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This paper is focused on the optimal selection of the parameters of a passive dynamic
vibration absorber (DVA) attached to a boring bar. The boring bar was modeled as an
Euler Bernoulli cantilever beam and the stability of the system was analyzed in terms of
the bar and the absorber characteristics. To obtain the optimum parameters of the
absorber, a classical method for unconstrained optimization problems has been used. The
selection criterion consisted of the maximization of the minimum values of the stability
lobe diagram. Empirically fitted expressions for the frequency and damping ratio of the
DVA (which permit to obtain its stiffness and damping) are proposed. These expressions
are fully applicable when the damping ratio of the boring bar is non null as it is in
practical operations. The computed results show a clear improvement in the stability
performance regarding other methodologies previously used.
1. Introduction

Chatter or self excited vibration is the most significant type of vibration in machining operations. Chatter occurrence
involves several negative effects as poor surface quality, decreased removal rate, accelerated tool wear, high noise level,
environmental consequences in terms of materials and energy among others. Two categories of chatter are generally
recognized: primary chatter that can be produced by the cutting process itself (friction, thermo mechanical or mode
coupling effects) and secondary chatter caused by the regeneration of waviness of the work piece surface, the latter being
more detrimental for machining operations.

Although Taylor [1] had identified the problem of chatter for machining productivity at the beginning of the 20th
century, and the earliest study of chatter theory in simple machine tool systems was stated by Arnold [2] in the 1940s,
chatter is still a very important topic in manufacturing research as it can be seen in the very recent reviews by Quintana and
Ciurana [3] and Siddhpura and Paurobally [4].

This paper is focused in boring processes in which, the problem of vibration becomes more significant because of the
flexibility of the tool. Boring operations need long and slender bars to machine the internal zones of the workpiece (see Fig. 1a).

The interest of these processes in the industry and special geometry of the tool has motivated the development of numerous
research works on the subject. Parker [5] analyzed the stability behavior of a slender boring bar modeled as a two degree of
freedom mass spring damper system. The mode coupling was experimentally studied for a range of cutting parameters. Zhang
and Kapoor [6] developed a two degree of freedommodel of a clamped boring bar with four cutting force components. Despite
+341 624 9430.
-Sáez).
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Nomenclature

A boring bar cross sectional area
a non dimensional DVA position
b non dimensional cutting force position
c boring bar damping coefficient
CD DVA damping constant
Cf frequency correction factor
Cξ damping correction factor
D boring bar diameter
E boring bar Young's modulus
Fy radial component of the cutting force
foptimal optimized tuning frequency
f 1; f 2; f 3; f 4 tuning frequencies
G objective function
gfij fitted coefficients for the frequency

correction factor
gζij fitted coefficients for the damping

correction factor
I moment of inertia of the boring bar
KD DVA equivalent spring constant
kc specific cutting force
kr non dimensional chip width
ðkrÞlim minimum value of kr in the stability diagram
ðkrÞnlim ðkrÞlim normalized
L boring bar length
M mass of the boring bar
MD mass of the DVA
N mode of vibration
p non dimensional rotational speed
q10 arbitrary constant
qj(t) time dependent generalized coordinates
s complex eigenvalue
T time delay
~T non dimensional time delay
t time
~t non dimensional time
u vector containing fixed parameters in objec

tive function

VD DVA displacement
VD0 arbitrary constant
~VD non dimensional DVA displacement
v transverse displacement of the boring bar
W auxiliary variable
wc chip width
wclim minimum value of wc in the stability diagram
x spatial axial coordinate
~x non dimensional spatial axial coordinate
xa DVA position from the clamped end
xb cutting force position from the clamped end
Y non dimensional factor
y spatial radial coordinate
Z vector containing variables in the optimized

problem
z spatial tangential coordinate
α real part of the complex eigenvalues
β imaginary part of the complex eigenvalues
δ Dirac delta function
λD DVA non dimensional spring constant
λE non dimensional equivalent spring constant
λ1 first eigenvalue of the boring bar without DVA
μ mass ratio
μn effective mass ratio
Ω spindle rotational speed
ω0 reference frequency
ω1 fundamental frequency
ϕjðxÞ orthogonal eigenfunctions of the beam with

out DVA
ϕ1ð ~xÞ fundamental vibration mode
ρ boring bar mass density
τ auxiliary variable
ξ1; ξ2; ξ3; ξ4 tuning damping ratios
ξE non dimensional equivalent damping

constant
ξD non dimensional DVA damping constant
ζ1 boring bar damping ratio
the influence of clamping conditions of the bar on its dynamic properties [7], most authors have simplified the analysis of boring
vibrations accounting just for the lower order bending modes [8]. Andren et al. [9] studied boring bar chatter comparing an
analytical Euler Bernoulli model with a time series approach.Both cutting force and dynamic behavior of the boring bar depend
on the geometry of the cutting insert, as has been demonstrated by different authors (see for instance Rao et al. [10], Kuster and
Gygax [11], Lazaglu et al. [12], Ozlu and Budak [13,14] and Moetakef Imani and Yussefian [15]).

Different strategies have been developed to avoid or diminish vibrations in boring operations. Improved tool holder and
clamping design [7] has shown the ability to improve the dynamic behavior of the system in the chatter control of boring,
including sophisticated methods, such as the use of electro rheological [16] and magneto rheological fluids [17] and active
dynamic vibration absorbers [18 23]. Another possibility for active chatter suppression is varying the spindle speed to
interrupt regenerative chatter effects. Several methodologies related with this concept have been presented in several
research papers [24 28], among others.

Although the use of active techniques to avoid or mitigate chatter is increasing [4], passive DVA [29 37] is a simple
solution and it is still a promising field of research for chatter suppression, not only in boring operations.

The common procedure to analyze the boring bar stability with a passive vibration absorber is modeling the system as a two
degree of freedom system. The first degree of freedom corresponds to the first vibration mode of the beam, modeled as an Euler
Bernoulli cantilever beam. The vertical displacement of the DVA corresponds to the second degree of freedom. The absorber
design implies the identification of optimal parameters (mass, stiffness and damping) leading to the desired response of the
system.
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Rivin and Kang [29] proposed an analytical approach to design an absorber. By means of experimental results, they showed
significant improvements in using their procedure. Tarng et al. [30] achieved the modification of the frequency response function,
FRF, of the cutting tool, tuning a vibration absorber. The enhancement of cutting stability was demonstrated with both
experimental and analytical results. The potential of impact dampers for improving damping capability of boring bars and chatter
suppression was investigated by Ema and Marui [31] through the development of bending, impact, and cutting tests. The
improvement of the dynamic response of the cutting tool due to the presence of a passive absorber was demonstrated by Lee
[32]. In this case the absorber had a large damping ratio and its natural frequency was similar to the natural frequency of the
cutting tool. The influence on vibration response of the location of the absorber along the boring bar was analyzed by Moradi
et al. [34]. The criterion for absorber parameters selection was minimizing the deflection of the free end of the boring bar. The
damping of the absorber was assumed to be negligible in the analysis. The use of viscoelastic bars has been recently proposed by
Saffury and Altus [38]. Sortino et al. [39] compared conventional and high damping boring bars, analyzing different geometries
(bar diameter and aspect ratios length over diameter) and bar materials (alloy steels sintered and carbide materials).
Experimental damping values were considerably higher in the case of high damping boring bars, due to the higher intrinsic
damping properties of sintered carbide materials with respect to alloy steels.

Sims [33] proposed an analytical method relevant for a wide range of machining chatter problems. In turning and boring
operations, passive DVA can be tuned using the analytical technique developed in [33]. Recently, Miguélez et al. [35]
presented an improvement in the passive absorber design. Based on Sims results, they proposed simple analytical
expressions for the tuning frequency improving the behavior of the system against chatter.

The aim of this paper is the optimal selection of the parameters of a passive DVA attached at a generic section of a boring
bar. The boring bar was modeled as an Euler Bernoulli cantilever beam and only its first mode of vibration was taken into
account. The stability of the two degree of freedom model was analyzed in terms of the stability diagram dependent on the
bar characteristics and also on the absorber parameters (mass, stiffness, damping, and position). The classical Nelder Mead
[40] method for unconstrained optimization problems has been used and the selection criterion consisted of the
maximization of the minimum values of the stability lobe diagram. From the analysis of wide intervals of mass of the
DVA and the damping ratio of the boring bar, empirically fitted expressions for the frequency and damping ratio of the DVA
(which permit to obtain its stiffness and damping) are proposed. The obtained results show a clear improvement in the
stability performance regarding other methodologies previously used.
2. Stability analysis of a boring bar with a dynamic vibration absorber

Boring operation is schematically illustrated in Fig. 1a. The boring bar is modeled as a uniform Euler Bernoulli beamwith
one end clamped and the other free, vibrating in x y plane (see Fig. 1a), with length L, cross sectional area A, second
moment of inertia I, Young's modulus E, density ρ, and damping c.
Fig. 1. Schematic view of a boring operation and its model.
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The rigidity of the bar is much higher along the feed or axial direction than in the radial and tangential bending
directions. On the other hand the bar exhibits higher stiffness in torsion than in bending solicitations. Thus, bending
vibrations in both radial and tangential directions should be accounted in the analysis. However, the deflections in
tangential direction (z axis in Fig. 1a) have negligible influence on chip thickness variation [12]. Therefore, just the
vibrations of boring bar in radial direction (y axis in Fig. 1a) are considered to analyze the regenerative chatter phenomenon.

The cutting force, which is proportional to the chip cross sectional area, is applied at a certain distance xb from the
clamped end, near the free end of the bar. Then, in accordance with the classical regenerative chatter theory (see [41], for
instance), the radial component of cutting force, Fy, relevant to analyze the regenerative process is given by

Fy ¼ kcwcðvðx; t TÞ vðx; tÞÞδðx xbÞ ð1Þ

where kc is the specific cutting force (a constant parameter depending on workpiece material and the cutting angles of the
tool), wc is the chip width, vðx; tÞ is the dynamic transverse displacement of the boring bar in radial direction, and T ¼ 2π=Ω
is the delay between the current time and the previous one at which the tool has passed the point under consideration, Ω
being the spindle rotational speed, and δ represents the Dirac delta function.

The chip section is calculated with a simple approach. Only the variation of the depth of cut (caused by surface
undulations due to the previous cutting pass of the tool) was considered for the component of cutting force in the radial
direction, Fy (see Fig. 1b). Thus, geometrical details of the tool, such as the insert nose radius, were not accounted in the
model. Despite its simplicity, this approach has been widely used to analyze the dynamic behavior of the boring bar
[17,20,34].

The beam has a passive DVA attached at a section located at a distance xa from the clamped end (see Fig. 1c). The dynamic
absorber is characterized by a mass MD, an equivalent spring constant KD and a damping constant CD.

The assumptions previously described allow calculating the transverse displacement of the boring bar vðx; tÞ and the
displacement of the mass absorber, VD, through the resolution of the following equations:

ρA
∂2vðx; tÞ

∂t2
þ c

∂vðx; tÞ
∂t

þ EI
∂4vðx; tÞ
∂x4

þ CD
∂vðx; tÞ

∂t
dVDðtÞ
dt

� �
þ KD v x; tð Þ VD tð Þð Þ

� �
δ x xað Þ

þkcwc½vðx; tÞ vðx; t TÞ�δðx xbÞ ¼ 0

MD
d2VDðtÞ
dt2

þ CD
dVDðtÞ
dt

∂vðx; tÞ
∂t

�����x xa

#
þ KD VD tð Þ v x; tð Þ½ � ¼ 0

"
ð3Þ

The analysis of the problem has already been presented in [35], but we resume here the main details for completeness.
In the following, it is assumed that the boring bar deflection vðx; tÞ at any point x can be expressed as

vðx; tÞ ¼ L ∑
j N

j 1
qjðtÞϕjðxÞ ð4Þ

where qj(t) represent the unknown time dependent generalized coordinates and ϕjðxÞ are the well known orthogonal
eigenfunctions of the clamped free beam without DVA (see [42], for instance).

Considering that the dynamics of the beam is well represented by the first mode of vibration, N¼1 in Eq. (4), and using
the new variables

~x ¼ x
L
; a¼ xa

L
; b¼ xb

L
; ~VD ¼ VD

L
; ~t ¼ω0t; ~T ¼ ω0T ; ω0 ¼

EI

ρAL4

s

it is possible to reduce the problem by solving the following system of two second order equations that can be written as
[35]

1 0
0 μ

 !
q1ðtÞ
VDðtÞ

( )
þ 2ξEλ2E 2ξDϕ1ðaÞ

2ξDϕ1ðaÞ 2ξD

!
_q1ðtÞ
_VDðtÞ

( )
þ

λ4Eð1þ YÞ λ4Dϕ1ðaÞ
λ4Dϕ1ðaÞ λ4D

!
q1ðtÞ
VDðtÞ

( )

þ λ4EY 0
0 0

!
q1ðt TÞ
VDðt TÞ

( )
¼ 0 ð5Þ

Eq. (5) corresponds to the motion of the two degree of freedom system representing the boring bar with an attached
dynamic absorber.

In the above equation, _ð�Þ indicates temporal derivatives, and the coefficients have the following significance:

μ¼ MD

ρAL
; ξD ¼ CD

2ω0ρAL
; λ4D ¼ KD

ω2
0ρAL

; kr ¼
kcwc

ω2
0ρAL

; ω1 ¼ λ21ω0; ζ1 ¼
c

2ρAω1
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with 

and 

Y= 
k,�(b)

AE 
A1 being the first eigenvalue (A1 = 1.8751) associated with the fundamental mode ofvibration ofthe boring bar given by (42) 

cosh A1 + cos A1 • • 
tP1(X)=COShA1X cos A 1X . hA . A (smhA1X sm A1X) (6) sm 1 +sm 1 

To analyze the stability of the solution of Eq. (5), we assume that 

q1 (t) = q10e>t; V 0(t) = V 00e't; (7) 

where q10 and V00 are arbitrary constants and s =a+ i¡} is the complex eigenvalue. Positive values of a lead to unstable 
behavior of the system. 

Substituting Eq. (7 ) in Eq. (5), we get a homogeneous system f or the unknown constants q10 and V00. This system has 
non trivial solutions with purely imaginary eigenvalues, i.e. s = if}, if the following two conditions are satisfied (35 ):

At((Aó l'AtW 2)(1 W2 
+ Y(1 cos (Wr))) + 4W 2fo(,Y,(a)fo AªeE))

tPf(a),li 2WA�o sin (Wr) = O (8) 

WAªM2At(1 + Y W2) 4¡/lf(a)) 2WYA�fo cos(Wr)
+At(Aó W2 AM(2WeE + Y sin (Wr)) = 0

in which, the auxiliary variables W and -r have been introduced: 

(9) 

f} T
W=2, -r=2 (10) 

AE AE 
Note that once the characteristics ofboring bar and DVA (including its location) are selected, the variables Ao, AE, µ, eE, fo and
tf, 1(a) are known. 

Thus, for each value of the auxiliary variable W it is possible to solve Eqs. (8) and (9) obtaining the values ofvariables Y 
and -r , and from these values we calculate 

k _ kcWcL3 _ YA:
r - El - tPt(b)

21rA2 
n 

P=--E=--r iü() 

(11) 

(12) 

The curves k, versus p constitute the stability boundaries of the system. Fig. 2 shows a schematic view of a typical stability
lobe diagram. The minimum values of these curves, (k,)nm, are related to the maximum value of chip width that can be 
removed irrespective of the turning speed. Then, for values of k, lower than (k,)nm the system is unconditionally stable. 
Unstable zone 

p 

Fig. 2. Srability boundaries of the system. 
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Table 1
Parameters of the boring bar and attached DVA.

Boring bar (main structure) Dynamic vibration absorber

Length, L 0.3 m Mass, MD 0.05 kg
Diameter, D 0.020 m Distance to clamping, xa 0.195 m
Section, A 3.142�10 4 m2 Non-dimensional position, a xa=L 0.65
Inertia, I 7.8540�10 9 m4 Mass ratio, μ 0.068
Density, ρ 7800 kg/m3 Effective mass ratio, μn 0.075
Mass of the beam, M 0.735 kg Equivalent spring constant, KD 52 265 N/m
Young modulus, E 2�1011 Pa Damping constant, CD 16.00 N s/m
Cutting force position, xb 0.294 m
Non-dimensional cutting force position, b xb=L 0.98
Specific cutting force, kc 9�108 N/m2

Damping ratio, ζ1 0.025
To illustrate this methodology, a representative example corresponding to a typical boring bar with a DVA attached at a
certain location is presented below. Table 1 summarizes the characteristics of both boring bar and vibration absorber. From
these data, the variables λD, λE , ξE , ξD and ϕ1ðaÞ can be calculated, and Eqs. (8) and (9) solved.

From this, a value of ðkrÞlim ¼ 0:913 is obtained that corresponds to a chip width ðwcÞlim ¼ 0:059 mm.
3. Absorber parameter selection with previous methodologies

Previous methodologies used to design the DVA for chatter mitigation rely on the analysis of the Frequency Response
Function, FRF, of a system composed by a mass attached to the undamped main structure (boring bar in this case) through
an elastic spring and a viscous damper. Den Hartog [43] proposed a tuning frequency from the analysis of the modulus of
FRF:

f 1 ¼
ωa

ω1
¼ 1
1þ μn

ð13Þ

where ωa is the absorber frequency given by ωa ¼ KD=MD
p

, ω1 is the natural frequency of the main structure (in this case,
ω1 corresponds to the fundamental frequency of the boring bar, given by ω1 ¼ λ41ω0), and μn is the effective mass ratio given
by

μn ¼ μϕ2
1ðaÞ ð14Þ

μ being the mass ratio written as μ¼MD=MS. Here, MS ¼ ρAL is the mass of the beam.
Notice that the effective mass ratio must be considered in order to take into account the absorber position along the

boring bar (see Appendix in [35]).
Accordingly, Den Hartog [43] proposed a damping ratio as

ξ1 ¼
3μn

8ð1þ μnÞ

s
ð15Þ

Sims [33] proposed different values for the tuning frequencies and damping ratios analyzing the real part of the FRF:

f 2 ¼
μn þ 2þ 2μn þ μn2

q
2ð1þ μnÞ2

vuut ð16Þ

f 3 ¼
μn þ 2 2μn þ μn2

q
2ð1þ μnÞ2

vuut ð17Þ

and

ξ2 ¼
μnðμn þ 3þ 2μn þ μn2

q
Þ

4ð1þ μnÞðμn þ 2þ 2μn þ μn2
q

Þ

vuuut ð18Þ

ξ3 ¼
μnðμn þ 3 2μn þ μn2

q
Þ

4ð1þ μnÞðμn þ 2 2μn þ μn2
q

Þ

vuuut ð19Þ
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As it was demonstrated in [35], the best stability performance is achieved using thetuning frequency given by (16) (f2 of
Sims model) combined with the damping ratio given by Eq. (19) (ξ3 of Sims model). The combination of frequency f2 and the
damping ratio (ξ2 of Sims model) leads to similar results, but the minimum of the stability lobe diagram is slightly lower.

Moreover, Miguélez et al. [35] performed an analysis varying the frequency in the proximity of the value given by
Eq. (16), f2, with a fixed damping ratio, and proposed new expressions for tuning frequency given by

f 4 ¼ 1þ μn

2

� �
μn þ 2þ 2μn þ μn2

q
2ð1þ μnÞ2

vuut ð20Þ

together with the damping ratio given by Eq. (18) or

f 5 ¼ 1þ μn

4

� �
μn þ 2þ 2μn þ μn2

q
2ð1þ μnÞ2

vuut ð21Þ

combined with the damping ratio given by Eq. (19).
These results were obtained for undamped main structure (boring bar). Note that the models of Den Hartog [43] and

Sims [33] are strictly applicable only to this case of the undamped main structure.
From a generic value of frequency f, given by Eq. (13), (16), (17), (20), or (21) and ξ, given by Eq. (15), (18), or (19), the

corresponding dimensionless parameters characterizing the absorber used can be written as

λ4D ¼ μλ41f
2 ð22Þ

ξD ¼ ξλ2D μ
p ¼ ξλ21μf ð23Þ

and, finally, the dimensional stiffness and damping of the absorber are given by

KD ¼ λ4D
EI

L3
ð24Þ

CD ¼ 2ξD
ρAEI

L2

s
ð25Þ

4. Optimization strategy for absorber parameters selection

The methodologies previously revised based the selection of the absorber parameter on the analysis of the behavior of
the main structure with the dynamic passive absorber attached, enforcing certain conditions in its FRF. In this work, a new
procedure is proposed to treat the design process as an optimization problem. Thus, given an effective mass ratio μn and a
damping ratio of the main structure ζ1, the corresponding values of non dimensional spring constant and non dimensional
damping constant for the dynamic absorber (λD and ξD, respectively) that maximize the value of the function ðkrÞlim need to
be obtained. Then an optimization problem can be formulated maximizing the following objective function:

ðkrÞlim ¼ GðZ;uÞ ð26Þ
where Z ¼ fλD; ξDg and u¼ fμn; ζ1g are vectors containing the variables to be calculated in the optimization process and
parameters fixed in each analysis, respectively. The objective function G is obtained solving the corresponding stability
problem described in Section 2.

The well known Nelder Mead algorithm [40], a simplex method for finding a local minimum of a scalar function of
several variables, has been used. Since the method gives the minimum of a function, the negative value of ðkrÞlim is taken as
the objective function to be minimized. The procedure is implemented as a standard routine in MATLABs environment. The
values of frequency and damping ratios given by the Sims method [33], Eqs. (16) and (18), respectively, are used as starting
points of the optimization process. Although strictly speaking, Nelder Mead is not a true global optimization algorithm, as
the starting points are values taken from Sims' formulation based on a FRF, it is expected that the method leads to global
optimized values.

5. Fitted optimal parameters

Following the procedure mentioned in the previous section, given an effective mass and a damping of the main structure,
which act as the fixed parameters in the objective function (see Eq. (26)), it is possible to calculate the characteristic
parameters of the passive vibration absorber. This analysis has been done for 36 values of effective mass, from 0.025 to 0.20
with increments of 0.005. For each value of μn, 11 values of the damping of the main structure, from 0.0 to 0.1 with
increments of 0.01, were used. Then a total of 396 (36�11) cases were analyzed.
7



The obtained values of the frequency and damping ratios were normalized by the corresponding values given by Sims 
(33) (Eqs. (16) and (18), respectively). Thus, the optima) values for the frequency ratio and damping ratio can be written,
respectively, as

f oprima! = C¡fi 

(27) 
Table 2 

_ 1.25 
u 

.... -

e 
o 

n 

� 
8 

e 
Q) 

1.2 

1.15 

1.1 

LL 1.05 

o t; 
1
= 0.00 

o t; 
1 
= 0.02 

• t; 
1
= 0.05 

X S 1= 0.08 

o 

1 ...... _._..._ ...... _._..._ ....................................................... _._ ............. ..... 

e 
o 

Q) 

8 
O) 
e 
·a.

0.05 0.1 0.15 0.2 0.25 

Effective mass ratio, µ* 

Fig. 3. Correction factor to obtain the optimal frequency ratio. 

1.1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

�X 
• X 

• X 

• X 

•

e • 

0.05 0.1 

o t;
1 
= 0.00 

D /; 
1 
= 0.02 

• t; t 0.05

X t; 
l
: 0.08 

0.15 0.2 

Effective mass ratio, µ* 

Fig. 4. Correction factor to obtain the optima) damping ratio. 

0.25 

Coefficients 4 for the frequency correctio n  factoc 

o 

1 

2 

j 

o 

0.9954 
0.3067 
6.3 6 

0.9170 
-13.19
-75.65

2 

1.7198 

83.53 

428.4 

3 

5.0762 
-2422

-645.5 

8



w here Ct and Ct are c orrection factors to be applied to the va lues proposed by Sims (33 J for the frequency ratio Eq. (16) and 

damping ratio Eq. (16), respecti vely. 

Fig. 3 shows the correction factor Ct as a function of the effective mass for four different values of the damping of the 
boring bar. 
Table3 
Coefficients gf¡ for the damping correction factor. 
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Fig. 4 shows the correction factor Ct as a function of the effective mass for four different values of the damping of the 

boring bar. 
In view of these results, expressions for the fitted values of the corresponding corrections factors Ct and Ct were

intended. The following expressions are proposed: 

and 

2 3 

C¡ = l: (\ l: /.i? (28) 
i o j o g 

2 . 3 

Ct = l: (\ l: tuµ• (29) 
i o j o 

Tables 2 and 3 give the fitted coefficients Íy and tu, respectively.

To demonstrate the accuracy of the above proposed fitted expressions, Fig. 5 shows a comparison between the direct 

optimized values of the frequency correction, obtained by the Nelder Mead algorithm, factor and the fitted ones as a 

function of the effective mass ratio,µ•, for four values of the damping of the main structure (1 = 0.015, 0.035, 0.055, 0.075. 
In Fig. 6, the same comparison for the damping correction factor is represented. 

As it can be seen, the fitted values for both the correction factors are virtually the same as those calculated with the direct 
optimization method 
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6. Comparison with other methodologies

In the previous section we presented different methodologies to select the parameter of a passive vibration absorber
with a fixed effective mass ratioµ*. In particular, we remind the following procedures: 
(a)
 Sims method (33), corresponding to the use of frequency ratio Ji, Eq. (16) and damping ratio e2 • Eq. (18�

(b) M
ethod 1 of Miguélez et al. (35) (frequency ratio /4, Eq. (20) and damping ratio e2 • Eq. (18) ).

( c) M
ethod 2 of Miguélez et al. (35 J (frequency ratio /5, Eq. (21) and damping ratio e3• Eq. (19)).

(d)
 Direct optimization method using the Nelder Mead procedure, according to the methodology presented in Section 4.

(e)
 Fitted values for the frequency and damping ratios using empirical expressions Eq. (28) and (29), respectively.
Note that the dassical tuning frequency method of Den Hartog has not been considered in view of results given by
Miguélez at al. (35), showing that other procedures lead to better stability performance. 

lt is possible to define (k,)/i
m 

as the ratio of the (k,)um value obtained with procedures (b)  (e) normalized with the 
obtained method (a), taken as reference. Thus, this value represents the improvement over the Sims method, method (a),
achieved in chatter stability using the other procedures.

Fig. 7 shows the variation of (kr)Íim as a function of mass effective ratio µ* for null damping ratio of main structure 
((1 = O). The same information is given in Fig. 8 for four different values of (1• 

From the results showed in the above figures, two main conclusions arise. In all cases the parameters selected with the 
Nelder Mead optimization method give better stability performance than the other ones. In fact, the ratio (kr)Íim 
continuously increases with the effective mass ratio, read1ing mínimum values of the stability lobe diagram that are 40% 
higher than those obtained with the procedure of Sims for µ• = 0.2. On the other hand, for small values of effective mass 
ratio, the improvement is smaller but not less than 10%. 

The second condusion is that these optimal parameters can be fitted from the expressions in Eqs. (28) and (29) 
(frequency and damping ratio for the absorber, respectively1 leading virtually to identical results with the direct 
optimization method. 

7. Numerical example

The proposed methodology to select optimized parameters for a DVA attached to a boring bar was applied to solve a 
representative example. The d1aracteristics of the boring bar were previously presented in Table 1.

For comparison, three tuning methodologies were considered (Sims method (33 ), method 1 of Miguélez et al. (35 J. and 
the proposed method). Using the Sims method (33), the tuning frequency and damping ratio are calculated from Eqs. (16) 
and (18), respectively. The method 1 ofMiguélez at al. (35) corrects the tuning frequency according to Eq. (20) and takes the 
same damping ratio as that in the previous method by Sims. Finally, the tuning frequency and damping ratio here proposed 
are o btained from Eq. (27), in which the correction factors c1 and Ct are the corresponding fitted values given by Eqs. (28) 
and (29) respectively , for values of µ• = 0.075 and (1 = 0.025. 
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Table 4 
Selected parameters of the DVA for the example considered. 

Method f � lo 

Sims 1.034 0.157 0.974 
Miguélez et al. 1.072 0.157 0.992 
Proposed 1.106 0.109 1.007 

�D 

0.039 
0.040 
0.029 

(k,)um 

0.913 
1.029 
1.055 

{Wc)um {mm) 

0.059 
0.066 
0.068 

Ko{N/m) Co {N s/m) 

52265 16.00 
56261 16.61 
59826 11.98 
The obtained values for the spring constant and damping constant of the DVA are given in Table 4, and the complete 
stability lobe diagrams in Fig. 9. As can be seen, the proposed method gives the highest value of (wc)lim· 

It is important to note that an increase of the effective mass ratio,µ•, would lead to higher values of (wc)lim • as can be seen 
in Figs. 7 and 8. For higher µ* values , a DVA with higher spring constant but smaller damping constant is required, as can be 
appreáated in Figs. 3 and 4. 
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8. Conclusions

This paper deals with the chatter stability of a boring bar with an attached passive dynamic vibration absorber.
The boring bar is modeled as an Euler Bernoulli cantilever beam, and the absorber is considered attached by a spring and a
damper at a certain section of the beam. The stability problem has been properly solved and the stability lobe diagram
constructed. To determine the optimum values of the absorber parameters, the criterion was to maximize the minimum
values of the stability lobe diagram. To this end, the classical Nelder Mead [40] method for unconstrained optimization
problems has been used. Analyzing of wide intervals of mass of the DVA and the damping ratio of the boring bar, empirically
fitted expressions for the optimal values of the frequency and damping ratios of the absorber are proposed. The obtained
results show a clear improvement in the stability performance over other methodologies previously presented by Sims [33]
and Miguélez at al. [35].

The method could be easily implemented in the design procedure of passive absorbers in boring operations, and note
that it is fully applicable when the damping ratio of the boring bar is non null as it occurs in practical operations.
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