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(Invited Paper)

Abstract—A photonic integrated circuit for microwave genera-
tion is proposed and experimentally validated. On the microchip,
two tunable monochromatic lasers spectrally separated by 0
- 10.7 nm are monolithically integrated with one high-speed
photodiode in heterodyne configuration for enabling continuous
RF synthesis from 2 to 42 GHz. Under free-running operation,
the two lasers with 20 - 40 MHz optical linewidth produce
RF beat note with ~90 MHz electrical linewidth at the on-
chip photodiode. This is the first demonstration of such a fully
integrated microwave photonic generator developed within an
open-access generic foundry platform.

Index Terms—Microwave photonics, Millimeter wave, Photonic
integrated circuits, Indium phosphide, Laser tuning, P-i-n diodes.

I. INTRODUCTION

ICROWAVE photonics (MWP) brings together the best
Mof both the optical and the electrical worlds. Over
the past three 30 years, it has advanced from transmission
of microwave signals through optical fiber to generation,
manipulation, detection and distribution of radio-frequency
(RF) signals utilizing photonic concepts and techniques [1][2].
MWP creates new opportunities for rapidly growing broad-
band wireless communications, which require carrier wave
signals in millimeter wave (mmW) and terahertz (THz) ranges
for the fifth generation (5G) systems [3][4]. A target data rate
of 100 Gb/s is foreseen for wireless communications in next
decade, and the trend has indicated that the carrier frequencies
for broadband wireless communications are supposed to move
into those mmW range and even above, as the data rate
basically depends on the carrier frequency in the case of simple
modulation schemes for low latency [5]. Photonics-assisted
techniques reveal advantages for the generation of these carrier
wave frequencies, such as low phase noise, wide frequency
tuning range, and broad modulation bandwidth that are not
directly reachable in the RF domain [6][7].

To date, most of the reported photonics-assisted mmW/THz
sources are primarily composed of commercial off-the-shelf
components owing to the availability of mature telecom-based
high-frequency components, i.e. tunable single-wavelength
lasers, broadband modulators and high-speed photo-detectors
(PDs). However, these discrete components occupy vast space
and energy, and meanwhile fiber interconnections in between
deteriorate the system performance. These challenges in terms
of size, weight and power (SWaP) can be addressed by
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Fig. 1: (a) ML laser with PD generates pulse. It can be
synchronized to an additional RF source for greater stability.
(b) Optical heterodyning based on two single-wavelength
lasers generates continuous wave. The generated frequency is
equal to the frequency spacing between the two wavelengths.

photonic integration. Also, with photonic integration, a con-
siderable reduction in alignment sensitivity, coupling losses,
as well as packaging cost is achieved [8].

By leveraging photonic integration, there are mainly two
methods to produce optical seeds for mmW/THz generation,
namely pulsed and continuous-wave (CW). Mode locking
(ML) and optical heterodyning have been regarded as effi-
cient approaches for pulse and CW formation as shown in
Fig. 1(a) and Fig. 1(b), respectively [9]. Each has its own
advantages and disadvantages. In ML, the spectral purity is
ensured thanks to the intrinsic coherence, but the frequency
is barely tunable limited by the resonator geometry [10]. In
contrast, free-running optical heterodyning features a THz-
scale tuning range yet an additional stabilization scheme is
usually required. Such integrated tunable optical heterodyn-
ing sources based on two parallel single-mode semiconduc-
tor lasers have been demonstrated in diverse technologies
[11][12][13][14][15].

In Ref. [11], two distributed feedback (DFB) lasers in-
corporating two multimode interference (MMI) couplers for
bidirectional two-tone emission was presented to implement
coherent CW THz transmitter (Tx) and receiver (Rx), however,
demanding external PIN-photodiode (PD) and photoconductor
for optic/electric (O/E) conversion. In Ref. [16] and [13],
four-DFB arrays were deployed to extend the tuning range
to above 2 THz, but incapable of on-chip O/E conversion, ei-
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Fig. 2: The proposed optical heterodyning device structure
emits both the optical signal from the spot-size converter and
the electrical signal from the PIN photodiode.
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ther. Currently, chip-to-chip integration approaches have been
demonstrated by Ref. [14] and [15], based on III-V/polymer
hybrid integration and III-V/silicon heterogeneous integration,
respectively. The first fully monolithically integrated millime-
ter wave transmitter was demonstrated in Ref. [12] comprising
two DFB lasers, combined on a multimode interference (MMI)
coupler prior to uni-traveling-carrier (UTC)-PDs, developed
through a dedicated fabrication process flow at III-V lab, a
private R&D organization.

Open-access generic photonic integration technology po-
tentially provides a scalable solution to the aforementioned
problems which enables building a large number of both active
and passive optoelectronic components on a single substrate,
without the need of additional high-precision assembly. A
broad variety of functionalities are thus feasible by using the
standard on-chip building blocks (BBs) including, but not
limited to lasers, semiconductor optical amplifiers (SOAs),
phase modulators, photo-detectors (PDs), filters, multiplexers,
multimode interference (MMI) couplers as well as reflectors.
BBs are predefined to ease the design flow, but can also be
parameterized according to process design kit (PDK) provided
by foundry. The photonic integrated circuits (PICs) are man-
ufactured within multi-project wafer (MPW) service whereby
mask and wafer area are shared, and so is fabrication cost
among multiple different users [17].

To the best of our knowledge, we report for the first
time a fully monolithically integrated dual-wavelength optical
heterodyne PIC chip, fabricated using the generic InP foundry
platform at HHI [18]. The chip includes two wavelength-
tunable DFB lasers, a MMI coupler and a PIN-PD for on-chip
O/E conversion as shown in Fig. 2. The DFB and PIN building
blocks come with Ground-Signal-Ground (GSG) coplanar
waveguide supporting RF operation. An optical output of
the heterodyne signal is also provided through a spot-size
converter (SSC) port.

II. DEVICE DESCRIPTION

Fig. 3(a) illustrates the schematic layout and Fig. 3(b)
presents the microscope photograph of the PIC under test.
In Fig. 3(a), two DFB lasers are combining through the
MMI coupler prior to the SSC as optical output, and PIN-
PD as electrical output. The emission wavelengths of DFB
gratings were set to have a spacing of 4 nm. Each DFB
laser contains a GSG coplanar waveguide (CPW) supporting
direct RF modulation, along with an internal heater for thermo-
optic wavelength tuning. The gain current is injected onto the

(a) Schematic layout
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Fig. 3: (a) Schematic layout (b) Microscope photograph of the
PIC under test. DFB: DFB laser. MMI: MMI coupler. SSC:
Spot-size converter. PIN: PIN diode.

GSG CPVW, and the bias current for heater is fed onto the
heater DC pad. With the butt-joint active-passive transitions
and deeply etched passive waveguide S-bends based on sine
curves, allowing for continuous curvature throughout the bend
[19], the ridge-waveguide stripe DFB lasers are coupled to the
deeply etched 2x2 MMI coupler. Through another transition
and sine bend, one of the split 3-dB MMI output is coupled to
the PIN-PD for on-chip photo-detection. This BB offered by
the foundry includes the PD placed on top of the waveguide
for O/E conversion. It is connected with the GSG CPW in a
90° curve to simplify wire-bonding and probing. The other
split 3-dB MMI output is coupled to the 7° angled SSC
waveguide output, deployed for coupling light out of the chip
on the anti-reflection (AR) coated front facet. In SSC, the
shallowly etched waveguide is adiabatically tapered to give
maximum overlap and minimum distortion with respect to
standard single-mode fiber. However, in this proof-of-concept
article, a lensed fiber is used to collect the light coupled
from the SSC, with an additional coupling loss. which is then
assessed on a Yokogawa optical spectrum analyzer (OSA). The
dimension of the PIC under test is 4.5 mm x 1 mm. The 250-
um — thick InP chip is mounted on a 0.4-mm-thick submount
and placed on a copper block with active Peltier thermoelectric
cooler (TEC) on the surface, and controlled at 16°C with a
Thorlabs TEC controller.

III. CHARACTERIZATION RESULTS

The emission wavelength of a DFB laser is a function of
its bias current and temperature. Based on the data collected
with the OSA, Fig. 4(a) presents the peak wavelength of each
DFB at varied gain current while Fig. 4(b) presents the peak
wavelength at varied heater current. In Fig. 4(a), DFBI is
lasing from 1556 nm to 1660 nm under Ipgg; = 30 mA -
100 mA. DFB2 emission wavelength is 1552 nm under Ipgg;
= 30 mA, and continuously shifts up to 1556 nm as Ipgp,
approaches 100 mA. Both DFB lasers exhibit the similar linear
dependency where the peak power rises as the gain current
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Fig. 4: (a) Schematic layout (b) Microscope photograph of
the PIC under test. DFB: DFB laser. Heat: Heater pad. GND:
Ground pad. MMI: MMI coupler. SSC: Spot-size converter.
PIN: PIN diode.

increases, within a tuning range of 4 nm. Both DFB lasers
become saturated at the bias current for gain section of 100
mA, with 0.5-mW output optical power coupled by a lensed-
fiber. As shown in Fig. 4(b), the DFB1 emission wavelength
is continuously and exponentially tuned under Ippg; fixed at
100 mA and Iggat; varied from 10 mA to 100 mA. The DFB2
has the same dependence on heater current and the wavelength
is always approximately 4 nm lower than DFB1 under the
same heater current. It appears that each DFB is continuously
dependent on both its gain and heater bias currents. Moreover,
each DFB is affected by the bias currents of the other DFB
which is discussed in next section.

Fig. 5 shows the dual wavelength emission spectra when
both DFB lasers are activated simultaneously. In Fig. 5(a), a
series of optical spectra are presented under the bias conditions
Ipre1 = 90 mA, Ippgz = 90 mA, Iggar1 = 0 mA, and Ingar2
varied from 0 mA to 90 mA in a step of 10 mA. The
wavelength spacing between DFB1 and DFB2 ranges from
approximately 4 nm to 1 nm as the bias current for HEAT2
Iggar: increases. During this tuning transition, the left-hand
side lasing mode (DFB2) shifts exponentially upwards by >4
nm, and the right-hand side lasing mode (DFB1) does not
remain unchanged. Instead, the DFB1 mode slightly shifts
upwards, indicating that DFBI1 is also affected by Iygars.

(a) Two-tone spectra with spacing of 4 ~ 1 nm
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(b) Two-tone spectra with spacing of 3 ~ -0.5 nm
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(c) Two-tone spectra with spacing of +0.5 ~ -0.5 nm
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Fig. 5: Two-tone spectra (a) with Iggary swept from 0 mA
to 90 mA. (b) with Iggarr swept from 0 mA to 90 mA and
a lower Ippg;. (c) with Iggary swept from 80 mA to 90 mA
and a lower Ipgg;. The left mode (DFB2) shifts to the right as
Iygars increases. Meanwhile, the right mode (DFB1) is slightly
influenced by Igpars due to the thermal crosstalk produced at
DFB2 laser diode.

It is caused by thermal crosstalk, e.g., DFB1 undergoes the
accumulated heat generated by DFB2, in the presence of gain
(Ipppz) or heater current (Iygarz). DFB1 wavelength appears
to be not only a function of Ipgpg; and Iygar;, but also of
Ipr2 and Iggar, which complicates the optimization of bias
condition. To reduce the thermal crosstalk, the DFB1 and
DFB2 components should be designed to be physically further
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Fig. 6: Two-tone emission spectrum spaced by 1.036 ~ 10.728
nm, corresponding to 0.13 ~ 1.32 THz.

away from each other. Fig. 5(b) shows the two-tone emission
in another scenario, IDFB] =60 mA, IDFB2 =90 rnA, IHEAT] =
0 mA, and Iygar> varied from O mA to 90 mA. The initial
wavelength of DFB1 is 1558 nm at Ipgg; = 60 mA, and
also shifts slightly to the right when Iggar; rises up due to
the thermal crosstalk. The wavelength spacing between DFB1
and DFB2 thus spans from 3 nm to less than 1 nm, as the
bias current for HEAT2 Iygar> increases. Furthermore, the
wavelength of DFB2 rises much less rapidly (<5 nm within
0 - 100 mA) than the increase in Fig. 5(a). It indicates that
the tuning efficiency and precision of each laser significantly
depend on the overall bias condition for both lasers, rather
than on only the bias currents fed onto the laser alone. Fig.
5(c) illustrates the detail of Fig. 5(b) with a span of 2 nm and
Iggar: from 80 mA to 90 mA in a step of 1 mA. Around Iggar:
= 86 mA, DFB1 and DFB2 lasing modes shifts across each
other where a zero-nm wavelength spacing is expected to be
obtained. It is expected that under proper biasing conditions
low GHz frequencies are achievable.

Fig. 6 presents the two-tone emission spectrum towards
the other extreme, where the highest achievable wavelength
spacing is 10.728 nm. The continuously tunable wavelength
spacing is demonstrated through the series of two-tone emis-
sion spectra in C-band by carefully selecting the four bias
current parameters, €.g., Ipri, Ipre2, Iueari, and Iggars. As
mentioned previously, the thermal crosstalk effect occurring
in relation to unwanted ohmic heat produced by bias current,
in turn weaken the tuning capability. For instance, when we
are aiming for higher wavelength spacing, we should tune
DFB1 up. And when DFBI1 is biased with higher current, its
wavelength shifts upwards and thus moves farther away from
DFB?2 lasing mode. Meanwhile, DFB2 receives the influence
due to the heat generated in DFB1 and accordingly shifts
upwards as well, but on a smaller scale, which certainly
compensates the wavelength spacing increase. Therefore, the
thermal crosstalk weakens the wavelength tuning capability
and limits the beat-note frequency range. Despite the fact that
the thermal crosstalk appears influential, a continuous tuning
range up to over 10.7 nm equivalent to 1.3 THz is reached.

In Fig. 7(a), a sequence of optical spectra presenting a
nonlinear effect in addition to the thermal crosstalk is shown,
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Fig. 7: Two-tone emission spectra (a) under Ippg; = 75 - 70
mA. (b) under Iprg; = 75 mA. (c) under Ipgg; = 70 mA.
resolution bandwidth (res) = 0.02 nm.

with Ippg; swept from 75 mA to 70 mA and the rest of bias
condition is kept the same. Fig. 7(b) is a typical two-tone laser
spectrum near 1560 nm. In both DFB modes, sharp 10-dB
peaks stand on top of 0.2-nm-wide 40-dB-high bases. This
bell shape exhibiting the dynamic range and the resolution
bandwidth is an indication of the filter factor in relation to the
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diffraction grating-based monochromator used in OSA. The
wavelength spacing is 0.352 nm and the suppression ratio is
>50 dB. In contrast, Fig. 7(c) shows a lower spacing, 0.100 nm
when a lower Ipgg; is used. Besides, it should be noted that a
few side modes have been observed. The side modes appear
related to nonlinear effects. These four wave mixing (FWM)-
like side modes should be caused by cross-injection between
the two laser, and the cross-injection could be associated with
parasitic back-reflections at coupling interfaces such as cleaved
facet, butt-joints, MMI coupler , and PIN-PD. Building blocks
with reduced parasitic back-reflections are preferable in this
case [20]. The side modes - intermodulation products take
place adjacent to the two optical tones at 2f; - fo and 2f5 -
f1 where f; is the frequency of DFB1 and f5 is the frequency
of DFB2. The evolution of side modes can be seen in Fig. 7(a).
The side modes disappear as Ipgg; is over 74 mA, where the
frequency offset between two laser modes is already larger
than the modulation bandwidth of laser. Fig. 7(d) exhibits the
emission wavelengths of DFB1 and DFB2. DFB1 wavelength
shifts upwards by 0.0582 nm/mA as Ippg; increases. However,
DFB2 also slightly moves upwards (0.0087 nm/mA) due to
thermal crosstalk, as the two DFB BBs are separated by only
<0.5 mm on the same substrate. Under such bias conditions
the beat-note frequency covers 12 - 43 GHz (0.100 - 0.352
nm) following a nearly linear trend with respect to Ipgg;.
For evaluation of stability, the linewidths of both DFBs are
quantified with the self-heterodyne measurement method as
shown in Fig. 8(a). The light out of the PIC collected with
the lensed fiber is first passed through an erbium-doped fiber
amplifier (EDFA) followed by a 3-dB optical coupler. Then, in
the asymmetric Mach-Zehnder interferometer (MZI) structure
formed with the pair of 3-dB optical couplers, the acousto-
optic modulator (AOM) is modulated at 5 GHz, and an 8-
km single-mode fiber as optical delay line is used to break
the coherence state. The polarization controller (PC) matches
the polarization state of light coming from the two arms of
MZI, optimizing the signal intensity at the photodetector (PD)
prior to the radio frequency amplifier (RFA). The 5-GHz beat
note is measured on the electrical spectrum analyzer (ESA),
from which the optical linewidth is estimated based on that
the optical linewidth is half the electrical beat note linewidth.
Under Ippg; = 100 mA and Iggati = 80 mA, the self-
heterodyne RF beat note of DFBI1 is shown in Fig. 8(b). The
electrical FWHM (Full Width at Half Maximum) linewidth is
around 70 MHz, assuming a Gaussian line shape. The electri-
cal FWHM linewidths of DFB1 and DFB2 under various bias
conditions are plotted in Fig. 8(c) and Fig. 8(d), respectively.
In general, the electrical FWHM linewidth is lower than 80
MHz and increases as gain bias current or heater bias current
increases. The self-heterodyne measurements demonstrate that
the optical linewidth of DFB laser in the presented technology
is estimated to be around 20 ~ 40 MHz, based on the fact that
the self-heterodyne electrical linewidth is approximately two
times the optical linewidth. The measured linewidth appears
reasonably wider compared to previous works in the same
technology [13] (~10 MHz) and in the private III-V lab
dedicated fabrication technology [21] (~1 MHz). With an ultra
low noise current source to drive the laser, the linewidth is
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Fig. 8: (a) Laser linewidth measurement setup: delayed self-
heterodyne Mach-Zehnder interferometer. (b) Self-heterodyne
spectrum at 5 GHz on ESA. (c) Self-heterodyne linewidth of
DFBI. (d) Self-heterodyne linewidth of DFB2.

potentially improvable.

Testing of the on-chip microwave generation via O/E con-
version is carried out with a MPI ground-signal-ground (GSG)
probe for the PIN-diode. The GSG probe is then connected
to the RF port of an Anritsu bias tee. Through the DC port
of bias tee, the PIN-diode is reverse-biased with a Keithley
programmable DC source at -5.0 V. The DC + RF signal is
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Fig. 9: (a) Continuously tunable RF beat note from 2 to 42
GHz. RBW = 100 kHz. VBW = 30 kHz. (b) RF beat note at
40 GHz. RBW = 1 kHz. VBW =1 kHz

seen at the combined port, and sent to a Rhode and Schwarz
Spectrum Analyzer (ESA) for measurement. Fig. 9(a) depicts
the continuously tunable RF tone with a suppression of >50
dB ranging from 2 to 42 GHz, limited by the bandwidth
of ESA. The frequency tuning is realized through properly
biasing DFB1 and DFB2 as described above. Fig. 9(b) shows
the beat note at 40 GHz, under Ippg; = 50 mA, Iggat; = 0
mA, Iprga = 90 mA, and Iggars = 85 mA. The Lorentzian
curve fitted well with the experimental result exhibits a 3-
dB linewidth of 90 MHz, related to fluctuations of the RF
phase. And the max-hold trace recorded within one minute
presents a flat plateau of 180 MHz, representing the frequency
instability possibly due to temperature drift. It suggests that
an stabilization scheme is desirable to lock the RF tone.

IV. CONCLUSION

A monolithically integrated III-V PIC composed of tunable
lasers and high-speed photodiode has been demonstrated to
obtain continuously tunable RF generation. The coupling
efficiency can be further improved by replacing the lensed
fiber with a cleaved standard single-mode fiber. By use of
the generic foundry approach, the wavelength tuning range
of >4 nm in each DFB laser and the initial set wavelength
offset of ~4 nm allow for a wavelength spacing range up

to 10.7 nm. Thermal crosstalk is observed to neutralize the
tuning efficiency, and nonlinearity leads to unforeseen side
modes. Both lasers exhibit self-heterodyne linewidths below
80 MHz. Such a device supports on-chip O/E conversion
with the PIN diode providing microwave generation that
cannot be perceived beyond the bandwidth of ESA, ~42
GHz. The generated beat note exhibits a relatively wide 90-
MHz RF linewidth and 180-MHz frequency drift which are
yet to be improved. For most applications in which a stable
absolute frequency is desirable, the two free-running lasers
must be mutually correlated to reduce the phase noise and
construct the spectral coherence. Future improvements should
be performed for stabilizing the free-running lasers, such
as phase-locked loops (PLL) [22][23], and optical injection
locking (OIL) [24][25]. Also, spectral stabilization of two inte-
grated InP/Polymer single wavelength lasers has recently been
demonstrated through OIL to a bulky optical frequency comb
(OFC), in which the THz FWHM linewidth was successfully
reduced from MHz to kHz [26] and the concept has long been
developed [27]. It is worth highlighting that monolithically
integrated mode-locked lasers (MLLs) producing OFCs have
been reported in the same InP generic foundry approach
[28],suggesting the device presented in this paper has the
development potential to be combined with such an InP MLL-
based OFC generator for greater stability without sacrificing
the tunability .
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