new framework, resulting in a prediction for its (unique) parameter
of η ≈ 6—a rough estimation. We confirmed the prediction η ≈ 6 in three
different datasets from phone records (Saramäki et al., 2014), face-to-face
contacts (Isella et al., 2011), and interactions in Facebook (Arnaboldi et al.,
2012).

In other words, as the discrete layers collapse in a continuum, the hi-
erarchical nature gives rise to a universal scaling parameter that does not
depend on a particular choice of layers—however, it must be calibrated
with a minimum and a maximum for the intensities. Since both versions
of the model rely on the same principles, and the parameter estimates are
consistent with each other, it follows that the model must be capturing
a key feature of how humans allocate social resource—according to the
maximum entropy principle.
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The continuous interpretation of the social atom presented in Chapter
3 produced additional exciting results. We showed that the estimate of η
for each individual captures, with a single real number, the so-called social
signatures (Saramäki et al., 2014) found in human communications. More-
over, we confirmed that the structure of online relationships in Facebook
mirrored the offline world (Arnaboldi et al., 2012; Dunbar et al., 2015). In
addition, the distribution of the parameter estimates in this large dataset
from Facebook (Arnaboldi et al., 2012) exhibited a long tail of individu-
als with disproportionally large networks. This result further endorses an
earlier statement (Tamarit et al., 2018) that online social networks shall
favour the standard regime. Nevertheless, we also found a tiny fraction of
individuals (0.3%) with networks in the inverse scheme (η < 0).

6.1.2 The structure of negative personal networks

A significant part of Chapters 4 and 5 aimed to contribute to the growing
body of knowledge on negative social relationships (Card, 2010). Remark-
ably, our experimental results show that the model of social atom (Tamarit
et al., 2018) also describes the organisation of antipathetic personal net-
works. Even though their size is significantly smaller, negative networks
also exhibit a hierarchical substructure. Individuals, nonetheless, treat both
types of networks separately: There is no correlation either in the number
of reported positive and negative links or the parameter estimates (µ+ and
µ−)—and, unsurprisingly, negative and positive relationships are mutually
exclusive.

Our data show that the number of sympathetic relationships tends to
be stable around the typical size of sympathy groups (15), and, that the
number of most intense positive relationships is also consistent with the
standard figure for support groups, 5. Notice that these particular numbers
are ubiquitous in the literature (Dunbar, 1998; Zhou et al., 2005; Dunbar
et al., 2015) even though they emerge in somewhat different social con-
texts. It seems therefore that this specific pattern of organisation acts as a
sort of template that helps us to deal with the complexity of social inter-
action; a structure that we reproduce and adapt to the different contexts in
which we interact socially.
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Since the model is agnostic towards a discrete or a continuous organ-
isation of the networks (see Chapter 3), the explanation to the ubiquity of
characteristic, distinct sizes must be found elsewhere. Nevertheless, if we
fix the number of layers and the size of the networks, setting a particular
number of alters in any layer would very much determine the organisation
of the others. It is particularly interesting that the first layer (support group)
may indeed act as a seed to the pattern of the whole structure (Dunbar,
1993; Zhou et al., 2005). Notice that when humans are born, we depend,
for quite a few years, on the care of a primary group for our survival. It is
therefore reasonable to conjecture that this primary group imprints a sort
of model that we use to deal with relationships later on in our lives—in
fact, a similar mechanism of social inheritance has been able to explain the
structure of other animals’ networks (Ilany and Akcay, 2016).

6.1.3 Further applications of the model and future work

The models we presented in Chapters 2 and 3 were completely general.
The abundant regularities reported in the structure of personal networks
(Dunbar, 2018) motivated them, but their principles apply to any situation
in which someone has to (more or less freely) assign a limited resource
among many options. Here we present just a couple of examples of poten-
tial applications of the model, but, given its generality, it may well serve
for other (perhaps unexpected) purposes—some of which we are currently
exploring or will address in the future.

Firstly, let us notice that the quotient S/L seems to be very similar
across genera of primates (including humans) (Dunbar, 1993). Besides, al-
though their typical group sizes differ significantly, the same scaling is also
present in groups of non-human primates (Dunbar et al., 2018). Hence, we
are confident that our model could apply to other complex social species,
starting with primates.

Back to humans, organising our networks is not the only situation in
which we have to allocate a fixed amount of any resource among differently
costly options. A good example is how we distribute our time in familiar
locations. In a recent study, Alessandretti et al. (2018) found evidence that
the number of places we visit and the way we allocate our time among them
are conserved quantities at any point; a picture that clearly resembles what
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is found in the organisation of personal networks (Tamarit et al., 2018).
Moreover, the same study reports a significant correlation between the total
number of places an individual visits and the size of his or her network. It
is therefore plausible that the model we presented in Chapter 2 may also
lie behind this phenomenon.

A last example worth mentioning is the allocation of time in different
tasks within a given context. For instance, let us consider the edition of
articles in Wikipedia. A given editor has a practically infinite number of
articles to choose from. Naturally, he or she must focus on a reduced set
of them. Within this limited set, he or she dedicates different amounts of
time to various articles, from correcting a typo, to enter a discussion on a
controversial topic. The analogy with our model is apparent if we consider
the different articles as the “alters”, and the time (or any other measure like
the number of edited words) as the intensity of the edition.

6.2 Atomic (social) ensembles

Beyond the limited resource allocation scenario, having a social atom
model that is consistent with (and even anticipates) experimental observa-
tions on personal networks allows us to start thinking on the next level of
structure in human relationships: social networks. In chapter 4 we delved
into this problem for the first time and presented results from a novel ex-
periment carried out in a school—with software designed by the research
team. The most important features we observed are:

6.2.1 Homophily and gender effects

Our data confirms the presence of relevant gender effects in the composi-
tion and the structure of social networks (Shrum et al., 1988; Dijkstra et al.,
2007; Roberts et al., 2008; Card, 2010; Berger and Dijkstra, 2013; Stehlé
et al., 2013; Laniado et al., 2016). Importantly, these effects are not neces-
sarily symmetrical. Whereas the out-degree distributions of positive rela-
tionships showed strong homophily effects, those of negative relationships
presented no effects for boys, and a weak over rejection of girls towards
boys. We also found a similar result in the reciprocity of the relationships.
Boys and girls tend to be more reciprocal in positive relationships if the
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other person is also a boy or a girl, respectively. Interestingly, this phe-
nomenon is more pronounced in girls, with boys showing no predilection
towards any particular gender in the networks of strongest relationships
(IPN, IPN*, and SP). Once again, the effects in negative networks are much
weaker, and only significant for girls—who tend not to reciprocate bad re-
lationships from other girls, and to over reciprocate those coming from
boys.

6.2.2 Interplay between positive and negative networks

One of the most striking results of this thesis came from exploring the inter-
play between positive and negative networks—Chapter 4. Using state-of-
the-art machine learning techniques (Therneau and Atkinson, 1997; Liaw
and Wiener, 2002; Dimitriadou et al., 2011) we found that most of the in-
formation that determines the existence of links (and therefore the overall
structure of the networks) is contained in the way in which the various
personal networks are intertwined.

When the information given was the number of alters (in and out edges)
in a positive network (UPN), and the number of common acquaintances,
the algorithms reached an accuracy of 92% predicting the existence of a
(directed) link in the same network. More surprisingly, if the same in-
formation was provided, but this time from the negative relationships, the
algorithms were still able to predict the existence of a positive, directed link
with an accuracy of 86%. Interestingly, the results are (practically) sym-
metrical with respect to the sign of the relationship. Our results may con-
firm the underlying hypothesis of theories such as the Social Balance The-
ory (Cartwright and Harary, 1956) or the Status Theory (Leskovec et al.,
2010b), namely that the structures of both types of networks are highly
interdependent.

As we have seen, local information about the overlap of personal net-
works contains an enormous predictive power on the overall structure of
a social network. Hence the importance of studying personal networks
(Perry et al., 2018): personal networks are not mere subsets of social net-
works; social networks are ensembles of personal networks.
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6.2.3 Future work

Machine Learning to deal with missing data

One potential application of the results summarised in section 6.2.2 is to
help researchers to deal with missing information in sociometric surveys.
Indeed, when inferring network measures in a given context, not having
complete information may have a major impact on the results (Robins
et al., 2004; Kossinets, 2006; Huisman, 2009). Importantly, if the individ-
uals not completing the study can still be nominated by the respondents,
our results show that we could reconstruct the networks of these people
with high accuracy (∼ 90%)—based solely on the answers given by the
respondents.

Notice that, even though this technique might be beneficial for re-
searchers, it also raises some ethical concerns. Indeed, it may well be
the case that the non-respondents may have freely decided not to give their
data and, nonetheless, the research team would be able to recreate them. A
similar situation has been reported in online settings, the so-called shadow
profile hypothesis (Garcia, 2017), and should also be taken into account
when gathering data in off-line, more traditional contexts.

The social fluid

This thesis has focused on studying and modelling the way humans handle
relationships, but the final goal is to understand the collective behaviour
of social systems. The way we humans organise our networks is very
stable (Saramäki et al., 2014), deeply rooted in our psychology (Fuchs
et al., 2014), and ultimately linked to our brain capacity (Dunbar, 1993).
Therefore, any model attempting to characterise global properties of the
emergent networks must be (at least) consistent with this constraint of its
constituents (Tamarit et al., 2018). Once we have a precise, mathematical
description of the latter, the social atom, we can start thinking of building
models of social collectives, that is, ensembles of particles.

Let us begin by the simplest scenario; let us build our first toy-society.
The inhabitants in this toy-society inherit a common template given by the
model presented in Chapter 2—for simplicity, we stick to the discrete ver-
sion. This template consists of social holes, organised in a series of r layers
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with different costs, that must be filled in to achieve balance. Notice that
the templates can be controlled by fixing the ratio S/L of the population
and the number of layers. Then, if a network is not adequately filled, we
consider that a sort of dissonance (Heider, 1946; Festinger, 1957) acts as
potential energy forcing1 the individuals to try and complete their layers—
as physical atoms do when their charges are not balanced.

Notice that our toy-society is purely individualistic. A relationship is
satisfying (fills in a hole) as long as the person who experiences it believes
it so. Reciprocity does (a priori) not matter at all. Each of the inhabitants in
our toy-society can have a relationship ri of level 1,2, . . . ,r with any other
neighbour. Likewise, that particular neighbour is free to have any rela-
tionship (r j) with him or her—or no relationship at all. Consequently, each
relationship in the emergent network is characterised by a pair (ri,r j). If we
assume symmetry, so that the overall network is indifferent to the particular
direction of the links, then (ri,r j) ≡ (r j,ri). In that case, and excluding no-
relations (ri = 0,r j = 0), we have a total of Nl = (r)(r + 3)/2 possible types
of relationships, each of them characterised by a (symmetrical) energy Ei j.

The main insight of the models we want to build is that each of the Nl
links may have a different energy, which may affect the overall composition
of the social network. This energy determines the stability of the ties and,
therefore, the probability that we find them in systems in equilibrium. This
approach is connected to the so-called exponential random graph models
(ERGM) (Holland and Leinhardt, 1981; Snijders, 2011), which, as Park
and Newman (2004) showed, play the role of the Boltzmann distribution
in classical statistical mechanics.

Eventually, the whole process reduces to find a suitable graph Hamil-
tonian for the system (Park and Newman, 2004). The Hamiltonian H(G)
determines the probability of observing a particular graph (G) (within the

ensemble of all possible graphs) as P(G) =
e−H(G)

Z
, where Z is the normal-

isation constant (or partition function). In our toy-society, a simple version
of the Hamiltonian could be the sum of all the energies of the edges in
the network. Once we have a suitable Hamiltonian, the partition function

1Let us note that the term ‘force’ is explicitly used in (Heider, 1946) to state how
unbalanced situations tend to balance—see also section 1.2
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Z =
∑

G e−H(G) encodes the information needed to find the expected values
of the parameters (i.e. the different energies Ei j) given empirical data.

With an appropriate model and suitable data, we can obtain the empir-
ical energies, thus fully characterising the global system (in equilibrium).
We can draw predictions about the evolution of the system, expected val-
ues for macroscopic variables (such as the reciprocity), and explore how
the system would react under different circumstances (such as an increase
of its size).

Notice that the relationships in our toy-society can be of any sign (pos-
itive or negative). The set of layers is not restricted to relationships of
any kind. However, given the results found in Chapters 4 and 5, we ex-
pect that the pairs (ri,r j) have the same sign—that is, that someone you
consider your friend does not have a conflictive relationship with you. Im-
portantly, this situation would be directly reflected in the Hamiltonian, and
the energies of such crossed-signs relationships should be (empirically)
infinite—reflecting impossible effective states of the system.

The model we have described2 is just an example of the sort of models
that can be built taking as a social unit our model of the social atom. It
can be extended with other variables, such as triads and other long-range
interactions, or include gendered nodes, to name a few examples. Most im-
portantly, it offers a vision of social collectives that departs, conceptually,
from the classic notion of a social network. The mathematical description
of such models is indeed closer to a physical system such as a fluid (Park
and Newman, 2004) than to the static viewpoint of networks.

We are well aware that the classic theory of networks contemplates
temporal evolution (Holme and Saramäki, 2012), the possibility of interac-
tions in multiple layers (Kivelä et al., 2014), and so many other variations
and generalisations (Snijders, 2011; Newman, 2018)—see also section 1.2.
However, this does not mean that it is the most appropriate paradigm to un-
derstand social collectives. Take for example the case of a physical fluid.
If we take a (high-resolution) picture of a liquid (or a gas) at any time,
we would see a set of particles occupying a given space. If we then take
a second picture, we would see that these particles have moved, and now

2 This model is the cornerstone of the Master’s Thesis in Mathematical Engineering
(UC3M) by Diego Escribano, which is expected to be defended in June 2019 and was
co-supervised by the author of this thesis.
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hold a different spot. In our quest to understanding this system, we could
have decided, in the first picture, that any two particles were connected if
they happened to be at less than a given distance. Then, the second and
subsequent pictures could be used to understand the evolution of the so-
constructed networks. Clearly, this method may help us gain insights into
the system, but it is not the best way to understand a fluid.

We believe that social systems might be in a similar scenario—albeit
at a much slower time scale. Even though each snapshot we take might
well be represented as a (social) network (Clauset and Eagle, 2012), try-
ing to encapsulate the whole system as a set of nodes and edges might be
a bit too far-fetched—the difficulty of recreating inherently dynamic pro-
cesses via static snapshots has, in fact, hindered the development of social
physics (Bernard and Killworth, 1979). Just as the particles in a fluid are
governed by physical and chemical forces (interactions), social systems
seem to be guided by complex psychological patterns (Fuchs et al., 2014;
Tamarit et al., 2018) and other social needs (Cartwright and Harary, 1956;
Leskovec et al., 2010b). Moreover, the interactions among its constituents
(us, humans) occur in a multidimensional space not limited to the physical
notion of time and space—indeed, a relationship might be affected by the
mental state of one of its members with no intervention whatsoever of the
other. Hence, even though networks might be a useful representation of the
state of the system at any moment, its true nature seems to be much more
subtle and complex. We propose that the right way to understand such sys-
tems is as ensembles of personal networks (or social atoms, see Chapter 4)
that interact in a multidimensional (social) space, just as physical particles
interact in the standard physical dimensions.

6.3 Data collection and experiments

This thesis started more as a theoretical endeavour than an experimental
one. However, the lack of available data, particularly on negative rela-
tionships, encouraged us to perform our own experiments. In the process,
we developed experimental software (Conectaula, see Appendix C.2 for
details) as a by-product of this thesis. The software allowed us to gather
high-quality data on both the personal and the social networks of the par-
ticipants, keeping their identity safe and anonymous.
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Conectaula is currently being used for a longitudinal study in two dif-
ferent schools. This study is designed to observe the co-evolution of per-
sonal and social networks (positive and negative), together with the dif-
fusion and establishment of social norms—with particular emphasis on
gender effects. Additionally, other research groups have shown interest
in using the software, for example, to analyse the integration of LGBT+

students in UK classrooms.

6.3.1 Fighting Bullying with BraveUp: future work

One of the most exciting things about the experimental work is that it is
inherently connected to reality. The data we collected and analysed in
Chapters 4 and 5 belong to real students, for whom their social life is a
significant concern—mainly since they are teenagers. Therefore, if our
analyses may help the students or the educational institutions, it is really
worth pursuing that goal.

One potential application of these studies is to detect and prevent bul-
lying or other social conflicts. For example, during the analysis of the data
we presented in this thesis we identified one student with a particularly un-
usual set of answers. She (or he) reported barely any positive relationships,
most of them were not even reciprocal, and she was unhappy about most
of her schoolmates—who did not like her back. We reported this situation
to the school immediately, but that student had already left the school.

Our experience dealing with experimental settings in schools and net-
work data facilitated the beginning of a collaboration with the company
BraveUp3 , which fights to eradicate bullying from schools. The collabo-
ration includes the design of questionnaires and experimental protocols to
be used to gather data with their software—somewhat more sophisticated
than Conectaula. On the one hand, the data will be used as a necessary
companion to the theoretical models of social collectives to be developed
(see the previous section). On the other hand, we are optimistic that the use
of machine learning techniques may help us anticipate and detect students
in a situation of potential risk. The questionnaires and protocols have al-

3 “BraveUp: plataforma para la mejora de la convivencia escolar”, last accessed 25
February 2019, https://braveup.eu/.

https://braveup.eu/
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ready been designed, and we expect to gather longitudinal data on the order
of 104 children starting on the second semester of 2019.
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Appendix A

A.1 Background information on data sources

The community of Bulgarians in Roses (Mestres et al., 2012) is quite recent
(average time of residence: 3.5 years). They typically arrived in Catalonia
either on their own (to “try their luck”), following migratory family chains
(some relatives established first and served as connections), or following a
“migratory work chain” (using co-ethnic contacts to join a particular com-
pany recently installed in Roses). The initial settlements may also be fol-
lowed by friends and other acquaintances. In terms of education profiles,
they either are well educated or people or have little or no education.

Although the Sikh community is quite numerous, it is also the small-
est of the ones analysed in Barcelona (Molina et al., 2015; Molina and
Pelissier, 2010). Their religion, Sikhism, is a key aspect of their social
lives: 15% of their contacts were made in their religious center. From a
social perspective, a Sikh can be differentiated by a series of items with
symbolic connotations (the “five Ks”): long and cared-for hair (Kesh), a
wooden comb for the hair (Kangha), an iron dagger (Kirpan), short cotton
trousers (Kachera), and an iron bracelet (Kara). Their businesses have a
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strong ethnic character. They are predominantly rural males with low lev-
els of education, and a strong feeling of ethnic identity which is promoted
by the use of the Punjabi dialect (Molina et al., 2015; Molina and Pelissier,
2010).

Despite being one of the largest groups of immigrants in Catalonia,
the Chinese community is also one of the more dispersed (Molina et al.,
2015; Molina and Pelissier, 2010). The participants in the study worked
mainly in family businesses (restaurants and bazaars). These create struc-
tured collectives including all close family members (parents and children)
alongside other extended family members. They maintain the use of the
Chinese language and encourage its use among children. However, most
of them are bilingual, speaking both the dialect of their mother’s tongue
(unintelligible to other Chinese speakers) plus the official Putonghua.

The former status of Philippines as a Spanish colony has favoured mi-
gratory fluxes to Spain for a long time. In 2007, the Filipino community
in Barcelona was especially concentrated in the neighbourhood of “Ciutat
Vella”, and was made of young urban females with intermediate or high
levels of education, working in domestic service, and with strong religious
(catholic) ties (Molina et al., 2015; Molina and Pelissier, 2010).

A.2 Supplementary Figures for Chapter 2

Here we show a comprehensive set of figures complementing the ones pre-
sented in Chapter 2. In Fig. A.1 we display all the results corresponding to
the community of students taking into account four layers, as in the main
text. In Fig. A.2 we present the same set but considering five instead of
four layers, that is, including the answers: “1- I recognize this person but
we never talked” as the weakest type of relationship — see section 2.2.2
for details. Lastly, Figs. A.3 to A.6 show the results for all individuals in
the different communities of immigrants.
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Figure A.1: Complete set of figures for the fittings in the Students com-
munity (case considering four layers 1/4).
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Figure A.1: Complete set of figures for the fittings in the Students com-
munity (case considering four layers 2/4).
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Figure A.1: Complete set of figures for the fittings in the Students com-
munity (case considering four layers 3/4).
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Figure A.1: Complete set of figures for the fittings in the Students com-
munity (case considering four layers 4/4).
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Figure A.2: Complete set of figures for the fittings in the Students com-
munity (case considering five layers 1/4).
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Figure A.2: Complete set of figures for the fittings in the Students com-
munity (case considering five layers 2/4).



A.2 Supplementary Figures for Chapter 2 123

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f 
lin

ks

µ= 0. 61, l= (1, 6, 17, 19, 37) µ= 0. 58, l= (2, 4, 16, 13, 31) µ= 0. 95, l= (0, 1, 9, 26, 44) µ= 0. 35, l= (2, 9, 16, 41, 13) µ= 1. 07, l= (0, 0, 2, 0, 6)

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f 
lin

ks

µ= 0. 01, l= (9, 15, 31, 17, 9) µ= 1. 32, l= (0, 1, 2, 22, 56) µ= 0. 5, l= (5, 3, 7, 46, 20) µ= 0. 61, l= (4, 4, 9, 29, 34) µ= 0. 96, l= (5, 1, 5, 14, 56)

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f 
lin

ks

µ= 0. 65, l= (2, 1, 10, 41, 27) µ= 0. 88, l= (2, 2, 5, 28, 43) µ= 0. 48, l= (0, 3, 8, 68, 4) µ= − 0. 08, l= (3, 0, 0, 1, 2) µ= 0. 72, l= (1, 1, 14, 30, 35)

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f 
lin

ks

µ= 0. 73, l= (6, 2, 3, 27, 41) µ= 0. 89, l= (6, 3, 4, 8, 56) µ= 0. 59, l= (0, 2, 14, 44, 21) µ= 0. 77, l= (6, 3, 8, 10, 51) µ= 0. 48, l= (5, 1, 13, 40, 20)

1 2 3 4 5

circles

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f 
lin

ks

µ= 0. 42, l= (3, 3, 20, 38, 17)

1 2 3 4 5

circles

µ= 0. 31, l= (7, 9, 15, 20, 24)

1 2 3 4 5

circles

µ= 0. 4, l= (1, 0, 0, 1, 2)

1 2 3 4 5

circles

µ= 1. 01, l= (2, 1, 5, 23, 50)

1 2 3 4 5

circles

µ= 0. 51, l= (4, 4, 12, 36, 26)

Figure A.2: Complete set of figures for the fittings in the Students com-
munity (case considering five layers 3/4).
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Figure A.2: Complete set of figures for the fittings in the Students com-
munity (case considering five layers 4/4).
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Figure A.3: Complete set of figures for the fittings in the Bulgarian com-
munity
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Figure A.4: Complete set of figures for the fittings in the Sikh commu-
nity
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Figure A.5: Complete set of figures for the fittings in the Chinese com-
munity
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Figure A.6: Complete set of figures for the fittings in the Filipino com-
munity
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B.1 Supplementary figures for Chapter 3

B.1.1 Mobile phones dataset: comprehensive set of figures

Here we show a comprehensive set of figures complementing the ones pre-
sented in Chapter 3, section 3.2.2, where we analysed data from mobile
phone calls (Saramäki et al., 2014)—see the corresponding section for de-
tails and interpretation of the figures. In Fig. B.1 we display all the results
corresponding to the first time window (T1), in Fig. B.2 the results corre-
sponding to the second time window (T2), in Fig. B.3 those corresponding
to the third time window (T3), and in Fig. B.2 the results corresponding to
the full 18 months of the study (T1∪T2∪T3).
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Figure B.1: Complete set of figures for the fittings in T1.
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Figure B.2: Complete set of figures for the fittings in T2.
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Figure B.3: Complete set of figures for the fittings in T3.
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Figure B.4: Complete set of figures for the fittings in T1∪T2∪T3.
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B.1.2 Aternative estimation of smin and smax: face-to-face contacts
dataset

Here we show an equivalent figure to the one we showed in section 3.2.3,
but considering the sum of the maximum time spent with any alter on each
day as smax, and the sum of the minima as smin. The individual fittings
are slightly worse (Fig. B.5b), and the distribution of the parameter es-
timates (Fig. B.5a) is centred around a higher value (η ≈ 14) than in the
figure shown in the main text (Fig. 3.3a, η ≈ 6). Moreover, filtering out
individuals with less than five alters leaves us in this case with a sample of
n = 74—as opposed to n = 95.
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Figure B.5: Summary of the results for the face-to-face contacts
dataset. a, Distribution of the parameter estimates for the face-to-face con-
tacts dataset (n = 74). The red, dashed line marks the change of regime η = 0;
mean = 16.01, median = 14.81, mode = 14.33, std = 8.57 b, Example of fitting for
an individual exhibiting the standard regime (chosen at random from those with
3< η < 9). Solid dots represent experimental data, blue dashed lines represent
the graph of equation (3.4) with the corresponding estimated parameter, and
shaded regions show the 95% confidence interval for that estimate (see sec-
tion 3.2.1). Estimated η = 8.54, 95% confidence interval (4.67,15.29), L̃ = 11.
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B.1.3 Examples of fittings: face-to-face contacts dataset

Here we show 24 examples of fittings (chosen at random using the same
seed as in Fig. 3.3) for individuals in the face-to-face contacts dataset—
sampled from the entire population.
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Figure B.6: Examples of fittings for the face-to-face contacts dataset.
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B.1.4 Examples of fittings: Facebook dataset

Here we show 24 examples of fittings (chosen at random using the same
seed as in Fig. 3.4) for individuals in the Facebook dataset—sampled from
the entire population.
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Figure B.7: Examples of fittings for Facebook dataset.
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C.1 Social networks questionnaire: Spanish version

• Si tuvieras un problema personal e importante, ¿con qué compañeros
y/o compañeras estarı́as dispuesto/a a compartirlo? (SP)

• Si hay personas que no querrı́as bajo ningún concepto que se tuvieran
que marchar del colegio márcalas, en caso contrario marca la opción
“Ninguno”. (DL)

• Si pudieras elegir a tus compañeros y compañeras de mesa en el
comedor (independientemente del tamaño actual de las mesas), ¿a
quiénes escogerı́as? (LT)

• Si hay personas con las que preferirı́as no tener que compartir
ninguna actividad márcalas. Marca “Ninguno” si no tienes incon-
veniente en compartir actividades con nadie en particular. (DN)

• Si tienes que hacer un trabajo en el colegio, ¿a quién o quiénes
elegirı́as de compañeros/as? Marca “Ninguno” si prefieres trabajar
solo/a. (WW)
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• Marca los compañeros/as con los que preferirı́as no tener que hacer
un trabajo en el colegio (independientemente de cómo te lleves con
ellos/as). Marca “Ninguno” si no tienes inconveniente en trabajar
con nadie en particular. (DW)

C.2 Experimental software: Conectaula

For the collection of the data we use in Chapters 4 and 5 we developed1 our
own software: Conectaula. This software allows for a secure, anonymous,
and fast data collection in large social settings. The application consists of
three different types of Users with the following (brief) description:

• Admin (Researcher): This user can create new Admin and Docente
(Teacher) users. Besides, it is the only one able to create Estudios
(Studies) which he or she links to a specific Docente, belonging to a
specific Centro (School). The Admin is the only user that can see the
(anonymous) answers of the participants of a study.

• Docente (Teacher): This user is created by an Admin and is the max-
imum responsible for the studies within the participating school. His
role is to enter the data from the participants by uploading an Excel
(or csv) file to the app. Besides, he or she has the rights to “activate”
and “deactivate” a given study, that is, to grant access to the partici-
pants to enter the platform. All personal data is codified in the Data
Base (see Fig. C.1 for a schematic representation of the structure of
the database). Once the data of the participants have been uploaded,
he or she can send an automatic email to the participants (Alumnos)
with their credentials to enter the platform. Importantly, this user
doesn’t have permissions to see either the questions or the answers
of a study.

1The first fully operative desktop version of the app was designed and developed in
Python (Tkinter) by the author of this thesis. The online version (PHP) was developed
afterwards by Juan Zamora and Nieves Maestro: https://lapizmente.com/ (last ac-
cessed 29 January 2019). We are deeply thankful for their professionalism and support
throughout all the process.

https://lapizmente.com/


C.3 Description of network measures 139

• Alumno (Student): This user is the target participant. He can only
access a study (to answer the questions) if both he has correct cre-
dentials and the study is activated.

The main feature of the app (indeed, the one that encouraged us to develop
it in the first place) is the way it handles questions about social relation-
ships. It has integrated a particular type of question (type Alumnos) whose
possible answers are the very same participants of the study (excluding in
each case the one who is answering), organised in drop-down buttons with
the same structure of classes and groups as in the school—that is, class X,
group Y. Importantly, although the personal information of the participants
is never accessible to the researchers, the participants can see the actual
names of their peers on the screen, and click on as many of them as they
want.

We have prepared a demo questionnaire that can be accessed (as a stu-
dent) with the following credentials2:

• URL: https://gisc.uc3m.es/˜ConectAula/

• NÚMERO DE IDENTIFICACIÓN: 1710

• CONTRASEÑA: w62MkiYt

As of January, 29, 2019, Conectaula has been used to collect over a thou-
sand surveys in two different schools. The data collected is currently being
used for several different research projects—see(Robertson et al., 2019) for
an example.

C.3 Description of network measures

In this section, we briefly describe the network measures used in Chapter 4.
Even though most of these measures are standard (Newman, 2018) we in-
clude all of them for completeness. All numerical analyses are performed
with Python and the package Networkx.

2Please, when reaching the last page (13) just close the tab so that the demo remains
active for other users.

https://gisc.uc3m.es/~ConectAula/
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Figure C.1: Entity-relationship diagram of the database of Conectaula.
The figure depicts a schematic representation of the relationships among the
different data (objects) stored in the database. The tables represent “entities”,
and its contents are the different “attributes” these entities may have. The lines
connecting the different entities define how they are related, and the numbers
within them represent the “cardinality” of this relationship, that is, the number
of entities associated with each other. The fields marked with # are codified in
the database.

C.3.1 Average degree

The degree of a node is simply the number of links that this node either
sends (out-degree) or receives (in-degree). The average of this quantity
over all nodes in a network is the average degree. Notice that, while the
average of in-degrees and out-degrees must be the same (all links sent are
received), their standard deviation may differ. To illustrate this point let
us use an extreme example. Imagine a network in which every individ-
ual sends out three links. Then, the standard deviation of the out-degrees
would be, obviously, zero. On average, every individual in our imagi-
nary network would receive three links, but these links can actually be
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distributed in infinitely many ways, so the standard deviation is not neces-
sarily zero.

C.3.2 Reciprocity

The reciprocity of a given node is the fraction of links coming out that node
that also come back to it. The average over all nodes in a network is the
average reciprocity.

C.3.3 Assortativity

The assortativity coefficient is a measure of the tendency of the nodes in
a network to be linked with nodes with the same attribute as theirs. It
gets the value 1 when nodes only link with other nodes with the same
attribute and −1 when they only link to nodes with a different attribute.
In Chapter 4, these attributes are either gender, class, or grade. We use
the assortativity coefficient, r, and its error, σr, as they were defined in
(Newman, 2003) (equations (2) and (4) respectively). The definition of r is
somewhat involved, so we omit it in here—the interested reader is referred
to either (Newman, 2003) or (Newman, 2018) for a detailed explanation.
The errorσr is what we use as a measure of the expected standard deviation
on the value of r, and it is computed as

σr =

√√√ M∑
i=1

(ri− r)2,

where M is the total number of edges in the network and ri is the value of
r when the link i is removed from the network.

C.3.4 Connected components

In an undirected network, a connected component is a maximal subset of
nodes such that every two nodes in the set are connected by at least one
path. In a directed network, a weakly connected component is a maximal
subset of nodes such that, if we consider its links as undirected, then it is a
connected component. On the other hand, a strongly connected component
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is a maximal subset of nodes such that, for every two nodes i, j in the set,
there exists a (directed) path from i to j and also from j to i.
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D.1 Social networks questionnaire (II): Spanish version

r Quiénes son tus amigos/as dentro del colegio?

rr Considerando a tus amigos/as: Con quiénes tienes una relación
más cercana?

rrr Por último, de entre tus amigos más cercanos: quiénes dirı́as
que son tus mejores amigos/as? (Nos referimos a aquellas personas
con las que eres ”uña y carne”).

☠ Qué compañeros/as no te caen del todo bien o no tienes buena
relación con ellos?

☠☠ Considerando la gente que no te cae del todo bien: quiénes te
caen mal o sueles tener problemas con ellos/as?

☠☠☠ Por último, considerando las personas que te caen mal: hay
alguna con la que tengas una relación especialmente mala o prob-
lemática?
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(2012). Orbital prefrontal cortex volume predicts social network size:
an imaging study of individual differences in humans. Proceedings of
the Royal Society of London B: Biological Sciences 279(1736), 2157–
2162.

Rambaran, J. A., J. K. Dijkstra, A. Munniksma, and A. H. Cillessen (2015).
The development of adolescents friendships and antipathies: A longitu-
dinal multivariate network test of balance theory. Social Networks 43,
162–176.

Ravasz, E. and A.-L. Barabási (2003). Hierarchical organization in com-
plex networks. Physical review E 67(2), 026112.

Roberts, S. B. and R. I. Dunbar (2015). Managing relationship decay.
Human Nature 26(4), 426–450.

Roberts, S. G. and R. I. Dunbar (2011a). Communication in social net-
works: Effects of kinship, network size, and emotional closeness. Per-
sonal Relationships 18(3), 439–452.

Roberts, S. G. and R. I. Dunbar (2011b). The costs of family and friends:
an 18-month longitudinal study of relationship maintenance and decay.
Evolution and Human Behavior 32(3), 186–197.

Roberts, S. G., R. I. Dunbar, T. V. Pollet, and T. Kuppens (2009). Explor-
ing variation in active network size: Constraints and ego characteristics.
Social Networks 31(2), 138–146.

Roberts, S. G., R. Wilson, P. Fedurek, and R. Dunbar (2008). Individual
differences and personal social network size and structure. Personality
and individual differences 44(4), 954–964.

Robertson, C., I. Tamarit, A. Masjid, and R. I. Dunbar (in preparation,
2019). Processing embedded complement clauses may support social
cognition.

Robins, G., P. Pattison, and J. Woolcock (2004). Missing data in net-
works: exponential random graph (p∗) models for networks with non-
respondents. Social Networks 26(3), 257–283.



BIBLIOGRAPHY 157

Roth, G. and U. Dicke (2012). Evolution of the brain and intelligence
in primates. In Progress in brain research, Volume 195, pp. 413–430.
Elsevier.
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