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Sensor fusion based on a Dual Kalman filter for
estimation of road irregularities and vehicle mass

under static and dynamic conditions
Beatriz L. Boada, Maria Jesus L. Boada and Hui Zhang

Abstract—Mass is an important parameter in vehicle dynamics
because it affects not only safety but also comfort. The mass in-
fluences the three movements corresponding to vehicle dynamics.
Therefore, having an accurate value of mass is essential for having
a suitable model which will lead to proper controller and observer
operation. Additionally, unlike other vehicle parameters, the mass
can vary during a trip due to loading and unloading items and
passengers onto the vehicle, greatly influencing its dynamics.
This is critical in heavy vehicles where the mass can vary by
around 400%. Therefore, the mass must be updated on-line. The
novelty of this paper is the construction of a state-parameter
observer which allows the mass under static and dynamic driving
conditions to be estimated using measurements from sensors
that can be mounted easily on vehicles. In this study, a vertical
complete model is considered based on the dual Kalman filter for
mass and road irregularities estimation using the data obtained
from suspension deflection sensors and a vertical accelerometer.
Both simulation and experimental results are carried out to prove
the effectiveness of the proposed algorithm.

Index Terms—Vehicle mass estimation; road profile estimation;
multisensor systems; dual Kalman Filter.

I. INTRODUCTION

TODAY there is a good deal of research focused on
designing vehicle safety systems such as ABS (Anti-

lock Brake System), ESP (Electronic Stability Program), RSC
(Roll Stability Control) and active suspension systems, to be
installed on vehicles to improve their behavior in terms of
stability, handling and comfort [1]-[5]. These controllers need
detailed information about vehicle dynamics through different
variables. Some of these cannot be measured directly by
sensors or their cost is so high that mounting them on pro-
duction vehicles is not viable. For this reason, these variables
must be estimated using observers [6]-[11]. The majority of
research related to the design of controllers and observers
uses mathematical models which need a detailed information
about their parameters. In regards to parameters, in most cases
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they are assumed to be known and time invariant. However,
this is not always true because some of them may vary
considerably during the vehicle’s life cycle or while driving.
In this case, it is necessary to continuously obtain information
about the parameters from direct sensor measurements or
indirect measurements (estimations).

One of the vehicle parameters that has received most
attention for its estimation is vehicle mass. Mass is a critical
parameter concerning vehicle dynamics because it affects not
only safety but also comfort. The mass influences the three
movements corresponding to vehicle dynamics: longitudinal,
lateral and vertical. Therefore, an accurate value of mass is
essential for having a suitable model which will lead to proper
controller and observer operation[12]-[14]. Additionally, un-
like other vehicle parameters, the mass can vary during a trip
due to the loading and unloading items and passengers onto
the vehicle, greatly influencing hugely onto its dynamics. This
is critical in heavy vehicles where the mass can vary by around
400% [15]. Therefore, the mass must be updated online.

In the literature, some research on mass estimation can
be found. Wenzel et al. [16] use a DEKF (Dual Extended
Kalman Filter) to estimate simultaneously both states and
parameters using a four-wheel vehicle model with different
interchangeable tire models. The parameters to be estimated
are mass, moment of inertia and position of the COG (Centre
of Gravity). Results, taking into account combined braking and
cornering, as well as measurement noise, show the efficacy of
the estimator with errors in mass estimation less than 4%.
Nevertheless, results are obtained at low speed and show a
great dependence on the tire model used. Fathy et al. [17]
propose an algorithm based on the idea that inertial dynamics
have a greater influence on vehicle motion during certain
types of maneuvers. In this case, when these maneuvers are
detected by a fuzzy supervisor, the mass is estimated using
a RLS (Recursive Least Squares) method. Both simulations
and experimental results demonstrate the viability of the
proposed approach. A drawback of this method is that the
speed of convergence depends on the persistence of driving
conditions in which the motion is considered as ”significant
and predominantly longitudinal”. Maalej et al. [18] propose an
event-based electric vehicle mass and grade estimation using
a longitudinal model and RLS method with variable forgetting
factors. The main advantage of this approach is that it does
not require torque measurements from the propulsion system,
and therefore, it can be used for different types of vehicles.
Experimental results show the efficacy of the proposed ap-
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proach obtaining an error less than 3% even with noisy power 
measurements. Nevertheless, these results are obtained taking 
into account a flat r oad a nd a  m aximum v ehicle s peed o f 40 
km/h. In [19], a four-wheel vehicle model and a DUKF (Dual 
Unscented Kalman filter) a re u sed t o s imultaneously identify 
inertial parameters and states. As in [17], the mass estimation 
algorithm is only activated when the vehicle is moving and 
under certain driving situations. Although, both simulation and 
experimental results show the viability of this approach, it is 
assumed that the tire-road friction coefficient is known, which 
is not true in real situations. Jordan et al. [20] use KF (Kalman 
filter) with a simplified 1/4-vehicle model for mass estimation. 
Additionally, a longitudinal vehicle model is combined with 
the previous one in order to obtain the mass distribution. 
The main advantage of this method is that it is based on 
measurements obtained from sensors that are available for 
modern vehicles. Nevertheless, the major drawback is that the 
model does not take into account the pitch and roll movements 
so that it does not show good results for rapid longitudinal and 
lateral accelerations.

Two key aspects to be taken into account in vehicle pa-
rameter estimation are the model and analytical method used. 
The most common methods are RLS, Gradient and KF [21]-
[24]. In [25], a comparison between these methods to estimate 
inertial parameters has been carried out. Conclusions obtained 
from this study show that RLS and KF have the advantages of 
simplicity and fast convergence, but they cannot be used with 
nonlinear systems. On the other hand, the Gradient method can 
be used with nonlinear systems while it has the disadvantage 
of being sensitive to the gradient gain. Finally, the extended 
KF and unscented KF methods show better performance in 
comparison with the previous ones.

As regards vehicle models, most of them consider the 
longitudinal and lateral vehicle dynamics [26]-[27]. The major 
problem in using these models, mainly in parameters estima-
tion, is that the vehicle is required to be moving. As previously 
indicated, this increases the time of convergence. To solve 
this problem, vehicle vertical dynamic models, which take 
into account the vertical suspension deflections, c an b e used. 
Suspension deflection c an b e d irectly m easured t hrough a 
potentiometer or an LVDT (Linear Variable Differential Trans-
former) which are both relatively economical and practical to 
mount. Nowadays, vehicles equipped with active suspension 
incorporate these kinds of sensors. Additionally, their cost 
continues to decrease. One of the issues involved in using 
vehicle vertical models for estimation is that the irregularities 
of the road have an important influence on the results obtained, 
so that it is necessary to have continuous information about 
them through direct measurements (that represent, in most 
cases, a costly solution) or through estimation.

Taking into consideration all of the previous ideas, the 
main contribution of this paper is the estimation of the 
vehicle mass under static and dynamic driving conditions 
using measurements from sensors which are installed on 
almost all production vehicles as a standard equipment such 
as accelerometers. They are also being used more and more 
in the design of active/semiactive suspension systems such as 
suspension deflection sensors. As previously mentioned, these

sensors are relatively economical and practical to mount. A
complete vertical model is considered because it allows the
mass to be estimated continuously, independent of driving
conditions or whether the vehicle is moving or not, reducing
the time of convergence. This model takes into account the
pitch and roll movements of the vehicle so that the effectivity
of the mass estimation is increased. Additionally, to solve the
problem regarding the lack of knowledge of road irregularities,
a Dual Kalman filter (DKF) is used. DKF combines two
separated Kalman filters. One of them estimates the vehicle
states (road irregularities, among others) whereas the other one
estimates the vehicle mass. One of the advantages of DKF is
that it is possible to disconnect the mass estimator once the
mass estimation converges to a certain value.

The outline of the paper is as follows. Section II describes
the structure of observer designed based on DKF. Section III
gives a description of the vehicle model in this study. In this
paper, a complete suspension vehicle model is considered in
order to estimate its mass and the road roughness. The state
space system based on the vehicle model described in Section
III is presented in Section IV. In Section V, a DKF is designed
for estimation of the mass and the road roughness. The DKF
uses data obtained from sensors which are easily mounted
on vehicles such as deflection suspension and angular rate
sensors. Both simulation and experimental results are shown
in Section VI as is a discussion to prove the effectiveness
of the proposed algorithm. Finally, Section VII summarizes,
concludes and proposes some future work.

II. STATE/PARAMETER ESTIMATOR STRUCTURE

The proposed state/parameter estimator structure is shown
in Figure 1. To deal with the problem of estimating the
vehicle mass on-line, a DKF is considered using a complete
suspension full car (see Section III). The use of a suspension
model allows mass to be estimated not only under dynamic
driving conditions but also under static ones. Additionally, this
model enables estimation of the road irregularities. This is
very useful due to the fact that they greatly influence vehicle
dynamics in terms of passenger comfort and road safety.
Accordingly, the DKF designed is formed by two Kalman
filters: the state Kalman filter and the parameter Kalman. The
former estimates the road irregularities and the latter estimates
the mass.

The DKF combines measurements from different sensors to
estimate states and parameters. This study uses four suspen-
sion deflection sensors, which are mounted in each vehicle
suspension, and an accelerometer, which is mounted at the
center of gravity of vehicle [28]. These sensors can be easily
mounted on the vehicle and are not expensive. Some inputs for
DKF need to be calculated from data obtained directly from
these sensors. This is the case of the vertical displacement of
the vehicle Center of Gravity (COG). This value is obtained
by a double trapezoidal numerical integration of vertical
acceleration.

A high-pass filter with a cutoff frequency of 5 Hz is
used to eliminate the drift data due to the amplification of
measurements errors when the acceleration is integrated, and
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Fig. 1: DKF-based state/parameter estimator structure

a low-pass filter with a cutoff frequency of 15 Hz is used
to eliminate the noise of this signal due to the fast up and
downward vehicle body movement. These cutoff frequencies
have been selected taking into account [29]. Additionally, it
was necessary to eliminate the drift data of the suspension
deflection sensor measurements using a high-pass filter with a
cutoff frequency of 15 Hz. This value has been chosen after
performing a frequential analysis.

Fig. 2: 7-DOF vehicle model with suspension system

III. FUNDAMENTALS OF VEHICLE MODELING

The vehicle model used for the estimation process of vehicle
mass and road irregularities is a suspension full car model as
shown in Figure 2. This model is a 7-DOF (Degree of Free-
dom) model which is described by the following equations:

• Roll motion of sprung mass:

Ixϕ̈ =−Cfllw(żsfl − żufl) + Cfrlw(żsfr − żufr)
−Crllw (żsrl − żurl) + Crrlw (żsrr − żurr)
−Kfllw (zsfl − zufl) +Kfrlw (zsfr − zufr)
−Krllw (zsrl − zurl) +Krrlw (zsrr − zurr)

(1)

• Pitch motion of sprung mass:

Iy θ̈ =−Cfllf (żsfl − żufl)− Cfrlf (żsfr − żufr)
+Crllr (żsrl − żurl) + Crrlr (żsrr − żurr)
−Kfllf (zsfl − zufl)−Kfrlf (zsfr − zufr)
+Krllr (zsrl − zurl) +Krrlr (zsrr − zurr)

(2)

• Bounce motion of sprung mass:

msz̈s =−Cfl (żsfl − żufl)− Cfr (żsfr − żufr)
−Crl (żsrl − żurl)− Crr (żsrr − żurr)
−Kfl (zsfl − zufl)−Kfr (zsfr − zufr)
−Krl (zsrl − zurl)−Krr (zsrr − zurr)

(3)

• Vertical wheel motion:

muflz̈ufl = Cfl(żsfl − żufl) +Kfl(zsfl − zufl)
−Ktfzufl +Ktfzrfl

mufr z̈ufr =Cfr(żsfr − żufr) +Kfr(zsfr − zufr)
−Ktfzufr +Ktfzrfr

murlz̈url = Crl(żsrl − żurl) +Krl(zsrl − zurl)
−Ktrzurl +Ktrzrrl

murr z̈urr =Crr(żsrr − żurr) +Krr(zsrr − zurr)
−Ktrzurr +Ktrzrrr

(4)

where

zsfl = zs + lwϕ+ lfθ; zsfr = zs − lwϕ+ lfθ
zsrl = zs + lwϕ− lrθ; zsrr = zs − lwϕ− lrθ

(5)

and the subscripts fl, fr, rl and rr indicate front left,
front right, rear left and rear right, respectively. In Table I
a description of parameters is given.

TABLE I: Parameters for complete suspension vehicle model

Parameter Description Unit
θ Pitch angle rad
ϕ Roll angle rad

Ci (i = fl, fr, rl, rr) Damping of car body N/m
Ix Roll inertia moment kg m2

Iy Pitch inertia moment kg m2

Ki (i = fl, fr, rl, rr) Stiffness of car body spring N/m
Kti (i = fl, fr, rl, rr) Tire stiffness N/m

lf Distance from COG to front wheel m
lr Distance from COG to rear wheel m
lw Half treat m
ms Total sprung mass kg

msi (i = fl, fr, rl, rr) Sprung mass in each wheel kg
mui (i = fl, fr, rl, rr) Unsprung mass kg
zri (i = fl, fr, rl, rr) Road disturbance m
zs (i = fl, fr, rl, rr) Sprung vertical displacement m
zui (i = fl, fr, rl, rr) Unsprung vertical displacement m

As the irregularities of the road are not measured, they are
unknown. Therefore, they can be considered disturbances to
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the vehicle dynamics. Assuming that these disturbances are 
the result of white noise we then can consider that:

z̈rfl = z̈rfr = z̈rrl = z̈rrr = 0 (6)

and they now are evaluated as states instead of inputs.

IV. STATE-SPACE VEHICLE MODEL

The complete suspension vehicle model is represented in
the time domain by means of a continuous time state-space
model:

ẋ = Ax+w
y = Dx+ F+ v

(7)

where x=[φ, θ, zs, zufl, zufr, zurl, zurr, φ̇, θ̇, żs, żufl, żufr,
żurl, żurr, zrfl, zrfr, zrrl, zrrr, żrfl, żrfr, żrrl, żrrr] is the
state vector, y=[z̈s, zs, zsfl − zufl, zsfr − zufr, zsrl − zurl,
zsrr−zurr, compressionfl, compressionfr, compressionrl,
compressionrr] is the output vector, where compressioni
is the real data given by the suspension deflection sensors
mounted on each vehicle damper. The use of the suspension
deflection sensors is necessary in order to estimate the ve-
hicle mass even though the vehicle is stopped. The value of
compressioni represents the deflection suspension related to
the static equilibrium position, then:

compressioni = zsi − zui −
msi

Ksi
g for i=fl,fr,rl,rr (8)

In a first approximation, we can consider that the mass which
actuates in each suspension is given by:

msfl = msfr = mslr
2(lf+lr)

; msrl = msrr =
mslf

2(lf+lr)
(9)

Matrices A, D and F are given in Appendix A. Finally,
w and v are the state disturbance and the observation noise
vectors, respectively, which are assumed to be Gaussian,
uncorrelated and zero mean: w ∼ N(0,Q) and v ∼ N(0,R),
where Q is the covariance matrix of the process noise and R
is the covariance matrix of the measurement noise.

The continuous state-space system of equation (7) is trans-
formed to a discrete one using the first order approximation
of Euler ẋk−1 = xk−xk−1

Ts
, where Ts is the sampling time.

Therefore, the discrete system can be expressed as:

xk = Adxk−1 +Bduk−1 +wk−1
yk = Dxk + F+ vk

(10)

where Ad=(I+TsA) and yk=[z̈s,k, zs,k, zsfl,k−zufl,k, zsfr,k−
zufr,k, zsrl,k − zurl,k, zsrr,k − zurr,k, compressionfl,k,
compressionfr,k, compressionrl,k, compressionrr,k] is the
sensor data used in each step k.

V. DUAL KALMAN FILTER

A DKF is used in this work in order to estimate both road
irregularities and vehicle mass. As for mass, it is calculated
as the sum of unsprung mass (mui) and sprung mass (ms). In
a real vehicle, unsprung masses do not change. Therefore, the
estimation of its mass will consist of estimating the sprung
mass.

The design of a vehicle model which allows the mass
to be estimated not only in dynamic conditions but also in

static ones is very successful because an accurate value of
this mass can be obtained more quickly. Additionally, we
can consider that the loading and unloading of items and
passengers onto a vehicle is carried out when the vehicle is
stopped or its velocity is very slow. Taking into account this
fact, it would be interesting if the mass estimation algorithm
could be disconnected when the estimated mass does not
change significantly in each iteration in order to reduce the
computing time. For this reason, a DKF has been selected for
such purpose.

A DKF is formed by two independent Kalman filters. One
of them is called Kalman state and the other is called Kalman
parameter. At each iteration, states are estimated using the
current estimated parameters, and parameters are estimated
using the previous estimated states. The DKF algorithm is
given by the following recursive steps [31]:

1) Parameter prediction:

x̃p,k|k−1 = x̃p,k−1|k−1 (11)

Pp,k|k−1 = Pp,k−1|k−1 +Qp (12)

2) State prediction:

x̃s,k|k−1 = Ad

(
x̃p,k|k−1

)
x̃s,k−1|k−1 (13)

Ps,k|k−1 =Ad

(
x̃p,k|k−1

)
Ps,k−1|k−1Ad

(
x̃p,k|k−1

)T
+Qs

(14)
3) State correction:

Ks,k = Ps,k|k−1 +CT
[
CPs,k|k−1C

T +Rs

]−1
(15)

x̃s,k|k = x̃s,k|k−1 + K
¯ s,k

[
yobs −Cx̃s,k|k−1

]
(16)

Ps,k|k = [I−Ks,kC]Ps,k|k−1 (17)

4) Parameter correction:

Kp,k = Pp,k|k−1 + JT
[
JPp,k|k−1J

T +Rp

]−1
(18)

yest = Ad

(
x̃p,k|k−1

)
x̃s,k|k (19)

x̃p,k|k = x̃p,k|k−1 +Kp,k [yobs − yest] (20)

Pp,k|k = [I−Kp,kJ ]Pp,k|k−1 (21)

where x̃p,k = [ms] is the parameter vector, x̃s,k =[φ, θ, zs,
zufl, zufr, zurl, zurr, φ̇, θ̇, żs, żufl, żufr, żurl, żurr] is the
state vector, Ps and Pp are the error covariance matrices and
Ks and Kp are the Kalman gain matrices, for states and
parameters, respectively. Hs = D and Hp is the Jacobian
matrix of parameter estimator given by:

Hp = [ ∂z̈s∂ms
; ∂zs
∂ms

;
∂(zsfl−zufl)

∂ms
;
∂(zsfr−zufr)

∂ms
; ∂(zsrl−zurl)

∂ms
;

∂(zsrr−zurr)
∂ms

;
∂(compresionufl)

∂ms
;
∂(compresionufl)

∂ms
;

∂(compresionufr)
∂ms

; ∂(compresionurl)
∂ms

; ∂(compresionurr)
∂ms

]
(22)

Both parameter and state Kalman filters depend on the same
output. Then, their observation noise covariances are the same:

Rs = Rp = diag[σ2
z̈s
;σ2

zs ;σzsfl−zufl
;σzsfr−zufr

;
σzsrl−zurl

;σzsrr−zurr
;σ2

compresionfl
;

σ2
compresionfr

;σ2
compresionrf

;σ2
compresionrr

];
(23)
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The process noise covariance matrix of state estimator is 
given by:

Qs = R0I (24)

where R0 is a large value. In our experiments R0 is equal to
1000000. The process noise covariance matrix of parameter
estimator is given by:

Qp = σ2
ms

(25)

where σms is about 1% of the corresponding initial value of
vehicle sprung mass.

VI. SIMULATED AND EXPERIMENTAL RESULTS

The performance of the designed state/parameter observer
has been validated for two types of vehicle configurations: a C-
Class Hatchback and a van. They have been modeled through
the CarSim and TruckSim softwares, respectively, connected
to a Simulink model which provides a graphical interface
for integrating the MATLAB function block. The MATLAB
block was used to implement the proposed DKF algorithm.
Additionally, the van model in Trucksim has been validated
using sensor data obtained from a real van Mercedes Sprinter
Vito (see Figure 3). Results regarding this validation can be
found in [30].

Fig. 3: Real van: Mercedes Vito for experiments

In Table II, the values of the parameters used for the state
space system are listed.

TABLE II: Values of vehicle parameters for the state space
system

C-Class Hatchback Van
Ci (i = fl, fr, rl, rr) 2923.74 Ns/m 1554.47 Ns/m
Ix 606.1 kg/mˆ2 500 kg/m2

Iy 1523 kg/mˆ2 2975 kg/m2

Ki (i = fl, fr, rl, rr) 228000 Nm 750000 Nm
lf 1.016 m 1.5096 m
lr 1.562 m 2.0404 m
lw 1.539 m 1.638 m
mui (i = fl, fr, rl, rr) 35.5 kg 100 kg
ms 1274 kg 1700 kg

Different simulation driving tests for both vehicle configu-
rations are carried out in order to prove the performance of
the proposed vehicle. The C-Class Hatchback is evaluated in
the following maneuvering scenarios:

• J-turn maneuver at 30 km/h with a steering wheel angle
of -75 deg and a friction coefficient of 1.0.

• J-turn maneuver at 100 km/h with a steering wheel angle
of -125 deg and a friction coefficient of 1.0.

• Straight maneuver with roughness at 100 km/h and
friction coefficients of 0.3 and 1.0. The road profile is
depicted in Figure 4a.

• Straight maneuver with roughness at 40 km/h, friction
coefficient of 0.9 and slope of 36%.

• Straight maneuver with a small bump and roughness at
100 km/h and a friction coefficient of 0.85. The road
profile is depicted in Figure 4b.

• Double Lane Change (DLC) maneuver at 50 km/h and a
friction coefficient of 0.85.

• DLC maneuver at 120 km/h and a friction coefficient of
0.85.

• Bounce sine sweep test at 40 km/h and a friction co-
efficient of 0.85. The road profile is depicted in Figure
4c.

(a) Roughness profile

(b) Roughness road with a small bump

(c) Bounce sine sweep test

Fig. 4: Road profiles used for simulations

To prove the performance of the proposed algorithm, we
analyze the relative error and convergence to the real value of
sprung mass for the C-Class Hatchback (1274 kg, see Table
II). Figure 5 shows the variation of sprung mass estimation
and its relative error for each maneuver considering a sprung
mass initial value of 5000 kg. Analyzing the results for the
proposed method based on DKF as is shown in Table III,
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TABLE III: C-Class Hatchback: error and convergence time

RLS method Proposed method
based on DKF

Maneuvering scenarios Error (%)
Convergence

time
(seconds)

Error (%)
Convergence

time
(seconds)

Bounce sine sweep test at 40 km/h with µ=0.85 (duration 0 -19 seconds) ≈ 188 ≈ 16 >50 -
DLC at 50 km/h with µ=0.85 ≈ 16 ≈ 20 <5 <1
DLC at 120 km/h with µ=0.85 ≈ 15 ≈ 5.5 <5 <1
J-turn at 30 km/h with µ=1 ≈ 100 - <5 <1
J-turn at 100 km/h with µ=1 ≈ 110 ≈ 18 >50 -
Straight line at 40 km/h with a small sharp bump and roughness and µ=0.85 ≈ 250 ≈ 17 <5 <1
Straight line at 100 km/h with roughness and µ=1 ≈ 22 ≈ 13 <5 <1
Straight line at 100 km/h with roughness and µ=0.3 ≈ 25 <1 <5 <1
Straight line at 40 km/h with roughness and µ=0.9 and slope 36% ≈ 20 <5 <1 ≈ 1
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Fig. 5: C-Class Hatchback: simulation results for different
driving maneuvers

it can be observed that the sprung mass reaches its real
value with a relative error of < 5% in one second for the
majority of maneuvers with different friction coefficients and
road grades. For a smooth maneuver such as straight line

at 40 km/h with roughness, the relative error is < 1%. For
very severe maneuvers such as a bounce sine sweep test at
40 km/h and J-turn at 100 km/h, the algorithm does not
work properly. To solve this situation, a supervisor could be
designed to switch off the mass estimation KF block once high
accelerations are detected. Additionally, results obtained using
the classical RLS method are depicted in Table III. The RLS
method estimates the sprung mass through equation (3). As
example, Figure 6 shows the comparison between the proposed
method based on DKF and the RLS one for a DLC maneuver
at 120 km/h with µ=0.85. Results show that the proposed
method has a better performance than the RLS one. Figure
7 shows the estimated and real irregularities for a straight line
maneuver at 100 km/h and 40 km/h with roughness and a small
sharp bump, respectively. It can be seen that the irregularities
estimation strongly depends on a good sprung mass estimation.
At the beginning of the simulation, the mass estimation is
not suitable, nor is the estimation of road irregularities. As
for a small sharp bump, the algorithm correctly detects the
beginning and the end of the bump (see Figure 7a).
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Fig. 6: C-Class Hatchback: comparison between the proposed
method based on DKF and the RLS one for a DLC maneuver
at 120 km/h with µ=0.85

For the simulated van, two driving tests are carried out.
The first case takes into account that the van is unloaded and
the second one considers that it is loaded with 500 kg for a
straight maneuver at 100 km/h with road roughness. Figures
8 and 9 show the variation of sprung mass for the unloaded
van and the van loaded with 500 kg, respectively. The sprung
mass converges to around 1840 kg and 2400 kg, respectively.
Compared to the real values, 1700 kg and 2200 kg, the relative
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Fig. 7: C-Class Hatchback: Estimated road profile

error is about 8% and 9%, respectively.
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Fig. 8: Unloaded van

Finally, experiments were performed using an experimental
testbed composed of a real van, a Mercedes VITO (see Figure
3), equipped with a VBOX 100 Hz data logger enabling the
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Fig. 9: Van loaded with 500 kg

Fig. 10: Real van: Path followed by the real van

synchronization and the evaluation of the logged data provided
by an IMU sensor and 4 displacement suspension sensors.
The IMU sensor is the Racelogics RLVBIMU04 model. Its
provides accurate measurements of 3-axis angular rates and
3-axis accelerations with a resolution of 16 bits ADC, 0.001
deg/s and 0.15 mg, respectively. The IMU was installed close
to the vehicle Center of Gravity (COG). In this work, the
vertical acceleration is only taken into consideration. The
displacement suspension sensors are 2 linear potenciometer
sensors, model SA-LP075, for the front suspension, and 2 Lin-
ear Variable Differential Transformer (LVDT) sensors, model
MTN, for the rear suspension. They were mounted across the
vehicles dampers in order to measure the relative suspension
displacements.

In Figure 10, the trajectory followed by the van in a real
environment is shown. This trajectory is formed by J-turn
and slalom maneuvers at a speed from 20 km/h to 50 km/h.
Data obtained from the suspension deflection sensors and from
the vertical accelerometer are shown in Figures 11a and 11b,
respectively. Figures 12a, 12b and 12c show the results for
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the estimate of sprung mass, the mass relative error and the 
estimate of the road roughness, respectively. The mean value 
of the estimated sprung mass is about 1725 kg, with a relative 
error less than 6% and a convergence time about 11 seconds.

For both the simulations and experiments, the proposed 
algorithm has been developed in the Matlab environment and 
performed on a PC with 3.6 GHz Intel Core i7-4790 CPU and 
8 GB memory. The computing time for a single cycle is about 
0.2 ms, less than the sampling time of data logger (10 ms).

Compared with previous works (see Table IV) in terms 
of relative error and convergence time, both simulation and 
experimental tests show that the proposed method has a 
suitable performance. The main advantages of the proposed 
method is that it works adequately in both static and dynamic 
conditions and for different maneuvers even for high speeds 
and on a slope.
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Fig. 11: Real van: Sensor data

VII. CONCLUSION AND FUTURE WORK

This paper proposes a state-parameter observer that allows
the vehicle mass to be estimated under static and dynamic
driving vehicle conditions using measurements of sensors
which can be mounted easily on vehicles. A DKF based on
a vertical complete vehicle model is considered for vehicle
mass and road irregularities estimation using the data ob-
tained from a suspension deflection sensors and a vertical
accelerometer. The advantage of this method is that it can
be used under static and dynamic driving conditions. Both
simulation and experimental results are carried out to prove
the effectiveness of the proposed algorithm. From these results
we can observe that the convergence of the algorithm depends
on the type of vehicle considered. In an automobile, the
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Fig. 12: Real van: Experimental results

errors obtained (< 5%) and convergence time (< 1 second)
are lower than those obtained in previous works for normal
driving conditions. In a light commercial vehicle (van), the
maximum relative error obtained during real maneuvers is
about 6% with a time convergence of 11 seconds. Future
works will focus on 1) designing a supervisor to switch off
the mass estimation KF block once high accelerations are
detected and 2) designing a robust controller for the vehicle
performance improvement considering the estimated mass into
the definition of scheduling variables.

APPENDIX A

Matrices A, D and F are defined in equations (26), (27) and
(28), where:

a8,1 =
(−Kfl−Kfr−Krl−Krr)

Ix
lwlw

a8,2 =
(−Kfllf+Kfrlf+Krllr−Krrlr)

Ix
lw

a8,3 =
(−Kfl+Kfr−Krl+Krr)

Ix
lw



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2019.2909977, IEEE/ASME
Transactions on Mechatronics

9

TABLE IV: Comparison of previous methods for the vehicle mass estimation

Maneuver Simulation / Model Relative error Convergence time LimitationsExperiments (%) (s)
Wenzel Combined acceleration,

Both

Lateral-longitudinal ≈4 Magic Formula

>40

Dynamic conditions.
et al. [16] braking and cornering four-wheel vehicle tyre model Highly dependent of the

at low speed ≈20 TMeasy tyre tyre model
model

Fathy Acceleration

Both

Longitudinal vehicle

≈4 >50

Dynamic conditions.
et al. [17] and braking model Small grade.

Estimation is only carried
out in conditions of
”significant, predominantly
longitudinal motion

Maleej Acceleration at

Experiments

Electric vehicle

<3 ≈5

Dynamic conditions.
et al. [18] maximum velocity with longitudinal No estimation is

of 40 km/h dynamics performed in cruise,
deceleration and stop
states. Flat road

Hong Combined acceleration,

Both

Lateral-longitudinal

≈0.5 >20

Dynamic conditions.
et al. [19] braking and cornering four-wheel vehicle Estimation is performed

at maximum velocity model under the prevailing
of 55 km/h longitudinal dynamics.

Estimation of a mass
added on the vehicle

Jordan 80 km/h
Experimental

Simplified
>15 ≈20

Dynamic conditions.
et al. [20] vehicle model No pitch and roll

motions considered.

A =



0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
a8,1 a8,2 a8,3 a8,4 a8,5 a8,6 a8,7 a8,8 a8,9 a8,10 a8,11 a8,12 a8,13 a8,14 0 0 0 0 0 0 0 0
a9,1 a9,2 a9,3 a9,4 a9,5 a9,6 a9,7 a9,8 a9,9 a9,10 a9,11 a9,12 a9,13 a9,14 0 0 0 0 0 0 0 0
a10,1 a10,2 a10,3 a10,4 a10,5 a10,6 a10,7 a10,8 a10,9 a10,10 a10,11 a10,12 a10,13 a10,14 0 0 0 0 0 0 0 0
a11,1 a11,2 a11,3 a11,4 0 0 0 a11,8 a11,9 a11,10 a11,11 0 0 0 a11,15 0 0 0 0 0 0 0
a12,1 a12,2 a12,3 0 a12,5 0 0 a12,8 a12,9 a12,10 0 a12,12 0 0 0 a12,16 0 0 0 0 0 0
a13,1 a13,2 a13,3 0 0 a13,6 0 a13,8 a13,9 a13,10 0 0 a13,13 0 0 0 a13,17 0 0 0 0 0
a14,1 a14,2 a14,3 0 0 0 a14,7 a14,8 a14,9 a14,10 0 0 0 a14,14 0 0 0 a14,18 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


(26)

D =



d1,1 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7 d1,8 d1,9 d1,10 d1,11 d1,12 d1,13 d1,14 0 0 0 0 0 0 0 0
d3,1 d3,2 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d4,1 d4,2 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d5,1 d5,2 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d6,1 d6,2 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d7,1 d7,2 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d8,1 d8,2 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d9,1 d9,2 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d10,1 d10,2 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


(27)

F =
[
0 0 0 0 0 0 −msfl

Kfl
g −msfr

Kfr
g −msrl

Krl
g −msrr

Krr
g
]T

(28)

a8,4 = −Kfllw
Ix

; a8,5 =
Kfrlw

Ix
; a8,6 = −Krllw

Ix
Ix

a8,7 = Krrlw
Ix

; a8,8 =
(−Cfl−Cfr−Crl−Crr)

Ix
lwlw

a8,9 =
(−Cfllf+Cfrlf+Crllr−Crrlr)

Ix
lw

a8,10 =
(−Cfl+Cfr−Crl+Crr)

Ix
lw; a8,11 = −Cfllw

Ix
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a8,12 =
Cfrlw
Ix

; a8,13 = −Crllw
Ix

; a8,14 = Crrlw
Ix

a9,1 =
(−Kfllf+Kfrlf+Krllr−Krrlr)

Iy
lw

a9,2 =
(−Kfllf lf−Kfrlf lf−Krllrlr−Krrlrlr)

Iy

a9,3 =
(Kfllf+Kfrlf−Krllr−Krrlr)

Iy

a9,4 = −Kfllf
Iy

; a9,5 = −Kfrlf
Iy

; a9,6 = Krllr
Iy

a9,7 = Krrlr
Iy

; a9,8 =
(−Cfllf+Cfrlf+Crllr−Crrlr)

Iy
lw

a9,9 =
(−Cfllf lf−Cfrlf lf−Crllrlr−Crrlrlr)

Iy

a9,10 =
(Cfllf+Cfrlf−Crllr−Crrlr)

Iy

a9,11 = −Cfllf
Iy

; a9,12 = −Cfrlf
Iy

; a9,13 = Crllr
Iy

a9,14 = Crrlr
Iy

; a10,1 =
(Kfl−Kfr−Krl+Krr)

ms
lw

a10,2 =
(Kfllf+Kfrlf−Krllr−Krrlr)

ms

a10,3 =
(−Kfl−Kfr−Krl−Krr)

ms
; a10,4 =

Kfl

ms
;

a10,5 =
Kfr

ms
; a10,6 = Krl

ms
; a10,7 = Krr

ms

a10,8 =
(Cfl−Cfr−Crl+Crr)

ms
lw

a10,9 =
(−Cfllf+Cfrlf−Crllr−Crrlr)

ms

a10,10 =
(−Cfl−Cfr−Crl−Crr)

ms
; a10,11 =

Cfl

ms

a10,12 =
Cfr

ms
; a10,13 = Crl

ms
; a10,14 = Crr

ms

a11,1 = −Kfllw
mufl

; a11,2 = −Kfllf
mufl

; a11,3 =
Kfl

mufl

a11,4 = − (Kfl+Kufl)
mufl

; a11,8 = −Cfllw
mufl

; a11,9 = −Cfllf
mufl

a11,10 =
Cfl

mufl
; a11,11 = − (Cfl+Cufl)

mufl
; a11,15 =

Kufl

mufl

a12,1 =
Kfrlw
mufr

; a12,2 = −Kfrlf
mufr

; a12,3 =
Kfr

mufr

a12,5 = − (Kfr+Kufr)
mufr

; a12,8 =
Cfrlw
mufr

; a12,9 = −Cfrlf
mufr

a12,10 =
Cfr

mufr
; a12,12 = − (Cfr+Cufr)

mufr
; a12,16 =

Kufr

mufr

a13,1 = −Krllw
murl

; a13,2 = Krllr
murl

; a13,3 = Krl

murl

a13,6 = − (Krl+Kurl)
murl

; a13,8 = −Crllw
murl

; a13,9 = Crllr
murl

a13,10 = Crl

murl
; a13,13 = − (Crl+Curl)

murl
; a13,17 = Kurl

murl

a14,1 = Krrlw
murr

; a14,2 = Krrlr
murr

; a14,3 = Krr

murr

a14,7 = − (Krr+Kurr)
murr

; a14,8 = Crrlw
murr

; a14,9 = Crrlr
murr

a14,10 = Crr

murr
; a14,14 = − (Crr+Curr)

murr
; a14,18 = Kurr

murr

d1,1 = a10,1; d1,2 = a10,2; d1,3 = a10,3; d1,4 = a10,4

d1,5 = a10,5; d1,6 = a10,6; d1,7 = a10,7; d1,8 = a10,8

d1,9 = a10,9; d1,10 = a10,10; d1,11 = a10,11; d1,12 = a10,12

d1,13 = a10,13; d1,10 = a10,14; d3,1 = lf ; d3,2 = lw

d4,1 = −lf ; d4,2 = lw; d5,1 = lr; d5,2 = −lw; d6,1 = −lr
d6,2 = −lw; d7,1 = lf ; d7,2 = lw; d8,1 = −lf ; d8,2 = lw

d9,1 = lr; d9,2 = −lw; d10,1 = −lr; d10,2 = −lw
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