
This is a postprint version of the following published document:

Frangoudis, P.A., Ksentini, A. (2018). Service
migration versus service replication in Multi-access
Edge Computing. Paper submitted in 2018 14th
International Wireless Communications & Mobile
Computing Conference (IWCMC) (pp. 124-129),
Limassol.

DOI: 10.1109/IWCMC.2018.8450284

©2018 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://doi.org/10.1109/IWCMC.2018.8450284

Service migration versus service replication in
Multi-access Edge Computing

Pantelis A. Frangoudis and Adlen Ksentini
EURECOM, Communication Systems Dept., Sophia Antipolis, France

{firstname.lastname}@eurecom.fr

Abstract—Envisioned low-latency services in 5G, like auto-
mated driving, will rely mainly on Multi-access Edge Computing
(MEC) to reduce the distance, and hence latency, between users
and the remote applications. MEC hosts will be deployed close to
mobile base stations, constituting a highly distributed computing
platform. However, user mobility may raise the need to migrate a
MEC application among MEC hosts to ensure always connecting
users to the optimal server, in terms of geographical proximity,
Quality of Service (QoS), etc. However, service migration may
introduce: (i) latency for users due to the downtime duration;
(ii) cost for the network operator as it consumes bandwidth
to migrate services. One solution could be the use of service
replication, which pro-actively replicates the service to avoid ser-
vice migration and ensure low latency access. Service replication
induces cost in terms of storage, though, requiring a careful
study on the number of service to replicate and distribute in
MEC. In this paper, we propose to compare service migration
and service replication via an analytical model. The proposed
model captures the relation between user mobility and service
duration on service replication as well as service migration costs.
The obtained results allow to propose recommendations between
using service migration or service replication according to user
mobility and the number of replicates to use for two types of
service.

Index Terms—Mobile and Multi-access Edge Computing, 5G,
Markov chains

I. INTRODUCTION

Mobile or Multi-access Edge Computing (MEC) [1] is seen
as one of the key enablers of 5G services, particularly for
those requiring ultra Reliable Low Latency Communication
(uRLLC), such as automotive and industry 4.0 services. MEC
allows reducing access latency to remote services (compu-
tation and storage), by hosting them at the network edge.
Therefore, rather than being connected to remote servers in
the cloud, where the average Round Time Trip (RTT) is
around 200 ms, using MEC allows to reduce this latency by
a factor of 4 [2]. Such reduction of latency enables services
like automated driving to quickly react to events reported by
sensors enrolled in the vehicle.

MEC is being standardized by ETSI [3], where a first
architecture has been released. Several functional blocks and
interfaces have been defined. However, user mobility raises the
challenge of migrating the service among the MEC servers
(or Follow Me Edge) in order to allow users to be always
connected to the closed MEC server, so as to keep low-latency
access to the service. Service migration has been explored in
the context of Follow Me Cloud [4], [5], where cloud services
are migrated among Data Centers (DC) according to user

mobility. While in the case of cloud services the downtime
of the service due to service migration could be tolerated, this
represents a challenge in the case of MEC, as it should be
avoided as much as possible for uRLLC services. One solution
introduced in [6] is to employ proactive service replication
in order to reduce the service migration events. Similarly to
the principle of proactive caching, the authors proposed to
replicate the service on neighbor MEC servers. They solve
a multi-criteria optimization problem, deciding at each user
handover event where to duplicate the service by minimizing
both the probability of service migration and the number of
duplicate instances of a service. Their solution is interesting
but at the same time challenging to deploy in practice, since
the optimization problem should be solved at each handover.
In addition, their model has specific limitations: it does not
integrate the user service type (e.g., duration) nor the number
of active users in the system.

In this paper, we address such limitations and present
an analytical model based on Markov chains to capture the
relation between the cost of service replication and the cost
of service migration regarding (i) the service duration, (ii) the
size of area where the service is replicated, (iii) the number
of users, and (iv) the user mobility.

This paper is organized as follows: Section II gives an
overview on the MEC architecture and the state of the art.
Section III introduces our models. Our results are presented
in Section IV. Finally, the paper is concluded in Section V.

II. RELATED WORK

MEC is deemed as a critical technology to enable the
transition toward 5G. It enables the deployment of two types
of service: (i) services requiring low-latency access and real-
time reaction to events, such as automated driving applications;
(ii) services that require information on user context (e.g.,
radio channel quality) and adapt the service accordingly,
such as a video transcoding service which may adapt the
video bitrate according to users’ radio quality. So far, there
is no clear indication where the MEC servers (hosted in
MEC hosts) will be located in the mobile network. Some
implementations, such as in [2] consider placing the MEC
host (i.e., the physical machine hosting the services) at the
end of the tunnel established between the eNodeB and the
S/P-GW (gateway to the Internet), whereas some proposals
consider to locate MEC servers close to the eNodeB. In all
the cases, Software-Defined Networking (SDN) will be used

1

to dynamically offload user traffic to the ME host as per the
operator’s or the application’s request, using appropriate APIs
exposed to the MEC application. Moreover, the number of
MEC hosts to deploy in the mobile network is still open, and
may depend drastically on the operator policy, the number of
users to cover, etc. Nevertheless, it is expected to have one ME
host covering a small area (a certain number of eNodeBs) in
order to: (i) be close to users, hence reducing access latency;
(ii) limit the overhead caused by the gathered radio information
to treat and expose to MEC applications. One major concern
for MEC is the management of user mobility. Indeed, since
users are mobile, they may move away from the serving
MEC host, leading to an increased end to end latency and
hence user quality of experience (QoE) [7] degradation when
using uRLLC services. With a good dimensioning mechanism,
the moving UE may approach an area covered by another
MEC host, where it deems appropriate to migrate its MEC
application from the distant MEC host to the new one. The
concept of migrating a service according to user mobility is
not new. It has been introduced in [3], under the name of
Follow Me Cloud (FMC). The goal is that services follow the
mobile users. Each time the UE has a new data anchor gateway
(could be a P-GW or mobile IP router), which gives access
to a better data center (in terms of geographical proximity or
QoS), the service is migrated between the two DCs. Although
FMC could be very relevant in the context of MEC, as MEC
hosts are expected to be more present at local DCs, migration
may be costly for the operator in terms of network overhead,
and it may introduce service disruption due to the downtime
of the service during the migration. The latter may disturb
considerably the low latency services. One solution would
be to use a service replication (or duplication) mechanism,
which may prove very efficient particularly if the application
is highly popular and shared by a large number of users. The
service replication concept has been studied for VM placement
to ensure high availability [8], and to reduce the duration of
service migration in [9]. Furthermore, the concept of service
duplication could be considered similar to CDN caching [10],
where the service is deployed in a proactive manner, contrari-
wise to service migration, which is more reactive. However,
the cost of service duplication could be high as it requires
more storage than the case of service migration. Therefore, a
mechanism to find a trade-off is highly necessary to optimize
MEC resource utilization, while ensuring low latency access
to the service. In [6] the authors proposed a multi-criteria
optimization problem formulation to decide at each handover
where to duplicate the service, minimizing the probability of
service migration and the number of duplicate instances of
the service. While this approach seems to be promising, it
is difficult to deploy in practice, as the optimization problem
should be solved at each user handover.

III. MODEL

A. Service replication and migration model

The proposed model aims to capture the impact of user
mobility and service duration on proactive service deployment,

Fig. 1: The clustering model.

as well as on service migration. For the mobility model, we
consider a 2D hexagonal deployment of a cellular wireless
network as depicted in Figure 1. We assume that a cluster
includes one or several cells, where each cell has its own MEC
host. The number of rings belonging to a cluster indicates
the number of MEC hosts where the service is pro-actively
deployed. For instance, if a cluster includes ring 0 and ring 1,
it means that the service has been deployed in 7 MEC hosts.
We note by k the number of rings belonging to a cluster.
Therefore, the number of duplicate services per user in the
cluster is 1 +

∑k−1
i=1 6i.

We assume that n users have started a session with an ap-
plication duplicated on the MEC hosts belonging to a cluster.
Our objective is to capture the dynamics of users and their
impact on service migration and duplication, that is, to derive
the number of users that have moved to another cluster without
ending the service (hence they require a service migration from
one cluster to another), and the number of users that have
finished the service while being in the same initial cluster.
Accordingly, we can calculate the cost of service replication
and service migration based on user mobility as well as
service duration. Let us assume that each user consumes a
MEC application for a duration that follows an exponential
distribution with rate µs. We assume that a user resides in
cluster 0 for a duration following an exponential distribution
with rate µm. The residence time of a user in a cluster will be
described in the next section. The above assumptions conduct
us to model the system using a Markov chain {Xt, t ≥ 0} on
the state space S = {(i, j)|i = 0, . . . , n and j = 0, . . . , n− i},
for every n ≥ 1. Xt = (i, j) means that, at time t, there are i
UEs using a MEC-hosted service which remain in cluster 0,
and j users that have left the initial cluster. The latter case
implies that a service migration is needed. Fig. 2 illustrates
the transition graph of the system. We notice that the chain
contains absorbing states, which indicate that the initial N
users have either left the cluster or finished the service within
the same cluster. For example, the state (0, k) means that k
users have left the cluster before the end of the service, while
n− k users have finished the service while being in the same
initial cluster. This design allows us to know the expected
number of active users that have left the initial cluster, hence

2

Fig. 2: Markov chain corresponding to our clustering model.

generating migration cost. The different transitions are as
follows:

• If a user has finished his service in cluster 0, there is a
transition from (i+ 1, j) to (i, j) with rate (i+ 1)µs

• If a user hands off to another cluster, there is a transition
from (i, j) to (i, j + 1) with rate (n− i)µm

We denote by QB the transition matrix between the non-
absorbing states. It is worth noting that this matrix does not
represent the infinitesimal generator of the chain. Based on
Fig. 2, we decompose the chain in sub-chains, according to
the level where states belong to. Level 1 corresponds to all
the states (i, 0), level 2 is composed of states (i, 1), etc. QB

is obtained as follows:

QB =


A AB . . . 0 0
0 B BC . . . 0
0 0 C CD 0
.
0 0 0 0 Z


where A(n, n), B(n−1, n−1), C(n−2, n−2), . . . , Z(1, 1) are
the matrices containing the transitions between non absorbing
states of level 1 (respectively, level 2, level 3, . . . , level n+1),
and AB(n, n−1), BC(n−1, n−2), CD(n−2, n−3), etc. are
the transition matrices between non-absorbing states of level
1 and level 2 (respectively, level 2 and level 3, level 3 and 4,
etc.). A, B, C, and in general all intra-level matrices, have the
same structure; their main difference is about the size of the
matrix and the rates of the transitions. Z contains only one
element, which is equal to −(µm + µs). For example, A and
B are defined as follows:

A =

[
−n(µs + µm) nµs 0 . . . 0

0 −(n − 1)(µs + µm) (n − 1)µm . . . 0
.
.
0 0 0 . . . −(µm + µs)

]

B =

[
−(n − 1)(µs + µm) (n − 1)µs 0 . . . 0

0 −(n − 2)(µs + µm) (n − 2)µm . . . 0
.
0 0 0 . . . −(µm + µs)

]

On the other hand, AB, BC, CD, and in general each inter-
level matrix, have the same structure. As in the case of intra-
level matrices, the differences are in the size of the matrices
and the transition rates; see, for example, AB and BC:

AB =


nµm 0 0 0
0 (n− 1)µm 0 0
.
. 2µm

0 0 0 0



BC =


(n− 1)µm 0 0 0

0 (n− 2)µm 0 0
. 2µm

0 0 0 0


The probability π0,k to be in an absorbing state (0, k), i.e.,
the probability that k users have moved to another cluster and
hence the migration of services is required, can be obtained
as follows:

π0,k = −σB(QB)
−1QT

B,k . (1)

Let σB be the initial probability distribution vector of the
chain states. This is equal to (1, 0, . . . , 0), as the system
shall start from the state (n, 0). QB,k represents the vector
containing the transition rates from the n(n+1)

2 non-absorbing
states to the absorbing state (0, k). QB,k has the same structure
for any k, except for QB,0 and QB,n, which contain only
one non-zero element. The non-zero elements of these vectors
are as follows (the position of the element in the vector
is in parentheses): QB,0(n) = µs, QB,n(

(n+1)n
2) = µm,

QB,k(
∑k

i=1(n− i+1)) = µm and QB,k(
∑k+1

i=1 (n− i+1)) =
µs, for k = 1, . . . , n− 1.

Having described how we model the number of users mov-
ing outside the replication zone, we can derive the expected
number of users served by the duplicated services inside the
cluster and the expected number of users that require service
migration. The number of service replications in cluster 0 is
obtained as follows:

Nrep = n(1 +
k−1∑
i=1

6i) . (2)

The expected number of users served by the duplicated service
is given by

E[ndupl] =
n−1∑
i=1

(n− i)π0,i . (3)

The expected number of users requiring service migration is
derived as follows:

E[nmigr] =
n∑

i=1

iπ0,i . (4)

We define the efficiency of the service duplication as the
proportion of users served with the duplicated service without
service migration. It is given by the following expression:

Eff =
n−1∑
i=1

(
n− i
n

)π0,i . (5)

3

We define the service migration rate as the proportion of users
that required service migration. It is obtained as follows:

Rate =
n∑

i=1

(
i

n
)π0,i . (6)

Now, we can compare the cost of service replication (storage
cost) and service migration (storage cost and network cost -
bandwidth usage). Sc denotes the cost of storage of a single
service in one MEC host, and Nc the cost of the network.
We define the cost incurred by service migration and service
duplication as follows:

Costm = (Sc +Nc)E[nmigr] (7)

Costr = ScNrep . (8)

To compare these costs we introduce Pr, i.e., the proportion
of migration cost to service replication cost. By setting
m = Nc

Sc
, we obtain Pr as follows:

Pr =
(m+ 1)E[nmigr]

Nrep
. (9)

The proportion Pr will allow us to identify if the cost of
migration is higher than the cost of replication. If Pr is higher
than 1, then the cost of migration is higher. In contrast, if Pr
is lower than 1, then the cost of replication is higher.

B. Mobility model

Fig. 3: Our network model, where each cell is identified by
the ring it belongs to and its position in the ring.

Having described the model to obtain the cost of both
service replication and migration, we show here how to derive
the mobility duration (µm), which depends on the cluster size
(number of rings) and the residence duration in each cell
composing the cluster noted by α. Again, let us consider the
hexagonal design of a cellular network represented in Fig. 3,
wherein a cell is represented by the ring to which it belongs
and its identity inside the ring. For instance, cells in ring k

are denoted as Ck,j , with 1 ≤ j ≤ 6k. In this model, we
are interested in the average time a UE spends in the cluster
of size k, where the service is replicated. A UE is assumed
to move from one cell to any of the neighbor cells with the
same probability p = 1/6. As in [11], each cell is represented
by its ring label and its position in this ring. Consequently,
we consider a Markov chain {Xt, t ≥ 0} on the state space
S = {(0, 0) ∪ (i, j)|1 ≤ i ≤ k − 1, 1 ≤ j ≤ 6i}, where state
(0, 0) corresponds to C0. Xt = (i, j) means that, at time t,
the UE is in cell j of ring i.

As in [11], we propose to reduce the state space by
aggregating states that show the same behavior. We obtain
a new chain, noted At, with a lower number of states. To
do so, we take advantage of the symmetry of the 2-D model.
Indeed, we observe that UEs in the first ring have the same
behavior and can move to each neighbor cell with the same
probability. That is, UEs come back to C0 with probability
p, stay in the same ring with probability 2p, and move to
ring 2 with probability 3p. Thereby, all states of ring 1 can
be aggregated into one state. Regarding the second ring, we
differentiate between two cases: (i) cells with three neighbors
in ring 3, two neighbors in ring 2 and one neighbor in ring 1
(e.g., C2,1), and (ii) cells with two neighbors in each of the
three rings (e.g., C2,2). In the first case, the UE leaves the
ring towards a more distant one with probability 3p, while in
the second case this happens with probability 2p. Therefore,
we obtain two aggregated states: state C∗2,0 aggregates states
{C2,1, C2,3, C2,5, C2,7, C2,9, C2,11} and state C∗2,1 aggregates
states {C2,2, C2,4, C2,6, C2,8, C2,10, C2,12}. We continue in the
same manner, based on the algorithm presented in [4], to
obtain the remaining aggregated states.

Fig. 4 shows the transition graph for two cases; k = 4 and
k = 5. The absorbing state A, represents the case that a UE has
left the cluster. Here, our objective is to capture the residence
time of UE in a cluster. We define Mt as the average time
before the absorbing state is reached, that is, the average time
the UE spends in the cluster before handing off to another
one. Mt represents µm, which has been used in the precedent
section. Let us denote by LB the transition matrix between the
non-absorbing states and σB the initial probability distribution
(including only non-absorbing states). Then µm is obtained as
follows:

µm =
∑
i∈N

Li(∞) , (10)

where Li(∞) is defined as Li(∞)QB = −σB .

IV. RESULTS

After solving both Markov chains using Matlab, we present
in this section numerical results considering two scenarios:
• Scenario 1: The service duration (µs) is five times higher

than the residence duration in a cell (α). In this scenario
we consider the case of an application like video stream-
ing or caching, or an office application.

• Scenario 2: In this scenario we consider the case of an
application with short interactions with users, such as

4

(a) k=4 (b) k=5

Fig. 4: Transition states of the aggregate chain.

automated driving. The service duration (µs) is five times
lower than the residence duration.

1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

500

k

Fig. 5: µm versus k

In Figure 5 we draw the residence time in a cluster according
to the number of rings. It is clearly observed that increasing
the size of the cluster leads to increase the residence time of
UE in the cluster. This means lower probability to have service
migration. However, this comes with an increased number of
service instance duplicates, which leads to increase the cost
of replication, as Fig. 6. These two figures clearly show the
trade-off between reducing the service migration probability
and increasing the cost due to replication. Fig. 7 illustrates

1 2 3 4 5
05 · 10−20.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

1.45
1.5

·104

k

n = 10

n = 200

Fig. 6: Number of replication versus k

the cost of service migration and the efficiency of the service
replication for the two scenarios. The values are obtained by
varying the size of the cluster. Fig. 7(a) and Fig. 7(b) represent
the rate of service migration and the efficiency versus the
cluster size k for the first scenario. We clearly observe that the

rate of migration is decreasing with the increase of k. This is
indicating that increasing the size of the cluster has a positive
impact on reducing service migrations in this case. We argue
that this is due to the fact that users are continuously connected
to the MEC server and their service ends inside the cluster,
particularly when increasing the size of the cluster. Moreover,
the efficiency is significantly higher than 50%, whatever the
value of k. The efficiency is close to 100% when the size
of the cluster is higher than 4 rings; that is, UEs are mostly
served by the duplicated services avoiding service migration.
We conclude that in case of short-duration applications, service
duplication may increase highly the system performance by
avoiding service migrations. A value for k around 3 could
be a good trade-off between the cost of service replication
(number of replicates) and service migration.

Fig. 7(c) and Fig. 7(d) illustrate the performance in case of
scenario 2. We observe that unlike the precedent case, the cost
of migration is very high. It reaches practically 100% when
k = 1 (i.e. no service replication). This is explained by the
fact that since the duration of the service is very long, users
end by leaving the cluster whatever its size. We note that when
k = 5, the efficiency of the system exceeds 50%. However,
this gain is lost with the high number of needed replicates of
the service. We can conclude that for services of long duration,
it is better to use less replicates, as users end by leaving the
cluster and require service migration.

Figures 8(a) and 8(b) indicate the proportion between mi-
gration cost and replication cost as defined in (9) for scenario 1
and scenario 2, respectively. Besides the size of the cluster, for
each scenario, we varied the value of m, which corresponds to
the proportion of the network cost with respect to storage cost.
As expected, the case of no replication shows the highest cost
for service migration in both scenarios and for all values of
m. As shown in Fig. 7(c), the cost of migration is higher for
scenario 2. However, from k = 3 the cost of migration is lower
than the cost of service replication. Therefore, for scenario 2
(i.e., service with short duration), it is more beneficial to select
k = 3, which demonstrates the best trade-off between service
replication and service migration costs. Although in this case
Pr is close to 1 (around 0.9), the cost of service replication is
mitigated by avoiding downtime (and hence reducing latency).
For all other cases, it is better to allow service migration as
the cost of replication is very high.

5

1 2 3 4 5
0

0.5

1

k

Cost

(a) Scenario1

1 2 3 4 5
0

0.5

1

k

Efficiency

(b) Scenario1

1 2 3 4 5
0

0.5

1

k

Cost

(c) Scenario2

1 2 3 4 5
0

0.5

1

k

Efficiency

(d) Scenario2

Fig. 7: Cost and Efficiency versus k

1 2 3 4 5
0

1

2

3

k

m = 1

m = 5

m = 9

m = 13

(a) Scenario1

1 2 3 4 5

1

5

10

15

k

m = 1

m = 5

m = 9

m = 13

(b) Scenario2

Fig. 8: The proportion of migration cost over replication cost

V. CONCLUSION

In this paper we compared the cost of service migration and
service replication in the context of MEC service deployment.
The proposed model, based on Markov chains, captures the
impact of user mobility and service duration on the cost of ser-
vice replication and service migration. Our results allowed us
to provide recommendations regarding the use either of service
replication or service migration. The optimal solution depends
on different parameters, and particularly on the number of
replicates to use and the type of service. For a short-duration
service, it is better to use service replication, while for long
duration services it is better to use service migration, as this
type of service could be tolerant to the downtime duration and
the cost of service replication is high compared to its gains.

VI. ACKNOWLEDGEMENT

This work was partially funded by the European Union’s
Horizon 2020 research and innovation program under the 5G-
Transformer project (grant no. 761536).

REFERENCES

[1] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile Edge
Computing potential in making cities smarter,” IEEE Commun. Mag., vol.
55(3), pp. 38–43, 2017.

[2] A. Huang, N. Nikaein, T. Stenbock, A. Ksentini, and C. Bonnet, “Low
Latency MEC Framework for SDN-based LTE/LTE-A Networks,” in
Proc. IEEE ICC, 2017.

[3] ETSI ISG MEC, “Mobile Edge Computing; Framework and Reference
Architecture”, v1.1.1, 2016-03.

[4] T. Taleb and A. Ksentini, “An analytical Model for Follow Me Cloud,”
in Proc. IEEE Globecom, 2013.

[5] A. Ksentini, T. Taleb, and M. Chen, “A Markov Decision Process-based
Service Migration Procedure for Follow Me Cloud,” in Proc. IEEE ICC,
2014.

[6] I. Farris, T. Taleb, M. Bagaa, and H. Flinck, “Optimizing Service Repli-
cation for Mobile Delay-sensitive Applications in 5G Edge Network,” in
Proc. IEEE ICC, 2017.

[7] K. Piamrat, K. Singh, A. Ksentini, C. Viho, J. Bonnin “QoE-aware
scheduling for video-streaming in High Speed Downlink Packet Access,”
in Proc. IEEE WCNC, 2010.

[8] C. Colman-Meixner, C. Develder, M. Tornatore, B. Mukherejee, “A
Survey on Resiliency Techniques in Cloud Computing Infrastructures and
Applications,” IEEE Commun. Surveys Tuts., vol. 18(3), pp. 2244–2281,
2016.

[9] S.K. Bose, S. Brock, R. Skeoch, and S. Rao, “Cloudspider: Combining
replication with scheduling for optimizing live migration of virtual
machines across wide area networks,” in Proc. IEEE/ACM CCGrid, 2011.

[10] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V.C.M. Leung, “Cache
in the air: exploiting content caching and delivery techniques for 5G
systems,” in IEEE Comun. Mag., vol. 52(2), pp.131–139, Feb. 2014.

[11] T. Taleb, K. Samdanis, and A. Ksentini, “Supporting Highly Mobile
Users in Cost-Effective Decentralized Mobile Operator Networks,” in
IEEE Trans. Veh. Technol., vol. 63(7), pp. 3381–3396, 2014.

6

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

