
This is a postprint version of the following published document:

Benítez-Buenache, A., Álvarez-Pérez, L., Mathews, V. J. y 
Figuieras-Vidal, A.R. (2019). Likelihood ratio equivalence 
and imbalanced binary classification. Expert Systems with 
Applications, 130, pp. 84-96.

DOI:https://doi.org/10.1016/j.eswa.2019.03.050

© 2019 Elsevier Ltd. All rights reserved.

This work is licensed under a Creative Commons Attribution-
NonCommercialNoDerivatives 4.0 International License. 



Likelihood ratio equivalence and imbalanced binary classification

Alexander Benítez-Buenache a,  ∗, Lorena Álvarez-Pérez a,  V. John Mathews b, 
Aníbal R. Figueiras-Vidal a
a Signal Theory and Communications Department, Universidad Carlos III de Madrid, Avda. de la Universidad, No. 30, Leganés, Madrid 28911, Spain b School of Electrical Engineering 

and Computer Science, Oregon State University, Corvallis, OR, USA

a b s t r a c t 

This contribution proves that neutral re-balancing mechanisms, that do not alter the likelihood ratio, and training discriminative machines using 
Bregman divergences as surrogate costs are necessary and sufficient conditions to estimate the likelihood ratio of imbalanced binary classification 
problems in a consistent manner. These two conditions permit the estimation of the theoretical Neyman–Pearson operating characteristic 
corresponding to the problem under study. In practice, a classifier operates at a certain working point corresponding to, for example, a given false 
positive rate. This perspective allows the introduction of an additional principled procedure to improve classification performance by means of a second 
design step in which more weight is assigned to the appropriate training samples. The paper includes a number of examples that demonstrate the 
performance capabilities of the methods presented, and concludes with a discussion of relevant research directions and open problems in the area.
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1. Introduction

Imbalanced classification problems are those in which class

population sizes or misclassification losses, or both, are clearly

different. Such problems have much relevance, and are fre- quen

in practice. Consequently, there is a long list of works addressing

different applications, including Rao, Krishnan, and Niculescu

(2006),  Mazurowski et al. (2008),  Mena and González (2009)

Freitas (2011) and Nahar, Imam, Tickle, and Chen (2013) in

medicine, Radivojac, Chawla, Dunker, and Obradovic (2004)

Batuwita and Palade (2009),  Yu, Ni, and Zhao (2013) and Triguero

et al. (2015) in bioinformatics, Viola and Jones (2004),  Tao, Tang

Li, and Wu (2006),  Kwak (2008),  Chen, Fang, Huo, and Li (2011

and De la Torre, Granger, Sabourin, and Gorod- nichy (2015) in

image processing and retrieval, Liao (2008),  Park, Oh, and Pedrycz

(2013) and Seiffert, Khoshgoftaar, Van Hulse, and Folleco (2014

in production processes, Chan and Stolfo (1998),  Phua

Alahakoon, and Lee (2004),  Tavallaee, Stakhanova, and Ghorban

(2010) and Mehrotra, Singh, Vatsa, and Majhi (2016) in security

and safety, Liu, Hsu, and Ma (1999) and Zhou (2013) in busines

and finance, Manevitz and Yousef (2001) and 
∗ Corresponding  author.
E-mail addresses: abuenache@tsc.uc3m.es (A. Benítez-Buenache), lalvarez@tsc.uc3m.es (L. 
Álvarez-Pérez), mathews@oregonstate.edu (V.J. Mathews), arfv@tsc.uc3m.es (A.R. Figueiras-
Vidal).

s

 

p  

fi  

t  

a  
ong and Koller (2001) in text classification, Tsai, Chang, and Chi- 

ng (2009) in meteorology and González et al. (2013) in biology. 

The most widely used classifiers, also referred to as discrimina-

ive machines - including those employing multi-layer perceptrons

MLPs) and radial basis function networks (RBFNs), support vec-

or machines (SVMs), and the corresponding machine ensembles -

re sensitive to imbalance because their parameter values are

stablished by algorithms that try to optimize performance mea-

ures that do not consider imbalance effects. For example, typical

ampled surrogate cost functions have minor contributions from

inority classes in highly imbalanced data sets, and minimizing

uch cost functions leads to poor results for minority classes. This

eans that the performance of classifiers that are designed with

ust the imbalanced data will be far from acceptable. The pur-

ose of re-balancing techniques is to reduce this undesirable effect.

hese techniques serve to reduce the tendency of the classification

achines to decide in favor of the majority class by reducing the

egree of imbalance in several forms, by means of creating a prob-

em which is easier to solve. It is important to recognize that the

olution obtained after re-balancing must permit to recover the so-

ution to the original problem associated with the imbalanced ob-

ervations. 

Beginning from the late 1990s, many procedures have been pro-

osed to reduce the difficulties associated with imbalanced classi-

cation problems. These procedures can be broadly divided into

hree families: data pre-processing techniques, modified learning

lgorithms, and hybrid methods. Because of space limitations, we
1
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ill restrict our discussion to those methods that are directly re- 

ated to the approach we will introduce in this paper, and to refer

nces of their earliest publications or studies. The interested reader 

s referred to tutorials ( Branco, Torgo, & Ribeiro, 2016; He & Gar

ía, 2009; López, Fernández, García, Palade, & Herrera, 2013; Sun

ong, & Kamel, 2009)  and the monograph ( He & Ma, 2013)  fo

ore details. 

ata pre-processing techniques include cost-sensitive meth

ds ( Domingos, 1999; Elkan, 2001; Kukar & Kononenko, 1998; 

adrozny, Langford, & Abe, 2003)  that increase the weight of mi

ority samples during training. Other methods in this class of

lgorithms are sample selection ( Kubat & Matwin, 1997 ), ran

om re-sampling (under and/or oversampling) ( Batista, Prati, &

onard, 2004; Estabrooks, Jo, & Japkowicz, 2004; Hido, Kashima

 Takahashi, 2009)  and sample generation ( Chawla, Bowyer, Hall,

 Kegelmeyer, 2002; Lee, 1999; 20 0 0)  that re-balance the popula

ion sizes prior to training. Extensions of active learning algorithms

 Settles, 2010)  to data pre-processing-based imbalanced

lassifica- tion have also been reported ( Abe, 2003; Bordes

rtekin, Weston, & Bottou, 2005; Ertekin, Huang, Bottou, & Giles

007 ). These algo- rithms employ procedures to progressively

elect training samples with the purpose of improving training

ime and/or performance results. 

Re-balancing can also be achieved by modifying the design

arameters of some algorithms. For example, the form proposed

n Veropoulos, Campbell, and Cristianini (1999) for SVMs simply

eights the slack variables that quantify the deviation from the 

deal correct classification more for the minority samples. Simi

ar modifications have been applied to boosting ensembles ( Fan

tolfo, Zhang, & Chan, 1999; Sun, Kamel, Wong, & Wang, 2007

ing, 20 0 0 ). It is also possible to weight the terms of the SVM

olution ( Imam, Ting, & Kamruzzaman, 2006 ). These approache

re essentially the same as sample weighting. However, Masnadi

hirazi and Vasconcelos (2010, 2011) proposed modified learning

lgorithms that are based on statistical analyses. Another class of 

mbalance oriented learning algorithms use one-class SVM classi

ers, such as those proposed in Manevitz and Yousef (2001) and 

owalczyk and Raskutti (2002).  These methods appear to be

ffec- tive in highly imbalanced situations. Several modification

f SVM kernels have been proposed to deal with the imbalance

elated dif- ficulties ( Fung & Mangasarian, 2005; Hong, Chen, &

arris, 2007; Wu & Chang, 2005; Yang, Yang, & Wang, 2009 )

uzzy SVMs have also been modified to deal with imbalance

atuwita and Palade (2010) being an interesting example. 

A vast majority of the procedures that have been proposed to

eal with imbalanced problems have a “qualitative” nature, i.e.
hey are reasonable modifications of the training data set or/and

he classification algorithms, but there is not an analysis of why 

nd how they provide their results. Although this does not de

rease their usefulness, there is not always a clear perspective

n their capabilities and limitations. As stated by the authors o

e and García (2009),  pp. 1279–1280) and Branco et al. (2016)

p. (31–33), a better understanding of the mechanisms of these

eth- ods is needed in order to avoid mistakes and for furthe

rogress. 

ased on this perspective, we will follow the direction of the few

recedents that formally analyze the re-balancing approaches, in

luding ( Domingos, 1999)  and the “metacost” framework, the

nal- ysis of Elkan (2001) and Zadrozny et al. (2003) and the

quiv- alence theorem, and the rigorous study presented in Castro

nd Braga (2013),  that have largely inspired our research. In

ddition to developing new algorithms and perspectives, this

ork will also help advance a better understanding of the

roperties of different techniques ( Dal Pozzolo, Caelen, &

ontempi, 2015; Wallace, Small, Brodley, & Trikalinos, 2011)  and
he effects of data characteristics on imbalanced classification 

lgorithms ( Stefanowski, 2016 ). 

c

In this paper, we will consider discriminative machines that

re based on nonlinear trainable transformations, such as MLPs,

o study how to use them to solve imbalanced classification prob-

ems. This excludes SVMs, whose nonlinear transformations are

mplicit and originate the kernel form of the solution. The use of

hese machines for imbalanced problems is based on a completely

ifferent foundation, as we will briefly discuss below. In conceiv-

ng this analysis, we start from a fact which is typically not con-

idered when designing imbalanced classifiers to optimize classi-

al re-balancing measures (such as the Area Under the Curve, F-

easures, etc.): A classification machine will operate at a given

orking point - for example, a given false positive rate, - and

herefore, the design objective must focus on its performance at

hat point, and not in optimizing other metrics. Later, we will dis-

uss how this perspective also has consequences for the so-called

informed” re-balancing mechanisms. 

Although it is relatively straightforward to extend this study to

ulti-class problems, we will limit our analysis to binary problems

or the sake of clarity. We will establish necessary and sufficient

onditions to obtain a principled solution by focusing the atten-

ion on estimating the likelihood ratio, and establishing likelihood

atio equivalent problems according to the classical Bayes formula-

ion. By “principled solution” we mean that this approach creates

e-balanced versions of the problem under study that permit the

ecovery of a solution for the original imbalanced problem with-

ut imposing any constraint on the classification cost policy. That

s, our approach allows the selection of the solution corresponding

o any relative importance of both kinds of errors in the

lassifica- tion process. 

The rest of the paper is organized as follows: Section 2 re

iews the classical Bayes classification theory. Starting from this

heory, the basic form of our re-balancing approach is introduced

n Section 3.  Section 4 discusses the implications of the

rincipled approach of this paper. Section 5 presents some

xperimental work that supports this perspective. In Section 6,  a

wo-step version of our approach with improved performances

ver those of one-step procedures is presented and compared

ith conventional informed re-balancing techniques. Section 7

resents some experimental re- sults on the two-step re-balancing

rocedure. Section 8 introduces a principled (likelihood ratio

nvariance-based) re-balancing proce- dure that pays attention to

he most relevant samples, and weighs them in an appropriate

anner. Some experimental results illus- trating the

mprovements provided by this approach are provided in Section

.  

The goal of the experimental work presented in this paper is

nly to demonstrate the strengths of the methods of the paper

s a result, we do not seek to evaluate the methods on

enchmark imbalanced problems. Similarly, we do not presen

esults of ex- tensive explorations of several design parameters

ith cross vali- dation. 

Finally, the main conclusions of this work and a brief discussion

f open research directions close the paper. 

. A brief overview of Bayes classification theory

The description in this section follows the presentation in the

lassic text ( Van Trees, 1968 ). 

Consider random observations x coming from one of two 

lasses, C 1 (positive) and C 0 (negative). Assume that the a pri- 

ri probabilities { P i } and the likelihoods { p( x | C i ) } , i ∈ { 0 , 1 } , are
nown, and that a cost policy { c ji }, i ∈ {0, 1} is defined for the clas- 

ification problem. The cost policy indicates the cost of selecting 

 when i is true, and c ji > c ii . Minimizing the average classification 

ost leads to 
2
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1 Qc  can be included by simply weighting the majority samples in (6):  It is equiv- 
alent to a population imbalance.

2 The theoretical version is w 

∗ = arg min w 
∫ 
c(t, o) p(t| x ) dt
q L ( x ) = 

p( x | C 1 )
p( x | C 0 )

C 1 
≷ 

C 0 

c 10 − c 00 
c 01 − c 11 

P 0 
P 1 

= Q c Q P = Q (1)

where Q P = P 0 /P 1 and Q c = (c 10 − c 00 ) / (c 01 − c 11 ) , as well as their

product Q , are non-negative values. Thus, the classification is car-

ried out by comparing the likelihood ratio q L ( x ) with a threshold

Q . The performance of this Bayes classifier is completely defined

by the cost policy and the false alarm (false positive) and detec-

tion (true positive) probabilities given by 

P F A = P r(d ecid e C 1 | C 0 is true ) =
∫ ∞ 

Q

p(q L | C 0 ) dq L (2a)

P D = P r(d ecid e C 1 | C 1 is true ) =
∫ ∞ 

Q

p(q L | C 1 ) dq L (2b)

respectively, where { p(  qL |  Ci  )} are the likelihood functions for the

random variable qL  ( x ) (a function of the random variable x ). 

Problems that have the same likelihood ratio but different cost

or/and a priori probability ratios are solved using the same formula

in (1),  with different values of Q.  Plotting P D against P FA as Q varie

monotonically from ∞ to 0 results in a non-decreasing and con-

vex curve called the receiver operating characteristic (ROC), going

from (0,0) for Q → ∞ to (1, 1) for Q = 0.  Assuming a one-to-one

ROC curve ( i.e.,  no jump at PF  A = 0,  and no saturation at P D =
i.e.,  P D = 1 is reached just when PF  A = 1 ), the value of Q for eac

working point can be directly obtained as the slope of the tangent

of ROC at that point. Only this ROC, and not any other similar curve

obtained by replacing qL  ( x ) by some “reasonable” q ( x ) � = qL  ( x )

provides the optimal solution for any choice of Q.  This curve, called

the Neyman–Pearson ROC (NP-ROC), allows the user to select any

P FA and to obtain the highest possible P D,  because this solution i

based on (1),  which constitutes the optimal solution for any

choice of Q.  Note that an estimate of the likelihood ratio permit

one to obtain an estimate of the NP-ROC by moving Q from ∞ to

0.

It is straightforward to obtain the a posteriori probabilities from

the likelihoods and the a priori probabilities as 

P r(C i | x ) = 

p( x | C i ) P i 
p( x ) 

= 

p( x | C i ) P i
p( x | C 0 ) P 0 + p( x | C 1 ) P 1 (3)

An alternative form for the Bayes classifier can be obtained 

from (3) as 

P r(C 1 | x )
P r(C 0 | x )

C 1
≷ 

C 0

Q c (4a)

or, equivalently, because P r(C 0 | x ) = 1 − P r(C 1 | x ) ,

P r(C 1 | x ) 
C 1
≷ 

C 0 

Q c 

Q c + 1 
(4b)

Let C 0 be the majority class. Imbalance occurs when Q � 1. This 
can happen when QP  � 1 and/or Qc  � 1. We can easily apply (1) t
imbalanced classification problems if qL  ( x ) is known. This is also

true for generative machines, i.e.,  machines that work with es

timates { p̂  ( x|  Ci  ) } and { P̂i   } obtained from a set of training sa

ples. However, the performance of generative classifiers is usually
worse than that of discriminative machines. Generative machines

are trained just to obtain good likelihood estimates and not to ad-
dress the classification problem. Their estimate of qL  ( x ) is obtained

by dividing likelihoods, a process prone to large numerical errors. 

Therefore, we seek to answer the following fundamental ques-

tion in this paper: Is it possible to use the classification criterion

in (1) to define re-balancing mechanisms for discriminative clas-
sification machines? We focus on the formula in (1) that includes
qL  ( x ) rather than the formula (4b) because P r(C 1 | x ) depends on QP 

and, consequently, it changes if re-balance is applied. The answer
is given in Section 3.  
. Foundations of the principled re-balancing approach

Discriminative nonlinear classification machines with trainable

ransformations, such as MLPs, are designed using an indirect ap-

roach. The classification decision takes the form 

( x ;w 

∗) 
C 1
≷ 

C 0

0 (5)

here o( x ;w ) is a function whose trainable parameters w are op-

imized by finding 1 

 

∗ = arg min 
w

∑ 

n 

c(t (n ) , o( x (n ) ;w )) (6)

nd {t  (n)  , x(
 

n)  },  n = 1,  . . . , N are the available labeled training sam
les. Typically, t = +1 / − 1 for C 1 / C 0,  respectively, and −1 ≤ o ≤ 1
ere, c(  t, o)  is an appropriate surrogate cost, which takes higher
alues when the values of t and o are more different. In addition to

uffering from under/overfitting risks, this classifier is also imbal-

nce sensitive, i.e.,  its performance seriously degrades when Q � 1
ecause the minority samples have a very minor contribution to

he sampled surrogate cost in (6),  and, consequently, o does 

ot consider them in an appropriate manner. 

Two conditions are required to solve imbalanced problems us- 

ng (1) by means of this kind of classification machines: 

• Neutral re-balancing, i.e.,  constructing a less imbalanced prob

lem without (substantially) modifying the likelihood ratio. In

other words, the re-balancing process must keep invariant the

likelihood ratio. Section 4 contains additional discussion on re- 

balancing processes that are neutral.
• Application of a machine and, in particular, a training cost that

makes possible the estimation of the true q L ( x ) . This can be

done by using Bregman divergences as surrogate costs.

Among machines with trainable transformations, MLPs have

heoretically unlimited representational capabilities ( Cybenko,

989; Hornik, Stinchcombe, & White, 1989 ). The extremely power-

ul deep neural networks (DNNs) ( Bengio, 2009; Deng & Yu, 2014;

chmidhuber, 2015)  also fall into this category. Employing Bregman

ivergences ( Bregman, 1967)  is a necessary and sufficient condi-

ion to obtain estimates of the a posteriori probabilities, and con- 

equently the likelihood ratio, from the output of those machines 

 Cid-Sueiro, Arribas, Urbán-Muñoz, & Figueiras-Vidal, 1999; Cid- 

ueiro & Figueiras-Vidal, 2001 ). 

For the binary case, a Bregman divergence is a function c B ( t, o)

uch that 

∂ c B (t, o) 

∂ o 
= −g(o)(t − o) (7)

here g ( o ) > 0 is an arbitrary function. Examples of Bregman di-

ergences include some well-known surrogate costs, such as the

quared error (t − o) 2 and the (symmetric) entropy cost, which, for

 = ±1 and −1 ≤ o ≤ 1 , has the form 

 E (t, o) = −(1 + t) log e (1 + o) − (1 − t) log e (1 − o) (8)

It is easy to show that applying a Bregman divergence in 

he theoretical version of (6) 2 leads to 

 B ( x ) = E{ t| x } (9)

here E indicates statistical average. If the surrogate cost is no

 Bregman divergence, (9) is not true (see references above). The 

ppendix contains a proof of this necessary and sufficient charac-

eristic of Bregman divergences. 
3
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sample generation methods also.
In practice, a machine whose trainable parameters minimize

he sampled version (6) will produce an estimate of this a pos- 

eriori expectations at the output. This estimate will become better

ith better representational capabilities of the machine and more

raining samples. For a more detailed discussion of Bregman di-

ergences in the machine learning context, we refer the reader to 

id-Sueiro et al. (1999) and Cid-Sueiro and Figueiras-Vidal (2001). 

For a binary classifier for which t takes the value from +1 and

1 

{ t| x } = 1 P r(C 1 | x ) − 1 P r(C 0 | x ) = 2 P r(C 1 | x ) − 1 (10)

esulting in the estimate 

˜ 
 r (C 1 | x ) = 

1
(o B ( x ) + 1) (11)

2 

btained from the output of the classification machine. Since, 

rom (3), 

 r(C 1 | x ) = 

q L ( x ) 

q L ( x ) + Q P 

(12)

ncluding Qc  as stated in Footnote 1, introducing (11) in (12) 

or estimated values, we can arrive at 

˜ 
 L ( x ) = 

˜ Q 

˜ P r (C 1 | x ) 
1 − ˜ P r (C 1 | x ) = 

˜ Q 

1 + o B ( x ) 

1 − o B ( x ) 
(13) 

here Q̃ 

 = Q̃ 

P  Q̃c   , Q̃ 

P  is the ratio of the class populations co
ponding to the situation in which P̃  r  (C 1 | x ) is obtained - in gen
ral, the situation corresponding to a re-balancing process, - and
˜c   is the ratio of the sample weighting. 

The estimate q̃L   ( x ) in (13) is obtained as a ratio of a 

osteri- ori probabilities. Algorithms with improved quality of the 
stimates are discussed in Sections 6 and 8.  

The estimate q̃L   (x ) obtained for a neutrally re-balanced versio

f the problem is also valid for the original imbalanced problem.

herefore, the classification decision can be made by comparing

he right-hand side of (13) with the threshold on the right-hand 

ide of (1).  Additional manipulation will result in a decision 

rite- rion based on the output of the classifier machine as 

 B ( x )
C 1 
≷
C 0 

ˆ Q − ˜ Q 

ˆ Q + 

˜ Q 

= η (14) 

here Q̂ 

 is the threshold for the original imbalanced problem, i.e.
ˆ 
 = Q̂c   Q̂ 

P  , where Q̂c   is calculated with the original costs and
stimated with the original populations. Note that the classification

ule comes from the output of the machine trained under the re-

alanced conditions, changing the decision threshold. 

Formula (14) gives the (approximate) optimal solution to the

original imbalanced problem using the output of the machine

hich has been trained to solve the neutrally-rebalanced classifi- 

ation problem. The quality of this solution depends on the qual- 

ty of the estimate q̃L   ( x ) of the likelihood ratio given by (13). 

n general, this estimate will be better with more powerful 

achines, more samples, and in regions of the observation space 

ith more samples, as well as for low-dimensional problems. In 

ny case, this approach estimates the likelihood ratio, and not 

ach one of the likelihoods separately as generative methods do. 

The designer has complete freedom to select the value of Q̂ 

 

.e.,  the cost policy, or, from another perspective, the working
oint in the NP-ROC, which is produced by changing the value o

 from 1 to −1 in (14).  If needed, we can compute P̂ r  (C 1 | x )
he a posteriori probability of C 1 for the imbalanced problem
sing (13) and (12).  

The above analysis leads to conclude that the two condition

e mentioned at the beginning of this section are necessary and

ufficient to train a machine that provides a principled estimate 

f the likelihood ratio of an imbalanced binary classification prob-
em - and, consequently, an estimate of the NP-ROC 

orresponding 
o that problem - via defining an associated re-balanced problem.

he process will be as follows: 

• First, apply an appropriate neutral re-balancing, in order to ob-

tain an easier classification problem with the same likelihood

ratio.
• Second, train a classification machine using a Bregman diver-

gence as surrogate cost, in order to obtain a principled esti-

mate of the a posteriori class probabilities (according to (11) ),

and, subsequently, of the likelihood ratio (according to (13) ).
• Finally, solve the original imbalanced problem by comparing

the likelihood ratio estimate with an appropriately selected

threshold. The best option to do this is to select a satisfactory

working point in the NP-ROC estimate by moving the thresh-

old value from ∞ to 0. The machine output can be also used, 
according to (14). 

The above steps serve to estimate the theoretical Neyman–

earson operating characteristic, which is optimal from the classifi-

ation point of view. This is not the case, in general, of the operat-

ng characteristic which a machine provides when it is trained un-

er other conditions. We are compensating the re-balance to come

ack to the solution of the original imbalanced problem in a prin-

ipled manner, that requires neutrality and Bregman divergences. 

When any of these conditions is not applied, the re-balancing

rocess has not a principled base. The consequence is a degraded

erformance, that can be even worse than that of directly solv-

ng the imbalanced classification. We will provide illustrative ex-

mples in which these negative effects appear in Section 5 , after

 brief discussion on re-balancing methods and their neutrality in

he next section. 

. A preliminary discussion

.1. Neutral re-balancing 

As mentioned above, a neutral re-balance must keep invariant

he likelihood ratio. Now, we will enumerate the procedures that

ffer this characteristic: 

• Uniformly weighting all the samples of a class does not al-

ter the class probability density. Therefore, this kind of re-

balancing methods is neutral. In fact, it is equivalent to modify

the a priori class probability, and it appears as a change in the

classification threshold.
• Re-sampling methods that select samples with equal prob

ability are neutral in the average. Thus, they require train- ing

machine ensembles with diverse re-sampled populations to be
practically neutral. Then, they are equivalent to neu- tra

sample weighting. This equivalence was first observed in

Breiman, Friedman, Olshen, and Stone (1984).  Although some

practical differences have been observed when applying ex

treme versions of re-sampling (or generation) ( Dal Pozzolo e
al., 2015; Japkowicz & Stephen, 2002; Ling & Li, 1998; Wallace

et al., 2011 ), the use of machine ensembles will in gen- era

increase the quality of the classification results. The well

known bootstrap techniques fall into the category of neutra

re-sampling methods.
• Sample generation methods are also neutral in the average if

the probability of generating new samples and the generation 
mechanisms are the same for all the class samples. One of them

is the classical generation from a Parzen window density model 
( Parzen, 1962 ), which has been successfully applied in noisy

learning. SMOTE ( Chawla et al., 2002)  generation is also approx-

imately neutral because all the minority samples equally serve

to generate new samples. As was the case for re-sampling, the

use of machine ensembles helps to improve the performance of
4
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These three families of neutral re-sampling procedures can

be combined, reducing the risk of minor likelihood deformation

while maintaining the diversity advantage. The best combination

is problem-dependent. A full re-balance (with Q̃ 

 = 1)  is usually
not the best option ( Khoshgoftaar, Seiffert, Van Hulse

Napolitano, & Folleco, 2007 ). A slightly imbalanced problem can

be solved with- out difficulties, and the effects of population

changes will be mod- erate. 

4.2. Non-neutral re-balancing 

Many re-balancing methods that do not keep neutrality have

been proposed. These so-called “informed” methods pay more at-

tention, by increasing the re-balance intensity, to regions of the ob-

servation space that are considered more critical for re-balancing

purposes. These regions are determined according to the results of

a relatively simple classifier such as a K nearest neighbors (K-NN)

or a similar scheme that is directly applied to the training sam-

ples. Examples include informed direct oversampling ( Japkowicz

20 0 0; Jo & Japkowicz, 20 04)  and undersampling ( Jo & Japkowicz

2004; Kubat & Matwin, 1997; Laurikkala, 2001)  methods. The basic

informed versions of SMOTE ( Barua, Islam, Yao, & Murase, 2014;

Han, Wang, & Mao, 2005; He, Bai, Garcia, & Li, 2008; Hu, Liang,

Ma, & He, 2009)  are not very different from these re-sampling

techniques. Other versions of SMOTE include sample pre- or post-

processing ( Batista et al., 2004; Ramentol, Caballero, Bello, & 

Her- rera, 2012)  and informed modifications of SMOTE generation

char- acteristics ( Bunkhumpornpat, Sinapiromsaran, & Lursinsap, 

2009; 2012 ). There are also hybrid methods that combine several

designs under different conditions ( Provost & Fawcett, 2001 ). 

There is much experimental evidence of the improvements that

informed methods can provide. However, they suffer from a num-

ber of intrinsic limitations that result in some implicit risks in their

direct application. 

Applying a non-neutral re-balancing scheme modifies the like-

lihood ratio. As a result, a machine designed for the re-balanced

problem cannot be modified in the principled form we presented 

in Section 3 to obtain an approximate Bayesian solution to the 

original imbalanced problem. Consequently, the ROC of that ma-

chine is not an estimate of the NP-ROC. Therefore, if we select a

working point by modifying the threshold using the ROC of this

machine, we incur the risk of obtaining suboptimal results. 

It is possible to compensate for distortions in the likelihood 

ra- tio by modifying the distorted version in forms that can be 

ob- tained from an informed weighting mechanism. We will 

discuss this in detail in Section 6.  But some risks remain. The 

sample weighting procedure determines what regions of the ROC 

will be better estimated. If the working point which is selected 

does not fall in such regions, the classification performance 

decreases, and the results may even be poorer than those of non-

informed ap- proaches. 

As a consequence of the above, it appears that a two-step pro-

cess for applying informed re-balancing schemes is the 

appropriate way for designing classifiers for imbalanced data. The 

first step will use neutral re-balancing, thus allowing a reasonable

determination of the working point in the resulting NP-ROC 

estimate. Once this working point is selected, an appropriate 

informed re-balancing scheme can be applied. If necessary, a 

likelihood ratio compensa- tion can be included. Section 6 

introduces and discusses this two- step process in more detail. 

4.3. Re-balancing with SVMs and ensembles 

Support vector machines (SVMs) are designed under a hinge

cost, which is not a Bregman divergence. Consequently, the ap-

proach of this paper cannot be applied to SVMs. They require a

p

ompletely different analysis. They can be considered linear-in-the-

rainable-parameters structures, and this leads to a solution of the

orm 

 

n ∗
αn ∗t 

(n ∗) k ( x , x (n 
∗) ) = β

T 
k ( x ) 

C 1
≷ 

C 0

U (15a)

for the basic SVM. Here, k (., .) is a Mercer kernel, and the (possi-

bly sparse) weights { αn∗
 

} are obtained by means of an optimiza
tion procedure to maximize the margin between training samples

around the classification border, and { x(
 

n∗
 ) } are the support 

vec- tors. The criterion in (15a) is not a likelihood ratio 
classification formula. The left side is not necessarily a 
monotonically increasing function from 0 to ∞.  However, it is 

possible to write 

f ( γT k ( x )) 
C 1
≷
C 0

f (U 

′ ) (15b)

here f is a nonlinear, strictly-increasing and, therefore, invertible

unction, f:  ( min{  γT k(  x )}, max{  γT k(  x )}) → (0, ∞ ). Formula
15b) is possible if, as is generally the case, the representationa
apability of the kernels is high enough. From this perspective
15a) is similar to (15b).  Applying f −1 to both sides of (15b
eads to 

T k ( x ) 
C 1
≷ 

C 0

U 

′ (15c)

nd γ , U 

′ , could be related to β, U , if f were known. 

A key problem is to select k (., .) in a manner that (15b) can

e approximated for some f.  Deeper analysis of this connection

ould likely provide insights into kernel selection or design

ncluding the forms and modifications that have been proposed

or imbalanced problems ( Fung & Mangasarian, 2005; Hong e

l., 2007; Wu & Chang, 2005; Yang et al., 2009 ). In any case, the

inear character of (15a) means that SVMs are stable classifiers

nd a consequence is their reduced sensitivity to imbalance

ifficulties ( Japkowicz & 

tephen, 2002 ). However, in spite of this advantage, the impossi-

ility of applying the likelihood ratio equivalence subsists. 

Similar to SVMs, some machine ensembles - see Galar, Fer

nandez, Barrenechea, Bustince, and Herrera (2012) for a thorough

verview - either cannot be included in the likelihood ratio equiva-

ence framework. For example, boosting ensembles aggregate their

earners by means of a non-Bregman cost, implying that the likeli-

ood ratio equivalence is not applicable in this case. 

. Some illustrative examples

The purpose of the examples in this section is to illustrate

the consequences of applying non-neutral re-balancing technique

nd non-Bregman surrogate costs to solve imbalanced classifica- 

ion problems. Additional discussions about optimizing the clas- 

ifier and more examples will be provided after a more rigor- ous

iscussion in Section 6 of the two-step process introduced in 

ection 4.  

.1. Effects of a non-neutral re-balance 

This example shows the distortion in the estimate of the like- 

ihood ratio which can appear when informed, non-neutral re- 

ampling techniques are applied. Subsequently, the ROC of the 

esulting classifier differs from the NP-ROC. We choose an easy 

ynthetic problem whose NP-ROC can be analytically established. 

.1.1. Problem description 

Let the class likelihoods be {
1 
4 
(1 + x 2 ) , x 1 , x 2 ∈ [ −1 , 1] 
( x | C 1 ) =
0 , otherwise 

(16a) 
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Fig. 1. ROCs for the classifiers with non-neutral re-balancing. The border of the 
shadowed area corresponds to the NP-ROC. The other ROCs displayed are for IB 
(without re-balancing), SMOTE, and B-SMOTE ( m = 3 ), B-SMOTE ( m = 7)  in (a) and 

ADASYN ( K′
 

 = 3)  in (b). 
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p( x | C 0 ) =
{

1 
3 . 6 

, x 1 ∈ [ −0 . 9 , 0 . 9] , x 2 ∈ [ −1 , 1] 

0 , otherwise 
(16b) 

For these probability densities, it follows immediately that the

etection probability P D and the false alarm probability P FA are re-

ated by the following relationship: 

 D = 0 . 775 − 0 . 45(1 − 2 P F A ) − 0 . 225(1 − 2 P F A ) 
2 (17)

es having a zero mean value and variances σ 2 
1 

= 1 / 
√

his represents the analytical expression of the NP-ROC, which we 

onsider as a reference. 

We consider training the classifier with N 1 = 300 and N 0 =
9200 samples, generated according to (16a) and (16b) for classes
 1 and C 0,  respectively. Thus, the imbalance ratio N 0 / N 1 is 64. 

.1.2. Classification machines 

We employ MLPs with a single hidden layer with H = 4 hid-
en neurons, a number which is appropriate for dealing with the
omplexity of the problem. The machine was trained using the

ack propagation (BP) algorithm, with a learning rate μ = 10 −3.

he input and output weights were initialized with Ga
 

ussian val- 

(D + 1) H 

nd σ 2 
2 

= 1 / 
√ 

1 + H , respectively, where D is the input dimension
 D = 2 ). The surrogate cost was the sum of the squared errors be-

ween the target values and the corresponding machine outputs.

inally, to avoid instability effects and to work with a reasonably

owerful classifier, we used an ensemble of M = 11 independently

rained MLPs with different sam ple populations (sample genera- 

ion is applied) whose outputs were averaged. 

.1.3. Re-balancing methods 

The first re-balancing scheme we applied here was the SMOTE

 Chawla et al., 2002 ), which is an approximately neutral method

t generates minority samples randomly along the connection o

ach training sample with each of its K Nearest Neighbors (NNs

f the same class, the examples and its neighbors being also

andomly selected. The parameter K = 3 was used in thi

xample. 

orderline-SMOTE (B-SMOTE) ( Han et al., 2005)  is a non

eutral re-balancing generation method. B-SMOTE works like 

MOTE, but only with those training samples “in danger”, i.e.

am- ples that have at least one half of their m NNs belonging

o the majority class. It also excludes the minority samples whose

 NNs are majority samples, interpreting them as noisy cases

or large values of m,  B-SMOTE works similarly to SMOTE. In

his example, we maintain K = 3 and we consider m = 3 and m

 7,  to check what the consequences of the separation from

MOTE are. 

ADASYN ( He et al., 2008)  is also a non-neutral re-balancing

ethod. It generates samples for the minority class according to

he SMOTE procedure, but proportional to the number of majority

amples which the training sample has among its K ′ NNs. Here, we 

ill use K ′ = K, and K = 3 for generation. 

Full re-balancing was imposed with Q̃ 

 = 1 for all cases consid-
red. 

To obtain the ROC estimates for the different designs, a new 

ample set was generated for testing the classifiers, with the size 

nd IR of the test set being the same as those of the training set. 

his size was enough to obtain reasonably accurate estimates. The 

OC estimates were established by sorting samples according to 

heir output values, and moving the threshold from ∞ to 0. 

.1.4. Results and discussion 

Fig. 1 shows the ROCs for different sample generation proce- 
ures, as well as the theoretical NP-ROC. P D is presented along a 

onlinear scale to make perceiving the differences easier. The ROCs 

ere obtained by sorting the machine outputs for the test samples 
or each value of η - see formula ( 14,  - and subsequently 

omput- ing the P D and P FA values. 
It can be observed that there is a degradation for all the curves

or low values of P FA.  When P FA increases, both SMOTE and B

MOTE with m = 7 ( i.e.,  the case in which more minority samples

re selected) tend to the NP-ROC, while the direct design and B-

MOTE with m = 3 remain more degraded until (approximately)

F  A = 0.  3.  The performance degradation of B-SMOTE with m =
and the direct design) is more than 0.05 for 0.1 < P FA < 0.2, and

ote that B-SMOTE with m = 3 is even slightly worse than a di-
ect design in this interval, i.e.,  the performance obtained with the

mbalanced dataset, indicated as IB in Fig. 1 a and b, is poor, as ex-

ected. ADASYN works in a similar way, offering results not very

ar from those of a direct imbalanced training. We have checked

hat this is also the case of other informed re-balancing schemes,

ith minor differences. These degradations demonstrate that the

erformance resulting from applying a non-neutral re-balance can

e substantially worse. 

We have analyzed other data sets with different numbers of

amples and different imbalance ratios that showed similar quali-
6
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tative effects. However, such degradations have also been observed

for smaller data sets and/or very high imbalance ratios. This might

make the relative differences in the performance of neutral and

non-neutral re-balancing less relevant. 

5.2. Effects of non-Bregman surrogate costs 

For these examples, we selected the Electricity data set from

the OpenML data set repository ( Harries, Gama, & Bifet, 2009 ). Thi

is a large, (almost) balanced data set, which will help obtain a good

estimate of the NP-ROC by processing the training data without

modifications. Each sample in the data set consists of 8 features.

The target is an increase or decrease in electricity price. The data

set consists of N 0 = 26075 and N 1 = 19237 samples corresponding

to increasing and decreasing prices. 

To estimate the NP-ROC, all the majority and minority samples

are randomly partitioned into training and test sets, with 80% of

both classes going to the training set and the remaining 20% be-

coming the test set. The NP-ROC was estimated from the test data

as explained earlier ( i.e.,  by sorting outputs of the test set) afte

designing an appropriate classifier using the training data. 

5.2.1. Problems 

We study two problems designed by randomly sub-sampling

the original dataset, but with IR ≈ 50. The first problem was based

on N 1 = 261 and N 0 = 13037 samples, and the second problem in-
volved a smaller data set with N 1 = 33 and N 0 = 1629 samples.
Test sets with the same IR were built from the rest of the full data
set. 

5.2.2. Classification machine 

We again employed a classifier based on an MLP architecture

with H = 7 hidden neurons, which was found to be more appro-

priate for these problems. We use a single machine, which was

enough to get good results. 

5.2.3. Re-balancing methods 

We use SMOTE ( K = 3 ) in these examples, as well as a pure

cost-sensitive full re-balancing, i.e. , including a cost factor equal to

IR for the minority samples in the surrogate cost. 

5.2.4. Surrogate costs 

The convex combination 

c(t, o) = α(t − o) 2 + (1 − α) | t − o| (18)

0 ≤ α ≤ 1, was employed as the surrogate cost for training the

MLPs. When α = 1,  we have the squared error, which is a Breg-
man cost. When α � = 1, the cost is non-Bregman, and it differs from
the squared error more and more as α decreases, until arriving at
the absolute error when α = 0.  Performance differences must oc
cur accordingly. 

5.2.5. Results and discussion 

Fig. 2 presents the results for the examples of this subsec- 

tion. 3 In all the cases, the degradation when α decreases is ob- 
vious, making the need of a Bregman surrogate cost for principled

re-balancing clearly evident. In addition, these degradations were

higher when the training set was smaller, and SMOTE gave better

results than the pure cost-sensitive re-balancing. All these results

agree with expectations. 
3 Some machine performance curves are above the estimated NP ROCs in some

egions because of sampling effects.

a  

(

 

m  
. A two-step weighting procedure

6.1. Compensating non-neutral re-balancing 

We will present here a method to compensate for the detri-

ental effects of non-neutral re-balancing in order to obtain ac-

urate estimates of the NP-ROC. As we will see in Sub-section

.2, this analysis will allow the introduction of truly informed re-

alancing procedures that first estimate what samples are near

he desired working border, and, after it, apply a non-neutral re-

alancing step which puts more emphasis on these samples. This

roduces a new ROC estimate that is better around the working

oint, although it becomes worse in other regions. Obviously, this

roduces a beneficial effect. 

Typically, the effect of an informed re-balancing method on the

lassifier design is to weight the minority samples in the optimiza-

ion problem according to a factor e 1 ( x ) (re-sampling or genera-

ion). The weight function e 1 ( x ) depends on the training sample

 , and is typically larger when x is in the region that the particu-

ar method selects. Here, we will weight x more when it is close to

he classification border corresponding to the working conditions.

hese conditions are determined by selecting a value for the P FA ,

 FAW 

, on an estimate of the NP-ROC (which is provided by a first

tep using a neutral re-balancing mechanism). This factor is estab-

ished by means of a preliminary classification mechanism. We will

lso include in this analysis a possible factor e 0 ( x ) for the majority

amples. We assume that these factors are not zero for any value

f x . Thus, the theoretical likelihood for the re-balanced problem

s 

 

′ 
L ( x ) = 

p( x | C 1 ) e 1 ( x ) /a 1 
p( x | C 0 ) e 0 ( x ) /a 0 =

q L ( x ) q E ( x ) 

Q A 

(19)

here q E ( x ) = e 1 ( x ) /e 0 ( x ) , Q A = a 1 /a 0 , and a 1 and a 0 are normal-

zation constants. Estimation of these normalization parameters is

iscussed later. Note that e i ( x ) changes the likelihood profiles, and

hat we are considering the resulting functions as new likelihoods,

ormalizing them to unity volume. 

Now, we will see how to recover in a consistent manner an es-

imate of q L ( x ) from the estimate of q ′ 
L 
( x ) obtained by an informed

e-balancing process. 

To simplify the initial discussion, let us consider a classifier that

s trained using a cost-sensitive informed re-balancing approach

mploying a Bregman surrogate cost. In this case, we can estimate

 

′
L
 

 

( x ) using (13) as 

ˆ 
 

′ 
L ( x ) = 

ˆ q L ( x ) q E ( x ) 

ˆ Q A 

= 

˜ Q 2 ( x ) 
1 + o B 2 ( x ) 

1 − o B 2 ( x ) 
(20)

If, as is usually the case, the classifier is trained with the

eighted samples to minimize the error probability, ˜ Q 2 ( x ) =
 E ( x ) , and 

1 + o B 2 ( x ) 

1 − o B 2 ( x ) 

C 1
≷
C 0 

ˆ Q 

ˆ Q A 

(21)

s before, we can compare directly with o B 2 ( x ) to find an equiva-

ent test: 

 B 2 ( x )
C 1 
≷
C 0 

ˆ Q − ˆ Q A 

ˆ Q + 

ˆ Q A 

= η2 (22)

Formula (22) serves to estimate the classifier’s NP-ROC by sort

ng the output values and moving η2 from 1 to −1 . A previ-

usly estimated NP-ROC (by applying a neutral re-balance) and the

orresponding sample sorting will guide the choice of appropri-

te weights e i ( x ) , according to the position of the working point

 P FAW 

). 

Implementing the above system requires estimation of the nor-

alization parameters a and a . A straightforward way is to use
1 0 

7



Fig. 2. ROCS of the classifiers for non-Bregman costs. The border of the shaded region shows the NP-ROC estimated from the original Electricity data set ( Harries et

al., 2009 ). The values of α correspond to versions of surrogate cost (18).  (a) First problem, cost-sensitive re-balancing; (b) Second (smaller) problem, cost-sensitive re-

balancing;(c) First problem, SMOTE re-balancing; (d) Second problem, SMOTE re-balancing.
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1.  
ample-based estimates for a given weighting scheme as 

ˆ 
 i = 

1

N i 

∑ 

n i 

e i ( x 
(n i ) ) (23a) 

or i = 0 and 1, where x (n i ) , N i , are the training samples and their

umber for the i th class, respectively. 

Re-sampling or/and generation can also be applied, but they

nly permit integer weights. In such cases, diversity, provided, for

xample, by machine ensembles, is advantageous and must be ap-

lied along with averaging. On the other hand, if generation is

resent, 

ˆ 
 i = 

1

N 

′ 
i 

∑ 

n ′ 
i 

e ′ i ( x (n 
′ 
i 
) ) (23b) 

here e ′ 
i 
(·) excludes the generation rate, { x (n ′ i ) } is the sample x (n i ) 

rom the training set and those generated from it, and N 

′ 
i 
is the to-

al number of samples in the i th class. Formula (23a) is acceptable 

f the generated samples are sufficiently close to the original train-

ng set. Estimation errors of the normalization factors can directly

ffect the classifier performance. Therefore, careful attention must

e paid to this process. 
.2. A two-step re-balancing procedure 

The likelihood ratio q ′ L ( x ) is estimated more accurately where

he “density” of the samples used for estimating the likelihood (in-

luding their weights) is higher. Without a good preliminary classi-

er capable of determining what samples are close to the (desired)

orking border, there is a real risk of modifying the sample den-

ity in an inappropriate manner. Such a classifier must be designed

ased on a Bregman surrogate cost and neutral re-balancing. This

s the foundation of the two-step procedure we present here. The

omponents of each step are enumerated below for the case of se-

ecting a working point P FAW 

. The case of given classification costs

s similar: 

Step 1 

.1. Design an auxiliary classifier, with output o B 1 ( x ) , under a Breg-

man surrogate cost and with a neutral re-balance. It will pre-

serve the likelihood ratio and, therefore, it will allow accurate

estimation of the NP-ROC. 

2. Select the desired working point P FAW 

based on the estimated

NP-ROC. 
8



Fig. 3. ROC of the preliminary classifier in the first stage of the two-step classifier for selected classes of “BNG:Page-blocks”. The border of the shaded area indicates the

estimated NP-ROC. The machine ROCs are: without re-balancing (IB), SMOTE, B-SMOTE (in (a)), and ADASYN (in (b)).

Fig. 4. 2s-SMOTE is the ROC curve for the second step SMOTE re-balance applied

to the minority samples that are between P FA = 0 and P FA = 0 . 3 in the first step. The 

selected working point was at P FAW = 0 . 15 . The SMOTE curve from the first stage is 

also included here for an easier comparison.
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.3. Determine the weighting functions e i ( x ) based on the esti-

mated NP-ROC and the selected working point. 

Step 2 

.1. Apply e i ( x ) and train the second classifier with a Bregman sur-

rogate cost. 

.2. Obtain the value of η∗
2 
for getting P FAW 

. 

Operation 

Apply o B 2 ( x ) 
C 1 
≷ 

C 0

η∗
2 

The second re-balancing mechanism can weight the training

samples as Borderline-SMOTE does. However, the two-step pro-

cess described above pays more attention to those samples that

are close to the desired working point. This is a non-trivial dif-

ference, as we will see in the examples below. There is freedom
ng, and to use one of them based on its performance in the

rob- lem under analysis. Thus, it is possible to use parametri

eight- ing forms such as those with profiles similar to those

uccessfully applied to improve boosting ( Ahachad, Álvarez-Pérez

 Figueiras- Vidal, 2017)  and stacked denoising auto-encoding

SDAE) classification ( Alvear-Sandoval & Figueiras-Vidal, 2018 )

xtending previous simpler versions ( Gómez-Verdejo, Arenas

arcía, & Figueiras-Vidal, 2008; Gómez-Verdejo, Ortega-Moral

renas-García, & Figueiras- Vidal, 2006 ), and determining

arameter values by cross validation. 

We emphasize that two-step re-balancing procedures provide

esigns that are appropriate for a given working point. Thi

eans that, if there is any reason to change the working point

 new design has to be carried out accordingly: Two-step

esigns are adapted to the working point and, contrarily to

ne-step (neu- tral) machines, they cannot provide a consisten

olution for other working conditions. 

. Examples on the two-step classification

.1. Database 

n these examples, we work with classes 1 and 5 of the multi

lass database “BNG: Page-blocks” ( Holmes, Pfahringer, van Rijn,

 Vanschoren, 2014)  for document page design element classifi

ation. Block 1 is the majority class C 0,  having N 0 = 265,174

am- ples, and Block 5 has N 1 = 6238 samples. Each sample in

he data set was a ten-dimensional vector, corresponding to ten

ifferent features used by the classifier. Our training set wa

btained by randomly selecting one third of the samples of each

lass, which resulted in the same imbalance ratio as the origina

ataset. The training data was further randomly divided into two

ubsets, one containing 75% of the data for training the

lassification machines, and the remaining 25% were used fo

esting the classifier. A pre- liminary estimate of the NP-ROC wa

btained with a K = 3 SMOTE full re-balancing process working

ith all the samples. The classi- fication machine was the same

or both steps of the algorithm. 

.2. Classification machine 

 single-hidden-layer MLP network with H = 27 hyperbolic tan
ent hidden activations was employed. This machine offered good
9



Fig. 5. 2s-SMOTE ROC curves for the second SMOTE re-balancing on minority samples laying between a) P FA = 0 and P FA = 0 . 2 and b) P FA = 0 and P FA = 0 . 25 ; in the first 

step. The selected working point is P FAW = 0 . 1 . The step-one SMOTE curve is included as a reference for comparison. 
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uality results for this classification problem. The results are given

or ensembles of M = 5 machines which provided sufficient stabil-

ty. 

.3. Re-balancing process 

The first step was carried out with a K = 3 fully re-balancing

MOTE algorithm. Subsequently, we applied a fully re-balancing

MOTE with K = 3 again, but just in an interval of P FA values

round the selected working point, P FAW 

. 

.4. Results and discussion 

Fig. 3 shows the results for the first step of the two-step 

lassifier (SMOTE), as well as an estimate of the NP-ROC. In addi-

ion, this figure displays the ROCs associated with direct classifica-

ion without re-balancing, first-step SMOTE as described above, B-

MOTE with m = 4 and K = 3 , and ADASYN with K ′ = 3 and K = 3 .

hese results are as expected: SMOTE gives the best NP-ROC esti-

ates for low values of P FA , while the differences between SMOTE

nd B-SMOTE or ADASYN are small when P FA is high. We can also

bserve that the performance of B-SMOTE for low P FA values is

ven worse than that of a direct imbalanced training. While this

s not true for ADASYN, its disadvantage with respect to SMOTE is

lso clear. The advantage of ADASYN with respect to B-SMOTE can

e attributed to the lower number of samples that ADASYN ex-

ludes from the generation process, 82, while B-SMOTE excludes

85. Once again, direct designs with imbalanced data (IB) offer

oor results.

For the second step, we selected P F AW 

= 0 . 15 , and applied

MOTE to the minority samples between the thresholds corre-

ponding to P F A = 0 and P F A = 0 . 3 in the first step. The results ap-

ear in Fig. 4 as the 2s-SMOTE curve. The advantage at P F AW 

= 0 . 15

ith respect to the SMOTE results is clear in this figure. 

The selection of the re-sampling region is not a trivial task.

ig. 5 shows the 2s-SMOTE results obtained when P F AW 

= 0 . 1 and

he SMOTE generation is applied for samples between P F A = 0 and

 F A = 0 . 2 (a symmetric interval) and between P F A = 0 and P F A =
 . 25 . Performance difference can be easily noticed in these fig-

res. For example, P D is clearly higher for the asymmetric empha-

is. Thus, it is important to explore how to select these second step

haracteristics. 
. An emphasized neutral re-balancing

There is an interesting and easy version of the general two-step

e-balancing approach. In the second step, a neutral re-balancing

rocedure is applied, and an over-weighting of all (minority and

ajority) samples is carried out according to an appropriate pro-

le of weights around the threshold η which corresponds to the

esired P FAW 

. The likelihood ratio invariance is maintained in this

rocess, and more attention is paid to those samples that are

ore important to define the classification border. Consequently,

he quality of the estimates - in particular, that of the likelihood

atio - will be higher in the corresponding region. As a result, bet-

er classification will be provided by the second classifier. 

For this re-balancing scheme, we can derive the classification

ule using techniques similar to those employed in the previous

ections as 

 B 2 ( x )
C 1 
≷
C 0 

ˆ Q − ˜ Q 2 
ˆ Q A 

ˆ Q + 

˜ Q 2 
ˆ Q A 

= η′
2 (24) 

here ˜ Q 2 corresponds to the neutrally re-balanced component, and
ˆ 
 A comes from the joint weighting. 

The best profile for the emphasis will be problem dependent.

ven the intensity of the emphasis must be explored during the

esign process. We will do so in the examples that follow. 

To clarify this approach, the skeleton of its algorithmic version

for a given P FAW 

) is provided below. 

Step 1 

.1. As in Section 6.2.  

2. As in Section 6.2.  

3. Determine a weighting form for the second step according to 

the previous NP-ROC estimate and the selected working point. 

Step 2 

.1. Prepare the training samples for the second classifier by means

of a (possibly new) neutral re-balancing, and apply the weights

of 1.3 to all the training samples. 

2. Design the second classifier using a Bregman surrogate cost. 

The final classification of any sample x will be obtained 

irectly from (24).  
10



Fig. 6. ROC curves for the two-step emphasized neutral re-balancing: a) A K = 3 SMOTE fully re-balanced classifier is used in the first step and as the neutral component 

of the second step. The system also included an emphasis with values 4 and 16 for samples in P FA ∈ [0.1, 0.2], P FAW = 0 . 15 being the working point. SMOTE and 2s-SMOTE of 

Section 7 are included for an easier comparison. b) Results corresponding to the same process for P FAW = 0 . 2 and emphasizing samples in P FA ∈ [0.15, 0.25]. 
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9. Examples in two-step neutral re-balancing

These examples employed the same database, problem, and

machine architecture that were used in Section 7.  The first-stage

classifier was a fully re-balanced, K = 3 SMOTE design. The
second- stage classifier included the same generative full re
balance plus a weighting of all the samples between two P F

values around the selected working point, P FAW.
 

 

Fig. 6 a shows the results for PF  AW 

= 0.  15 and weight values 4
and 16 for samples between PF  A = 0.  1 and PF  A = 0.  2
Results for SMOTE and the 2s-SMOTE design of Section 7 are
also included in the figure for comparison. The emphasis interva
for the results from Section 7 was kept at [0, 0.25] because
changing it de- graded the results. The two-step neutral method
with weight 4 performed as good as the 2s-SMOTE at the
working point, and is slightly better far from P FAW.

 

 This is due
to the neutral character of the new design. On the contrary, using
a weight 16 offers results even worse than those of SMOTE: Thi
was as expected because a very high emphasis produces an
excessive deformation of the like- lihoods, and consequently, a
worse estimate of their ratio. 

Fig. 6 b demonstrates that the method is effective for differen

working points. 

Once again, we are estimating the Neyman–Pearson operation

characteristic when applying a 2-step re-balancing procedure, but

emphasizing the quality of the estimate around the desired work

ing point. 

10. Conclusions

In this contribution, we introduced a principled method to solve

imbalanced binary classification problems. It is based on apply-

ing necessary and sufficient conditions to get an estimate of the

likelihood ratio. It is important to remark that these necessary

and sufficient conditions allow to get estimates of the Neyman–

Pearson operating characteristic for the problem, which is opti-

mal for classification. This is a very relevant advantage in the

re-balancing processes. Our approach eliminates the imprecision

risks that many empirical re-balancing procedures suffer from. The

method is based on keeping the likelihood ratio invariant when

constructing the re-balanced problem. This principled approach

makes designing the classifier for the original imbalanced prob-

lem from the output of the machine solving a re-balanced problem
traightforward and avoids the many risks associated with alter-

ate approaches available in the literature. To accomplish this, the

lgorithm must be designed based on two required characteristics.

irst, the surrogate training cost must be a Bregman divergence.

econd, re-balancing techniques employed must be neutral. 

Additionally, we introduced a two-step method to design in-

ormed re-balancing techniques without the difficulties such meth-

ds typically present, allowing further improvements in perfor-

ance. We also introduced a form of this two-step method in

hich a neutral re-balance and a common emphasis is applied to

oth minority and majority samples around a working point, also

roducing performance improvements. 

We presented several illustrative examples that clearly demon-

trated the importance of the re-balancing principles we in-

roduced and the effectiveness of the two-step methods. Real-

orld applications require additional exploration of the parameter

hoices for the re-balancing algorithms. 

There are several avenues to extend this research. One of the

ost important is to address the imbalanced multi-class problem

 Bi & Zhang, 2018; Fernández, López, Galar, Del Jesus, & Herrera

013; Haixiang et al., 2017; Krawczyk, 2016; Sáez, Krawczyk, &

o ́zniak, 2016; Wang & Yao, 2012 ), that are frequent and relevant

These are more difficult problems because, in general, many im- 

alance ratios are present. We have established the principled for-

ulations for the single machine classification and for the binary

orms - One vs One, One vs Rest, and ECOC-based ensembles, - and

he results of preliminary experiments are promising. These multi-

lass formulations can also be applied to other interesting prob-

ems such as ordinal and multi-label classification. 

Another line of research to be explored involves problems with

xample-dependent costs. These problems are pervasive in many

eal-world finance, business, and health applications, and they ap-

ear usually under imbalanced conditions. Equally interesting is

he question of how to adapt all these designs to online learning

nd big data applications. 
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ppendix A 

The theoretical analysis of Bregman divergences is presented

ere. 

Estimating a random variable t by means of a function o( x ) of

 random vector x to minimize a cost c(  t, o)  requires to minimize

he average cost 
 

x

∫ 
t

c(t, o) p( x , t) d x dt = 

∫ 
x

[ ∫ 
t

c(t, op(t| x ) dt p(x ) d x (A.1)

nd, accepting that c ( t, o ) is non-negative, it is enough to minimize

he inner integral, because p( x ) is non-negative: 

 c ( x ) = arg min
o

∫ 
c(t, o) p(t| x ) dt (A.2)

Obviously, we can always write 

∂ c(t, o) 

∂ o 
= −g(t, o)(t − o) (A.3) 

y appropriately defining g(  t, o ). Assuming that the integral in 

(A.2) is (absolutely) convergent, the solution is given by 
 

g(t, o)(t − o) p(t| x ) dt = 0 (A.4)

If c(  t, o)  is a Bregman divergence, g(t, o) = g(o),  and (A.3) be-

omes 

(o c ) 

∫ 
(t − o c ) p(t| x ) dt = 0 (A.5)

nd, since g(oc ) �= 0, we get 
 

o c p(t| x ) dt = o c ( x ) =
∫ 

t p(t | x ) dt = E{ t | x } (A.6)

However, if g(t, o) � = g(o),  (A.6) does not result. 

hen working with sampled data, the integrals are replaced by 

mations and we obtain estimates of the a posteriori average of t, 

se quality depends on the number and information amount of 

samples and the capability of the functional form which is 

cted for o( x ) to approximate E{t | x }.  Additionally, the particular 
tion g(  o)  which is selected has, in practice, weighting effects 

 affect the characteristics of the obtained estimate of E{t | x }.  
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