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Topological protected wave engineering in artificially structured media is at the frontier of ongoing
metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic
topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation
with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of
topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency
response, which severely hinders the exploration and design of useful devices. Here we establish
topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply
by rotating its three-legged “atoms” without altering the lattice structure. In particular, we engineer robust
phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such
topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic
integrated circuits.
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I. INTRODUCTION

The discoveries of the quantum Hall effect [1,2], the
quantum spin Hall effect [3,4], and topological insulators
(TIs) [5–7] have paved the way toward novel topological
states in condensed matter physics and stimulated the
search for analogous topological systems with classical
waves such as light [8–22], sound [23–36], and mechanical
waves [37–39]. Early pioneering approaches to construct
acoustic topological states in 2D systems relied on enforced
circulating fluid flow in the background [23–26,40] to
mimic the quantum Hall effect, whereas Floquet topologi-
cal insulators have been realized in preset coupled ring-
resonator waveguides [27,28,35]. Phononic “graphene”
with double Dirac cones [30,31,34,36] can map the
quantum spin Hall effect, and C3v phononic crystals
composed of anisotropic rods constitute acoustic valley
Hall topological insulators [32,41–50]. However, an even
greater challenge is posed by the lack of tunability and
adaptation to functional needs which is essential for real-
world applications that yet is an unexplored territory for
topological acoustics in artificially structured media.
Structures permitting defect-immune broadband acoustic

signal processing have the possibility to significantly push
forward important applications.
The purpose of this work is to demonstrate reconfig-

urable acoustic topological edge states in a phononic crystal
(PC) without utilizing external bias. In doing so, we mimic
the quantum valley Hall effect that exploits valley states as
opposed to spin states. In the field of electronics, the
angular rotation of the electron wave function at theK orK0

point of the band structure generates an intrinsic magnetic
moment analogous to that produced by the electron spin
[41,42,45]. Analogously, vortex chirality adds a new degree
of freedom (d.o.f.) to manipulate sound as provided
through the orbital angular momentum [34,39,49]. We
demonstrate that the direction of sound propagation at
the K or K0 point [i.e., right- or left-hand circularly
polarized (RCP and LCP)] plays the role of the pseudospin
d.o.f. in a 2D acoustic system. Breaking of the appropriate
point group and translational symmetries can provide a
general approach to pseudomagnetic fields [33,51,52] for
Dirac quasiparticles. However, in our setup where the C3

symmetry is preserved while the mirror symmetry is
broken, there are not any pseudomagnetic fields but rather
a mass term. Breaking the mirror symmetry of the primitive
cell is accomplished by simply rotating the “atoms”; see,
also, Refs. [32,36]. This induces band inversion between
different valley pseudospin d.o.f., which further leads to
topological phase transitions [53,54]. Here, the orientation
of the atoms is tunable allowing us to remotely reconfigure
the edge states. Moreover, the scatterer’s design is
improved to boost the bandwidth of the topological band
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gap. Finally, we experimentally realize topologically pro-
tected broadband delay lines based on engineered phase
delay defects (PDDs) that constitute a platform for acoustic
devices. The proposed approach provides diverse routes to
construct acoustic valley pseudospin states, which have
profound implications for the fascinating physics of acous-
tic TIs with versatile potential applications.

II. EXPERIMENTAL DETAILS

The three-legged rods of the PC are precision fabricated
using epoxy resin via 3D printing. The fabricated PC
sample consists of 400 rods embedded in an air matrix. The
height of the rods, which are placed between two parallel
plates of Plexiglass, is chosen to be 1.40 cm. In this
scenario, the two-dimensional approximation is applicable
since the planar waveguide supports the propagating mode
uniformly along the rod axis for the wavelengths under
consideration. The experiments are conducted by a loud-
speaker (ENPILL PD-2121) with a gradual pipe to generate
a point sound source. Cone-shaped sound-absorbing foam
is mounted around the surrounding of the PC to minimize
the boundary reflections by the open space. Local pressure
fields are measured by inserting 1=4-inch condensed
microphones (GRAS type 40PH) into the top plate at
the designated positions. The outputs of the microphones
are acquired by a digitizer (NI PXI-4498) and processed by
LabVIEW software. A frequency scan is performed from 5 to
10.0 kHz with an increment of 0.01 kHz. Highly reliable
readings of the pressure amplitude at each frequency are
ensured by multiple measurements, from which we obtain
the complex transmission and sound intensity by means of
the transfer-matrix method.

III. RESULTS AND DISCUSSION

A. Acoustic valley pseudospin states
and topological mode inversion

The presence of Dirac-like degenerate points is an
important requirement for engineering a topological phase.
The degeneracies at the high-symmetry points are pre-
served if the point group includes the C3v symmetries [33].
This structure constitutes a well-established platform to
support a single Dirac cone at the corners of the first
Brillouin zone (BZ) (see Appendix A). Keeping the mirror
symmetry of the primitive cell unchanged, the unperturbed
(cylindrical) rods are simply replaced by perturbed rods
made of epoxy resin with the rotation angle φ ¼ 0° and the
lattice constant a ¼ 2.17 cm. The shape of the rod is a
three-legged atom of length d ¼ 0.85 cm and width h ¼
0.30 cm as shown in Figs. 1(a) and 1(b). This crystalline
structure is arranged by periodically repeating the primitive
cell C containing one rod, and the unit vectors a1 and a2
defining the primitive cell. Because of the matched mirror
symmetries between the lattice and triangular scatterers, the
dispersion relation of such a hexagonal structure maintains

the Dirac cones at the corners of the first BZ at a finite
frequency; see Fig. 1(d). We break the mirror symmetry of
the primitive cell by simply rotating the three-legged rods
(TLRs) [Fig. 1(b)] to obtain a controllable band gap
separating different topological phases. To achieve struc-
tural tunability, computer-controlled motors are attached to
the pedestals of the TLRs to provide the desired rotation.
Two different symmetry-invariant geometries are created
by breaking the mirror symmetry in two opposite ways: we
build a unit cell composed of erected TLRs by rotating
the rod to φ ¼ 30°, and second, a unit cell composed of
upside-down TLRs by rotating the rod to φ ¼ −30°. In
order to illustrate the mode-inversion process accompanied
by a broken symmetry, we plot the dispersion relations as
shown in Figs. 1(c)–1(e) (dispersion surfaces are plotted
in Appendix A). Figures 1(c) and 1(e) display a pair of
well-defined valleys at the corners of the first BZ, which are
separated by an omnidirectional broad band gap spanning
from 6073 to 9360 Hz. We demonstrate that the band gap is
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FIG. 1. Acoustic valley pseudospin states and topological mode
inversion. (a) Schematics of the hexagonal lattice PC composed
of perturbed TLRs embedded in an air matrix. (b) Symmetry
breaking by rotating the rods attached to the computer-controlled
electric motor. (c)–(e) Dispersion relations of the acoustic modes
by reconfiguring the angle φ ¼ 30° (erected), φ ¼ 0° (degen-
erated), and φ ¼ −30° (upside down). The symbols Kþ and K−
denote the pseudospin states. (f) Topological mode inversion
underlying the transition of pseudospin states. The rainbow color
represents the amplitude of the absolute pressure and phase of the
four pseudospin states. The arrows show the direction and
amplitude of the intensity.
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drastically enlarged (see Appendix B). This band gap
closes at φ ¼ 0° where the two modes become degenerate
since the Γ-K symmetries of both crystal lattices and TLRs
remain matched [Fig. 1(d)], implying that reopening of the
band gap stems from breaking the C3v symmetry. Rather
than refabricating the PC to explore various topological
states, we are able to fine-tune the topological transition
when rotating the TLRs from φ ¼ −60° to φ ¼ 60° where a
continuous gap closing and reopening process easily can be
achieved (see Appendix C). In order to get an under-
standing of the physical picture behind the pseudospin
states, we map the absolute pressure fields, intensity, and
phase distributions of the states at the K point as shown in
Fig. 1(f). These acoustic valley pseudospin states exhibit
reversed chirality similar to electronic spin states. When the
TLRs are erected in the hexagonal lattice, the acoustic
vortex chirality is RCP (LCP) and labeled as Kþð−Þ at the
higher (lower) state as depicted in Fig. 1(f), left panel.
When rotating the atoms to the upside-down configuration,
the acoustic vortex chirality of the lower state changes to
RCP (Kþ) and the higher state changes to LCP (K−)
leading to an inverted band structure [Fig. 1(f), right panel].
The time-dependent spinning of intensity around the TLR
with its respective RCP or LCP chirality is clearly visu-
alized in Video 1. We emphasize that the pseudospin results
from spectrally wide sound scattering in the PC containing
broken mirror symmetry, which is much easier to design
and reconfigure as opposed to fluid-circulator- or resonator-
based schemes.

B. Broadband topological valley transport

We demonstrate that an interface between two acoustic
TIswith different symmetry-broken geometries (erected and

upside down) supports topologically protected edge states.
We construct a phononic TI in a finite 20a × 20a lattice
as shown in Fig. 2(a). According to the band structure in
Fig. 2(b), building a PC with either erected or upside-down
TLRs prevents sound propagation as marked by the
forbidden gray-shaded region that spans from 6100 to
9450 Hz. The topological edge states fall within the bulk
band gap as indicated by the red solid line for positive
interface and the blue dashed line for negative interface as
seen in Fig. 2(b). The edge states originate from the change
of the valley Chern index across the interface between
topologically distinct regions. It has been shown that by
means of an effective Hamiltonian [17,48,55,56], the non-
vanishing valley Chern indices [56,57] CðK;K0Þ can be
determined by 2CðK;K0Þ ¼ �1 × sgnðΔPÞ. Here, ΔP charac-
terizes the geometrical perturbation, where its strength ΔP
depends on the rotation angle φ, and the sign ofΔP depends
on the orientation of theTLRs (seeAppendixD). In the setup
where the C3 symmetry is preserved while the mirror
symmetry is broken, there is not any gauge field but rather
a mass term in the effective Hamiltonian [33], which can be
also considered as the perturbation strengthΔP. It can lead to
helical edge states in the presence of domains walls where
themass (ΔP) changes sign [32,50]. As a result, the interface
with different signs of perturbation strengthΔP will support
the backscattering-immune transmission. For example, the
negative interface shown in Fig. 2(b) has ΔP < 0 (ΔP > 0)
in the erected (upside-down) region. Hence, there should
be a backward-moving edge state at the K point due to

ΔCðKÞ¼CðKÞ
upper−CðKÞ

lower¼−1, and a forward-moving edge
state at the K0 point due to ΔCðK0Þ ¼ 1. The simulated
pressure fields at frequency f ¼ 7500 Hz within the topo-
logical band gap are shown in Fig. 2(c) both for the
topological edge states (structure I) and for bulk states
(structure II). Here, soundwaves are localized in the vicinity
of the interface between the twoTIs and decay exponentially
away from it, proving that the bulk region is insulating due to
the presence of band gaps therein. As shown in Fig. 2(d), we
measure the transmission spectra for both structures under
study. We observe a transmission enhancement of approx-
imately 40 dB for the excitation of edge states (black line) as
compared to the bulk states (red line), which unequivocally
demonstrates that sound, when excited inside the band gap,
does not evanescently tunnel through the bulk. Instead,
sound waves couple to the edge mode and propagate
unimpededly along the interface in the topological band
gap. Note that a key feature of the topological edge states is
the exponential decay of the field amplitude away from the
interface. To experimentally confirm this feature, we further
investigate the normalized pressure amplitude profile along
a cutline in the middle of the crystal [red dashed line in
Fig. 2(c)]. Figure 2(e) illustrates the measured profile of the
edge state at frequency f ¼ 7500 Hz, which agrees excel-
lently with the simulation. The full width at half maximum
(FWHM) of the envelope is 1.2a, where a is the lattice

VIDEO 1. Dynamic views of the time-dependent spinning of
intensity around the TLR with its respective RCP or LCP
chirality. The rainbow color represents the amplitude of the total
pressure of the four pseudospin states. The arrows show the
direction and amplitude of the intensity.
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constant. As shown in Fig. 2(f), we scan the pressure field
along the cutline within the frequency range of the topo-
logical band gap, which indicates that the tightness of the
edge states indeed is insensitive to frequency.

C. Effects of lattice-scale defects

The key manifestation of acoustic topological insulators
is the reflection-free transmission of excited edge states.
However, in principle, the lattice-scale defects can couple
to different valleys and, thus, introduce backscattering to
the counterpropagating modes in topological valley insula-
tors. As a proof of principle, we deliberately introduce three
types of lattice-scale defects (Fig. 3) and investigate their
influences: (1) bends containing sharp corners, (2) strong
local disorder in the lattice achieved by swapping erected
and upside-down TLRs, and (3) a resonant cavity formed
by removing rods. A continuous sinusoidal sound wave

radiates normally into the waveguide. The degree of
backscattering can be observed in the absolute pressure
field maps, as shown in Figs. 3(a)–3(d). Figure 3(b) shows
a negligible reflection of the topological edge states with
four sharp bends. However, the strong local disorder and
the cavity entail significant wave backscattering at the local
defects resulting in increased sound reflections. Figure 3(e)
further shows the experimental measured transmission
spectra for a topological protected waveguide (TPWG).
Sound propagations along the interface with bends are
marginally affected only within the frequency range of
8959–9450 Hz (yellow-shadowed region), which is the
spectral forbidden regime for the positive interface; see
Fig. 2(b). The other defects, especially the cavity, severely
inhibit the forward propagation, leading to a significantly
decreased transmission or even a total reflection. The
effects of the different degrees of defects are also inves-
tigated in Appendix E. To sum up, the sharp turns induce
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FIG. 2. Topologically protected edge waves localized at the interface within the PC created by different topological invariants.
(a) Photograph of a fabricated PC sample (without the top cover). (b) Dispersion relation of the ribbon-shaped 2D PC with negative and
positive interfaces comprising 20 cells on each side. Dark gray regions indicate the frequency range of the topological band gap. The
solid red and dashed blue lines are for edge states with positive and negative interfaces. Inset: Absolute pressure fields at k ¼ 0.3 × 2π=a
for the interfaces. (c) Simulated absolute pressure fields at the frequency f ¼ 7500 Hz (within the topological band gap) along the
interfaces between two TIs (left panel, structure I) and through the bulk TI (right panel, structure II). (d) Experimentally measured
transmission spectra of topological edge states and bulk states. (e) Simulated and measured pressure amplitude profile of a cutline in the
middle of the crystal [red dashed line in (c)] at the frequency f ¼ 7500 Hz. FWHM ¼ 1.2a, where a is the lattice constant.
(f) Experimentally detected frequency-dependent spatial profile of the absolute pressure fields measured in the middle of the crystal [red
dashed line in (c)]. The zero of the scanning axis is set at the interface between two TIs.
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very little backscattering; however, the presence of lattice-
scale defects, especially disorder and cavities, will induce
intervalley scattering and decrease sound transmission. We
demonstrate that although topological valley insulators are

much simpler and very flexibly reconfigured as compared
with the topological insulators [23–26], the robustness of
the topological valley transport is weakened. A trade-off
between simplicity of the implementation and robustness
should be made.

D. Device implementation based on tunable
topological waveguides

The reconfigurability of the structure is the cornerstone
behind current acoustic functional devices and metamate-
rials. The tunability of the TLRs is illustrated in Fig. 1(b), in
which computer-controlled motors attached to the pedestals
of the TLRs can provide the desired rotation. To further
corroborate this approach and to demonstrate the actual
proof-of-concept based on the reconfigurable topological
edge states, we engineer topologically switchable wave-
guides as shown in Fig. 4(a). Parts of the TLRs (highlighted
by black color) are mounted onto computer-controlled
motors. As a result, the topologically protected pathway
can be easily controlled. Depending on the rotation angle
selected, −30° or 30°, respectively, sound waves transmit
either through port 1 or port 2 as illustrated in Fig. 4(b). We
emphasize that vast possibilities of functional devices can
be engineered by simply configuring the TLRs to any
desired angle.

E. Time-delay lines based on topological edge states

Owing to the spectrally broad response of the TIs built
using TLRs, we are able to send short pulses through PCs
and engineer their dynamic behavior. The tremendous
advantage of reflection-free acoustic signal transmission
not yielding to sharp bends along the way enables one to
design acoustic delay lines by means of topologically
protected transient edge states. The robust optical delay
lines have been theoretically proposed in Ref. [11]; how-
ever, the broadband and tunable delay lines based on
topological acoustics have never been demonstrated before
to our knowledge. As shown in Fig. 5(a), we fabricate
PDDs in the form of a square-shaped detour with four sharp
bends in a TPWG that generates a time delay [22]
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τi ¼
�∂φi

∂ω − ∂φ0

∂ω
�

¼ 1

2π

�∂φi

∂f − ∂φ0

∂f
�
;

i ¼ 0; 1; 2;…; N; ð1Þ

where ∂φi is the phase of the sound wave along the
interface with i ¼ 0; 1; 2;…; N detours, and ∂φ0 is
the phase through the uninterrupted straight waveguides.
The time delay through one detour is τ1 ¼ τ. One of the key
characteristics of the topologically protected delay lines is
their compactness, since PDDs in the form of sharp bends
turn into tightly packed detours without any backscattering.
The time-delay line can be increased very flexibly by
stacking multiple square-shaped detours. Hence, as an
example, we engineer PDDs of doubled delay time τ2 ¼
2τ by joining two such square-shaped detours. Rather than
refabricating a TPWG with this desired temporal response,
we simply reconfigure the lattice by rotating the respective
TLRs to physically form the additional detour. According
to the dispersion relations in Fig. 2(b), the sound velocity
can be obtained through cj ¼ 2πðdf=dkÞj with j ¼ 1, 2 for
the negative and positive interfaces. The delay time τ ¼P

2
j¼1 ðsj=cjÞ can be derived from Eq. (1), where sj is the

length of the transmitted line. The time delays of sound
waves through a one-detour and two-detour TPWG are
experimentally measured as shown in Fig. 5(b) together
with the model prediction. What is worth noting is that the
bandwidth of topological protection remains intact. As
compared to ordinary PCs where resonances produce
positive and negative delay times, in the present case
[see Fig. 5(b)], for most frequencies, the time delay is
spectrally flat. Figure 5(c) depicts the experimentally
measured time delays through TPWGs containing PDDs
of one detour and two detours. In this experiment, a

Gaussian-modulated sinusoidal pulse cosð2πfctÞ×
exp½−σðt − t0Þ2� with σ ¼ 2.68 × 1011 and t0 ¼ 0.025 s
is generated. The center frequency fc and bandwidth of the
pulse are 7400 Hz and 37 Hz, respectively, which ensure
that the main frequencies lie in the topological band gap.
The first row shows the transmitted pressure through a
straight interface. The second and third panels show the
transmitted pressure through the interface with one and two
detours, respectively. The delay time 4.18 ms through two
detours is approximately twice 2.10 ms through one detour.
These experimental results constitute the first step in
building a multistage broadband topologically protected
delay line capable of buffering multiple acoustic pulses.

IV. CONCLUSION

In conclusion, we experimentally realize acoustic valley
pseudospin and topologically protected reconfigurable
edge states in a phononic TI using three-legged epoxy
resin rods, which is a common material. Such a platform
provides a versatile and robust approach toward manipu-
lating sound waves without backreflection along any
desired path. In particular, the ability to independently
rotate each of the rods enables flexible switching between
two distinct topological configurations, which should
further extend the design possibilities of future tunable
acoustic topological devices. Most important, as opposed to
previous findings that comprise complex and narrowband
topological structures, our design based on PCs made of
TLRs exhibits a particularly broad frequency response of
reflectionless sound propagation ideal for ultrafast dynam-
ics. Beyond the fundamental interests of TIs, we propose a
real-world application in the context of acoustic delay lines
that has the exceptional potential to be implemented for
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various functions such as signal buffering and pulse
processing in general.
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APPENDIX A: THREE-DIMENSIONAL
DISPERSION SURFACES

Figure 6(a) shows the 3D dispersion relation through the
entire first BZ of the primitive cell C of the hexagonal PC,
which is composed of unperturbed cylindrical epoxy resin
rods with a lattice constant að¼ 2.17 cmÞ and a radius r

(¼0.95 cm). Keeping the Γ-K mirror symmetry of the
primitive cell unchanged, the unperturbed (cylindrical)
epoxy resin rods are simply replaced by perturbed (three-
legged) rods with the rotation angle φ ¼ 0°, lattice constant
a ¼ 2.17 cm, length of the side d ¼ 0.85 cm and width
h ¼ 0.30 cm, ofwhich the correspondingdispersion relation
is shown in Fig. 6(b). It is confirmed that in both situations,
the six singleDirac cones appear at theK andK0 points of the
first BZ. We introduce a rotation of the perturbed (three-
legged) rods from φ ¼ 0° to the erected configuration
(φ ¼ 30°) or upside down (φ ¼ −30°) in order to break
the mirror symmetry of the primitive cell. From the
three-dimensional dispersion relation [Figs. 6(c)–6(d)],
it is predicted that a controllable band gap separates
different pseudospin states at the K and K0 points of the
first BZ.

APPENDIX B: ACHIEVING A BROADBAND
TOPOLOGICAL BAND GAP

We emphasize that the ultrabroadband characteristic is
specific to the proposed structure. Figure 7(a) shows the unit
cell of a hexagonal PC composed of a regular triangular rod
(as in Ref. [32]) with lattice constant a ¼ 2.17 cm and the
length of the side d ¼ 1.50 cm. In this scenario, the
frequency range of the band gap is Δf ¼ 2262 Hz equal
to 0.143c=a when normalized by 2πc=a with the sound
speed in air c ¼ 343.20 m=s and lattice constant a.
Reducing the filling factor of the cell enlarges the band
gap toΔf ¼ 2548 Hz ¼ 0.161c=a [Fig. 7(b)], in which the
three isosceles subtriangles are removed to obtain a
Mercedes-type rod. Further, by replacing the sharp corners
of the Mercedes-type rod with obtuse “legs” [Fig. 7(c)], the
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FIG. 6. 3D dispersion surfaces of hexagonal PC in the recip-
rocal space. Both dispersion relations for PC composed of (a) the
unperturbed cylindrical and (b) the perturbed three-legged rods
with a rotation angle φ ¼ 0° exhibit the six single Dirac cones at
theK=K0 points. Symmetry is broken by rotating the rod to (c) the
erected configuration with φ ¼ 30° and (d) the upside-down one
with φ ¼ −30°.
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FIG. 7. Achieving a broadband topological band gap. Sche-
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band gap is enlarged to Δf ¼ 3287 Hz ¼ 0.208c=a, which
is almost 1.5 times larger than that of the regular triangular
rod. To sum up, we demonstrate that the topological band
gap can be significantly broadened by modulating the
geometry of the scatterers.

APPENDIX C: BREAKING THE MIRROR
SYMMETRY BY ROTATING THE THREE-

LEGGED RODS

The intersection of two different pseudospin states takes
place when the symmetries of the primitive cell and
hexagonal lattice stay the same at which the rotating angle
is φ ¼ 0o as shown in Fig. 8(a). Figure 8(b) shows the
topological transition in a PC with φ ≠ 0°, where the
eigenfrequency of pseudospin states separates the band
gap at the BZ corner as a function of the rotating angle φ.
The red and blue curves correspond to the RCP and LCP
modes, respectively. When φ < 0°, the vortex chirality of
the lower (upper) state is RCP (LCP). On the contrary, the
vortex chirality of the lower (upper) state is LCP (RCP) for
φ > 0°. As φ increases, the band gap closes and reopens
and is accompanied by the crossing of two pseudospin
states. This process is analogous to the band inversion
process. Thus, as shown in Fig. 8(b), the band gap is
marked with different colors to show that they have
different topological characteristics.

APPENDIX D: THE EFFECTIVE HAMILTONIAN
AND THE VALLEY CHERN INDICES

The effective HamiltonianHðk⊥Þ, which is a function of
the in-plane wave number, can be expressed on the basis of
the RCP or LCP states in close proximity to the K and K0
points of the BZ. Because of the limited number of
propagating eigenmodes being utilized, the effective
Hamiltonian is an approximation, and its validity is
justified only near the high-symmetry points of the BZ.
Derived from the k · p theory, the unperturbed Hamiltonian
Hðk⊥Þ≡H0ðδkÞ near the Dirac points can then be

described as [3,33] H0ðδkÞ ¼ vDðδkxσx þ δkyσyÞ, where
vD is the group velocity, δk ¼ ðδkx; δkyÞ≡ k⊥ − kD is the
distance from the Dirac points with kD ¼ �ð4π=3a0Þex for
the K and K0 points, and σiði ¼ x; yÞ are Pauli matrices of
the vortex pseudospins.
Furthermore, we introduce the perturbation of the three-

legged rods with two different symmetry-broken geom-
etries (erected and upside down). The perturbation matrix is
diagonalized: HP ¼ ωDΔPσz. We can obtain the band
structure of the perturbed system by calculating the
eigenfrequency ΩðδkÞ≡ ωðδkÞ − ωD of the matrix equa-
tion HðδkÞΨ≡ ΩðδkÞΨ, in which H ¼ H0 þHP. The
perturbation strength ΔP can be determined from the
first-order perturbation theory: ΔP ¼ 1

2

R
V Δ½1=Kðr⊥Þ�×

ðjpRj2 − jpLj2ÞdV, where ΔV is the perturbed volume,
Δ½1=Kðr⊥Þ� ¼ �½ð1=Kepoxy resinÞ − ð1=KairÞ� is the chang-
ing bulk elastic modulus after perturbation (circular to a
TLR), and pRðpLÞ represents the pressure of the RCP
(LCP) state. The�sign of Δ½1=Kðr⊥Þ� depends on whether
the air region is replaced by epoxy resin or vice versa. From
Fig. 1(f), we deduce the sign of the perturbation strength
ΔP depending on the orientation of the three-legged rod
(the rotation angle φ). For example, the erected rod has the
most negative ΔP, whereas the upside-down rod has the
largest positive ΔP.
Although the band structures and eigenfrequencies

ΩðδkÞ of the perturbed system with the opposite signs
of ΔP are identical to each other, the topological valley
indices of the propagating modes in these two PC structures
are not. The nontrivial topological properties of the
modes can be characterized by the nonvanishing valley
Chern indices [48,56,57]. By definition [48,58], CðvÞ ¼R
BZðvÞ d

2δk½∇δk × AðδkÞ�=2π with the local Berry connec-

tion [59,60] AðδkÞ ¼ −iψ†
vðδkÞ · ∇kψvðδkÞ, where v ¼ K,

K0 is the BZ corner. The integral of the Berry curvature over
the full BZ is zero with the Chern number C ¼ 0, which is
required by time-reversal symmetry. However, for small
perturbation ΔP, the Berry curvature is strongly peaked at
the gap minima near K and K0. As a result, BZðvÞ is one-
half of the Brillouin zone, where kx > 0 for v ¼ K and
kx < 0 for v ¼ K0 in the formula. The integral of the Berry
curvature over an individual valley is accurately defined,
and the nonvanishing valley Chern indices can be deter-
mined by 2CðK;K0Þ ¼ �1 × sgnðΔpÞ [48].

APPENDIX E: EFFECT OF
LATTICE-SCALE DEFECTS

Short-range defects will couple to different valleys and,
thus, introduce backscattering to the counterpropagating
modes. This type of backscattering can, in principle, occur
for any sharp feature. It has been proved that the sharp
bends induce very little backscattering in Fig. 3 and
Ref. [32]. However, the effects of other types of defects
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FIG. 8. Rotating the three-legged rods with band inversion.
(a) Schematic of symmetry broken by rotating the rods.
(b) Eigenfrequency of the two different pseudospin states
dependent on the rotation angle φ at the K=K0 point. The band
inversion effect is clearly observed.
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have not been discussed. To quantify the effects of
lattice-scale defects, we consider an interface between
two valley Hall insulators with different numbers of cavities
and disorder, which are placed near the interface.
Experimental transmission spectra of helical edge states
with different cavities or disorder (number of swapped
erected and upside-down TLRs) are shown in Figs. 9(a) and
9(b), respectively. The decreased transmission through the
interfaces with cavities or disorder demonstrates that
lattice-scale defects induce backscattering and that this
effect is enhanced with enlarging the area of defects.
Cavities mainly have influence on the lower frequency
range of the topological band gap. On the contrary, disorder
mostly makes an impact on the upper frequency range.

APPENDIX F: NUMERICAL CALCULATIONS

Numerical simulations are implemented using COMSOL

Multiphysics, a finite-element analysis and solver software.
The simulations are performed in the pressure acoustic
module including the detailed microstructures with actual
geometric dimensions. The standard hard-wall boundary
conditions are applied to the rods. The matrix material
applied is air (25 °C) with standard parameters of a
mass density ρair ¼ 1.20 kg=m3 and a sound speed
cair ¼ 343.20 m=s. The largest mesh element size is lower
than one-tenth of the shortest incident wavelength. Plane-
wave radiation conditions are imposed on the exterior of the
air domain to eliminate interference from the reflected
waves. In the uniaxial structure, the acoustic eigenmodes
propagate in the (x, y) plane. The representative field
component can be thereby expanded with the Bloch ansatz,

Pzðr⊥; tÞ¼
X
n;k⊥

anðk⊥Þpn;k⊥
z ðr⊥Þeik⊥r⊥−iωnðk⊥Þtþ c:c:; ðF1Þ

where the n ¼ 1 (2) index refers to lower (upper) propa-
gation band, and pn;k⊥

z is the normalized field profiles
chosen to be periodic in the r⊥ ¼ ðx; yÞ plane. The

normalized velocity field components of the modes can
be obtained from Eq. (F1) as shown in the following
relation:

vn;k⊥⊥ ðr⊥Þ ¼
−i

ρðr⊥Þωnðk⊥Þ
× ½ðikxþ ∂xÞpn;k⊥

z x̂þðikyþ∂yÞpn;k⊥
z ŷ�. ðF2Þ

The eigenfrequencies ωnðk⊥Þ of the relevant modes can be
calculated by using COMSOL Multiphysics, as shown in
Fig. 1, where k⊥ ¼ ðkx; kyÞ belongs to the first BZ.
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