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Abstract

Sparse group LASSO (SGL) is a penalization technique used in re-
gression problems where the covariates have a natural grouped struc-
ture and provides solutions that are both between and within group
sparse. In this paper the SGL is introduced to the quantile regres-
sion (QR) framework, and a more flexible version, the adaptive sparse
group LASSO (ASGL), is proposed. This proposal adds weights to the
penalization improving prediction accuracy. Usually, adaptive weights
are taken as a function of the original non-penalized solution model.
This approach is only feasible in the n > p framework. In this work,
a solution that allows using adaptive weights in high-dimensional sce-
narios is proposed. The benefits of this proposal are studied both in

synthetic and real datasets.

keywords: quantile regression; group variable selection; adaptive sparse

group LASSO; high dimension; weight calculation

1 Introduction

Along years, regression has become a key method in statistics. Ordinary
least squares (OLS) regression estimates the conditional mean response of a
variable as a function of the covariates. However, OLS estimators relies on
certain hypothesis over the first two moments that are not always verified in

practical applications. Ever since the seminal work of [Koenker and Bassett,

*Department of Statistics, University Carlos III of Madrid.
tUC3M-Santander Big Data Institute.



1978|, quantile regression (QR) models have gained importance when dealing
with this kind of situations. QR models allow a relaxation of the classical
first two moment conditions over the model error, and it offers robust estima-
tors capable of dealing with heteroscedasticity and outliers. QR models can
also estimate different quantile levels of a response variable, giving a precise
insight of the relation between response and covariates at upper and lower
tails. This can provide a much richer point of view than OLS regression. For
a full review on quantile regression, we recommend [Koenker, 2005|.

In recent years, high-dimensional data in which the number of covari-
ates p is larger than the number of observations n (p > n), has become
increasingly common. This problem can be found in many different areas
like computer vision and pattern recognition [Wright et al., 2010], climate
data over different land regions [Chatterjee et al., 2011], and prediction
of cancer recurrence based on patients genetic information [Simon et al.,
2013]. In these scenarios, variable selection gains special importance offering
sparse modeling alternatives that help identifying significant covariates and
enhancing prediction accuracy. One of the first and more popular sparse
regularization alternatives is LASSO, which was proposed by [Tibshirani,
1996] and adapted to the QR framework by [Li and Zhu, 2008|, that devel-
oped the piece-wise linear solution of this technique. LASSO is a technique
that penalizes each variable individually, enhancing thus individual sparsity.
However, in many real applications variables are structured into groups, and
group sparsity rather than individual sparsity is desired. One can think
for example in a genetic dataset grouped into gene pathways. This prob-
lem was faced by the group LASSO penalization of [Yuan and Lin, 2006],
and opened the doors to more complex penalizations like the sparse group
LASSO |Friedman et al., 2010], which is a linear combination of LASSO and
group LASSO providing solutions that are both between and within group
sparse. With the same objective in mind, [Zhou and Zhu, 2010] proposed a
hierarchical LASSO. To the best of our knowledge, the SGL technique has
not been studied in the framework of QR models, so this gap is addressed
first, extending the SGL penalization to quantile regression.

|Zou, 2006] was the first to propose the usage of specific weights for each
variable on LASSO penalization as a way to increase the model flexibility.
This idea, generally known as the adaptive idea, was then extended to other

penalizations. The weights of the adaptive idea are typically defined in the



literature based on the results of non-penalized models. This definition is a
key step for the demonstration of the oracle properties of the estimators [Fan
and Li, 2001], but it is restrictive in the sense that limits the usage of adap-
tive penalizations just to the case in which solving a non-penalized model is
a feasible first step. This approach, focused on the oracle properties under
low-dimensional scenarios is observed in [Nardi and Rinaldo, 2008| for the
adaptive group lasso, [Ciuperca, 2019| for the adaptive group LASSO and the
adaptive fused LASSO [Ciuperca, 2017] in QR, [Wu and Liu, 2009] for the
adaptive LASSO and scad penalizations in QR, and |Zhao et al., 2014]| for
an adaptive hierarchical LASSO in QR regression among others. It is inter-
esting to remark especially the work developed in [Poignard, 2018|, in which
an adaptive sparse group LASSO estimator suitable for low-dimensional sce-
narios (with n>p) is proposed, studying its theoretical properties for a set
of general convex loss functions.

The main contribution of this work lies here. An adaptive sparse group
lasso (ASGL) for quantile regression estimator is defined, working specially
on enabling the usage of the ASGL estimator in high-dimensional scenarios
(with p > n). In order to achieve this objective, four alternatives for the
weight calculation are proposed. It is worth noting that these weight calcu-
lation alternatives can be used no only in the case of the ASGL estimator,
but also in the rest of the adaptive-based estimators available in the liter-
ature. The performance of this alternatives is also studied in the case of
low-dimensional scenarios, making the proposed work a good alternative for
both high-dimensional and low-dimensional problems.

The rest of the paper is organized as follows. In Section 2 some basic
theoretical concepts are introduced, along with the formal definition of the
sparse group LASSO in quantile regression. This definition is extended to
the adaptive idea in Section 3, proposing the ASGL estimator. Section 4
introduces the weights calculation alternatives for high-dimensional scenar-
ios. Section 5 shows the advantages of this proposal in different synthetic
datasets in high and low-dimensional scenarios. In Section 6 the proposed
model is used in a real dataset, a genomic dataset including gene expression
data of rat eye disease first shown in |[Scheetz et al., 2006]. The computa-
tional aspects of the problem are briefly commented on Section 7, and the

conclusions are provided in Section 8.



2 Penalized quantile regression

Consider a sample of n observations structured as D = (y;, x;), i =1,...,n

from some unknown population and define the following linear model,
yi=zB+e,i=1,...,n (1)

where y; is the i-th observation of the response variable, &; = (21, ..., Zip)
is the vector of p covariates for observation 7 and ¢; is the error term.

Let us introduce now the quantile regression framework by defining the
loss check function,

pr(u) = u(r — I(u < 0)) (2)

where I(-) is the indicator function. In their seminal work [Koenker and
Bassett, 1978| proved that the 7-th quantile of the response variable can be

estimated by solving the following optimization problem,

B = arg min {i > peyi - $§ﬂ)} : (3)
=1

BeRP

Quantile regression models allow a relaxation of the classical first two mo-
ment conditions over the model error, and it offers robust estimators capable
of dealing with heteroscedasticity and outliers.

We call high-dimensional scenarios to the datasets in which p is much
larger than n (p > n). This problem is becoming more and more common
nowadays, and can be observed in many different fields of research such as
computer vision and pattern recognition [Wright et al., 2010], climate data
over different land regions [Chatterjee et al., 2011] or prediction of cancer
recurrence based on patients genetic information [Simon et al., 2013]. An
alternative that has been intensively studied in recent years for dealing with
these scenarios is the penalization approach. By penalizing a regression
model it is possible to perform variable selection and improve the accuracy
and interpretability of the models. Since it is a continuous process, it also
offers more stable solutions than other alternatives.

One of the best known variable selection penalization methods is the least
absolute selection and shrinkage operator, generally known as LASSO, pro-
posed initially by [Tibshirani, 1996] which, in the case of the QR framework
solves,

B()\) = argmin {711 ;PT(% —z;B) + A HﬁHl} ; (4)

BeRP
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where p;(-) is the QR check function defined in (2). The LASSO penaliza-
tion sends many B components to zero, offering sparse solutions and per-
forming automatic variable selection. In the last years, many LASSO-based
algorithms have been proposed. [Yuan and Lin, 2006] introduced the group
LASSO penalization as an answer for the need to select variables not individ-

ually but at the group level. This penalization solves the following problem,

BN = argmm{;fjpf(yi - aiB) +A§:\/197HHH2}, (5)
=1 =1

BERP

where K is the number of groups, 8 € RP! are vectors of components of 3
from the 1-th group, and p; is the size of the I-th group. The group LASSO
penalization performs in a similar way to LASSO, but while LASSO enhances
sparsity at individual level, group LASSO enhances sparsity at group level,
selecting, or sending to zero whole groups of variables.

Initially proposed by [Friedman et al., 2010|, the sparse group LASSO
(SGL) is a linear combination of LASSO and group LASSO penalizations.
Well known in linear regression and other GLM models, to the best of our
knowledge SGL has not been adapted to QR, and as a first step in the paper,

this penalization is introduced in the framework.

Bzargmin{ ZPT Yi tﬁ +O‘)‘”ﬁH1 1_04/\2\/»”&“}

BERP
(6)

As in LASSO and group LASSO, SGL solutions are, in general, sparse, send-
ing many of the predictor coefficients to zero. However, while LASSO solu-
tions are sparse at individual level, and group LASSO solutions are sparse
at group level, SGL offers both between and within group sparsity, outper-
forming both alternatives.

From an optimization perspective, equation (6) defines a sum of con-
vex functions. This convexity ensures that the solution of the minimization
problem is a global minimum. Figure 1 shows the constrains defined by
LASSO, group LASSO and SGL in the case of a single 2-dimensional group

of predictors.

3 Adaptive sparse group LASSO

Variable penalization in SGL is somehow restrictive in the sense that it

penalizes equally all the variables in LASSO part (giving them the same



Figure 1: Contour lines for LASSO, group-LASSO and sparse-group-LASSO

penalties in the case of a single 2-dimensional group
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importance), and it penalizes only based on the group size in the group
LASSO part. The usage of the adaptive idea, initially introduced by |Zou,
2006, is proposed here as a way to solve this limitations. In this work, a
variant of the SGL penalization, the adaptive sparse group LASSO (ASGL)
for quantile regression is defined. The ASGL estimator for QR is the result

of the following minimization process,

g - S
Bzalgge@m n;ﬁ)r(yi—wgﬁi)+0‘/\j;wjﬁj|+(1_a>)‘;mvl“ﬁl“2 ’
(7)

where w € RP and © € RX are known weights vectors. The intuition behind
these weights is that if a variable (or group of variables) is important, it
should have a small weight, and this way would be lightly penalized. On
the other hand, if it is not important, by setting a large weight it is heav-
ily penalized. This enhances the model flexibility and improves prediction
accuracy. It is worth saying that this formulation defines a convex function
and thus, the global minimum can be found.

The adaptive idea has been used in many LASSO-based formulations in
recent years. One can see for instance [Wu and Liu, 2009] that introduces
the adaptive LASSO in quantile regression, [Ciuperca, 2017] where an adap-
tive fused group LASSO is defined, or [Zhao et al., 2014] that proposes an



adaptive hierarchical LASSO among others. When dealing with an adap-
tive estimator, the general tendency found in the literature is to study the
so-called oracle properties of the estimator, defined initially in [Fan and Li,
2001]. One estimator is oracle if it is (asymptotically) normally distributed
and recovers the true underlying sparse model.

A major drawback of this approach in our opinion is precisely that it
is focused on the asymptotic behavior of the estimators, when the num-
ber of observations n diverges, or in the double-asymptotic behavior, when
the number of parameters p diverges with the number of observations n.
However, it does not consider the case of high-dimensional scenarios, where
p > n. A typical step in the demonstration of the oracle behavior of the
estimators is to define the adaptive weights based on the result of the unpe-

nalized model,
1

180

where |-| denotes the absolute value function, 7 is a non negative constant

w =

(8)

and B is the solution vector obtained from the unpenalized model (described,
in the case of the QR framework, in equation (3)). This approach makes un-
feasible the usage of adaptive models in high-dimensional scenarios in which
solving unpenalized models is not a realistic approach. The work developed
by [Poignard, 2018] is of special interest. Here an adaptive sparse group
lasso estimator is defined in a general set of convex functions. However, the
author is centered on studying the asymptotic behavior of the estimator, and
thus, its usage in real applications is restricted to low-dimensional scenarios.
The proposal developed in this work, on the other hand, can be used both

in high-dimensional and low-dimensional scenarios.

4 Adaptive weights calculation

The objective of this section is to introduce different alternatives for the
calculation of weights in the adaptive framework. The intuitive idea is to
find a way to substitute B, the solution from the unpenalized model, un-
feasible in high-dimensional scenarios, in the calculation of the adaptive
weights. This problem will be faced making use of two dimensionality re-
duction techniques, principal component analysis (PCA) and partial least
squares (PLS). The proposed weight calculation alternatives can be used

both in high-dimensional and low-dimensional scenarios. It is worth remark-



ing that these alternatives can be applied not only to the ASGL algorithm,

but also to other adaptive-based algorithms.

4.1 Principal components analysis

Given the covariates matrix X € R"*P defined in equation (1), with max-
imum rank r = min{n,p}, consider the matrix of principal components
Q € RP*" defined in a way such that the first principal component has the
largest possible variance, and each succeeding component has the largest
possible variance under the constraint that it is orthogonal to the preceding
components. From an algebra perspective, the principal components in Q
define an orthogonal change of basis matrix that maximize the variance ex-
plained from X. Consider Z = XQ € R™ " the projection of X into the
principal components subspace. Two weight calculation alternatives based

on principal components are proposed.

4.1.1 Based on a subset of components

Consider the sub-matrix Qg = [q1, - . ., q4]" where q; € R is the i-th column
of the matrix @, and d € {1,...,r} is the number of components chosen. Let
Qpea,d € [0,100] be the percentage of variability from X that the principal
components in Q4 are able to explain. If d = r then the principal components
in Qg are able to explain all the original variability from X', and aeq,q = 100,
if d < r then opeqq < 100. The number of components chosen in order to
explain up to a certain percentage of variability is fixed by the researcher.
Obtain Z; = X Qg € R™ ¢ the projection of X into the subspace generated
by Qg and solve the unpenalized model,

B = arg min {jb S ey — z;-fm} . (9)
=1

BEeRP

This model defines a low-dimensional scenario where 3 € R%. Using this so-
lution, it is possible to obtain an estimation of the high-dimensional scenario
solution, ,é = Qd,é € RP. Finally, the weights are estimated as,

1 1
— and G=— (10)
|BjIm

Bl

where Bj is the j-th component from ,3, Bl is the vector of components of 3

Wy

2

from the 1-th group, and ~y; and o are non negative constants usually taken
in [0, 2].



4.1.2 Based on the first component

A more straightforward approach based on the first principal component is
also proposed. The principal components are no more than lineal combi-
nations of the original variables. Therefore, the first principal component
q1 € RP_ which is the first column of the matrix @, includes one weight for
each of the p original variables. This proposal consists of calculating the

weights as,
1 1
= —— d ), = 7’
e P S

where ¢1; is the j-th component from q; and defines the weight associated

(11)

wj

to the j-th original variable, ql1 is the vector of components of g; from the

I-th group and 71 and -, are non negative constants usually taken in [0, 2].

4.2 Partial least squares

The principal components are defined in a way such that they capture the
maximum possible variance from X under the constraint that they are or-
thogonal to the rest of the principal components. However, being relevant
for describing the variance of X does not necessarily mean that a principal
component is relevant for predicting the value of y. Partial least squares
(PLS) is a dimensionality reduction technique centered on maximizing the
covariance between X and y.

Given the covariates matrix X € R™*P defined in equation (1), with
maximum rank r = min {n,p}, consider the matrix of PLS components
T € RP*® and the projection of X into the subspace generated by T: U =
XT € R"5. The matrix of PLS components T defines a non-orthogonal
change of basis matrix whose projection U is computed in a way such that the
first projection vector, u; € R™ has the largest possible covariance with vy,
and each succeeding projection vector has the largest possible covariance with

y under the constraint that it is uncorrelated to the rest of the projection

vectors.
Given the sub-matrix Ty = [t1, ..., t4]" where t; € RP is the i-th column
of the matrix T, and d € {1,...,s} is the number of components chosen,

let ayp5.9 € [0,100] be the percentage of variability from X that the PLS
components in Ty are able to explain. The non-orthogonality of T implies

that the total number of PLS components available to be computed is smaller



than the rank of X, s < r, and then the maximum possible percentage of
variability explained by the PLS components a5 is lower than 100%.

In the case of principal components analysis, the matrix of principal
components @ defines an orthogonal change of basis matrix that results into
an orthogonal projection matrix Z maximizing the variance of X. On the
other hand, PLS defines a non-necesarily orthogonal change of basis matrix
T that results into an uncorrelated projection matrix U maximizing the
covariance between U and y. Similarly to the alternatives proposed for
PCA, two alternatives of weight calculation using PLS are proposed: based

on a subset of PLS components, and based just on the first PLS component.

5 Simulation studies

This section shows the performance of the proposed ASGL model under
different synthetic dataset examples. Given that the ASGL formulation in
equation (7) includes a weight penalization on the group LASSO part based

on the group size (the term /p;), two model formulations are considered:

e Adaptive LASSO in sparse group LASSO (AL-SGL), where @ # 1 but
© = 1, in which the adaptive idea is only applied to the LASSO part.

e Adaptive sparse group LASSO (ASGL), where w # 1 and v # 1.
Furthermore, the four weight calculation alternatives proposed are studied:

e PCA weights based on regression on a subset of principal components,

we denote this as pcay;

e PCA weights based on the first principal component, we denote this

as pcaz;

e PLS weights based on regression on a subset of PLS components, we

denote this as plsg;
e PLS weights based on the first PLLS component, we denote this as pls;.

The total number of components d used in the weight estimation in plsy
and pcag is chosen such that in both cases the percentage of variability ex-
plained from the original matrix X is apega = 80%, apisa = 80%. As
commented along Section 4, due to the non orthogonality of the PLS com-

ponents it is possible for the maximum possible variability explained by the

10



PLS components oy s to be smaller than 80%. In these cases we consider
d such that Qpls,d = Olpls,s-

The results obtained by the models proposed in this work are compared
with the results from LASSO and SGL formulations. For each dataset D,
a partition into three disjoint subsets, Di;qin, Dy and Dyes is considered.
D¢rain is used for training the models, this is, solving the model equations.
Dy is used for validation, this is, optimizing the model parameters. This
optimization is performed based on grid-search. Finally, D;.s is used for
testing the models prediction accuracy. The model parameters are optimized
based on the minimization of the quantile error, defined as,

Bo= o Y el - i) (12)

~ #Dyu
va (yivwi)GDval

where p;(-) denotes the quantile function defined at (2), and # denotes the

cardinal of a set. The final model error is calculated over Dy as,
x (v — 'B) (13)
#Dtest pridi !

(yivwi)eDtest

E;

Additionally, the following metrics for evaluating the performance of the

methods are considered:

‘B — ﬁH the euclidean distance between the estimated vector and the
2

true vector;
e true positive rate (TPR)= P(5; # 0|3; # 0);
e true negative rate (TNR)= P(3; = 0|8; = 0);
e correct selection rate (CSR)= P(5 = f).

In these simulations we consider 7 = 0.5. Each simulation example has
been executed 50 times considering 100/100/5000 observations in the train
/ validate / test samples. The results have been summarized in terms of the
mean and standard deviation values, and the best result from each metric is
highlighted.

The general simulation scheme comes from the model,
y=XB+e€ e~1(3),

where X is generated from a standard Gaussian distribution. Variables are

organized in groups, and within group correlation of 0.5 and 0 otherwise

11



is considered. The scheme used here is an adaptation of other simulation
schemes used in [Wu and Liu, 2009] and |Zhao et al., 2014].

We are interested on studying the performance of the proposed models
under different situations, for this reason three main scenarios are defined,
the first two are high-dimensional and the third one is low-dimensional. The
scenario from Section 5.1 is a high-dimensional scenario that considers a
sparse distribution of the significant variables along many groups, the sce-
nario from Section 5.2 is a high-dimensional scenario that considers a dense
distribution of the significant variables in a few number of groups. It is in-
teresting to test the performance of the models as the number of variables
increase. For this reason, two cases are considered in each of these two sce-
narios. A dataset having 225 variables and a dataset having 625 variables.

As it was commented in Section 3, the general tendency found in the
literature regarding the weights in adaptive models is to define them based

on the results of the unpenalized model,
1
8|

where |-| denotes the absolute value function, 7 is a non negative constant

w =

(14)

and (3 is the solution vector obtained from the unpenalized model (described,
in the case of the QR framework, in equation (3)). This approach is limited
just to low-dimensional scenarios, where the unpenalized model can actually
be solved. For this reason, a third scenario, a low-dimensional dataset is
considered in Section 5.3, comparing the results from the weights based on
the unpenalized model with the weights based on the proposal made in this

work.

5.1 Simulation 1: sparse distribution of significant variables

Case 1: 225 variables

There are 15 groups of size 15 each, a total number of 225 variables. Among
these groups, 7 groups with 8 significant variables each are defined, a total
number of 56 significant variables. For [ € {1...,15}, coefficients inside each

group are defined as,

g = (1,2,...,8,0,...,0), l=1,...,7
7
gt = (0,...,0), 1=8,...,15.
15

12



Figure 2: Simulation 1. Dataset with non-zero variables spread along many
groups. 225 variables. Box-plots showing the test error of the different

models.

Test error
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Case 2: 625 variables

There are 25 groups of size 25 each, a total number of 625 variables. Among
these groups, 7 groups with 8 significant variables each are defined, a total
number of 56 significant variables. For [ € {1...,25}, coefficients inside each

group are defined as,

go= (1,2,...,8,0,...,0), [=1,...,7

17
gt o= (0,...,0), 1=8,...,25.
25

The results from this simulation scheme are displayed in Table 1. The
best results are obtained by the ASGL model using pls; weights, closely
followed by pcag weights. These models outperforms LASSO and SGL both
in terms of the distance between predicted and true 3, and in terms of the
test error Fy, improving prediction accuracy. Given that LASSO enhances
individual sparsity, LASSO solutions are more sparse than the solutions ob-
tained by the proposed models models, and this is shown in the TNR, values.
However, the proposed models produce a better selection of the truly signif-

icant variables, fact that is displayed by the TPR values. If the number of
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Table 1: Simulation 1. Dataset with non-zero variables spread along many
groups, and 100/100/5000 train/validate/test observations. Experiments
run 50 times and displayed as mean value, with standard deviations given

in parenthesis

HB - ﬁH E, CSR TPR TNR

p = 225 variables

LASSO 8.09 (0.03)
SGL 6.43 (2.02)  2.12 (0.60)  0.76 (0.06)  0.98 (0.02)
AL-SGL-pcag  6.66 (2.33) 220 (0.76)  0.78 (0.06)  0.97 (0.03)  0.71 (0.08
(0.02)
(0.02)
(

(2.48) (0.81)
(2.02) (0.60)
(2.33) (0.76)
AL-SGL-pca;  7.06 (1.98)  2.30 (0.61)  0.73 (0.06)  0.98 (0.02)  0.65 (0.09
(1.79) (0.56)
(2.46) (0.78)
(1.32) (0.38)
(1.98) (0.62)

2.66 (0.81)  0.80 (0.02) 0.96 (0.03

0.02

0.75 (0.02)
0.69 (0.07

(0.06) (0.07)
(0.06) (0.08)
(0.06) (0.09)
AL-SGL-pls; 6.95 (1.79)  2.28 (0.56) 0.77 (0.06)  0.97 (0.02)  0.70 (0.08)
AL-SGL-pls;  7.27 (2.46)  2.39 (0.78)  0.74 (0.06)  0.98 (0.02)  0.66 (0.08)
ASGL-pcag  5.09 (1.32 1.70 (0.38)  0.73 (0.09) 0.99 (0.01) 0.65 (0.12)
ASGL-pca;  7.07 (1.98)  2.31 (0.62) 0.75 (0.06) (0.07)
ASGL-pls;  5.05 (1.30)  1.68 (0.37) 0.74 (0.09) (0.12)
ASGL-pls;  6.21 (1.78)  2.04 (0.52)  0.74 (0.05) (0.06)

0.06 0.98 (0.02) 0.67 (0.07
0.09 0.99 (0.02) 0.66 (0.12
0.05 0.98 (0.02)  0.66 (0.06

p = 625 variables

LASSO 23.37 (4.61)  7.85 (1.70)  0.89 (0.01) 0.76 (0.07) 0.90 (0.01)
SGL 19.62 (3.28)  6.29 (1.08)  0.76 (0.10)  0.90 (0.04)  0.75 (0.12)
AL-SGL-pcag 17.97 (3.56)  5.68 (1.13)  0.83 (0.07) 0.88 (0.05)  0.83 (0.08)
AL-SGL-pca; 21.41 (2.78)  6.88 (0.93)  0.70 (0.10)  0.90 (0.04)  0.68 (0.12)
AL-SGL-pls, 17.60 (3.28) 5.78 (1.14)  0.83 (0.06)  0.89 (0.04)  0.83 (0.07)
AL-SGL-pls;  19.40 (2.99)  6.23 (0.99)  0.78 (0.09)  0.90 (0.04)  0.77 (0.10)
ASGL-pcag 1519 (3.43)  4.65 (1.04) 0.84 (0.04) 0.92 (0.03) 0.83 (0.04)
ASGL-pca;  21.38 (2.58)  6.80 (0.87) 0.73 (0.10)  0.91 (0.04)  0.71 (0.11)
ASGL-pls;  13.23 (3.35) 4.07 (0.99) 0.85 (0.03)  0.91 (0.04) 0.84 (0.04)
ASGL-pls;  17.56 (3.98) 5.61 (1.33)  0.81 (0.01)  0.91 (0.04) 0.80 (0.07)
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Figure 3: Simulation 1. Dataset with non-zero variables spread along many
groups. 625 variables. Box-plots showing the test error of the different

models.

Test error
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variables is increased, the difference in performance between the proposed
models, and LASSO and SGL gets larger, indicating that the performance
of the proposed models is better than LASSO and SGL as the number of
variables increase. Figures 2 and 3 display box-plots of the test error E
for the different models, showing that the spread of F; is much smaller in
the ASGL plsq and pcag than in the LASSO and SGL, indicating that these
models provide more stable solutions in terms of prediction accuracy. A sec-
ond simulation example in which there are a few groups that account for all

the significant variables is shown.

5.2 Simulation 2: dense distribution of significant variables

Case 1: 225 variables

There are 15 groups of size 15 each, a total number of 225 variables. Among
these groups, we define 3 groups with 15 significant variables each, a total
number of 45 significant variables. For [ € {1...,15}, coefficients inside each

group are defined as,

o= (1,2,...,15), 1=1,...,3
pto= (0,...,0), l=4,...,15.
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Figure 4: Simulation 2. Dataset with non-zero variables concentrated in a
small number of fully significant groups. 225 variables. Box-plots showing

the test error of the different models.
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Case 2: 625 variables

There are 25 groups of size 25 each, a total number of 625 variables. Among
these groups, 3 groups with 25 significant variables each are defined, a total
number of 75 significant variables. For [ € {1...,25}, coefficients inside each

group are defined as,

o= (1,2,...,25), 1=1,...,3
gto= (0,...,0), l=4,...,25.
25

The results from this simulation scheme are displayed in Table 2. Simi-
larly to the situation displayed in Section 5.1, the ASGL model using plsy or
pcag weights shows the best results in terms of the distance between predicted
and true B, and the value of F;. It is worth saying that under a more "com-
pact" distribution of the significant variables in a small number of groups,
the proposed methods show a great improvement in terms of prediction ac-
curacy compared to LASSO and SGL. Figures 4 and 5 display box-plots of
test error value F; showing, as in the previous simulation scheme, that ASGL
models with plsg or pcay weights also provide more stable results in terms

of spread.
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Table 2: Simulation 2. Dataset with non-zero variables concen-
trated in a small number of fully significant groups, and 100/100/5000
train/validate/test observations. Experiments run 50 times and displayed

as mean value, with standard deviations given in parenthesis

HB - ﬁH E, CSR TPR TNR

p = 225 variables

LASSO 443 (1.10)  1.57 (0.35)  0.87 (0.03)  0.99 (0.01)  0.83 (0.05)
SGL 3.29 (0.75)  1.21 (0.21)  0.73 (0.13)  0.99 (0.01)  0.64 (0.17)
AL-SGL-pcag 2.88 (0.50)  1.07 (0.14) 0.78 (0.06) 1.00 (0.01) 0.84 (0.11)
AL-SGL-pca; 3.63 (0.73)  1.30 (0.22)  0.61 (0.15)  0.99 (0.01)  0.47 (0.21)
AL-SGL-pls; 2.92 (0.57)  1.09 (0.16) 0.84 (0.12) 1.00 (0.01) 0.78 (0.16)
AL-SGL-pls;  3.14 (0.65)  1.16 (0.18)  0.76 (0.14)  1.00 (0.01) 0.67 (0.20)
ASGL-pcag  2.56 (0.49)  0.98 (0.13) 0.89 (0.12) 1.00 (0.01) 0.85 (0.16)
ASGL-pca;  3.49 (0.79)  1.25(0.22) 0.62 (0.15) 1.00 (0.01) 0.49 (0.21)
ASGL-pls;  2.59 (0.43)  0.99 (0.10) 0.88 (0.16) 1.00 (0.01) 0.83 (0.21)
ASGL-pls;  2.80 (0.53)  1.05(0.14) 0.81 (0.12) 1.00 (0.01) 0.74 (0.17)

p = 625 variables

LASSO 21.00 (13.00) 7.13 (4.67) 0.95 (0.01) 0.96 (0.03) 0.95 (0.01)
SGL 6.02 (1.77)  1.99 (0.56) 0.82 (0.09) 1.00 (0.01) 0.80 (0.10)
AL-SGL-pcag 4.32 (0.99) 145 (0.28) 0.94 (0.04) 1.00 (0.01) 0.93 (0.05)
AL-SGL-pca; 7.17 (247)  2.30 (0.75)  0.72 (0.09) 1.00 (0.01) 0.68 (0.11)
AL-SGL-pls; 4.81 (1.47)  1.60 (0.44) 0.92 (0.06) 1.00 (0.01) 0.90 (0.07)
AL-SGL-pls; 538 (1.20)  1.77 (0.57)  0.87 (0.08) 1.00 (0.01) 0.85 (0.09)
ASGL-pcag ~ 3.61 (0.78)  1.23 (0.20) 0.92 (0.10) 1.00 (0.01) 0.90 (0.12)
ASGL-pca;  7.60 (3.20)  2.46 (1.01)  0.74 (0.09) 1.00 (0.01) 0.71 (0.11)
ASGL-pls;,  3.85(0.83)  1.29 (0.21) 0.85 (0.03) 1.00 (0.01) 0.89 (0.13)
ASGL-pls; 417 (1.17) 140 (0.32) 0.90 (0.11)  1.00 (0.01) 0.87 (0.09)
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Figure 5: Simulation 2. Dataset with non-zero variables concentrated in a
small number of fully significant groups. 625 variables. Box-plots showing

the test error of the different models.
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Based on the simulations described in Sections 5.1 and 5.2, we conclude
that the best performance is achieved by ASGL models with pls; or pcay
weights.

5.3 Simulation 3: n > p

This simulation defines a low-dimensional scenario that studies the perfor-
mance of the ASGL model with pls; and pcag weights compared to an ASGL
model with weights from an unpenalized model. The simulation scheme con-
siders 200/200/5000 observations in the train / validate / test samples, and
100 variables divided into 10 groups of size 10 each. Two different cases

depending on the distribution of the significant variables are considered:

Case 1: Sparse distribution of variables
Here, 5 groups with 6 significant variables each are defined, a total number
of 30 significant variables. For [ € {1...,10}, coefficients inside each group

are defined as,

gt = (1,2,...,6,0,...,0), l=1,...,5

4
gt = (0,...,0), I=6,...,10.
10
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Table 3: Simulation 3. Dataset with 200/200/5000 train/validate/test ob-
servations. Experiments run 50 times and displayed as mean value, with

standard deviations given in parenthesis

HB - ,BH E, CSR TPR TNR

Sparse distribution of variables

LASSO 1.08 (0.14)  0.67 (0.02)  0.77 (0.09)  1.00 (0.00) 0.67 (0.12)
SGL 1.08 (0.13)  0.67 (0.02) 0.72 (0.12)  1.00 (0.00) 0.60 (0.16)
ASGL-pcag 0.96 (0.13)  0.64 (0.02)  0.79 (0.10)  1.00 (0.00) 0.70 (0.15)
ASGL-plsg 0.78 (0.11) 0.62 (0.02) 0.94 (0.07) 1.00 (0.00) 0.92 (0.09)
ASGL-unpenalized  0.79 (0.11)  0.62 (0.02) 0.94 (0.07) 1.00 (0.00) 0.92 (0.09)

Dense distribution of variables

LASSO 0.90 (0.15)  0.65 (0.02)  0.85 (0.09)  1.00 (0.00) 0.79 (0.13)
SGL 0.87 (0.15)  0.64 (0.02)  0.74 (0.16)  1.00 (0.00) 0.64 (0.24)
ASGL-pcaq 0.76 (0.13)  0.61 (0.02) 0.93 (0.08)  1.00 (0.00) 0.90 (0.12)
ASGL-plsg 0.74 (0.13) 0.61 (0.02) 0.95 (0.09) 1.00 (0.00) 0.93 (0.13)
ASGL-unpenalized  0.75 (0.12) ~ 0.61 (0.02) 0.94 (0.13)  1.00 (0.00) 0.91 (0.18)

Case 2: Dense distribution of variables
Here, 3 groups with 10 significant variables each are defined, a total number
of 30 significant variables. For [ € {1...,10}, coefficients inside each group

are defined as,

go= (1,2,...,10), 1=1,...,3
gt o= (0,...,0), l=4,...,10.

Table 3 shows the results from this simulation. In both cases, the sparse
and the dense distribution of variables, the best results in terms of the dis-
tance between predicted and true 3, and in terms of the test error E; are
obtained by the ASGL model using plsg, closely followed by the ASGL model
with unpenalized model weights and by ASGL with pcay weights. All the
models achieve a TPR of 1.00, indicating that all the models selected cor-
rectly all the significant variables. However, the largest TNR is achieved by
ASGL with plsg or unpenalized weights, indicating that these models tend
to select less non-important variables than the other models. This simula-

tion example shows that even though the proposals made in Section 4 are
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specially suited for high-dimensional scenarios, the performance achieved in
low-dimensional scenarios is very good, and is at least as good as the per-

formance of the models with unpenalized weights.

6 Real application

The performance of the ASGL estimator is shown here using a genomic
dataset first reported in [Scheetz et al., 2006]. The dataset consists of 120
twelve-week-old male offspring animals chosen for tissue harvesting from the
eyes and for micro-array analysis. The dataset contains expression values
from 31042 different probe-sets (Affymetric GeneChip Rat Genome 230 2.0
Array) on a logarithmic scale. As described in [Huang et al., 2008] and [Wang
et al., 2012|, a two-steps preprocessing is performed, selecting, among the
31042 probe-sets, the ones that are sufficiently expressed, and sufficiently
variable. A probe is considered to be sufficiently expressed if the maximum
expression value observed for that probe among the 120 animals is greater
than the 25-th percentile of the entire set of RMA expression values. A probe
is considered to be sufficiently variable if it shows at least 2-fold variation in
the expression value among the 120 rats. There are 18986 probes that meet
these criteria.

We study how expression level of gene TRIM32, corresponding to probe
1389163 _at, is related to expression levels at other probes. [Chiang et al.,
2006] pointed out that gene TRIM32 was found to cause Bardet-Biedl syn-
drome, a disease of multiple organ systems including the retina. [Scheetz
et al., 2006] said: “Any genetic element that can be shown to alter the ex-
pression of a specific gene or gene family known to be involved in a specific
disease is itself an excellent candidate for involvement in the disease, either
primarily or as a genetic modifier.” Here the sample size is 120 (the number
of animals selected for micro-array analysis), and the number of covariates
(probes that pass the preprocessing steps) is 18985. The correlation coeffi-
cients of the 18985 probes and the probe corresponding to gene TRIM32 is
calculated, and the genes in which the absolute value of the correlation ex-
ceeds 0.5 are selected. There are 3734 probes meeting this criteria. Finally,
this dataset is standardized. Only a few genes are expected to be related to
gene TRIM32, making this a high-dimensional sparse problem.

From a biological perspective it is clear that genes do not work individu-
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ally. The problem of grouping genes based on a medical criteria is nowadays
under intense study, and it is possible to find some group structures for hu-
man genetic information based, for example, in cytogenetic positions [Sub-
ramanian et al., 2005|. It is interesting to remark that groups built based
on biological criteria are usually formed just by a few dozens of genes. For
example, in the case of groups based on cytogenetic positions, groups av-
eraged 30 genes, as stated in [Simon et al., 2013]. However, these group
structures are not available for all the genetic information, and to the best
of our knowledge there is no genetic grouping alternative for the dataset
under study here.

We address the grouping problem from an statistical perspective, using
principal components analysis to create groups of genes that are similar. It is
worth to remark that in Section 4.1 PCA was used for estimating the ASGL

weights, while here it will be used for variable clustering.

Variable clustering using PCA

1. Given a matrix of covariates X € R"*P as in Section 4.1, obtain the
matrix of principal components @ € RP*" X € R™*P defined in Section
4.1.

2. Consider r possible groups, as many as principal components.

3. Each principal component q; € Q, i € 1,...,r, is a linear combination
of the original variables from X. Assign each original variable to the
group associated to the principal component in which that variable had

its maximum weight (in absolute value).

The intuition behind this process is that variables with a large weight in the
same principal component are likely to be related and should be included in
the same group.

In the case of the dataset used in this section, there are 120 observations
from 3734 different genes. The maximum rank of X here is 120, for this
reason 120 possible groups are initially considered. Each gene is assigned to
the group associated to the principal component in which that gene had its
maximum weight. No gene was assigned to one of the groups, and therefore
119 groups averaging 32 genes per group are created this way. It is worth

remarking that the average group size obtained based on this proposal is
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Figure 6: Gene expression data of rat eye disease. Box-plot showing the sizes

of the groups built using PCA.
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Table 4: Gene expression data of rat eye disease. 20 random dataset divisions

were considered. Results displayed as mean value, with standard errors in

parenthesis.
B, # Variables selected
LASSO 0.34 (0.08) 18.9 (15.4)
SGL 0.31 (0.07)  189.5 (156.6)

ASGL-pcag 0.28 (0.06) 56.35 (70.86)
ASGL-plsy  0.29 (0.06)  101.7 (85.56)

close to the expected group size in terms of the cytogenetic position. Figure
6 shows a box-plot of the group sizes.

The dataset is randomly divided into 80/20/20 train / validate / test ob-
servations and LASSO, SGL, ASGL plsg and ASGL pcay models are solved.
For each model, the test error E; and the significant variables selected are
obtained. This process is repeated 20 times as a way to gain stability.

The results obtained are shown in Table 4. The best results in terms of
the test error are obtained by the proposed ASGL models. LASSO offers a
test error approximately 20% greater while SGL test error is 11% greater.
Figure 7 displays box-plots of the test error E;, showing that the spread of F
is also smaller in the proposed ASGL models providing more stable results.

Figure 8 displays box-plots of the number of genes each model selected as
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Figure 7: Gene expression data of rat eye disease. 20 random dataset divi-

sions were considered. Box-plot showing the test error.
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Figure 8: Gene expression data of rat eye disease. 20 random dataset divi-

sions were considered. Box-plot showing the number of significant genes.
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Figure 9: Gene expression data of rat eye disease. 20 random dataset divi-
sions were considered. Heatmap showing the probability of being a significant

gene. Each row represents a model and each column represents a gene.
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significant. The LASSO is the one offering more sparse solutions, using only
19 variables (in mean) per model. SGL is the one using the largest number
of variables, approximately 190, and also the one with the largest variability
in this metric. Both ASGL pcag and ASGL plsy selected a smaller number
of variables than SGL but still larger than LASSO, and they achieve the best
prediction results of the four models.

Given that we have the results obtained from 20 repetitions, it is possible
to count the number of times each gene has been selected as significant by one
of the models in any of the repetitions. Dividing this number by the total
number of repetitions, a sort of "probability of being a significant gene"
associated to each gene for each model considered is obtained. Out of the
3734 genes in the dataset, 1612 genes were selected at least one time by
any of the models in any of the repetitions (the majority being selected by
SGL models). Figure 9 shows the probability of being a significant gene for
these 1612 variables and for each model. Rows represent the different models
considered and columns represent each gene. Genes are sorted based on the
probabilities obtained in the ASGL model with pcag weights.

Considering a probability threshold of 0.5, only 1 gene in the LASSO
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Table 5: Gene expression data of rat eye disease. 20 random dataset divi-
sions were considered. Number of genes above the probability threshold for

different quantile levels.

Number of genes above the probability threshold

7=03 7=05 7=0.7 Three quantiles

LASSO 0 1 1 0
SGL 19 35 17 0
ASGL-pcag 23 9 17 7
ASGL-plsy 41 17 37 9

models reach a probability of significance above the threshold, showing no
stability on the gene selection along the 20 repetitions, and anticipating prob-
lems with possible further biological interpretation of the statistical results.
In the case of the SGL model, 35 genes are above the probability thresh-
old, being 0.6 the maximum probability achieved. On the other hand, the
ASGL model with pls; weights includes 17 genes with probabilities above
the threshold with a maximum probability value of 0.75, and the ASGL
model with pcag weights has 9 genes above the probability threshold with a
maximum probability value of 0.9, showing more stability on the selection
along the 20 repetitions and possibly better biological interpretation of the
results than the other models.

Results displayed in Table 4 and Figure 9 have been obtained using esti-
mators of the median of the response variable, however, it can be interesting
to compare the genes selected at different quantiles. For this reason, the pro-
cess described above is repeated and LASSO, SGL, ASGL plsy and ASGL
pcag models are solved for quantile levels 7 = 0.3 and 7 = 0.7, obtain-
ing probabilities of being a significant gene for each quantile level and each
model. Considering a probability threshold of 0.5, Table 5 show the number
of genes above the probability threshold for each quantile, and also the num-
ber of genes in the same model that have been selected along the different
quantile levels.

The LASSO model shows no stability on the variable selection, having
only one gene above the threshold for 7 = 0.5 and 7 = 0.7, and no gene with
probability of being significant above 0.5 on the three quantiles simultane-

ously. The SGL show some stability across the 20 repetitions considering
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each quantile independently, but when considering all the quantiles simulta-
neously it has no gene above the probability threshold. On the other hand,
in the case of the ASGL plsg model, 9 genes had a probability of being signif-
icant greater than 0.5 in the 3 quantiles, and in the case of the ASGL pcay
models, 7 genes fulfilled this, showing more robust results than the other
estimators.

We conclude that the best results in this real dataset study are provided
by the ASGL model with pcag weights, given that this model is the one
with the smallest prediction error and showing great stability on the gene

selection.

7 Computational aspects

All the simulations and data analysis commented in Sections 5 and 6 were run
in a cluster node with two Intel (R) Xeon(R) CPU E5-2630 v3 (2.4GHz,
20MB Smart Cache) processors, with 32Gb of RAM memory running Cen-
tOS 6.5 Final (Rocks 6.1.1 Sand Boa). The computation itself has been
developed in Python 2.7.15 (Anaconda Inc.) All the optimization problems
have been solved using the CVXPY optimization framework for Python [Di-
amond and Boyd, 2016] and the open source solver ECOS [Domahidi et al.,
2013].

8 Conclusion

In this paper the definition of the SGL estimator has been extended to the
QR framework. A new estimator for quantile regression based on the usage
of adaptive weights, the adaptive sparse group LASSO in quantile regres-
sion has also been proposed. Typically in the literature the weights of the
adaptive estimators are defined based on non-penalized models, however,
this definition limits the usage of the adaptive estimators to low-dimensional
scenarios. As a solution to this problem, four weight calculation alternatives
that can be used in high-dimensional scenarios when working with adaptive
estimators are proposed. We test the performance of the proposed alter-
natives in a set of synthetic data scenarios that includes high-dimensional
and low-dimensional examples, showing that it is a competitive option in

both situations. The performance of the proposed work is also studied in
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a real dataset including gene expression values of rat eye disease. We com-
pare the results of the proposed work with LASSO, SGL and ASGL with
weights from unpenalized models (the last one only in the low-dimensional
examples). Based on the synthetic datasets both ASGL pls; and ASGL peay
achieve very good results, as described in Section 5, however, when dealing
with the real dataset, the ASGL pcay estimator achieved better results in
terms of prediction error and stability of the variables selected. For this
reason we conclude that the ASGL pcagy provides the best results among the
options proposed in this work.

This work has risen some questions that will require further investigation.
One interesting problem is this of the optimization of the hyper-parameters.
In this work we make use of grid-search, but it is worth commenting that new
hyper-parameter tuning alternatives have appeared in recent years |Laria
et al., 2019|, and it can be interesting to investigate the usage of this or
other options in the optimization of the parameters of the proposed models
here.

As commented in Section 3, the general tendency found in the literature
when working with adaptive estimators is to work in order to demonstrate
that the estimator fulfills the so-called oracle properties. This demonstration
is usually based on the usage of the un-penalized model estimator, step that
can only be achieved in low-dimensional scenarios. Actually, this requirement
can be reformulated, changing the usage of the un-penalized estimator by
any other root-n consistent estimator We thus conjecture that the ASGL
plsqy and ASGL pcag estimators, as they are used in this work, may be
root-n consistent, fulfilling this way the oracle properties. This conjecture

however will require further research.
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