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Abstract

In this bachelor thesis, a guide on how to take the first steps in the ArmarX
framework. This software provides a complete robot development environment.
In particular, how to use the humanoid robot TEO of the investigation group
RoboticsLab from University Carlos III in this software.

In order to complete this objective, the several stages were followed. First,
a initial research about the software ArmarX was performed, learning its main
features and how to use this tool. Then, the 3D model of TEO was adapted to be
used in this environment. When it was complete, a task was created and adapted
to the robot. Finally, it was exported to the real-world TEO and the results were
compared.

During this process, an extensive documentation was performed, in order to
pursue the objective previously mentioned, the formulation a guide for future
researchers interested in ArmarX.
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1 Introduction

1.1 Motivations

The motivations for this thesis can be found in several aspects. First, I already
knew that working with robots will be something I would like to do. That is why
I specialized at the end of my bachelor in electronics and automatics. Therefore,
I took the opportunity of working with such an amazing robot as TEO.

Second, the idea of providing future students with information and a guide to
work with. Creating a manual of a new tool, skipping them the tedious task of
learning the most basic things of a program, so they can focus on more intricate
projects with this software. Also, it is an opportunity to show our humanoid robot
and its teamwork.

The importance of this thesis and work is immense. ArmarX has such poten-
tial, from being able to generate basic control programs, to support the creation of
tasks with visual servoing; passing through learning and grasping with human-like
hands. This range of abilities is the reason why several investigation centres are
interested in ArmarX, to exploit to the maximum the capabilities of their own hu-
manoid robots. From the Italian Institute of Technology (IIT), to the University
of Tokyo. Their intention to collaborate is creating bridges that will allow them
release all the potential of their robots, iCub and HRP-2 respectively, and their
software platforms: YARP and OpenHRP.

Finally, the opportunity to challenge myself and learn from zero such
amazing (and complex) tool like ArmarX. Combining things I like: robots and
programming. Even thought sometimes it was frustrating, little steps were a huge
reward. Watching the results of my own work is a fulfilling emotion.

1.2 Objectives

This project aims to the main goal of introducing the use of ArmarX in the
University Carlos III. To do so, it is necessary to create a useful manual to initiate
an environment that allows us to simulate a robot. So the next one who will work
with it can be develop more complex tasks with the framework.

With that in mind, we will go step by step, with intermediate goals:

� Familiarize with the framework ArmarX, learn its way of work and some of
the possibilities it offers.

� Prepare TEO to make its model compatible with ArmarX, learning the
syntax used in the XML file that describes it. Also knowing things we can
add in order to create a more accurate simulation model.

� Learning how to create out tasks in ArmarX: how to make Statecharts.
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� Adding all necessary parameters and options in ArmarX to deploy a
simulation.

� Compare the results of the simulation with a demonstration in the real robot.
Check if there are differences and investigate their origin.

1.3 Document Organization

This project is divided in two main sections:

� The first part contains the development of the subject, in it we will find:

– A state of the art about Robot Development Environments (RDEs),
with a special mention of ArmarX and the humanoid robots that are
using this software. Some of them developed their own bridges to exploit
the capabilities of ArmarX.

– Introduction to TEO (Task Enviroment Operator), our university’s
humanoid robot. Presentation of his soft- hardware architectures,
capabilities and devices.

– Presentation of the ArmarX framework, its design principles, main
features and how it works. Also a special mention to its StateCharts.

– How a robot is defined for the ArmarX environment. Possible enhances
to our model.

– Explanation of the process of running a simulation in ArmarX, using
TEO as subject. Running a simulation in order to obtain the results.

– Deploying the operation in the real TEO, compare results to highlight
the differences between the simulation and the real model.

� The second part includes several annexes describing step by step the process
followed in the thesis. This section comprehends a notable extension of this
work. That is due to the main idea of this work to become a guide to teach
new developers in the use of the software ArmarX. Also it is divided in several
sub-annexes:

– Annex A explains the steps followed to build a XML file that contains
our robot compatible with ArmarX environment, in addition with some
features we can add to it.

– Annex B is intended as a introducing guide to ArmarX and will
implement a counter.

– Annex C will expand the work done in Annex B adding the robot model
and the task chosen for TEO.
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2 State of the Art

This section will provide a general information about actual robot-development
software. Their idea and main purposes of them. Also a brief introduction to some
of the most used. Then, ArmarX is presented. A brief presentation of some robots
that use this framework. With that, the intention is to show the importance of
this tool, and the advantages it will bring to our university.

2.1 Robot Development Environment

In contrast with other software components, robots work with real-time actua-
tors, sensors and effectors with physical parameters that must be monitored [1]. In
order to ease the research in humanoid robots, Robot Development Environ-
ments (RDEs) were created. This programs join together all different elements
of the robot. In addition, they should make the work and training needed for the
developer as easy as possible.

Currently, several RDEs are available because they have been developed in the
past 10 years. A few examples of them are:

� OpenRTM-Aist: Stands for Robot Technology (RT) Middleware [2].
Developed by the National Institute of Advanced Industrial Science and
Technology of Japan. Is a distributed control architecture intended not
only for industrial field but also to nonindustrial field such as human daily
life support systems. Several Japanese robot platforms build their robot
frameworks over OpenRTM, like the one for the HRP family, OpenHRP [3].

Figure 2.1: OpenRTM-aist software.

� ROS: The Robot Operating System (ROS) was designed to develop large-
scale service robots. This framework relies on a communication based
on peer-to-peer [4]. It is also language neutral and can support different
languages: C++, Python Octave and LISP are supported. ROS created a
base to communicate using a peer-to-peer method, and in addition, includes
modules to work with it, some of them for simulation.
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Figure 2.2: Lunar Loggerhead is the 11th official ROS release.

� OROCOS: Open RObot COntrol Software (OROCOS), is a project that
follows a similar Open Source development than Linux or LATEX. Consists
in researchers and engineers that will contribute code, documentation and
feedback to the project. Relies on COBRA standards and its real time
extensions [5].

Figure 2.3: The Orocos project.

� YARP: Stands for “Yet Another Robot Platform”. This middleware is not
intended to be a complete operating system of our robots, but to be used
alongside other programs and communicate them. The goal of YARP is to
minimize the effort devoted to infrastructure-level software development by
facilitating code reuse, modularity and so maximize research-level develop-
ment and collaboration [6].

This software is already used in the Robotics department. TEO’s current
control software is constructed over it. All access to TEO’s hardware is run
through YARP applications.
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Figure 2.4: Yet Another Robot Platform.

� OpenRAVE: Another Open Source software that provides a visualization
environment for simulation. OpenRAVE has been already used with several
TEO applications like its main simulator and a collision checker plug-in.

Figure 2.5: OpenRAVE collision module implemented in TEO.

2.2 ArmarX Relevance

ArmarX is a robot programming environment that has been developed by the
Karlsruhe Institute of Technology (KIT). In order to ease the realization of higher
level capabilities needed by complex robotic systems such as humanoid robots. It
is built over the idea of a constant disclosure of the system state. This feature will
allow programmers to easily access to all data [7].

The ArmarX framework provides several tools, like a Graphical User Interface
(GUI) or statechart editors. With a high modularity and reusability, ArmarX can
be used to easily program complex tasks and revise all its information.

This simulation software is mainly used by its developers in with the Armar
series, actually Armar III [8] and Armar IV [9]. But ArmarX framework is not
only used by its developers: ArmarX is used in several international projects of
cooperation.
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(a) ArmarIII doing the dishes. (b) ArmarIII preparing a salad.

Figure 2.6: ArmarIII household environments assistant.

One example is the iCub, the humanoid robot built by the Italian Institute
of Technology (IIT) and founded by the European Union. The common project
had as objective trespassing the grasping skills from Armar III to iCub using the
ArmarX framework [10]. Both teams IIT and KIT succeed in creating a bridge
between its middlewares: whereas ArmarIII used ArmarX, the iCub works with
YARP [11].

Figure 2.7: iCub from the Istituto Italiano di Tecnologia (Italian Institute of
Technology).
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Figure 2.8: HRP-2 humanoid robot.

ArmarX is also used by the Japanese HRP-2 humanoid robot. The aim is
a bridge between OpenHRP and ArmarX. This humanoid robot has 30 DOF
(Degrees Of Freedom) and is able to stand up from lying down in the floor. This
ability was already achieved in smaller robots, but not in one this size, thus HRP-2
is 1.54 meters high and weights 58 kilograms.
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3 TEO

TEO (Task Environment Operator) is a humanoid robot developed by the
robotics group RoboticsLab, at the University Carlos III of Madrid. It was meant
as an improved version of its predecessors RH-0 and RH-1 [12].

3.1 Structure Overview

This anthropomorphic robot was designed to act and behave like a human. It
is 1.70 meters high and weights 70 kilograms. With 28 DOF (Degrees Of Freedom)
can perform elaborated manipulation tasks.

Figure 3.1: Task Environment Operator, TEO.

Its body consists in a structure of aluminium and over it the electronic
is mounted. TEO has several force/torque sensors that allows him to stand
and control its posture [13]. The robot has 4 microprocessors: locomotion,
manipulation, artificial vision and finally, the main processor which manages the
others. The locomotion processor, that controls the legs and the torso.

21



(a) TEO’s right leg. (b) TEO’s right arm.

Figure 3.2: Closer insights of TEO’s structure.

The manipulation processor controls the movement of the arms and the head.
The processor responsible fort he computer vision uses a camera with a infra-red
sensor, RGB and depth capabilities provided by ASUS. The camera is located in
the head, as seen in Figure 3.3.

Figure 3.3: TEO head with the camera
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3.2 Functional Capabilities

In addition to its mechanical abilities, TEO can also learn and interact with
its environment [14]. This high level capabilities have been used to program
knowledge-acquiring skills. Recently, developers in the RoboticsLab have been
able to create applications that allowed TEO to reproduce human exercises like
ironing or painting (Figure 3.4).

(a) TEO ironing the wrinkles of a
shirt [15].

(b) TEO learning how to paint from a
human.

Figure 3.4: TEO completing human tasks.

TEO can successfully perform duties in human environments, after all, it is the
final purpose of all humanoid robots. Researchers in the university have developed
a high end application for TEO to act as a waiter, delivering bottles and caps in
a tray while advancing. It uses all of its capacities to this task:

� The use of his vision facility allows him to detect unstable bottles in the
plate located in its arm. In addition, using this information, it can relocate
the arm to make it stable again [16].

� In addition, it can obtain direct feedback of the object’s stability with its
inertial, position and force/torque sensors. This information is used to
recalculate the new position so the object in balance dues not fall [17].
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Figure 3.5: Head movement to maintain the bottle centered in the image.
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4 ArmarX

The Robot Development Environment ArmarX is a software framework
created by the High Performance Humanoid Technologies Lab (H2T) of the
Karlsruhe Institute of Technology (KIT).

4.1 Introduction

The ArmarX platform allows programmers to design robot tasks in a easy, vi-
sual and intuitive way; via statecharts. Here we will describe how our robot will
behave, each state and its parameters. Later ArmarX will execute this simulation,
and with its extensive log information, we will be able to obtain the results and
visualize the program loaded in our robot [7].

ArmarX is composed by numerous components: 3D visualizers, visual per-
ception recorders, collision checkers and several observers in order to collect the
information. This components communicate themselves using ethernet ports.

Recapitulating, this is a very powerful software with a immense range of
possibilities that will allow us to simulate each and every aspect of a robot. More
importantly, we can push the knowledge of our robot, programming new tasks
and inspect every result obtained. With the constant feedback od ArmarX and its
intuitive way-of-work, we can develop complicated tasks for our robots far more
easily than just writing thousands of code lines.

4.2 Design Principles

This section will provide a general information about ArmarX and the
objectives its developers wanted to accomplish with this tool:

� Distributed processing: Typical architecture of actual robots consists in
several PCs, each controlling one or various subsystems. They can be in
charge of controlling hardware elements such as motors, sensors, cameras,
etc. All this computers must be able to communicate properly and in a
clear way. With this purpose, ArmarX allows communication using a shared
memory or Ethernet, so the robot programs reach all required hardware.

� Interoperability: Nowadays, both Hardware and Software used in robot
applications are far from being standardized. Therefore is compulsory that
every RDE allow us to work with an extensive range of different hardware
platforms and operating systems. To fulfil this requirement, ArmarX can
be used in Windows, Mac OS X and Linux. In addition, ArmarX uses
an interface definition language (IDL) supporting a variety of platforms and
programming languages (C++, Java, C#, Objective-C, Python, Ruby, PHP,
and ActionScript). Also the hardware coverage can be easily extended.

� Open source: ArmarX is available open source under the GPL license.
Providing RDEs under an open source license is essential in order to achieve
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the most impact on robotics by allowing researchers and developers to achieve
a deep insight in the underlying mechanisms.

� Graphical editing of Control- and Dataflow: ArmarX makes a special
emphasis in allowing us to manage the control of our robot using a graphical
interface, like with the StateChart editor; but also giving us all the data that
is being manipulated in a clear way.

� Disclosure of the system state: Means that the current state and all
its parameters can be inspected at runtime and logged for future behavior
adaptation via a network interface. It allows programmers to access the
data of many parts of the system required for debugging, monitoring and
profiling purposes. Since the amount of available data increases with the
size of the developed system an abstraction of the data flow into easy to
grasp visualizations is required.

4.3 Software Architecture

From a sofware point of view, ArmarX is formed by three layers: the Middle-
ware Layer, the Robot Framework Layer, and the Application Layer.

The Middleware Layer abstracts communication mechanisms, provides basic
building blocks for distributed applications, and defines entry points for visualiza-
tion and debugging.

The Robot Framework Layer includes several different and specific projects but
under the final goal of adding capabilities closer to our real robot. This includes
access to the sensor and motors on a higher level. The mentioned projects are
the ones that include memory (MemoryX), robot and world model, perception
(VisionX), and execution modules. Robot custom APIs can be e implemented
by extending and further specializing the generic robot API building blocks.

The Application Layer is where the final robot program is implemented. We
can use generic and specific APIs in our robot.

Also ArmarX provides us tools to facilitate the development of robot
applications. Here is integrated the graphic user interface (ArmarX GUI), the
StateChart Editor, inspection and simulating environments.
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Figure 4.1: ArmarX software structure. Components in grey are provided by
ArmarX, in blue, configurable/extensible and in orange, custom implementation.

4.3.1 Middleware Layer

The Middleware Layer is built over the ZeroC Internet Communication
Engine (Ice) [18], a computing platform that provides basic components for de-
veloping robot architectures. Ice is a platform that implements a distributed com-
puting processes using Ethernet. In ArmarX, this network based-communication
mechanism is expanded using a shared memory block in order to transfer large
data chunks efficiently. ArmarXCore belongs to this part of the framework and
is vital for the foundations and integration between the lower level elements and
custom APIs with high level programming.

Additionally, the Middleware Layer provides a number of essential tools such
as transparent shared-memory, Ethernet transfer of data, and thread pool based
threading facilities.

The lowest level is the Sensor-Actor Unit serving as abstraction of robot
components. Observers monitor sensory data streams and generate application
specific events which trigger Operations to issue control commands to the robot.

� Sensor-Actor Units: Provide abstractions of robot components such as
kinematic structures or cameras. In ArmarX the sensor data is accessible by
a publisher-subscriber mechanism. In the other hand, the control is realized
using remote invocation.

� Observers: API events originate from desired patterns in sensory data such
as high motor temperatures or reaching a target pose. Observers generate
these events by evaluating application defined conditions on the sensory data
stream. The API offers a set of basic checks and provides interfaces to
support implementing more advanced and application specific checks easily.
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� StateCharts: One fundamental elements of ArmarX , already mentioned in
Section 4.2, is the representation of robot operations using as state-transition
networks, called statecharts. Each state in the network is defined by a
set of input/output parameters and can issue control commands or start
asynchronous calculations. State transitions define the data flow between
states by mapping output values of one state into the input values of the
next state.

4.3.2 Robot Framework Layer

The Robot Framework Layer makes possible the integration of robot definitions
with sensors and memory use. Here the APIs can be customized in order to be
used in a specific robot.

A robot definition for ArmarX environment will consist in a kinematic struc-
ture, with optional dynamic parameters, such as masses or inertia matrices; and
sensors like position or cameras. This robot definition will be written in a XML
file. Further detail is explained in Section 5. This part of ArmarX will be in charge
of this dynamic and cinematic aspects of our robot.

The Robot Framework Layer contains important modules of the ArmarX
architecture [19]:

� MemoryX: Responsible of all memory related components in ArmarX.
Holds basic building blocks for memory structures. This can be integrated
in the system’s database to form permanent information [20]. It contains
several applications: Working Memory, Long-Term Memory and Prior
Knowledge.

– Prior Knowledge: Holds information which is already known to
the robot and which has been predefined by the user. We can add
information about 3D objects or features for object detection.

– Working Memory: Contains robot’s actual state. It can be
updatedby the perception of our robot or by Prior Knowledge using
an updater interface.

– Long-Term Memory: Provides permanent storage capabilities.
Offers the potential of learning . It also allows creating snapshots of
the current Working Memory state to be used for later re-loading.
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Figure 4.2: MemoryX structure.

� VisionX: Includes perception components of ArmarX based on image
processing from cameras. It can provide images and distribute the data
through Ethernet or shared memory. It can also integrate object recognition.
The results are written in the Working Memory of MemoryX.

Figure 4.3: VisionX structure.

� ArmarX Simulator: All RDEs must include a simulator in order to revise
the robot programs. Even though they cannot provide decisive information
about components such as sensors or physical interaction, we can observe
the general behaviour of our robot program. The framework provides the
ArmarX Simulator component, which can carry the computing of sensors,
motors and dynamics of our robot.

� Robot Program: All applications for ArmarX will be organized in
Statecharts. All program logic is represented as one comprehensive
statechart consisting of many operations which might be executed on
different hosts due to the distributed nature of ArmarX. Añadir imagenes
de estos tres apartados
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4.4 StateChart Concept

4.4.1 Introduction to the Statecharts

The statechart language is an evolution of conventional formalism of state ma-
chines and state diagrams, created by D. Harel [21]. This type of diagram, widely
used in computer science, offers information about the behaviour of a system.

The use of statecharts in ArmarX is deeply integrated in the framework itself,
thus, every application will consist in a statechart, with hardware abstraction of a
robot. Most of components in the software are aimed to complement themselves
with its use.

4.4.2 Design Overview

The key principles of the ArmarX statecharts are modularity, reusability,
runtime-reconfigurability, decentralization, and state disclosure.

� Modularity: Comes naturally in ArmarX statecharts. Each individual state
can have its own input and output parameters.

� Reusability: Each state can be introduced in other sub-state and define its
specific interaction. Smaller processes defined in a statechart can be joined
together in order to create bigger and more complex robot behaviour.

� Runtime-reconfigurability: Means that a statechart can be defined
in configuration files, and that the statechart structure can be changed
completely at runtime.

� Decentralization: For increased robustness, the statecharts don not consist
in one process, they can be spread over several ones. Errors in one state
component will not crash the whole process, but to inform other stances
that has failed.

� State disclosure: Already mentioned in Section 4.2, it is very important to
access and log all actual states and parameters. That ArmarX Framework
and the statecharts share this common goal is one of several hints about how
deeply the use of statecharts is related with the software itself.

4.4.3 ArmarX Statecharts

The statecharts of ArmarX are based on Harel’s, but with some differences.
They are simplified versions of them, some features are omitted. Also some ad-
ditions are made, do not forget that Harel created the system in 1987, data flow
specification and control during transitions are added in ArmarX. Also each state
can include asynchronous code, so different states can run simultaneously.
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Every statechart in ArmarX is itself a state of the robot. Also, we can add
ongoing transitions to a statechart. This transitions link the states between them.
The states can be programmed to consider several possible events. Figure 4.4
shows a minimal example. It is possible to include states inside others, creating
substates. This is the main structure of statecharts in ArmarX: a main state that
holds several substates related with outgoing events.

Figure 4.4: A basic statechart in ArmarX.

They contain the functions: onEnter(), onBreak() and onExit(), (synchronous)
and run() (asynchronous) to provide functionality. The synchronous functions will
be executed each time the state is entered, stopped or normally exited, respectively.
The run() function will hold the continuous use of the desired state [22]. This
functions can be programmed (in C++) create parameters, use actuators or make
decisions. Hence, this capability can compared to the flowcharts diagrams: being
each state together both action and decision. Figure 4.5 shows two diagrams, one
a flowchart and one statechart, identical.
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(a) Flowchart diagram of a simple
behaviour.

(b) Statechart diagram of a simple
behaviour.

Figure 4.5: Equivalent diagrams in different representations.

All states can hold parameters, in fact, is where the main data is hold. A state
can specify three types of parameters:

� Input parameters: Already defined by the programmer or previous states
before the state is entered. They are read-only and cannot be changed by
this state. Generally, they specify general parametrization for the program
like fixed parameters or constants.

� Local parameters: Computed within the state. Can be used for temporary
memory storage or to be passed to following states.

� Output parameters: Created in the developer code. They can be passed
to the next state.
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5 TEO Models

This section explains the process followed to create a compatible model of
TEO for ArmarX, describing the tool we will use: Simox, and the possibilities
and requisites to build a robot for this environment.

5.1 Prerequisites

Before installing and compiling ArmarX in our computer we first need the 3D
models of the robot we want to work with. Each program usually uses a different
and specific format to load the full robot, not the 3D format: .iv, .wrl, etc. But the
way all its parts are joined together: what hierarchy follows, joints parameters,
actors units and so on. Usually, XML (eXtensible Markup Language) is used.
It contains the information previously mentioned in a text-based class structure.
ArmarX is no exception and it bases the loading process in the tool Simox.

Simox is a software platform also developed by H2T that allows to set up 3D
robot environments. The robotics department already had XML files compatibles
with OpenRAVE, but unfortunately, they are not suitable for Simox-based tools.

5.2 Simox

Simox is another proyect from H2T, its a package C++ tools that provides
algorithms for 3D simulation. Is composed of three libraries: VirtualRobot, Saba
and Grasp Studio; their objective is create scenarios and calculate functionalities
for robots [23].

� VirtualRobot: This library is used for defining environments with one or
several robots with many degrees of freedom. This will be the part of Simox
we will use for our project.

� Saba: Works with data incorporated from VirtualRobot to calculate free-
collision trajectories.

� Grasp Studio: Library completely dedicated to plan optimal grasping, from
simple clamps to complex humanoid hands with tens of joints.

5.3 Robot Components in ArmarX

Once we have a look at the options ArmarX give us we soon realize the huge
range of possibilities we have in front of ourselves. We can include in our robot not
just the basic 3D models and their position, we can add directly: sensors, cameras,
electrical information. Not only that, is possible to fulfil, a detailed and extensive
information about all aspects and elements in the robot.
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In the next section, complete information about defining a robot is given. Each
part contains a description, diagram o the class and, if necessary, a table for spe-
cific fields of the class.

Figure 5.1 describes how a robot is structured: a origin point (RootNode) and
a series of child nodes which contains the robot’s parts. Also you can add custom
lists of nodes called RobotNodeSet.

Figure 5.1: Class diagram of a robot in Simox.

5.3.1 RobotNode

Simox defines a robot like a succession of objects, so called RobotNodes. They
are points in the space that also contain information. Each node corresponds to
a piece of the robot: the waist, the forearm, etc; and stores all information about
it. The way a node is usually defined follow this process:

- First name it, this exact same name will be used if it is a child of another
node.

- Apply a transformation if the coordinate system does not match with its
parent’s.

- Add the visualization and collision 3D models. Also calculate and introduce
the physics parameters.

- Designate a child (or more than one) to keep with this same procedure. Also
yo can import a child from another previously defined XML file.
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5.3.2 Joint

Each node can contain a joint, but is optional, for example, when defining a
part that does not begin where the previous ends, so we need a transformation to
keep cohesion in the robot’s structure.

It is possible to define two kinds of articulations: Prismatic and Revolute; they
can also be set to Fixed, but not defining a joint already implies that will not allow
relative movement.

Once we set the type of our new joint, we mark in which axis should move
or rotate. Here we have a difference with other TEO’s models: Simox does not
change the axis of subordinate coordinate systems (See Figure 5.2), so the rotation
axis and the direction are changed to match previous diagrams.

(a) TEO’s left arm
coordinate sub-systems in

Simox (RobotViewer).

(b) TEO’s left arm
coordinate sub-systems
diagram in OpenRAVE.

Figure 5.2: Coordinate system differences between Simox and OpenRAVE.

As shown in Figure 5.3 we can add more information about the joints like its
limits or maximum velocity/acceleration/torque.
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Figure 5.3: Joint class diagram in Simox.

Parameter Available options

unitsAngle ”rad”, ”radian”, ”deg” or ”degree”
unitLength ”m”, ”meter”, ”mm” or ”millimetre”
unitTime ”sec”, ”second”, ”min”, ”minute”, ”h” or ”hour”

Table 5.1: Additional information for the class Joint.

5.3.3 Physics

It is possible to store parameters to have, in addition to the kinematic
simulation, a dynamic one. We can add the mass, the inertia matrix and the
center of mass so we have an accurate dynamic description of our robot. More
detail is given in the Figure 5.4 and in the Table 5.2.
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Figure 5.4: Physics class diagram in Simox.

Parameter Available options

unitLength, unit ”m”, ”meter”, ”mm” or ”millimetre”
unitsWeight ”g”, ”gram”, ”kg”, ”kilogram”, ”t” or ”ton”

Table 5.2: Additional information fo the class Physics.

5.3.4 Visualization

In most of the cases we will like to view the 3D model of our robot, to have
a more accurate picture of how is it working in a simulation. Simox offers us the
possibility to add a 3D model to our robot. Seems compulsory, but it is not: for
example we only want to calculate paths and collisions, we can skip this part and
just add the collision model and go straight to compute the process.

Simox supports .wrl (Virtual Reality Modeling Language), .iv (Inventor) and
.stl (STereoLithography) files. TEO’s models are .wrl and will be the only file
type used.
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One interesting option is to use the main 3D model as out collision file, but
is not recommended: collision models are simplified sketches, while main files are
a fully-detailed files. If we use them as collision models the PC will have to load
a big 3D file twice, and most certainly slowing the computing process. Another
reason to use a custom expanded model is the difference between the 3D model
and the real one: in the simulated one, cables and small boards attached to TEO
are not taken in consideration, if we run a simulation with the exact same model,
we can damage components that are not considered in the normal model.

The code in Listing 5.1 gives an example of how to refer to a file outside this
XML.

1 <Visualization>

2 <File type="Inventor">models/2.0^brazo_izquierdo_links.wrl</File>

3 </Visualization>

Listing 5.1: File importation example

Figure 5.5: Visualization class diagram in Simox.

File format type

.iv and .wrl ”Inventor”
stl ”osg”

Table 5.3: Additional information of the class Visualization.

5.3.5 Collision

One of the most interesting parts about Simox’s robots definitions is the pos-
sibility to add a 3D collision model of our robot, instead of creating a whole
application that calculates a expanded model in real time like the one developed
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in OpenRAVE in this department, we can just add another 3D file. Like said in
the Visualization section is recommended creating another expanded model for
this part of the simulation. Is also advisable simplify this model, just a 3D sketch
of the space that TEO occupies.

We can refer to a file for the collision model in the exact same way as in the
Visualization class, explained in Listing 5.1.

Figure 5.6: Collision class diagram in Simox.

5.3.6 Transform

The class Transform is indispensable for the construction of a robot: allows
us to refer the position of the next RobotNode to the previous one. As shown in
Figure 5.7, we have a wide range of possible transformations: a 4 by 4 matrix
or a rotation like a quaternion, a 3 by 3 matrix or RollPitchYaw. Also a
Denavit-Hartenberg transformation can be used. For TEO, the former method
was used because all the parameters were already calculated and documented.

One thing to note here is that the coordinate systems differ from the main
diagram in TEO. For Simox, coordinate axis were left unchanged, meanwhile in
the other, there are changed in each articulation.

1 <Transform>

2 <matrix4x4>

3 <row1 c4="0" c3="0" c2="1" c1="0"/>

4 <row2 c4="-146" c3="0" c2="0" c1="-1"/>

5 <row3 c4="0" c3="1" c2="0" c1="0"/>

6 <row4 c4="1" c3="0" c2="0" c1="0"/>

7 </matrix4x4>

8 <DH units="degree" theta="90" alpha="0" d="0" a="0"/>

9 </Transform>

Listing 5.2: Transformation example.
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Parameter Available options

unitsAngle, units ”rad”, ”radian”, ”deg” or ”degree”

Table 5.4: Additional information fo the class Transform.

Figure 5.7: Transform class diagram in Simox.

5.3.7 Sensor

It is possible to add sensors in the definition of our robot, so we can use them
in ArmarX directly. Actually there is only two types supported: Position and
Camera.

This class can have a Transformation class on its own, when the sensor is not
exactly located in the node.

5.3.8 Child

Robots are usually defined in a tree structure, with a starting part or root is
set as initial and branches expand from it, creating the limbs. Simox follows the
same rules, and the way to define them are with the Child class. A example can
be seen in Listing 5.3, where two joints are related together.
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Figure 5.8: Child class diagram in Simox.

1 <RobotNode name="LeftAxialShoulder">

2 <Joint type="revolute">

3 <Axis z="-1" y="0" x="0"/>

4 <Limits units="degree" hi="55" lo="-50"/>

5 </Joint>

6 <Transform>

7 <DH units="degree" alpha="0" a="0" d="-329.01" theta="0"/>

8 </Transform>

9 <Visualization>

10 <File type="Inventor">models/2.2^brazo_izquierdo_links.wrl</File>

11 </Visualization>

12 <Child name="LeftFrontalElbow"/>

13 </RobotNode>

14

15 <RobotNode name="LeftFrontalElbow">

16 <Joint type="revolute">

17 <Axis z="0" y="1" x="0"/>

18 <Limits units="degree" hi="10" lo="-100"/>

19 </Joint>

20 <Visualization>

21 <File type="Inventor">models/2.3^brazo_izquierdo_links.wrl</File>

22 </Visualization>

23 <Child name="LeftAxialWrist"/>

24 </RobotNode>

Listing 5.3: Code fragment showing two consecutive RobotNodes

5.3.9 ChildFromRobot

As said before, a robot is defined as a tree, but sometimes we don’t want to
define the whole robot in a single file: if it has a considerable size, making changes
can be a tedious task. For this reason, is recommended to split the robot in several
files, for example, TEO is formed by a main file ”TEOSimox.xml” which contains
a reference to the other files, each one of them defines a limb.

You can refer to another XML file in the same way to a visualization file (See
line 8, Listing 5.4).
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Figure 5.9: ChildFromRobot class diagram.

1 <!-- Transformation to the BODY -->

2 <RobotNode name="TrafoToBody">

3 <Transform>

4 <DH units="degree" theta="0" alpha="0" d="193.2" a="0"/>

5 </Transform>

6 <ChildFromRobot>

7 <File importEEF="true">xmlfiles/BodySimox.xml</File>

8 </ChildFromRobot>

9 </RobotNode>

Listing 5.4: Code fragment that refers to a different XML file.

5.3.10 RobotNodeSets

When defining a robot in Simox we will end up with some RobotNodes that
are only auxiliary, like transformations for external XML imports or TCPs (Tool
Center point) so working with a lot of elements can be difficult and slowly. To
solve this problem we can define a RobotNodeSet, which is a chain of RobotNodes
that keep some kind of relationship, like a leg or the body articulations.

Having a handful of RobotNodeSets is suggested, you can work with a specific
chain or even the whole body but without having auxiliary nodes around (See
Figure 5.10). It is compulsory for later stages of the simulation to have at least
one RobotNodeSet.

Defining a RobotNodeSet is a simple task, we just have to define the root node
for the chain, a TCP and then writing down the exact names of the RobotNodes
desired, as shown in Listing 5.5.

1 <RobotNodeSet name="RightLegChain" tcp="RightLegTCP" kinematicRoot="

RightAxialHip">

2 <Node name="RightAxialHip"/>

3 <Node name="RightSaggitalHip"/>

4 <Node name="RightFrontalHip"/>

5 <Node name="RightFrontalKnee"/>

6 <Node name="RightFrontalAnkle"/>

7 <Node name="RightSaggitalAnkle"/>

8 </RobotNodeSet>

Listing 5.5: RobotNodeSet of the right leg.
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Figure 5.10: Example in Simox of the simplification achieved by making use of
RobotNodeSet.

5.4 TEO Definition

One of the problems the department faced for a time was the difference of
models, names and procedures used in various projects related with TEO, not all
the teams used the same nomenclature or not even the 3D same models, summing
up, a lack of standardization. Fortunately, this issue was solved long ago and now
they share the same GitHub repository and there is no compatibility problems
between different users. With that objective in mind, the aim was to follow the
same tree structure and nomenclature, to a greater or lesser extent, used in the
OpenRAVE models.
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Figure 5.11: Expanded 3D model fo TEO in Blender, imported with
RobotEditor, plug-in from H2T.

5.4.1 Model Hierarchy

The hierarchy used in this model of TEO is the same in the rest of TEO’s
projects. It begins with setting-up a root in the pelvis, this will be our reference
node. From it we will apply transformations to the following parts, the body and
the legs. The body also follows a similar operation, from it we have the transfor-
mations to the arms and the head, and then the particular XML files are called.

In Figure 5.12 we can see the tree diagram followed. Each box is a
different XML file and the arrows represent the auxiliary transformation previously
mentioned.
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Figure 5.12: TEO’s Hierarchy.

5.4.2 Definition process

This section will explain with more detail the process followed (and recom-
mended) to define a robot.

Is highly advisable to start with something small, for example an arm. First
we add the visualization so we have an idea of how is progressing.

Now we add one child, its visualization and the transformation from the first
part to the next one. We add the visualization part so we can see each time we
load in the part RobotViewer from Simox if we have the coordinates set correctly.

Repeating the process, the first limb is set. We can add parameters to have a
more strict description of our robot: joint limits, parts masses, etc. Now we have
one XML file with an arm like the one in Figure 5.13.
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Figure 5.13: TEO’s right arm.

After one limb is created, the remaining parts are a simple task, just repeating
the same process. But the important part comes when we want to join them all in
the same file. As exapmle ,like what was showed in Figure 5.12, The Body XML
file holds both arms and head XML files inside it self. And in Listing 5.6 details
the process: two auxiliary RobotNodes were defined, applied transformations to
the shoulders initial points and then importing each arm XML file.

1 <RobotNode name="TrafoToRightArm">

2 <Transform>

3 <matrix4x4>

4 <row1 c4="0" c3="0" c2="-1" c1="0"/>

5 <row2 c4="-262.92" c3="-1" c2="0" c1="0"/>

6 <row3 c4="305" c3="0" c2="0" c1="1"/>

7 <row4 c4="1" c3="0" c2="0" c1="0"/>

8 </matrix4x4>

9 <DH units="degree" theta="-90" alpha="-90" d="0" a="0"/>

10 </Transform>

11 <ChildFromRobot>

12 <File importEEF="true">RightArmSimox.xml</File>

13 </ChildFromRobot>

14 </RobotNode>

15

16 <RobotNode name="TrafoToLeftArm">

17 <Transform>
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18 <matrix4x4>

19 <row1 c4="0" c3="0" c2="0" c1="1"/>

20 <row2 c4="262.92" c3="0" c2="1" c1="0"/>

21 <row3 c4="305" c3="1" c2="0" c1="0"/>

22 <row4 c4="1" c3="0" c2="0" c1="0"/>

23 </matrix4x4>

24 </Transform>

25 <ChildFromRobot>

26 <File importEEF="true">LeftArmSimox.xml</File>

27 </ChildFromRobot>

28 </RobotNode>

Listing 5.6: Arms referencing.

5.4.3 Complete Definition

This process was repeated with all limb sub-assemblies: the legs, the head and
the arms; resulting in the whole model (See Figure 5.14) ready to work in ArmarX.

Figure 5.14: TEO in Simox.
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6 Simulations in ArmarX

This section will cover the process of running a simulation in ArmarX: from the
first steps in the environment, to the final phase with TEO executing previously
defined tasks. Here is documented the main objective of this work: simulating a
task in ArmarX for TEO, and detailed information like custom parameters or
exact procedures are listed in the Appendix.

6.1 Getting Started

One thing to note for the remaining parts of this project is the exclusive use of
Linux operating system, in particular Ubuntu distribution, version 14.04. The
main reason behind this decision is that ArmarX is only supported on it. A worth
mention here is that working with Linux in this environment is not a downside
compared to Windows. Even an average user, who is more familiar with Microsoft
operating systems. For our project the ease to work with repositories, files and
compiling directly from our console is a great advantage.

As were explained previously on this document, ArmarX works over an Ice
grid, so for the rest of the project we must deploy first the nodes to work with
ArmarX. With this simple command ArmarX is ready to run.

Figure 6.1: ArmarX is running.
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6.2 ArmarX Gui

ArmarX provides us with a custom Gui (Gaphics User Interface) that will allow
us to interact with its plug-ins (VisionX, StateChart Editor, etc), while most of
the internal processes go under the user’s interface but still accessible with the
loggers and the focus in debugging by the developers.

Figure 6.2: ArmarXGui first impression.

This interface will give us access to the ready-to-use plug-ins, called Widgets
within the program. Here we can use the, previously exposed in this document
(VisionX, MemoryX, etc), and their sub-components. Also other main APIs like
visualization and simulation can be programmed easily to report us the results of
our projects.

6.3 ArmarX Packages

Having a good projects organization is mandatory, whether they are big or
small, for a clear review and adding more components to them. ArmarX projects
will hold several of this elements offered by the ArmarX framework. A way to or-
ganize all of these components with its source code and documentation in ArmarX
is with its packages.

There is no file that describes a package, it is defined by its structure. Pack-
age’s organization is based on CMake and can be modified or expanded. ArmarX
includes armarx-package tool that will do most of the work for us. Once created
a package we have to compile it and its ready to use in the framework.

For this project was chosen to make TEO wave one hand in the simulation, so
a package called TEOMove was created and, after compiling it, we will create the
proper StateChart.
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6.4 Robot Profiles

ArmarX lets us build our simulation scenarios over custom robot profiles, which
are databases with predefined parameters that simplify the work in our robot. f
there is not a parameter defined in our current profile, ArmarX will climb up in
the hierarchy tree until it founds this parameter defined.

Figure 6.3 we can see how it the program will start searching for default param-
eters: if we are working with TEOReal and the value for a variable is not defined
there, it will try to search it no TEOBase and if is neither here, will try in the
final default profile Root.

The profile structure for TEO was imitated from the one for Armar3, with a
general profile, TEOBase and two additional profiles TEOSimulation and TEO-
Real, in case that were necessary to implement different parameters between the
simulated and the real model.

Figure 6.3: ArmarX profile hierarchy. The black part is the default profiles
ArmarX comes with, and in blue, the ones added for this project.

6.5 StateChart Editor

The StateChart Editor is one of the main features of ArmarX. That is because
all robot applications will use one statechart as a backbone for its logic: it will tell
the robot which action it should do and in which orded.
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Figure 6.4: Final simulation process.

Figure 6.4 shows the course of action that TEO will follow in the simulation:
From the rest pose, it will reach a initial position in order to make the movement
of waving. It will move back and forward a number of times, in this case 4. It
will start moving his hand forward. After completing this movement, ArmarX
will evaluate if the value of a local parameter (counterId) has reach the maximum
value of 4. Once the cycle is completed, TEO will come back to its resting (also
named homing) position.

With the information about the statecharts given in Section 4.4.3, a statechart
that follows the previously described flowchart is built and shown in Figure 6.5.
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Figure 6.5: Final MainState StateChart.

Where OnPoseReached are the transitions that point when a movement has
reached it desired angular position. MaxCountReached and MaxCountNotReached
are the ends of the decision in the flowchart.

The failure state is not contemplated in the flowchart, but it is inherent in the
design of every automatic system: if some transition cannot be made, the system
must return to a safe state where it can be started again. In ArmarX’s statecharts,
upon being a high level and close to result syntax, must be included.

6.6 Kinematic Simulation

After adding all parameters and options to the ArmarX environment, we can
begin to check our results. For that goal, we will use ArmarX’s kinematic units.
To use them, a scenario was created and all the applications required were added.
Finally, it is possible to see TEO completing the task we programmed: waving.
Figure 6.6 is the final result of TEO in Armarx.

For loading the 3D environment, ArmarX uses an already defined tool
established within the architecture of ArmarX: Armar3KinematicUnit. This
mechanism is responsible for loading the model and provides information to the
programmer.
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(a) Initial pose. (b) TEO waving back.

(c) TEO waving forward. (d) Final pose.

Figure 6.6: From left to right and from top to bottom, the simulation of TEO
waving. Note that (b) and (c) do repeat four times.

The kinematic observers also include a visual tool to monitor all joint parame-
ters. ArmarX can directly provide in real time, if correctly parametrized, all joint
information: angular position, velocity, acceleration, torque and current in the
motor. Also can simulate temperatures of this motors.

For this demonstration, TEO was simulated alone, with the purpose to see its
reaction and then compare with the real model. Nonetheless, ArmarX can incor-
porate complex scenarios for the robots, e.g. a kitchen.

Figure 6.7 shows angle position values (in radians). Being a simulation gives
it that sharp and exact values. Here it is discernible the elbow going back and
forward. The rest of the joints began at the homing position and reach their
respective initial position for the duration of the waving. Some of them go in
the negative part, this is due the initial coordinate system chosen when TEO was
developed.
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Figure 6.7: Joint angle values during the simulation.

6.7 Results

With the results obtained in Section 6.6, it is possible to load them in the real
model of TEO. To do so, the department have already developed tools with the
middleware YARP. This RDE is the main framework of TEO, provides port access
and communication between the components such as actuators, PCs or sensors.
Figure 6.8 shows succession of the real TEO performing the task defined in Ar-
marX.
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(a) Initial pose. (b) TEO waving back.

(c) TEO waving forward. (d) TEO reaching its final pose.

Figure 6.8: From left to right and from top to bottom, the real TEO waving.
Note that (b) and (c) do repeat four times.

YARP also provides a standard data recorder. it is possible to directly load
the joint values from the encoders. Figure 6.9 is the plotted data of these values.
We can see some expected differences:

� First, the slower response speed of the actuators. Especially in the
LeftFrontalElbow repetitive movement. In the simulation, this part does
abrupt changes (Figure 6.7). The problem comes when the real devices try
to follow this quick changes: the controller is orders of magnitude faster then
the actuators, so it goes several steps ahead the real-world movement.

� The appearance of real errors that are not considered in the ideal simulation,
such as noise or actuators precision. An example to this appreciation can be
seen at the beginning, right before any motor starts to move.
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Figure 6.9: Joint angle values during the experiment on TEO.
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7 Conclusions

ArmarX is presented as an outstanding robot framework. Provides a huge range
of opportunities to the developer: creating an object recognizer, programming a
robot to incorporate knowledge to its data base, planing trajectories, etc. In this
work, only a slight fraction of its potential was used. Encouraging students to
start learning this tool can result in new and elaborated applications for TEO.

Figure 7.1: ArmarX framework logo.

The humanoid robot of our university, TEO, still holds most of its potential.
The University Carlos III has an astonishing resource at its disposal: a full sized
humanoid robot with vision and grasping capabilities. Nonetheless, working in the
field of robotics also highlights the difficulties and general slow speed that robot
science has. In the other hand, assigning more projects to TEO can result in the
development of new applications for TEO. This programs can contribute to make
a name for TEO and the UC3M in the field of humanoid robots.

7.1 Contributions

Also, this project has created a complete model of TEO to be used in the
ArmarX framework. It contains the 3D models and the robot definition ready to
be used. This files can be found in the GitHub repository of RoboticLabs and can
be freely accessed.

This project is presented as a guide for the first steps in the ArmarX
environment. Hence, the idea is to become a guide for other students to increment
the applications in TEO.

7.2 Future Works

This work is the first stage of the bigger project to create elaborated tasks that
can be used in human environments, thus is the ultimate objective of all humanoid
robots.

It was mentioned various times during this work, the immense opportunities
ArmarX can provide. However, some can report more immediate results or
integrate with the existing ones:

� Creating a collision model of TEO in the ArmarX environment. A expanded
3D model of TEO can be used to calculate collision-free trajectories.
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� Adding the sensors and the cameras already integrated in the real robot to
its ArmarX definition.

� Importing skills already developed by other teams, ArmarX applications are
easy to import into another robot.

58



8 Project Overview

This section includes a review about the organization of this project, the time
schedule and the cost the work-time and materials used.

8.1 Budget

8.1.1 Material Costs

This section includes the costs in both software and hardware platforms:

� Software: One of the guidelines of the project was to use as many open-
source platforms as possible. At the end of the work, only free software was
used.

Concept Amount (e)

Ubuntu 14.04 0
ArmarX 0
Simox 0
YARP 0
TeXstudio 0
LibreOffice 0
Gimp 0

Total costs 0

Table 8.1: Software costs.

� Hardware: Includes two different aspects, the computers to simulate and
used to write this document and the robot TEO:

– TEO: The total cost invested in TEO cannot be measured. It
compromises not only the hardware, which has been improved and
expanded over numerous projects; but the maintenance and work-hours
invested in it.

– Computers: Most of this thesis was elaborated in the university, using
a workstation in the RoboticsLab department. In addition, a personal
computer was used.

Concept Amount (e)

University’s workstation 1000
Personal Asus Laptop 700

Total costs 1700

Table 8.2: Hardware costs.
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8.1.2 Personnel Costs

This section includes the costs in the personal involved in this project:

Concept Per hour cost (e/h) Work hours Amount (e)

Bachelor student 10 500 5000
Doctorate researcher 20 100 2000
Laboratory technician 15 30 450
Titular professor 40 20 800

Total costs 8250

Table 8.3: Personnel costs.

8.1.3 Total Costs

Adding both personal and material costs, the final project amount invested is
9950 e over a period of 7 months.

Concept Amount (e)

Software costs 0
Hardware costs 1700
Personnel costs 8250

Total costs 9950

Table 8.4: Total costs.

8.2 Project Schedule

The tasks performed in this project could be grouped in three global activities,
two are related with the learning of ArmarX and its components. The remaining
consists in collecting all documentation of the processes followed in the other parts
and comparing results. The Gantt diagram if Figure 8.1 resumes these process.

� ArmarX: This part includes intensive research and development with the
framework. Compromises almost the complete of the project duration.

– First a initial research about the software itself was made.

– Once program was installed and ready to use, the following moths were
invested in training with it, using some tutorials already made by the
KIT.

– Finally, when I was able to develop my own applications in ArmarX,
the Waving simulation was created and loaded in the real robot.
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� Simox: After realising the necessity of creating TEO models compatibles
with ArmarX, they were created in this part.

� Document Composition: The last section of the work consists in including
all the knowledge acquired and creating this report. Nonetheless, it was
originally intended to be written with Microsoft Word, but the idea was
discarded and a LATEX environment was used.

61



2
0
1
7

M
a
r

A
p
r

M
a
y

J
u
n

J
u
l

A
u
g

S
e
p

A
rm

a
rX

In
it

ia
l

re
se

ar
ch

F
or

m
at

io
n

T
E

O
si

m
u

la
ti

on
.

S
im

u
la
ti
o
n
ex
po
rt
ed

to
re
a
l
T
E
O

S
im

o
x

In
it

ia
l

re
se

ar
ch

X
M

L
co

n
st

ru
ct

io
n

T
E
O

m
od
el

co
m
p
le
te
d

D
o
c
u
m
e
n
t
c
o
m
p
o
si
ti
o
n

D
o
cu

m
en

ta
ti

o
n

LA
T
E

X
fo

rm
at

io
n

R
ep
o
rt

co
m
p
le
te
d

F
ig

u
re

8.
1:

G
an

tt
d
ia

gr
am

fo
r

th
is

th
es

is
.

62



Appendices

A Robot Definition

This annex will explain and carry the process of creating a new robot ready
for the ArmarX environment. Already in Section 5 general information about the
capabilities was discussed and some examples were shown. Nonetheless here is a
suggested modus operandi to build a XML file that describes a robot, in this case
TEO.

It is also compulsory to have the 3D models of the pieces of our robot. Rec-
ommended to be visualized beforehand in a 3D development environment, such us
Blender or SolidWorks, the former was used to create the design of TEO.

As mentioned in Section 5, we will use Simox tools to visualize and check the
results of our robot assembly, specifically RobotViewer [23]. This tool inside
Simox will allow us to see, each time we load our robot, how are we construct-
ing it. Unfortunately, RobotViewer does not provide extensive information about
errors when we made one. Due to that, is recommended to check every few addi-
tions, in order back trace our mistake.

In order to correctly set all TEO parameters such as: articulation distances,
joint revolution directions, etc. We will follow its diagrams of Figure A.1.

Figure A.1: TEO’s Link Lengths.

Link length Distance
l0 193.2
l1 305
l2 162.5
l3 59.742
l4 37.508
l5 346.92
l6 329.01
l7 202
l8 187.496
l9 92
l10 330
l11 300
l12 123.005
l13 146
l14 18
l15 26
l16 17.5

Table A.1: Link distance in
milimeters, asociated with Figure A.1.
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A.1 Root, Child and Visualization

We are going to begin our robot with its definition, we will declare a robot.
In an empty XML file, we will write the code in Listing A.1. We have created
our first robot. It only possess one node, its root node. In line 1, the Type field
contains the name of the robot. This first file will be named TEOSimox.xml.

1 <Robot RootNode="root" Type="TEO">

2

3 <RobotNode name="root">

4 </RobotNode>

5

6 </Robot>

Listing A.1: Most basic robot in Simox

If we load this robot in RobotViewer, Figure A.2 is the result.

Figure A.2: Basic robot visualization in RobotViewer.

Since the objective is to build TEO’s model for ArmarX, it is convenient to
begin with its origin, the hip. In later stages, we will use the root as origin for
other parts of TEO. For this project it was decided to leave it as clean as possi-
ble: only declaring children that will include the rest of the robot. The hip part
that corresponds to the root node will be declared in a child. Creating a child is
showed in Listing A.2. We just have to add the line 4 and then declare the next
RobotNode, here called RootWaist. The child must be also be declared, even if its
empty, to avoid error when loading the robot XML file from RobotViewer.

1 <Robot RootNode="root" Type="TEO">

2 <RobotNode name="root">

3 <Child name="RootWaist"/>

4 </RobotNode>

5

6 <RobotNode name="RootWaist">

7 </RobotNode>

8

9 </Robot>

Listing A.2: First RobotNode child.
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Now we have two nodes, we should begin adding some visualization. By now
we have only seen two overlapping coordinate systems. To add 3D pieces to our
robot, we must use the Visualization class. When declaring a Visualization, we
must refer to its path from the main XML file. Incluir imagen de las carpetas.
Listing A.3 shows in line 8 how to include a 3D file to visualize. Figure A.3 is the
result of Listing A.3 in RobotViewer.

1 <Robot RootNode="root" Type="TEO">

2

3 <RobotNode name="root">

4 <Child name="RootWaist"/>

5 </RobotNode>

6

7 <RobotNode name="RootWaist">

8 <File type="Inventor">xmlfiles/models/cintura_links.wrl</File>

9 </RobotNode>

10

11 </Robot>

Listing A.3: Adding the Visualization.

Figure A.3: Waist 3D visualization in RobotViewer. The visualization mode
was changed because this exact piece is black and has no texture. So it shows the

mesh.

A.2 Transformation and RobotNodeSets

As mentioned in Section 5.3, usually, a robot is not hold in a single file, they
can become too complex and sometimes we want to make changes only in one part
of the robot. Also in Section 5.4 it was mention the structure that the individual
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XML files will have.

For now, we will leave the structure we created in Section A.1. Our focus will
be creating a kinematic chain, applying transformations to a series of RobotNodes
in order to create a limb. We will start with the Left Leg. This process will be
applied to the rest of articulations. Each one will be included in a separate XML
file.

The structure that each limb will include is a RootNode, for initializing, fol-
lowed by the consecutive joints. Then we will add the transformations and visual-
ization. Additionally, joint parameters will be added. When the chain is complete,
a final TCP (Tool Centre Point) will be created. Once all this RobotNodes are
finally created, they will be join in a kinematic chain, named RobotNodeSet. We
will start wi the Axial Hip joint.

1 <Robot RootNode="InicLeftLeg" Type="LeftLeg">

2

3 <RobotNode name="InicLeftLeg">

4 <Child name="LeftAxialHip"/>

5 </RobotNode>

6

7 <!-- Link 0 -->

8

9 <RobotNode name="LeftAxialHip">

10 <!--<Transform>

11 <DH units="degree" theta="0" alpha="90" d="0" a="0"/>

12 </Transform>-->

13 <Visualization>

14 <File type="Inventor">models/5.0^pierna_izq_links.wrl</File>

15 </Visualization>

16 </RobotNode>

17

18 </Robot>

Listing A.4: First steps in creating TEO’s left leg.

In Listing A.4 we have added the initial RobotNode of the left leg. Also, its
first child and its visualization. Lines 10-12 perform a DH (Denavit-Hartenberg)
transformation that resets the transition 4x4 matrix from the root. By now is not
required so we will leave it commented.

Now we can begin joining two parts together, to do so, we declare a Child,
the next is the Saggital Hip articulation. Also we can start adding some joint
information. In Listing A.5 the joint directions and limits were added.

1 <Robot RootNode="InicLeftLeg" Type="LeftLeg">

2

3 <RobotNode name="InicLeftLeg">

4 <Child name="LeftAxialHip"/>

5 </RobotNode>
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6

7 <!-- Link 0 -->

8

9 <RobotNode name="LeftAxialHip">

10 <Joint type="revolute">

11 <Axis x="0" y="0" z="-1"/>

12 <Limits lo="-90" hi="90" units="degree"/>

13 </Joint>

14 <!--<Transform>

15 <DH units="degree" theta="0" alpha="90" d="0" a="0"/>

16 </Transform>-->

17 <Visualization>

18 <File type="Inventor">models/5.0^pierna_izq_links.wrl</File>

19 </Visualization>

20 </RobotNode>

21

22 <!-- Link 1 -->

23

24 <RobotNode name="LeftSaggitalHip">

25 <Joint type="revolute">

26 <Axis x="-1" y="0" z="0"/>

27 <Limits lo="-20" hi="20" units="degree"/>

28 </Joint>

29 <Transform>

30 <DH a="0" d="-92" alpha="0" theta="0" units="degree"/>

31 </Transform>

32 <Visualization>

33 <File type="Inventor">models/5.1^pierna_izq_links.wrl</File>

34 </Visualization>

35 </RobotNode>

36

37 </Robot>

Listing A.5: Two pieces joined together and with joint parameters.

If we load this file in RobotViewer, Figure A.4 is the result we obtain.

Figure A.4: Two joints loaded together.
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Information about all of the joints revolution directions can be found in Figure
A.5. The TEO diagrams for OpenRAVE and YARP change the system coordinates
of each joint. In contrast, Simox does not. Even though, the rotation angles do
not vary thus are referenced to the root coordinate system.

Figure A.5: TEO’s joints directions.

Once two articulations are joined together, adding more to the chain is a
repetitive task: declaring a child, adding its joint parameters, its transformation
related to the past joint and finally adding the visualization. The process of adding
all the remaining articulations of the left leg are summed up in Figure A.6.
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(a) FrontalHip joint added. (b) FrontalKnee joint added.

(c) FrontalAnkle joint added. (d) SaggitalAnkle joint added.

Figure A.6: Process of building the leg step by step

A.3 RobotNodeSets

Once we have defined a limb, it is a standard procedure in robotics to add a
TCP (Tool Control Point). This can be done by just simple create a RobotNode
at the end of our chain and apply a transformation to ir so it is located at the
physical end or the limb. For the legs, the TCP was defined in the points closest
to the ground from the last joint. This points are found marching from the last
RobotNode in the negative part of the Z axis. In Listing A.6, the TCP is defined.

1 <RobotNode name="LeftLegTCP">

2 <Transform>

3 <DH a="0" d="-123.005" alpha="0" theta="0" units="degree"/>

4 </Transform>

5 </RobotNode>

Listing A.6: TCP created.

Now we have all the requirements to create a kinematic chain (RobotNodeSet):
a root node, one or more intermediate nodes and a TCP. Listing A.7 shows how
the left leg chain is declared.
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1 <RobotNodeSet name="LeftLegChain" kinematicRoot="LeftAxialHip" tcp="

LeftLegTCP">

2 <Node name="LeftAxialHip"/>

3 <Node name="LeftSaggitalHip"/>

4 <Node name="LeftFrontalHip"/>

5 <Node name="LeftFrontalKnee"/>

6 <Node name="LeftFrontalAnkle"/>

7 <Node name="LeftSaggitalAnkle"/>

8 </RobotNodeSet>

Listing A.7: Two pieces joined together and with joint parameters.

This same process was followed for each limb. In the end, we created both
arms, legs and the head in a separate XML file. Each one of them were aggregated
in a RobotNodeSet.

A.4 Assembling a Complete Robot

We as mentioned in Section 5, our robot will consist in a series of XML files
referenced from a root file. Now, we will come back to our first file TEOSimox.xml
and call the rest of them from it. Actually, we will recall the legs and the body from
the root, then, the trunk will address to the arms and the head. This structure is
described in Figure A.7.

Figure A.7: TEO’s Hierarchy.
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The folder structure followed for TEO is quite similar to the one with the
OpenRAVE files. Here we will have the main file, TEOSimox.xml, and a folder
that contains the remaining parts of the robot. Also we can find the folder models,
that contains the 3D models.

Listing A.8 describes an auxiliary RobotNode: TrafoToLeftLeg. This node will
allow us to place the left leg in its real position. The transformation is made by a
4x4 matrix and a DH translation. Line PI is the interesting command: ChildFrom-
Robot will add the first RobotNode in the file it imports as a child. Due to this
nature, an hypothetical approach is to define each node in a separate XML file and
reference them to its following. Obviously this proposition is highly impractical.

1 <RobotNode name="TrafoToLeftLeg">

2 <Transform>

3 <matrix4x4>

4 <row1 c4="0" c3="0" c2="1" c1="0"/>

5 <row2 c4="146" c3="0" c2="0" c1="1"/>

6 <row3 c4="0" c3="-1" c2="0" c1="0"/>

7 <row4 c4="1" c3="0" c2="0" c1="0"/>

8 </matrix4x4>

9 <DH units="degree" theta="90" alpha="90" d="0" a="0"/>

10 </Transform>

11 <ChildFromRobot>

12 <File importEEF="true">xmlfiles/LefLegSimox.xml</File>

13 </ChildFromRobot>

14 </RobotNode>

Listing A.8: Importing a sub-assembly.

This same method was used to refer the other leg and the body to the root
file. Also the body contains both arms and the head. The final result is a robot
ready for the ArmarX environment and is shown in Figure A.8.

In addition, a general kinematic chain was added. This RobotNodeSet includes
all joints. Since the use of the whole robot is rather common, including both
particular and general kinematic chains is a recommended procedure.
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Figure A.8: TEO model completed.
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B Implementing a Counter

This part of the appendix will initiate in the use of ArmarX, with basic guide-
lines to work with it and an overall description of what is been doing in every step.
Also here we will learn how to use the StateChart Editor and the basics of the
ScenarioManager.

To achieve this objectives, we will create a counter with ArmarX that will
follow the same behaviour as Figure B.1

Figure B.1: Counter flowchart diagram.

B.1 Creating a Package

As was mentioned in 6.3, ArmarX wraps its projects in the so called Packages,
and the framework comes with a tool to create them. You can start with:

Figure B.2: Creating our package for the project.

This command will create a package called TEOMove in your current location.
It is necessary to invoke the tool from root. For the rest of this manual, we will
work with the package called TEOMove we have just created [19].
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B.2 Running ArmarX

Once we have our package, we can start using the framework itself: first we
will deploy Ice first, if we do not, no component of ArmarX will run.

Figure B.3: Deploying Ice.

Now ArmarX is running in the background and we can start over it the GUI
by typing armarx gui in the console.

Figure B.4: ArmarXGui in our computer, ready to start working with it.

We must compile the package after is made, to do so, execute the following
instructions in the terminal:

1 cd TEOMove/build

2 cmake ..

3 make

Listing B.1: Compiling a package

First, we will open the StateChart Editor, by Add Widget >>StateCharts
>>StateChart Editor. Once the widget opens, it will ask us about a which robot
profile to use. Information about robot profiles can be found in Section 6.4 and
how to configure them in Annex INCLUIR ANEXO PROFILES. For this task
we will choose TEOSimulation.
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Figure B.5: Profile selection.

B.3 Working with the StateChart Editor

For this section we want to create a StateChart that counters up to 4, following
the flowchart of Figure B.1.

Now, we will create a group to work with by clicking in New StateChart Group
(See Figure B.6). Once the new window shows up, we will call it Waving. It is
also necessary to include a package root directory, that will be TEOMove. This
package was previously created in Section B.1.

Figure B.6: Creating a StateChart Group.
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Figure B.7: StateChart new group creation.

The StateChart group is defined, now it is time to begin creating the logic and
the processes the robot will follow. The StateChart sintaxis was already discussed
in Section 4.4. Now we will focus on creating the StateChart itself.

First, we must create a State (see Figure B.8) to start working. This one will
be our MainState. We should also create another state that will be the Coun-
terState.

Figure B.8: Defining a new state.

A dialog will show up when creating a new state, add the name to the state
and do not forget to check the Create C++ files (Figure B.9).
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Figure B.9: Newstate definition.

Also we need to make MainState public, by right clicking it and changing it to
public.

In Figure B.10 we see a default creation of a state, with two EndStates. By
default they are created with Success, as initial; and Failure.

Figure B.10: Generation of a new state.

Now, we are going to change start adding parameters to the MainState, by
right-clicking it and then Edit MainState. A new window dialog will show up and
we will define an input parameter called counterMaxValue (Figure B.11).

This variable will be an integer and we define it in the profile TEOSimulation
with a value of 4. Why we add the value to this profile is explained in Section 6.4.
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Figure B.11: MainState input parameters.

We will repeat the similar process but in the local parameters tab. Adding a
ChannelRef called counterId. The type ChannelRef will allow the observers to
access its value and show it in the LogViewer widget.

Figure B.12: MainState local parameters.

We must add parameters to the CounterState also, so we will edit the state
and add as input parameters counterId and counterMaxValue so they can be used
in this state too (Figure B.13).

Figure B.13: CounterState input parameters.

Also we are going to edit the Outgoing Events of CounterState, in the
General tab. Add two new outgoing events called MaxCountReached and
MaxCountNotReached, like is shown in Figure B.14:
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Figure B.14: Outgoing events of CounterState.

Now we will drag the CounterState inside the MainState so now our StateChart
looks like Figure B.15:

Figure B.15: CounterState dragged inside MainState.

We can see that we have another outgoing event in CounterState: Success.
That is because we have its EndState in CounterState, we will delete both suc-
cess and failure. Note that outgoing failure transition didn’t disappear because it
needs to be present for all states.

So now we can make our StateChart behave as the flowchart of Figure B.1.
For that purpose the following steps were made:

� Set CounterState as Initial State by right-click on it and selecting the
according option.

� Drag the end of MaxCountReached transition to the Success endstate.
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� Drag the end of MaxCountNotReached transition back to Counter-
State.

� Drag the end of Failure transition to the Failure endstate. This will have
no impact on the advance of our simulation, but we always have to include
it for stability and error management.

The final StateChart should look like Figure B.16. This tidy result is achieved
by clicking in the Layout state icon at the top of the StateChart Editor window.

Figure B.16: StateChart final structure.

Most of the work with the StateChart is made, we need to edit the transitions
in order to select the parameters they pass. To do so, right-click in a transition
and select Edit Transition like in Figure B.17.

Figure B.17: StateChart final structure.
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For the initial transition to CounterState, we will select the Source
Parameter like in Figure B.18:

Figure B.18: Initial transition parameters.

And finally, for the MaxCountNotReached transition, we need to repeat
the process until the tab To Next State’s Input looks like Figure B.19.

Do not forget to save before passing to the next stage.

Figure B.19: MaxCountNotReached transition parameters.

B.4 Editing the Source Code

Doing the StateChart correctly save us a big amount of work and time, but
we still need to write a bit of code to finish. QTCreator is the IDE (Integrated
Development Environment). It was used for

For opening the project we should go to File >>Open File or Project and
select the CMakeLists.txt found in your package, in this case, TEOMove. It will
ask for a build folder, we will select the build directory of the package TEOMove
Package
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Figure B.20: QTCreator project set-up.

We will first edit MainState files, both MainState.cpp and MainState.h. They
are located in: TEOMove >>source >>statecharts >>waving

- Uncomment all void functions: onEnter(), run(), onBreak() and onExit() in
the .cpp file and their declaration in the header file.

- Add the code to the onEnter() shown in Listing B.2 (lines 10 to 13).

1 #include "MainState.h"

2

3 using namespace armarx;

4 using namespace Waving;

5

6 MainState::SubClassRegistry MainState::Registry(MainState::

GetName(), &MainState::CreateInstance);

7

8 void MainState::onEnter()

9 {

10 ARMARX_LOG << "Enter MainState";

11

12 ChannelRefPtr counterId = ChannelRefPtr::dynamicCast(

getContext()->systemObserverPrx->startCounter(0, "

counterId"));

13 local.setcounterId(counterId);

14 }

15

16 void MainState::run(){}

17

18 void MainState::onBreak(){}

19
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20 void MainState::onExit()

21 {

22 ARMARX_LOG << "Exit MainState, count reached";

23 }

24

25 XMLStateFactoryBasePtr MainState::CreateInstance(

XMLStateConstructorParams stateData)

26 {

27 return XMLStateFactoryBasePtr(new MainState(stateData));

28 }

Listing B.2: MainState.cpp

For both CounterState.h and CounterState.cpp we will follow a similar
procedure:

- Uncomment all void functions: onEnter(), run(), onBreak() and onExit() in
the .cpp file and their declaration in the header file.

- Add the code to the onEnter() shown in Listing B.3 (lines 10 to 21).

1 #include "CounterState.h"

2

3 using namespace armarx;

4 using namespace Waving;

5

6 CounterState::SubClassRegistry CounterState::Registry(

CounterState::GetName(), &CounterState::CreateInstance);

7

8 void CounterState::onEnter()

9 {

10 ARMARX_LOG << "Enter CounterState";

11 ChannelRefPtr counterId = in.getcounterId();

12 int maxValue = in.getcounterMaxValue();

13 getContext()->systemObserverPrx->incrementCounter(counterId)

;

14 int counterValue = counterId->getDataField("value")->getInt

();

15 if (counterValue >= maxValue)

16 {

17 emitMaxCountReached();

18 }

19 else

20 {

21 emitMaxCountNotReached();

22 }

23 }
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24

25 void CounterState::run(){}

26

27 void CounterState::onBreak(){}

28

29 void CounterState::onExit(){}

30

31 XMLStateFactoryBasePtr CounterState::CreateInstance(

XMLStateConstructorParams stateData)

32 {

33 return XMLStateFactoryBasePtr(new CounterState(stateData));

34 }

Listing B.3: CounterState.cpp

Now we must build the project, both from QT or the terminal, like in Listing
B.1, can be used and work the same.

B.5 Working with the ScenarioManager

The final part is to run the simulation, for that, we will use the Scenario
Manager widget. We can open it by Add Widget >>Meta >>ScenarioManager.

First, we have to register the package TEOMove by clicking in the configure
button (the small wrench in the top of the widget). The SettingsView window
will appear, click in open, now write the exact name of the package. The build
directory will be automatically added if the name is correctly written. In Figure
B.21 is detailed step by step.

Figure B.21: Registering a new package in ScenarioManager.

Now, we add our Scenario, click in New Scenario, we will call it TEOWave
and we will select the package
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Figure B.22: Creating a new scenario.

We will add the StateChart group we created earlier by dragging it to the
scenario. It is easier if we open both ScenarioManager and StateChart Editor and
keep both tabs together like in Figure B.23.

Figure B.23: Adding the StateChart group to the scenario.

Now we have to choose the state to begin with, in this case is MainState,
so we change the parameter ArmarX.XMLStateComponent.StatesToEnter to
MainState, as shown in Figure B.24
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Figure B.24: Changing StateChart group parameters.

Is necessary to add a couple more applications to the scenario in order to
run, those are: ConditionHandler and SystemObserver. They can be added by
searching for their names and dragging them into the scenario like we did with the
Waving group, see Figure B.25.

Figure B.25: Changing StateChart group parameters.

The first simulation is done, to run it, click on the play button of the Scenario.
To review the results we go to the LogViewer and check its output, if out log
looks like Figure B.26.
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Figure B.26: The first program in ArmarX was successful.
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C Introducing a New Robot in ArmarX

After completing our first successful application in ArmarX, we want to keep
working and introduce TEO to the environment. This is the main goal of this ap-
pendix. To do so, we will expand the StateChart that we created in the Appendix
B. We will add the necessary items and parameters to handle TEO’s movement.
Later we will begin working with some of the 3D observers that ArmarX provide,
to visualize the kinematic simulation of the real robot [19].

Some of the procedures were earlier explained in the Appendix B, so the al-
ready mentioned steps will not be as detailed as before. Still, the new parts that
appear will be explained.

The objective is to make TEO follow the flowchart shown in Figure C.1.

Figure C.1: Final simulation process.
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C.1 Expanding the StateChart

In case ArmarX or the StateChart Editor were closed, we can load a StateChart
Group. To open it again, we click in Open StateChart Group, see Figure C.2. We
are looking for a .scgxml file (StateChartGroup XML), and it will be located in
TEOMove/source/TEOMove/statechats/Waving.

Figure C.2: Loading a StateChart group.

Now we will add two new states, by clicking the button New State Definition.
One should be named MoveJoints and the other, SetJoints. Do not forget to
check Create C++ Files. We can delete the EndStates within this new States
(Failure and Success). Now, our StateChart Group will look like Figure C.3

Figure C.3: MoveJoints and SetJoints created.

We will add two MoveJoints and two SetJoints by dragging them inside
MainState. Now they should be renamed, one of the MoveJoints to WaveFwd,
and the other one to WaveBack. Also SetJoints will be named InitPose and Fi-
nalPose. To change the name of a state, right-click on the State =⇒ Edit State
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=⇒ General tab =⇒ State Instance Name.

Once we are editing every State, we can also add the outgoing events. For
both (SetJoints class and MoveJoints class) will be OnPoseReached. It does
not matter whether we edit WaveBack or WaveFwd, as they are both instances
of the same class MoveJoint. Figure C.4 shows, for example, InitPose with
OnPoseReached already declared.

Figure C.4: MoveJoints and SetJoints created.

Now it is time to add the parameters for each instance. Like editing the
outgoing events, it does not matter if we change WaveBack or WaveFwd. These
changes will be applied in both. The variables shown in Table C.1 were added.

State Key Type

SetJoints JointTargetPose Map(Float)
MoveJoints JointTargetPose Map(Float)
MoveJoints JointTargetVelocity Map(Float)

Table C.1: Input parameters for each instance

JointTargetPose will be the position each state will try to achieve and Joint-
TargetVelocity the velocity to which the joint will move. In Figure C.5 we can
see how WaveBack input parameters should be added.
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Figure C.5: WaveBack input parameters.

Next step is to arrange the StateChart in order to follow the flowchart of Figure
C.1. Then, our MainState will look like Figure C.6.

Figure C.6: Final MainState StateChart.

C.2 Managing the Parameters

We can see that no values were added in the parameters of the previous States.
We want some defined values for the joint’s positions. They go in the input pa-
rameters of MainState. The default values will be the angle value in radians of the
joints in the final position. Also the angular velocity will be added.

In the input parameters of MainState, we will add the values shown in Table
C.2. Here we will create the variables with particular name and value, while in
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the other states (SetJoints and MoveJoints) only the type was defined. So now
we must match the type so we can pass them to the States we created earlier.

The type Map(float) admits plain text with the JSON (JavaScript Object No-
tation) syntax. The values we add can be fount in Table C.2.

State Type Value

JointValueMapInitPose Map(Float) {"LeftFrontalShoulder": -0.72,
"LeftSaggitalShoulder": 0.3,
"LeftAxialShoulder": -0.73,
"LeftFrontalElbow": -1}

JointValueMapFinalPose Map(Float) {"LeftFrontalShoulder": 0,
"LeftSaggitalShoulder": 0,
"LeftAxialShoulder": 0,
"LeftFrontalElbow": 0}

JointValueMapWaveBack Map(Float) {"LeftFrontalElbow": -1}

JointValueMapWaveFwd Map(Float) {"LeftFrontalElbow": -0.2}

JointVelocityMapWaveBack Map(Float) {"LeftFrontalElbow": -0.5}

JointVelocityMapWaveFwd Map(Float) {"LeftFrontalElbow": 0.5}

Table C.2: Joint positions and velocities parameters.

To add this values: right-click on MainState =⇒ Edit State =⇒ InputParam-
eters. Then we proceed like in Figure C.7. Here the JointValueMapInitPose’s
values are added.

A small note here: it is important for adding the values in JSON to make sure
we added the “” char correctly. ArmarX is sensible to the difference and will only
accept "".
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Figure C.7: Adding value to the JointValueMapInitPose variable.

After adding all the parameters in Table C.2, the input parameters tab looks
like Figure C.8 now.

Figure C.8: Input parameters of MainState.

Now we need to edit all the transitions in our statechart diagram to tell them
which parameters to pass and from where they come. To do so, right click on
the arrow that represents a transition. The parameters expected by the target
state will already be displayed. All we have to do is to select Parent input as
Source Type and choose a feasible source parameter from the drop-down list (See
Figure C.9). We already prepared the names of the parameters, so it would be a
simple task. Nonetheless, Table C.3 summarizes which parameter goes with each
transition.
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Figure C.9: Transition from InitPose to WaveFwd.

Source ⇒ Destination Target Parameter Source Paramter

InitPose ⇒ WaveFwd JointTargetPose JointValueMapWaveFwd
JointTargetVelocity JointVelocityMapWaveFwd

WaveFwd ⇒ CounterState counterId counterId
counterMaxValue counterMaxValue

CounterState ⇒ WaveBack JointTargetPose JointValueMapWaveBack
JointTargetVelocity JointVelocityMapWaveBack

WaveBack ⇒ WaveFwd JointTargetPose JointValueMapWaveFwd
JointTargetVelocity JointVelocityMapWaveFwd

CounterState ⇒ FinalPose JointTargetPose JointValueFinalPose

Table C.3: StateChart transition parameter mapping

C.3 Preparing the Kinematic Unit

In order to manipulate the joint angles, we need access to a KinematicUnit-
Interface. A kinematic unit, which implements a KinematicUnitInterface, is a
sensor-actor-unit that allows us to control the joints of a robot. Here, this will
allow us to make an arm movement of TEO simulation. The GUI plugin and its
widget will provide a visual feedback of this simulation.

First, right-click the Waving and select Group Properties. In the tab Proxies,
we must select [RobotAPIInterfaces] Kinematic Unit. Also, we must go to
the tab Configuration to select a profile (in this case, TEOSimulation). Now in
the configuration box we write:

ArmarX.WavingRemoteStateOfferer.KinematicUnitName = Armar3KinematicUnit
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(a) Proxies tab.

(b) Configuration tab.

Figure C.10: Waving StateChart Group properties.

C.4 Adding dependencies

In order to use the Kinematic Unit proxy we need to add a dependency on Rob-
otAPI. To do so, we must edit the CMakeLists.txt in the package TEOWave.
The Listing C.1 shows the final look of the file. Under the commented lines (17-18)
we added the line 20, that will include the RobotAPI dependency.

1 # TEOMove

2

3 cmake_minimum_required(VERSION 2.8)

4

5 find_package("ArmarXCore" REQUIRED)

6 # Include provides all necessary ArmarX CMake macros

7

8 include(${ArmarXCore_USE_FILE})

9

10 set(ARMARX_ENABLE_DEPENDENCY_VERSION_CHECK_DEFAULT FALSE)

11

12 set(ARMARX_ENABLE_AUTO_CODE_FORMATTING TRUE)

13
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14 # Name for the project

15

16 armarx_project("TEOMove")

17 # Specify each ArmarX Package dependency with the following macro

18 # depends_on_armarx_package(ArmarXGui "OPTIONAL")

19

20 depends_on_armarx_package(RobotAPI)

21

22 add_subdirectory(etc)

23

24 add_subdirectory(source)

25

26 install_project()

Listing C.1: TEOMove/CMakeLists.txt

Another CMakeLists must be edited, the one of our Statechart Group (TEO-
Move/source/TEOMove/Statecharts/Waving/CMakeLists.txt), we need to add
the dependencies ”Eigen3” and ”Simox”. To do so, uncomment the lines 14 to
27. Also we must check that we edit the component list so it appears like lines 29
to 31. Listing C.2 already shows the changes made in these lines.

1 # Waving CMakeLists

2

3 armarx_component_set_name("Waving")

4

5 #find_package(MyLib QUIET)

6 #armarx_build_if(MyLib_FOUND "MyLib not available")

7 #

8 # all include_directories must be guarded by if(Xyz_FOUND)

9 # for multiple libraries write: if(X_FOUND AND Y_FOUND)....

10 #if(MyLib_FOUND)

11 # include_directories(${MyLib_INCLUDE_DIRS})

12 #endif()

13

14 find_package(Eigen3 QUIET)

15 find_package(Simox QUIET)

16

17

18 armarx_build_if(Eigen3_FOUND "Eigen3 not available")

19 armarx_build_if(Simox_FOUND "Simox-VirtualRobot not available")

20

21

22 if (Eigen3_FOUND AND Simox_FOUND)

23 include_directories(

24 ${Eigen3_INCLUDE_DIR}

25 ${Simox_INCLUDE_DIRS}

26 )

27 endif()

28

29 set(COMPONENT_LIBS

30 RobotAPIInterfaces RobotAPICore

31 ArmarXCoreInterfaces ArmarXCore ArmarXCoreStatechart ArmarXCoreObservers)

32

33 # Sources

96



34

35 set(SOURCES

36 WavingRemoteStateOfferer.cpp

37 ./MainState.cpp

38 ./CounterState.cpp

39 ./SetJoints.cpp

40 ./MoveJoints.cpp

41 #@TEMPLATE_LINE@@COMPONENT_PATH@/@COMPONENT_NAME@.cpp

42 )

43

44 set(HEADERS

45 WavingRemoteStateOfferer.h

46 Waving.scgxml

47 ./MainState.h

48 ./CounterState.h

49 ./SetJoints.h

50 ./MoveJoints.h

51 #@TEMPLATE_LINE@@COMPONENT_PATH@/@COMPONENT_NAME@.h

52 ./MainState.xml

53 ./CounterState.xml

54 ./SetJoints.xml

55 ./MoveJoints.xml

56 ./MoveJoints.xml

57 #@TEMPLATE_LINE@@COMPONENT_PATH@/@COMPONENT_NAME@.xml

58 )

59

60 armarx_add_component("${SOURCES}" "${HEADERS}")

Listing C.2:
TEOMove/source/TEOMove/Statecharts/Waving/CMakeLists.txt

Now we must build the project by running cmake inside QTCreator.

C.5 Editing the Source Code

So far we only defined the OnPoseReached event in MoveJoints and SetJoints.
We have not yet specified when these events will be triggered. This is what will
do now in the .cpp-source of our two states.

Now we will open both MoveJoints.cpp and SetJoints.cpp and add the
code fragment in Listing C.3.

1 // get the target joint values

2 std::map<std::string, float> jointValueMap = in.

getJointTargetPose();

3 //build conditions for OnPoseReached

4 Term poseReachedConditions;

5 const float eps = 0.05f; //This will trigger the OnPoseReached

event if the actual pose is very close to the specified pose

(+/- 0.05).

6 for (const auto& jointNameValue : jointValueMap)
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7 {

8 std::string jointNameDatafield = "

Armar3KinematicUnitObserver.jointangles." +

jointNameValue.first;

9 float jointValue = jointNameValue.second;

10 Literal jointValueReached(jointNameDatafield, "inrange",

11 Literal::createParameterList(

jointValue - eps, jointValue +

eps));

12 poseReachedConditions = poseReachedConditions &&

jointValueReached;

13 }

14 installConditionForOnPoseReached(poseReachedConditions);

Listing C.3: onEnter code fragment for both SetJoints and MoveJoints.

By far, we have not told the two states what they are going to do, this part
goes in the run() function. First, for MoveJoints, all content was replaced by the
Listing C.4.

1 void MoveJoitns::run(){

2 std::map<std::string, float> jointVelocityMap = in.

getJointTargetVelocity();

3 NameControlModeMap velocityControlModeMap;

4 for (const auto& jointVelocity : jointVelocityMap)

5 {

6 velocityControlModeMap[jointVelocity.first] =

eVelocityControl;

7 }

8 KinematicUnitInterfacePrx kinUnit = getKinematicUnit();

9 kinUnit->switchControlMode(velocityControlModeMap);

10 kinUnit->setJointVelocities(jointVelocityMap);

11 }

Listing C.4: MoveJoints.cpp run() function.

First, we tell the kinematic unit that we wish to velocity control all the joints
defined in our input joint velocity vector. Then, in the last line we set the desired
velocity.

Now with SetJoints we will do similar, but the code will be the one in Listing
C.5. The core of what it does is in the last line: it sets the value of the angles
to the Map Value we introduced.

1 void SetJoints::run(){

2 std::map<std::string, float> jointValueMap = in.

getJointTargetPose();
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3 NameControlModeMap positionControlModeMap;

4 //sets to position control mode the joints in the map

5 for (const auto& jointNameValue : jointValueMap)

6 {

7 positionControlModeMap[jointNameValue.first] =

ePositionControl;

8 }

9 KinematicUnitInterfacePrx kinUnit = getKinematicUnit();

10 //switch to position control

11 kinUnit->switchControlMode(positionControlModeMap);

12 // set the angles defined by the joint target pose

13 kinUnit->setJointAngles(jointValueMap);

14 }

Listing C.5: SetJoints.cpp run(). function

Before building out project (Run CMake and Build Project), we uncomment
the declarations of the functions: onBreak(), run() and onExit() in the .h file.

C.6 Importing TEO model

To work with our robot TEO, we first must clone the files from the
RoboticsLab-Uc3m GitHub repository. Under the name of teo-simox-models.
To do so, we execute the commands of Listing C.6 in the terminal. It is highly
recommended to clone them in a repository folder, here repos, not directly in the
working location.

1 git clone https://github.com/roboticslab-uc3m/teo-simox-models.git

Listing C.6: Cloning TEO directory.

Then we will copy it to the package, but it is very important the location.
Because later in the Scenario we will refer to the robot file from the data folder.
To do so, we will just copy from the terminal, with root permissions (Listing C.7).

1 cp -a teo-simox-models/ packages/TEOMove/data/TEOMove/

Listing C.7: TEO models copied and ready to be used.

C.7 Deploying the Scenario

Now the simulation almost finished. We will start the ScenarioManager and
open the scenario we created earlier in Appendix B: TEOWave. Once open, we
must add two new applications: KinematicUnitObserver and KinematicUnit-
Simulation. The application KinematicUnitSimulation creates a simulated kine-
matic unit. KinematicUnitObserver creates an observer that observes our simu-
lated kinematic unit, which we need to detect when we reached our target poses.
After adding both applications, our scenario should look like Figure C.11.
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Figure C.11: Final stage of our scenario.

Some parametrization of the applications must be done now, in order to include
the robot. Table C.4 shows the fields we must change and its values for both
KinematicUnitObserver and KinematicUnitSimulation.

ArmarX.KinematicUnitObserver TEOMove/teo-simox-models/
.RobotFileName simox/teo/TEOSimox.xml

ArmarX.KinematicUnitObserver TEO
.RobotNodeSetName

ArmarX.KinematicUnitObserver Armar3KinematicUnitObserver
.ObjectName

Table C.4: KinematicUnitObserver parameters

Now we start the scenario. In order to visualize the 3D model of TEO, we go
to AddWidget =⇒ RobotControl =⇒ KinematicUnitGui.
Automatically a dialog will show up, in order to check the parameters. If the
window looks like Figure C.12, everything is correct, so we click on OK.

Figure C.12: KinematicUnitGui dialog
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C.8 Visualizing the Simulation

Two new Widgets have appear, KinematicUnitGUI will allow us to control
manually the joints of our robot. Also provides real-time values of each aspect
(position, velocity, acceleration and torque) for every joint.

Figure C.13: KinematicUnitGui widget.

But we will focus on the Visualization.3D Viewer. Here we can see the 3D
representation of the robot’s actual state. It we followed this steps and finally run
the scenario, we can see TEO in the ArmarX environment, like in Figure C.14.
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Figure C.14: TEO waving ArmarX.
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[17] J. Lorente, J. Miguel Garćıa Haro, S. Martinez, J. Hernández, and
C. Balaguer, “Waiter robot: Advances in humanoid robot research at uc3m,”
05 2016.

[18] M. Henning, “A new approach to object-oriented middleware,” IEEE Internet
Computing, vol. 8, no. 1, pp. 66–75, Jan 2004.
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