

This is a postprint version of the following published document:

Gringoli, F., et al. Performance assessment of open software platforms
for 5G prototyping, in 2018 IEEE wireless communications, 25(5), Oct.
2018, pp. 10-15

DOI: https://doi.org/10.1109/MWC.2018.1800049

© 2018 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/MWC.2018.1800049
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

1

Performance Assessment of Open Software
Platforms for 5G Prototyping

Francesco Gringoli, Paul Patras, Carlos Donato, Pablo Serrano, and Yan Grunenberger

Abstract—Given the urgency of standardizing the 5th gen-
eration mobile systems (5G) to meet the ever more stringent
demands of new applications, the importance of field trials and
experimentation cannot be overstated. Practical experimentation
with cellular networks has been historically reserved exclusively
to operators, primarily due to equipment costs and licensing
constraints. The state of play is changing with the advent of
open-source cellular stacks based on increasingly more affordable
software defined radio (SDR) systems. Comprehensive under-
standing of the performance, limitations, and interoperability of
these tools however lacks. In this article we fill this gap, by
assessing by means of controlled experiments the performance
of today’s most popular open software Evolved Node B (eNB)
solutions in combination with different commodity User Equip-
ment (UE) and an SDR alternative, over a range of practical
settings. Although these cannot underpin complete 5G systems
yet, their development is progressing rapidly and researchers
have employed them for 5G specific applications including LTE
unlicensed and network slicing. We further shed light onto
the perils of open tools and give configuration guidelines that
can be used to deploy these solutions effectively. Our results
quantify the throughput attainable with each stack, their resource
consumption footprint, and their reliability and bootstrap times
in view of automating experimentation. Lastly, we evaluate
qualitatively the extensibility of the solutions considered.

I. INTRODUCTION

The 3rd Generation Partnership Project (3GPP) has recently
completed the specification of the 5th generation mobile
systems (5G) architecture [1] and industry stakeholders are
now focusing on finalizing the Release 16 documentation.
Given the exceptional key performance indicators that 5G
systems are expected to support, the need of field trials and
experimentation driven by verticals is unprecedented.

Until recently, practical experimentation with cellular sys-
tems has been confined to the mobile operators community,
primarily due to equipment costs and radio frequency licensing
requirements imposed by regulators. In contrast, academics
have gained vast experience by experimenting with technology
that operates in unlicensed bands [2], such as IEEE 802.11
Wi-Fi and IEEE 802.15.4 ZigBee. Software Defined Radios
(SDRs) have further facilitated the implementation of novel
communications paradigms and medium access schemes (e.g.,
full-duplex Wi-Fi [3], cognitive radio transceivers [4], and
white spaces networking [5]), but the complexity of the
“higher layers” of the cellular protocol stack has precluded the
development of complete systems by the academic community.

Francesco Gringoli is with the University of Brescia, Italy. Paul Patras is
with the University of Edinburgh, UK. Carlos Donato is with University of
Antwerpen – imec, Belgium. Pablo Serrano is with University Carlos III of
Madrid, Spain. Yan Grunenberger is with Telefonica I+D, Spain.

However, multiple affordable “open” comprehensive software
platforms have emerged over the past years [6], [7]. These put
academics almost on par with their industry counterparts, as
they are now able to rapidly implement full protocol stacks
and evaluate new cellular technologies such as unlicensed
LTE [7], [8]. By joining forces in practical experimentation
efforts, potential exists to accelerate progress towards 5G
standardization and keep up with end-user demands.

In this paper, we interconnect different platforms (including
open software solutions and consumer-grade user equipment)
to build end-to-end LTE systems, and assess their performance
and adequacy towards 5G experimentation. We focus on
two popular solutions that provide a complete version of
the protocol stack, namely, OpenAirInterface (OAI) [6] and
srsLTE [7].1 OAI is licensed under the OAI Public License2

and implements a subset of the LTE Release 10 specifica-
tion, including key elements such as User Equipment (UE),
Evolved Node B (eNB), Mobility Management Entity (MME),
Home Subscriber Server (HSS), Serving Gateway (SGW),
and Packet Data Network Gateway (PGW), thus supporting
a complete solution. OAI runs over commodity Linux-based
computing equipment (Intel x86 PC architectures) and can be
used with popular radio frequency (RF) frontend equipment
(e.g., National Instruments PXIe and Ettus USRP). srsLTE is
licensed under the GNU Affero General Public License3 and
also runs over a similar set of commodity equipment, provid-
ing implementations of the UE and eNB that are compliant
with LTE Release 8. In addition to being compatible with
commercial Core Network (CN) software solutions such as
Amarisoft4 or open-source alternatives including the OpenAir-
CN, as we demonstrate in this paper, it has also recently
released an implementation of the same CN elements.5 Despite
not constituting complete 5G systems, these platforms have
been employed successfully for the development of several
5G technologies, including LTE unlicensed [7], [8], network
slicing [9], neutral host deployments, or RAN sharing [10].

While there is certain unwritten consensus about the fea-
tures of each of these platforms, namely, OAI being more
computationally efficient than srsLTE, srsLTE’s code base
being more modular and easier to customize than OAI’s,

1We do not include openLTE (http://openlte.sourceforge.net/) in our analy-
sis due to its limited functionality (e.g., lack of a User Equipment software)
and poor robustness, as compared with the other two solutions considered.

2http://www.openairinterface.org/?page id=698
3https://github.com/srsLTE/srsLTE/blob/master/LICENSE
4https://www.amarisoft.com/
5We were not able to assess the performance with these elements, though,

as they were not available by the time we ran our experiments.

2

there have been limited previous efforts to formally analyze
their performance, or their interoperability. Existing work in
this space only profiles the OAI components and measures
its emulation execution time [11], or characterizes OAI’s
baseband processing times under a range of conditions [12]. In
this paper, we set the record straight and carry out an extensive
measurement campaign to characterize the performance of
each platform under a variety of settings (including different
UEs, channel bandwidths, and propagation conditions). We
also analyze their interoperability, and discuss the degree of
customization and extensibility they allow. We believe our re-
sults provide valuable insights and best practices to researchers
and practitioners faced with deciding which platform(s) to
consider for their experimental work.

The rest of this article is organized as follows. In the next
section we describe our testbed, best practices for configuring
the software, and the validation of our setup. Subsequently,
we perform a quantitative comparison of the platforms in
terms of throughput, CPU usage, network bootstrap time,
and reliability. Finally, we discuss challenges facing platform
extensions with custom features and give concluding remarks.

II. TESTBED DEPLOYMENT, CONFIGURATION, AND
VALIDATION

We first describe the hardware and software used in our
testbed. Then, we detail the methodology we designed to set
up the experiments. Lastly, we experimentally confirm that the
performance observed in wireless scenarios is practically the
same as then when coaxial cables are employed, which enables
us to discard with confidence the impact of the transmission
medium on the results.6

A. Testbed and tools

We conduct all the experiments reported using an eNB built
with the Ettus USRP-B210 radio frontend boards connected
using USB 3.0 to a Linux-based host computer that runs the
different software suites considered. The frontend’s up- and
down-link interfaces are multiplexed on a single 2dB dipole
antenna through a RF Diplexer compatible with LTE band 7.
The host PC runs Ubunutu 16.04 and is equipped with an Intel
Core i7-7700K CPU with four cores clocked at 4.2GHz, which
is powered by an ASUS Z270-A motherboard and 16GB of
DDR4 memory. We remark that a configuration with such high
computing power is required to be able to run effortlessly
the different software solutions that we use, since baseband
processing is particularly CPU expensive.

Using the configuration described above, we conduct exper-
iments with two types of eNB software, namely:

• OAI – version 0.6.1;
• SRS – version 2.0-17.09 of the srsENB application.7

6We note that we faced a number of performance issues (e.g., configuration-
dependent incompatibilities, out-of-memory crashes) during our experiments,
which was was somehow expected as both open projects are actively evolving.
We report the most relevant ones, for the software versions available at the
time of testing, in Section IV.

7The srsLTE software suite comprises an eNB stack (srsENB) and the UE
stack (srsUE). Hereafter, whenever there is no scope for confusion, we use
SRS and srsENB interchangeably to refer to the eNB software.

We use an additional computer to host the Core Network
(CN) functionality. It runs the OpenAir-CN stack, which im-
plements an open-source Evolved Packet Core (EPC): MME,
HSS, and P/S-GW modules. The computer providing eNB
functionality through the different solutions considered is
connect to the CN using a Gigabit Ethernet link. Although we
could virtually run both the Radio Access Network (RAN) and
CN stacks on the same physical equipment in order to reduce
deployment costs, the configuration we adopt ensures the
performance of the eNB will not be affected by the computing
load placed by the processes specific to the CN.

In terms of UEs, we experiment with three different so-
lutions: two of these are commercial of-the-shelf (COTS)
equipment, and the third one is an SDR platform with open-
source software commonly used for cellular testing purposes.
Precisely, we work with an LG Nexus 5 smartphone (denoted
‘Nexus’ throughout our experiments), a Huawei e3272-153
USB dongle (denoted ‘Huawei’), and respectively the Ettus
USRP B210 board running the srsUE stack version 2.0-17.09
(denoted ‘srsUE’).8 To control the Nexus 5, we connect it
through its USB interface to a PC-Engines APU embedded
computer,9 which runs the Android Debug Bridge software10

to access the internal command console of the smartphone. We
use the same APU device with the Huawei dongle, which we
supply with external power through an USB hub, to prevent
power-related instability issues. To be able to test with the
commercial equipment considered, we fit the smartphone and
USB dongle with Sysmocom programmable SIM cards.11

During each experiment, only one UE is connected to the
eNB. Furthermore, to avoid external interference on our ex-
periments, as well as our experiments interfering with external
networks, we placed our network setup within an RF shielding
tent that is easy to set up and provides attenuation in the -50
to -60dB range.12 Finally, to generate and receive traffic, we
install iperf-compatible software on the Nexus 5, the APU
device hosting the Huawei dongle, and the computer running
as SDR UE. During our experiments, we transmit UDP traffic
in the uplink or downlink directions, and collect statistics at the
receiver by sampling iperf’s output every second. We also
measure the total CPU usage of the SDR process at the eNB
by executing the ps command and querying the corresponding
process ID.

B. Experiments set up and repeatability

For each combination of equipment and software we first
devise a procedure for determining the optimal configuration
of the TX and RX gains at the eNB. This turned out to be
required to ensure the resolution of the ADC/DAC is not
compromised or the receiver does not saturate. This is because
both implementations do not adjust the output power level of

8Although an OAI UE implementation exits, we found that this was
incompatible with the SRS eNB software. Therefore, for a fair comparison of
the eNB stacks, we do not report the performance of an OAI (eNB, UE) pair.

9http://www.pcengines.ch/apu.htm
10https://developer.android.com/studio/command-line/adb.html
11http://shop.sysmocom.de/products/sysmousim-sjs1
12http://www.globalemc.co.uk/shielded-tents.php

3

the boards, but rather adjust signal sample amplitudes by scal-
ing. The procedure consists of running very short experiments
(e.g., UDP traffic sessions up to 5 seconds) and measuring
the throughput obtained for each combination of gain. With
these measurements we fill throughput matrices for the uplink
(UL) and downlink (DL) directions, as shown in Fig. 1, which
illustrates the case when the eNB runs srsENB over 10 MHz
channels and the UE is the Huawei USB dongle connected
with coaxial cables to the eNB. Subsequently, we employ the
gain pair that yields the highest throughput. Depending on the
direction of each experiment run, we may set different gain
pairs. We note that the implementation of the OAI stack is
more accurate, since in most cases setting these hardware gains
to the maximum value led to highest throughput performance.

60 65 70 75 80 85 90
RX gain [dB]

60

65

70

75

80

85

90

TX
 g

ai
n

[d
B]

11.1

1.6

1.6

1.6

10.4

11.1

1.6

1.6

1.6

10.3

10.4

11.2

1.6

1.6

10.2

10.3

10.4

11.1

1.6

1.6

1.6

10.1

10.3

10.4

10.9

1.6

1.6

1.6

1.6

10.2

1.6

10.9

1.6

1.6

1.6

1.6

10.2

10.4

10.9

1.6

1.6

16.2

17.8

17.8

16.8

17.8 16.7

17.8

13.5

2

4

6

8

10

12

14

16

60 65 70 75 80 85 90
RX gain[dB]

60

65

70

75

80

85

90

30.3

31.5

30.7

30.6

30.5

30

29.9

29.2

30.4

30.4

30.8

30.1

29.9

32.7

33

32.7

32.8

33

32.9

32.9

32.8

32.9

32.8

32.6

33

33.1

33.1

32.8

33

33

32.8

33

33

32.7

33.1

33

32.9

32.7

32.8

32.9

32.9

32.9

33.1

32.9

33.1

33.1

33.1

32.3

32.8 29.5

30

30.5

31

31.5

32

32.5

33
UL Throughput [Mb/s] DL Throughput [Mb/s]

Fig. 1. Impact of eNB RX/TX gain on the throughput achievable in the uplink
(left) and downlink (right) directions. The eNB employs the srsENB stack
over a 10MHz channel, the UE is a Huawei USB dongle, and the propagation
medium is coaxial cable.

Before each repetition of a conducted test, we completely
restart the network and measure the time required to es-
tablish a working client connection, i.e., until the UE has
Layer 3 connectivity with the CN, as verified with ICMP
echo request/reply. On the one hand this enables us to build
statistical significance for the performance metrics of interest.
On the other hand, we also collect data about the bootstrap
instances that did not conclude successfully, in order to report
on the reliability of specific configurations (this will be done
in Section III-D). As such, we bootstrap experiments through
a set of Bash scripts that involve the following steps:

1) Starting the CN and verifying that all processes are
working and remain alive;

2) Starting the eNB and waiting for connection to the HSS;
3) Starting the UE, waiting until this finds the cell, and

initiating the attachment process;
4) Waiting until the UE obtains an IP address and receives

an ICMP echo reply from the traffic generator running
at the CN;

5) Measuring the achievable throughput by running five
consecutive transmissions, each of 5 s duration.

After the network has been setup successfully, we run 30 s
long transmission experiments, setting the offered close to the
the maximum throughput measured at the last step of the
bootstrap procedure.

C. Validation
To confirm that the proposed evaluation methodology is

reliable and not susceptible to inaccuracies induced by prac-

Fig. 2. Methodology validation: throughput performance over wireless vs.
wired medium for different eNB/UE combinations, channel bandwidths, and
transmission directions.

tical signal attenuation and multipath propagation, we first
compare the throughput attainable in both directions (UL
and DL) over 5 and 10 MHz channels with all the possible
SW/HW configurations, when the eNB and UE communicate
over a wireless channel (air) and over coaxial cables using
SMC connectors (cable), respectively. Note that our validation
does not include experiments with the Nexus smartphone,
as instrumenting wired connections would have voided the
device’s warranty. We illustrate the results of these preliminary
experiments in Fig. 2.

In this figure, we plot the throughput performance over
the air vs. that obtained over the wired link. We investigate
this for each direction, bandwidth, and eNB/UE configuration
considered. Observe that for each combination the results are
highly correlated, with a Pearson correlation coefficient of
r = 0.993, which proves that the communication medium
has practically no impact on the achievable performance.
Therefore, we are confident that the performance differences,
which we report in the next section for all the possible
configurations, have other root.

III. PERFORMANCE EVALUATION

In this section, we compare the performance in terms of
throughput, CPU consumption, and bootstrap time achievable
with different eNB stacks (OAI vs srsENB), UEs (Nexus
smartphone, Huawei USB dongle, and srsUE with USRP
SDR), transmission directions (UL/DL), and bandwidth (5 and
10 MHz) configurations.

A. Throughput performance

We start our analysis by assessing the throughput perfor-
mance when sending unidirectional UDP traffic at the maxi-
mum rate achievable in the uplink (from the UE) and downlink
(from the eNB) directions. To this end, we use iperf to
generate 1500 B frames from the corresponding side (the UE

4

in the former case, and the computer hosting the CN stack in
the latter), and measure the average throughput obtained every
second, during 30 s trials. We plot in Fig. 3 the average and 95-
percent confidence intervals obtained following 20 repetitions
of each test. In this figure each direction is represented with
a different color, and each subplot corresponds to a different
configuration of the eNB (OAI or SRS) and BW used (5 MHz
or 10 MHz). To add perspective, we show with dashed lines
the theoretical maximum throughput achievable in each case.

Fig. 3. Throughput performance obtained with different eNB/UE configura-
tions, UL/DL directions, and 5/10 MHz bandwidths. Experiments repeated at
a second location (2) with SRS, to illustrate the sensitivity of this stack to PHY
conditions. Shown with dashed line is the theoretical maximum throughput
in each case.

There are two key results worthwhile remarking in the
figure, apart from the obvious performance asymmetry in
terms of the UL/DL rates, which is due to the fact that the
DL operates with 64QAM and by default the UE transmits
using 16QAM. Firstly, the type of UE used has practically
no impact on the performance attainable with a given eNB,
since in all cases the obtained throughput is almost “flat.”
We only note minor differences between the commercial
equipment’s performance (i.e., Nexus and Huawei) and that
of the experimental platform (srsUE). In particular, for the
case of {DL, 10 MHz} (top left subplot) we note a slight
drop in performance when srsUE is employed with OAI. We
also note that initially the throughput attained with the (SRS,
Nexus) combination was lower. Our intuition is that the signal
processing performed by the SRS stack (both in the eNodeB
and UE implementations which are built on the same library)
is different from that of OAI. Specifically, in some scenarios
an SRS receiver may underestimate the channel quality, or
produce a stream of samples that cannot be correctly decoded
by a commercial receiver. To confirm this we repeated these
tests with the UE placed at a second location, where the
performance of SRS was at the same leveled with that of OAI
– note the lighter bars labeled with ”(2)” in the figure. As the
eNB and UE use the same PHY stack with SRS, any mismatch
is less likely to occur.

Secondly, we note the UL rates are slightly smaller when

the eNB runs the SRS stack instead of OAI, something that
is particularly noticeable for the 10 MHz configuration. As
we analyze next, this can be related to the CPU demanded
by the srsENB solution when decoding traffic, particularly
in the uplink direction. Despite these small variations, it is
also worth remarking than SRS and OAI provide a similar
throughput performance, with the difference over all cases
being on average smaller than 7%.

B. CPU Usage

Next, we analyze the CPU usage of the cellular SW stack
running at the eNB, aiming to quantify the differences in
terms of resources consumed by the OAI and SRS solutions.
For this purpose, we repeat the same experiments performed
above, identifying the process ID corresponding to the stack
of interest running at the eNB, then invoking the ps command
every second, to estimate the CPU load. We illustrate the
average and 95% confidence intervals of the CPU consumption
for all combinations considered in Fig. 4, where the subplots
are arranged as in the case of the previous experiments.

Fig. 4. CPU usage at the eNB for different eNB stacks, UEs, bandwidths, and
transmission directions.

The figure confirms that the choice of UE has little impact
on resource consumption, as all results are very similar for a
given configuration of eNB and bandwidth. It also confirms
that there is a notable difference in terms of CPU usage
between the SRS and OAI stacks, the former consuming more
than four times more CPU cycles than the latter. These results
suggest that OAI is more suitable for future 5G scenarios,
where computationally efficiency is of paramount importance,
such as Cloud RAN. For all configurations, the UL direction
is slightly more CPU demanding than the the DL (9.7% on
average), which we conjecture is caused by the decoding
operations [13].

Finally, it is also worth observing the relative impact of the
bandwidth configured on the CPU consumption. Using a sim-
ple linear regression model, admittedly built with limited data,
we can roughly estimate that OAI may consume on average
2.5% CPU time for every additional MHz of bandwidth, whilst
exhibiting an “idling” cost of 9.1% CPU usage. Interestingly,

5

SRS only appears to add some 1.4% CPU consumption for
every additional MHz of bandwidth, but the stack may demand
116.8% CPU time even when the channel bandwidth would
be virtually zero.

C. Multiple UEs

We also investigate whether the number of UEs attached
to the eNB stacks considered might have an impact on the
total throughput performance and CPU usage, due to additional
processing that may be required. At the same time, we wish to
understand if the schedulers implemented ensure the available
resources are shared fairly among the UEs. Therefore, we
deploy two UEs that implement the srsUE stack and measure
the metrics of interest with both eNBs. The obtained results
confirm that adding more clients does not impact on the
total network throughput or the CPU usage of neither of the
eNB stacks. In addition, both UEs obtain equal throughput,
which confirms the accuracy of the schedulers. As a final
note, following code inspection we find that OAI implements
a proportional fair scheduler, whilst srsENB employs round
robin scheduling.

D. Network bootstrap and reliability

Next, we take a closer look at the time required to success-
fully bootstrap the network setup and how often this process
may fail on average. We argue this is particularly important to
understand the degree of experiment automation and repeata-
bility achievable with these platforms. To this end, based on
the data collected prior to executing the previous experiments,
we summarize in Fig. 5 the distributions of the time elapsed
until the UE has obtained an IP address and thus has a
Layer 3 connection (steps 2–4 described in Section II-B) for
the different eNB/UE combinations, over a wireless channel.
We resort to box and whisker plots for this purpose, the central
lines marking the medians, the boxes’ lower and upper margins
the 25th and respectively 75th percentiles, and the whiskers the
minimum and maximum values, excluding outliers, which we
plot separately (crosses).

OAI/Huawei SRS/Huawei OAI/srsUE SRS/srsUE OAI/Nexus SRS/Nexus
eNB/UE combination

10

20

30

40

50

60

70

80

Ti
m

e
[s

]

Fig. 5. Distribution of the network bootstrap times (until the UE can ping the
CN over the air) with the different eNB/UE combinations considered.

Observe that the SRS stack displays the most deterministic
behavior, especially with the Huawei dongle and the SDR run-
ning srsUE. Indeed, if we exclude outliers, the bootstrap time
is constant and less than 22 s. With the same UE types, the OAI
stack performs substantially different. In particular, while the
bootstrap time is fairly constant and close in magnitude to that
observed when the eNB runs the SRS stack (approximately
25 s median value) and the srsUE is used, the range of
bootstrap times is very large when the UE used is the USB
dongle (Huawei). In this case, the median is also higher than
that measured in all the other setups and the 75th percentile is
more than 70 s. This is particularly inconvenient, since when
experimenting for performance assessment purposes, setting
up the network takes more time than running the actual traffic.
In case the Nexus smartphone is used as UE, both eNB types
exhibit similar statistics, i.e., the median of the bootstrap
time is approximately 28 s and the variations are relatively
small (less than 2 s between the 1st and 3rd quartiles). We
leave an analysis of the reasons behind these differences for
future work.

We also count the number of times we detected a failure
of the bootstrap procedure or during experiment runtime for
each of the eNB/UE combinations considered, in the process
of conducting a total of 80 successful experiments in each case,
which we reported earlier (20 repetitions for each direction and
bandwidth setting). Interestingly, we find that the most reliable
UE type is the srsUE, as we never encountered any failures
when connecting this to either of the eNB types used and the
network never failed during the experiments. We observed a
similar behavior with the USB dongle only when connecting
to the OAI eNB stack, while with SRS we measured a 5.9%
failure rate. Here, failures occurred always after the network
was formed successfully, during the initial short tests that we
run to assess the sustainable throughput (step 5 of the set up
procedure described earlier). In contrast, in the case of using
the Nexus as UE, we observed a 7% failure rate with OAI, as
the network did not bootstrap altogether, and a 2.5% failure
rate with SRS,, due to network breakdown during experiments.

IV. EXTENSIBILITY AND PITFALLS

A. Customization and extensibility

We next comment on ability to customize and extend the
functionality of the platforms considered. To this end, we
focus on particular issues related to scheduling and Mod-
ulation and Coding Scheme (MCS) assignment. To ensure
that the two solutions studied are evaluated under the same
conditions and all comparisons are fair, we decided to focus
on the following customization: introduce the ability to fix
during experiments the MCS assignments which the eNB
MAC scheduler enforces on UEs.13 Achieving this turned
out to be fairly intuitive with srsLTE, as we found the
function responsible with scheduling and MCS assignment in
srsLTE/srsenb/src/mac/scheduler_ue.cc, con-
veniently named sched_ue and the code easy to modify.

13In the case of srsENB, the software includes code to fix the MCS index
at start-up through a configuration file, but our aim is to dynamically change
the MCS externally during execution time.

6

On the other hand, this task turned out to be less
straightforward with OAI. The source code that implements
the MCS assignment operation is located within the folder
openairinterface5g/openair2/LAYER2/MAC/,
where files related to MAC scheduling and MCS index
assignation are located. After thorough code inspection, we
found that all the files therein contain code that changes
the MCS settings and unfortunately the MCS index is
also often hard coded in places. Following debugging,
we inferred that the files eNB_scheduler_ulsch.c
and eNB_scheduler_dlsch.c contain the functions
schedule_ulsch_rnti and schedule_dlsch_rnti
that assign the MCS in the UL and DL directions. We
developed a patch to enable dynamic MCS index assignment,
though after applying our patch we discovered that the
MCS will be later computed and altered by other functions.
Therefore we were unable to achieve the desired behavior.

We believe the major differences between the OAI and
srsLTE solutions in terms of extensibility are because they
follow different software designs. In particular, OAI was
developed for mock LTE network deployment with a built-
in emulator, while srsLTE was designed from scratch as
a framework to support building LTE applications on top,
providing a set of common libraries, tools, and examples
for PHY layer implementation and experimentation. As a
result, UE and eNB apps were implemented on top of these
libraries. From a software design perspective, srsLTE offers a
modular framework that re-factors the code of common LTE
functions for any application, whilst OAI is designed to offer
an standalone eNB solution.

B. Software stack pitfalls
Working with open-source cellular stacks has important

benefits, including speed of deployment, availability of docu-
mentation, affordable cost, and ability to extend functionality.
Unfortunately, such solutions come with their own set of
issues, some of which are more difficult to spot and which
can hinder the reproducibility of results. Here we highlight
the main pitfalls we identified while experimenting with the
OAI and SRS tools:

• Bandwidth incompatibilities: While SRS supports oper-
ation with all the bandwidth settings specified by 3GPP,
i.e., 1.4, 3, 5, 10, 15, and 20 MHz, OAI does not work
with the 1.4, 3 and 15 MHz configurations. In addition,
we find that the srsENB implementation (at least the
Sept. 2017 version that we tested) does not work reliably
with 20MHz channels. Therefore interoperability between
eNBs and UEs running different stacks is limited to only
two bandwidth settings, i.e., 5 and 10MHz.

• Interconnection with CN: the srsENB implementation
employs the same subnetwork for both user plane (S1-U
interface) and control plane (S1-C interface). On the other
hand, the OpenAir-CN can be configured to use two
different subnetworks in order to distinguish between the
two planes; if such configuration is enabled, the srsENB
stack will not work.

• Problematic queue management: We note that sending
traffic in the downlink direction, at a rate that exceeds the

maximum throughput supported on the channel, makes
OAI crash. Following code inspection, we find that the
different threads composing the software do not imple-
ment any packing dropping strategy at the queues/lists
used for communication, which leads to out-of-memory
issues. We have fixed this bug and are proposing a patch
to the OAI developers community.

V. SUMMARY

This article reports a performance assessment of the two
most prevalent open software solutions for mobile network
prototyping, namely, srsLTE and OAI. We designed a method-
ology to characterize the performance of these stacks, quanti-
fying their differences in throughput and resource consumption
over a range of practical settings. Our findings formalize “word
of mouth” knowledge among practitioners, and provide useful
guidelines for deploying 5G testbeds with these tools.

REFERENCES

[1] 3GPP, “TS 23.501 – System Architecture for the 5G System; Stage 2,”
Dec 2017.

[2] P. Serrano, P. Salvador, V. Mancuso, and Y. Grunenberger, “Experiment-
ing with commodity 802.11 hardware: Overview and future directions,”
IEEE Comms. Surveys Tutorials, vol. 17, no. 2, pp. 671–699, 2015.

[3] M. Duarte, A. Sabharwal, V. Aggarwal, R. Jana, K. K. Ramakrishnan,
C. W. Rice, and N. K. Shankaranarayanan, “Design and characterization
of a full-duplex multiantenna system for WiFi networks,” IEEE Trans.
Vehicular Tech., vol. 63, no. 3, pp. 1160–1177, Mar 2014.

[4] P. D. Sutton, K. E. Nolan, and L. E. Doyle, “Cyclostationary signatures
in practical cognitive radio applications,” IEEE Journal on Selected
Areas in Communications, vol. 26, no. 1, pp. 13–24, Jan 2008.

[5] P. Bahl, R. Chandra, T. Moscibroda, R. Murty, and M. Welsh, “White
Space Networking with Wi-Fi Like Connectivity,” in Proc. ACM SIG-
COMM, 2009, pp. 27–38.

[6] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, “OpenAirInterface: A Flexible Platform for 5G Research,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 5, pp. 33–38, Oct 2014.

[7] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “srslte: An open-source platform for lte
evolution and experimentation,” in Proc. ACM WiNTECH, 2016.

[8] C. Capretti, F. Gringoli, N. Facchi, and P. Patras, “LTE/Wi-Fi Co-
existence under Scrutiny: An Empirical Study,” in Proc. ACM WiN-
TECH, Oct 2016.

[9] X. Foukas, M.K. Marina, K. Kontovasilis, “Orion: RAN Slicing for
a Flexible and Cost-Effective Multi-Service Mobile Network Architec-
ture.” In Proc. ACM MobiCom, 2017, 127–140.

[10] X. Foukas, N. Nikaein, M.M. Kassem, M.K. MarinaK. Kontovasilis,
“FlexRAN: A Flexible and Programmable Platform for Software-
Defined Radio Access Networks.” In Proc. ACM CoNEXT, 2016.

[11] A. Virdis, N. Iardella, G. Stea, D. Sabella, “Performance analysis of
OpenAirInterface system emulation,” PMECT, Rome, Italy, August 2015

[12] N. Nikaein, “Processing Radio Access Network Functions in the Cloud:
Critical Issues and Modeling.” In Proc. Intl Workshop on Mobile Cloud
Computing and Services 2015, 36-43

[13] S. Bhaumik, S. P. Chandrabose, M. K. Jataprolu, G. Kumar, A. Muralid-
har, P. Polakos, V. Srinivasan, and T. Woo, “CloudIQ: A Framework for
Processing Base Stations in a Data Center,” in Proc. ACM MobiCom,
2012.

	portadilla_postprint_IEEE
	2018-gringoli-wcm-assessment.pdf

