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Abstract

Medical image processing is an interdisciplinary field in which multiple research areas are in-
volved: image acquisition, scanner design, image reconstruction algorithms, visualization, etc.
X-Ray Computed Tomography (CT) is a medical imaging modality based on the attenuation
suffered by the X-rays as they pass through the body. Intrinsic differences in attenuation pro-
perties of bone, air, and soft tissue result in high-contrast images of anatomical structures. The
main objective of CT is to obtain tomographic images from radiographs acquired using X-Ray
scanners. The process of building a 3D image or volume from the 2D radiographs is known as
reconstruction. One of the latest trends in CT is the reduction of the radiation dose delivered
to patients through the decrease of the amount of acquired data. This reduction results in arte-
facts in the final images if conventional reconstruction methods are used, making it advisable to
employ iterative reconstruction algorithms.

There are numerous reconstruction algorithms available, from which we can highlight two
specific types: traditional algorithms, which are fast but do not enable the obtaining of high
quality images in situations of limited data; and iterative algorithms, slower but more reliable
when traditional methods do not reach the quality standard requirements. One of the priorities
of reconstruction is the obtaining of the final images in near real time, in order to reduce the
time spent in diagnosis. To accomplish this objective, new high performance techniques and me-
thods for accelerating these types of algorithms are needed. This thesis addresses the challenges
of both traditional and iterative reconstruction algorithms, regarding acceleration and image
quality. One common approach for accelerating these algorithms is the usage of shared-memory
and heterogeneous architectures. In this thesis, we propose a novel simulation/reconstruction
framework, namely FUX-Sim. This framework follows the hypothesis that the development of
new flexible X-ray systems can benefit from computer simulations, which may also enable per-
formance to be checked before expensive real systems are implemented. Its modular design
abstracts the complexities of programming for accelerated devices to facilitate the development
and evaluation of the different configurations and geometries available. In order to obtain near
real execution times, low-level optimizations for the main components of the framework are
provided for Graphics Processing Unit (GPU) architectures.

Other alternative tackled in this thesis is the acceleration of iterative reconstruction algo-
rithms by using distributed memory architectures. We present a novel architecture that unifies
the two most important computing paradigms for scientific computing nowadays: High Perfor-
mance Computing (HPC). The proposed architecture combines Big Data frameworks with the
advantages of accelerated computing.

The proposed methods presented in this thesis provide more flexible scanner configurations
as they offer an accelerated solution. Regarding performance, our approach is as competitive as
the solutions found in the literature. Additionally, we demonstrate that our solution scales with
the size of the problem, enabling the reconstruction of high resolution images.
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Resumen

El procesamiento de imágenes médicas es un campo interdisciplinario en el que participan múlti-
ples áreas de investigación como la adquisición de imágenes, diseño de escáneres, algoritmos de
reconstrucción de imágenes, visualización, etc. La tomografía computarizada (TC) de rayos X es
una modalidad de imágen médica basada en el cálculo de la atenuación sufrida por los rayos X a
medida que pasan por el cuerpo a escanear. Las diferencias intrínsecas en la atenuación de hueso,
aire y tejido blando dan como resultado imágenes de alto contraste de estas estructuras anatómi-
cas. El objetivo principal de la TC es obtener imágenes tomográficas a partir estas radiografías
obtenidas mediante escáneres de rayos X. El proceso de construir una imagen o volumen en 3D a
partir de las radiografías 2D se conoce como reconstrucción. Una de las últimas tendencias en la
tomografía computarizada es la reducción de la dosis de radiación administrada a los pacientes
a través de la reducción de la cantidad de datos adquiridos. Esta reducción da como resultado
artefactos en las imágenes finales si se utilizan métodos de reconstrucción convencionales, por
lo que es aconsejable emplear algoritmos de reconstrucción iterativos.

Existen numerosos algoritmos de reconstrucción disponibles a partir de los cuales podemos
destacar dos categorías: algoritmos tradicionales, rápidos pero no permiten obtener imágenes de
alta calidad en situaciones en las que los datos son limitados; y algoritmos iterativos, más lentos
pero más estables en situaciones donde los métodos tradicionales no alcanzan los requisitos en
cuanto a la calidad de la imagen. Una de las prioridades de la reconstrucción es la obtención
de las imágenes finales en tiempo casi real, con el fin de reducir el tiempo de diagnóstico. Para
lograr este objetivo, se necesitan nuevas técnicas y métodos de alto rendimiento para acelerar
estos algoritmos.

Esta tesis aborda los desafíos de los algoritmos de reconstrucción tradicionales e iterativos,
con respecto a la aceleración y la calidad de imagen. Un enfoque común para acelerar estos
algoritmos es el uso de arquitecturas de memoria compartida y heterogéneas. En esta tesis,
proponemos un nuevo sistema de simulación/reconstrucción, llamado FUX-Sim. Este sistema se
construye alrededor de la hipótesis de que el desarrollo de nuevos sistemas de rayos X flexibles
puede beneficiarse de las simulaciones por computador, en los que también se puede realizar
un control del rendimiento de los nuevos sistemas a desarrollar antes de su implementación
física. Su diseño modular abstrae las complejidades de la programación para aceleradores con el
objetivo de facilitar el desarrollo y la evaluación de las diferentes configuraciones y geometrías
disponibles. Para obtener ejecuciones en casi tiempo real, se proporcionan optimizaciones de
bajo nivel para los componentes principales del sistema en las arquitecturas GPU.

Otra alternativa abordada en esta tesis es la aceleración de los algoritmos de reconstrucción
iterativa mediante el uso de arquitecturas de memoria distribuidas. Presentamos una arquitec-
tura novedosa que unifica los dos paradigmas informáticos más importantes en la actualidad:
computación de alto rendimiento (HPC) y Big Data. La arquitectura propuesta combina sis-
temas Big Data con las ventajas de los dispositivos aceleradores.
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Los métodos propuestos presentados en esta tesis proporcionan configuraciones de escáner
más flexibles y ofrecen una solución acelerada. En cuanto al rendimiento, nuestro enfoque es tan
competitivo como las soluciones encontradas en la literatura. Además, demostramos que nuestra
solución escala con el tamaño del problema, lo que permite la reconstrucción de imágenes de
alta resolución.
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Chapter 1

Introduction

Medical image processing field includes topics from different disciplines ranging from medicine or
electrical engineering to computer science. In the past years, new methods and techniques for the
acquisition of medical images have been developed. The growth in the usage of digital equipment
and detectors in all imaging modalities has also increased the possibilities of introducing digital
image processing techniques at different stages. Additionally, the innovations achieved through
the development of new image scanners and acquisition geometries demand new protocols and
advances in reconstruction algorithms. The main objective of these advances is to obtain better
images, in terms of quality, at faster rates. This applies also to the world of CT, an imaging
modality based on the acquisition of images using X-Ray properties that has been used for
decades to obtain tomographic images of objects, animals or patients. It is widely employed in
non-destructive testing to recover a digital model of the object inspected, but its most famous
application is Computed Axial Tomography (CAT) in health care.

In this modality, X-Ray images are obtained from the object or patient scanned from dif-
ferent positions, traditionally, from different angles around the object of interest. These X-Ray
radiographs, also known as projections, are then digitally processed or reconstructed to recover
the final tomographic image or volume.

Limitations of CT in certain medical circumstances, such as operations, in which images
from all angles can not be acquired, have increased the amount of research on new acquisition
protocols for these X-Ray systems in limited-data situations. Additionally, the increased use
in the last decades of X-Rays as a diagnosis tool has created a trend that investigates the
possibilities of reducing the amount of data acquired in order to decrease the radiation dose
received by the patient. This radiation dose has been recently related to an increased cancer
risk for different types of patients [1, 2]. In these situations all information desired from the
patient can not be obtained. New acquisition protocols and X-Ray scanners, like the one shown
in Figure 1.1, require the implementation of new reconstruction methods, capable of obtaining
images with similar quality to those obtained in ideal situations.

Part of this thesis will focus on a simulation/reconstruction platform, capable of assessing
the effectiveness of these new configurations, simulating the acquisition of these images and, at
the same time, designing and evaluating different reconstruction algorithms over these data in
terms of quality and execution time.

1
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Figure 1.1: Photo of a flexible X-Ray scanner. The X-Ray source can be moved and rotated around the
room with a fixed bed in which the patient can lay.

1.1 Motivation

The design of new acquisition protocols and configurations requires of the possibility of changing
the acquisition parameters in a flexible manner. Although in most X-Ray scanners positions can
be configured to meet different requirements, the acquisition of the images can represent a long
process not suitable for research purposes. Additionally, exact positioning of these machines
implies an additional calibration step. Therefore, advantages of emulating the operation of a
flexible X-Ray scanner are straightforward since there are not any physical limitations in terms
of positioning or acquisition times. The development of new flexible X-Ray systems benefits from
computer simulations, an environment that enables performance to be checked before expensive
real systems are implemented. Along with the new acquisition protocols, new reconstruction
algorithms must be applied to obtain the final tomographic image.

Nevertheless, the task of developing a platform for simulating the acquisition of X-Ray
images and reconstructing them has several difficulties to be tackled. First, in terms of emulating
the physical effects, a realistic simulation of the acquisition of the X-Rays can not be done
efficiently. Since for the development of new configurations and acquisition protocols the critical
point is the geometrical positioning of the elements, a simplified model is required. Second,
digital detectors have increased their size and density in the last years, thus incrementing the
size of the data set to be processed. Luckily, memory and computational specifications have also
increased and new hardware architectures have made it possible to obtain images in almost near
real-time. The final problem is related to the new advanced reconstruction algorithms that have
appeared recently. These algorithms, designed to work with limited-data configurations, are also
computationally more expensive because of their extensive use of iterative methods.

For these reasons, it is necessary to explore the possibilities of developing these algorithms in
non-traditional computing platforms with programming models and paradigms that can provide
the necessary computational resources to obtain these images in lower times than those obtained
in conventional systems.

The traditional approach consisted on porting this type of applications to HPC progra-
mming models, which are centered around the final performance obtained and the exploitation
of the hardware and systems constructed for them. Programming models such as Message Pass-
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ing Interface (MPI), OpenMP, Intel Threading Building Blocks (TBB), OMPSS and those in-
cluding support for heterogeneous platforms, OpenACC, CUDA or OpenCL, have been widely
employed to implement scientific applications. Nevertheless, in the last decade, a new paradigm
that changes the focus from performance to throughput in data intensive applications, has appea-
red. The Big Data paradigm and its related programming models, from which we can highlight
MapReduce, has attracted the attention of the users. Some of the advantages of the frame-
works supporting the Big Data paradigm are: a better support for more scientific domain-like
programming languages, a programming model much easier to exploit and implement than in
HPC, automatic data management or fault tolerance. Image processing applications can be ideal
candidates for the Big Data era. Most of the algorithms related to this field can be characteri-
zed as loosely coupled or even embarrassingly parallel algorithms, an optimal target for these
frameworks. Moreover, the large quantity of images to be processed and their increasing sizes
transform them into Big Data Applications. However, the main algorithms employed in medical
image processing also require performance, which is not the main objective of the Big Data
frameworks designed today. Therefore, medical image processing algorithms can be employed as
use cases in the process of convergence between the Big Data paradigms and HPC.

The hypothesis of this thesis can be summarized in:

It is possible to develop new techniques for the reconstruction of high quality CT images
in situations were the input data is limited or is not complete, such as in low-dose scenarios,
obtaining the results in near real-time compared with previous traditional computation methods.

Throughout this thesis, we will work on the progressive optimization and implementation of
different platforms supporting multiple reconstruction algorithms. Furthermore, different com-
binations of programming models, in search of a model of convergence, will be explored.

1.2 Objectives

The main objective of this thesis is the development of new techniques for recons-
truction in situations where the acquired data from the scanner is not suitable for
traditional reconstruction methods, in an optimized and flexible platform that can
provide a meaningful reduction of the time spent for obtaining the final reconstruc-
ted image.

Additionally, other related objectives will also be fulfilled:

O1 To design a flexible simulator/reconstructor for CT medical image processing
with support for heterogeneous architectures. We will strive towards a unified plat-
form providing simulation and reconstruction capabilities for X-Ray images. It must be
flexible in terms of X-Ray geometries and hardware support in order to be executed in all
sort of environments with high performance capabilities.

O2 To improve the performance of simulation/reconstruction algorithms. To fully
exploit the hardware it is necessary to obtain metrics and measures from the simulation/re-
construction platform that can provide an idea of the limitations of the design in order to
overcome them and propose new heterogeneous hardware-driven optimizations than can
increase the performance of the implemented algorithms.
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O3 To design an iterative reconstruction platform for low-dose systems. From the
previous optimized designs it is possible to extend the platform to support different types
of iterative reconstruction algorithms. This platform must be easily maintainable and
configurable to allow user-friendly experiments with multiple methods.

O4 To reconstruct high resolution images. At the end, we can provide the applica-
tion with further performance and programmability enhancements employing novel frame-
works. These frameworks can be combined with different HPC techniques to accelerate the
execution of the algorithms and support the reconstruction of high resolution images.

1.3 Structure of the document

This thesis is structured as follows:

• Chapter 2 State of the Art: contains an extended state of the art of the topics related to
this thesis. It also includes a brief background on medical image processing algorithms and
programming models.

• Chapter 3 Proposal of a new fast and flexible X-Ray simulator : describes the design and
implementation of FUX-Sim, an X-Ray simulation/reconstruction platform. A full de-
scription of its architecture, the different programming models supported as well as a
performance evaluation are included.

• Chapter 4 Enhanced cache-aware roofline model for GPU kernel characterization: presents
further optimizations for the main components in FUX-Sim, with a methodology based
on the characterization of the application using Cache-Aware Roofline Model (CARM).

• Chapter 5 Design of a fast iterative reconstruction framework for limited-data CT: con-
tains the description of the iterative algorithms implemented and the description of the
reconstruction framework. A performance evaluation of all the algorithms comparing GPU
and CPU implementations is also provided.

• Chapter 6 A Distributed Iterative Reconstructor : contains a description and evaluation of
the implementation of an iterative reconstruction algorithm in a distributed environment.
This chapter focuses on MPI and a specific library, PETSc, employed in this implementa-
tion.

• Chapter 7 Iterative reconstruction framework based on the Big Data paradigm: describes the
steps to translate parts of an iterative reconstruction algorithm to Big Data frameworks,
in this case Apache Spark. It presents an extended architecture of the framework that
supports GPUs and several evaluations in CPU and GPU-based architectures.

• Chapter 8 Conclusions: contains a summary of this thesis, the main conclusions obtained
from its development and the contributions made. Possible future directions for research
related to the topic covered in this thesis are described.



Chapter 2

State of the art

This chapter includes an overview of the different fields related with this PhD thesis. Due to
the interdisciplinary nature of this work, we will introduce each of the topics with a brief,
but complete, background description. In the first section, we will explore the medical image
processing field, focusing on X-Ray and CT reconstruction algorithms. We provide a review of
the existing solutions and their main characteristics in comparison with the solutions presented
in this thesis. These solutions take advantage of different programming models and specialized
hardware architectures that will be explained in a second section. A literature review of this
topic is also provided, with special emphasis in HPC, Big Data paradigms, and heterogeneous
computing with their corresponding programming models.

2.1 Medical image processing

Medical image processing is an extensive field containing different techniques and disciplines
whose main objective is to obtain and process images for medical diagnosis. It includes research
from different backgrounds, such as signal processing, electric engineering, computer science,
mechanical engineering, etc. In the scope of this thesis we will focus on X-Ray medical image
processing, although most of the optimizations and techniques employed here can be applied to
other type of image modalities.

The main objective of medical image processing methods is to modify and improve image
signals taken for medical purposes [3]. It covers different image modalities, which obtain the
images from different physical properties. Some of them employ magnetic fields to obtain internal
physical images of an object or body, as is the case of Magnetic Resonance Imaging (MRI)).
Others use X-Rays measurements to obtain an image based on the different attenuation ratios
of the materials scanned, like in the case of CT. Although these methods can also be used
for other purposes apart from those strictly medical (diagnosis), the requirements in terms of
quality and the techniques for the image acquisition and posterior computational processing
differ greatly depending on the final objective of the image/study. Accordingly, we will focus on
those requirements specific to medical purposes, since they are the ones explored in this thesis.

More concretely, algorithms and applications presented here are related to Cone-Beam Com-
puted Tomography (CBCT). This modality consists on the construction of tomographic images,
internal images of an object or a patient, combining the information of multiple X-Ray images
(commonly referred as projections) taken from different θ angles around the scanned object of
interest (see Figure 2.1). The cone-beam term refers to the geometry formed by a beam of rays

5
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Figure 2.1: An example of how a CT Scanner works. The detector panel, normally hidden inside the
machine, and the X-Ray source rotate around the patient, normally lying in bed.

going from the X-Ray source to the detector panel, which creates a cone geometry. This detector
panel registers the signal as a radiography, similar to the one shown in Figure 2.2, which is later
processed through different algorithms to construct the final tomographic image. This tomo-
graphic image is also known as a volume due to its 3 dimensional characteristics. This volume
is divided into different values that represent the density of the object at that point (voxel).

The basic operation of the CT scanner shown in Figure 2.1 is not unique. Different acqui-
sition techniques have been developed to allow the detector and source to move independently,
or, even shift and rotate the bed in different angles.

Figure 2.2: Input radiography for the reconstruction algorithm (left).Reconstructed image of a rat (right).
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2.1.1 Traditional reconstruction algorithms

Traditional reconstruction algorithms are based on mathematical principles and consist on the
correspondence of the reconstruction problem to the solution of a system of linear equations [4]
of the type:

Ax = b (2.1)

where A is the system matrix simulating the operation of acquiring images from a CT scanner,
x is a vector containing the intensities of the final images, and b is the vector containing the set
of values taken from the projections obtained from the scanner. The size of matrix A is M ×N ,
being M the number of pixels per projection multiplied by the number of projections; and N ,
the number of voxels of the final image. Therefore, x is a column vector of size N × 1 and b
another column vector of size M × 1.

With this system matrix, we can obtain the reconstructed values of the final images based on
the acquired projections in a single matrix-vector multiplication. However, obtaining this system
matrix is time-consuming task and it depends on the geometrical factors of the acquisition, so it
must be recomputed for each study. Additionally, it occupies a great amount of space for rela-
tively small volumes (e.j a 643 elements of the reconstructed volume from 642×720 projection size
given a system matrix occupying 2,880 GB) although it can be stored in compressed format due
to its sparsity characteristics. The alternative employed in traditional reconstruction methods
is the application of geometrical relations between the input data and the final reconstructed
volume without pre-computing this system matrix [5]. One of the most well-known algorithms
included in these traditional methods is the Filtered Backprojection (FBP) or Backprojection-
Filtered algorithms. Both of them consist on two basic stages: filter and backprojection. The
filter stage can be applied before or after the backprojection and its main objective is the en-
hancement of the acquired projections, if applied before; or of the final result, if carried out
after. There are different types of filters that can be applied at each step. However, the most
effective is the ramp-filter, which increases the value of higher frequencies in output or input
images avoiding the apparition of blurring artefacts. The second stage, the backprojection, is the
one that properly reconstructs the image, gathering information obtained from the initial radio-
graphies. The way in which this information is gathered determines the type of backprojection
algorithm employed. Canonically, this is performed through a transformation named Siddon’s
algorithm [6]. This algorithm is capable of calculating lengths of intersection with each of the
voxels of the image that we are reconstructing. This is done simulating the exact path that each
ray is taking, from the source to the detector. This approach can be adapted to different inter-
polation modes that transform the algorithm making the rays pass through specific structures.
In Chapter 3, two of these interpolation modes will be addressed along with a full explanation
of the backprojection kernel.

Another important stage involved in reconstruction algorithms is the projection. This oper-
ation takes a reconstructed volume and obtains projections from it simulating the operation of
the scanner. Both backprojection and projection operations constitute the main components or
kernels of many reconstruction applications.

Projection algorithms

Projection algorithms emulate the process of data acquisition in an X-Ray scanner, given an
initial 3D volume and the geometrical parameters (distance from the detector to the object,
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Figure 2.3: Schematic of two different interpolation algorithms for reconstruction: ray driven (upper
half) and voxel driven (lower half).

distance from the source to the object, size of the volume, size of the projection, positions...)
of the system. There are different methods to obtain the projected radiographs, although most
of them consist on the computation of diverse trajectories of the X-Rays from the simulated
source to the panel while traversing the 3D volume. Depending on the material and geometrical
characteristics, these rays are affected by different phenomena. Correctness of the final output
depends also on the type of interpolation used as well as the number of rays simulated.

In our case, we have focused on ray-driven and distance driven interpolation methods. Ray-
driven methods are based on the computation of the trajectory of a ray from the X-Ray source
to the center of the detector cell to be computed. The value obtained in this detector cell will
be then the sum of N · step values along the X-Ray beam. A representation of this interpolation
mode can be found in the upper half of Figure 2.3.

In general, the mathematical operations that describe this process are shown in Equations
2.2 and 2.3.

p(s, z, θ) =
∞∫

v=−∞

vol (s · cos(θ)− v · sin(θ), s · sinθ + v · cosθ,W · z) dv (2.2)

W = DSO − v
DSO +DDO

(2.3)

where p(s, z, θ) is the value of the projection in position s, z at angle θ, vol is the 3D volume,
and v is the position at axis v (see Figure 2.1). W can be identified as the magnification factor
produced by the cone-beam geometry, Distance Source Object (DSO) is defined as the distance
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between source and object and Distance Detector Object (DOD) as the distance between detector
and volume. Depending on the interpolation method s, v and z will be computed at different
positions of the volume and detector.

Backprojection algorithms

As already explained, the backprojection algorithm builds a volume from different projections or
radiographies obtained from the scanner or from the projection algorithm. The most employed
backprojection methods are commonly based on the FDK algorithm [7] for cone-beam geome-
tries. This algorithm is a version of an FBP algorithm in which voxel-driven interpolation is
implemented. In voxel-driven interpolation, rays pass through the center of each of the voxels
that form the volume. The value of this voxel will be the integral of all the values of the projec-
tions to which these rays intersect. The process for one projection is shown in the bottom half
of Figure 2.3. A simplified mathematical formulation of the backprojection algorithm is shown
below in Equations 2.4, 2.5 and 2.6:

f(u, v, z) = 1
2

2π∫
θ=0

W2(v)

 ∞∫
w=−∞

 ∞∫
s=−∞

[p(s, z, θ) ·W1(z, u)] · e−j2πswds

 · |w|·ej2πws · dw

 · dθ
(2.4)

W1 = DSO√
DSO2 + z2 + u2

(2.5)

W2 = DSO

(DSO − v)2
(2.6)

where f(u, v, z) is the value of the image at position u, v, z, θ is the angle from which the
projection is taken, p(s, z, θ) is the value of the projection at position (s, z), and W1 and W2

are the weighting factors introduced to compensate for the different ray lengths. DSO is the
distance from the source to the detector, z is the axial coordinate, common for both detector
and reconstructed volume reference frames,s is the radial coordinate in the detector, and u, v
are the Cartesian coordinates in the reconstructed volume.

2.1.2 Iterative reconstruction algorithms

Although traditional reconstruction algorithms are still in use, advanced reconstruction algo-
rithms have been developed in the last years. One of the objectives of these advanced recons-
truction algorithms is to work with limited-data or limited angle span (total angle arc covered
by the projection data). With this purpose, the most successful reconstruction algorithms have
been the reconstruction algorithms based on iterative methods. Normally based on previous
analytical methods, its main purpose is to continuously improve the quality of the final image
through an iterative process. In this iterative process, prior information can be included to gen-
erate a better image. Each iteration of these algorithms consists roughly of the same steps that
can vary depending on the purpose of the algorithm or the type of data that it has been fed on.
A generic workflow for describing an iterative reconstruction algorithm contains the following
steps:
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1.- Obtaining of an initial guess: this initial guess consists of an approximated volume or
even a dummy volume (zero initialized volume). In many cases, a traditional algorithm is
employed to obtain this approximation, for example a FBP algorithm.

2.- Image processing: different characteristics of the volume are inferred or enhanced. In this
step, prior information can be included, either providing a previously reconstructed volume
of the patient or limited information, such as the delimitation of the volume with respect
to the background.

3.- Projection of the volume: projections from the computed volume are acquired obtaining
radiographs of the estimated image.

4.- Correction of the volume: based on the comparison of the obtained radiographs with the
input projections, the radiographs are corrected. The projections can then be backprojected
to obtain the corrected volume to which successive computations will be applied.

From the corrected projections new estimated volumes are generated, and the process is
repeated iteratively, until the algorithm reaches the defined quality threshold. In many cases,
this process also has to be supervised due to the possible overcorrection of the final images,
which can lead to blurred images or the apparition of new artefacts or distortions in the image.

There are three types of iterative reconstruction algorithms [8]:

• Algebraic Iterative Reconstruction (AIR) algorithms: the exponent of the non-statistical
group is the Algebraic Reconstruction Technique (ART). This technique consists on con-
sidering each ray from each projection and iteratively increase their quality until the dif-
ference between the projection of the estimated volume and the input data is consistently
reduced. It is based on the resolution of Equation 2.1. This technique [9] has demonstrated
to be good enough and reduce artifacts with less computing power than other techniques.
However, it does not consider the additional noise produced by the process [10]. There are
several variants of this technique introducing new operations or dividing the data in blocks
that are processed simultaneously to accelerate the process and reduce the execution time.
Examples of these variants are Block Iterative Algebraic Reconstruction Technique (BI-
ART), and Block Iterative Simultaneous Algebraic Reconstruction Technique (BI-SMART)
[11].

• Statistical iterative reconstruction algorithms: these iterative methods modify the previ-
ously mentioned equation to include the noise:

Ax+ ε = b (2.7)

where ε represents the noise. With this new formulation it is possible to account for the
noise present in the images either by predicting or by modelling it. With an accurate
model of the noise, then it is possible to remove it from the final image obtaining a volume
with higher quality. This is specially useful in situations of limited-data or in which the
angular span of the projections is narrow (120 degrees or less). These algorithms can also
be divided in two groups: the ones that model the noise following a Gaussian distribution
and the ones that model the noise following a Poisson distribution. Both of them try to
obtain the final image that maximizes the probability of being the correct one. These me-
thods assume that it is not possible to recover the true volume from the input data, so,
statistical computation is applied to recover at least the closest one. At the end, we can
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convert the algorithm to an optimization problem that can be solved with the same me-
thods employed in other similar statistical problems; for example, with conjugate gradient
methods or steepest descent algorithms. Some of the algorithms belonging to this cate-
gory are Maximum Likelihood Expectation Maximization (ML-EM) algorithms [12] and
its different variants. The most used iterative methods nowadays are commercial products
such as Adaptive Statistical Iterative Reconstruction from GE HealthCare (ASIR) from
GE HealthCare [13], Model Based Iterative Reconstruction (MBIR) [11], Adaptive Itera-
tive Dose Reduction (AIDR3D) [14],Image Reconstruction in Image Space (IRIS) [15],
Sinogram Affirmed Iterative Reconstruction (SAFIRE) [16] and iDose (Philips) [17].

• Machine learning based algorithms: this last category contains the most recent algorithms
based on models for reconstruction or image enhancement obtained through machine learn-
ing techniques, mainly using deep neural networks and especially Convolutional Neural
Networks (CNNs) [18, 19, 20].The use of machine learning and deep learning algorithms
have grown in the last years due to the increased performance given by the new de-
velopments in hardware and software. Tney have been proven useful in computer vision
application and image and natural language processing. In the field of medical image appli-
cations some of them have been focused on merging traditional reconstruction algorithms
or other types of iterative reconstruction algorithms for image enhancing [21, 22, 23], or
even to estime CT reconstructed images from other medical image modalities like MRI
[24]. However, this type of algorithms are still in an early stage and their applications are
expected to grow in the next years.

2.2 Heterogeneous and homogeneous architectures

One of the objectives of this thesis is the design of new platforms for simulation of iterative
reconstruction mechanisms in heterogeneous architectures by using high performance techniques.
Performance can be obtained through multiple mechanisms: from the choice of the programming
language in which the algorithm will be implemented to the hardware platform in which they
will be executed. In general, the decision on the hardware architecture limits the possibilities in
terms of programming languages and programming models that can be applied.

The need for carrying out specific tasks led to the design of unique hardware architectures
for their execution. One of the first examples of this trend was the creation of the Floating
Point Unit (FPU), which, although nowadays it is introduced into the processor, started as a
co-processor in charge of particularly computing floating point operations. As new applications
and algorithms were developed, other co-processors started to appear in the market. Nowadays,
the most famous co-processor already present in almost all computers is the GPU, initially
designed to manage the computer graphics. Their inclusion in a wide variety of systems has
extended the concept of heterogeneous computing.

The use of a combination of different systems for purely computing is also not new. From the
FPUs to the use of Field-programmable Gate Arrayss (FPGAs), scientific applications seeking
high performance have been employing heterogeneous architectures. Apart from performance
and purpose, the main difference between designing applications for homogeneous architectures
or heterogeneous architectures is normally the level of programming difficulty. Programming for
homogeneous architectures does not require to consider the architectural differences including an
easier management of the data. Meanwhile heterogeneous computing normally requires specific
libraries and a better knowledge of the underlying architecture. Heterogeneous architectures also
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have an extra difficulty in which they normally work with distributed memories that must be
manually managed in order to obtain full performance. These difficulties do not only affect the
implementation of applications for heterogeneous architectures but also imply a higher difficulty
in the optimization phase that leads to the obtaining of less than the expected performance.

To overcome these problems, novel programming models have appeared in the last years
attempting to facilitate programming for this type of architectures and to decrease the compli-
cations of optimizing the applications for specific hardware systems. Examples of these types of
programming models will be seen in next sections.

Accelerators

Accelerators are one of the most used resources in computer hardware. They are designed to
accelerate the execution of certain tasks increasing the performance obtained. There are many
types of accelerators: for graphics tasks, for HPC tasks, for signal processing tasks, etc., even
for general algorithms in the form of FPGAs.

Nowadays, probably the most popular accelerators are GPUs. At first designed for graphics
management, their highly-parallel architecture and their support for fast floating point com-
putations made them a perfect candidate for scientific computing and HPC. It is employed in
numerous general purpose applications and its use has increased for the execution of machine-
learning applications [25] and bitcoin mining [26, 27]. A standard architecture for GPUs does
not exist, differing greatly between different vendor implementations and purposes. However,
all GPUs are characterized by having a large number of processing units in which work can
be parallelized. They can be classified into two main groups: desktop GPUs and mobile GPUs.
Desktop GPUs can be found in all types of computers, from supercomputer nodes to laptops.
Mobile GPUs are included in the same chip as CPU units in mobile processors and can be found
in smartphones and micro computers such as Raspberry Pis or Odroids.

In the field of desktop GPUs there are two main vendors: NVidia and AMD. Both of them
follow the same principle, to have a large number of processing units or cores inside the accelera-
tor. The concept of core in GPUs is slightly different from the one employed in CPUs. A core in
a CPU contains several units in charge of different kind of computations as well as architectural
optimizations to cache, predict and dispatch instructions in order to execute faster. These units
are not usually present in the GPU cores and if present they are included in a smaller amount
than in CPUs. These GPU cores are grouped in blocks in which other shared hardware units
are included. Therefore, caches, memory controllers, instruction decoders or registers are shared
between multiple cores. This additional simplicity with respect to traditional microprocessors
makes it possible to obtain devices with thousands of cores, when even high-end CPUs are only
reaching 256 processing units.

In Figures 2.4 and 2.5 we show two representative examples of architectures of NVidia
GPUs. The first aspect to notice is the division of the GPU in Graphics Processing Clusterss
(GPCs), each containing all the components necessary for graphics processing. Between these
components, we have the texture units, Special Function Units (SFUs) and most importantly,
the SMs. Texture units are in charge of the specific pipeline for the texture mechanisms, a special
data structure optimized for image processing. These texture units include additional optimized
operations like pixel and voxel interpolation or spatial locality for 2D and 3D structures. Thus,
the access to this type of data structures is faster than a user specific implementation in software
of similar funcionality. SMs are in charge of executing the instructions, containing several cores,
whose number depends on the type of GPU and the architecture generation selected. Typically,
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these cores are composed of FPUs for operations with 32 and 64 bit decimal numbers, arithmeti-
cal integer units and for the newest architecture (see Figure 2.5) even tensor cores for machine
learning applications. This SM also contains a shared register file for all cores, which represents
one additional restricted resource that has to be taken into account by the programmer. Another
shared resource that is shared is the shared memory, a memory region programmed implicitly
by the programmer that acts as a cache. Its use its advisable to avoid repeated access to the
Global Memory of the GPU. Additionally, it also possess a L1 level cache, local to the SM and a
L2 level cache, shared for different SMs, which are managed automatically by the GPU driver.

Figure 2.4: Pascal architecture for the SM, NVidia [28].

Figure 2.5: Volta architecture for the SM, NVidia [29].

In the last years, apart from the addition of the previously mentioned enhancements for
accelerating deep learning algorithms, NVidia GPU architecture does not change drastically
from generation to generation. However, one thing to highlight is the disappearance of specific
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texture cache units in the last generations. Further details and the implications of this decision
will be given in Chapter 4.

With respect to other vendors like AMD, the architecture is similarly organized. Instead
of cores it has Compute Units (CUs) and Compute Engines (CEs), as we can see in Figure
2.6, instead of SMs. Memory hierarchies also are very similar, with a local L1 cache and a
second shared level. Main device memory technologies have advanced in the same direction with
support for GDDR5 and HBM memories. These technologies are normally faster with higher
bandwidth than those that can be found in commodity computers, in order to be able to serve
all the necessary data to the graphic cores. With this fast memories and the large number of
cores present in these devices, the execution model employed is closer to the Single Instruction
Multiple Data (SIMD) model as opposed to the Multiple Instruction Multiple Data (MIMD)
model employed in multi-core systems.

Figure 2.6: Vega architecture, AMD [30].

The combination of the differences in the execution models and the management of a sep-
arate memory hierarchy make programming these accelerators more difficult. Also, the lack of
a standard programming model affects the portability of applications, which in some cases are
restricted to a single vendor.

Another type of accelerator that has appeared in the last years is the coprocessor Intel
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Xeon Phi. This coprocessor integrates a manycore architecture [31] that is composed by a larger
number of cores than standard processor architectures, but without reaching the level of para-
llelism of GPUs. They also have a separate memory space, although last versions also are sold
as main processors[32], thus converging with standard Intel processors. Their internal architec-
ture is very similar to that of standard microprocessors (x86 architecture) with the exception
of larger vectorization units to increase data parallelism. As many other Intel microprocessors;
Intel Xeon Phi also possess the hyperthreading feature, which can expand the opportunity of
parallelization to up to 256 threads.

Finally, there is the possibility of using FPGAs. FPGAs represent the more general solution
for accelerating the execution of scientific applications. They enable the possibility of specifi-
cally programming the hardware for the algorithm to be executed thanks to their reconfigurable
memories and datapaths [33]. They have recently been used for their high efficiency in terms of
performance per watt [34]. It is the main competitor of GPUs in the field of energy efficiency,
however, their main disadvantage is their increased complexity in terms of programming. Addi-
tionally, their price is normally higher than the price of a commodity GPU and it requires of
specific programming tools that can increase the final price for development. Even so, the in-
creased performance offered by FPGAs and the high variety of algorithms that need real time
performance has increased their popularity, being used in a wide range of applications, from
image processing [35] to deep learning algorithms [36]. Several architectures exist for FPGAs
[37] as well as different programming methods. Even technology (SRAM-based, Flash or Anti-
fuse) changes between different vendors and categories making it more difficult to standardize.
However all of them are based on the reprogrammability of the different components of the
board, including logical and I/O components.

As an evidence of the increasing importance of accelerators in scientific computing, the list
of the TOP 500 supercomputers in the world is shown in Table 2.1. More than half of the top ten
supercomputers includes an accelerator. From these supercomputers, the most used accelerators
are the GPUs from NVidia with a residual presence of Intel Xeon Phi.

Programming models

Programming for different architectures poses a challenge that is increased when portability is
desired [39]. In the last years a large number of programming languages and models have appea-
red with the objective of decreasing the difficulty of programming for heterogeneous systems.
Some of them were created in order to totally substitute other programming models while others
prefer to offer an adaptation to current programming languages without changing significantly
the original applications.

The support for accelerators implies an inherent change of paradigms mainly due to the
execution model employed and the existence of a separate memory hierarchy that has to be
independently managed.

There are many examples of programming models created for programming for accelerators.
They can be found for any kind of programming languages, although we can observe that most
of them are mainly adapted for C and C++ languages, natively, with some of them still having
support for Fortran due to its importance in legacy, scientific applications. We can classify these
programming models in three main categories:

• Annotation-based: these programming models are meant to reduce the modifications on the
original application code annotating the changes needed to adapt the code to the hardware



16 Chapter 2. State of the art

Table 2.1: Top ten most powerful supercomputers from the TOP500 ranking as of June 2018 [38].

Position Name TFlop/s Power
(kW)

Nvidia
GPUs

Intel
Xeon Phi

1
Summit

122,300.0 8,806 DDOE/SC/Oak Ridge National Laboratory
United States

2
Sunway TaihuLight

93,014.6 15,371National Supercomputing Center in Wuxi
China

3 Sierra
71,610.0 DDOE/NNSA/LLNL

United States
4 Tianhe-2A

61,444.5 18,482National Super Computer Center in Guangzhou
China

5 AI Bridging Cloud Infrastructure (ABCI)
19,880.0 1,649 DNational Institute of Advanced Industrial Science and Technology (AIST)

Japan

6
Piz Daint

19,590.0 2,272 DSwiss National Supercomputing Centre (CSCS)
Switzerland

8 Titan
17,590.0 8,209 DDOE/SC/Oak Ridge National Laboratory

United States

8
Sequoia

17,173.2 7,890 DDOE/NNSA/LLNL
United States

9 Trinity
14,137.3 3,844

D

DOE/NNSA/LANL/SNL
United States

10 Cori
14,014.7 3,939

D

DOE/SC/LBNL/NERSC
United States

in the form of pragmas or annotations. They imply an automatic transformation of the
code at compilation or pre-compilation time. However, due to the simplification of the
code written and the limitations of the annotations it is impossible to totally manage the
execution of the program by the programmer. The optimizations that can be made to the
code are minor and therefore is difficult to obtain the full performance from the available
hardware. Additionally, the parallel annotated versions can not assure equivalence with
the sequential version of the application.

• Library-based: they rely on the use of libraries or modules including several functions to
control the hardware and execute the code on it. Their use requires a larger number of
modifications or even a reimplementation of the entire application. Programming models
requiring the execution on non traditional architectures, like accelerators, are placed in
this category.

• Parallel programming languages: they are programming languages designed with paralle-
lism in mind. In this category no extra libraries or annotations are needed because the
programming language already provides in its syntax all the tools to program in parallel.
Exponents of this category would be Chapel [40] and Julia [41].

Some programming models can fit in one or more categories as well as parallel programming
languages can provide additional levels of parallelism through other mechanisms.

One of the programming models most employed in scientific applications is OpenMP [42]. It
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is an annotation-based programming model widely used for C, C++ and Fortran applications.
Apart from supporting the use of accelerators for offloading computation, although only from
version 4.0, its main objective is the exploitation of the parallelism supported by the hardware.
As we can see in Listing 2.1, it targets for loops whose iterations can be executed independently.
These iterations then, can be executed by different execution threads in the microprocessor or
as a separate piece of code, or kernel, in an accelerator. To mark the code to be parallelized,
a pragma is located just before the parallel region, with additional annotations about the data
employed inside the region or the target in which the code will be executed.

Listing 2.1: Offloaded code block example for OpenMP 4.0.
1 int main (){
2 float a[N], b[N], c[N];
3 # pragma omp target device (acc0) in(a,b) out(c)
4 for(i=0;i<N;i++){
5 a[i]= sin(b[i])+cos(c[i]);
6 }
7 }

Listing 2.2: Offloaded code block example for OpenACC
1 int main (){
2 float a[N], b[N], c[N];
3 # pragma acc data copy(a,b,c)
4 # pragma acc kernels
5 for(i=0;i<N;i++){
6 a[i]= sin(b[i])+cos(c[i]);
7 }
8 }

Another example of annotation-based programming models is OpenACC [43]. Very similar
to OpenMP, it aims at being a programming model for easily implementing scientific code
for heterogeneous HPC hardware. It also supports automatic parallelization of for loops (see
Figure 2.2) although it requires compilers that are less extended than in the case of OpenMP.
In the context of specific programming languages the REPARA annotation extension for C++
[44], provides C++ with annotations for parallel code generation for multiprocessors, FPGAs
and GPUs. A last example of an annotation based programming model would be OMPSS and
PyCOMPSS [45, 46], compatible with C, C++ and Python programs.

However, if a total control of the accelerator device is required, a library-based programming
model is required. These are normally released by the accelerator vendor in order to provide
the programmer with tools that help her to make use of the hardware. In the case of GPUs
there are two main examples used in GPU programming for computing, NVidia CUDA and
OpenCL. There are also additional programming models and libraries that are capable of taking
advantage of the hardware and can be used for computing, but their primary objective is graphics
computing, as we will see later with OpenGL.

The standard programming model for programming for GPUs is OpenCL [47]. Created as a
way of developing portable code between different devices, it supports the execution of parallel
code in desktop GPUs, mobile GPUs, standard multicore processors and FPGAs. Opposite to
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what the previously presented programming models did, OpenCL requires of specific progra-
mming skills and transformations of code. The code to be executed in the accelerator must be
separated from the rest in an isolated function called kernel. This kernel is identified by com-
pilers as accelerator code and compiled independently for the targeted architecture. Moreover,
the code is implicitly parallel, executed by the available threads independently. The execution is
controlled by thread specific variables with which they can be identified. In OpenCL, there are
ids that can be obtained through different functions (Listing 2.3 and the keyword identifying the
kernel is __kernel. Even though it is supported by several vendors and represents a standard,
not all companies implement all its features, thus leading to compatibility problems.

NVidia CUDA is very similar to OpenCL, it needs a separate piece of code, a kernel, in this
case identified with the keyword __global__ (see Listing 2.4). The identifiers for the threads
can also be retrieved through a structure and it also requires memory transfers between the
device and the host. These memory transfers can be explicitly scheduled by the programmer, as
seen in OpenCL and in this example, but from version 6.0 of CUDA it is possible to avoid the
manual memory management. This is a great advance in terms of programming with respect
to OpenCL. It is also a more modern programming model and it takes better advantage of the
GPU due to its compatibility restriction to NVidia GPUs.

Therefore, OpenCL is mainly used when portability is needed or when no other generic
programming model is available and NVidia CUDA is normally chosen if a NVidia GPU is
guaranteed to be present, as it happens in many supercomputers. In terms of performance,
NVidia CUDA applications are in average faster than their OpenCL counterparts, even reaching
30% more performance [48]. Nevertheless, these advantages in performance are due to the explicit
optimizations that can be made in CUDA applications and that are not available in OpenCL
because of portability issues.

To help with the programming difficulties, additional programming models were included
as part of CUDA and OpenCL. CUDA Thrust [49] is a C++ template library that incorporates
CUDA functionalities to C++. A similar approach but with OpenCL is Khronos SYCL [50].
Both of them aim at using stardard features already present in C++ in order to provide easy
access to heterogeneous resources. A similar objective has GRPPI [51], a parallel pattern pro-
gramming interface developed for C++ that offers an easy interface for parallel programming
with the most common patterns, including map, reduce or stencil, normally present to data par-
allel architectures as well as streaming patterns as farm or pipeline. In contrast with previous
solutions, GRPPI supports different parallel back-ends extending the compatibility to several
architectures through different abstracted programming models.

Whatever the model chosen, with this library-driven approach a deeper knowledge of the
programming model is required. However, the control provided by the large number of functions
present in the API allows to more advanced programmers to gain full control of the hardware
below.

There are numerous examples of the use of accelerators and diverse programming models
in the medical imaging field in the literature. For instance, Scherl et al. [52] used up to 6
GPU families, and also FPGAs, to reduce the reconstruction time. They concluded that the
main problem of GPUs resides in the memory bandwidth available to cope with data and the
computing resources. Other examples of using GPUs in CT reconstruction are [53] and [54]. Both
show that using CUDA and NVidia GPUs leads to very good performance results. However, they
also demonstrated that the performance of the application strongly depends on the optimizations
applied, which, in many cases, are not straight-forward. For these reasons new approaches have
arisen that employ programming frameworks with a more friendly interface and that help to
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Listing 2.3: OpenCL Kernel.
1 int main (){
2 float a[N], b[N], c[N];
3 ....
4 kernel = clCreateKernel (program , " kernel_example ", &err);
5 err = clEnqueueWriteBuffer (queue , d_a , CL_TRUE , 0,N* sizeof (float), a, 0,

NULL , NULL);
6 err |= clEnqueueWriteBuffer (queue , d_b , CL_TRUE , 0,N* sizeof (float), b,

0, NULL , NULL);
7
8 ....
9 err = clSetKernelArg (kernel , 0,N* sizeof (float), &d_a);

10 err |= clSetKernelArg (kernel , 1,N* sizeof (float), &d_b);
11 err |= clSetKernelArg (kernel , 2, N* sizeof (float), &d_c);
12 err |= clSetKernelArg (kernel , 3, N* sizeof (float), &n)
13 err = clEnqueueNDRangeKernel (queue , kernel , 1, NULL , &globalSize , &

localSize ,
14 0, NULL , NULL);
15 kernel_example <<N,1>>(a,b,c);
16 clEnqueueReadBuffer (queue , d_c , CL_TRUE , 0,N* sizeof (float), c, 0, NULL ,

NULL);
17 ....
18 }
19
20 __kernel void kernel_example ( __global float *a, __global float *b,

__global float *c ) {
21 int tid = get_global_id (0);
22 a[tid ]= sin(b[tid ])+cos(c[tid ]);
23 }

Listing 2.4: CUDA Kernel.
1 int main (){
2 float a[N], b[N], c[N];
3 ....
4 cudamemcpy (da , a, N* sizeof (float), cudaMemcpyHostToDevice );
5 cudamemcpy (db , b, N* sizeof (float), cudaMemcpyHostToDevice );
6 ....
7 kernel_example <<N,1>>(a,b,c);
8 cudamemcpy (dc , c, N* sizeof (float), cudaMemcpyDeviceToHost );
9 ....
10 }
11
12 __global__ void kernel_example ( float *a, float *b, float *c ) {
13 int tid = blockIdx .x;
14 a[tid ]= sin(b[tid ])+cos(c[tid ]);
15 }

automatize the process of programming for accelerators. Nowadays, many works are focused on
using this type of frameworks. One of the advantages of their use is that, as [55] demonstrates,
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they allow easily porting the applications to heterogeneous environments. But, as [56] shows
with a comparison of an implementation in OpenCL and OpenACC, there is a trade-off between
the lower development effort needed for the OpenACC version and the performance obtained
with OpenCL native version. In Section 2.5 we extend this state of the art to other algorithms
and approaches.

2.3 Performance models for characterization and optimization

To be able to optimize and implement complex algorithms in different architectures it is necessary
to understand how the algorithm is behaving and what problems must be overcome. For this
purpose, different tools and methodologies have appeared to assist the programmers about their
applications.

Monitoring and tracing tools have been developed in order to better characterize applications
and algorithms executed over different hardware. One of the first tools that are used when
characterizing scientific applications is perf [57], mainly used for obtaining information of the
execution of an application at both kernel and user levels. This includes access to information
provided by the hardware counters if support for the Performance API (PAPI) [58] is available.
In the case of accelerators one of the most well-known tools is NVProf [59] created by NVidia
to obtain information from the execution of kernels on their devices.

Using the information provided by these profilers, it is possible to characterize applications
to assist the optimization process [60, 61] or to obtain the maximum performance provided by
the hardware [62, 63]. These problems are addressed through the use of performance models that
can provide an aid into understanding the limits of the hardware and the bottlenecks present
in the characterized application. The main difficulty of these performance models is generality,
since they are defined for specific architectures and normally can not be generalized, as device-
specific models are more accurate than those applicable to different architectures [64]. This is
the reason why currently multiple performance models for different devices are available in the
last years. One of the most important performance models for shared memory architectures is
the Roofline Model [65], which pretended to be a visual tool for detecting the performance roof
of the microprocessor considering also the DRAM bandwidth. This model has been translated
successfully to GPU accelerators, as shown by Jia et al. [66] for both NVidia and AMD GPUs.
Another similar example is the Quadrant-Split visual performance model [67] used by Konstan-
tinidis et al. to predict the performance of different kernels in NVidia GPUs. Moreover, roofline
models with Dynamic Voltage and Frequency Scaling (DVFS) applied to GPUs [68] have been
created.

An important feature for creating performance models is the knowledge of the architecture.
In many cases some of the key characteristics of the hardware are not explicitly described by
the vendor, thus, making the optimization of the applications difficult. Efforts have been done
in this line of research for NVidia GPUs in different works [69, 70, 71] obtaining information
about the different cache levels and their internal organization. This additional information can
give an idea of the performance limits that can be reached by the application and explore the
best option for efficiently applying the optimization effort.
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2.4 HPC vs Big Data programming models

The increment in the volume of data to be managed by current systems has led to the emergence
of new paradigms and frameworks able to tackle the problems related to these data-intensive
applications. The solution was obtained in the form of the Big Data paradigm and its related
frameworks, which appeared in the last decade. These frameworks and runtimes have been
centered in the execution of data-analytics or loosely-coupled applications in large scale envi-
ronments. Their easy deployment on virtual environments, such as the cloud, has also spread
their popularity during the last years. To program this kind of applications the most famous
programming model is MapReduce.

First appeared as a tool [72] created by Google to process their prodigious amount of data for
their web crawler, open source implementations did not take long to arrive. Apache Hadoop [73]
created a whole new ecosystem based on the MapReduce idea, from the execution engine, to the
resource manager YARN [74], and the file system HDFS [75] (similar to what Google already had
with their Google File System (GFS)[76]). However, due to the reduced functionality provided
by the MapReduce programming model other frameworks extended the support to other type
of operations. Between these novel frameworks the one that obtained more attention is Apache
Spark [77]. Spark introduced compatibility with the previous Hadoop ecosystem with the pos-
sibility of in-memory computing through a feature named Resilient Distributed Dataset (RDD)
[78]. RDDs are an abstraction of the data management level, providing containers and function-
alities for maintaining the locality of the data and communication. These RDDs incremented
the performance of the framework through avoiding the usage of persistent storage in tempo-
ral computations and storing them when possible in main memory. Other frameworks already
realized that, for iterative computations, avoiding going further in the memory hierarchy was
the key. In the work of Ekanayake et al. [79], a framework for scientific computing applications
with support for Iterative MapReduce computations was presented. These approaches proved to
be faster than previous Hadoop implementations, although its limitation to MapReduce progra-
mming model has turned the balance in favor of Spark even for scientific applications. Another
generic framework for Big Data is COMP Superscalar (COMPSs)[80], which has similar objec-
tives to those presented by Spark with a large number of functionalities that move it away from
the simplicity of the MapReduce model.

On the other side, the HPC paradigm has aimed to adapt and adopt the MapReduce progra-
mming model in order to simplify programming and data management in scientific applications.
Many of these attempts have translated the MapReduce model to the MPI library, the de-facto
standard for distributed computing in clusters and supercomputers. Some of these solutions
have extended the MPI API to include map and reduce functions that include implicit data
management that is abstracted from the programmer as it is the case of MR-MPI [81], the work
by Hoefler et al. [82], MRO MPI [83] or Mimir [84]. Others have opted for including similar data
structures to those obtained in Big Data frameworks in communication patterns, such as the
key-value objects in Data MPI [85]. At the end, what these works are looking for is a common
programming model to those found in Big Data frameworks with the performance advantages
of an HPC computing library, like MPI.

This is all part of a trend, initiated in the last years, of convergence between both paradigms,
an idea exposed by several authors [86, 87, 88] and also explored in the context of this thesis.
The increase in the data volumes generated and the need of larger scale systems is directing
both worlds to the Exascale era.

New methods to combine Big Data and HPC paradigms have appeared. Apart from trying
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to integrate libraries such as MPI in Big Data frameworks another way of approaching them is
to increase the support for heterogeneous hardware in Big Data frameworks. Original implemen-
tations of Hadoop and Apache Spark did not consider the possibility of offloading computation
to accelerators or coprocessors present in the machines. Thus, their use in scientific clusters and
supercomputers is limited by their compatibility with these type of architectures. For Hadoop,
solutions appeared that supported computation in accelerators through conversion tools, such
as Hadoop+Aparapi solutions [89, 90], which converted Java code to OpenCL in order to be
executed in GPUs. These solutions are constructed to take advantage of accelerators in appli-
cations that previously did not support them transforming sequential code in the framework
tasks to parallel GPU tasks. In case previous code was already implemented in either CUDA
or OpenCL programming models these can not be executed inside the framework. Hadoop+
[91] gave this possibility to Hadoop through code plugins that could be written for CUDA and
OpenCL compatible devices and a global GPU resource manager in charge of assigning accele-
rator resources to the different tasks. Recently, other works have focused on extending Apache
Spark to support GPUs. An example is HeteroSpark [92], a heterogeneous CPU/GPU Spark
platform for machine learning algorithms. IBM extended Apache Spark for enabling GPUs [93],
the same approach as the one applied in [94]. Recently, Fukutomi et al. [95] added to Apache
Yarn, a resource manager mainly used in MapReduce frameworks, support for GPUs, although
targeting Java applications. Even though without native support for GPUs in these frameworks
Boubela et al. [96] managed to combine Big Data approaches for the pre-processing of large-scale
MRI data using Apache Spark with separate GPU servers for accelerating specific steps of the
processing pipeline. This approach more independent than to modify the frameworks allows to
use the original framework without any changes, an advantage in closed environments where
software can not be configured as freely, such as in supercomputers or private clusters.

2.5 Systematic comparison of accelerated implementations

Reconstruction algorithms can also be classified in terms of the programming models employed
and the optimization techniques used. In Table 2.2 we summarized different works related to
medical image processing, and more concretely to CT. These works have employed different
techniques to accelerate or improve the execution time of the algorithms implemented. Some of
them included focus on the optimization of specific operations, such as the projection [97, 98],
or complete implementations of the entire iterative reconstruction algorithm [99].

Most of the works are limited to single node execution although most of them have used
either a parallel programming model or accelerator hardware to increase the performance. In
the case of implementations not supporting accelerators, many choose to use OpenMP progra-
mming model [109, 124, 130, 132]. Some also include other type of parallelization, such as SIMD
mechanisms [135, 109] or the support of multi-GPUs [124]. Even in some implementations, this
non-hardware-accelerated solutions can match the performance of their GPU-based counterparts
[135]. When employing GPUs the preferred choice seems to be NVidia GPUs over other types
of GPUs, probably because they are easily found in HPC environments, as will be seen later. In
terms of programming models, although OpenCL has also been used, and it has compatibility
advantages over other choices, most works have chosen NVidia CUDA. The kernel parallelization
is normally straightforward in most of the cases, although some works have fully exploited the
hardware with specific optimizations. For example, Lu et al. [104] focused on the optimization
of the projection kernel in a GPU taking into account the specific memory hierarchy of the
hardware. Their optimizations lead to speedups of 1.47× over previously non-optimized GPU



2.5. Systematic comparison of accelerated implementations 23

Table 2.2: Summary of the different works in Medical Image reconstruction related to CT reconstruction
methods and details about their implementation.

Authors Reference Architectures Operators Distributed
Framework

Chen Jian-Lin et al. [100] Shared Memory (one thread); GPU CUDA Projection,Backprojection
Simon Rit et al. [98] Shared Memory (one thread) Projection
Zhao et al. [101] Shared Memory (one thread); GPU CUDA Backprojection
Nguyen et al. [102] GPU CUDA Projection; Backprojection
Du et al. [97] GPU CUDA Projection
Naik et al. [103] Shared Memory (Parallel Matlab); GPU CUDA
Lu et al. [104] GPU CUDA Backprojection
Agaian et al. [105] Shared Memory (one thread);
Grant et al. [106] Shared Memory (one thread);
Solomon et al. [107] Shared Memory (one thread);
Khawaja et al. [108] Shared Memory (one thread); Iterative
Hu et al. [99] Shared Memory (Multithread) Iterative;Backprojection;Projection
Wang et al. [109] Shared Memory (OpenMP; SIMD) Iterative
Xie et al. [110] GPU CUDA Projection; Backprojection
Sabne et al. [111] GPU CUDA Iterative
Bai et al. [112] GPU CUDA
Meng et al. [113] Distributed Backprojection Hadoop
Palenstijn et al. [114] Distributed Iterative MPI
Rosen et al. [115] Distributed Iterative MPI
Boubela et al. [96] GPU CUDA Spark
Cao et al. [116] GPU CUDA Spark
Bao et al. [117] GPU CUDA Hadoop
Yang et al. [118] Distributed Iterative Hadoop
Van et al. [119] Shared Memory Platform
MedPy [120] Shared Memory Platform
Hansen et al. [121] Shared Memory Platform
Gursoy et al. [122] Shared Memory; GPU CUDA Iterative;Backprojection;Projection MPI
Van et al. [123] Shared Memory; GPU CUDA Iterative;Backprojection;Projection
Blas et al. [124] GPU CUDA Backprojection
Blas et al. [125] GPU CUDA Backprojection MPI
Deng et al. [126] Distributed Backprojection MPI
Domanski et al. [127] Shared Memory; GPU CUDA Backprojection
Fan et al. [128] GPU CUDA Iterative;Backprojection;Projection
Koestler et al. [129] GPU OpenCL
Melvin et al. [130] Shared Memory (OpenMP) Iterative; Backprojection
Tirado et al. [131] Distributed MPI
Treibig et al. [132] Shared Memory (OpenMP) Backprojection
Kole et al. [133] GPU Iterative
Pratx et al. [134] GPU OpenGL Iterative
Sampson et al. [135] Shared Memory (Multithread; SIMD) Projection;Backprojection
Park et al. [136] GPU CUDA Backprojection
Mukherjee et al. [137] GPU CUDA; GPU OpenCL Backprojection
Siegl et al. [138] GPU CUDA;GPU OpenCL Backprojection
Mendl et al. [139] Shared Memory (Multithread);GPU CUDA; GPU DirectX Backprojection
Fang [140] GPU OpenGL Iterative; Backprojection; Projection
Zhu et al. [141] GPU CUDA Backprojection
Biguri et al. [142] GPU CUDA Platform

versions. Data staging between GPU and host is also a challenge that has been covered in this
type of applications, with different strategies to avoid data transfer latencies [124] or designing
scheduling strategies to overlap computation and memory transfers [141]. Memory management
is also an important topic, resulting in a limitation in some works that do not support datasets
larger than the memory capacity of the GPU [143].

Most of the works compared here address the problem of optimizing specific algorithms.
However, there are solutions that have been designed with the idea of providing the user with a
unified platform containing diverse algorithms and techniques related to medical imaging. These
solutions allow us to simulate the acquisition and/or reconstruction of tomographic studies. Ho-
wever, they generally offer restricted possibilities for positioning the source and the detector,
thus reducing their ability to simulate new acquisition protocols based on non-standard setups.
For instance, CT Sim [144] is an open source CT simulator that enables the projection of various
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artificial models (phantoms), although it is limited to 2D circular scans for parallel-beam and
fan-beam geometries without any kind of misalignments. It provides analytical reconstruction
methods (FBP and Direct Fourier), without supporting iterative reconstruction algorithms. A
more flexible alternative is IRT, an open-source image reconstruction toolbox [145], which pro-
vides a number of iterative algorithms, together with tools for building new ones. The main
drawback of IRT is that it is only focused on standard cone-beam CT systems and does not
provide enough flexibility for the more sophisticated scanning geometries achievable with ra-
diology systems. TomoPy [122] provides projection, reconstruction methods, and pre-processing
and post-processing tools, such as filters and artefact removal algorithms. However, the geome-
tries offered are again rather simple, with the possibility of only changing the centre of rotation
for projection and reconstruction.

Another common drawback to the above mentioned approaches is that they are all limited
to CPU implementations. Given the high computational burden of some of the algorithms used
in simulation and reconstruction and, as we have seen from isolated implementations of these
algorithms, it is widely accepted that parallel implementations are needed to achieve reason-
able execution times. X-ray Sim [146], which has a basic open-source version in the CPU, lacks
flexibility in the available system geometries and is based on the projection of digital Computer
Aided Design (CAD) models, thus hindering the direct use of real acquired images. A similar
drawback is found in ImaSim [147], where objects are based on specific geometrical shapes and
not voxels, thus precluding handling of voxelized objects such as actual CT datasets. CONRAD
[148] is a Java-based framework that uses GPU devices for hardware acceleration. It provides
tools for simulating 4D studies, analytical reconstructions, and artifact correction. Flexible scan-
ning geometries are supported, although not in a straightforward manner, since they are based
on a projection matrix that needs to be obtained beforehand. A popular open-source solution is
the ASTRA toolkit [149] offers a solution based on CUDA that can be used to develop advanced
reconstruction algorithms and allows the user to experiment with customized geometries. Howe-
ver, it is limited to datasets that fit completely in the memory space of the GPU and to circular
orbits, thus precluding simulation of new acquisition geometries such as those used in tomosyn-
thesis. Finally, TIGRE toolbox [142] contains implementations a wide range of algorithms in
the Statistical Algebraic Reconstruction Technique (SART) family, the Krylov subspace family,
and a range of methods using total variation regularization as a Matlab Package. Additionally,
it has support for GPUs through CUDA, being possibly the most complete alternative to the
work proposed in this thesis.

2.6 Thesis scope

Simulation and reconstruction tools for CT already exist in many frameworks and implemen-
tations. However all of them lack different capabilities that can make them a good solution for
diverse situations. We have seen that most of them are focused on one type of architecture, sup-
porting GPUs and multicore CPUs through a unique programming model lacking portability
and leading to compatibility issues. When they do support different architectures they do not
address problems such as the reconstruction of non-standard acquisition geometries or the easy
construction of new simulation or reconstruction methods focusing on one specific algorithm.
Additionally, the majority of these applications are designed for shared memory architectures,
which is limited in terms of performance and memory. Distributed memory implementations in
this area have not demonstrated high scalability and performance with platforms not optimized
for distributed heterogeneous architectures.
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In this thesis we will cover the development of new reconstruction and simulation techniques
in different environments aiming at providing maximum portability of our algorithms and the
maximum performance from the hardware chosen. For this purpose, we will cover in each chapter
different programming models and paradigms that complete the gaps seen in this review of the
literature. In Figure 2.7 we show all the topics covered in this thesis in the scope of Computer
Science and Computer Architecture.
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Figure 2.7: Venn’s Diagram representing the scope of this thesis. The rose colored areas are the ones
addressed in this document.

In terms of architectures we will cover both homogeneous and heterogeneous environments
with a special focus on GPUs and more concretely on NVidia GPUs. Regarding the paradigms
that will be introduced in different Chapters, we have to highlight HPC and Big Data paradigms.
All these topics will not be covered in isolation but, as described by the figure, they will be
combined in search of hybrid models that can best fit the medical image processing applications
developed during this thesis.





Chapter 3

Proposal of a new fast and flexible
X-Ray simulator

As we have seen in the review of the state of the art, previous works lack support for completely
flexible geometries and/or compatibility with multiple programming models and platforms. To
cope with this problem, this thesis proposes a new flexible X-Ray simulator and reconstructor,
following the hypothesis that the development of new flexible X-ray systems can benefit from
computer simulations, which may also enable performance to be checked before expensive real
systems are implemented. The development of simulation/reconstruction algorithms in this con-
text poses three main challenges. First, reconstruction algorithms for CT deal with large data
volumes and are computationally expensive, thus leading to the need for hardware and soft-
ware optimizations. Second, these optimizations are limited by the high flexibility required to
explore new scanning geometries, including fully configurable positioning of source and detector
elements. And third, the evolution of the various hardware setups increases the effort required
for maintaining and adapting the implementations to current and future programming models.

This chapter is framed within the High Performance paradigm in heterogeneous and homo-
geneous platforms as shown in Figure 3.1.
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Figure 3.1: Scope of Fux-Sim over the topics included in this thesis.
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3.1 Design goals

To cope with the end-user requirements, the three main goals to be fulfilled by the X-Ray
simulator platform pursued in this thesis are:

• Performance: obtained through different parallel programming models that take advan-
tage of the underlying hardware, including both multi-core CPUs and GPU accelerators.

• Flexibility: in terms of functionality and maintainability. It must be able to simulate and
reconstruct with multiple geometries and flexible positioning parameters of source and
detector. Since new reconstruction algorithms are being developed, the architecture must
be flexible enough to allow the extension of the platform.

• Compatibility: with multiple current programming models and environments. It must
support different architectures so it can be executed on different hardware platforms.

These three goals represent a trade-off that can not be fully solved. On the one hand, the
achievement of full flexibility and compatibility affects performance. On the other hand, to obtain
high performance, specialized implementations of the algorithms must be designed leading to
an increased effort in order to support different hardware and acquisition geometries.

3.2 Framework architecture

The proposed X-Ray simulator, FUX-Sim, has been organized as a framework with a layered
software architecture that provides support for different hardware and programming models in
order to be modular and easily configurable, as shown in Figure 3.2.

Figure 3.2: Overview of the FUX-Sim platform and all its layers.

The configuration layer allows the user to incorporate various system configurations includ-
ing circular scan, arbitrary position, wide field of view, tomosynthesis, and helical scan. These
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configurations are mainly related to the geometries that can be defined in the platform, which
can then be used for simulation or reconstruction. These geometries will define the Region Of
Interest (ROI) of the result (specific areas of the output volume or projections) and the Field Of
View (FOV) reached by the algorithm (visual range in which data can be obtained). Congura-
tions can be customized through different parameters such as voxel and pixel size, detector and
volume sizes, detector distances and movements, etc.

The architecture layer enables the execution of the simulator on different hardware archi-
tectures. For this purpose, all the algorithms are implemented in three programming models,
namely, OpenMP, CUDA, and OpenCL, all of which are identical in terms of functionality and
results. The kernel layer represents the execution core of the simulator and provides the main
building blocks for the upper layers. At the same level, the support layer contains auxiliary
processing operations (filters, matrix operations, etc.) and platform management modules to
handle memory for different GPUs and CPUs. The architecture layer acts as a wrapper between
optimized kernels and algorithms in lower layers. The execution of the simulator passes through
the architecture layer to automatically reach the corresponding functionality in the kernel layer
or support layer, depending on the availability of GPUs and the programming model chosen.

A detailed description of each layer can be found in the following sections.

3.2.1 Scanner configuration layer

The scanner configuration layer translates the parameters of the scanning geometry obtained
from the command line or through the calibration file into a specific parameter set for the various
system configurations.

Cone-beam with circular trajectory

The most standard configuration is a cone-beam system with the detector placed orthogonally
to the line that passes through the source and the origin with the piercing point at its center, as
shown in Figure 3.3 left, and with the source-detector pair following a circular trajectory with
the object to be scanned at the origin of coordinates.

The implementation of this geometry is based on several calls to the projector/backprojector
kernels for each view angle. The view angle is either calculated from the span angle and number
of evenly spaced projections or read from the calibration file.

Helical scan

The helical configuration is implemented based on the circular cone-beam geometry described
above, with the position of the volume for each projection changed to simulate the movement of
the bed (Figure 3.3 right). For each angular position, θ, the shift of the voxels in the z direction
is calculated by

shiftθ = pitch · span
360 · n · thick (3.1)

where pitch is the displacement of the bed in one rotation, n is the number of projections
per rotation, span is the total angle span covered during the acquisition, and thick is the slice
thickness in the volume.
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Figure 3.4: Arbitrary positioning configuration.Translation of an arbitrary position of the detector into
a set of geometrical non-idealities of a virtual detector. Dotted lines show source and detector in ideal
intermediate positions.

Arbitrary positioning

The arbitrary positioning configuration allows us to define an arbitrary trajectory for source and
detector. Each position is translated into a set of linear displacements and angular inclinations
from the ideal position (circular scan geometry), as shown in Figure 3.4. The translation is
carried out in two steps: (1) u- and v-shifts are calculated so that the source-object line passes
through the center of a virtual detector; and (2) inclinations (tilt and roll) are calculated as the
angles formed between the real and virtual detectors around z and u axis, respectively.

Tomosynthesis

As shown in Figure 3.5, the simulator implements two system configurations for tomosynthesis:
linear tomosynthesis, where the source follows a linear trajectory while the detector moves in the
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Figure 3.5: Linear (left) and Arc (right) tomosynthesis configurations.
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virtual detector that is larger than the real detector. A-C: Linear tomosynthesis with a different Focal
Plane (FP). D: Arc tomosynthesis. DSO and DDO are the distance from the center of the FOV to the
source and the detector, respectively, and ROI corresponds to the real detector.

opposite direction (as in conventional tomography) and arc tomosynthesis, where the detector
is static and the source follows a circular trajectory.

In both cases, the structures contained in the focal plane are projected into the same position
of the detector, while structures in other planes appear at different locations in the projections.

The implementation of these configurations is based on the use of a virtual detector that is
larger than the real detector, as shown in Figure 3.6.

In the case of linear tomosynthesis, the large detector size, Dlarge, is calculated as
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Dlarge = 1× (Sx +Dx + Dreal

2 ) = 2× Sx × (1 + DDO + FP

DSO − FP
) +Dreal (3.2)

where Dx and Sx are the displacements of the detector and source respectively, Dreal is the actual
detector size, DDO is the object-detector distance, and DSO is the source-object distance.

Dx = Sx ×
DDO + FP

DSO − FP
(3.3)

For each projection, a ROI is calculated in the virtual detector equal to the real detector
size centered at Dx + Sx.

For the case of Arc tomosynthesis, Sx and DSO are calculated for each projection as

sin(Sβ) = Sx
DSO − FP

→ Sx = sin(Sβ) · [DSO − FP ] (3.4)

cos(Sβ) = DSO − FP − a
DSO − FP

→ DSO − FP − a = cos(Sβ) · [DSO − FP ] (3.5)

DSO′ = DSO − a = [cos(Sβ) · (DSO − FP )] + FP (3.6)

Dlarge = Dreal + (2 · Sx) (3.7)

where β is the angle rotated by the source.

Wide field of view

FUX-Sim enables the possibility of simulating an increased FOV, which is useful in scenarios
where the detector is smaller than the scanning area. In these cases, two or more projections can
be obtained and stitched together using a post-processing algorithm to build a larger image.

Source tiltingSource displacement
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Overlap
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Overlap

X-Ray
Source

X-Ray
Source

Figure 3.7: Wide field of view configurations. Enhancement of FOV through linear displacement (left)
and tilting (right) of the source.

Depending on the movement of the source, FUX-Sim provides two models: linear displace-
ment and tilting, as shown in Figure 3.7.
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Linear displacement is based on the same idea as the helical scan: shift of the whole volume
in the z-direction. The tilting configuration is based on defining a larger virtual detector, as in
linear tomosynthesis. The large detector size, Dlarge, is calculated as

Dlarge = N × (Dreal − (N − 1)×Overlap) (3.8)

where Dreal is the detector size and N the total number of projections. For each projection
at position n, we calculate a ROI on the virtual detector equal to the size of the real detector
centered at Dx:

Dx = n×Dreal − (n− 1)×Overlap− Dreal

2 (3.9)

where Overlap is the overlap between two consecutive positions of the detector.

3.2.2 Architecture layer

The abstraction of the architecture layer makes it possible to create new configurations on
multiple platforms (GPU, x86 CPU-based) and in different operating systems (Linux, Windows,
and MacOS) without requiring a deep knowledge of accelerator architectures (see Figure 3.8).
For this purpose, all algorithms and kernels were implemented according to three programming
models: CUDA (for NVidia GPUs), OpenCL (for GPUs and ARM architectures), and OpenMP
(for CPUs), thus enabling execution of the same algorithm in a parallel manner.

The architecture layer provides a wrapper for the specific version of the algorithms, which is
configurable by the user depending on the available resources. The execution flow of the simula-
tor passes through the architecture layer to automatically reach the corresponding functionality
in the kernel layer or support layer, depending on the availability of the GPU and the pro-
gramming model chosen. In the example shown in Figure 3.8, the allocate memory function in
the architecture layer is translated into cudamalloc, clcreatebuffer, or malloc in the kernel layer
and support layers, depending on the devices and the available programming models. Other
important functions that depend on architecture are: memory transfers, obtain hardware char-
acteristics or execute the accelerated portions of the code (kernels). All these cases follow the
same path as with the allocation memory example being the upper-layers architecture-agnostic.

3.2.3 Kernel layer

The kernel layer constitutes the simulator core and contains the projection and backprojection
computational kernels (see Figure 3.8, which are implemented based on a cone-beam geometry
(see Figure 3.9).

It is possible to set all the system geometrical parameters (projection angle, source-object
distance, detector-object distance, matrix and pixel size of the detector, matrix and voxel size
of the volume), as well as the deviations from the ideal position of the detector (shifts, skew,
roll, and tilt in Figure 3.9). The adjustment of these parameters enables the study of the effects
of misalignments and the simulation of the scanner using non-regular geometries at arbitrary
angular positions for other X-ray equipment such as a C-arm or tomosynthesis systems.

Linear shifts (xshift, yshift) and skew angle (φ) are applied with simple geometrical operations
(shift or rotation of pixel coordinates):
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Figure 3.8: Application’s flow for the different programming models implemented in the platform.

Figure 3.9: Geometrical parameters used to parametrize deviations from the ideal position of the detector:
Shifts, skew, roll, and tilt.

(
xaux
yaux

)
=
(
cosφ− sinφ
sinφcosφ

)(
x+ xshift
y + yshift

)
(3.10)

The effect of detector inclination (roll and tilt) is shown in Figure 3.10, where α is the
inclination angle of the detector, A′ is a pixel in the real detector, and A is the corresponding
pixel in the ideal detector.

For each point in the ideal detector, we can calculate the corresponding point in the real
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Figure 3.10: The effect of detector inclination (roll and tilt).

detector according to the expression:

|PA′|= |PA|
cos(ε) + sin(ε) · |PA|

DSO+DDO

(3.11)

FUX-Sim implements ray-driven, voxel-driven, and distance-driven interpolation approaches.
Ray-driven methods tend to introduce artifacts in the backprojection, whereas voxel-driven
projection introduces grid artifacts into the projections [150]. With more accurate geometric
modeling, distance-driven methods often lead to better image quality than ray-driven projec-
tion and voxel-driven back-projection [151]. This is achieved by projecting voxel and detector
boundaries into the same axis and calculating the overlap between them (Figure 3.11), both for
projection and for backprojection. Ray-driven and voxel-driven approaches rely on the compu-
tation of the trajectory corresponding to the center point of the voxel/pixel (black dot in Figure
3.11 for the case of voxel-driven backprojection), whereas distance-driven mode aims to obtain
a more accurate representation of the contribution to the voxel/pixel by computing trajectories
for its limits (u1 and u2 in Figure 3.11).

Given that the kernels are the most time-consuming components, this layer is where most
of the optimizations were made, including the full parallelization of the ray trajectories. Two
alternatives have been developed for projection and backprojection based on ray-/voxel-driven
and distance-driven methods. Since each interpolation method needs a specific parallelization
approach, two versions of each kernel were implemented in order to increase performance.

Backprojection

The backprojection kernel implements the integral along all the angles of the result of spreading
back the projection values (sometimes after filtering or other pre-processing steps) along each
ray, according to the following equation (if all the geometrical parameters are zero):

f(u, v, z) = ∆θ ·
ini+nproj∑
θ=ini

pθ(Mag · [ucosθ − vsinθ],Mag · z) (3.12)

where ini is the initial projection angle, nproj is the total number of projections, f(u, v, z) is
the value in the back-projected volume at coordinates (u, v, z), pθ(x, y) the projection data for
position (x, y) in the detector at angle θ, ∆θ the step angle in radians, andMag the magnification



36 Chapter 3. Fast and flexible X-Ray simulator

v

u

yvd

u1

u2ydd1

ydd2

X-Ray
Source

Detector

FOV

overlap
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Figure 3.12: Sampling scheme on the v-axis for the case of a non-isotropic voxel. y0 corresponds to the
central ray. Sampling points are indicated with dots.

due to the cone shape of the beam given that

Mag = DSO + [usinθ + vcosθ]
DSO +DDO

(3.13)

where DSO and DDO are the distance from the center of the FOV to the source and the detector,
respectively.

The implementation of the backprojection kernel is shown in Algorithm 1 for the ray-driven
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algorithm (orange color) and distance-driven algorithm (blue color).

Algorithm 1 Voxel-driven and distance-driven Backprojection.
1: procedure backprojection((projections, tilt, skew, shifts...))
2: for u← u_vol_size do
3: for z ← z_vol_size do
4: Compute centered u and z coordinates in volume
5: Compute centered u1,u2 and z1,z2 boundary coordinates
6: for θ ← projections do
7: for v ← v_vol_size do
8: Compute centered v coordinates in volume
9: Compute real SO and DDO distances

10: Compute u and v rotated coordinates for θ angle
11: Compute u1,u2 and v rotated coordinates for θ angle
12: Compute magnification factor
13: Obtain ideal x and y coordinates
14: Obtain ideal x1,x2 and y1,y2 coordinates
15: if shift then
16: Apply x- and/or y-shift to (x, y) coordinates
17: Apply x- and/or y-shift to (x1,y1) and (x2,y2) coordinates
18: end if
19: if tilt OR roll then
20: Apply tilt or roll to (x, y) coordinates
21: Apply tilt or roll to (x1,y1) and (x2,y2) coordinates
22: end if
23: if skew then
24: Apply skew to (x, y) coordinates
25: Apply skew to (x1,y1) and (x2,y2) coordinates
26: end if
27: for x_i > floor(x1) and x_i < ceil(x2):
28: Compute contribution for x_i
29: for y_i > float(y1) and y_i < ceil(y2):
30: Compute contribution for y_i
31: Update weighted value
32: value← Bilinearinterpolationofprojections(θ, x, y)
33: volume(u, v, z)← volume(u, v, z) + value
34: end for
35: end for
36: end for
37: end for
38: return volume
39: end procedure

Projection

The projection kernel emulates data acquisition in an X-ray system: the line integral is based on
the computation of the sum of N · step values along the X-ray beam to update the contribution
to the detector pixel:
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pθ(x, y) = step×

rad

step∑
vi=−

rad

step

1
cosα

· f( 1
Mag

xcosθ + vsimθ,− 1
Mag

xsinθ + vcosθ,
1

Mag
y) (3.14)

where rad is the maximum radius of the FOV (in mm), f(u, v, z) is the voxel value in the
sample at coordinates (u, v, z), pθ(x, y) is the projection data for position (x, y) in the detector
at angle θ, α is the angle of the ray with respect to the central ray of the beam, and Mag is the
magnification due to the cone angle, given by Equations 3.15 and 3.16.

x = arctg

√
x2 + y2

DSO +DDO
(3.15)

Mag = DSO + v

DSO +DDO
(3.16)

where DSO and DDO are the distances from the center of the FOV to the source and the
detector, respectively (see Figure 3.9). Sampling is performed along the v-axis given by step
(in mm), which is set by default to the minimum dimension of the pixel, covering 2 ∗ rad. The
term 1/cosα is included to compensate for the higher sampling in rays that are distant from the
central ray, as shown in Figure 3.12 for the case of the ray that corresponds to y1.

Algorithm 2 describes the projection kernel for both the ray-driven (orange color) and the
distance-driven (blue color) algorithms.

Algorithm 2 Ray-driven and distance-driven projection.
1: procedure projection()(volume, tilt, skew, shifts...)
2: for θ ← projections do
3: for x← x_proj_size do
4: for y ← y_proj_size do
5: Compute centered x coordinate in projection
6: Compute centered y coordinate in projection
7: Compute centered x1 and x2 coordinate boundary in projection
8: Compute centered y1 and y2 coordinate boundary in projection
9: if skew then

10: Apply skew to (x, y) coordinates
11: Apply skew to (x1,y1) and (x2,y2) coordinate
12: end if
13: if tilt OR roll then
14: Apply tilt or roll to (x, y) coordinates
15: Apply tilt or roll to (x1,y1) and (x2,y2) coordinates
16: end if
17: if shift then
18: Apply x- and/or y-shift to (x, y) coordinates
19: Apply x- and/or y-shift to (x1,y1) and (x2,y2) coordinates
20: end if
21: for v ← v_vol_size do
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22: Compute centered v coordinate
23: Compute (u, v) rotated coordinates for θ angle
24: Compute (u1, v) and (u2, v) rotated coordinates for θ angle
25: Compute real SO and DDO distances
26: Compute inverse magnification factor: InvMag
27: Obtain ideal u coordinate: InvMag · u_rot
28: Obtain ideal z coordinate: InvMag · z
29: Obtain ideal x1 and x2 coordinate: InvMag ·u_rot1 and InvMag ·u_rot2
30: Obtain ideal y1 and y2 coordinate: InvMag · y1 and InvMag · y2
31: for x_i > floor(x1) and x_i < ceil(u2):
32: Compute contribution for x_i
33: for y_i > float(y1) and y_i < ceil(y2):
34: Compute contribution for y_i
35: Update weighted value
36: value← Trilinearinterpolationofvolume(u, v, z)
37: projection(θ, x, y)← value
38: end for
39: end for
40: end for
41: end for
42: return projection
43: end procedure

3.2.4 Support layer

The support layer contains two modules: processing operations (i.e., derivatives and filters) and
the platform management.

Processing operations

The support layer provides basic processing operations for the customization of the simulation
and auxiliary kernels needed for the reconstruction algorithms.

Customization includes functions for geometry computation and calculation of offsets for
the definition of the ROI or Volume Of Interest (VOI). These functions are always executed in
the CPU due to their low computational cost.

The support layer also includes auxiliary kernels responsible for matrix and element-wise
operations such as arithmetic operations, derivatives, and computation of norms. Two important
operations included here are the computation of the weighting factors W1 and W2, a necessary
step for backprojection, and the application of a ramp filter to enhance high frequencies, which
is an essential step in FDK-based methods and can be used to enhance high frequencies in other
reconstruction methods.

Factors W1 and W2 are given by the following equations:

W1 = DSO√
DSO2 + x× size_x2 + y × size_y2

(3.17)

W2 = ( DSO

DSO − v × size_v )2 (3.18)
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Figure 3.13: Partitioning schemes implemented in Fux Sim. Partitioning by volume (left) for backpro-
jection and projection, and partitioning projections (right) for both algorithms.

where DSO is the distance from the source to the detector (in mm), x and y are coordinates in
the projection, and v is the coordinate in the reconstructed volume (as shown in Figure 3.9), and
size_x, size_y and size_v are the pixel/voxel size in mm along x-, y- and v-axis, respectively.

The filtering operation involves Fourier transform and inverse Fourier transform steps, which
are achieved by means of the cuFFT library 1 in CUDA and the clFFT library 2 in OpenCL.
For the CPU, the filter is applied in the spatial domain through a convolution specifically
implemented.

Platform management kernels

The platform management kernels are dedicated to operations such as memory allocation and
deallocation in the GPU and the CPU, input/output operations, memory transfers between the
GPU and host memory, and resource management.

The layout of the different structures of data is identical in both hots memory and GPU
memory with the objective of facilitating the communication and transfers between both mem-
ory spaces. 3D volume structures are organized as a three dimensional matrix in row major
order (first u coordinates, then v coordinates and finally z). Regarding projections, a set of 2
dimensional matrix was chosen in row major order (first x coordinates and then y coordinates).

Two partitioning strategies are proposed to address memory limitations in both the CPU
and the GPU. The first consists in the division of the volume into multiple sub-volumes, called
chunks, along the z-axis. The second consists in the division of the projections into sets (covering
different angles). The decision on the number of projections included in one set fixes an upper
threshold for the slot size, which is described in Section 3.3.2 (maximum number of projections
transferred to the GPU).

These partitioning strategies, which can be combined, enable the execution of the kernel
with partial volumes or projections in both the GPU and the CPU. They also provide the
possibility of accelerating the execution using multiple GPUs, where each GPU is in charge of
the backprojection of a chunk or projection of a projection set.

The chunk-partitioning strategy (Figure 3.13, left) is used for both projection and backpro-
jection kernel executions. In the case of the backprojection kernel, each chunk is computed and
stored to disk independently. In the case of the projection kernel, each chunk is read and com-

1https://developer.nvidia.com/cuFFT
2http://clmathlibraries.github.io/clFFT
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puted for all the projection angles independently. The projections that result from each chunk
are added and stored to disk.

The set-partitioning strategy (Figure 3.13, right) follows a similar logic. For the backprojec-
tion kernel, each set of projections is read and processed independently. The results are added
in a final volume that is stored when all projections have been processed. In the case of the
projection kernel, each set of projections is created from the volume and stored independently
on disk.

The parameters chunk size and set size are calculated automatically by FUX-Sim at the be-
ginning of the execution based on the hardware characteristics and current usage of the available
resources, mainly memory capacity.

3.3 Parallelization techniques

The performance of the framework was optimized by applying different techniques, some of them
dependent on the hardware platform, while others can be applied indistinctly to the GPU and
the CPU.

3.3.1 Data interpolation

For the GPU version, FUX-Sim takes advantage of the texture memory in NVidia GPUs and in
OpenCL-aware GPUs to reduce memory latencies and generate automatic bilinear or trilinear
interpolations. The projections and volumes are uploaded to this memory space before the kernel
execution.

For the CPU-based version, projection data are stored in the main memory, and accessed
through an specific implementation of the bilinear or trilinear interpolation, which reduces the
overall performance and consumes up to 25% of the total execution time.

3.3.2 GPU memory transfer pattern

The pattern for the memory transfers from the CPU to the GPU can dramatically affect execu-
tion time. Transferring larger datasets results in a more efficient exploitation of the bus capacity
between the host and the GPU by taking advantage of the full memory bandwidth. Additio-
nally, this approach enables simultaneous processing of various data and, therefore, a better
exploitation of the available computational power of the GPU.

The memory transfers of projection data to the GPU device in the backprojection algorithm
is one of the bottlenecks of kernel execution. Although the kernel is applied in each projection
independently, if the GPU memory can hold one or more projections simultaneously, data are
transferred in groups of projections. Projections belonging to each group are stored in the same
array object (i.e., slot) concatenated vertically and separated with a padding zone, thus avoiding
the use of values from the end of previous projections at the beginning of the current processed
projection. The slot size is a configurable parameter selected by the user after taking into consid-
eration the size of the projections and the underlying hardware. As demonstrated in a previous
work [124], there is a trade-off between dataset size and performance for the case of the backpro-
jection kernel. A huge dataset can be disadvantageous due to the overhead in kernel execution,
since the number of projections present in the GPU affects the complexity of the kernel (line 6
of Algorithm 1).
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In the case of the projection kernel, the subvolumes transferred to the GPU memory are
formed directly by a group of contiguous axial slices (used for the 3D interpolation). In this
case, the above mentioned trade-off does not hold: since the large number of axial slices does
not affect the complexity of the GPU kernel (the kernel does not iterate over the z-axis), it does
not imply an overhead in kernel execution.

After execution, output data (either projections or the volume) are transferred to the host
memory for further processing or final storage.

3.3.3 Parallelization strategy

Parallelism represents the fundamental optimization implemented in the kernel layer. The strat-
egy consists of dividing workload among different computational threads executed in parallel on
either the CPU or the GPU. This work division differs depending on the interpolation method
used. However, in both cases, parallelism exploits the data independence of the processing of
each voxel or pixel, as described in [124].

To optimize memory access, the minimal computational thread in our parallel implementa-
tion is the iteration over the v-axis (black-delineated voxels in Figure 3.12 are computed by the
same computational thread). Each of the parallel executions is identified by u and z in the case
of the projection kernel, and by x and y in the case of the backprojection kernel (see first two
loops in Algorithms 1 and 2, respectively).

The number of threads that can be scheduled is optimized by taking into account the
number of required GPU registers. As the number of threads available for execution increases,
the occupancy of the GPU is also increased, thus reducing the memory latency perceived [152].
The calculation of these rays trajectories for ray-driven and voxel-driven methods is shown in
Algorithms 1 and 2, which are highlighted in italic font.

Parallelization of the distance-driven algorithm is highly limited by the intensive calculation
of areas for each ray (shown in Figure 3.11). The computation of the boundaries, either on the
volume or in the detector, adds four operations at each iteration. These boundaries are the
limits of the voxels/pixels projected on each u − z plane, as shown in Figure 3.12. Although
independent, these boundaries have the same v-coordinate and access contiguous positions of
the input data, thus increasing data locality when retrieving the values thanks to the memory
layout. This loop is highlighted in bold font in Algorithms 1 and 2.

3.4 Evaluation

The performance of FUX-Sim was evaluated on two hardware architectures, namely, a high-
performance workstation and a low-performance workstation. The high-performance workstation
had an Intel(R) Xeon(R) E5-2630 processor with 32 cores at 2.4 GHz and 250 GB of RAM and
an NVidia Tesla K40 with CUDA version 7.5 and OpenCL version 1.2. The low-end workstation
was a commodity laptop equipped with an Intel Core i7 processor, 8 GB of DDR3 RAM, and a
mobile GPU (NVidia GTX 965m).

Four studies have been used to evaluate our system: (1) standard-resolution; (2) high-
resolution; (3) whole body versions of the Digimouse phantom3; and (4) a CT scan of the
life-size human thorax phantom PBU-50 model (manufactured by Kyoto Kagatu), previously

3http://neuroimage.usc.edu/neuro/Digimouse
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Table 3.1: Detailed description of the studies used in the experimental evaluation.

Study Standard resolution High resolution Whole body Thorax study
Detector pixel size (mm) 0.2*0.2 0.1*0.1 0.2*0.2 0.4*0.4
Detector matrix (pixels) 512*512 1024*1024 512*512 889*1080
Volume voxel size (mm) 0.1253 0.06253 0.1253 0.931*0.931*0.5
VOI (voxels) 512*512*512 1024*1024*1024 512*512*942 349*230*938
Chunk size 512*512*512 1024*1024*128 512*512*942 349*230*938
Set size 360/720 360/720 360 41

Circular Scan
# projections 360/720 360/720 - -

Tomosynthesis Scan
# projections - - - 41
Source displacement (mm) - - - 150
Arc range (degrees) - - - 10

Helical Scan
# projections - - 360 -
Pitch - - 62 -

Table 3.2: Processing times in seconds for CBCT configurations with backprojection and projection
kernels for the different configurations and programming models evaluated.

Digimouse Standard Resolution (sec) Digimouse High Resolution (sec)
Kernel execution Overall execution Kernel execution Overall execution
CUDA OpenCL CPU CUDA OpenCL CPU CUDA OpenCL CPU CUDA OpenCL CPU

Projection – circular scan
360 proj 2.67 7.69 183.65 4.33 9.36 185.05 86.17 144.96 1456.07 92.39 150.92 1462.10
720 proj 5.12 15.19 377.03 7.95 18.05 379.71 170.52 269.08 2931.47 181.07 279.57 2942.57

Backprojection – circular scan
360 proj 10.76 13.74 259.22 12.59 15.61 260.79 71.40 78.57 1995.03 83.82 90.90 2007.40
720 proj 21.32 26.67 630.14 23.43 28.90 632.17 136.55 149.19 4163.51 147.12 162.77 4177.13

acquired with a Toshiba Aquilion/LB CT scanner. Different configurations were simulated us-
ing ray-driven/voxel-driven interpolation modes with the parameters shown in Table 3.1. The
last two rows show the configurable parameters set size and chunk size, which are calculated
automatically during execution depending on data size.

On the one hand, Table 3.2 presents the results of the circular scans for both standard and
high resolutions. On the other hand, Table 3.3 the results of helical, linear, and arc tomosynthesis.
Both tables show the processing time in seconds for the kernel including memory transfers (kernel
execution) and the process including I/O operations (overall execution).

The poorest performance was obtained with the CPU versions using OpenMP for paral-
lelization of the core algorithms. Although OpenCL and CUDA used the same GPU and for
high-resolution studies the performance was similar, OpenCL performed worse than CUDA for
small volumes.

Table 3.3: Processing times in seconds for the configurations and programming models evaluated for
Digimouse study.

Digimouse Standard Resolution (sec)
Kernel execution Overall execution
CUDA OpenCL CPU CUDA OpenCL CPU

Helical scan 4.21 9.65 181.91 5.99 11.61 182.89
Linear tomosynthesis 3.18 4.34 19.57 11.32 12.61 26.07
Arc tomosynthesis 3.46 3.50 36.66 11.71 11.65 43.05
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Table 3.4: Comparison between Astra and Fux-Sim.

Astra Fux-Sim
Support for flexible geometries D D

Support for tomographic images D D

Support for accelerated execution CUDA in some algorithms OpenMP; CUDA and OpenCL
Fully indepedent application 7 D

Bindings for other programming languages Matlab, Python Matlab
Support for
scanner generated calibration files 7 D

Support for high resolution studies D D

Support for different interpolation
modes 7 D

MultiGPU support Only in one algorithm D

Support for configurable voxel and pixel sizes Only in some kernels D

In the case of the circular scan, the total execution time of the projection kernel increased
linearly with both number of projections (360 projections 2× faster than 720 projections) and
resolution (standard resolution 32× faster than high resolution). Backprojection showed a dif-
ferent dependency on resolution, with the standard-resolution study only 8× faster than the
high-resolution study. The reason for this is that the slot size is set to 1 to evaluate the most
limited case; better results could be obtained by optimizing the slot size, as explained in [124].

Finally, the programming model that showed the best results, CUDA, was evaluated in the
low-performance workstation. We employed the most demanding study, namely, backprojection
of the high-resolution Digimouse with a circular trajectory. The configuration resulted in a total
execution time of 376 seconds, which is 5× slower than the one obtained on a high-performance
computer being limited by the size of the GPU memory. Chunk size and set size in this case are
1024×1024×286 (resulting in 4 chunks, the last one being slightly smaller) and 360 projections,
respectively.

3.4.1 Comparison with Astra Toolbox

One well-known competitor in the field of flexible and accelerated simulation and reconstruction
for X-Ray and CT is the Astra Toolbox [149]. Astra provides multiple implementations of differ-
ent algorithms supporting CUDA-based acceleration for GPUs and it has bindings for Matlab
and Python programming languages. In Table 3.4, we describe the main characteristics of Astra
in comparison with FUX-Sim.

In terms of processing time, we have made an experimental comparison for the reconstruction
of standard and high resolution studies, shown in Table 3.5. A comparison has been made
between FUX-Sim with the usage of the kernels in CUDA and ASTRA 1.84 using the cone
geometry and the reconstruction method BP3D_CUDA. In FUX-Sim we have fixed the slot
size (number of projections processed by one call to the kernel) to 32. Astra employs a similar
strategy with a group of projections of 32 as well. Results are favorable for Astra employing half
of our solution’s time. With Astra Toolbox, 3D reconstruction is not possible without support of
CUDA GPUs. Additionally, the BP3D_CUDAmethod lacks of support for individual calibration
for each projection, reducing the possibilities of reconstructing studies with misalignments or
variable focus distance. This reduction in the capabilities of the reconstruction kernel impacts
its complexity, thus explaining the bigger differences in time for the larger data sizes. In Table

4https://github.com/astra-toolbox/astra-toolbox
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Table 3.5: Processing times for backprojection in FUX-Sim and Astra Toolbox, both with CUDA support
and the standard and high resolution studies.

Digimouse Standard resolution (sec) Digimouse High Resolution (sec)
FUX-Sim CUDA FDK_CUDA Astra FUX-Sim CUDA FDK_CUDA Astra

Backprojection
360 projections 5.55 2.88 36.54 16.53
720 projections 7.72 4.56 49.27 23.67

Table 3.6: Processing times for backprojection in FUX-Sim and Astra Toolbox, both with CUDA support
and the standard and high resolution studies using one projection at a time.

Digimouse Standard resolution (sec) Digimouse High Resolution (sec)
FUX-Sim CUDA FDK_CUDA Astra FUX-Sim CUDA FDK_CUDA Astra

Backprojection
360 projections 15.01 7.88 65.11 88.05
720 projections 27.57 13.75 105.82 126.75

3.7 we show the higher complexity in terms of floating point operations of FUX-Sim compared
to Astra in case of the backprojection kernel. The number of instructions and floating point
operations executed are 10× superior for FUX-Sim with a performance of 489.91 GFlop/s, 4×
more than Astra Toolbox.

Table 3.7: Performance metrics for both backprojection kernels.

FUX-Sim Astra
GigaFlop 43.99 7.72
Instructions (millions) 33300 733
Memory Accesses (millions) 11000 3340
GigaFlops/s 489.91 135.73

Regarding the quality of the resulting backprojected image , we observe a significant dif-
ference between FUX-Sim and Astra in terms of Signal to Noise Ratio (SNR) metric. As seen
in Table 3.8, FUX-Sim obtains 3× more SNR than Astra (the higher the better). For the Root
Mean Square Error (RMSE), the difference still favours FUX-Sim although the variation between
Astra and FUX-Sim results is not significant.

When studying the quality results slice by slice (see Figure 3.14), we observe that both
metrics are stable, except on the initial and final slices. These slices are not completely covered
by the cone beam geometry generating different artefacts that interfere with the obtained results.

Table 3.8: Average RMSE and SNR for all 512 slices.

Avg. SNR (dB) Avg. RMSE
True volume image vs FUX-Sim 3.33 0.13
True volume image vs Astra 1.20 0.17
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Figure 3.14: SNR and RMSE of the results of the backprojection between Astra and the golden standard
image. Results are shown for 512 slices of 5122 pixels.

3.5 Discussion

FUX-Sim was designed to address three key difficulties in the development of simulation/recon-
struction algorithms: (1) the need to manage large data and computationally expensive volumes,
thus needing hardware and software optimizations; (2) the limitation of optimizations by the
high flexibility required to explore flexible scanning geometries, including fully configurable po-
sitioning of source and detector elements; and (3) the fast evolution of different hardware archi-
tectures, which increases the effort required to maintain and adapt implementations to current
and future programming models.

Simulation and reconstruction algorithms require large memory capacity because of the need
to allocate both projections and volumes in memory to ensure efficient computation. Memory
limitations have been addressed by including two efficient partitioning strategies that allow the
processing of small partitions of the input data. These strategies made it possible to run FUX-
Sim on standard workstations with commodity hardware and low-memory/profile GPUs for
both simulating or reconstructing large studies.

The optimized implementation for the different systems, i.e., programing models for the
GPU (CUDA and OpenCL) and CPU, is achieved thanks to a modularized approach based on
a layered architecture and parallel implementation of the algorithms in both GPU and CPU.
The modular approach enables flexible and easy creation of new system configurations using
existing kernels and utilities. This flexibility implies a trade-off with performance, as it prevents
application of very specific optimizations. An example of this type of optimization would be the
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overlap of input/output operations and kernel execution, which would require tighter coupling
between the support layer and the kernel layer, thus leading to a loss of modularity. Another
example is the reduction in geometrical parameters used in the projection and backprojection
kernels, such as detector shifts and rotations, in the case of simple geometries (e.g., ideal circular
cone-beam scans). This simplification would imply the need for customized kernels for each
geometry, thus hindering the creation of new system configurations. However, our evaluation
showed that performance was similar to that of previous works thanks to the optimizations
included in the different layers.

As expected, the worst performance was observed with the CPU version of FUX-Sim, even
with the parallelization of the core algorithms using OpenMP. The GPU version of FUX-Sim was
evaluated on both a laptop and a high-performance computer. The possibility of using a wide
range of underlying hardware is an advantage over other simulation/reconstruction platforms
presented in previous works, where, despite using the same acceleration device, execution with
CUDA was 10% faster than with OpenCL when backprojecting high-resolution studies [139, 110].
However, we found a much larger difference in performance between CUDA and OpenCL when
projecting smaller volumes: CUDA was 2× faster than OpenCL because hardware is used more
efficiently with CUDA, which is compensated for when there is enough load to use the maximum
computational capacity of the device.

Differences in hardware and software platforms make it difficult to compare execution times
between studies. Nevertheless, an approximate comparison shows, for example, that FUX-Sim
was around four times faster when projecting and five times faster when backprojecting than
TIGRE [142]. We also obtained good results, even with our layered architecture, with respect
to state-of-the-art implementations of the algorithms. Backprojection of similar volume sizes
with FUX-Sim was more than two times faster than the CUDA and C implementation shown in
[139]. Finally we showed that it was possible to simulate high-resolution studies in commodity
computers, even when there is not enough memory to allocate the whole dataset.

The three configurable parameters that affect the overall performance of FUX-Sim are chunk
size, set size, and slot size. Chunk size and set size are used for the optimization of memory
transfers between the CPU and the GPU. Their value is automatically calculated based on the
available resources of the computer (GPU global memory and CPU memory capacity). A low
value for these parameters would increase the number of memory transfers and result in a low
GPU utilization factor. The relationship between performance and slot size was studied in a
previous work [124]. The value for this parameter is defined by the user after taking the texture
memory capacity and GPU model into consideration.

The simulator can deal with a wide variety of scanning geometries, but does not include
the source model (heel effect, polychromatic nature, focal spot) or detector model (noise model,
intensity response), both of which could easily be included in the future as new modules of
FUX-Sim in the support layer.

The architecture proposed in this thesis is significantly more flexible than that of previous
simulators (CT Sim [144], IRT [145], TomoPy [122], X-ray Sim [146]), which do not allow the
simulation of new acquisition protocols based on non-standard setups. The CONRAD [148] and
ASTRA [149] toolkits allow flexible scanning geometries but present limitations. The simulation
of non-standard geometries with CONRAD is less straightforward, as it is based on a projection
matrix that needs to be previously obtained. We show the limitations of Astra in comparison
with FUX-Sim in terms of functionalities, execution time, and resulting quality.
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3.6 Summary

In conclusion, this chapter presented a new, highly flexible X-ray simulation/reconstruction
framework that enables fully configurable positioning of source and detector elements. The imple-
mentation is optimized for two different families of GPUs (CUDA and OpenCL) and multi-core
CPUs using a modularized approach based on a layered architecture and the parallel imple-
mentation of the algorithms in both devices. Consequently, FUX-Sim can be executed in most
current hardware platforms, since OpenCL is supported by AMD and NVidia GPUs and by Intel
and ARM processors, while CUDA is the most widely applied programming model for GPUs.
The modular architecture also facilitates the maintenance and adaptation for current and future
programming models. The execution times we measured were faster than other state-of-the-art
implementations for different system configurations and hardware platforms. FUX-Sim can prove
to be valuable for research on new configurations for X-ray systems with non-standard scanning
orbits, new acquisition protocols, and advanced reconstruction algorithms. Moreover, the pro-
posed framework will make it possible to obtain tomographic images from very few projections,
thus enabling easy and inexpensive assessment before implementation in real systems.

The main contributions of this chapter are:

• FUX-Sim, a novel X-ray simulation/reconstruction framework that was designed to be
flexible and fast.

• Optimized implementation of projection and backprojection algorithms for different fami-
lies of GPU (CUDA and OpenCL) and multi-core CPUs.

The development of new advanced reconstruction algorithms based on iterative methods
is an essential feature in any reconstruction platform. In subsequent chapters FUX-Sim is ex-
tended to support iterative reconstruction algorithms, but previously, further hardware specific
optimizations are necessary. The main components of the simulator, as shown, are backprojec-
tion and projection and the remainder work will focus on their optimization to decrease their
execution time. CUDA kernels of both components performed better in general and will be those
employed in successive chapters of this thesis.

Part of this chapter has already been published in the work: “FUX-Sim: Implementation of
a fast universal simulation/reconstruction framework for X-ray systems” [153].



Chapter 4

Enhanced cache-aware roofline
model for GPU kernel
characterization

The performance optimization and parallelization of scientific applications shape an important
research topic for computer scientists. The impact of applying specific hardware optimizations
in certain methods and algorithms can represent a large difference in terms of execution time.

A good characterization of the target application is necessary for optimizing or porting
applications to new architectures. Profiling tools are available for numerous architectures and
programming models, making it easier to spot possible bottlenecks in the source code. However,
for a better interpretation of the performance and hardware metrics collected from these profi-
lers, the usage of performance models have increased. One example of performance models are
roofline models [65], which have been used for several years to assess performance of applications
for different architectures considering hardware limitations. Different roofline models have been
developed taking into account a limited set of characteristics such as input/output bandwidth,
theoretical computational performance limits of the hardware, memory hierarchy, etc. These
models are normally created based on two main metrics: performance (in Flops/s) and opera-
tional intensity (Flops/Byte). Additionally, more specific models focused on other parameters,
such as energy efficiency have appeared [154]. Some of these models have been already included
in well-known profiling tools such as Intel Advisor.

In this chapter, we present an extension of original GPU CARM that considers the influence
of the texture memory of the GPU devices and specialized mathematical operations. Later, we
demonstrate the application of the proposed GPU CARM for the performance characterization
of CUDA-based applications. The work presented here has been carried out in collaboration
with Professor Leonel Sousa and PhD. Aleksandar Ilic during a research stay in INESC-ID. We
characterized two kernels that are part of an iterative reconstruction solution. These two kernels
take most of the execution time of the whole method, being therefore suitable for a deeper
analysis. We include the different configurations and parameters taken into account in order to
decrease the execution time of each kernel.

49
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4.1 Background of roofline models

The original roofline model [65] developed for traditional shared memory architectures was highly
limited due to the simplification of the measurements taken to construct the model. Only Peak
DRAM bandwidth was included and operational intensity was computed based on bytes only
obtained from the traffic to and from the DRAM. Consequently, this model was limited and only
insightful when studying one-level architectures in which caches were not used. However, the
original roofline model gave a first insight into an easy differentiation between memory-bound
and compute-bound regions which could be easily identified with this model.

An extended model, namely CARM [155], includes data from CPU caches, increasing the
number of regions in which the application can be classified. This approach results in a bet-
ter characterization of applications, which can be limited by other aspects different from the
processor speed and the DRAM bandwidth. In Figure 4.1, we depict this extended model as
presented by Intel Advisor tool. The different colored lines represent the different regions that
can be generated from the model depending on the roof lines. It includes the peak bandwidth of
all the caches present on the memory hierarchy as well as the different computational rooflines
obtained from the computation of different operations on the processor.

Figure 4.1: Example of CARM as depicted by Intel Advisor. Bandwidth for the three levels of cache are
shown as well as peak performance for Single Precission (SP) vector Fused Multiply Add (FMA), Double
Precission (DP) Vector FMA, SP Vector Add, DP Vector Add and Scalar Add.

Furthermore, this model can be transformed to characterize other traits of the application,
such as energy efficiency [154]. This model was applied by Ilic et al. to NVidia GPUs creating
the GPU CARM [71], which provided coherent results with respect other tools in terms of
characterization. With this model it is possible to extend the characterization from the typical
compute or memory bound result to a larger amount of intermediate results thanks to the
inclusion of the different caches in the GPU devices.

4.2 Characterization and profiling method

In this section we will describe the methods employed in this study including the tools develo-
ped and the algorithms evaluated. Additionally an extension of the GPU CARM is presented
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Table 4.1: Main GPU hardware counters used for profiling and creating the GPU CARM.

Floating point operations

flop_countsp_add Number of floating point add operations (single precision)
flop_countsp_mul Number of floating point multiplication operation (single precission).

flop_countsp_fma
Number of floating point FMA
operations (single precision).

flop_countdp_add Number of floating point add operations (double precision).
flop_countdp_mul Number of floating point multiplication operation (double precision).

flop_countdp_fma
Number of floating point FMA (Fused Multiply Add) operations
(double precision).

flop_countsp_special
Number of floating point special operations. This category includes
operations such as: fast division, cosines, sines or root squares.

Memory operations inst_compute_ld_st Number of instructions executed with load and store operations.

considering textures and special functions in GPU hardware. These rooflines were not previously
taken into account in the previous model.

We will focus on the application of the CARM on GPUs [71]. The differences in the cons-
truction of the model for a CPU or for GPU mainly reside in the memory hierarchy used inside
the GPUs. In GPUs the number of cache levels is reduced as well as the types of operations that
can be performed. Therefore, the number of roofs obtained varies, although their meaning is
identical, giving us the possibility of identifying the different bottlenecks in the explored kernels.

4.2.1 Profiling tool

We have developed an auxiliary tool for the automatization of the data model recollection and
the generation of their corresponding GPU CARM visualization for their interpretation.

Performance information is obtained through hardware counters present in different NVidia
architectures by using NVProf (NVidia profiler) tool. The counters are mainly chosen for their
relation with the CARM in terms of performance (operations) or memory accesses (memory
instructions). Detailed information of each counter and their meaning can be found in Table 4.1.

Thanks to these counters we can obtain the two main factors that influence the CARM:
arithmetic intensity and performance. To compute the performance of the kernel we collected the
total number of operations (either in double or single precision) using the following equations:

fpsp = flop_countsp_add+ flop_countsp_mul + 2 ∗ (flop_countsp_fma)+
flop_countsp_special (4.1)

fpdp = flop_countdp_add+ flop_countdp_mul + 2 ∗ (flop_countdp_fma) (4.2)

where FMA instructions (flop_countsp_fma) are multiplied by two since it represents the
execution of two operations: multiplication and addition in one step. We also obtain the execution
time of the kernel and the number of both load and store instructions (inst_compute_ld_st)
with the objective of calculating the performance in Equation 4.3 and the Arithmetic Intensity
(AI) in Equation 4.4. For double precision operations equations are similar.

perfsp = fpsp
ex_time (4.3)
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aisp = fpsp
inst_compute_ld_st ∗ 4 (4.4)

Empirical roofs for the memory hierarchies of the GPUs employed in this chapter were
already provided by Lopes et al. [71]. In the next sections we contribute with new benchmarks for
the obtaining of new roofs. Additional information is gathered from these roofs, certainly when
the kernels to be studied make use of these characteristics. Considering the type of operations
present in medical image processing kernels we have focused on two characteristics: the usage of
textures and the computation of trigonometric functions.

Extending GPU CARM: the texture cache roof

Another main difference between CPUs and GPUs in terms of architecture details is the presence
of a texture pipeline that provides concrete functionalities related to the memory management
(i.e., data access, inherit computation, etc). In some GPU architectures, there is also a separate
texture cache in charge of caching and pre-fetching the context of the texture memory. To
obtain the maximum bandwidth given by the texture cache, we have designed a benchmark
kernel in charge of getting the maximum performance of the cache. This kernel (see Listing 4.1)
takes advantage of the acquisition of consecutive elements in the 1D texture. Thus, no strides
are introduced and caches should be used at its maximum capacity. To avoid interferences in
the experiment, we have avoided the usage of interpolation functions by invoking the function
tex1Dfetch instead of tex1D. The use of volatile variables has as objective to avoid possible
compiler optimizations. This is also the objective of storing the 0 value in a variable instead of
using it as a constant.

Listing 4.1: Benchmark for obtaining max texture bandwidth
1 template <class T>
2 __global__ void benchmark_tex_standard_1d (){
3 const int glob_id = blockIdx .x * blockDim .x + threadIdx .x;
4 volatile T r0;
5 int r1 = glob_id ;
6 __shared__ T shared [ SHSIZE ];
7 const float r2 = 0;
8 for(int j = 0; j <16384; j+=8){
9 # pragma unroll
10 for(int i=0; i <8;i++){
11 r1 = r1 + r2;
12 r0 = tex1Dfetch (tproj1d ,r1);
13 }
14 }
15 shared [ threadIdx .x]= r0;
16 }

The maximum bandwidth obtained for the texture cache in an NVidia Tesla K40 is 1,153.4
GB/s. This experimental bandwidth was validated with the NVidia profile tool, using both the
Texture Unit utilization level (HIGH) and the Texture Cache Hit Rate (100.00%) metrics.



4.2. Characterization and profiling method 53

Extending the GPU CARM: special trigonometric function roof

In medical imaging kernels, where different geometric operations must be performed in order
to calculate target coordinates, built-in trigonometric functions are fundamentals. CUDA offers
implementations for the most common functions, such as sin, cos, tan, etc. These functions can
be executed in a fast way, using an approximation of the functions that reduced the precision of
the operations, or with an exact version. In this section we review the maximum performance of
the fast version (using __<name_func>f or including the –fastmath compilation flag), commonly
employed to accelerate the execution of the kernels. In this case, the benchmark is based on the
execution of the cosine function (see Listing 4.2).

Listing 4.2: Benchmark to obtain maximum performance of cosf function.
1 template <class T>
2 __global__ void benchmark_cosf (T in){
3 __shared__ T shared [ SHSIZE ];
4 T r0 = shared [ threadIdx .x];
5 T r1 = r0;
6 T r2 = r0;
7 T r3 = r0;
8 for(int j = 0; j <1024; j+=8){
9 # pragma unroll
10 for(int i = 0; i <8; i++){
11 r0 = __cosf (r1);
12 r1 = __cosf (r2);
13 r2 = __cosf (r3);
14 r3 = __cosf (r0);
15 }
16 }
17 shared [ threadIdx .x] = r0;
18 }

The maximum performance obtained in a NVidia Telsa K40 is 256.063 GFlop/s, which is
about 12 × less performance that the one obtained with singles precision FMA operations [71]
(empirical maximum performance of the card).

4.2.2 Algorithms

In the previous chapter, we introduced and examined the FUX-Sim [153] framework in terms
of execution time and performance. When analyzing the different components of FUX-Sim, the
layer consuming a largest percentage of the total time was the Kernel layer. This layer con-
tained the implementation of both backprojection and projection components. Both of them are
present in all possible setups of the framework and take part in advanced iterative reconstruction
algorithms. Thus, any possible optimization that can be applied, effectively reduces the overall
execution time of many functionalities of FUX-Sim.

For both kernels in standard baseline versions, output data are stored in global memory
while volume and projection data for input are stored in a CUDA array, bound to 3D or 2D
textures. This texture-based implementation has proven to be much more efficient than global
memory due to the caching and spatial arrangement of textures in memory and the automatic
interpolation that is provided by the texture units [156, 157]. Geometric data are stored in
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constant memory, thus providing fast access to all threads.

Backprojection

An outline of the operations included in the backprojection kernel is shown in Pseudocode 1
(Chapter 3 Section 3.2.3). From the two types of interpolation modes that are available in the
framework, we will focus on the ray-driven method. This interpolation is commonly used and
represents a higher priority. The computational complexity of this kernel is therefore defined as
O(u_vol_size × v_vol_size × z_vol_size × projections). The operations carried out in this
kernel can be divided in three regions:

• Rotation of the volume and magnification. The rotated coordinates of the volume in axis
u and v are computed for the selected angle. Magnification in z is also computed. In these
operations several computations for equivalences between real measurements (mm) and
voxel and pixel sizes are calculated.

• Computation of misalignments with respect to the ideal geometry. These operations are
executed for every obtained projection coordinates. Control instructions are dominant in
this region of the algorithm.

• Memory accesses and computation of the final value. The value on the selected coordinates
is obtained from memory with its corresponding bilinear interpolation. Depending on the
configuration of the kernel, this bilinear interpolation can be executed using hardware or
software functions.

Furthermore, in all these regions special mathematical functions are also included (sin,
cos, tan, sqrt, etc). These functions consist of several floating point operations that can be
optimized by the compiler at compilation time. Parting from this initial pseudocode, different
configurations of the kernel were created taking into account optimizations over the three regions
of the code.

The configurations designed for this kernel are the following:

• std (Standard baseline): this configuration represents the initial implementation of the
algorithm without any modification or profiling input. The algorithm followed is unchanged
with respect to the one presented in the pseudocode. This standard version does not
establish a maximum number of registers and is compiled with the –use_fast_math flag.

• opt (Branch optimized): this configuration modifies the computation of the geometrical
distortion computation (tilt and roll). The main modification consists on reducing the
computation of the misaligments, pre-computing the sign of the final coordinates before
the actual branch appears. Therefore, we reduce the number of branches by two and
generate only one computation independently of the direction of the tilt parameter.

• mreg32 (Maximum number of registers 32) : with this configuration we limit the number
of registers per thread to 32 using the compilation flag –maxrregcount=32. The number
of register per thread depends on the number of variables present in the system and it is
limited. A high number of registers per thread can decrease the occupancy of the device
and the performance.
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• nofm (Disabling fast-math): a version that eliminates the use of fast-math operations
(special operations for division, cos, sin...). This specially affects to the computation of
misalignments and rotated indexes.

• gm (Change texture memory fetching by global memory): in this version the projection
data is stored in standard global memory and the interpolation functions are implemented
as __device__ functions.

Projection

The pseudocode for the algorithm implemented in the kernel is shown in Pseudocode 2 (Chapter
3 Section 3.2.3). Thread parallelization in the GPU is based on x and y coordinates of the
resultant projection, executing a kernel for each angle. This approach effectively reduces the
memory requirements being capable of only storing one projection at a time, a difference with
the backprojection kernel.

Similarly to the backprojection, the projection can also be divided in three regions:

• Rotation of the volume and inverse magnification. The rotated coordinates of the volume
in axis u and v are computed for the selected angle. The inverse magnification in z is
also computed. In these operations, multiple computations for equivalences between real
measurements (mm) and voxel and pixel sizes are calculated.

• Computation of misalignments with respect to the ideal geometry. These misalignments
are computed over the projection coordinates, which are the initial coordinates of the GPU
threads. Therefore, these additional computations that in the backprojection are computed
for every coordinate in the depth axis v, in projection are now computed once for all v
coordinates. It also contains a large quantity of control instructions.

• Memory access and computation of the final value. The final value is retrieved from mem-
ory with the computed coordinates of the volume. At this point a trilinear interpolation
function is employed for non ideal coordinates.

The configurations implemented for this kernel are the following:

• std (Standard baseline): this configuration represents the initial implementation of the
algorithm without any modification or profiling input. The algorithm followed is unchanged
with respect to the one presented in Pseudocode 2. This standard version does not establish
a maximum number of registers and is complied with the –use_fast_math flag.

• opt (Branch optimized): this configuration modifies the computation of the geometrical
misalignments computation (tilt and roll). The main modification consists on reducing the
computation of the misaligments, pre-computing the sign of the final coordinates before the
actual branch appears. Therefore, we reduce the number of branches by two and generate
only one computation independently of the sign. This configuration effectively reduces the
number of control instructions executed by the kernel.

• reg (Manually unroll v loop to increase register usage): the v loop is unrolled with a factor
of 2 in order to increase the register usage and the texture locality. This optimization also
implies an increase in the number of registers employed in the kernel.
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• mreg32 (Maximum number of registers 32) : with this configuration we limit the number
of registers per thread to 32 with the compilation flag –maxrregcount=32. In this kernel,
standard versions do not surpass the maximum number of registers available per block,
however, this configuration can be useful combined with others, such as, reg, which increase
the number of registers per thread and can reduce the effective occupancy.

• nofm (Disabling fast-math): a version that does not use fast-math operations (special op-
erations for division, cos, sin...). This affects specially to the computation of misalignments
and rotated indexes.

• gm (Change texture memory fetching by global memory): in this version the volume data
is stored in standard global memory and the interpolation functions are implemented as
__device__ functions.

4.3 Experimental results

We have evaluated both kernels with the different configurations explained in the previous
sections. We employed two different families of GPUs, whose specifications are described in Table
4.2, with different number of cores and clock speed. In all cases we use CUDA 8.0 and NVidia
Profiler version 8.0 to compile and obtain the main counters of the hardware. All experiments
were executed 10 times and here we show the median execution time. We also provide the results
for the CPU version of the kernels, also characterized through CARM.

We evaluated all configurations by combining 2D block configurations from 8 to 128 threads
per dimension. We executed the algorithms over two studies datasets with different sizes: 5122

projection size and 5123 volume size; and 10242 projection size and 10243 volume size. In the
case of the GTX 980, only the first image was obtained due to memory constraints.

Hardware counters are collected to later characterize the kernel in terms of performance
(GFlops/s) and Arithmetic Intensity (Flops/Byte). For this purpose, we gather multiple metrics,
all described in Table 4.1, in order to obtain the number of floating point operations executed
in both simple and double precision inside the kernel. We finally construct the model based on
this information.

Table 4.2: Specifications of the GPUs employed in the evaluation.

Specification GTX 980 Tesla K40c
Architecture Maxwell (GM204) Kepler (GK110B)
Clock Speed (GHz) 1.126 0.745
Cores 2,048 2,880
Theoretical Performance (TFlops) 4.5 4.29
SMs 16 15
Global memory (GBytes) 4 12
Internal memory bandwidth (GB/s) 224 288
L2 Cache Size (KB) 2,048 1,536
Texture units 128 240
Texture cache 7 D

Compute Capability 5.2 3.5
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4.3.1 High-end GPU evaluation

We started with a thorough evaluation on a NVidia Tesla K40. In Figure 4.2, we show the ex-
ecution times for several configurations for projection and backprojection kernels compared to
the std configuration time (in orange) for two data sizes. For each configuration the execution
time from the block size combination with the best performance was taken. For the backprojec-
tion kernel, the configuration that gave best results was the opt version. The reduction of the
computation on the internal branches of the algorithm helps to reduce the time spent in this
part of the algorithm that, since it is inside the internal loop of the kernel, is executed v times
per thread. For the projection kernel the same behaviour is not expected. The branches for the
computation of the geometrical distortions are not inside the internal kernel, thus reducing its
impact over the overall execution time. In this case, the best configuration is the reg configura-
tion. This configuration increases the number of registers used inside the kernel, reducing the
effect of register spilling and increasing the overall performance.
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Figure 4.2: Execution time for different configurations with their best block sizes. Results are shown for
the backprojection (left) and the projection (right)

After applying the equations described in Section 4.2, we obtained the characterization of
the application inside the CARM of the Tesla K40. The models obtained are shown in Figure
4.3. Both of them are obtained with the data acquired from the configurations executed with
the block sizes leading to the best performance. None of the kernels are in the compute-bound
region, although p-std-reg is near. The execution of the kernels with different size do not reflect
significantly in the model being obtaining in some case only slight better performance when
executing with the larger data set.

In Figure 4.4 we plot the same models for the block size leading to the worst performance.
The difference with respect to the best performance case is minimal. The position of the clusters
of configurations do not change since the arithmetic intensity must be identical independently
of the block size chosen (total floating point operations do not change independently of how the
blocks are configured).

We compare the obtained results with the GPU CARM with the characterizations obtained
from the NVidia Profiler. In Table 4.3, we summarize the different characterizations obtained
for both kernels in some of the configurations, experimenting with the best and worst block
dimensions. We found discrepancies between both tools with differences between compute-bound
and memory-bound characterizations when the block dimension is altered.

NVidia classifies kernels taking into account the time spent in different types of instructions
(compute instructions vs load/store instructions). However, CARMs does not take into account
this mix of instructions, focusing on the performance of the whole kernel execution as well as
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Figure 4.3: CARM for NVidia Tesla K40 GPU for all configurations with the thread block dimensions
that lead to best performance in backprojection (left), and projection (right).
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Figure 4.4: CARM for NVidia Tesla K40 GPU for all configurations with the thread block dimensions
that lead to worst performance in backprojection (left), and projection (right).

the arithmetic intensity. Therefore, when employing a GPU CARM only, performance can be
modified if the block dimensions are changed, causing a vertical movement in the plot. For
NVidia, this also affects the time spent on memory operations, which can affect the characteri-
zation of the kernel. Therefore, for a full characterization of the kernel, additional features and
information must be used in order to completely understand the behaviour of the application.

Additionally, roofs are computed based on the maximum performance that can be reached
by the GPU, thus, with the maximum occupancy and level of parallelism that is possible in-
side the device. Therefore, for kernels in which possible trade-offs exists (occupancy vs number
of registers/shared memory size) these roofs do not necessarily represent the real performance
limits of the application and can change the characterization of the kernels. This is the reason
why NVidia is capable of characterizing the kernels differently from the CARM. This affects the
characterization of the kernels with different block sizes and configurations since these charac-
teristics change the occupancy ratio on the GPU.
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Table 4.3: Table with the characterizations obtained for different configurations of the kernels in the
Tesla K40c with the GPU CARM and with the NVidia profiler.

Name Characterization
Best block size

Characterization
Worst block size

Characterization
CARM

bp-std compute bound instruction and memory latency memory bandwidth

bp-opt compute bound instruction and
memory latency

memory
bandwidth

bp-std-nofm compute bound compute bound compute bound
bp-opt-nofm compute bound compute bound compute bound

bp-std-mreg32 compute bound instruction and
memory latency compute bound

bp-std-gm compute bound instruction and
memory latency compute bound

p-std memory bandwidth memory bandwidth memory bandwidth (L2)

p-opt memory bandwidth memory
bandwidth

memory
bandwidth (L2)

p-opt-nofm instruction and memory latency instruction and memory latency memory bandwidth

p-std-nofm instruction
and memory latency

instruction
and memory latency

memory
bandwidth

p-std-gm compute bound instruction
and memory latency

memory
bandwidth

p-std-gm-nofm compute bound instruction
and memory latency

memory
bandwidth

p-reg instruction
and memory latency

instruction
and memory latency

memory
bandwidth

p-reg-nofm compute bound Instruction
and Memory Latency

memory
bandwidth
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Figure 4.5: Execution time for different configurations with their best block sizes. Results are shown for
the backprojection (left) and the projection (right)

4.3.2 Commodity GPU

With the aim of studying if the results obtained with the High-Profile GPU are also applicable to
other GPUs using other architectures, we have replicated the evaluation on a NVidia GTX980.
Total execution times are coherent with what has been obtained from the Tesla K40. In this
case, only the small study of 5123 volume dimension was evaluated due to the memory limitation
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Figure 4.6: CARM for GTX980 GPU for all configurations with the block sizes that lead to best perfor-
mance in backprojection (left), and projection (right).

of this device.
Speedups obtained for bp-opt and p-reg are significant (as we can see in Figure 4.5), obtaining

a speedup of 1.28× for backprojection and 2.22× for projection. The worst execution time is
still reached with the nofm versions of the different kernels. The penalization is larger for the
backprojection kernel in which the nofm version can be 3× slower.

Representation of the different configurations in the CARM are less clustered than in the
case of the Tesla option and are closer to the compute-bound region (see Figure 4.6).

Both models (Tesla K40 CARM and GTX980 CARM) are very similar in terms of how the
configurations are ordered, although in general they obtain a better performance and arithmetic
intensity. GTX 980, although with a newer architecture, is directed towards the commodity
hardware segment meanwhile Tesla products are specific for HPC. Taking into account the
differences between both architectures, and the larger number of cores of the Tesla model, the
datasets provided take better advantage of the GTX980 hardware. The small study is capable of
obtaining better advantage of the hardware occupying better the computation units. Additionally
the highest clock frequency of the later model provides a better ratio of FLOPs/byte.

4.3.3 Multi-core CPUs

We also evaluated the performance of the kernels in a non-accelerated multi-core environment
with a version of the standard configuration of each kernel. The evaluation was executed in a
node with 2 Intel(R) Xeon(R) CPU E5-2630 v3, 32 virtual cores and 252 GB of DDR3 RAM.

To generate a CARM, the application was executed inside Intel Advisor 2017. This tool
automatically constructs the model for the processor in which is executed (roofs are computed
on the fly and can differ between executions). In Figure 4.7, we show the CARM plots for
backprojection and projection. These CPU kernels are parallelized with OpenMP. These profiled
kernels were not optimized specifically for the architecture in which they were executed and
correspond to the gm configuration employed in the GPU kernels. However, Advisor shows
that the projection kernel was automatically partially vectorized which can imply an additional
performance difference with respect to the backprojection. Backprojection kernel can not be
automatically vectorized due to the greater complexity of its internal loops.
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Backprojection v loop 

Projection v loop

Figure 4.7: CPU CARM model from Intel Advisor for the backprojection and projection algorithm with
OpenMP.

Both kernels are located in the memory-bound zone of the plot, although the projection
kernel seems to be limited by the L3 bandwidth and not the main memory. This situation is
similar to the one obtained in GPU CARM were projection was capable of obtaining a higher
performance than the backprojection kernel, being this last one the most time consuming kernel.

In this case, only the main memory can be used, so no optimizations employing texture
mechanisms can be applied. In Figure 4.8 we show the results for both kernels when executing
them without OpenMP. Both kernels are situated in the same zone in despite of the lack of
parallelism. Performance decreases due to the larger execution times. The arithmetic intensity
varies slightly due to the different optimizations and organization of the code included by the
compiler. Therefore, we observe a similar effect to what we have already described in the GPU
case, with a large vertical movement in the model when the parallelism pattern is modified.
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Backprojection v loop 

Projection v loop

Figure 4.8: CPU CARM model from Intel Advisor for the backprojection and projection algorithm with
a single thread

4.4 Summary

In this chapter we have presented a full characterization of two medical image processing kernels:
backprojection and projection. These kernels, highly used in modern reconstruction algorithms,
present certain characteristics that make them suitable for an extensive characterization. Both
of them have been implemented in many versions and architectures, including the GPUs. When
implemented many optimizations are applied to them to increase their performance. One exam-
ple is the usage of texture mechanisms or cache optimizations. With respect to our baseline
implementation we have been able to obtain a speedup of 2× for the projection kernel and
1.25× for the backprojection kernel.

We can summarize the main contributions of this chapter into the following points:

• Extended roofs for constructing GPU CARMs considering textures and special functions
in GPU hardware.

• An study of the influence of parallelism in GPU CARM in terms of block sizes, and a
study of the influence of the most used compilation flags for CUDA GPUs, fastmath and
maxreg.

• Optimized backprojection and projection kernels for CUDA GPUs evaluated in different
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architectures and performing up to 2× faster than previous versions.

Although some benchmark applications have been already characterized with the GPU
CARM, here we have presented a real application and the effects of characterizing it in terms
of assisting in the process of optimization to obtain better execution times. We present multiple
versions of these kernels, with different optimization levels based on the data obtained from the
NVidia profiler and the constructed CARM. We also presented a comparison with the CARM
obtained from the CPU versions of these kernels.

As shown in this chapter, the most time consuming components have been improved in terms
of performance. Once optimized, it is feasible to incorporate them into an iterative reconstruction
solution that is mainly composed by repetitive backprojection and projection stages.





Chapter 5

Design of a fast iterative
reconstruction framework for
limited-data CT

The source-detector pair in conventional CBCT systems rotates around the patient through
360 degrees (full angular span) to acquire at least 360 projections. However, there is a trend
towards reducing the number of projections needed to reconstruct a good quality image. In the
case of the health sector, for people or animals, the aim of this trend is to reduce the total
radiation received by the patients that go under CT. Another examples are the realization of
CT during surgery, due to movement limitations, or in respiratory-gated CT, where only a
few projections correspond to each gate. In those cases, the number of projections acquired is
smaller than 360 and/or covers a smaller angular span (down to 150 degrees), which causes
severe artefacts (streaks and/or edge distortion) when reconstructing with these limited data
using the traditional method of FDK.

Due to this problem, it is necessary to use advanced reconstruction methods that compensate
for the lack of data by including prior information about the study. The most common option
for prior information is the assumption of local smoothness, which can be imposed by adding
the minimization of the L1 norm of the Total Variation (TV) term. However, since the TV term
is not differentiable, the use of traditional reconstruction methods may be subject to instability
problems [158]. Thus, iterative reconstruction algorithms that rely on the iterative refinement of
the final image until a point of convergence or a minimal noise rate are reached are implemented.

One of the main features of an iterative algorithm is the progressive refinement of the image
to be reconstructed, which is carried out through the application of specific operators: back-
projection and projection. Thus, these iterative algorithms are, in many cases, computationally
much more expensive than traditional analytic methods. The general approximation of iterative
reconstruction algorithms is the continuous improvement of the final resulting image, taking
into account the characteristics of the input radiographs. They are also algorithms that rely on
a large amount of memory because they work with large and dense coefficient matrices. As the
resolution of the available detectors increase, the size of these matrices becomes unmanageable
in standard workstations.

To cope with this problem, Abascal et al. showed in [159] that reconstructing limited data
in CT can be efficiently solved using the Split Bregman formulation [160], which reduces the
optimization problem to a sequence of unconstrained and simpler problems that are updated

65
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iteratively. In any case, the main limitation of previous solutions [161] is that only 2D images
can be reconstructed, due to computational and memory requirements. Thus, reconstruction of
3D images with these methods was not possible for two main reasons: (1) memory requirements
of the algorithm and (2) long execution times, which hinder the reconstruction of standard size
volumes in a reasonable amount of time.

To overcome those limitations, a new iterative framework for limited data, both considering
a reduced angular span and number of projections, is proposed in this chapter of the thesis. It
is based on an accelerated implementation of the split Bregman method [162] that includes a
Krylov subspace solver [161]. The solution proposes the use of GPUs for the most time-consuming
operations and includes a partitioning strategy to be able to handle large volumes, with a total
footprint of several GB.

5.1 Iterative reconstruction framework

The iterative reconstruction framework has been designed and implemented as a module of FUX-
Sim, extending its functionalities to enable iterative reconstruction for flexible geometries. The
framework is placed at the configuration layer (see Figure 5.1) and can work with the different
geometric configurations, which were already described in Chapter 3.
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Figure 5.1: Extended architecture of FUX-Sim including the iterative reconstruction framework.

The framework is designed around three main components:

• Iterative reconstruction methods: providing the description of the different algorithms
that can be executed for iterative reconstruction. At this moment three algorithms have
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been proposed: TV, Surface Constrained Compressed Sensing (SCCS), and Prior Image
Constrained Compressed Sensing (PICCS).

• Krylov methods: this component contains the implementation of mathematical iterative
methods to solve systems of linear equations in the space of Krylov. Currently, the matrix-
free BiConjugate Gradient Stabilized (BiCGStab) method is supported.

• Transformation functions: providing the functions that can transform data volumes into
different domains. The two main functionalities supported are: gradient computation and
Haar Filter.

Additionally, the framework provides auxiliary functions that can be used in any of the
components mentioned before. Therefore, the execution is characterized by (1) the election of
an iterative reconstruction algorithm, (2) a Krylov method (if needed), and (3) one or more
transform functions (if they are used inside the method). With this modular approach, it is pos-
sible to easily experiment with different algorithms and variations of their internal components.
Moreover, the software architecture chosen facilitates the extension of the framework inserting
new iterative reconstruction methods in the form of plugins.

The main purpose of the Krylov solver is to solve the equation system:

Ax = b (5.1)

where A is the system matrix, x and b are vectors representing volume data. The system matrix
A is a large matrix representing the relation between the value of the voxels in the volume and
the pixel value in the detector. In medium and large studies the size of this matrix increases,
as well as the cost to compute it. Thus, it is easier to employ backprojection and projection
algorithms than their system matrix representation. For this reason we execute an independent
function to compute Ax, which results in a much smaller vector than the system matrix A and
requires the usage of a matrix-free compatible solver. We also provide the vector b, being an
approximation of the final volume. The specific Krylov space solver employed in this work was
BiCGStab [163] in its matrix-free form without any preconditioners.

Furthermore, all the methods and algorithms already present in FUX-Sim are available
for its use inside the iterative reconstruction platform, being able to take advantage of the
previously explained geometry configurations as well as the management functions. Thanks to
this interoperability FUX-Sim is transformed into a completely extensible framework.

5.1.1 Algorithms

Currently there are three iterative reconstruction algorithms supported as methods inside the
framework. All of them are based on the total variation minimization problem and make use of
the Krylov method and one or more customizable transformation functions. They are included
in the Iterative reconstruction method component of the Iterative reconstruction platform (see
Figure 5.1). All methods employ a matrix-free approximation to the matrix A in the linear
system Ax = b. The function chosen to approximate A is shown in Algorithm 3.

Algorithm 3 Callback function for Krylov space solver (bicgstab).
1: procedure jtjx(sol)
2: gradsolx← gradientx(sol)
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3: gradsoly ← gradienty(sol)
4: bTV ← lambda ∗ (gradient_transpx(gradsolx) + gradient_transpy(gradsoly))
5: sol_proj ← projection(sol)
6: bFback ← backprojection(solMat_proj)
7: bF ← mu ∗ bFback ∗ backNormFactor
8: bG← beta ∗ solMat
9: Ksol← bTV + bF + bG

10: return Ksol
11: end procedure

Total Variation reconstruction algorithm

The reconstruction problem follows the TV minimization method [164]:

min ‖∇(u)‖1 s.t. ‖Au− f‖2
2 ≤ σ

2, u ≥ 0, u ∈ Ω (5.2)

where ‖∇(u)‖1 corresponds to the L1 norm of the gradient of the reconstructed image u, A
is the system matrix, f is the acquisition data, σ2 is the image noise, and Ω is the subspace
corresponding to the FOV.

Using the Split Bregman formulation [158], the L1-constrained optimization problem shown
in Equation (5.2) can be converted into the following unconstrained problems, which are solved
at each iteration k:

(uk+1, dk+1
x , dk+1

y ) = min ‖(dx, dy)‖1 + µ

2 ‖Au− f
k‖2

2 +

+λ

2 ‖dx −∇xu− bkx‖
2
2 + λ

2
∥∥dy −∇yu− bky

∥∥2

2

(5.3)

fk+1 = fk + f −Auk+1 (5.4)

bk+1
x = bkx +∇xu

k+1 − dk+1
x (5.5)

bk+1
y = bky +∇yu

k+1 − dk+1
y (5.6)

where µ and λ are regularization parameters. Equation (5.3) can be split into two sub-problems.
The first sub-problem contains only differentiable L2-norm terms. By differentiating with respect
to u and setting the result to 0, we obtain the following problem:

(µATA− λ∇T∇)uk+1 = µATfk + λ∇T (dk − bk) (5.7)

which can be summarized in the following problem:

Kuk+1 = rhsk (5.8)

that is solved iteratively using a Krylov space solver. In this step, an input parameter β controls
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the stability of the problem. The second sub-problem contains L1 terms that are not differen-
tiable. Therefore, it is tackled using analytical formulas (shrinkage operation), which need two
additional input parameters α and λ. Finally, Equations (5.4, 5.5, 5.6) are the Bregman itera-
tions that impose constraints for acquired data and total variation, respectively. A pseudocode
for the implementation of the algorithm in our framework can be seen in Algorithm 4.

Algorithm 4 Total Variation iterative reconstruction.
1: procedure recoTV3D(f_ini, FOV, alpha,mu, beta, lambda, iterations)
2: f_back ← backprojection(f_ini)
3: murf ← mu ∗ f_back ∗ backNormFactor
4: for k ← iterations do
5: rhs← murf + lambda ∗ gradient_transpx(dx− bx)+
6: +lambda ∗ gradient_transpy(dy − by) + beta ∗ u
7: u← bicgstab(@jtjx, rhs, tolKrylov,MaxIter)
8: gradx← gradientx(u)
9: grady ← gradienty(u)

10: [dx, dy]← shrinkage(gradx+ bx, grady + by, alpha/lambda)
11: bx← bx+ gradx− dx
12: by ← by + grady − dy
13: u← u ∗ FOV > 0
14: u_proj ← projection(u)
15: f ← f + f_ini− u_proj
16: f_back ← backprojection(f)
17: murf ← mu ∗ f_back ∗ backNormFactor
18: end for
19: u← uBest/(normFactor)
20: return u
21: end procedure

Surface Constraint Compressed Sensing reconstruction method

The SCCS reconstruction method is thoroughly explained in the work by Molina et al. [161].
Similarly to the previous algorithm it follows the idea of the TV minimization problem:

min ‖∇(u)‖1 s.t.u ∈ ω ‖Au− f‖
2
2 ≤ σ

2

‖∇(u)‖1=
√

(∇xu)2 + (∇yu)@
(5.9)

where u is the reconstructed image, ∇xu and ∇yu are the gradients of u along the x and y
directions, A is the system matrix, f is the acquisition data, σ2 is the data noise and ω is the
subspace that corresponds with the support of the sample. Using the Split Bregman formulation
[162], L1-constrained optimization problems can efficiently solved by converting Equation 5.9
into a sequence of unconstrained problems:
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fk+1 = fk + f −Auk+1 (5.11)

bk+1
x = bkx +∇xu

k+1 − dk+1
x (5.12)

bk+1
y = bky +∇yu

k+1 − dk+1
y (5.13)

bk+1
v = bkv + uk+1 − vk+1 (5.14)

where µ, λ and γ are regularization parameters. Equations 5.10 to 5.13 are similar to those
employed in the TV only method, but this algorithm adds a new constraint for data in the
form of Equation 5.14. The first sub-problem is still solved using a Krylov space solver. The
pseudocode for the implementation of the algorithm in our framework is shown in Algorithm 5.

Algorithm 5 SCCS iterative reconstruction.
1: procedure recoTV3D(f_ini, FOV, alpha,mu, beta, lambda, iterations)
2: f_back ← backprojection(f_ini)
3: murf ← mu ∗ f_back ∗ backNormFactor
4: for k ← iterations do
5: rhs← murf + lambda ∗ gradient_transpx(dx− bx)+
6: +lambda ∗ gradient_transpy(dy − by) + beta ∗ u+ gamma ∗ bv
7: u← bicgstab(@jtjx, rhs, tolKrylov,MaxIter)
8: gradx← gradientx(u)
9: grady ← gradienty(u)

10: [dx, dy]← shrinkage(gradx+ bx, grady + by, alpha/lambda)
11: bx← bx+ gradx− dx
12: by ← by + grady − dy
13: bv ← bv + u ∗ surface
14: u← u ∗ FOV > 0
15: u_proj ← projection(u)
16: f ← f + f_ini− u_proj
17: f_back ← backprojection(f)
18: murf ← mu ∗ f_back ∗ backNormFactor
19: end for
20: u← uBest/(normFactor)
21: return u
22: end procedure
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Prior Image Constrained Compressed Sensing reconstruction method

The Prior Image Constrained Compressed Sensing reconstruction method is thoroughly ex-
plained in the work by Abascal et al. [159]. In addition to solving the reconstruction problem
using the TV minimization approach it includes a new constraint in the form of a prior image
of the object.

min(1− α) ‖∇(u)‖1 + α ‖T2(u− up)‖1 : ‖Au− f‖2 ≤ σ2 (5.15)

where u is the reconstructed image, σ accounts for the noise in the data and α weights the prior
penalty function, ∇(u) represent the spatial discrete gradient that leads to TV and A is the
forward operator (projection). For the T2 function a gradient can also be chosen although other
possibilities are explored, such as a wavelet transform. We can transform the problem into an
equivalent unconstrained equation introducing Bregman iterations (b):
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From Equation 5.16 we can obtain the following Bregman iterations:

fk+1 = fk + f −Auk+1 (5.17)
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where µ, λ and γ are regularization parameters. In this case the new constraint for the prior
is expressed in Equation 5.21. The rest of constraints are solved using the same approaches as
the ones presented for previous methods. The pseudocode for the implementation of the PICCS
algorithm in our framework can be seen in Algorithm 6.

Algorithm 6 PICCS iterative reconstruction.
1: procedure recoTV3D(f_ini, FOV, alpha,mu, beta, lambda, iterations)
2: f_back ← backprojection(f_ini)
3: murf ← mu ∗ f_back ∗ backNormFactor
4: Tup← T2(up)
5: for k ← iterations do
6: rhs← murf + lambda ∗ gradient_transpx(dx− bx)+
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7: +lambda ∗ gradient_transpy(dy − by) + gamma ∗ T2(dx+ Tup− cx)
8: +gamma ∗ T2(dy + Tup− cy)
9: u← bicgstab(@jtjx, rhs, tolKrylov,MaxIter)

10: gradx← gradientx(u)
11: grady ← gradienty(u)
12: [dx, dy]← shrinkage(gradx+ bx, grady + by, (1− gamma)/lambda)
13: [gx, gy]← shrinkage(gradx+ Tup+ cx, grady + Tup+ cy, gamma/lambda)
14: bx← bx+ gradx− dx
15: by ← by + grady − dy
16: cx← cx+ gradx− Tup− gx
17: cy ← cy + grady − Tup− gy
18: u← u ∗ FOV > 0
19: u_proj ← projection(u)
20: f ← f + f_ini− u_proj
21: f_back ← backprojection(f)
22: murf ← mu ∗ f_back ∗ backNormFactor
23: end for
24: u← uBest/(normFactor)
25: return u
26: end procedure

5.2 Accelerated implementation

An accelerated implementation is proposed for all the algorithms already presented (Algorithms
4, 5 and 6). The acceleration is obtained through the use of the extended architecture of FUX-
Sim (see Figure 5.1). A workflow representation of the TV method and the approximation
function jtjx for the Krylov solver is shown in Figures 5.2 and 5.3, respectively. The two main
computational kernels are executed both in the external Bregman iteration (red boxes in Fig-
ure 5.2), and inside the jtjx function. These kernels are executed on the GPU thanks to the
optimized implementation that has been shown in Chapters 3 and 4. Other operations that
run on GPU are the gradients (gradientx, gradienty), the shrinkage operation (shrink2 ), and
the L2-norm calculation (using CUBLAS library). The remaining element-wise operations are
vectorized by the compiler [165] and multi-thread CPU parallelized with OpenMP 4.0 due to
their low computational load. Although suitable for problem resolution, the adoption of the Split
Bregman approach generates multiple variables, which in the case of 3D iterative reconstruc-
tion. Everything must be converted into a 3D volume representation occupying a large portion
of the memory. In the case of TV reconstruction we can count up to 8 volumes that need to be
allocated simultaneously resulting in a large amount of memory. For the other two algorithms,
the number of sub-problems obtained from the formulation is even larger leading to an increased
number of variables and a higher complexity.

Given GPU memory restrictions, we designed a partitioning strategy in both backprojection
and projection operations, which are the ones that require the highest amount of memory in
the device. Similarly to the process devised in Chapter 3, the volumes are partitioned in chunks
taking into account the available memory in the device. This is a dynamic process, for every
time these functions are called, this partitioning process is activated in order to compute the
best chunk size. In case is necessary, a second-level partitioning strategy is triggered, dividing
the projections into different sets which are processed and transferred to or from the device.
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Figure 5.2: TV3D iterative reconstruction workflow for TV algorithm.

Figure 5.3: Callback function for Krylov solver workflow for TV algorithm.
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The Krylov space solver is implemented using the BiCGStab method, BiCGStab [166], where
the input matrix in Equations (5.7, 5.8) is substituted by the computation shown in Algorithm
3.

5.3 Evaluation

The three methods were evaluated in a computer with two Intel(R) Xeon(R) E5-2630 v3 pro-
cessors at 2.40 GHz and one NVidia Tesla K40c GPU. Limited-data acquisitions were simulated
from a previously acquired small-animal scan (512 × 512 × 512 pixels; 0.125 mm pixel size),
as shown in Figure 5.4, left. We studied the following parameters: dependency on the number
of projections with NumProj = 60, 90, and 120 covering an angular span of 360 degrees and
DimProj = 512; dependency on angular span for NumProj = 45 uniformly distributed in
an angular span of 45, 60, 90, 180, and 270 degrees (DimProj = 512); and the effects of the
projection size, by considering DimProj = 256, 512, and 1024 when 90 projections are obtained
uniformly distributed in an angular span of 360 degrees. All simulations were generated using
FUX-SIM [153].

5.3.1 Study of the TV method

The evaluation of the feasibility and quality of the reconstruction methods is based on the
evaluation of the first method, the TV method. This is the basic method from which the rest
are constructed and the one with worst results in terms of image quality.

The evaluation data were reconstructed with an FDK-based method [167] and the imple-
mented TV method resulting in a volume of DimProj ×DimProj ×DimProj pixels. For the
latter, we used α = 0.003, µ = 20, β = 3, and λ = 2 as reconstruction parameters (see [159] for
details on how to select these parameters). The number of iterations (iterations in Algorithm
4, line 4) was 35, selected high enough to ensure an error variation smaller than 1%.

Table 5.1: Difference of the SNR (dB) between the FDK and the iterative reconstruction; RMSE between
the iterative reconstruction and the reference image for different limited-data configurations.

Angular span Projections SNR Difference (dB) RMSE
135 45 20.79 0.268
150 45 23.20 0.220
360 45 28.27 0.154
360 90 26.17 0.153
360 120 25.98 0.151

Figure 5.4 shows the reference image (FDK reconstruction of the complete dataset) and the
results of FDK and the proposed iterative method for two limited-data configurations. Image
quality was assessed with two metrics. To evaluate the global image quality, we calculated the
RMSE between the reference image and the intermediate solution uk from the limited dataset.
To evaluate the influence of streaks and noise in the reconstructed image, we measured the
improvement of SNR obtained with the iterative method with respect to the FDK-based method
in the homogeneous area indicated in Figure 5.4. Table 5.1 shows both metrics for different
number of projections and angular span, with a noticeable improvement when increasing the
angular span despite the low number of projections. Figure 5.5 plots the dependence of the
RMSE with the number of iterations, k, for six different limited-data cases varying the angular
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Figure 5.4: From left to right: reference image, FDK-method and proposed iterative method. Top panel
corresponds to the case of 60 projections covering an angular span of 360 degrees and bottom panel to
the case of 45 projections covering an angular span of 150 degrees. Yellow circle in the bottom left panel
shows the ROI for the SNR measurement.

Figure 5.5: RMSE vs. iterations for: 60, 90 and 120 projections (full span); angular span of 135, 150
and 180 degrees (45 projections)

span and the number of projections. We can see that the proposed iterative method shows a
similar behavior for all limited-data configurations.

Figures 5.6, 5.7, and 5.8 show the breakdown of the reconstruction time of each configuration,
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Figure 5.6: Execution time (in seconds) for different number of projections.
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Figure 5.7: Execution time (in seconds) for different angular span (degrees).
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Figure 5.8: Execution time (in seconds) for different projection sizes (DimProj).

obtained as the average of three consecutive executions in order to avoid time variability due
to operating system operations. Reconstruction time is divided into backprojection, forward
projection, and time spent in other operations including I/O operations and CPU computation.
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Figure 5.9: Execution time (in seconds) of the CPU and GPU version of the iterative method in the
first iteration for different number of projections (NumProj).
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Figure 5.10: Execution time (in seconds) of the CPU and GPU version of the iterative method in the
first iteration for different angular span (degrees).

Finally, we compared the implementation in GPU of the iterative method with the CPU-
only implementation of the same iterative method parallelized using OpenMP to fully exploit
multi-core architectures. Figures 5.9 and 5.10 plot the time spent in the first iteration (average
of three different executions) reaching a speedup factor of 48× with the GPU implementation
with respect with the CPU-only one.

5.3.2 Comparative evaluation of the three iterative reconstruction methods

The previously described data was also employed to evaluate the performance, in terms of
total execution time, of the three methods included in the iterative reconstructed platform. All
algorithms were configured for a total of 35 iterations although in a real scenario, due to the
faster convergence of SCCS and PICCS, not all algorithms should need the same number of
Bregman iterations.

For all cases, PICCS performs better in terms of execution time, spending almost half of
the time with respect to TV and SCCS.

When exploring the execution time modifying the dimension of the projections (see Figure
5.11), all algorithms scale properly, taking into account that this increment in the size of the
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projections also affects to the size of the 3D volume, obtaining an increase of the total time of
between 6× to 8× for the 5122 experiment with respect to the small one and of 40× for the
largest experiment.
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Figure 5.12: Execution time (in seconds) of the three iterative methods included for different number of
projections and a fixed angular span of 360 degrees.

This scalability is also proved when varying the number of projections for the same angular
span (Figure 5.12). The execution time for 90 projections is 1.3× larger than for 60 projections,
and for 120 projections the increment is of 1.6× obtaining an increase of 30% of the base
execution time for each 30 projections added.

Finally, regarding the angular span (Figure 5.13), times do not differ significantly. TV and
SCCS methods perform similarly obtaining SCCS the worst execution times when the angular
span is extended.
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Figure 5.13: Execution time (in seconds) of the three iterative methods included for 90 projections and
a different angular span.

5.4 Discussion

The evaluation of the proposed framework shows a high reduction of the severe artefacts observed
when using the conventional FDK-based method for cases in which a low number of projections
is available, with an SNR improvement of more than 20 dB for all cases. The image distortion
due to the limited angular span was also reduced with the proposed method.

To evaluate the performance of the implementation according to data size, we fixed a high
number of iterations (iterations = 35) for all experiments in order to ensure optimum image
quality for the worst conditions. Nevertheless, in some cases, the number of iterations could be
lowered, resulting in shorter reconstruction times: for example, with 60 projections and an angu-
lar span of 360 degrees, 20 iterations were enough for a high quality image. In all experiments,
backprojection and forward projection operations represented at least 50% of total execution
time, reaching a maximum of 80% of the time when the acquired data set is large. Neither the
iterative Krylov space solver nor reading and writing operations significantly increase the total
time. The execution time of the proposed implementation varies linearly with the number of
projections and does not depend significantly on the angular span. The modifications in the size
of the input projections and of the result volume produces a linear increment in the execution
time which is consistent with the computational complexity of the backprojection component.

The scalability is also present in the other methods: SCCS and PICCS both in terms of
projection size and number of projections. PICCS performs between 60% to 100% better than
SCCS and TV. The best performance of PICCS is obtained for larger data sizes, reducing
its advantage with smaller projections. This performance enhancement comes from its better
convergence, which reduces the number of iterations needed inside the Krylov solver. SCCS and
TV do not present differences in execution time.

Reconstructions of large studies (volume of 1024× 1024× 1024 pixels) are feasible with this
accelerated implementation of the iterative method thanks to the partitioning strategy followed
for both backprojection and forward projection operations.

The GPU implementation here presented showed significant time reduction (up to 48×)
compared with a CPU-only implementation, resulting in a decrease of the total reconstruction
time from several hours to few minutes. A fair comparison with other iterative reconstruction
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implementations proposed in the literature is not feasible due to differences in the specific
algorithms and the hardware used. Nevertheless, we note that the work by Matenine et al. [143],
which is the most similar to our solution, was limited by the memory capacity of the GPUs and
did not address the problem of limited angular span. In contrast, our GPU accelerated algorithm
obtains similar results in terms of execution time in spite of the fact that it works with large
detector and reconstructed volume sizes with a low number of projections in a limited angular
span, which increases significantly the number of iterations needed for convergence.

Regarding the previous implementations of the same algorithm, the implementation we pro-
pose substantially reduces reconstruction time and hardware resources. As previously reported
[161], a solution combining Matlab and CUDA kernels resulted in large execution times, which
is not feasible when reconstructing 3D volumes in real scenarios. With the solution presented
in this chapter the execution times are much lower thanks to the use of native code that allows
more efficient optimizations of the algorithm implementation.

This efficient implementation using parallel processing and large-memory management strate-
gies together with GPU kernels enables the use of advanced reconstruction approaches which
are needed in limited-data scenarios.

5.5 Summary

An accelerated implementation of a method for 3D limited-data tomography has been presented.
It solves the problem of iterative reconstruction in an efficient way by using GPUs for the most
time-consuming operations.

The main contributions of this chapter are:

• An iterative reconstruction framework for TV based reconstruction methods with GPU
acceleration.

• An evaluation of the efficiency in terms of performance for different iterative reconstruction
methods based on TV.

• A matrix-free BiCGStab implementation compatible with GPU callback functions.

The solution here presented is suitable for standard resolution datasets. However, when
reconstructing high resolution and large size studies (greater than 10243) the large memory
requirements for maintaining all the necessary data volume prevents the execution in standard
machines. Therefore, for large size studies a distributed memory implementation that can take
advantage of the larger resources present in clusters and clouds can be the solution to the
problem. The next chapter covers the challenge of reconstructing in distributed environments.

Part of this chapter has already been published in the work: “GPU-accelerated iterative
reconstruction for limited-data tomography in CBCT systems” [168].
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A distributed iterative reconstructor

The proliferation in the last years of many iterative algorithms for CT is a result of the need of
finding new ways for obtaining high quality images using low dose or limited-data acquisitions.
These iterative algorithms are, in many cases, computationally much more expensive than tra-
ditional analytic methods. The general approximation for iterative reconstruction algorithms is
the continuous improvement of the final resulting image, considering the characteristics of the
input radiographs. They are also algorithms that require a large amount of memory because
they work with large and dense matrices. As the resolution of the available detectors increases,
the size of these matrices becomes unmanageable in standard workstations.

The work presented in this chapter, developed during an international stay at IMEC, is
dedicated to the adaptation of an iterative reconstruction algorithm to a distributed environment
using the PETSc library. With the contribution of Roel Wuyts and Tom Vander Aa, we propose
a solution capable of overcoming the memory limits of single node executions by increasing
the computational resources. For the construction and development of the distribution of the
iterative algorithm, we have extended the FUX-Sim simulator from Chapters 3, 4 and 5. The
basis of the distributed implementation is the possibility of, not only increasing the computing
power due to the increase in the number of cores or accelerators available, but also, to increase
the resources that enable the reconstruction of larger volumes and the use of a higher number
of projections. This solution can be applied to other type of iterative algorithms or even to
standard analytical methods in the reconstruction of large volumes.

At this point of the thesis, the limitations of single-node shared memory architectures di-
sappear thanks to the use of distributed memory solutions. In this chapter, we will focus on
distributed memory architectures inside the hybrid HPC paradigm (see Figure 6.1), with spe-
cial emphasis in the MPI+OpenMP programming model, mainly used in supercomputers and
scientific oriented clusters.

81
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Figure 6.1: Topics covered in this chapter with respect to the thesis for the distributed iterative recon-
structor.

6.1 Distributed iterative reconstruction design

For the construction and implementation of the iterative algorithm, the proposed simulation and
reconstruction framework [153] has been extended to a hybrid distributed-parallel CT simulator
using PETSc (Portable, Extensible Toolkit for Scientific Computation), a library [169] that
relies on MPI for the communication between different nodes. This library contains multiple
methods for matrix and vector computation, as well as optimized and distributed versions of the
most popular iterative solvers, including BiCGStab. It also allows the integration with external
mathematical libraries and even can take advantage of specialized hardware, like GPUs.

The implementation of the distributed routines is based on the use of parallel structures
included in PETSc, the Distributed Memory Distributed Arrays (DMDAs), which describe the
parallel structure of an object (a vector or matrix) including the partitioning, ordering, interpo-
lations, and ghost or stencil regions. Designing the distributed functions taking into account this
structure results in a partitioning-independent implementation, which provides a more flexible
execution of the application in diverse environments. Its compatibility with MPI allows the user
to program hybrid algorithms that combine native MPI functions with PETSc structures and
methods.

This PETSc-MPI module is the one in charge of distributing the computing load and apply-
ing functions that require a coordination between the different processes. Inside each process,
the application can have access to the internal FUX-Sim modules, including the backprojection
and projection kernels.

In Figure 6.2 the PETSc-MPI module is incorporated in the FUX-Sim architecture. Pre-
viously, FUX-Sim was restricted to shared memory architectures. The optimizations made for
this type of architectures is still conserved in the work presented in this chapter thanks to the
shared memory support inside the distributed iterative reconstructor.

Because of this duality, we can address the parallelism at two different levels: an external
coarse-grained parallelism, that takes advantage of distributed resources, and an internal fine-
grained parallelism, that is optimized to successfully exploit local resources.
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Figure 6.2: Distributed Iterative reconstruction architecture compared to FUX-Sim architecture. Red
dotted line highlights the components evaluated in this chapter.

6.1.1 Distribution strategy

In distributed memory architectures, data are divided between the different machines or nodes,
making it difficult to access the parts of the data that are not locally stored in the machine.
Additionally, these data must be partitioned taking into account the communication cost of
transferring data from one machine to another, or even, from one process to another.

The distribution of the data also affects the parallelization of the computation. The dis-
tribution and parallelization strategy was constructed around the division of the output data
(i.e. volume, see Figure 6.3) in different chunks. This division is done in the z axis (as seen in
Figure 6.4) to encourage data locality and to avoid unnecessary communications. This division
was already proved successful for shared memory architectures, when not enough memory was
available to hold the complete 3D volume. It was also employed as a parallelization strategy in
the case of detecting the presence of more than one GPU. This is the best distribution strategy
due to the reduction of the number of transfers and synchronization points in the algorithm.
Although most of the operations are voxel independent (sum of vectors, vector scaling, vector
subtraction, etc.) and therefore are not favoured by any partitioning schema, operations such as
the backprojection and the gradient operations are dependent in terms of slices (u−v planes). If
the partitioning is executed using any of these axes, a communication of halo values or updated
values on the limit of the partition would have to be done in order to obtain correct results.
The other possibility is to partition the data dividing the projections into different sets to be
processed by each machine independently. On the one hand, this last approach would favour the
projection operation. On the other hand, partitioning projections would mean to maintain all
volumes in all nodes at the same time, an action that would harm the memory gained due to
the use of distributed resources. Considering the importance of being able to reconstruct high
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resolution volumes, which can occupy dozens of GB, this second possibility is not viable.
The decision of choosing to divide the volume in different chunks also comes with some

disadvantages. There is a dependency in the z plane inside the algorithm: the execution of
the backprojection and projection step over a partition of the volume generates incomplete
information. As we have seen in previous chapters the backprojection and projection, when
separated, constitute embarrassingly parallel problems. Backprojection is an operator in which
the generation of each of the voxels is totally independent, and the same happens for projection
on the different pixels. However, if we want to obtain a correct volume, the projections must also
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be complete. As shown in Figure 6.4, the application of the projection operator over independent
chunks of the volume generates incomplete projections in the z axis, leading to the computation
of incorrect voxel values in the subsequent backprojection step. To overcome this problem, it
is necessary to obtain the complete and correct projections in all distributed processes, thus
creating a synchronization point. At this synchronization point, the reduction (shown in Figure
6.3) takes place, obtaining the sum of all the interpolation zones of each projection for each
process.

This division strategy provides adequate results for the backprojection operator, but it is
not expected to provide scalability in the case of projection. This is due to the fact that the
projection complexity, O(DimProj ∗DimProj ∗DimV olv) does not depend on the partitioned
variable, the dimension of the volume in z. To provide scalability, we had to decrease the size
of the area of the computed projections for each partitioned volume computing the maximum
and minimum projections lines. These projection lines (red dot lines in Figure 6.4) represent
the limits of the contribution of the partial volume (the chunk) to the projection. The green
zones are sections of the projection that have to be computed with values coming from different
chunks, and therefore, from different memory regions.

At the shared memory level, parallelism can be achieved using one of the methods already
included in FUX-Sim. For homogeneous architectures, the kernel optimizations with OpenMP
are employed, with a parallelization at the voxel/pixel level as previously explained in Chapter
3.

6.2 Experimental study

To evaluate the feasibility of the solution proposed, a preliminary evaluation of the implemen-
tation has been executed on a single node and in a distributed environment composed of 12
physical nodes. The purpose was to evaluate the scalability of the application for a varying
number of MPI processes. The evaluation was carried out on nodes with an Intel(R) Xeon(R)
CPU X5660 @ 2.80GHz with 12 physical cores and 96 GB of memory. The version of MPI used
was MPICH 2 with the Hydra manager. The application was compiled with GCC 4.9 and the
execution was configured to have the processes bound to the physical cores of the node. The
PETSc version employed was 3.7.

The application was tested with real data and two types of studies:

• Small study: 360 projections of 1282 pixels of a crocodile scapula for the single node
execution. The output data consisted on a volume of 1283 voxels.

• Medium study: 180 projections of 5122 pixels and the volume output data was 5123 voxels.

The small study was employed for the first experiment evaluated (MPI over one node). In
contrast, for the rest of experiments the medium study was used. Only two iterations of the TV
distributed algorithm were executed, considering that the time per iteration is stable.

To determine the effectiveness of the distribution scheme, the execution time was measured
in the different phases of the algorithm: reading of the projection data (READ), broadcast of
the initial projections to all participating processes (BCINIT), Krylov solver (KRYLOV), and
writing of the resulting volume (WRITE). It is important to highlight that backprojection and
projection times are obtained from different parts of these phases since they are executed inside
and outside the Krylov solver. The phase of projection reduction it is also present inside and
outside the solver and therefore shown in a different plot for a better comparison.
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6.2.1 Single node execution

The first step is to evaluate the distributed iterative reconstructor in a shared memory environ-
ment, to be able to compare the performance in both architectures.

MPI execution

First we evaluate the performance and scalability of the solution with one level of paralle-
lism (coarse-grained). Therefore, for every core in the machine an MPI process is created. Fig-
ure 6.5 plots the execution time for each of these phases, as well as the total time employed
and the ideal progression time with an ideal scaling. This ideal scaling has been computed as

time(1)
num_processors . Krylov solver takes most of the time of the application, representing other
phases less than 1% percent of the total time. In Figure 6.6, the time spent in the reduction
of the projections is shown compared to the total time to execute the algorithm. This time is
almost negligible and does not increase significantly with the number of cores.
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Figure 6.5: Single node: Execution time (in seconds) of the application for different number of cores and
stages.

In terms of scalability, Figure 6.7 depicts that the backprojection follows almost the same
progression as the linear ideal speedup, having with 12 processes a speedup of 11.12× with
respect of the execution with just one MPI process. The scalability of the projection kernel is
poor compare to the one obtained with the backprojection kernel. This is an expected behavior
since, as explained before, the projection does not scale directly with the partitioning variable
(the z axis division), but with the projection of these subvolumes over the detector. This means
that the scalability of the projection will be worst that than of the backprojection and that also
depends of variables such as the distance between source, object and detector, and pixel and
voxels sizes. In these first experiments, the influence of the reduction of the projections is not
significant because of the low number of processes. However, in further evaluations at larger
scales, this reduction phase represents a problem to be tackled.
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Figure 6.6: Single node: Projection reduction time (in seconds) of the application for different number
of cores.

0

2

4

6

8

10

12

14

1 2 4 6 8 10 12

SP
EE

D
U

P

NUMBER OF CORES

Backprojection Projection Ideal

Figure 6.7: Single node: Speedup for the backprojection and projection phases for different number of
cores vs ideal speedup.

Hybrid MPI+OpenMP evaluation

In the same node, the approach of using OpenMP as fine-grained parallelism inside an MPI
process is evaluated. In this case, for the execution on a single node, only one MPI process is
created and different number of OpenMP threads are used to parallelize the computation. The
number of OpenMP threads employed is equal to the number of cores.

Similar results are obtained with total execution times near the ideal ones (see Figure 6.10),
in which most of the time is spent in the Krylov solver. MPI communication does not affect the
total execution time. The initial broadcast is negligible and projection reduction time is lower
than in the case of using only MPI, since the memory is contained in only one process (Figure
6.8). In fact, this time is almost negligible compared to the total time.

The speedup obtained with this approach is also near the ideal, with positive results for both
backprojection and projection stages: projection reaches 11× speedup for the 12 processor case
meanwhile with MPI processes the limit was around 9×. However, backprojection speedup do
not differ from those obtained using only MPI, since the change in the parallelization approach
does not modify the workload of the different computational threads, thus, not obtaining any
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Figure 6.8: Single node: Execution time (in seconds) for the different phases of the iterative reconstruc-
tion algorithm for different number of cores vs ideal speedup with the MPI+OpenMP approach.
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Figure 6.9: Single node: Execution time (in seconds) for the total execution time and the projection
reduction phase of the iterative reconstruction algorithm for different number of cores vs ideal speedup
with the MPI+OpenMP approach.

significant advantage with this option.

6.2.2 Distributed execution

In the distributed solution one-level and two-level parallelism were evaluated. The MPI processes
are always distributed equally between nodes.

MPI evaluation

Figure 6.11 shows the total execution time compared with the ideal one for a different number
of cores.
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Figure 6.10: Speedup for the backprojection and projection phases for different number of cores vs ideal
speedup with the MPI+OpenMP approach.
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Figure 6.11: 12 nodes: Execution time (in seconds) of the application for different number of cores and
stages.
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Figure 6.12: 12 nodes: Execution time (in seconds) of the application for different number of cores and
stages including time spent in projection reduction.
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Figure 6.13: 12 nodes: Speedup for the backprojection and projection phases for different number of cores
vs ideal speedup.

As in the evaluation with the single node, Krylov solver represents a large percentage of
the execution time of the application, although a larger gap with the total time than in the
previous evaluations is observed. This gap includes minor functions, such as matrix subtractions
and vector multiplications, as well as the projection reduction. Studying the execution time for
all the projection reductions performed during the execution (both included and not included
inside the Krylov solver), we can observe in Figure 6.12 that the combination of results to obtain
the final projection planes (the reduction) now represents a higher percentage of the total time,
being, with 144 cores almost 50% of the total execution time.

This naturally influences the maximum speedup that can be obtained considering paralleliza-
tion, as we show in Figure 6.13. The backprojection operator scales nearly ideally. However, the
inadequate scaling of the projection operator due to the previously explained reasons, as well as
the problem introduced with the projection reduction cost reduce significantly the total speedup
of the application that reaches a maximum of 40 when using 144 cores.

Hybrid MPI+OpenMP evaluation

For the two-level parallelism evaluation, one MPI process is spawned for each node and then the
number of OpenMP threads is increased up to the total number of cores in the cluster.

In Figures 6.14 and 6.15, times for the different phases of the algorithm are shown. Times
are significantly better than those obtained only with MPI (3500 seconds vs 2500 seconds for
the same number of cores) due to the better performance of the Krylov phase, mainly composed
by projection and backprojection kernels. The projection reduction phase is also benefited by
the MPI+OpenMP approach reducing the number of processes participating in the reduction
operation and taking advantage of the shared memory architecture inside the node.

Regarding the speedup obtained with this approach we can conclude from Figure 6.16 that
even though the times are better than those obtained with MPI, scalability is still restricted in
the projection algorithm, reaching a maximum speedup of 70× when executing over 144 cores,
almost double than the speedup obtained with only MPI.



6.2. Experimental study 91

0

500

1000

1500

2000

2500

24 48 72 96 120 144

TI
M

E 
(S

)

NUMBER OF CORES

READ BCINIT KRYLOV WRITE TOTAL

Figure 6.14: 12 nodes: Execution time (in seconds) of the application for different number of cores and
stages using MPI+OpenMP.
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Figure 6.15: 12 nodes: Execution time (in seconds) of the application for different number of cores and
projection reduction stage using MPI+OpenMP.
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Figure 6.16: 12 nodes: Speedup for the backprojection and projection phases for different number of cores
using MPI+OpenMP.
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6.3 Summary

In this chapter, we have presented the implementation and evaluation of an iterative reconstruc-
tion method for CT for a distributed environment. For the distribution of the application we
have chosen PETSc, a mathematical library on top of MPI that already implemented some of
the algorithms needed for our method. We have partitioned the main output dataset to provide
scalability as well. In the evaluation, we observed that our implementation scales for the main
components (backprojection and projection operators) and it is possible to execute in parallel
with little differences in the final result. However, when distributing over several nodes, the spe-
cific characteristics of the projection operation along with the increasing cost of the projection
reduction impacts negatively on the overall performance providing poor speedup.

The main contributions of this chapter are:

• An iterative reconstruction algorithm adapted to a distributed environment using the
PETSc library.

• An study of the scalability in a HPC environment of the backprojection and projection
kernels.

Finally, one of the main conclusions is that the reduction of the projection data must be
optimized. In the distributed version, this phase represents up to 33% of the total time, reducing
the possibilities of scaling to high resolution images. With the distributed platform presented in
this chapter, the current solution approach unbalances the load of each node, thus preventing the
algorithm from better scaling. MPI does not possess native mechanisms for load balancing and
the management of irregular partitioned data is difficult due to the assumption that all hardware
is similar and that the load will be balanced by the programmer. Due to these restrictions and the
requirements given by the domain, studies over a different type of paradigm, closer to the data
and the programmer, are needed. This platform must provide an easier management of irregular
data as well as a resource manager capable of distributing the partitioned tasks between the
resources.

Part of this chapter has already been published in the work: “Exploring a Distributed Ite-
rative Reconstructor Based on Split Bregman Using PETSc” [170].



Chapter 7

Iterative reconstruction framework
based on the Big Data paradigm

Programming models for Big Data, like MapReduce, have recently been embraced in many scien-
tific fields. The easiness in which data are managed in massively distributed environments, such
as clusters or cloud systems [171], has transformed to the Big Data paradigm many applications
of the biomedical field, in which data analysis or generation is fundamental, like DNA analy-
sis, protein discovery, and image processing. The simplification of the programming functions
and the abstraction of both data and task management make it accessible to a wider range of
developers, not necessarily skilled in low level programming.

The importance of accessibility for domain experts can be appreciated from the many APIs,
available in scientifically-focused programming languages for modern programming models and
frameworks related to the Big Data paradigm.

This chapter presents a novel approach for adapting low dose CT image reconstruction al-
gorithms to a Big Data framework using accessible programming languages to multi-domain
experts without performance degradation. We will focus on a specific programming language
(Python) and a specific framework (Apache Spark [77]). Most of the transformations and opti-
mizations applied to the algorithms and presented here can be used in other programming frame-
works and languages based on MapReduce models compatible with C libraries and CUDA. The
modularization of the solution and the independent intra-scheduler enable an easy integration
with other applications or libraries.

We explore the possibilities provided by the Big Data paradigm for both homogeneous and
heterogeneous architectures (see Figure 7.1). More concretely, two solutions are proposed: an
optimized version for multicore-based environments (homogeneous), and a solution with support
for hybrid CPU+GPU environments (heterogeneous).

93
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Figure 7.1: Architectures and paradigms covered in this chapter.

7.1 Solution for Big Data computing

As described in Figure 7.2, the solution proposed is fundamentally based on the offload the
computation of time-expensive components to a distributed environment, being compatible with
heterogeneous resources containing CPU and GPU-based compute nodes. This distributed envi-
ronment can be a private cluster or a public cloud in which heterogeneous resources are available.

7.1.1 Batch processing on Apache Spark

Apache Spark [78] is a general purpose distributed computing framework. It is employed in
several fields, although it is mainly used in data analysis and Big Data applications. Spark
exposes portable APIs and supports well-known languages (Scala, Java, Python, R) and contains
specific libraries focused on machine learning. Spark is based on both an extended MapReduce
paradigm and a task-based execution model. This solution is compatible with several resource
managers and has connectors for different file systems and distributed databases. One of the main
differences with previous frameworks, such as Hadoop [73], is the in-memory data management.

Apache Spark’s architecture is composed of two main actors: the driver and workers. The
driver is in charge of deploying the application and its management inside the cluster, and
communicating with the chosen resource manager. Workers run inside the compute nodes of the
cluster and launch the isolated containers in which tasks are executed (executors).

Apache Spark follows a lazy execution scheme, having two types of functions depending
on whether the real execution of the tasks is triggered or not: transformations and actions.
Transformation operations (not to be confused with data transformations) are operations in
which new data is created based on previous data and they are not executed immediately. Action
operations trigger the execution of the transformation operations returning specific results to
the driver. Both types of operations work over an specific data structure called RDDs [78]. These
structures hold the data in a distributed and partitioned manner as well as acting as a tool for
providing fault tolerance.
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Figure 7.2: Diagram of a generic iterative reconstruction algorithm with accelerated analytical com-
ponents: backprojection and projection. Iterative reconstruction algorithms consist of multiple phases in
which different contributions are computed. Prior information of the reconstructed object can be included
in the form of surface models or previously reconstructed volumes.

7.1.2 Python and PyCUDA

The selection of Python as programming language is motivated by the fact that it is used as a
prototyping language and the quantity and quality of existing scientific modules. These modules
provide mathematical functions, highly optimized thanks to their internal development in the
C language. However, the process described in this work could have been done with any other
compatible language as long as they have bindings for GPUs (either CUDA or OpenCL com-
patible). In Python there are many alternatives for developing accelerator-based applications.
We highlight PyCUDA [172] due to its flexible support of NVidia GPUs and its compatibility
with already existing kernels.

7.2 Accelerated architecture for GPU-based Big Data comput-
ing

From the application execution point of view, the proposed solution does not modify the com-
ponents already employed in standard Apache Spark. As it can be seen in Figures 7.3 and 7.4,
there are still three main components: the driver, the executor allocated in the worker nodes,
and the cluster manager. This architecture is tightly tied with the Apache Spark architecture
and the execution model previously presented. In the proposed novel accelerated architecture,
a new component is introduced in each of the worker nodes, exercising the role of internally
managing the available GPU resources, a GPU intra-scheduler.
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7.2.1 Driver

The driver is in charge of the execution of the main code of the application, stating the required
transformations and actions. In case of using a local file system, it is also responsible of reading
and writing the input and output data. However, if Hadoop Distributed File System (HDFS) is
used, each of the worker nodes are in charge of acquiring the nearest data if they are not already
available. The node in which the driver is allocated is normally independent from the nodes on
which tasks are executed (nodes with workers). In these cases, GPUs are not required inside the
driver node, since tasks are executed independently from the main program.

7.2.2 Executor

In the executor, tasks are finally computed. These tasks can invoke CUDA-based kernels through
the PyCUDA interface. As stated in Figure 7.4, first we need to check out if the node counts
with the required accelerators, in our case, NVidia GPUs. This check also includes the presence
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of the auxiliary tools for GPU programming, either CUDA or OpenCL libraries. After that, it
will request a device to the intra-scheduler. In case of not counting with enough resources, the
scheduler will block the assignment process. Then the task will proceed to the online compilation
and preparation of the arguments that will be passed to the GPU kernel. Finally, output data
from the GPU will be transferred to main memory and returned as the result of the mapping
task.

7.2.3 Many-task GPU intra-scheduler

Nowadays, many clusters and supercomputers include accelerator devices, like GPUs, being also
commonly used in many cloud providers (i.e. Amazon EC2). However, Apache Spark lacks of
native support for exploiting the accelerators capacity, although some alternatives have appeared
[92, 173].

The GPU intra-scheduler1 consists in an independent service, which is responsible of
scheduling and selecting the most suitable GPUs in which the kernels will be deployed. In
this way, the corresponding tasks that are executed in the same node obtain an available GPU.
Due to its characteristic of independent service, the intra-scheduler is capable of scheduling the
GPUs even between independent applications that are executed inside the same node.

With our proposed approach, Apache Spark can be used without any modification. The
main contribution to the architecture is the inclusion of a intra-scheduler that will be executed
in each compute node. This intra-scheduler orchestrates the different executors located inside
the node, offloading computation into the accelerator devices. Using different policies, the intra-
scheduler decides which tasks are executed in the GPUs, as well as in which devices are executed
considering several variables:number of devices that are installed inside the node, the memory
needs of the task to be executed, memory available at each device, number of tasks executed
in each devices, etc. If no accelerator is available (due to the limited memory), it stalls the
execution of the task or sends it to the CPU if possible, until there is enough memory space
available.

GPU assignment policies

This component has different policies that can be applied to the scheduling decisions, depending
on factors such as available resources in the device, offered performance, number of tasks in
execution, etc. There are already three policies implemented:

• Round Robin: Tasks are assigned to GPUs in incremental order.

• Random: Tasks are assigned randomly to a GPU without taking into account any specific
variable.

• Least processes: Considering all the tasks that are already been executed in the different
GPUs, the scheduler assigns the one with the least number of tasks being executed.

However, due to the memory limitations of these devices, if the device chosen by the policy
does not have enough memory to execute the kernel of a specific task, the next GPU (in numerical
order) will be chosen. If there is no GPU with enough memory, then the scheduler stops the

1Available at https://github.com/Estefania/py_gpu_scheduler
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execution of the task waiting until the required resources are available. Using this mechanism we
ensure that all kernels from all tasks can be executed without memory problems in the devices.

The management of the device, which has a separate memory space, is performed inside the
Spark task and the implementation of the function to be executed can be made using CUDA
native kernels or using PyCUDA methods.

Execution of a mapping task

The execution of the mapping in the heterogeneous architecture consists of five phases:

1.- Device acquisition: the executor communicates with the scheduler to obtain a device in
which the function should be executed. Based on the device obtained, the context for that
specific accelerator is created.

2.- Transfer of the input data onto the device memory: using the PyCUDA API, it is possible
to transfer the memory containing the input data to the acquired device using the CUDA
drivers.

3.- Execution of the CUDA/PyCUDA kernel: the kernel is loaded, on-demand compiled, and
executed with the required parameters passed to the function.

4.- Transfer of the output data to the host memory: to be able to obtain the final data, each
mapper should return its output stored in the device memory to host memory for Apache
Spark to be able to manage it. The output data generated in the device is transferred to
the main memory before finishing the task.

5.- Device release: the executor requests the scheduler to release the device. The context for
that device is destroyed.

The communication with the intra-scheduler, provided through RPCs, is implemented with
the RPyC package [174].

7.2.4 Multi-core CPU execution architecture

In case no accelerator devices are present in the system, two options are proposed in order to
accelerate the execution:

• To exploit the parallelism already provided by the platform. This option is the easiest
since it is already incorporated in Apache Spark. However, to fully exploit the resources
previous tuning and modification of diverse parameters of the platform is required.

• To incorporate additional parallelism by using native programming models, widely em-
ployed in clusters and supercomputers, like OpenMP. This option includes an additional
level of parallelism. This approach increases the programming difficulty, having to incor-
porate HPC programming models into the Big Data platform.

For both alternatives, we use C as native programming language, due to its higher per-
formance over interpreted programming languages (i.e., Java, Scala or Python). Since Apache
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Spark lacks of support for native programming languages, we take advantage of the close rela-
tion between Python and C, which allows to invoke specialized functions implemented in this
language using the provided Python headers.

To better support this decision, we include in Table 7.1 a summary of the execution time
of the backprojection component in a single-node configuration using different programming
languages and models. Although the difference between using C with OpenMP and Python
invoking C with OpenMP represents almost doubling the execution time (due to the use of an
interpreted language as a launcher), the main gap is produced when Python is used without any
other parallel programming model, obtaining execution times larger than one day. Therefore,
the use of non-interpreted programming languages is strongly encouraged.

Table 7.1: Average execution time in seconds for different versions of the backprojection component.

Environment Time (seconds)
C (OpenMP-16 cores) 260.79
Python (NumPy) > 86,400.00
Python (C) 6,124.47
Python (C OpenMP-16 cores) 439.48
PySpark (C OpenMP-16 cores) 479.35

The architecture of the framework (Figure 7.3) as well as the execution flow is the same
regardless of the aforementioned alternatives. However, there are differences regarding the exe-
cution setup:

• Apache Spark-based parallelism: this alternative is the most widely used in the community.
It takes advantage of the possibility of using more executors per node (over subscription).
In general, the best option to fully exploit the CPU hardware and being able to execute
multiple tasks from multiple applications, is to spawn one executor per core. However, since
executors are launched independently with a decoupled memory space, there would be a
need of larger resources on worker nodes (see Figure 7.3). When configuring the execution,
we balance the number of executors per node and the cores per executor, complying with
the trade-off between memory usage and resources exploitation. This is possible thanks
to the possibility of deploying multiple cores per executor, thus reducing the number of
executors per node and the memory needed.

• Native-based parallelism: In this case, to parallelize the algorithm, we rely on OpenMP
for our backprojection and projection components, in which we parallelize each ray with a
different CPU thread. Memory footprint also increases, as in the previous alternative. Ne-
vertheless, in this case the number of executors needed is lower, resulting in a reduction of
the memory requirements. This approach consists in a two-level parallel strategy managed
by two different techniques: coarse-grained parallelism at a distributed level using Apache
Spark (external parallelism) and fine-grained parallelism inside the node using OpenMP
(internal parallelism).

In both cases, an invocation of a C module is introduced inside each task. This C module
contains the proper map function in which each element is transformed, returning the corre-
sponding projection or volume. Data are not copied between Python and C, since the reference
is valid for both languages, saving memory and execution time. Python tasks are therefore only
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responsible of setting the parameters of the C module. Inside the C module, Python parame-
ters are transformed into C variables and the algorithm is executed with or without OpenMP
depending on what alternative is chosen. After the algorithm is executed, the resulting data is
returned to Python with the correct format. In this case, an array containing the corresponding
subvolume or projections is returned.

7.3 Redesigning backprojection and projection components to
work on a MapReduce programming model

7.3.1 Backprojection

Inside the backprojection component, the map stage corresponds to the computation of the
geometry of each independent ray. Since there is only one ray per voxel, we have dimu×dimv×
dimz map operations corresponding to the dimensions of the volume in the three different axes.
The transformation function is defined as:

vol(u, v, z)←−
ini+nproj∑
θ=ini

projθ(x, y) (7.1)

where each point in proj is obtained using Equation 3.4.
The volume is divided into subvolumes (partitions) along the z axis. As we can see in

Figure 7.5, backprojection task is executed per partition. This division is represented inside the
framework as an ordered array with the position of each partition inside the complete volume.
Thus, partitioning is performed at the output (volume), not at the input (projections). This
implies that input data must be transferred to all worker nodes through a broadcast operation
inside Apache Spark.
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Figure 7.5: Execution and partitioning of the Backprojection component in our proposed schema.
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7.3.2 Projection

In this case, the partitioning of the computation and data is also based on dividing the volume
into smaller subvolumes, which are now the input data of the map operations. Therefore, in the
projection task there is no need of broadcasting data, since each task already has his partition
thanks to the functionality provided by Apache Spark RDDs. The number of map operations is
equal to dimx× dimy × nproj and the transformation function is described as:

proj(x, y)←−
depth∑
v=0

vol(u, v, z) (7.2)

where the points in vol that contribute to each point in proj are obtained following Equation
3.4.

As shown in Figure 7.6, every core computes all projections from the corresponding subvo-
lume. To reduce the computational load for each subvolume, the projection task only computes
the specific rows of the projection data corresponding to each subvolume. Each row is identified
by a key computed based on the projection angle and its spatial position inside the complete
projection. Due to the cone-beam geometry, multiple subvolumes can contribute to the same
row of the projection, thus having tuples containing the same key.

Then, when every projection task has been completed, a reduction of all the projection rows
is executed over the tuple (key and its corresponding projection row).

Reduction

Node 0 Node 1

GPU 0 GPU 1 GPU 0 GPU 1

Projection K

Core 0

Projection

Core 1

Projection

Core N

Projection

Core 0

Projection

Core 1

Projection

Core N

Projection

Intra-Scheduler Intra-Scheduler

Projection K Projection K Projection K

Pa
ra
lle
liz
e

M
ap
P
a
rt
it
io
n
s

R
ed
uc
e

Core 0 Core 1 Core N Core 0 Core 1 Core N

Fi
lt
er

Figure 7.6: Execution and partitioning of the Projection component in our proposed schema.

Reduce stage does not require additional functions due to the native implementation of
element-wise additions in Numpy arrays. Although this approach requires to have a temporal
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copy of all projections in each task and it may seem memory expensive, it is important to
highlight that low-dose CT techniques normally imply the use of a lower number of projections.
Therefore, this replication does not create a high overhead in terms of memory usage. For a
large number of projections, this reduction step could represent a bottleneck in the execution
of the application, nevertheless, in those cases the usage of other type of algorithms, mainly
non-iterative, is advisable.

7.4 Evaluation of the proposed accelerated architecture

The evaluation has been carried out in a compute node composed of two processors Intel(R)
Xeon(R) CPU E5-2620 0 @ 2.00GHz and 3 GPUs, 1 Tesla K40c (12 GB of memory GDDR5)
and 2 Geforce GTX Titan (6GB GDDR5 memory). In the experiments where the memory is
defined to be limited, the memory of each card is reduced to 2 GB each. This limitation we can
better determine how each policy work under different hardware.

The complete system is supervised through Cloudera 5.7. The version of Spark employed is
1.6 in stand-alone mode. The input files are stored in a local SSD and the result files are saved
into an HDFS directory, also in SSDs and with a 10 Gbps Ethernet network. The Python version
employed was 2.7 and we used PyCUDA 1.3. The input data for the experiments consisted in
360 projections with 10242 pixels (1.2 GB). The size of the output data was 10243 voxels (4
GB). In each experiment, we show the average of at least 3 different repetitions as well as the
standard error. In the case of the occupancy timelines, data of only one repetition is shown. In
this case, only the backprojection component for GPU was evaluated.

7.4.1 Overall execution time

In Figure 7.7, we plot the total execution times for the baseline configuration (labeled as simu-
lator) and the Apache Spark version (labeled as Spark) with 3 threads and 3 partitions.

Due to the overhead that implies the execution of an associated runtime (Apache Spark),
the execution times for a standard volume of 10243 voxels of the distributed backprojection
application in a node are not as competitive compared with the execution time of the simulator
in the case of the same node and number of GPUs. In all cases Spark requires more time to
produce the result although, when the number of GPUs is increased, the difference is reduced.
This is due to the better exploitation of the resources thanks to the scheduler.

In Figure 7.8, we show the execution times of the Apache Spark approach for 3 threads and
a variable number of partitions. We evaluate the three policies implemented applying a limited
memory scheme on the GPUs. From these results, we can conclude that for the case of only
one node, the increment in the number of partitions impacts negatively in the overall execution
time due to the increment of the memory usage. It is important to note that incrementing the
number of partitions does not increment the level of parallelism if the number of executors
and threads does not increase. With respect to the differences between policies, only Random
obtains a significantly higher execution time than the other policies, being Round Robin and
Least Processes in the same time range. However, if we look at results from Figure 7.9 when we
average the execution times for every number of threads and different number of partitions, in
general, Least processes performs slightly better than Round Robin.
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Figure 7.7: Execution time for the different combinations of GPUs in a node, with memory limitation,
no limitation, in the original setup (simulator) and in its Spark version (Spark).
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Figure 7.8: Results of the evaluation of the application with 3 threads and different number of partitions
for each of the policies and their corresponding standard error.

7.4.2 Occupancy of the GPUs with different policies

As described before, the objective of the proposed scheduler is the exploitation of multiple
GPUs that can be attached to the compute nodes. In Figure 7.10, we plot the execution time
of the application based on 12 threads and 48 partitions, on the three available GPUs for the
three implemented policies. This configuration maximizes the parallelism in the node. In this
experiment, to evaluate the occupancy of the GPUs with the different policies, we have simulated
a more homogeneous environment by limiting the memory available on each device to 2 GB.

The policy that takes less time to finish is Least Processes, as we also concluded in the
previous section. Least Processes exploits the GPUs in a more regular manner. Both Round
Robin and Random policies possess several spikes in the occupancy meanwhile with the first
policy the occupancy is held around 12 tasks assigned to GPUs, which maximizes the maximum
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Figure 7.9: Results of the evaluation of each of the policies with different number of threads. The exe-
cution time is the average of the execution times for each number of partitions.
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Figure 7.10: Timeline of the experiment with 12 threads and 48 partitions for each of the policies. We
show the number of tasks assigned to the GPUs in each moment.

number of threads running in parallel. The reason for this is that Least Processes is capable of
balancing the inequalities in the execution of the tasks. In this case, a more exhaustive analysis
discovers that the first GPU (Tesla) takes around 50% more time to process tasks than the others
solutions. Least Processes detects that the number of tasks in that GPU is higher and sends the
tasks to the other ones which are faster and less overloaded. However, in all three policies, we
can appreciate regular spikes that are attributed to the finalization of the tasks assigned to the
thread. Although the partitioning of the data and therefore of the computational load does not
have to be regular, the tasks are similar in size and execution time. Then, it is reasonable that all
tasks executed in parallel finish in similar times, reducing the number of tasks executed on the
device. Since we have 48 partitions that equal 48 tasks, each thread will be assigned 4 tasks that
will be executed sequentially. When a task is finished and before the next tasks is assigned to a
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device, the GPUs become unused because the mapping functions have not started yet, resulting
in the performance spikes.

7.4.3 Evaluation with multiple nodes

For the evaluation of a larger volume we chose to execute the application over a set of nodes
ranging from three to five, all of similar characteristics to the one employed in the first experi-
ments. The resource manager used was Apache Yarn. All the nodes possessed at least one GPU.
The input data for this evaluation was a set of 360 projections of 2048x2048 pixels (5.7 GB) to
obtain a resulting volume of 2048x2048x2048 voxels (32 GB).

Table 7.2 depicts some of the results for a different number of partitions, nodes, threads,
and executors. As a reference, the time needed for a backprojection of that size in a Tesla K40c,
a high end graphics card, is on average 7m33s. If we compare with the best result in Apache
Spark (7m36s), we can observe that both of them require the same execution time.

Table 7.2: Execution of the Spark application over different nodes for a 2048x2048x2048 volume of result.

Nodes Executors Threads per executor Partitions Time
5 5 2 120 7m36.000s
3 3 2 60 9m51.756s
3 3 4 60 7m42.368s
3 3 5 40 7m38.091s

7.5 Scalability evaluation

In this section, we show the experiments carried out to evaluate the scalability of the implemented
solution for the offloaded components using Python and Apache Spark, in both GPU and multi-
core CPU-based architectures.

7.5.1 Experimental setup

We evaluated our solution using two environment setups:

• Distributed multi-core CPU cluster: 8 nodes with Intel(R) Xeon(R) CPU E5-2603 v4 (12
cores), 126 GB of DDR4 RAM, and 256 GB of SSD for scratch storage. The Apache Spark
driver was launched in a separated node with two Intel(R) Xeon(R) CPU E5-2630 v3
processors (12 cores) and 252 GB of RAM.

• Distributed GPU-based cluster: 2 nodes with an Intel(R) Xeon Phi(TM) CPU 7210, 148
GB of RAM, 256 GB of SSD for scratch storage. Each node has 2 NVidia GTX 1070
installed, each with 8GB of GDDR5 memory.

The system is supervised through Cloudera 5.13 over Ubuntu 16.04. The version of Apache
Spark employed is 2.2 in stand-alone mode. For the distributed evaluation, Apache Yarn 2.6,
with the FairScheduler, was used as resource manager. The input files are stored in a local
SSD and the result files are stored into a HDFS, running on top of SSDs disks and a 10 Gbps
Ethernet network. The Python version was 2.7, complemented with PyCUDA 1.3 for the GPU-
based architecture and a C module compiled with GCC 5.1 and OpenMP for the homogeneous
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architecture. Taking into account the results from the previous section, the policy for the GPU
intra-scheduler was set at Least Processes.

For both components, we have worked with volume images of 10243 voxels and 10242x360
projections. This number of projections is higher than the one normally acquired for low doses
purposes, therefore this experiment represents a worst case in performance. Input data is read
from a SSD in the driver program, requiring first a parallelization of the data.

To better evaluate all possibilities we have executed the components in both architectures
with two configurations:

• Configuration A: single core per executor. Parallelization is done internally either by using
OpenMP in the CPU based approach or with the GPU cores.

• Configuration B: 5 cores per executor. Parallelization in the multi-core CPU approach is
done at external level without further usage of other parallel programming models. In the
case of GPU-based execution, additional parallelization is introduced with the usage of
the multiple GPU cores.

7.5.2 Multi-core CPU architecture evaluation

We executed both backprojection and projection components in a multi-core CPU cluster with
both configurations. In configuration B, we will be able to execute 5 tasks at the same time
per executor. Those executors can be placed inside the same node if it has enough memory
capacity. In configuration A, each executor will execute one task (coarse-grained) and each task
is accelerated by using OpenMP.
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Figure 7.11: Configuration B: Execution time of the backprojection component on a distributed multi-
core CPU cluster for a different number of executors and partitions without using OpenMP.

In Figure 7.11, we plot the evaluation results employing configuration B inside the backpro-
jection component. We explore the results given a varying number of executors and partitions.As
we increase the number of executors, we note the benefits of having a number of tasks larger
than the number of executor threads. This is due to the better management of the imbalances
between nodes when smaller tasks are scheduled. This effect can also be appreciated when em-
ploying OpenMP, as shown in Figure 7.12.

In the case of the projection component, the obtained results for configuration B depict a
significant increase when the number of partitions are incremented (as shown in Figure 7.13).



7.5. Scalability evaluation 107

0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8 10 12 16

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Partitions

CPU Backprojection  - OpenMP

2 executors

4 executors

6 executors

8 executors
0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Executors

CPU Backprojection - OpenMP

4 partitions

8 partitions

16 partitions

Figure 7.12: Configuration A: Execution time of the backprojection component on a distributed multi-
core CPU cluster for a different number of executors and partitions using OpenMP.
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Figure 7.13: Configuration B: Execution time of the projection component on a distributed multi-core
CPU cluster for a different number of executors and partitions using 5 cores per executor.

In this case, a higher number of partitions does not decrease the computational size of the task
due to the discrepancies between the number of slices in a volume and the FOV projected. As
shown in Chapter 6, the area computed in projection from a chunk is larger than the number
of slices in the chunk due to the cone-beam geomtry. Because of this reason, the increment of
parallelism using Apache Spark can harm the performance of this component. Nevertheless, it is
important to note that the time does not increase at the same rate as the number of partitions.

The projection performs better in configuration A than in configuration B, in contrast with
what happens with the backprojection, as plotted in Figure 7.14 and Figure 7.13. However, in
configuration A the increment in the number of partitions does not positively affect the overall
performance of the application, similarly to what we have seen in the case of the backprojection
component. Considering the overall execution time, the number of partitions required when
using OpenMP is lower than the one required in configuration B.

Considering the overall execution time, the number of partitions required when using OpenMP
is lower than the one required in configuration B. The reason behind this is that the parallelism is
applied at coarse-grained inside the partition and not per partition as in the first configuration,
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Figure 7.14: Configuration A: Execution time of the projection component on a distributed multi-core
CPU cluster for a different number of executors and partitions using OpenMP in each executor.

so, to fully exploit the hardware we do not need to increase the external parallelism. Moreover,
OpenMP internal parallelism can be favoured by the higher amount of work in bigger partitions,
a factor that is penalized in the other configuration.

7.5.3 GPU-based architecture evaluation

We have also evaluated the performance of the Apache Spark/GPU-based architecture based
on our proposed intra-scheduler, varying the number of executors and partitions. Given that
the maximum number of GPUs present in the system is four, we evaluated up to four parallel
executors over different number of cores. In practice, increasing the number of cores per execu-
tor allows to exploit the available concurrency, given that modern NVidia GPUs enables the
execution of multiple concurrent kernels in case of having enough resources (mainly, computing
units and internal memory).
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Figure 7.15: Configuration A: Execution time of the backprojection component on a distributed GPU-
based cluster for a different number of executors and partitions.

Figures 7.15 and 7.16 plot the evaluation of the backprojection component in the GPU-based
architecture. For both configurations we observe that from 100 partitions (4 executors), the over-
all execution time increases for both cases. Execution times do not differ between configurations
when executing with similar conditions (around 200 seconds for one partition per thread and 4
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Figure 7.16: Configuration B: Execution time of the backprojection component on a distributed GPU-
based cluster for a different number of executors and partitions with 5 cores per executor.
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Figure 7.17: Configuration A: Execution time of the projection component on a distributed GPU-based
cluster for a different number of executors and partitions.

executors and also around 200 seconds for one partition per executor and 4 executors), which
indicates that the limiting factor is the computing power of the GPU device.

Otherwise, in case of projection, Figures 7.17 and 7.18 show that there is a significant
difference between both configurations in the GPU based approach. Executing the algorithm with
4 executors employing configuration A results in an execution time of around 1000s, meanwhile
with 4 executors and one partition per core in configuration B the algorithm takes around 700s.
The number of tasks in the second case is higher, 20 tasks for 4 executors vs 4 tasks, which should
be counterproductive for the projection algorithm as explained before. However, the number of
tasks from which we can perceive a significant increase in time is 40 as seen in Figure 7.13.
Being 20 tasks a lower number than this threshold, and considering the benefits of executing
smaller tasks for a better load balancing between the GPUs, it is reasonable that Configuration
B performs better than Configuration A in this case.

Figure 7.19 shows the timeline for the execution with 4 executors for Configuration A and
B. The larger execution time in task 3 in Configuration A causes the whole execution to spend
two minutes more. In Configuration B however, although there are imbalances, since the tasks
are smaller, they only represent less than one minute of increased execution time. The drawback
detected in the multi-core CPU approach is also reproduced when employing GPUs with a much
higher number of tasks. The decrease in performance starts with a lower number of partitions
than in the case of the backprojection, since in projection a greater number of partitions also
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Figure 7.18: Configuration B: Execution time of the projection component on a distributed GPU-based
cluster for a different number of executors and partitions with 5 cores per executor.

Figure 7.19: Timeline for the projection component on a distributed GPU-based cluster for Configuration
A, 4 executors with one core (top) and Configuration B, 4 executors with 5 cores (down).

increases the amount of work that is executed. For the same amount of work (same number
of partitions) both configurations scale out almost perfectly when increasing the number of
executors.

7.5.4 Image quality

We have evaluated the effect of the partitioning on the final results using simulations with the
Digimouse phantom2. We performed a backprojection followed by a projection with 1, 8 24 and

2http://neuroimage.usc.edu/neuro/Digimouse
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48 partitions, with 360 projections of 5122 pixels, resulting in a volume of 5123 voxels. The Root
Mean Square Error (RMSE) in the projections with respect to the 1 partition case is significantly
low (under 1.0e−4) for all partition sizes. The small errors, not noticeable with visual inspection,
appear in the intersection between the chunks due to the reduction stage in projection, as shown
in Figure 7.20 (the difference images are shown with a narrow window so the small errors are
noticeable). No effect was observed for the backprojection step.
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Figure 7.20: Projection obtained with 1 partition (target) and difference image (the images are shown
with a narrow window so the small errors are noticeable) of the projections obtained with different parti-
tioning configurations with respect to the target.

7.6 Discussion

The GPU and CPU based approaches in conjunction with the different algorithms evaluated
have yielded a significant amount of conclusions. First, although both projection and backpro-
jection components are similar in terms of execution and complexity, their inclusion in a Big
Data framework exposes different behavior. As seen in Section 7.5, partitioning 3D volumes
(which is the most memory consuming data structure) is a suitable approach for backprojection,
in which partitioning also implies increasing the computational parallelism in the application.
However, regarding the projection component, this principle does not hold true. Computational
cost is based on the projection data and can even increase when the volume is partitioned due to
the increment of the FOV. In Figure 7.21, a comparative between all the evaluated approaches
for the same number of executors is shown. The best solution combines an increased number of
partitions in the backprojection component, aiming at maximizing external/coarse-grained pa-
rallelism (even increasing the number of executors per node), and a lower number of partitions in
case of projection, exploiting the computational resources through a shared-memory mechanism
like OpenMP.

Second, in GPU-based architectures, parallelism is provided by using the underlying GPU
(internal/fine-grained) and the usage of multiple GPUs devices by different executors (external/
coarse-grained). This approach limits the external parallelism offered by multiple concurrent
executors running in the same node. In contrast, our solutions avoid this limitation by orches-
trating the execution for a large amount of tasks thanks to our proposed internal scheduler. This
approach is specially beneficial in case of the backprojection component.

Finally, it is important to remark the limitations of the framework used, which are more
perceptible in the case of the GPU-based architecture. The overhead imposed by Apache Spark
can cause not only a problem of performance, but also a problem of memory exhaustion. The
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Figure 7.21: Comparison of all configurations for both algorithms with 4 executors.

execution of the multiple software layers is translated to a higher memory usage to hold RDDs,
Hadoop containers, the buffers for networking, and serialization. This is a problem already
noticed in some other works, especially when compared with Apache Hadoop [175, 176, 177]. To
overcome these problems, it is necessary to perform a meticulous configuration of the framework
execution parameters. This tuning process can take, in some cases, more time than the time
needed to implement the application itself.

7.7 Summary

In this chapter we have presented a novel approach based on Python and Apache Spark for the
implementation of the backprojection and projection components of an iterative reconstruction
method for cone-beam geometry. The solution enables two alternatives for different architectures:
a GPU-based architecture, supporting NVidia GPUs, and multi-core CPU architecture, relying
on multi-core CPU acceleration and the compatibility with C/C++ native code.

Although the performance results show that a linear speed up is not reached, our approach is
an adequate alternative for porting previous HPC applications already implemented in C/C++
or even with CUDA or OpenCL programming models. Furthermore, it is possible to automa-
tically detect the GPU devices and execute CPU and GPU tasks at the same time under the
same system, using all the available resources.

This solution is an approach based on Apache Spark, but it is applicable to other Big Data
frameworks that support Python, enabling quickly updates for new requirements. Moreover,
since the alternatives presented here are based on the union of different components, they can
be generalized to other types of architectures or acceleration devices. In the case of the hetero-
geneous approach, OpenCL could also be used for compatibility with other accelerators or even
a better exploitation of the CPU.

The main contributions of this chapter are:

• A novel approach for accelerated iterative reconstruction algorithms based on computation
offloading of the most computationally expensive components.

• A complete view of a GPU-based architecture for Apache Spark framework and its evalu-
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ation using two main medical imaging algorithms.

• An study of the partitioning problem in the projection and backprojection components in
terms of performance.

• An evaluation of the proposed architecture, in both CPU/GPU-based clusters, combining
HPC programming models and Big Data frameworks.

Part of this chapter has already been published in the works: “Architecture for the Execution
of Tasks in Apache Spark in Heterogeneous Environments” [178] and “Medical Imaging Process-
ing on a Big Data platform using Python: Experiences with Heterogeneous and Homogeneous
Architectures” [179].





Chapter 8

Conclusions

This thesis has covered new advances on the CT research field. As motivated in Section 1.1,
we identified the necessity of new solutions for dealing with large scale medical imaging. We
have presented a flexible X-Ray simulation framework that is capable of simulating different
geometries and system configurations, based on the cone-beam geometry. The proposed simu-
lator architecture is layered to facilitate the introduction of future kernels and configurations.
Additionally the solution also offers compatibility with the majority of hardware platforms. The
framework for CT reconstruction allows the inclusion of specific optimizations for both hetero-
geneous and homogeneous architectures. Different programming models have been explored and
evaluated, including shared-memory models like OpenMP, CUDA or OpenCL and distributed-
memory models such as MPI and MapReduce.

Depending on the availability of the resources, the user experience and the type and size
of the input data, the approaches presented in this thesis can provide different advantages or
disadvantages:

• Performance: versions with GPU support provide much higher performance than CPU-
based versions. This includes FUX-Sim and extended FUX-Sim framework and the dis-
tributed Big Data version for PySpark. In all of them the difference between accelerated
and non accelerated execution can represent being up to 48× faster. However, the per-
formance is severely affected in low memory systems and GPUs when reconstructing high
resolution studies.

• High resolution support: the limiting factor when reconstructing and simulating high res-
olution images is memory. For this type of studies, distributed resources are needed, espe-
cially when working with accelerator-based systems in which GPUs are normally packed
with lower memory capacities. However, when performance is not a priority and distributed
systems are not available standard FUX-Sim platform executing in an accelerated node
can be used, as proved in Chapter 3.

• Programming: except for the Big Data option, all the other alternatives presented in this
thesis are constructed around native programming languages. To extend the platform it is
necessary to have certain knowledge about the C language. However, domain experts in
medical imaging do not normally have expertise in this kind of programming languages.
For those cases, the python-based solution for Apache Spark can represent a good option
for fast prototyping with the additional advantage of increased performance due to the
extended support for GPUs.
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In this thesis, we have also studied the unification of traditional HPC-based techniques with
modern Big Data methods. The solution presented here combines the performance offered by
heterogeneous devices and the leading data management mechanisms offered by the MapReduce
programming model.

With the extended FUX-Sim platform, the main objective of this thesis was accomplished
obtaining a framework for the simulation and reconstruction of non-regular geometries. We also
demonstrated that FUX-Sim provides higher performance than other state-of-the-art platforms
with the possibility of reconstructing high resolution studies in near real time.

Additionally, during the development of this thesis, the secondary objectives presented in
Section 1.2 have been fulfilled:

O1 To design a flexible simulator/reconstructor for CT medical image processing
with support for heterogenous architectures.
In Chapter 2, we described the design and implementation of FUX-Sim, an X-Ray frame-
work for image reconstruction and acquisition simulation. FUX-Sim is compatible with two
main hardware architectures: multi-core and GPU accelerated architectures. Additionally,
it provides compatibility with different programming models supporting all types of GPUs
and devices thanks to CUDA and OpenCL. With CUDA, FUX-SIM is able to obtain full
exploitation of NVidia GPUs, meanwhile with OpenCL we enable the compatibility of the
application with a larger number of devices.

O2 To improve the performance of simulation/reconstruction algorithms.
Throughout this thesis different solutions have been proposed for optimizing medical imag-
ing algorithms. Chapter 3, more concretely Section 3.3, was dedicated to the optimization
of traditional reconstruction algorithms on different architectures and programming mod-
els, including GPUs with CUDA and OpenCL support and also multicore architectures
with OpenMP. In Chapter 4, additional optimizations were provided taking into account
the internal architecture of the GPU. Different configurations and transformation tech-
niques were applied with the objective of exploring the performance of the most time
consuming parts over NVidia GPUs.

O3 To design an iterative reconstruction platform for heterogeneous architectures.
Chapter 5 presented the design of a novel iterative reconstruction platform supporting
different iterative reconstruction algorithms. It was constructed as an extension of FUX-
Sim. Thus, this solution obtains all the advantages of this platform in terms of flexibility of
the geometric configurations and the support of heterogeneous architectures with different
programming models.

O4 To reconstruct high resolution images.
In Chapters 6 and 7 the need of a larger memory space and computing capabilities for
reconstructing high resolution images is solved by translating the iterative reconstruction
platform to distributed-memory programming models. In Chapter 6, the HPC paradigm
is explored with the use of the MPI programming model. In Chapter 7, the algorithms are
transformed to the MapReduce programming model and evaluated in a Big Data platform,
Apache Spark, for GPU and CPU-based architectures.

The main contributions of this thesis can be summarized in:
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C1 FUX-Sim, a novel X-ray simulation/reconstruction framework that was designed to be
flexible and fast. It allows the simulation of new geometrical configurations and the recons-
truction of the images using different algorithms, which facilitates the task of evaluating
novel acquisition systems without designing any physical scanner. The implementation is
adapted to two different families of GPUs (with CUDA and OpenCL) and multi-core CPUs
using a modularized approach based on a layered architecture and the parallel implemen-
tation of the algorithms in both types of devices. Consequently, FUX-Sim can be executed
in the majority of the current hardware platforms. FUX-Sim can prove to be valuable for
research on new configurations for X-ray systems with non-standard scanning orbits, new
acquisition protocols, and advanced reconstruction algorithms.

C2 Optimized implementation of projection and backprojection algorithms for dif-
ferent families of GPUs and multi-core CPUs. Kernels for NVidia GPUs are accelerated
and evaluated on different architectures, obtaining up to 2× speedup with respect with
previous versions. These optimizations enable the possibility of reconstructing in near
real-time.

C3 An iterative reconstruction platform for TV-based reconstruction methods
with GPU acceleration. It solves the problem of iterative reconstruction in an efficient
way by using GPUs for the most time-consuming operations. Additionally, it is capable of
reconstructing large memory volumes in GPUs thanks to different partitioning strategies
devised for these out-of-core problems.

C4 An iterative reconstruction algorithm adapted to a distributed-memory envi-
ronment. Using PETSc and MPI FUX-Sim has been extended to support distributed
memory environments, offering new possibilities for the reconstruction of high resolution
studies.

C5 An accelerated architecture for Apache Spark with support for GPUs. This
MPI-based architecture is totally compatible with the standard Apache Spark framework
not requiring any additional modification. An intra-scheduler for managing GPU resources
was including facilitating the execution of the mapping tasks on the GPUs and optimizing
the resources used.

8.1 Future directions

The work presented in this thesis can be further extended. On the one hand, it can be extended
from the medical imaging point of view, including new algorithms and methods as well as
support for other pre and post processing operations. On the other hand, from the point of
view of computation additional improvements can be made both in terms of performance and
memory consumption:

• Inclusion of other type of pre- and post- processing functions such as image segmentation
to complete the framework. These operations could also benefit from the use of optimized
components for different architectures and accelerating devices.

• Expansion of the framework to other accelerated programming models and/or graphics
API that can also speedup the execution of the projection and backprojection algorithms.
The similarities of these kernels with ray casting algorithms used in computer graphics
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and their implementation on new software platforms like Vulkan or OpenGL can provide
additional flexibility regarding hardware support without losing performance.

• Creation of new mixed projection-backprojection kernels that can accelerate the execution
of advanced iterative reconstruction algorithms. Although that approach can reduce the
modularity of the platforms presented in this thesis, the combination of both kernels
increases the opportunity of applying optimization techniques and therefore, the reduction
of the execution time.

• Optimization of the memory management when executing and not executing on accelera-
tors. Study of new storage methods for obtaining better locality of the data and reduce
the memory usage. Additional partitioning models with prior information of previous exe-
cutions in the same hardware could be used to select the best combination of partition
size and level of partitioning.

• Introduction of deep learning neural network models to increase the quality and conver-
gence speed of iterative reconstruction models for limited-data and low-dose studies.

• Optimization of the GPU scheduling algorithms in GPU-based architectures for Apache
Spark. The addition of a GPU-aware global scheduler would increase the capabilities of
offloading computation to less loaded GPU-nodes avoiding possible bottlenecks.

• Inclusion of an advanced physical model for the X-Ray source (heel effect, polychromatic
nature, focal spot) or the detector(noise model, intensity response) in order to extend the
possibilities of FUX-Sim.

8.2 Research achievements

Apart from the tools presented here derived from this work, we have also produced other research
results, including the following publications in International Journals (JCR indexed):

• C. de Molina, E. Serrano, J. Garcia-Blas, J. Carretero, M. Desco, and M. Abella, GPU-
accelerated iterative reconstruction for limited-data tomography in CBCT systems, BMC
Bioinformatics, vol. 19, issue 1, p. 171, 2018. Impact Factor: 2.448 (Q1).

• M. Abella, E. Serrano, J. Garcia-Blas, I. Garcia, C. de Molina, J. Carretero, and M.
Desco, FUX-Sim: Implementation of a fast universal simulation/reconstruction framework
for X-ray systems, Plos one, vol. 12, iss. 7, pp. 1-22, 2017. Impact Factor: 2.806 (Q1).

• E. Serrano, J. Garcia-Blas, and J. Carretero, A comparative study of an X-ray tomography
reconstruction algorithm in accelerated and cloud computing systems, Concurrency and
computation: practice and experience, vol. 27, pp. 5538-5556, 2015. Impact Factor: 0.997
(Q3).

Also related with the development of this thesis we have made several publications in interna-
tional conferences and workshops:

• E. Serrano, J. Garcia-Blas, J. Carretero, and M. Abella, Medical Imaging Processing on
a Big Data platform using Python: Experiences with Heterogeneous and Homogeneous
Architectures, in 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2017), 2017.
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• E. Serrano, T. V. Aa, R. Wuyts, J. Garcia-Blas, J. Carretero, and M. Abella, Exploring
a Distributed Iterative Reconstructor Based on Split Bregman Using PETSc, in 16th
International conference on Algorithms and Architectures for Parallel Processing, UCER
Workshop, 2016.

• E. Serrano, J. Garcia-Blas, J. Carretero, and M. Abella, Architecture for the Execution
of Tasks in Apache Spark in Heterogeneous Environments, in 4th International Workshop
on Parallelism in Bioinformatics (PBio 2016). Euro-Par 2016, 2016.

• E. Serrano, J. Garcia-Blas, C. Molina, I. Garcia, J. Carretero, M. Desco, and M. Abella,
Design and Evaluation of a Parallel and Multi-Platform Cone-Beam X-Ray Simulation
Framework, in 4th International Conference on Image Formation in X-Ray Computed
Tomography, 2016.

• A. Martinez, A. Garcia-Santos, I. Garcia, E. Serrano, J. Garcia-Blas, C. de Molina, M.
Desco, and M. Abella, A software tool for the design and simulation of X-ray acquisi-
tion protocols, in 4th International Conference on Image Formation in X-Ray Computed
Tomography, 2016.

Additionally, three poster presentations were produced:

• E. Serrano, J. Garcia-Blas, C. Molina, I. Garcia, J. Carretero, M. Desco, and M. Abella,
Design and Evaluation of a Parallel and Multi-Platform Cone-Beam X-Ray Simulation
Framework, in 4th International Conference on Image Formation in X-Ray Computed
Tomography, 2016.

• E. Serrano, J. Garcia-Blas, J. Carretero, Pursuing the HPC and Big Data Convergence: a
Medical Imaging use case, in Programming and Tuning Massively Parallel Systems summer
School (PUMPS), 2017.

• E. Serrano, J. Garcia-Blas, J. Carretero, Experiences Accelerating a Medical Image Re-
construction Algorithm with HPC and Big Data paradigms, in Advanced Computer Ar-
chitecture and Compilation for High-Performance and Embedded Systems summer school
(ACACES), 2018.

Contributions have also been made in national conferences:

• E. Serrano, J. Garcia-Blas, J. Carretero, and M. Abella, Plataforma flexible y portable de
reconstrucción para escáneres de rayos X acelerada con GPUs. Jornadas Sarteco, 2018.

• E. Serrano, J. Garcia-Blas, J. Carretero, and M. Abella, Propuesta arquitectónica para la
ejecución de tareas en Apache Spark para entornos heterogéneos. Jornadas de Paralelismo,
2016.

As a result of the work done through the development of this thesis, two software applications
have been registered in IPR Office:

• Manuel Desco Menendez, Monica Abella Garcia, Claudia de Molina, Ines Garcia Barquero,
Estefania Serrano Lopez, Javier Garcia-Blas, Jesus Carretero. FUX-Sim. M-003481/2017,
24/05/2017. University Carlos III of Madrid.
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• Manuel Desco, Monica Abella, Claudia de Molina, Estefania Serrano Lopez, Javier Garcia-
Blas, Jesus Carretero. Raptor. M-003480/2017, 24/05/2017. University Carlos III of
Madrid.

During the development of this thesis, I obtained two research internships to collaborate with
other research groups:

• IMEC. Leuven, Belgium. Under the direction of PhD. Roel Wuyts. 2 months. From June
2016 to July 2016.

• INESC-ID. Lisbon, Portugal. Under the direction of Professor Leonel Sousa. 1 month.
September 2017.

8.3 Funding

This work has been mainly funded thanks to a FPU fellowship (FPU14/03875) from the Spanish
Ministry of Education.

It has also been partially supported by other grants:

• DPI2016-79075-R. “Nuevos escenarios de tomografía por rayos X”, from the Spanish Min-
istry of Economy and Competitiveness.

• TIN2016-79637-P Towards unification of HPC and Big Data Paradigms from the Spanish
Ministry of Economy and Competitiveness.
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• TIN2013-41350-P, Scalable Data Management Techniques for High-End Computing Sys-
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