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Abstract

Implantable Medical Devices (IMDs) are electronic devices implanted within
the body to treat a medical condition, monitor the state or improve the
functioning of some body part, or just to provide the patient with a ca-
pability that he did not possess before [86]. Current examples of IMDs
include pacemakers and defibrillators to monitor and treat cardiac condi-
tions; neurostimulators for deep brain stimulation in cases such as epilepsy
or Parkinson; drug delivery systems in the form of infusion pumps; and a
variety of biosensors to acquire and process different biosignals.

Some of the newest IMDs have started to incorporate numerous com-
munication and networking functions—usually known as “telemetry”—,
as well as increasingly more sophisticated computing capabilities. This
has provided implants with more intelligence and patients with more au-
tonomy, as medical personnel can access data and reconfigure the implant
remotely (i.e., without the patient being physically present in medical fa-
cilities). Apart from a significant cost reduction, telemetry and computing
capabilities also allow healthcare providers to constantly monitor the pa-
tient’s condition and to develop new diagnostic techniques based on an
Intra Body Network (IBN) of medical devices [25, 26, 201].

Evolving from a mere electromechanical IMD to one with more ad-
vanced computing and communication capabilities has many benefits but
also entails numerous security and privacy risks for the patient. The major-
ity of such risks are relatively well known in classical computing scenarios,
though in many respects their repercussions are far more critical in the case
of implants. Attacks against an IMD can put at risk the safety of the patient
who carries it, with fatal consequences in certain cases. Causing an inten-
tional malfunction of an implant can lead to death and, as recognized by the
U.S. Food and Drug Administration (FDA), such deliberate attacks could
be far more difficult to detect than accidental ones [61]. Furthermore, these
devices store and transmit very sensitive medical information that requires
protection, as dictated by European (e.g., Directive 95/46/ECC) and U.S.
(e.g., CFR 164.312) Directives [94, 204].

The wireless communication capabilities present in many modern IMDs
are a major source of security risks, particularly while the patient is in open
(i.e., non-medical) environments. To begin with, the implant becomes no
longer “invisible”, as its presence could be remotely detected [48]. Fur-
thermore, it facilitates the access to transmitted data by eavesdroppers who
simply listen to the (insecure) channel [83]. This could result in a major
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privacy breach, as IMDs store sensitive information such as vital signals,
diagnosed conditions, therapies, and a variety of personal data (e.g., birth
date, name, and other medically relevant identifiers). A vulnerable com-
munication channel also makes it easier to attack the implant in ways simi-
lar to those used against more common computing devices [118, 129, 156],
i.e., by forging, altering, or replying previously captured messages [82].
This could potentially allow an adversary to monitor and modify the im-
plant without necessarily being close to the victim [164]. In this regard,
the concerns of former U.S. vice-president Dick Cheney constitute an ex-
cellent example: he had his Implantable Cardioverter Defibrillator (ICD)
replaced by another without WiFi capability [219].

While there are still no known real-world incidents, several attacks on
IMDs have been successfully demonstrated in the lab [83, 133, 143]. These
attacks have shown how an adversary can disable or reprogram therapies
on an ICD with wireless connectivity, and even inducing a shock state to
the patient [65]. Other attacks deplete the battery and render the device
inoperative [91], which often implies that the patient must undergo a sur-
gical procedure to have the IMD replaced. Moreover, in the case of cardiac
implants, they have a switch that can be turned off merely by applying a
magnetic field [149]. The existence of this mechanism is motivated by the
need to shield ICDs to electromagnetic fields, for instance when the patient
undergoes cardiac surgery using electrocautery devices [47]. However, this
could be easily exploited by an attacker, since activating such a primitive
mechanism does not require any kind of authentication.

In order to prevent attacks, it is imperative that the new generation of
IMDs will be equipped with strong mechanisms guaranteeing basic secu-
rity properties such as confidentiality, integrity, and availability. For ex-
ample, mutual authentication between the IMD and medical personnel is
essential, as both parties must be confident that the other end is who claims
to be. In the case of the IMD, only commands coming from authenticated
parties should be considered, while medical personnel should not trust any
message claiming to come from the IMD unless sufficient guarantees are
given.

Preserving the confidentiality of the information stored in and transmit-
ted by the IMD is another mandatory aspect. The device must implement
appropriate security policies that restrict what entities can reconfigure the
IMD or get access to the information stored in it, ensuring that only au-
thorized operations are executed. Similarly, security mechanisms have to
be implemented to protect the content of messages exchanged through an
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insecure wireless channel.

Integrity protection is equally important to ensure that information has
not been modified in transit. For example, if the information sent by the
implant to the Programmer is altered, the doctor might make a wrong de-
cision. Conversely, if a command sent to the implant is forged, modified,
or simply contains errors, its execution could result in a compromise of the
patient’s physical integrity.

Technical security mechanisms should be incorporated in the design
phase and complemented with appropriate legal and administrative mea-
sures. Current legislation is rather permissive in this regard, allowing the
use of implants like ICDs that do not incorporate any security mechanisms.
Regulatory authorities like the FDA in the U.S or the EMA (European
Medicines Agency) in Europe should promote metrics and frameworks for
assessing the security of IMDs. These assessments should be mandatory
by law, requiring an adequate security level for an implant before approv-
ing its use. Moreover, both the security measures supported on each IMD
and the security assessment results should be made public.

Prudent engineering practices well known in the safety and security do-
mains should be followed in the design of IMDs. If hardware errors are
detected, it often entails a replacement of the implant, with the associated
risks linked to a surgery. One of the main sources of failure when treat-
ing or monitoring a patient is precisely malfunctions of the device itself.
These failures are known as “recalls” or “advisories”, and it is estimated
that they affect around 2.6% of patients carrying an implant. Furthermore,
the software running on the device should strictly support the functionali-
ties required to perform the medical and operational tasks for what it was
designed, and no more [66, 134, 213].

In Chapter 1, we present a survey of security and privacy issues in
IMDs, discuss the most relevant mechanisms proposed to address these
challenges, and analyze their suitability, advantages, and main drawbacks.
In Chapter 2, we show how the use of highly compressed electrocardio-
gram (ECGQG) signals (only 24 coefficients of Hadamard Transform) is enough
to unequivocally identify individuals with a high performance (classifica-
tion accuracy of 97% and with identification system errors in the order of
10~2). In Chapter 3 we introduce a new Continuous Authentication scheme
that, contrarily to previous works in this area, considers ECG signals as
continuous data streams. The proposed ECG-based CA system is intended
for real-time applications and is able to offer an accuracy up to 96%, with
an almost perfect system performance (kappa statistic > 80%). In Chapter
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4, we propose a distance bounding protocol to manage access control of
IMDs: ACIMD. ACIMD combines two features namely identity verifica-
tion (authentication) and proximity verification (distance checking). The
authentication mechanism we developed conforms to the ISO/IEC 9798-2
standard and is performed using the whole ECG signal of a device holder,
which is hardly replicable by a distant attacker. We evaluate the perfor-
mance of ACIMD using ECG signals of 199 individuals over 24 hours,
considering three adversary strategies. Results show that an accuracy of
87.07% in authentication can be achieved. Finally, in Chapter 5 we ex-
tract some conclusions and summarize the published works (i.e., scientific
journals with high impact factor and prestigious international conferences).

Keywords: Security, Privacy, Implantable Medical Devices (IMDs)
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Resumen

Los Dispositivos Médicos Implantables (DMIs) son dispositivos electroni-
cos implantados dentro del cuerpo para tratar una enfermedad, controlar
el estado o mejorar el funcionamiento de alguna parte del cuerpo, o sim-
plemente para proporcionar al paciente una capacidad que no poseia antes
[86]. Ejemplos actuales de DMI incluyen marcapasos y desfibriladores
para monitorear y tratar afecciones cardiacas; neuroestimuladores para la
estimulacion cerebral profunda en casos como la epilepsia o el Parkinson;
sistemas de administracion de firmacos en forma de bombas de infusion; y
una variedad de biosensores para adquirir y procesar diferentes biosefiales.

Los DMIs més modernos han comenzado a incorporar numerosas fun-
ciones de comunicacion y redes (generalmente conocidas como telemetria)
asi como capacidades de computacion cada vez mas sofisticadas. Esto
ha propiciado implantes con mayor inteligencia y pacientes con mas au-
tonomia, ya que el personal médico puede acceder a los datos y recon-
figurar el implante de forma remota (es decir, sin que el paciente esté
fisicamente presente en las instalaciones médicas). Aparte de una impor-
tante reduccion de costos, las capacidades de telemetria y computo también
permiten a los profesionales de la atencion médica monitorear constante-
mente la condicion del paciente y desarrollar nuevas técnicas de diagnos-
tico basadas en una Intra Body Network (IBN) de dispositivos médicos
[25, 26, 201].

Evolucionar desde un DMI electromecédnico a uno con capacidades de
computo y de comunicacion mds avanzadas tiene muchos beneficios pero
también conlleva numerosos riesgos de seguridad y privacidad para el pa-
ciente. La mayoria de estos riesgos son relativamente bien conocidos en los
escenarios clasicos de comunicaciones entre dispositivos, aunque en mu-
chos aspectos sus repercusiones son mucho mds criticas en el caso de los
implantes. Los ataques contra un DMI pueden poner en riesgo la seguri-
dad del paciente que lo porta, con consecuencias fatales en ciertos casos.
Causar un mal funcionamiento intencionado en un implante puede causar
la muerte y, tal como lo reconoce la Food and Drug Administration (FDA)
de EE.UU, tales ataques deliberados podrian ser mucho maés dificiles de
detectar que los ataques accidentales [61]. Ademas, estos dispositivos al-
macenan y transmiten informacién médica muy delicada que requiere se
protegida, segun lo dictado por las directivas europeas (por ejemplo, la
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Directiva 95/46/ECC) y estadunidenses (por ejemplo, la Directiva CFR
164.312) [94, 204].

Si1 bien todavia no se conocen incidentes reales, se han demostrado con
éxito varios ataques contra DMIs en el laboratorio [83, 133, 143]. Es-
tos ataques han demostrado como un adversario puede desactivar o re-
programar terapias en un marcapasos con conectividad inalambrica e in-
cluso inducir un estado de shock al paciente [65]. Otros ataques agotan
la bateria y dejan al dispositivo inoperativo [91], lo que a menudo implica
que el paciente deba someterse a un procedimiento quirdrgico para reem-
plazar la bateria del DMI. Ademas, en el caso de los implantes cardiacos,
tienen un interruptor cuya posicion de desconexién se consigue simple-
mente aplicando un campo magnético intenso [149]. La existencia de este
mecanismo estd motivada por la necesidad de proteger a los DMIs frete
a posibles campos electromagnéticos, por ejemplo, cuando el paciente se
somete a una cirugia cardiaca usando dispositivos de electrocauterizacion
[47]. Sin embargo, esto podria ser explotado facilmente por un atacante,
ya que la activacion de dicho mecanismo primitivo no requiere ningun tipo
de autenticacion.

Garantizar la confidencialidad de la informacion almacenada y trans-
mitida por el DMI es otro aspecto obligatorio. El dispositivo debe im-
plementar politicas de seguridad apropiadas que restrinjan qué entidades
pueden reconfigurar el DMI o acceder a la informacién almacenada en é€l,
asegurando que solo se ejecuten las operaciones autorizadas. De la misma
manera, mecanismos de seguridad deben ser implementados para proteger
el contenido de los mensajes intercambiados a través de un canal inalam-
brico no seguro.

La proteccion de la integridad es igualmente importante para garantizar
que la informacion no se haya modificado durante el transito. Por ejem-
plo, si la informacién enviada por el implante al programador se altera, el
médico podria tomar una decision equivocada. Por el contrario, si un co-
mando enviado al implante se falsifica, modifica o simplemente contiene
errores, su ejecucion podria comprometer la integridad fisica del paciente.

Los mecanismos de seguridad deberian incorporarse en la fase de dis-
eflo y complementarse con medidas legales y administrativas apropiadas.
La legislacion actual es bastante permisiva a este respecto, lo que permite
el uso de implantes como marcapasos que no incorporen ningin mecan-
ismo de seguridad. Las autoridades reguladoras como la FDA en los Esta-
dos Unidos o la EMA (Agencia Europea de Medicamentos) en Europa de-
berian promover métricas y marcos para evaluar la seguridad de los DMIs.
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Estas evaluaciones deberian ser obligatorias por ley, requiriendo un nivel
de seguridad adecuado para un implante antes de aprobar su uso. Ademas,
tanto las medidas de seguridad implementadas en cada DMI como los re-
sultados de la evaluacién de su seguridad deberian hacerse priblicos.

Buenas practicas de ingenieria en los dominios de la proteccion y la
seguridad deberian seguirse en el disefio de los DMIs. Si se detectan er-
rores de hardware, a menudo esto implica un reemplazo del implante, con
los riesgos asociados y vinculados a una cirugia. Una de las principales
fuentes de fallo al tratar o monitorear a un paciente es precisamente el
mal funcionamiento del dispositivo. Estos fallos se conocen como “reti-
radas”, y se estima que afectan a aproximadamente el 2,6 % de los pa-
cientes que llevan un implante. Ademas, el software que se ejecuta en el
dispositivo debe soportar estrictamente las funcionalidades requeridas para

realizar las tareas médicas y operativas para las que fue disefiado, y no més
[66, 134, 213].

En el Capitulo 1, presentamos un estado de la cuestion sobre cuestiones
de seguridad y privacidad en DMIs, discutimos los mecanismos mas rel-
evantes propuestos para abordar estos desafios y analizamos su idonei-
dad, ventajas y principales inconvenientes. En el Capitulo 2, mostramos
como el uso de sefiales electrocardiograficas (ECGs) altamente comprimi-
das (s6lo 24 coeficientes de la Transformada Hadamard) es suficiente para
identificar inequivocamente individuos con un alto rendimiento (precision
de clasificacion del 97% y errores del sistema de identificacion del orden
de 1072). En el Capitulo 3 presentamos un nuevo esquema de Autenti-
cacion Continua (AC) que, contrariamente a los trabajos previos en esta
area, considera las sefiales ECG como flujos de datos continuos. El sis-
tema propuesto de AC basado en sefiales cardiacas esta disefiado para apli-
caciones en tiempo real y puede ofrecer una precision de hasta el 96%,
con un rendimiento del sistema casi perfecto (estadistico kappa > 80 %).
En el Capitulo 4, proponemos un protocolo de verificacion de la distan-
cia para gestionar el control de acceso al DMI: ACIMD. ACIMD combina
dos caracteristicas, verificacion de identidad (autenticacion) y verificacion
de la proximidad (comprobacion de la distancia). El mecanismo de aut-
enticacion es compatible con el estandar ISO/IEC 9798-2 y se realiza uti-
lizando la sefial ECG con todas sus ondas, lo cual es dificilmente replicable
por un atacante que se encuentre distante. Hemos evaluado el rendimiento
de ACIMD usando sefiales ECG de 199 individuos durante 24 horas, y
hemos considerando tres estrategias posibles para el adversario. Los re-
sultados muestran que se puede lograr una precision del 87.07% en la au-
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tenticacion. Finalmente, en el Capitulo 5 extraemos algunas conclusiones
y resumimos los trabajos publicados (es decir, revistas cientificas con alto
factor de impacto y conferencias internacionales prestigiosas).

Palabras Clave: Seguridad, Privacidad, Dispositivos Médicos Implanta-
bles (DMIs)
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1

Security and Privacy Issues
in Implantable Medical
Devices

1.1 Implantable Medical Devices

An IMD is often defined as an electronic device that is permanently or

semi-permanently implanted on a patient with the purpose of treating a

medical condition, improving the functioning of some body part, or pro-

viding the user with a capability that he did not possess before [86]. These
devices are often implanted around 2-3 cm under the patient’s skin and

connected to the organ that needs treatment or monitoring. Cardiac im-

plants (see Fig. 1.1) are possibly the most widely known example of IMDs,

but many others are increasingly being used to deal with different medical
conditions more efficiently than by traditional methods. The most common
types include:

Cardiac Implanted Devices These include devices such as Implantable

Cardioverter Defibrillators (ICD) and Pacemakers. They are de-
signed to treat cardiac conditions by monitoring the heart’s electrical
activity and applying electrical impulses of suitable intensity and lo-
cation in order to make the heart pump at the desired speed [230].
New models are equipped with pressure sensors capable of actively
monitoring changes that could lead to a heart failure. This allows to
alert the patient or the medical personnel if a pressure increment in
the ventricle is detected, as this represents a hazard condition for the
patient.
Cardiac implants may also be equipped with accelerometers to mea-
sure the patient’s physical activity level. This can be set as an input
parameter to the IMD controller, allowing to adjust the cardiac stim-
ulation frequency to the one that best suits each moment [209].
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Figure 1.1: Implantable Medical Device: Pacemaker

Neurostimulators These devices transmit low-amplitude electrical sig-

nals through one or more electrodes placed in different locations of
the brain. These electrodes are implanted in very specific areas de-
pending on the patient’s condition. The process is known as Deep
Brain Stimulation (DBS) and allows to treat a variety of patholo-
gies such as Parkinson, dystonia, epilepsy, or even depression that,

in some cases, are resistant to medication after several years of treat-
ment [137].

Drug Delivery Systems (DDS) A DDS consists of a pump and a catheter

that are surgically implanted under the skin. Their function is to sup-
ply medication in a controlled, localized, and prolonged way. Since
the medication goes directly to the target area, an infusion pump pro-
vides a considerable degree of control, which allows to use a lower
dose than that required with oral medication. For instance, this type
of implants have been successfully used to mitigate pain in cases

of cancer where traditional medication does not have good results
[127].

Biosensors The implant consists of a sensor or a set of sensors placed in-

side the human body to monitor any part of it. They are capable of
measuring certain physiological parameters and use such measures
to make decisions. In this sort of implants there exists a special de-
vice that acts as a control node, communicating with the sensors and
with other external entities (e.g., a programmer). The set of sen-
sors and the control node are often regarded as a wireless biosensor
network [37, 54, 222].
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1.1.1 The New Generation of IMDs with Telemetry

Healthcare systems incorporating numerous communication and network-
ing functions have proliferated over the last years. This has made possible
to develop medical sensor networks that, for instance, can monitor patients
in their own homes [189, 168, 233, 205]. Doctors, caregivers, or even the
patient himself can thus conduct a continuous and more flexible control of
his state, as well as access medical data remotely, communicate during an
emergency, and even command various household appliances. This also
promotes the autonomy of patients who, in many situations, are elderly
people or individuals with reduced mobility.

Similar communication and networking capabilities are increasingly be-
ing embedded into IMDs. Equipped with a radio transmitter, the IMD
can communicate with an external device—generally known as “Program-
mer” or “Reader”—and send it physiological data such as electrocardio-
gram (ECG) signals in the case of pacemakers and ICDs, that the doctor
can use to track the patient’s pathology. Apart from querying sensed data,
the Programmer can also command the IMD to adjust or disable therapies,
perform software updates, etc.

Augmenting IMDs with wireless communication and networking capa-
bilities has significant advantages, including:

* It allows to constantly monitor the patient’s physiological parame-
ters and other symptomatology captured by the device, which re-
duces the time needed to regularly tracking medical conditions and,
furthermore, causes less disruptions in the patient’s daily activities.

* Enhanced supervision and management of the IMD operation, which
allows to address any problem that might arise and apply adequate
correction measures in a shorter time.

» The two previous items also imply a reduction in the overall costs
involved in tracking the patient’s condition and managing the opera-
tion of the IMD.

* In the case of future IntraBody Networks (IBN) [25, 26, 201], com-
putation and analysis tasks could be shared among different net-
worked devices, which will contribute to the development of new
diagnostic techniques.

In their current generation, not all types of IMDs support access to all
their available functions through the wireless communication channel. The
vast majority of IMDs can be reprogrammed remotely, which allows the
doctor to modify therapies as required. The reverse link (i.e., from the IMD
to the Programmer) is not present in all of them. For instance, while pace-
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makers and ICDs can communicate in both directions, current neurostimu-
lators can only receive reprogramming commands but they do not provide
any information (e.g., sensed data) back to the Programmer. This fact has
caused that most research works on advanced computational and network-
ing issues related to IMDs, including the security and privacy problems
addressed in this dissertation, are commonly focused on cardiac implants.
Nevertheless, new IMD designs are computationally more complex and are
increasingly basing part of their functionality in the ability to communicate
externally to perform diagnostic and therapy tasks.

The main standards regulating telemetry for medical devices are:

e Many non-implantable medical devices are compliant with the Wire-
less Medical Telemetry Services (WMTS) specification, which sets
three operating frequency bands: 608-614 MHz, 1395-1400 MHz,
and 1427-1432 MHz [35, 85]. This is a U.S. standard defined by the
Federal Communications Commission (FCC) in 2000 that is not in-
ternationally agreed, hence that its use is often restricted to the U.S.
only.

e IMDs operate under the Medical Implant Communication System
(MICS) specification, which operates in the 402-405 MHz band.
MICS is a low-power (25 microwatt), unlicensed mobile radio ser-
vice that facilitates data communications between the IMD and an
external programmer. The communication range is about 2 m and
the bandwidth is very low when compared with wireless commu-
nication technologies such as bluetooth or WiFi. The radio signals
can go through and be transmitted within the human body due to
its conductive characteristics. The purpose of these communications
can be accessing the measures taken by the implant or reconfigur-
ing it to, for example, adjust the treatment. MICS compliant IMDs
have proliferated in the last years, including pacemakers, ICDs, neu-
rostimulators, hearing aids, and DDSs [32, 56, 193].

e Similarly to the WMTS specification, the Medical Device Radio-
communications Service (MedRadio) defines communication ser-
vices for both implanted and wearable medical devices. The spec-
ification, which was approved by the FCC in 2009 [164], extends
the MICS spectrum 1 MHz in both sides, covering a frequency band
from 401 to 406 MHz. The use of these frequencies in IMDs is
well justified [40]: 1) At those frequencies, radio signals can easily
propagate within the human body; and 2) The 401-406 MHz band is
compatible with international regulations and does not interfere with
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other radio operations in the same band.

Incorporating a wireless communication capability into an implant in-
volves some special requirements that affect their design. One of the most
important is that the radio frequency module must consume very little
power (e.g., 10 mW and up to 100 mW for a glucose and ECG moni-
tor, respectively [87]) in order to save the implant battery life. Additional
design factors include the required communication range (typically from 1
up to 5 meters [224]), the data transfer rate (e.g. 0.1 bps and up to 10 Kbps
for a glucose and ECG monitor, respectively [87]), the environmental con-
ditions in which the IMD will operate, and its size and cost [96, 97, 236].

Recently, the FDA has published guidelines for the industry on the de-
sign, testing, and use of wireless medical devices [57]. As stated, the se-
curity of wireless signals and data is an important issue in order to protect
access to patient’s data and hospital networks, and to prevent unautho-
rized communications with medical devices like IMDs or Programmers.
Wireless medical devices must use cryptographic techniques (ive., encryp-
tion, authentication, secure key storage) to protect communications and
accesses. The necessary security level is determined by the sort of threats,
and their probability, to which the device is exposed, as well as the operat-
ing environment and the consequences/damages on the patient in case of a
security incident. For the design of secure solutions, the FDA suggests that
wireless medical devices include security measures to protect communica-
tions and accesses but also include software protections. Nowadays, the
FDA is currently working on the design of recommendations for the man-
agement of cybersecurity in medical devices [58]. Apart from the FDA,
other organizations are contributing to the elaboration of standards (e.g.,
X.1120 and X.1139), including tele-biometrics, mobile secure transmis-
sions, secure transmission of personal health information, etc. [107].

1.2 Security Assumptions

In this section we first present the system model and then describe the
usage scenarios. After that, the threat model is explained and finally the
different types of adversaries are introduced.

1.2.1 System Model and Usage Scenarios

Fig. 1.2 presents the main entities involved in the system and shows the
possible communication interactions (linked to the usage scenarios) be-
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Figure 1.2: Typical usage scenario for IMDs

tween these devices. The IMD will communicate with a Programmer,
which will be any entity/device authorized to interact with the implant
(e.g., medical personnel). In normal operation (i.e., while the implant has
not detected an emergency situation [193]), the Programmer has to initiate
the communication with the IMD as stated by the FCC regulations. Since
the radio channel is a shared communication medium, the programmer will
listen to the channel until it detects that is not busy to establish the com-
munication. The goal of this communication is either requesting data (e.g.,
ECG signals or insulin levels) or sending commands (e.g., treatment mod-
ifications). In the case of secure solutions, the IMD and the Programmer
are authenticated and sensitive data is passed encrypted on the channel.

6
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Apart from the direct communication between the IMD and the Pro-
grammer, some authors have introduced the idea of using an external de-
vice (e.g, cloaker [51], shield [73], IMDGuard [234], etc.), which acts as
a proxy. In this case, rather than establishing a direct connection with
the Programmer, the IMD can delegate this task to an external device that
authenticates the Programmer—initially there is a secure pairing between
the IMD and the external device. Once the Programmer is authenticated
(normal mode operation), this can communicate with the IMD using an en-
crypted channel via the external device. In emergency mode, the IMD has
to answer even if the authentication fails—and, in some cases, the medical
personnel must be able to disable the device easily.

As the patient will generally move about different locations and may
visit several doctors and hospitals, IMDs will not always communicate
with the same, previously known device. Furthermore, the entities autho-
rized to communicate with the implant can vary [82]. Potential attackers
must be also considered, as not all signals received by the IMD will actu-
ally come from an authorized Programmer and, in many cases, their pur-
pose could be malicious. Under these conditions, guaranteeing the security
and privacy of the IMD and its data is essential to protect the safety of the
patient.

As described above, an IMD must operate under two different modes:
normal and emergency. One major objective is to find a sensible trade-off
between these two possible situations:

A. Security in normal operation mode. The patient controls what en-
tities can interact with his IMD. In this case, it is necessary to imple-
ment both a strong access control mechanism and cryptographic pro-
tocols in the communication link to thwart malicious and unautho-
rized accesses. The IMD must ignore indiscriminate data requests
or device reprogramming commands. Ideally, the implant should be
undetectable to unauthorized parties. Security mechanisms might be
similar to those used in constrained devices like RFID tags or smart
sensors (e.g., lightweight hash functions [13, 16, 80] or tiny block
ciphers [104, 122, 123]).

B. Security in emergency mode. As important as offering strong ac-
cess control, secure communications, and even undetectability, is the
ability of being accessible under an emergency condition. Consider
a patient who enters an emergency room in a hospital different to the
one he often visits. To further complicate matters, assume that the
patient is visiting a foreign county. Even under these circumstances,

7
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the healthcare staff must be able to communicate with the implant,
determine its type (e.g., model and brand), extract physiological data
or information about the treatment, and even update its configuration
if required. Even in a secure scheme, under an emergency situation
such as an urgent surgery of a patient who holds an ICD, in which
it is mandatory to deactivate the implant, the IMD should always
respond before deactivation.

To understand the importance of emergency conditions, it would be use-
ful to know the frequency of occurrence of these events. Unfortunately, to
the best of our knowledge there are no public reports about emergencies
involving patients that hold an IMD. Nevertheless, some statistics about
pacemakers, which are one the most popular IMDs, may help to shed some
light on this matter. For instance, lead complications are one of the prin-
cipal causes of re-intervention in patients with heart diseases. In a recent
retrospective study, Walker et al. [225] reported 1.4 events per 100 patient-
years of follow-up for lead-related complications, including vein thrombo-
sis, acute perforation, and dislodgement. This figure doubles if the pop-
ulation under study are children [159]. As for the pocket-related compli-
cations (e.g., infection, erosion, or migration of the pacemaker), which is
the other main cause of complications for pacemakers [79], the values are
slightly higher: 1.9 events per 100 patient-years. Furthermore, the proba-
bility of re-intervention increases with every consecutive replacement [18].
We acknowledge that re-intervention due to lead or pocket complications
is, strictly speaking, not an emergency condition, since in most cases the
surgery is planned. Nevertheless, both situations have in common the need
to properly address any security measures deployed in the IMD. It is the
job of manufacturers, engineers, and physicians to evaluate the frequency
and impact of those events in order to develop a rigorous risk model.

A straightforward solution for emergency conditions that provides the
necessary safety to the patient is to force the IMD to disregard authentica-
tion and authorization mechanisms and process all incoming commands.
Any requester thus becomes an authorized user, possibly with full privi-
leges. This would not be possible if security protocols and strong access
control mechanisms are not deactivated, which in turn leaves the implant
fully exposed to attackers. Unfortunately, telling apart normal from emer-
gency scenarios is far from trivial for the IMD, and nowadays the best way
to provide an adequate security for IMDs is still an open problem. Security
tensions between these two conflicting goals are thus created, hence the im-
portance of finding solutions that balance the security requirements to pro-

8
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vide security in normal mode while guaranteeing safety during emergen-
cies [185]. Several works (see, e.g., [45, 26, 96]) have proposed schemes in
which the IMD can only be accessed by authorized entities and remain in-
visible for the remaining ones. The prevailing philosophy in most works is
that in case of doubt about the patient’s safety, security mechanisms should
be relaxed and access must be granted. We will discuss in detail the most
relevant proposals in this field later in Section 1.4.

1.2.2 Threat Modeling

Security threats against the IMD can be categorized using the STRIDE

methodology. The acronym stands for six general categories of attacks:

Spoofing, Tampering, Repudiation, Information disclosure, Denial of ser-

vice, and Elevation of privilege. Table 1.1 relates each category with the

security service attacked in each case and provides some examples. Gen-
erally it is assumed the following set of relations (listing the “security ser-
vice” versus the linked threat): authentication — spoofing, integrity — tam-
pering, non-repudiation — repudiation, confidentiality — information dis-
closure, availability — denial of service, authorization — elevation of priv-
ileges. Apart from these one-to-one connections, it should be noted that
some threats may address various services simultaneously, or that a single
attack can be decomposed into individual threats.

The six security services addressed above have their usual meanings,
although focused on the IMD domain:

Authentication The identity of parties must be correctly established be-
fore performing any other operation. Within the domain of im-
plantable medical devices, any device in the system (IMDs, Pro-
grammer or External device) can be impersonated. For instance, if
the identity of the Programmer is supplanted it might be the starting
point for an elevation of privileges attack.

Integrity Data, either stored in the device or being communicated through
the wireless link, can only be modified by authorized parties. If there
is not integrity checking mechanism on the IMD, data could be al-
tered during the transmission over the insecure radio channel. Fur-
thermore the IMD could accept malicious inputs, which could be
employed to run a code injection attack [182]. On the other hand
the lack of integrity checking would facilitate that the manipulation
of the data stored on the IMD memory might be not detected —or be
detected in a distant future.
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Table 1.1: STRIDE categories and examples in the IMD domain.

Security Service | Threats

Authentication Impersonate the Programmer =)
Impersonate the IMD ué

Impersonate the external device =

. . . bD
Integrity Patient data tampering £
Malicious inputs g

Modify communications E

=

g

L =
Non-repudiation | Delete access logs g
Repeated access attempts &

[

Confidentiality Disclose medical information
Determine the type of IMD
Disclose the existence of the IMD

Information
Disclosure

Track the IMD

Availability Drain the battery of the IMD IR
Interfere with the IMD communica- .‘TL:‘ E
tion capabilities 8 &:S
Flood the IMD with data

Authorization Reprogram the IMD .5 g‘)
Update the therapy of the patient s =
Switch-off the IMD rh=l)

Non-repudiation Operations performed by/on the IMD are kept securely

in an access log. The attacker could focus on delete these inputs in
order to cover her traces. On the other hand no all IMDs are equipped
with a log system. If this were the case the adversary could repeata-
bility try to gain access to the IMD without leaving any trail. Even
if a log system is present the events would be logged but no alarm
would be triggered to alert the IMD holder in case of a malicious

event.

Confidentiality Data, either stored in the device or being communicated

10

through the wireless link, can only be read by authorized parties. In
particular, IMDs and the Programmer communicate through the ra-
dio channel (401-406 MHz) and these communications are exposed
to eavesdroppers. If communications are not encrypted, an adver-
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sary could disclose private information such as the IMD model or
even medical information of the patient. This would compromise
the privacy (data) of the implant holder. Even if communications
are encrypted, an attacker could detect the presence of the implant
or, even worse, track the movements of its holder. In this case the
privacy location would be put at risk.

Availability The services offered by the IMD should be available to au-
thorized parties at all times. Availability is crucial for IMDs since
these devices are devoted to treat medical conditions of their hold-
ers. Unfortunately, an IMD could be rendered inaccessible through
the blockage of the radio channel (active jamming). Alternatively
the device might be overloaded by flooding the IMD with network
traffic over the radio channel. This could be used to block the access
to the device or to drain its battery. If the battery runs out of power,
the device would become permanently inaccessible and the patient’s
health could be at risk.

Authorization An operation must be executed only if the requester has
sufficient privileges to order it. For instance, therapy parameters
(e.g., voltage, current, thresholds, operation mode, etc.), cannot be
updated by the patient and only doctors should be able to modify
these. In this regard, re-programming the IMD must be done un-
der the joint supervision of the doctor and a technician (typically
from the manufacturing company of the IMD). On the other hand,
the IMD must be kept running at all times and only be switched off
under special circumstances that may threat the patient’s life (e.g.,
cardiac surgery with electrocautery devices). In the case of pace-
makers, a magnetic field has to be applied near the device (over the
patient chest) and this procedure must be authorized by the cardiol-
ogist.

1.2.2.1 Types of Attackers

At high level, attackers can be grouped into two main categories: active

and passive (see Fig. 1.3):

Passive Eavesdropper A passive attack can only listen to the channel
and, therefore, getting access to the messages exchanged between
the IMD and the Programmer. Assuming an insecure radio chan-
nel, a passive attacker is a direct threat to confidentiality and may
threaten authentication. By just reading messages a passive attacker
may determine whether a person carries an implant or not; find out

11
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Figure 1.3: Passive vs active adversaries.

what type of implant and other data such as its model, serial number,
etc.; capture telemetry data and disclose private information about
the patient, such as the ID of his health records, name, age, condi-
tions, etc. In all cases, the overall result is a serious compromise of
the patient’s privacy.

Active Adversary In this case, the adversary is not only capable of cap-
turing messages exchanged over the radio channel, but also to send
commands to the IMD, modify messages in transit before they reach
the IMD or the Programmer, or just block them so that they never ar-
rive. Attacks may involve a sequence of interceptions, interruptions,
modifications, and generation of messages. The goals pursued by an
active attacker are diverse. For example, he could indiscriminately
request information from the IMD with the purpose of draining its
battery. He could also attempt to modify the configuration of the
device, disable therapies, or even induce a shock state to the patient
[83].

It must be noted that it is not essential for the attacker (active or passive)
to be physically close to the patient to conduct the attack [62]. Depending
on the specific communication technology used for the radio link, the IMD
could be reachable from a few meters (typically 1-2 meters for MICS and
WMTS [166, 224] or even up to 10 meters in case of using advanced com-

12
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munication techniques [88]). Furthermore, communication devices can be
acquired very easily nowadays; e.g., certain smartphones can perform this
task.

In summary, the technical means needed to carry out most attacks against
IMDs are cheap and easy to acquire and use. As a consequence, passive at-
tackers can easily eavesdrop sensitive information about an implant holder
without much difficulty. Even if the attacker is not someone who attempts
to threaten the patient’s safety, the data stored on it might be very valuable
for many individuals and organizations.

It is worth mentioning that the attacker could be the patient himself in a
deliberate or involuntary attempt to sabotage his own implant. An example
of this was reported in [173], where it is described how a patient who sent
unauthorized commands to his insulin pump in order to gain unsupervised
use of it ended up with a medical condition as his manipulation resulted in
the ingestion of a very high dose of medication.

Finally, apart from general system and channel vulnerabilities, attackers
can manipulate a number of IMD-specific features to achieve their goals
[6, 86]:

* Manipulation of the distance. Proximity refers to the distance be-
tween the attacker and the IMD. Many current proposals have some
form of distance-based access control, allowing access to the IMD
only if the Programmer is in short range. The rationale here is to
force the attacker to be physically very close to the patient to conduct
the attack. In practice, however, the attacker may use a compromised
device in the proximity of the patient to launch the attack, including
those used in medical facilities.

* Manipulation of the IMD functions. IMDs are programmed to per-
form various activities such as sensing biomedical parameters in the
body area where they are implanted, treat a medical condition (ac-
tuating), processing gathered data, and communicate with other de-
vices, either external or those in the IBN [240]. These functions
can be misused by an attacker, for example by inducing an incorrect
sensing to trigger a particular response in the implant.

» Manipulation of the patient’s status. As we will discuss later, the pa-
tient’s status plays a key role in the design of many countermeasures.
For instance, an implanted biosensor can trigger an alarm if certain
parameters fall out of the safety range. In some cases, such an alarm
puts the IMD in emergency mode and automatically disables access
control mechanisms.

13
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1.3 Limitations and Trade-offs

In this Section, we first introduce a number of technological limitations
of current IMDs that restrict the sort of security mechanisms that can be
implemented on them. We next describe various trade-offs that arise when
designing security measures for IMDs and that originate as a consequence
of the IMD’s computational limitations, the criticality of some of its func-
tions, and the need to support an emergency mode of operation.

1.3.1 Limitations

IMDs have restricted capabilities in three separate dimensions: energy,
storage, and computing power. All three of them have security implica-
tions, either because they can be misused or because they limit the security
mechanisms that can be afforded. We next discuss them in more detail.
Energy IMDs are powered by an integrated battery that supplies energy to
all functions incorporated in the device (i.e., monitoring, treatment,
communication, etc.). Once the IMD is implanted, the battery can
last from 8 years in the case of neurostimulators [151] up to 10 years
in the case of pacemakers [140]. Battery usage has a direct impact
over the implant lifetime. Once exhausted, it has to be replaced,
which requires a surgical procedure with its associated risks. Some
designs support batteries that can be charged wirelessly using mag-
netic fields, but organs close to the implant could be damaged. Some
recent advances in this area can be found in [112, 206, 235].
Storage Storage is quite limited in current IMDs. The memory available
in the device is used to store historical data from different events and
episodes that arise related with the patient’s pathology. For instance,
pacemakers and ICDs store ECG signals that occurred when the de-
vice decided to apply stimulation. The RAM memory of these device
varies from 2 KB to 36 KB for the former, and from 128 KB to 1024
KB for the latter. In the case of ICDs, around 75% of this memory is
devoted to store ECG signals [105]. Devices with low sensing rate
like a Biostator Glucose Controller demand 8 KB for data storage
[212]. One consequence of incorporating a reduced memory on-
chip is that security mechanisms have to consume as little memory
as possible in order to save it for the potential storage requirements
required by the medical functions of the device. One may wonder
about the possibility of increasing the amount of RAM memory in
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IMDs, since this sort of memory is not expensive nowadays. There
seem to be two main reasons for keeping limitations on the memory
size. On the one hand, an increment on the amount of memory con-
stitutes an increase in the size of the implant. This is a critical feature
since IMDs are often located in or over the body of the patient and
this parameter (device area) should be kept at a minimum. On the
other hand, even if the device size is not an issue, increasing the
amount of memory could impact the battery lifetime. Access opera-
tions (i.e., reading, writing and erasing) are considered demanding in
terms of power consumption [167], so performing them over a large
amount of data would decrease the battery life and even exhaust it in
a short time.

Computing and Communication Both computing and communication ca-
pabilities are extremely limited in IMDs due to power restrictions.
Communication is the most energetically expensive task for the IMD.
Hence, if communications are minimized, the battery life can be ex-
tended [192, 197]. As for computation, these are generally supported
by a tiny microcontroller. For instance, the micro of a neurostim-
ulator consumes an area of around Smm?, which is around forty
times smaller than the area used for a general purpose microcon-
troller [101]. In general, the whole chip of the implant occupies an
area of around several hundreds squared millimetres.

1.3.2 Tensions and Trade-offs

As described in Section 1.2, and IMD can work in two operation modes:
normal and emergency. Mechanisms designed to preserve security and
privacy properties in both modes must consider various tensions:
Security vs Safety Nowadays in a real scenario it is common to assume
that all the actors, both the legitimate (new generation of IMDs,
external devices and programmers) and the illegitimate ones (ac-
tive and passive adversaries) will have network connectivity. This
should lead to the inclusion of solid security solutions to prevent
security incidents. In particular, in normal mode the IMD is vulner-
able to a variety of attacks. Attackers could be physically situated
at a long distance from the IMD and use its wireless communication
capabilities—perhaps relying on a nearby proxy device—to receive
data requests and perform update operations. Any proposed solution
must guarantee basic security and privacy properties in this case.
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Nevertheless, during an emergency the medical personnel must be
able to access the implant rapidly and without restrictions. Thus,
while the use of strong security measures could provide a high level
of protection, it can also put at risk the patient’s safety during an
emergency situation. The trade-off between safety and security is
one of the most critical aspects in the design of security mechanisms
for IMDs.

Battery Lifetime vs IMD Capabilities As discussed above, IMDs have
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severe restrictions in terms of energy consumption since extending
the battery lifetime is an essential requirement. In turn, this also re-
stricts the amount of computations and communications involved in
security functions. This motivates the design of new security and
privacy mechanisms that are not very demanding in terms of com-
putation, communications, and storage. An interesting fact in this
regard was pointed out in [164]: power consumption increases dras-
tically if the data transfer rate increases. Thus, although it may seem
counterintuitive, it is preferable to rely on long transmissions at very
low bit rate than on short data exchanges at high speed.

Several solutions have addressed the problem of saving or recharg-
ing the battery of IMDs to postpone as much as possible its replace-
ment. For example, in [232] Warwick et al. present an innovative
solution to provide higher intelligence to neurostimulators. The idea
is to provide the implant with the capability to predict tremor condi-
tions in Parkinsons’ activity, so that only in that precise moment an
stimulation on the sub-thalamus is triggered. Once the tremor has
diminished, the implant stops the stimulation. Intelligent solutions
like these could prolong the lifetime of the battery.

Other approaches have suggested techniques to recharge the battery
wirelessly. In [223], Arx and Najafi propose to provide the implant
with receiver (planar spiral) coils and accompanying circuitry that
are capable of receiving transmitted power from a few centimetres
away. Another example can be found in [209], where an inductor
with a parallel chip capacitor is proposed. In this system, the induc-
tor radiates energy by coupling a signal at the resonant frequency
(300 Mhz in this proposal). These systems would allow the IMDs to
work without any battery, which would be highly desirable since the
battery replacement procedure would be avoided [241].

Using a different approach, Wang and Song proposed to transform
mechanical energy obtained from the movement of the patient’s mus-
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cles into electrical energy [227]. Using this technology, the IMD
could be automatically and continuously recharged by the patient’s
physical activity.

Unfortunately, neither these solutions nor others recently proposed
(e.g., [112, 206, 235]) can be nowadays found implemented in com-
mercial IMDs. Therefore, any security measure for implants must
take into account existing energy restrictions and potential impacts
on the battery life. Furthermore, as there are attacks that pursue to
waste the battery of the IMD, security functions should not make this
easier (e.g., by allowing the attacker to drain the battery by misusing
security mechanisms).

Answering Time If the interaction with the implant takes too much time
because of the overhead imposed by security controls, the patient’s
safety could be put at risk. Such controls should be analyzed to
guarantee that their worst-case latency is within a reasonable range.

In summary, tensions between safety (i.e., guaranteeing access in criti-
cal conditions) and security (allowing access only to authorized entities),
coupled with the restrictions present in current IMD platforms, introduce
unique challenges in the development of adequate security mechanisms for

IMDs. Adapting solutions proposed for other similar environments (e.g.,

wireless sensor networks) is not straightforward, since questions such as

how security mechanisms should behave in emergency mode—and, most
importantly, guaranteeing that the existence of this mode is not abused by
an attacker—are still open problems.

1.4 Protection Measures

In this section, we discuss different security mechanisms that have been
proposed to thwart security threats in IMDs. Many of these proposals
explicitly address the trade-offs and tensions previously discussed, while
others simply focus on counteracting specific attacks. The majority are
preventive and attempt to stop attacks from happening in the first place,
although detection and correction mechanisms have been also suggested.

Ideally, the inclusion of security measures should not require any mod-
ification of the IMD, as this would imply its replacement and, therefore, a
surgical procedure. The alternative would be implementing security func-
tions in external devices or independent modules of the IMD chip. Under
this approach, the software running on the implant would be exclusively
used to treat the patient’s medical condition.
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Figure 1.4: Protection mechanisms proposed for IMDs.

As discussed above, a major problem with most security measures is
that they could put at risk the patient’s safety in emergency situations if
they cannot be easily disabled. The use of some form of “backdoor” to
bypass security could be a straightforward solution, though it is too easily
manipulable by an attacker.

Fig. 1.4 provides a classification of the security mechanisms that will
be discussed throughout this section.

1.4.1 No Security

Many IMDs, particularly the older generations without wireless communi-
cation capabilities, have no security mechanisms at all [148, 150]. This is
unacceptable for the newest generations of IMDs in which the presence of
communication capabilities may jeopardize the patient’s safety.

1.4.2 Auditing

One of the simplest security mechanisms consists of constantly registering
all accesses—authorized or not—together with the patient’s status. This
is a measure amied at facilitating the detection of non-permitted actions
and constitutes a valuable source of evidences to take subsequent actions.
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Therefore, auditing helps to combat threats against non-repudiation. Un-
likely, it does not prevent the occurrence of attacks, but may act as a deter-
rent element if appropriately implemented, i.e., if it is not possible for an
attacker to compromise the audit log and if it facilitates attribution of the
attack. As a consequence of this, this sort of solutions should be be com-
plemented with appropriate mechanisms to detect and block such attacks,
as well as measures to prevent them from happening in the first place (e.g.,
cryptographic or access control solutions).

The main problem that auditing proposals face is the limited amount of
memory available in IMDs. For instance, the whole memory of an ICD
is less than 1 MB and around 75% of this memory is used for medical
functions. In that a case, only a few hundreds kilobytes could be used for
logging events, which is extermely restricted. An additional memory could
be added to the chip, but this would increase the size of the IMD, which is
not recommendable.

To avoid increasing the memory of IMDs, the logging task can rely
on an external device without memory and computation limitations. One
example in the context of RFID systems is “RFID Guardian™ [181], which
collects and analyzes evidences of all events that occur in a predetermined
range. A similar approach, called MedMon, has been recently proposed
for IMDs and e-Health applications [238]. The authors propose the use of
an external device that works as a security monitor snooping and analyzing
all communications to and from the IMD. The events are locally stored in
the external device and an alarm could be raised to alert the patient. A
more drastic solution can include blocking the communication channel if
a dangerous communication is detected.

1.4.3 Cryptographic Measures

Cryptography-based security solutions strongly depend on cryptographic
primitives, which can be categorized in three main groups [153], as shown
in Figure 1.4. Unkeyed primitives, such as hash functions or one-way per-
mutations, are cryptographic tools that do not use any key. Within the
keyed cryptographic tools we can distinguish between symmetric-key and
public-key primitives. In symmetric-key primitives a secret key is shared
between the trusted entities. The type of primitives in this category is var-
ied including symmetric key ciphers (block and stream ciphers), message
authentication codes (MACs), pseudorandom sequences and identification
primitives. On the other hand, public-key ciphers and signatures are two
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examples of asymmetric-key primitives. In this type of algorithms two
keys are used, one of them is public and the other one must be kept secret.

In the context of IMDs, cryptographic measures are effective mech-
anisms to protect the wireless communication channel and the records
stored in the device against tampering and information disclosure. Ad-
ditionally, cryptographic protocols also provide a means to control and
manage accesses to the IMD, thus providing protection against spoofing
and, in some cases, elevation of privilege attacks. Both symmetric [83, 96]
and public-key [55, 210] schemes have been proposed for these applica-
tions, although the latter are considerably more expensive in terms of com-
munication, computation, and power consumption. Protocols based on
public-key cryptographic schemes often exchange a high number of mes-
sages, which makes them quite energy demanding since sending and re-
ceiving messages consume power. Furthermore, public-key ciphers result
in complex circuits that consume excessive resources (hardware and mem-
ory) and are inefficient in terms of power consumption [67, 132]. Due to
the resource limitations discussed above for the current generation of im-
plants, solutions based on symmetric-key approaches are the preferred op-
tion. Standardized protocols like the one proposed in ISO/IEC 9798 rely
on the use of symmetric primitives (i.e., symmetric encryption or keyed
hash function) and the encrypted tokens include random numbers (a PRNG
is often used for its generation) to guarantee freshness between sessions

[103].

Symmetric cryptographic schemes suffer from the key distribution prob-
lem. In general, the IMD and other authorized devices such as the pro-
grammer need to share a key (or a set of keys) that is used to generate
authentication tokens for gaining access to the IMD, and to encrypt com-
munications. The suitability of a particular key distribution scheme de-
pends on the type of IMD, the expected interactions with other parties, and
other assumptions about the operational environment. For example, if the
programmer and the IMD will have a lasting relationship, a pre-set key
can be used. This solution could be valid when the programmer is always
a device belonging to the patient or the physician. In these cases, a first ap-
proach consists of pre-loading a factor key on the authorized devices. This
factor might be renegotiated between the legitimate parties during the first
communication session to update the key. We emphasize here that is cru-
cial to protect these keys and guarantee that only authorized entities (i.e.,
the patient and healthcare staff) have access to the them [199]. Such keys
will be used to build various cryptographic tokens (e.g., an authenticated
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token or an encrypted message) used in the transactions between legitimate
entities in the system.

Other solutions suggest that the cryptographic keys used by the IMD can
be stored in an external wearable device such as a smart bracelet. External-
1zing the key storage incurs a significant risk, as the loss of such a device
(e.g., if the patient losses the bracelet or it gets damaged) would render
the IMD inaccessible and/or will facilitate access to unauthorized users
[64]. Some authors propose to print the key into the patient’s skin using
ultraviolet pigmentation (i.e., invisible tattoos) that can be read by medical
personnel in case of emergency [194]. Note, however, that the keys might
be read by an attacker who has physical access to the patient—its presence
may be detected due to its proximity.

In the case of sporadic communications with authorized devices that
nonetheless do not know the access key, a key agreement protocol must be
supported (e.g., RSA-based [210] or using physiological signals [221]).

Providing a confidential channel between the IMD and the program-
mer is another major goal when using cryptographic solutions. Some ap-
proaches suggest to exploit the limited coverage of the physical layer dur-
ing the initialization phase [136]. Most proposals are based on symmetric
ciphers [83], and some of them incorporate a key updating mechanism
(e.g, a hash-chain based updating scheme [89]). Recently, Kaadan and
Refai have proposed in [116] a novel cryptographic system with claimed
military-grade security level that combines a one time pad cipher with a
novel key distribution and authentication scheme. Other approaches, like
the one discussed in [96], focus on hardware efficiency and propose the use
of lightweight ciphers that offer tiny footprints with low power consump-
tion. Recently, a new IMD architecture, evaluated on an artificial pancreas
implant, has been proposed. In this case, the implant includes two sepa-
rates cores (illness treatment and security tasks), and the overhead for the
security module in terms of hardware and energy consumption is minimal
[212].

The use of standard cryptographic solutions to provide security services
in IMDs has been criticized, both for usability reasons and for the lack of
rigour in the analysis of many proposals [185]. The main drawbacks that
would entail the exclusive use of these solutions are [74]:

Inalterability Incorporating cryptographic mechanisms in the device im-
plies that current implants must be re-designed and replaced. This
will force patients to undergo a surgery procedure only to get a more
secure device, as the treatment functions do not present any problem.
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Patient’s safety The use of cryptographic measures embedded in the de-
vice introduces some challenges for emergency situations in which
the communication with the IMD is necessary even for unauthorized
parties (i.e., programmers who does not know the access key). This
problem is not present in solutions based on external devices such as
those discussed later in Section 1.4.4.2.

Maintenance As security measures are implemented in the device, there
1s an increment in the amount of software embedded in the implant,
which also implies a higher likelihood of errors. Many authors sup-
port the idea of restricting as much as possible the software running
on the device, keeping just those functionalities needed to treat the
medical condition for what it was designed.

1.4.4 Access Control

Access control mechanisms prevent unauthorized and inappropriate uses
of the IMD functions. Prior to proceed with a particular action (e.g., ac-
cess, reading, reprogramming, etc.), the privileges of the requester are
evaluated with the aim of assessing whether it is authorized to execute
that particular action or not. In particular, permitted and forbidden op-
erations are governed through access control policies that establish who
can do what, possibly depending on the context in which the access re-
quest takes place. Note that access control is fully compatible with other
security measures such as cryptographic protocols to protect the commu-
nication channel. Furthermore, access control generally requires previous
authentication, as decisions on whether an operation is permitted or not are
made on the basis on the identity of the requester, who must be previously
established.

We next describe a number of access control models suggested for IMDs
and discuss their main advantages and limitations.

1.4.4.1 Certificates and Lists based solutions

In [64], the authors present two classical authentication mechanisms adapted
for IMDs. One is based on Access Control Lists (ACLs)—an implementa-
tion of discretionary access control models based on the access matrix—,
while the second relies on a Public Key Infrastructure (PKI). The ACL
defines which operations an authenticated reader is authorized to execute.
Such permissions are permanent once the ACL is programmed. Thus, al-
though it can be reprogrammed in the future, it is intended for providing
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permanent access to certain readers. Contrarily, in PKI-based solutions the
relationship between the IMD and the reader is transitory. In particular,
the reader will have to repeat the procedure for obtaining its certificate to
authenticate with the IMD in each new session.

In order to optimize the energy consumption in those cases where the
reader communicates frequently with the IMD, the PKI and ACL approaches
can be combined. For instance, the first time the reader 1s authenticated
with the IMD, it will use its certificate. After that, this particular reader is
registered in the ACL, since using this approach is more efficient in terms
of energy consumption than PKI-based solutions.

One critical point is that the PKI and the certificate directories should
be publicly—and permanently—accessible through the Internet. Consider,
for example, a patient suffering an emergency condition while visiting a
foreign country or just a different hospital. The medical personnel should
be able to obtain the required credentials. Connectivity or authentication
problems with the PKI may prevent them from gaining the required creden-
tials to modify or disable the IMD, which in some cases may threaten the
patient’s safety. Therefore, the needed PKI is very demanding in the sense
that is global, a large number of participants are involved, and a huge set
of iterations are possible —similar requirements are demanded to the PKI
that is used in the borders with the new e-passports [175].

1.4.4.2 Delegation in External Devices

Some authors have suggested to make use of an external device to control
accesses to the IMD. Such devices would not be implanted in the patient’s
body, and part or all of the security functions would be delegated to them.
This presents several benefits. On the one hand, the IMD would save bat-
tery life since security-related computations are performed externally. On
the other hand, a single device can integrate a number of security capabili-
ties, such as auditing, key management, authentication, and access control.
Furthermore, as most of these capabilities operate at the physical layer,
other sort of solutions can be used at higher layers.

Generally, the role of the external device is to act as a mediator between
the programmer and the IMD. When the programmer needs to access the
IMD, it first gains access to the external device and then communicates
with the IMD. In [51], the authors present a solution based on external
devices named “Cloaker”. The IMD periodically checks the presence of
the Cloaker. While it is detected, the IMD remains silent. Therefore, the
Cloaker will provide security to the patient while he holds it. Otherwise,
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the communications with the IMD are fully open to all readers. Using
this approach, in an emergency condition it would suffice to remove the
Cloaker from the patient to get full access to the device.

The authors of [51] provide a number of ideas about the role that such
an external device could play. Two different possibilities are identified:

* The Cloaker would mediate in all exchanges until the IMD and the
programmer successfully finish a key exchange. After that, both par-
ties directly communicate with each other over a secure channel built
using the shared key. The external device does not participate in such
communications.

* A different possibility is having the Cloaker involved in all commu-
nications between the IMD and the programmer. In this case, all
packets pass through it, which would allow to record them (for ex-
ample, for a subsequent forensic analysis) and even implement filter-
ing and attack detection functions. Note, however, that in this setting
the Cloaker becomes a single point of failure, so any malfunction or
degradation in performance will affect the availability of the IMD.

Solutions based on external devices such as the one presented in [51]
attempt to balance the security tensions described in Section 1.3. Security
mechanisms are offered only in normal operation and the safety of the
patient is guaranteed in emergency conditions. Nevertheless, there are still
some open questions that have not been definitely addressed, including:

* The constant detection of the Cloaker by the IMD is not trivial. The
authors proposed two ways to do this. In the first case, the IMD
sends a “hello” message to the Cloaker whenever an incoming mes-
sage is detected. Another, more restrictive way consists of the IMD
periodically sending “hello” messages to the Cloaker to check its
presence. The result is stored in just one bit that indicates whether
the Cloaker is present or not.

* Both schemes discussed above are inefficient in terms of energy con-
sumption as a consequence of the messages exchanged to check the
presence of the external device. The first solution avoids a continu-
ous flow of requests to the Cloaker, but renders the system more vul-
nerable since the adversary knows the exact time when the Cloaker
would be interrogated. Thus, the attacker could send a fake request
to the Cloaker and then impersonate it. Contrarily, the second ap-
proach is much more secure but requires the IMD to continuously
check the presence of the Cloaker.

e The authors do not address the problem of how deal with an attack
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that causes interferences in the communication channel between the
IMD and the Cloaker.

* Finally, it is worth mentioning that [51] is not a definite solutions
and the authors do not recommend its immediate adoption.

Another solution based on external devices is “RFID Guardian”, pro-
posed in [181]. RFID Guardian registers all devices in its range, man-
ages keys, authenticates programmers that request access to the IMD, and
blocks all unauthorized entities. Using this approach, all the devices in
the neighbourhood of the Guardian (i.e., about 1 or 2 meters according to
[181]) are detected and corrective measures could be enforced if needed.
Although the solution was originally proposed in the context of RFID sys-
tems, the approach can be easily adapted to IMDs. The authors propose
to integrate the Guardian into a device that the user (patient) always holds,
such as a smartphone or a smart wearable device (e.g., a watch, a bracelet,
etc.).

Other approaches are based on the use of hardware tokens. There is a
wide variety of these devices, including disconnected and connected to-
kens, smart cards, bluetooth tokens, etc. In this case, the device stores a
password shared with the IMD. The medical personnel would use this key
to access the implant. The main drawback is the same as in other solutions
based on external devices: if the token is lost or the patient forgets to carry
it under an emergency condition, the IMD would be inaccessible [12].

Gollakota et al. proposed the use of an external device, named “shield”
[74, 73], that acts as an intermediary so that all communications between
the IMD and the programmer pass through it. The shield protects the com-
munication channel by jamming messages sent to and from the IMD in
such a way that no other entity can decode them. Similarly, it protects the
IMD from unauthorized devices by jamming all messages coming from
them. Fraudulent messages are rendered unusable after the jamming and
the IMD would discard them simply by its inability to interpret them, thus
preventing the execution of malicious actions.

In summary, the main advantage of solutions based on external devices
is that they offer a high protection level against unauthorized commands.
The IMD will not respond to malicious re-programming commands or at-
tacks to drain the battery. Their main drawbacks include:

* If the patient forgets the external device, the IMD would respond to
all incoming (authorized or not) requests, which is only necessary in
emergency mode.

» These solutions do not generally consider scenarios in which the ex-
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ternal device is replaced by a malicious one. In this case, the security
and privacy of the IMD would be highly compromised.

» The external device is fully visible to external entities, which can
reveal sensitive information about the patient’s medical condition.
Moreover, some authors have pointed out that it is a constant re-
minder to the patient about his medical condition.

* These proposals often assume that the external device is a trusted
entity. Nevertheless, this entity can be compromised or act mali-
ciously. For instance, packets can be altered (e.g., flipping certain
bits), dropped out, or blocked, which would render inoperative the
communication with the IMD.

1.4.4.3 Trusting other Implantable Devices

In [86] it 1s proposed the idea of using a subcutaneous button that opens ac-
cess to the IMD only after being pressed. This approach would protect the
implant from all incoming communications until the patient deliberately
presses the button, which can be done only in controlled environments.
Note, however, that this would fail to protect the IMD if the adversary has
physical contact with the victim and can press the button, or leave an at-
tacking device in the proximity of the patient waiting for the IMD to be
accessible.

The same authors also present the notion of an “IMD Hub”, this being
an implantable device that works as a network switch for all the devices
in the IBN and also plays the role of and authentication center. This ap-
proach suffers from an excessive trust on a unique central device, so the
use of more connected hubs could be a more interesting approach both for
security and performance reasons.

1.4.4.4 Proximity-based Access Control

These solutions base the access decisions on the distance between the pro-
grammer and the IMD, allowing only communications with devices lo-
cated at a short distance from the IMD [181]. In certain applications, it has
been suggested that this can be achieved by having the IMD equipped with
a magnetic switch. This is just a magnetic sensor that detects the magnetic
field generated by programmers in its proximity. Only after this switch has
been activated the IMD will become available. After this, the IMD would
send to the programmer the key to be used for subsequent communica-
tions during this session. Unfortunately, apart from security issues, it is
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unclear whether these solutions are safe enough, since having a magnetic
field close to the implant might alter its functioning [131].

Other solutions are based on classical distance bounding protocols, these
being schemes that compute an upper bound for the distance between two
devices. In [177], Rasmussen et al. propose a device paring protocol in
which the IMD and the programmer obtain a shared key. Messages are
sent through an ultrasonic channel and the response times—i.e., the time
between sending a request and receiving an answer—are used to estimate
the distance between the devices. This process can be repeated several
times to upper bound the estimation. If the computed distance is less than
a fixed threshold, the communication with the IMD continues; otherwise,
it is interrupted. It is also worth mentioning that some authors consider that
response times in the protocol could serve as a deterrent against replay at-
tacks [64], as the device could detect old request being replayed and reject
them.

Normal and emergency operation modes are considered in [177]. While
in normal model, the paring protocol is executed and a session key is es-
tablished. This process is carried out assuming that the IMD and the pro-
grammer initially share a secret key. When in emergency mode, the shared
key established above, which is probably stored in an authorization token
but the patient could have forgotten it, may be unknown. To address this,
the authors propose a mechanism to deal with this contingency. In detail,
they propose a scheme to generate a temporary secret key so that the paring
protocol can be executed. This is an alternative to the use of the magnetic
switch previously described. In this case, the programmer has to be within
the emergency range, which is shorter than in normal operation mode.

Distance-based solutions assume that a reader that is close to the IMD
is not an adversary. It can be a legitimate programmer with the required
credentials and within permitted range for normal mode. Alternatively,
it could be a legitimate reader but without the authorization tokens in an
emergency condition and located very close (i.e., in emergency range) to
the IMD. This leads to two major disadvantages that have not being con-
sidered by this sort of protocols:

e The IMD can be compromised if the adversary is within the defined
range. It would be desirable to guarantee the security of the pa-
tient independently of the distance an attacker can be. There are
many daily situations in which the attacker can get very close to the
IMD, such as in a public transport vehicle, at the office, etc. In other
cases, the attacker can plant a programmer device close enough to

27



1. Security and Privacy Issues in Implantable Medical Devices

the patient’s body and use it as a proxy for conducting his activities.
Moreover, the attacker can be the patient himself trying to deliber-
ately manipulate the IMD.

» There are techniques that allow an adversary to simulate being within
the permitted range when in reality he is at a longer distance. This is
a key limitation for any protocol based exclusively on the computed
distance.

1.4.4.5 Biometric Measures

Biometrics refers to a number of identification techniques based on the
patient’s physical characteristics, such as his fingerprint, iris pattern, voice,
hand, etc. [22, 176]. Interested readers can find in [144] more details about
the use of biometrics in the healthcare context.

In [90], Hei and Du propose a solution that restricts access to autho-
rized entities and deals with emergency situations where the patient can be
unconscious or not holding his credentials (e.g., an external authorization
token). The scheme uses biometric features from the patient in two sep-
arate steps or levels. Level 1 employs basic biometric information, such
as fingerprints, iris color, the patient’s weight, etc. Once level 1 is passed,
level-2 authentication must be passed too in order to finally get access to
the device. For that, biometric information extracted from the patient’s iris
must be provided. That information is pre-stored as a key in the memory
of the IMD. Iris-based authentication has a high accuracy and is very ef-
ficient. Furthermore, to obtain a good snapshot of the iris a near infrared
camera is needed, and the user has to be at a distance of between fifty and
seventy centimetres, which is a very short range. As consequence of this,
the patient would easily detect an attacker due to his proximity in many
situations.

Similarly, in [234] Xu et al. propose the use of ECG (electrocardio-
grams) signals to generate the patient’s secret key. By using this the scheme
avoids the need for pre-stored keys and the associated key distribution
problem. Access control is guaranteed by a cryptographic protocol that
employs this ECG-based key. On the other hand, communications be-
tween the IMD and the reader are coordinated by an external device named
IMDGuard that is very similar to the RFID Guardian proposed in [181].
The presence of the IMDGuard means that the IMD works under normal
mode and ECG-based access control is used. When the IMDGuard is ab-
sent, communications are not protected and access control is not enforced,
which would allow anyone (e.g., medical personnel in an emergency sit-
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uation, but also an adversary) to interact with the implant. A recent and
detailed study about the use of ECG signals for key generation can be
found in [186].

In certain cases, biometric techniques can be easier to apply than solu-
tions based on shared keys, since the key distribution problem is avoided
and it is harder for the attacker to disclose the keys. In principle, the ad-
versary could not impersonate the programmer or the IMDGuard unless
he has physical contact with the patient. Despite this, biometric-based ap-
proaches have two main drawbacks:

* Firstly, the physical presence of the patient is needed. This is cer-
tainly not a disadvantage in an emergency situation, where the pa-
tient is physically located in the emergency room or equivalent. Un-
fortunately, this is not the case when medical personnel will attempt
to access the IMD remotely.

* Secondly, biometric features are never perfect. Two measures taken
at different times, or even acquired simultaneously but using two
reading devices, could generate different results. A straightforward
use of such measures might generate wrong keys, when in reality the
user is authorized. Error correction techniques are used to avoid this
[10, 38]. This problem is known as truth rejection rate and implies
that not all biometric data can be used for key generation (or authen-
tication). Thus, the measure has to be gathered from body parts so
that the differences between measures are within a acceptable range
and can be corrected [37].

1.4.5 Anomaly Detection

The availability of the IMD functions is crucial since the treatment—and
even the patient’s life—can be compromised otherwise. If an attack is
detected, the patient can be informed (e.g., by a notification mechanism)
or the device can be rendered inaccessible via switching off the commu-
nications (or jamming the channel) while the medical functions are kept
running. The difficulty to prevent this sort of attacks mainly arises from
the use of the wireless communication channel. Communication between
the IMD and the reader starts with the IMD authenticating the reader. If
the reader does not pass the authentication step, the communication is in-
terrupted. This consumes resources in the IMD and, therefore, can be ex-
ploited by an adversary who, for example, repeatedly attempts to com-
municate with the IMD. The result would be a classical Denial-of-Service
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(DoS) attack in which the battery level could be drastically reduced and
memory/storage could be also affected—in each authentication, some reg-
isters are used to store security values such as session tokens and logs. In
general, this sort of attacks are known as Resource Depletion (RD) attacks
and focus on wasting the resources of the IMD [98]. They are very easy to
implement and their consequences can be very harmful as the battery life
of the IMD could be shortened from several yeas to a few weeks just by
sending dummy requests.

Standard cryptographic solutions do not prevent these attacks, and ex-
isting studies about RD attacks in sensors networks [179] are not directly
applicable to IMDs since implants have more severe resource restrictions.
Moreover, there is an extra difficultly for adding new resources—the im-
plant is within the body, which is not the case of sensor networks. This
motivates the need for designing solutions that take into account the fact
that these devices will be used within a human body.

In the context of IMDs, the combined use of pattern/behaviour analysis
and notification systems is the most widely used solution to counter RD
attacks. Notification systems inform the patient through an alarm signal
(e.g., a sound or vibration) when particular events happen, such as when
the IMD establishes communication with a external device [82] or when
certain biomedical parameters fall out of the normal range [53]. Such
alarms are only informative. Thus, notification does not prevent attacks
from happening, although alerting the patient may be valuable to make him
aware of unexpected ongoing communication activity. One major draw-
back of these approaches is that they do not work properly in acoustically
noisy environments. Besides, alarms have an associated energy consump-
tion that should not be underestimated. As in the case of auditing, notifica-
tion mechanisms alone are insufficient and should be complemented with
other solutions.

By leveraging the fact that the wireless communications between an
IMD and a reader follow a set of observable patterns (e.g., frequency, lo-
calization, patient conditions, etc.), Hei et al. propose in [91] a mechanism
against RD attacks with an average detection rate over 90%. The scheme
uses a Support Vector Machine (SVM), which is assumed to run in the
patient’s phone. In detail, the authors consider five kinds of input data to
carry out detection: reader action type (i.e., the action(s) the reader can
execute on the IMD, where the set of actions depends on the type of im-
plant); the time interval of the same reader action; the location (e.g., home
or hospital); the time; and the day (e.g., weekly or weekend). Once trained,
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the classifier will determine whether a pattern is valid or not. For instance,
if a particular type of request is always sent from the doctor office, an at-
tempt of the same request from a different location would raise an alarm.
The overall system works as follows. Each time the reader attempts to
contact with the IMD, the latter sends a message to the mobile phone of
the patient with the access pattern. The phone executes the classification
algorithm and returns an output that is sent back to the IMD. Depending
on that output, three actions are possible: (1) the input vector is consid-
ered legitimate. In this case the mobile sends a “1” (true) to the IMD and
the communication with the reader continues; (2) the input vector does
not correspond with any of the allowed patterns, in which case the phone
sends a “0” (false). The request may come from an attacker and the IMD
turns into sleep mode to avoid RD attacks; (3) If it is unclear whether the
input vector is legitimate or an attack, an alarm is triggered (e.g., an audi-
ble alarm) to inform the patient, who must decide if the communication is
permitted.

The proposal in [91] has three main drawbacks. Firstly, the scheme
assumes that the IMD is always running in normal mode and does not
consider emergency conditions in which legitimate access patterns could
be certainly anomalous. If that is the case, access to the IMD would be
rejected, which could result in severe consequences for the patient’s safety.
Secondly, the proposal inherits some disadvantages from schemes that base
its security on an external device—the mobile phone, in this case—, as
discussed in Section 1.4.4.2. Finally, but not less important, the patient has
the responsibility of making a decision in case the SVM cannot classify
the input data.

Instead of using patterns, Henry et al. have recently proposed in [93]
a system to detect malicious/anomalous use of an insulin pump. In par-
ticular, the administration of insulin dosages is detected by tracking the
acoustic bowel sounds. The events are logged and then used for checking
the proper system operation. The proposal is a passive solution and does
not offer protection in real-time. Moreover, as in [91], the system is based
on the use of an external device needed to measure abdominal sounds.

A new defense method for IMDs based on wireless monitoring and
anomaly detection is proposed in [238]. The authors propose the use of
a medical security monitor, named MedMon, which eavesdrops communi-
cations to and from the IMD. Captured traffic is then passed for analysis to
a multi-layer anomaly detection system. If a malicious transaction is de-
tected, the user can be informed (passive response) or alternatively the sys-
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tem can render the IMD inaccessible via active jamming (active response).
Jamming refers to the transmission of radio signals with the purpose of
impeding communications in the channel by reducing the signal-to-noise
ratio. In this case, jamming is used to protect the IMD from being ac-
cessible to the adversary. The main drawback of this proposal is that the
whole security resides on an external device, but it has the advantage of be-
ing applicable on existing devices without any modification. In line with
MedMon, Darji and Trivedi have recently proposed a system for detect-
ing active attacks [46]. They propose the use of an external proxy device
equipped with several antennas that builds a signature of authorized read-
ers/programmers based on their position. Positions are estimated through
triangulation techniques. The proposal seems effective for static scenarios
but not for dynamic ones.

1.4.6 Overriding Access Control

Although strictly speaking overriding access control mechanisms is not a
protection measure, we have included these solutions here for complete-
ness. Furthermore, in an emergency situation keeping the patient alive is
more crucial than maintaining the IMD security protections fully function-
ing.

Access control models are often too inflexible. The access policy is gen-
erally established at the design phase, setting what actions are allowed, by
which entities and under what circumstances. However, during the system
life it is possible that unexpected and unanticipated situations may arise in
which access to the implant is vital. For instance, in the context of IMDs
and under an emergency condition the usage scenarios are unpredictable.
Since guaranteeing the patient’s safety is a priority, it is mandatory that ac-
cess requirements can be removed if it becomes necessary. This type of sit-
uations give rise to a family of solutions collectively known as “Breaking-
the-Glass” (BTG) that allows to switch the access control requirements off
in critical or unknown situations for the system. This would facilitate the
access to the implant under a emergency condition, although it also opens
the door to a number of security vulnerabilities.

A typical proposal of a BTG policy can be found in [59]. Even though
this work is not focused on IMDs, it can be adapted easily. In this case,
the access controls requirements can be suppressed even if the entity pre-
viously did not have privileges to do that. The BTG is complemented with
a non-repudiation mechanism that facilitates a subsequent analysis of the
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accesses carried out. The authors define a series of steps that must be ex-
ecuted in a precise order to override access control. First, when a user
requests access, the system checks if he has the required privileges. If the
answer is negative, the system may give him access under the BTG modal-
ity provided that the user accepts that all the actions will be recorded. If
s0, he gets access to the system and assume all responsibilities.

In [184], Rissanen et al. propose a model that distinguishes between
allowed actions, forbidden actions, and all those that can be executed (pos-
sible actions). The intersection between the sets of possible and forbidden
actions represents the actions that can be allowed when overriding the ac-
cess control policy.

The classical Clark-Wilson access control model for data integrity [39]
also provides a reference framework for BTG policies. In this case, the
basic steps needed in a BTG system are reduced to [21]:

1. Pre-staging break-glass accounts: emergency accounts are created
in advance, so users and passwords are generated for these special
cases.

2. Distributing accounts: pres-stages accounts are efficiently managed
to guarantee that the required access data is available in appropriate
and reasonable manner in case of emergency.

3. Monitoring the usage of the accounts: the system must be audited
while being accessed during an emergency condition.

4. Cleaning up: once access in the emergency mode concludes, new
access accounts are generated and the old ones are revoked, thus
avoiding temporary-authorized users have a permanent access to the
system.

Obviously, a set of measures to ensure the proper functioning of the
system are required as consequence of bypassing the access control in a
BTG system [81, 172, 198]:

1. Users must accept their new privileges, warning them of the possible

consequences of their acts.

2. The system must record the actions performed by each user. A pos-
terior analysis will determine if the access was legitimate or not. For
that, access requests can be stored together with the system status,
which could help to conclude whether the access was justified by
the circumstances or not. As in the case of the auditing mechanisms
described 1n Section 1.4.2, this can be considered as a deterrence
measure.

3. In an emergency condition, all access operations must be monitored
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in real time to grant those privileges needed for them to be executed.
Furthermore, the system has to be in emergency mode only while
the emergency lasts, returning to the previous access policy as soon
as possible.

4. The privileges granted in such situations must be kept to the mini-
mum required to perform the task, but not more.

5. Some proposals like [172] go one step beyond and consider whether
the requested action is reversible or not. Thus, actions executed by a
user with enhanced privileges due to an emergency condition should
be reversible, in such a way that unjustified actions can be undone.

As a practical implementation, the work presented in [21] by Brucker
and Petritsch describes the integration of a standard access control model
with a BTG policy and discusses the improvements in the architecture.
Similarly, a context-based access control mechanism is proposed in [84],
which depends on four factors: time, location, identity, and history of
events.

In summary, BTG policies extend access control policies to critical situ-
ations, dynamically grating privileges to users who require them to execute
an essential action. This type of policies are very important since it is un-
realistic to assume that all possible situations will be considered at design
time. In fact, in the case of IMDs the situations in which an emergency
can appear are unpredictable and, in the majority of the cases, a success-
ful management of the emergency situation depends on the access being
granted in time. As for the proposals discussed above, some of its prop-
erties are difficult to guarantee a priori, such as for example ensuring that
the system can recover from the BTG policy by allowing only reversible
actions (in most emergency situations the required actions are clearly irre-
versible). Therefore, although these measures aim at solving the tension
between security and patient’s safety, its usage can be risky. In general, it
would be necessary to carefully define what an emergency situation is and
providing the IMD with the means necessary to recognize it. However, as
this would have to be done at the design phase, it somehow contradicts the
basic BTG motivation, namely that critical situations are unpredictable and
must be detected at execution time.

1.4.7 Summary

Table 1.2 provides an overview of the proposals discussed throughout this
section, detailing for each one of them its main purposes and how it affects

34



1. Security and Privacy Issues in Implantable Medical Devices

three main goals: security, patient’s safety, and battery life. Furthermore,
in relation with STRIDE methodology, we show the security services ad-
dressed.
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2

Human Identification Using
Compressed ECG Signals

2.1 Introduction

According to [34], the medical sector is the area that has suffered the ma-
jor number of hacking incidents over the last two years—43 % of the data
breaches in US. Medical companies and hospitals have begun to introduce
biometric solutions to mitigate attacks and reduce costs. Furthermore, the
proper identification of patients when they walk through the door is a ma-
jor issue nowadays for all the hospitals around the world. Errors in medical
records, or even incorrect treatments, are very costly for the medical cen-
tres and harmful for the patient. To avoid this, novel solutions propose
to maintain a link between the patient’s data biometrics and her medical
record. Thus, the biometric signature (monomodal or multimodal) is used
as an index to recover the patient’s medical record in the standard way: the
system compares the master template with the one read locally and, if they
match, the associated medical record is retrieved. This process is entirely
done locally but may be also done remotely, i.e., the user would provide
her biometrics data remotely. In this sense, biometrics could accelerate the
transition towards home health care [203].

Home health care allows the treatment of a disease at home. On the
other hand it is usually as effective as care at the hospital but less expen-
sive and more convenient for the patient. A wide variety of health care ser-
vices can be offered (e.g., check your vital signs like temperature or blood
pressure remotely or have a video conference with a medical staff). Demo-
graphic changes (ageing population), social changes (small family units or
mobility across countries), and developments in science and technology
are some indicators that help to forecast, in a near future, a spread-use of
home health care services [217]. The correct and secure identification of
each individual is a key-point for the proper operation of these systems. We
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propose the use of a biometric solution for that purpose. For completeness,
we next provide a brief introduction to biometrics.

Biometrics refers to the automatic identification of users based on fea-
tures derived from their physiological and/or behavioural characteristics.
The use of such features for identification (authentication) or verification
purposes has been thoroughly explored in the last 30 years. In verifica-
tion, an identity is provided by the user, which is used to retrieve a master
template. The master template is then compared with the verification tem-
plate (1-to-1 comparison) and a matching score is returned by the classifier.
Contrarily, in identification systems like the one proposed in this chapter,
the identity of a user rests entirely solely on her biometric information—
the classifier performs one-to-many comparisons.

There is a substantial body of knowledge on recognizing subjects by
their fingerprint, face, voice, gait, keystroke dynamics, hand, iris, or retina
[109]. Depending on the application and operational context, each one
of these features can be used separately [63, 102] or combined in a multi-
biometrics setting [220]. The accuracy, measured both as the probability of
identifying a correct subject and rejecting a false individual, is possibly the
single most important feature of a biometric system. However, in practice
there are other properties that can severely limit the use of a particular
identification technique [178]. The biometric characteristic must be also
universal, stable, and unique. Its acquisition has to be easy and without
objections by the users. Finally biometrics systems should detect the use
of an artefact or substitute. All the mentioned characteristics have been
assessed against our proposed system in Section 2.4.

Over the last few years, some works have explored the biometric use of
signals that, for different reasons, have traditionally received little attention
by the security community. Biosignals—i.e., electrical or chemical sig-
nals measuring some activity or parameter of the human body—constitute
an important class of such signals, including electrocardiograms (ECGs),
electroencephalograms (EEGs), and electromyograms (EMGs). These sig-
nals have been thoroughly studied for medical applications, on the hypoth-
esis that they convey information about different pathologies and, conse-
quently, can be used as a valuable diagnostic tool. For example, automatic
classification of ECG signals assists cardiologists to diagnose arrhythmias
(i.e., tachycardia, bradycardia or atrial fibrillation) [121].

In the last years, several works have demonstrated that many vital sig-
nals also contain features unique to the individual and can be used for
security purposes. This branch of the biometrics is increasingly referred
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to as Intrinsic or Hidden Biometrics [157]. For instance, the electrical ac-
tivity produced by skeletal muscles can be used for biometrics. EMG is
the technique used for measurement and the obtained record is called elec-
tromyogram. In [215], Suresh et al. proposed the use of electromyograms
to generate a signature for human identification. For that, impulsional elec-
trical stimulation is produced over the muscle and its response constitutes
the signature. This proposal has been successfully tested over a population
of ten individual.

ECG and EEG signals are by far the most commonly studied signals
for Hidden Biometrics. EEG records the electrical activity in the brain
through a set of electrodes mounted on the scalp. Existing proposals can
be grouped according to the classification algorithm used. Linear discrim-
inant classifiers with auto-regressive feature extraction are demonstrated
in [163]. In [33], an LVQ neuronal network with FFT feature extraction is
described, while the work in [214] reports results using a neuronal network
with energy feature extraction. On the other hand, EEG records the electri-
cal activity of the heart. The algorithms can be classified according to the
features extracted from the ECG signal. Fiducial-based methods extract
information from the characteristics points of an ECG wave (e.g., ampli-
tude [69], temporal duration [106]). Non-fiducial methods do not use the
characteristics points to extract features. Instead, other features like auto-
correlation [2], Fourier [188] or Wavelet coefficients [36] are used. Other
solutions (hybrid) combined both methods like in [226] or in [207] . The
reader is urged to consult for an exhaustive survey of ECG-based biomet-
rics proposals [160].

The rest of the chapter is organized as follows. In Section 2.2 the gen-
eral architecture of the biometric identification system is presented. After
that, we review and explain each of its forming components. The results
are presented in Section 2.3. Then, in Section 2.4, we evaluate the main
properties of the proposed system.

2.2 Methods

In Figure 2.1 we show the general architecture of a biometric identifica-
tion system. The first step consists of the data acquisition—one or sev-
eral signals take part depending on whether the system is mono-modal or
multi-modal, respectively. Usually a set of sensors are placed over the
subject (e.g., chest or head) to read the biosignals. Once acquired, the raw
data must be prepared for its analysis. Techniques such as normalization,
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Figure 2.1: General structure of a biometric identification system

re-sampling or smoothing are commonly used procedures during the pre-
processing step. After that, the more relevant information of the signal is
represented by a set of numerical o nominal parameters. This step is usu-
ally known as feature extraction and is crucial for the success of the whole
process. The generated dataset consists of a number of instances, each
one formed by a set of features and a label corresponding to an individ-
ual. The aforementioned dataset is split into two subsets for training and
testing, respectively. The training set is employed to build the model and
the unseen samples (testing set) are used to evaluate the model. That is,
for each instance the model outputs a label that is compared to the ground
truth. Depending on its success, the classification accuracy will be higher
or lower. In the following, each one of these building blocks are explained
in more detail taking into consideration the particular procedure used in
this proposal.

2.2.1 Raw Data and Pre-processing

The electrocardiogram (abbreviated as ECG and sometimes EKG) consists
of a measurement over the skin surface to record the electrical activity of
the heart. The conduction of ions through the myocardium (heart muscle)
change with each heart beat. The ECG represents the sum of the action
potentials of millions of cardiomyocyte (heart cells).

For our experimentation, we have chosen a well-known dataset. In par-
ticular, the MIT-BIH Normal Sinus Rhythm Database is used [72]. It in-
cludes long-term recordings of 18 subjects treated at Boston’s Beth Israel
Hospital. The decision of using this dataset was motivated for the fact that
no significant arrhythmias were detected in the subjects. Therefore, the
subjects do not present any bias that could help in the identification task.
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The heart rate of a person at resting varies from 60 to 100 beats per
minute. In order to pre-process the signal, at the fist step the DC com-
ponents are eliminated. After that, each ECG signal is filtered using a
passband filter. The passband range is often governed by the intended ap-
plication: for instance, [0.05Hz — 150Hz ] for diagnostic and [0.67Hz —
40Hz] for patient monitoring. In our cause, we use pass-band filter with
passband rage between 0.67 and 45 Hz. The lower cut-off frequency is
set 0.67 to eliminate the noise introduced by the respiration of the subject.
The upper cut-off frequency is set to 45 Hz to keep as much information
as possible and to eliminate the power line noise.

Once the signal is filtered, we split the signal in chunks without over-
lapping. The chunk size is set to 2 seconds, which means that each chunk
consists on 2-3 heart beats. We have chosen this size inspired by the fact
that algorithms based on fiducial features often use two beats as chunk
length. We attempt to obtain similar information by using a compressed
version of the signal. The non-fiducial features used in our experimenta-
tion are explained in the next subsection.

2.2.2 Feature Extraction

Features derived from biosignals are effective in the design of human iden-
tification systems [155, 125]. ECG signals are one of the most used for
this purpose [119]. Generally, existing algorithms can be classified into
two main groups [160]. On the hand hand, the algorithms based on fidu-
cial features use characteristic points (e.g. PQRST peaks) from a ECG
trace to extract a set of features (e.g., time intervals between peaks or an-
gles). In Figure 2.2 we show the main characteristic points together with
the most common features of an ECG wave. Contrarily, algorithms based
on non-fiducial features do not employ characteristic points for generating
the feature set.

In this chapter, we propose the use of a non-fiducial based algorithm.
In particular, the Hadamard Transform (HT) is used to extract the features
of an ECG wave. Figure 2.3 shows the ECG signal in the time domain
and in the Hadamard domain, respectively. In the same way as the Fourier
Transform (FT) consists of a projection onto a set of orthogonal sinusoidal
waveforms, the Hadamard Transform (HT) lies in a projection onto a set
of square waves called Walsh functions. In fact, the Hadamard transform
1s often called Walsh-Hadamard transform, since the base of the transfor-
mation consists of Walsh functions.
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Figure 2.2: ECG wave: characteristic points and features

Figure 2.3: ECG wave in the time domain and its Hadamard spectrum
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The Discrete Walsh-Hadamard Transform (DWT) of a data sequence
xz(n)andn = {1--- N} is given by:

N-1 M—1
Xy(k) =Y z(n) II (-D)™Fv2= k=0,1,--- ,N—1 (2.1)
n=0 1=0
where N is the number of samples of the data and restricted to be a
power-of-2, and M = log, N. Therefore, in a simply way, the transform
(X4 ) consists on the product of the sequence () of length 1 x N by the
Walsh matrix (/) with length N x N:

X, = Hx (2.2)

The inverse of the transform can be easily calculated with the next anal-
ogous expression that only differs in the constant divisor:

1 N-1 M—1
o) = 3 X Xo(K) T, n=0,1,00 N =1 @23

One advantage of using this transform is that it is computationally more
efficient than others, such as the Fourier Transform or the Wavelet Trans-
form. This is important in constrained devices with limited computational
capabilities. On the other hand, the usage of this transform facilitates that
a compressed version of the signal could be stored, while this compressed
signal preserves all the informational of the ECG signal and allows the
reconstruction of the signal in the time domain.

To show the effectiveness of the HT with ECG signals, we have studied
the effect of compressing the signal. To illustrate this, an ECG wave of
256 samples has been used. The HT is computed over this signal and
256 coefficients are obtained. After that, we have taken fractions of these
coefficients (i.e., {X,,(0),--- X, (P)} and P = {256,128, 32,16, 8}) and
calculated the inverse of the transform to reconstruct the signal. The results
of the reconstructed signals are shown in Figure 2.4, which illustrate how
the signal can be highly compressed while preserving the signal’s main
characteristics.

In Figure 2.5 we sketch the feature extraction procedure. As shown, the
features used in our proposed ECG-system are mainly based on the coef-
ficients of the HT. In particular, the 24 lower sequencing coefficients has
been used—see Section 2.3 for details. Furthermore two additional fea-
tures have been computed over the whole set of HT coefficients. Shannon
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Figure 2.4: Reconstructed ECG signal after compression via the HT
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Figure 2.5: Feature extraction procedure

entropy (Fsy) and Log-Energy entropy (£ ) are the two features chosen
in our experimentation—other features like statistical metrics were tested
but finally discarded. Let = a signal and X (n) the coefficients of x in a
orthogonal base, both entropies can be calculated as follows:

Esg = —;X(n)Qlog(X(n)% (2.4)
Eip = —Zn:log(X(n)z) (2.5)

2.2.3 Classifier

Inductive machine learning uses the concept of learning by example. A
system infers a set of rules from a set of input instances (training set). Once
the model is generated, the built model can be used to classify unseen in-
stances (testing set). There is a wide range of classification algorithms and
the choice of one or another is determined by the nature of the problem,
the dataset characteristics and the application where it will be used. Taking
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into consideration is function or form, classifiers can be categorized in nu-
merous types, including decision tree learning algorithms, kernel methods,
lazy learning algorithms, etc.

In this proposal we use a K-NN algorithm, which fits within the category
of non-parametric lazy learning algorithms. Non-parametric refers to the
fact that they avoid making assumptions about the data distribution. Lazy
means that the training instance are not used to do a generalization, so the
training is minimal. The K-NN algorithm makes several assumptions: 1)
the instances are in a metric space (i.e., scalars or multidimensional vec-
tors) and distance metrics can be computed between two instances; 2) each
instance in the training set is composed of a vector (set features) and a
label; and 3) the parameter K determines how many neighbours are con-
sidered for classification.

The testing and training phases for the K-NN algorithm are as follows.
In the training phase, features vectors with its corresponding class are
stored. In the classification phase, let y/; an unseen instance and {zo, - - - 23 }
the K nearest training instances. The label of y; is determined by majority
voting among the labels of its /' neighbours.

K-NN has been chosen since it is simple but effective. We have tested
several values of the K parameter and finally it has been set to 1. In fact,
using higher values for K (i.e., K = {3,5,9} we do not observe any
improvement in the performance while the cost in terms of computational
load is significant. Regarding the distance metrics, Euclidean distance (dr)
and Manhattan distance (d;;) have been evaluated. Let two vectors z =
[z(1)---xz(N))] and y = [y(1)---y(N))] , both metrics are defined as
follows:

dp = J%{x(i)y(i)f (2.6)

dy = YJai) - y(i) @)

2.3 Results

The algorithm proposed in this work fits within the algorithms based on
non-fiducial features. The main difference in comparison with its prede-
cessors is that the algorithm works with a compressed version of the origi-
nal signal via the Hadamard transform. Furthermore, only a small fraction
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of all the coefficients are necessary for human identification. Since the
number of used coefficients—24 coefficients for each ECG chunk—is ef-
fective for identification but insufficient to recover the original signal and
to preserve its characteristic points, the proposed system is privacy pre-
serving for the user.

The procedure followed for the analysis of the ECG signal is the one
explained in Section 2.2 and sketched in Figure 2.1. For our experimen-
tation, we use the well-known MIT-BIH Normal Sinus Rhythm database.
In particular, ECG signals for two electrodes are available and were pre-
processed as explained in Section 2.2.1 . Thereafter the same procedure
is followed for each electrode signal. The signal is chopped in chunks of
256 samples and for each chunk the DWT is computed. Finally the feature
extraction has been evaluated using two approaches:

e Hadamard Coefficients: Only a small fraction of the coefficients are
necessary for the identification task. This number has been obtained
through experimentation and using the classification accuracy as the
metric for comparison between the possible values. After conduct-
ing some experiments, we have set this value to 24, which represents
less than 10% of the coefficients. Therefore using these 24 lower
sequencing coefficients (48 in total considering the two leads) the
system can identify an individual with high accuracy. On the other
hand, and considering the worst case in which an attacker would
capture these coefficients, she could not reconstruct the original sig-
nal as shown in the Figure 2.6—only partial information might be
retrieved.

e Entropy: Although the system offers a high performance using Hadamard

coefficients, we have studied whether additional features are useful
for the system. In particular, we have calculated the Shannon and
the Log-Energy entropy over the whole set of Hadamard coefficients
(i.e., 256 values). It is also worth mentioning that we also tested the
inclusion of commonly used statistical metrics (e.g., mean, standard
deviation, maximum, minimum, and first derivative, etc.). Never-
theless its benefit over the performance of the system is negligible
and for this reason these features were not finally considered in our
experimentation.

Once the features are extracted, we have trained and tested a 1-NN clas-
sifier. We have used 10-fold cross-validation in order the classifier can ac-
curately predict unknown data. Each instance consists of a set of features
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Figure 2.6: ECG signal: original, transformed (via HT), reconstructed

Configuration | FNR FPR TPR TNR

OP-1 di 0.0580 | 0.0582 | 0.9418 | 0.9420
dyr | 0.0570 | 0.0566 | 0.9434 | 0.9430
OP-2 drg | 0.0390 | 0.0386 | 0.9614 | 0.9610
dpr | 0.0340 | 0.0341 | 0.9659 | 0.9660

Table 2.1: Overall Performance: False Negative (FN), False Positive (FP),
True Positive (TP) and True Negative (TN) rates

and a label corresponding to the subject (from 1 to 18). Regarding the
features employed we have tested two possible configurations: OP-1 only
considers 24 lower sequencing coefficients of the HT—in total 48 features
taking into consideration the two leads available; and OP-2 considers the
same features as OP-1 plus the Shannon and the Log-Energy entropy (4
additional features considering the two leads). For each configuration, the
I-NN classifier has been evaluated using two distances metrics: Euclidean
and Manhattan.

The confusion matrix obtained for each configuration can be summa-
rized through the true positives (7' P) and false negative (F'/V) rates and its
corresponding complementary values, false positive (F'P) and true nega-
tive T'N rates, respectively. The obtained values are summarized in Table
2.1. Using these values, the performance of the proposed ECG-based hu-
man identification system can be assessed through a number of standard
metrics:

 Classification Accuracy. Measures the proportion of correct outputs,
both positive and negative:

TP+TN

A:
¢ TP+ FP+FN+TN

(2.8)
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Configuration | CA ST SP PPV | NPV

OP-1 dp 0.9419 | 0.9420 | 0.9418 | 0.9418 | 0.9420
dyr | 0.9432 1 0.9430 | 0.9434 | 0.9434 | 0.9430

OP-2 dp 0.9612 | 0.9610 | 0.9614 | 0.9614 | 0.9610
dyr 1 0.9659 | 0.9660 | 0.9659 | 0.9659 | 0.9660

Table 2.2: Performance metric

S

» Sensitivity. It is simply the true positive rate, i.e., the proportion of
actual positives that are correctly identified as such:

ST

TP

T TP+ FN

(2.9)

» Specificity. Also known as the false positive rate, measures the pro-
portion of actual negatives that are correctly identified as such:

SP

TN

T FP+TN

(2.10)

* Positive Predictive Value. Also known as precision, measures the
proportion of positive outcomes that are actually positive:

PPV =

TP

TP+ FP

Q2.11)

» Negative Predictive Value. Measures the proportion of negative out-
comes that are actually negative:

NPV =

TN

FN+TN

(2.12)

In Table 2.2 the performance of the proposed system, in its four possi-
ble configurations, is summarized. In the next section we evaluate the pro-
posed system from a biometric point of view and extract some conclusions
about the performance and what is the most recommended configuration.

2.4 Discussion

In the above section we have shown the results of our proposal regarding
its performance. Seven characteristics (including performance) are com-
monly demanded to a biometric system [178]: universality, uniqueness,
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permanence, collectability, acceptability, performance, and resistance to
circumvention. In the following each of these characteristics is analyzed
for our proposed system:

Universality The biometric characteristic must be universally applicable.
In our case, we use the ECG signal, which can be collected from
everyone who is alive. Normal values for a person at resting are in
the rage of 60 to 100 beats per minute.

Uniqueness The biometric characteristic must be able to unequivocally
identify the individuals within the target population. In this work
we have proposed the use of the ECG. This signal has already been
proved to be effective for biometrics purposes [43, 162]. In our case,
we have checked whether features obtained from a compressed ECG
signal (via Hadamard transform) can be used to identify individuals.
As shown in Table 2.1, the number of misclassified samples is al-
most zero for all the configurations evaluated. This is a clear indica-
tor about the effectiveness of the Walsh coefficients (lower ones) for
the human identification task.

Permanence The biometric characteristic should be invariant over time.
Nevertheless, physiological characteristics are not totally invariant
during the entire life of an individual [44]. This means that the clas-
sifier model would have to be updated after five years since the model
was generated. If we compare our system with other common solu-
tions based on passwords [195], in which the user normally must
update the password once per year, our proposed solutions is five
times less demanding in terms of updating requirements.

Collectability The biometric characteristic should be quantitatively mea-
surable. In our particular case, ECG signals can be easily gathered
through a set of electrodes—3-lead or 12-lead system. Using these
electrodes, the electrical activity of the heart can be recorded. More
precisely, the ECG represents the potential differences between elec-
trodes.

Acceptability It relates to how the user feels comfortable with the use
of the biometric characteristic. We cannot do a strong presumption
about this matter since we use a public dataset for our experimen-
tation. Nevertheless, we can predict a high acceptability due to two
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main reasons: 1) the ECG signal is well-known to deal with heart
diseases; and 2) the signal can be easily acquired—just three leads
are sufficient for non-medical applications.

Performance Our proposed system offers a high accuracy level. The clas-

sification accuracy varies from 0.94 to 0.97 for the two configura-
tions evaluated. Furthermore, and not less important, the identifica-
tion system errors (i.€., false positive and false negative identification
rates) are very low values: of the order of 102, In relation with the
distance metric, the Manhattan distance seems to offer slightly bet-
ter results for the 1-NN classifier than the Euclidean distance. From
the computational point of view, OP-1 is less demanding since only
Hadamard coefficients are necessary and the penalty in performance
is small in comparison with OP-2.

We can compare our system with other proposals with similar results
(see Table 2.3). Most other ECG-based biometric solutions achieve
similar performance. Nevertheless, the main contribution of this pro-
posal is the set of features used. Fiducial features has been proven
to be effective but its calculation requires moderate computational
capabilities [226]. In our case we use non-fiducial features trough
the computation of the DWT. A matrix with ones and minus one val-
ues has to be stored in memory, in what is called the Waslh matrix.
Note that the matrix size is fixed since the length of the ECG chunks
does not vary. In our particular case, we have set this parameter
through experimentation aiming at optimizing system performance.
The Walsh Hadamard coefficients are obtained just by multiplying a
vector (an ECG chunk of 256 samples) by the Walsh matrix (a ma-
trix of size 256 x 256 with ones and minus ones). The complexity of
this naive algorithm is O(N?) but this can be reduced to (N log N)
using the Fast Walsh-Hadamard Transform.

Resistance to Circumvention This property is vital for an identification
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system. The biometric characteristic should prevent an attacker from
impersonating an authorized user in the database. In our proposed
system, this property is satisfied since the ECG signal (the complete
wave) 1s characteristic of each person. Note that two persons can
have identical heart rates but their ECG waves will be different. Pre-
vious studies have confirmed this matter and it is commonly assumed
that the features of an ECG signal are mainly resistant against coun-
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System Correctly Classified Instances

Our system 94 % (OP-1) — 97 % (OP-2) %

ECG [160] 86 % — 100 % (single day data acquisition)
EEG [211] 72 % - 80 % (4-40 individuals)

EEG and ECG [183] 97.9% (linear boundary)

Pulse-Response [178] 88% —100% (small data set)

Finger-vein [237] 98% (70 individuals)

Iris and Fingerprint [152] | 96% (small dataset)

Face & Iris [208] 99% (UBIRIS v.2 and ORL)

Table 2.3: Biosignal-based authentication proposals

terfeiting [216].

It is clear from all the above that the proposed system satisfied the char-
acteristics required of a biometric system. Therefore the use of compressed
ECG signals via Hadamard Transform is robust, effective, and efficient for
human identification. We next provide reasoning about the implications of
our proposal and extract some conclusions.
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3

Real-time
Electrocardiogram Streams
for Continuous
Authentication

3.1 Introduction

Security applications are gaining momentum in modern societies. With
the advent of information technologies, data and resources are available
almost anytime, anywhere. One key aspect is to ensure that the access to
these elements is provided for authorized users only. This need is usually
referred to as access control [191].

As a prerequisite of access control, the identity of the user has to be
established. This process is called authentication and is especially critical
when sensitive data is at stake. For instance, access to medical records can
be forbidden until being authenticated [124].

Authentication can be carried out by means of something the user knows,
something the user has and/ or something the user is [110]. Among these
three alternatives, the latter is receiving particular attention as a conse-
quence of the evolution of biometrical systems, i.e., the acquisition of
body-related variables called biosignals [200]. For example, entering a
building after fingerprint recognition or accessing a smartphone applica-
tion after facial scanning are two cases of these systems [135, 141]. Re-
cent developments for medical devices open up the door to the access of
biosignals in almost real-time. These devices can be placed over the skin
(e.g., a external heart rate monitor), semi-implanted (e.g., an insulin pump)
or within the body (e.g., a pacemaker or a neurostimulator). Implantable
Medical Devices (IMDs) is the general term used to refer to electronic de-
vices implanted within the body. IMDs are designed to provide a medical
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treatment, to monitor the patient’s status, or to enable a particular capabil-
ity in the patient [88].

Different biosignals have already been considered for authentication
purposes, including the Electroencephalogram (EEG) [99], the Photoplethys-
mograph (PPG) [130] and the Electrocardiogram (ECG) [117]. Likewise,
the continuous availability of biosignals enables performing an advanced
form of authentication, called Continuous Authentication (CA). This vari-
ant is different from Non-Continuous Authentication (NCA). In NCA, the
user is authenticated once at time 7', for example when s/he is logged in a
system with authentication checking. On the contrary, in a CA setting the
user is authenticated every period of time 7}, thus ensuring the continued
presence of the user.

Biosignal-based CA approaches have a direct benefit: users cannot trans-
fer their privileges to other parties, since it must be the very same user who
is periodically authenticated. Despite this benefit, one drawback is that
biosignals evolve over time and may be slightly different from time to time.
As a consequence, the authentication mechanism should be continuously
enhanced and not static as time goes by [165].

Such a continuous enhancement and the adaptation to changes makes
Artificial Intelligence (AI) techniques particularly suitable. In particular,
as the process requires telling apart the legitimate user from other sub-
jects, it can be considered a classification problem. This problem has been
frequently solved through Al and, particularly, data mining and machine
learning techniques. Machine learning focuses on the design of algorithms
to make predictions after the identification of structural patterns in data .
In general a model is created, trained with part of the existing dataset and
evaluated with the remaining part of the dataset [231].

Since biosignals can be retrieved in real-time, this can be taken as an
advantage to permanently refine the authentication mechanism. To this
end, beyond machine learning, data stream mining can be applied. Data
Stream Mining (DSM) is a recent IA technique that leverages data streams
to adapt the classification model when a change is detected [15]. This is
especially beneficial for the case of biosignals, due to their aforementioned
evolution over time. Interested readers are urged to consult [68, 120, 174]
for a detailed introduction to DSM and related concepts.

Despite the potential of DSM for biosignal-based CA, this approach has
not been previously explored. To this end, this chapter presents the use of
DSM for a particular type of cardiac signal, namely ECG data. The pro-
posed solution allows the use of ECG streams in real-time applications in
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which the credentials of the users are validated in a continuous-fashion.
For the generation of the ECG streams in the CA setting different ap-
proaches have been assessed. For completeness, the NCA scenario has
been also evaluated.

3.2 Motivation

The use of biometrics is widespread nowadays, from the use of the touch-
screen in smart devices [202] to a more common approach like fingerprint-
based identification [169]. Biological signals are currently taking an im-
portant role in the authentication field [180] and they are considered useful
biometric traits. Multiple physiological signals are used in this context,
such as the EEG signal [99], the PPG signal [130], or the ECG signal
[117].

Though many existing works deal with classical authentication using
assorted biometric traits [229], continuous authentication systems and ap-
plications have been also extensively developed. For instance, Niinuma
et al. [158] use the facial skin and color clothes to authenticate users. In
the context of mobile devices, facial [138] and touch screen recognition
[63] have been applied. Signal processing has also been used in this field,
particularly PPG and ECG signals. Although some proposals work with
PPG [17, 71], here we focus on those related to ECG signals since electro-
cardiograms are a richer signal from the information point of views—PPG
signals only provide beats and average heart rate.

Focusing on ECG signal authentication, several works are devised. In
[126] the QRS complex, the most stable component of ECG signal, is ap-
plied in the continuous authentication process. After preprocessing the
QRS complex and extracting the cross-correlation of QRS signals between
a pair of templates, the matching score is computed through different strate-
gies, including using the mean, median, percentile and maximum values.
Experiments attempt to analyze the permanence and stability of the bio-
metric features extracted from the QRS complex in ECG signals on a time
period of a day. Guennoun et al. [78] use several ECG features to perform
continuous authentication. The Mahalanobis distance is then calculated
between a heartbeat and a previously stored one such that results depend
on a threshold when the process has been repeated for 35 heartbeats. The
main limitation of this interesting proposal is that each ECG record only
lasts 15 minutes and an experiment consumes around 30 seconds. In [145],
the Autocorrelation / Linear Discriminant Analysis (AC/LDA) algorithm
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is applied for the design of the biometric features extracted from the ECG
signal. Each time an authentication is performed the signal is preprocessed
and the result is matched with the stored one. The proposal was tested with
a population of 10 individuals and the leghth of each ECG record is only
5 minutes. A different approach is proposed in [42], the ECG signal is
converted into strings to be later classified. This proposal shows promot-
ing results but, as in previous works, the used ECG signals were recorded
during a short time interval (< 15 minutes).

Nonetheless, despite the use of ECG signals for continuous authentica-
tion, existing works are evaluated over cardiac signals of a few minutes
length at maximum. The variability of the signals and, hence, that of the
model, is not considered. An authentication model, created from an ob-
served set of samples does not have to be always the same and it may
evolve. Data streams are a useful way to manage this issue. In fact, they
are already used in the context of data outsourcing [165] but, to the best of
our knowledge, this contribution is the first time continuous authentication
with ECG streams 1s applied.

3.3 Data analysis: Data mining vs. data stream
mining

Data mining refers to the set of technologies to handle larger datasets to
find patterns, trends or rules and explain data behavior [231]. These tech-
nologies have consolidated due to the huge amount of data which is every-
day collected and handled. Indeed, this is a trend which continues growing
at a fast pace in different areas, for instance in the healthcare context [154].

However, given the amount of data often available the question is: What
if data cannot be fitted in memory? In this case smaller training sets are
demanding such that algorithms process subsets of data at a time. Then,
the goal is the development of a learning process linear in the number of
samples. In other words, the problem is that while data mining handles
too much data, it does not consider the continuous supply of data. Models
cannot be updated when new information arrives and the complete training
process has to be repeated. Furthermore the length of the data feed is
hugely larger—for instance, imagine a cardiac signal monitored during the
entire life of an individual.

Opposed to traditional data mining, Data Stream Mining (DSM) has
emerged as a paradigm to address the continuous data problem. The core
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assumption is that training samples arrive very fast and should be processed
and discarded to make room for new samples, thus being processed one
time only. More specifically, DSM presents a set of different requirements
[14]:
» Uniqueness: Each sample must be processed before a new one ar-
rives and it has to be done only once, without being possible the
retrieval of any previous samples.

* Limitation of resources: Use a limited amount of memory and
work in a limited amount of time. Concerning the limitation of mem-
ory, this is one of the main motivations of using data streams because
memory can be overloaded when too much data is stored in it. This
restriction is physical and though it can be addressed using external
storage, algorithms should scale linearly in the number of samples
to work in a limited amount of time.

e Immediacy: An algorithm should be ready to produce the best model
at any time regardless of the number of processed samples.

Concerning data mining algorithms, lazy and eager algorithms are key
types to be distinguished [231]. In the former type no action is performed
during the training phase, such that training data is stored and it waits until
testing starts. By contrast, in eager algorithms a model is constructed from
training data to apply testing on its regard. In the context of DSM, lazy and
eager approaches are available but existing algorithms must be adapted to
the data stream setting [15].

Other noteworthy types are parametric and non-parametric algorithms
[187]. Parametric algorithms are those in which parameters are of fixed
size and the model does not change regardless of the amount of data. De-
spite their simplicity, speed and less data required in the training phase,
they are appropriate for simple problems and they are not well-fitted. Some
examples are logistic regression [77] or naive Bayes [146]. On the con-
trary, non-parametric algorithms are useful for learning when there is too
much data and no prior knowledge. Flexibility to fit to a number of func-
tional forms and high performance are some of their main advantages,
while they require a substantial amount of training data, they are slower
in the training phase and the training data could be overfitted if not care-
fully performed. Some common algorithms in this class are support vector
machines [11], decision trees [147] and the K-Nearest Neighbour (K-NN)
[231]. Among all these algorithms, K-NN is often used for its simplic-
ity and efficiency [3]. Basically, the problem K-NN solves is to identify
the point in a dataset closer to a set of given ones. In the training phase,
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L)

Acquisition
Pre-processing
M’\/“\M Similarity check

Figure 3.1: Example of an scenario for continuous ECG-based stream
authentication.

any assumptions about the classification of samples is performed. In the
classification, K samples belonging to the training set that are closest to
the sample are used as a good indicator to determine an unknown class,
generally using a majority voting.

3.4 System overview

An application of our system is depicted in Figure 3.1. Imagine an air traf-
fic control tower where there are controllers who should be permanently
monitoring planes and, thus, verifying that everything runs smoothly. In
this situation we have to consider that: 1) an intruder may enter into the
tower trying to cause some damage; 2) a controller may try to do the work
of another; and 3) physiological indices such as the heart rate is not con-
stant and may vary according to each situation (e.g., too many plains about
to take off or landing). In this regard, an authentication system requires the
continuous authentication of each controller verifying that no imperson-
ation attacks are performed and that each controller is in the work place no
matter ECG fluctuations.

According to the example in Figure 3.1, the system works in the fol-
lowing way assuming that captured ECG signals are sent to a central unit
(e.g., a smartphone or a nearby computer). Firstly, in the set-up phase,
the ECG signal of each controller is observed (collected) for some time
(i.e., 30 min) and, once cleaned and pre-processed, a reference model is

58



3. Real-time Electrocardiogram Streams for Continuous Authentication

constructed (similarity module). Secondly, in the operating phase, the sys-
tem is prepared to start the authentication process, in this case verifying
that each controller is in the tower throughout the office hours and feels
well. In a first step, ECG records are cleaned, features are extracted and
each ECG sample passes (or is discarded) by the similarity module. Af-
ter that, the observed ECG signal of each controller is compared against
the reference model (learner), also using part of the signal for learning and
adjusting the model accordingly. Note that in case a change is produced,
e.g., due to stress caused by 10 planes landing in a sort period of time, the
ECG signal may change. However, as the model adapts dynamically to the
situation, no alarm will be activated. In contrast, in case a big change in
the ECG signal is detected, due to someone impersonating a controller or
s/he feeling suddenly very dizzy, the authentication fails and an alarm is
activated. The steps followed during the set-up and operation phases are
summarized in Algorithm 1.

Algorithm 1 ECG-based Authentication

procedure SET-UP PHASE
1. Capture ECG records
2. Pre-process & Extract features
3. Build reference model for each user
end procedure
procedure OPERATION PHASE
1. Capture ECG records
2. Pre-process & Extract features
3. Pass/discard ECG samples (similarity module)
4. Authenticate samples (learner module)
5. Update the learner (if necessary).
end procedure

3.5 System description

The general architecture of an ECG-based authentication system is dis-
played in Figure 3.2. Firstly, in this proposal we assume that the cardiac
signal is acquired by an IMD (e.g., a pacemaker or an implantable car-
dioverter defibrillator), or perhaps by external sensors attached to the body
of the individual. Once ECG signals are recorded, they need to be prepro-
cessed before feature extraction. To do this the ECG signal is split into
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Figure 3.2: General structure of an ECG-based authentication system.

time windows and, for each window, a set of numerical features are ex-
tracted. Then, the similarity module filters samples discarding those that
do not seem to come from the user. Finally, the samples are classified us-
ing a classifier such as a decision tree, a support vector machine, a nearest
neighbor algorithm, and so on. In fact, nearly all data mining algorithms
can be tailored for coping with the data stream problem.

More details about each component of the ECG-based authentication
system (see Figure 3.2) are explained in the following sections.

3.5.1 Dataset and pre-processing

Pacemakers and implantable cardioverter defibrillators are the most ex-
tended class of implantable devices (the first pacemakers date from the
early 1950s [5]). An electrocardiogram (ECG) represents the electrical ac-
tivity of the heart during a period of time. In particular, an ECG chart is
composed of a set of waves: P, Q, R, S and T [126].

The ECG records are cleaned as the first step. For that, the zero-frequency
component (DC bias) is eliminated and then the records are passed through
a pass-band filter. An entire-raw ECG signal from a user Uj; is divided into
windows of L seconds:

ECGY% = {ECGH, ECGY,.... . ECGY} (D)

where N >> 1. Subsequently each EC GZ:}]'(Z.) is the input of the feature
extraction module.

3.5.2 Feature extraction and similarity module

Fiducial and non-fiducial approaches can be followed for extracting fea-
tures of a physiological signal. Fiducial-based approaches are those in
which characteristic points (e.g., Q, R and S peaks in ECG signals [69,
126]) in the time-domain can be used for the feature extraction. On the
other hand, non-fiducial approaches obtain features from a transformed do-
main (e.g., Fourier or wavelet [2, 92]). In terms of performance, fiducial-
based and transform-based approaches achieve similar results as reported
in the comparative analysis by Odinaka et al. [160]. In our particular case,
we opt for avoiding any sort of manipulation of the ECG signal in the time
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domain. The efficiency and simplicity of the system are the main goals
that justify to work in a transform domain.

In particular, in the time-domain the ECG signal is only segmented into
windows —this is the minimal possible manipulation of the signal. After
that, a transform (TF) is applied over each ECG window and a set of M
coefficients is obtained:

Fyly = TF(ECGY,) = {fuly (0), fuly (1), .. fuly M)} (32)

Each of these feature vectors FZ[Z ) is passed through the similarity mod-
ule which discards bad ECG samples, that is, samples which are considered
to be too far from the reference model (outliers). The reasoning behind
this is that the learner only analyzes “good” feature vectors and there is a
benefit in the performance of the system in comparison with the obtained
without this filtering.

Each user is responsible for the similarity checking module. For that,
the user computes a reference matrix, which is called the reference module.
To do so, in the set-up phase, the ECG signal is observed during a T time
interval (e.g., half an hour of continuous cardiac signal motorization). A
matrix of /V average vectors is computed. Each of these vectors (Y; where
i ={1,..., N})represents an average value of ECG windows (L seconds)
in the Hadamard domain:

TR .
1 TxN <t

Y, — S 33
Ta/Lx V) 2 Futer o) (3-3)

Then, the similarity module works in the following way. A set of N new
observed ECG windows (Fgfi*), where i* = {1,..., N}) are discarded or
not depending on their similarity to the user’s reference model. We use
the Pearson’s linear correlation coefficient (corr) to measure similarity be-
tween two matrices. Other similarity metrics could be used but we chose
this due to its invariant behaviour to scale and shift changes. Mathemati-
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cally, the module is described by the following equation:

MANED
. Yy F i
Discard ECG samples If | corr e <o
Y] [ Fule (3.4)
Transmit ECG samples Otherwise
Uj U; Uj
([Futvy Fuey 0 Fulw))

to the learner

where the parameter ¢ is tuned through experimentation.

Finally, the ECG streams are sent to the learner. We have evaluated two
approaches: 1) buffered solution; 2) unbuffered solution. In the former,
each ECG stream represents an average value of feature vectors (Hadamard
domain) during an observation period 7p:

Lo
U, 1 L U,

Put) = 7,71 2 FutarToxion)

(3.5)

The unbuffered approach is the most demanding scenario as each ECG

stream represents the feature vector of an ECG window, i.e., FZZU
Figure 3.3 depicts the creation of ECG streams for both proposed ap-
proaches. Also, considering that samples of different users can be received
at different time and thus no order is expected, an illustrative example of
several samples of a data stream of two users ({7, 7%}) is shown below:
U; U U —U,

I J J g
{F wi F o Fwin) P L w(N)} Bufered approach

(3.6)
u*

w(i) Lwlit1) L wii) winy Ll Unbuffered approach

3.5.3 Learner

As introduced in Section 3.3, a wide set of methods (e.g., decision trees,
bayesian methods, lazy, ensemble, etc.) can be used for the classification
problem. Regardless of the used algorithm, a relevant aspect is how data is
treated. Two approaches have been considered depending on whether the
data is acquired in a continuous way or not and thus used in real-time or no
real-time applications. In a real-time application in which cardiac records
arrive continuously in a non-predefined order, an on-line analysis is used

62



3. Real-time Electrocardiogram Streams for Continuous Authentication

0.0 /\,._ —

—0.2

—nal

ECG'),, ECG', ECG", ECG'], ECG']; ECG",

€

w(5) w(6)
Transform
u u; u u u; u
W(/ 1) \MN"‘(/”F‘M(] 4) F w(j 5) Fw(l 6)
u u u u u u u u u
Jutv By Fudsy o Judvy Tty Ll oo oo Blibuay Fuls -

L J

Y
ECG stream
Average 2 2 no-buffering
‘l' ECG stream approach
7Y buffering
L approach

Figure 3.3: ECG stream samples of buffered and unbuffered approaches.
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i-S i i+l i+2 143

Figure 3.4: Example of a sliding window strategy.

and ECG streams are evaluated by interleaving testing and training (i.e.,
prequential evaluation) and following a sliding window strategy in which
the size of the window is fixed and the buffer keeps the newest instances.
Similar to the first-in, first-out data structures [70], and illustrated in Fig.
3.4, whenever a new instance 1s inserted into the window, another instance
j — S is forgotten —S represents the window size. In particular, each new
instance is used to test the model prior being used for training. Regard-
ing the generation of data streams, buffered and unbuffered approaches
are considered. Nonetheless, in a non real-time application, referred to as
batch setting, the dataset can be split intro training and testing and there is
not memory restrictions.

In terms of security, non real-time applications correspond to a NCA
system. On the other hand, the analysis in real-time of the ECG data
streams (user credentials) conforms with the requirements of a CA system.

3.6 Experimental validation

Established parameters and results achieved after experimentation are pre-
sented in the following sections.

3.6.1 Experimental settings

Table 3.1 provides the experimental setting used to validate our approach.
The experiments were performed using the recordings of 10 individuals
from the MIT-BIH Normal Sinus Rhythm Database [72]. The individuals
under study do not show any relevant medical problem and were observed
during a long time period. Besides, Table 3.1 provides a brief motivation
for each choice of values.

The Walsh-Hadamard transform (HT) is the chosen transformation in
our system. The HT performs a projection of a signal onto a set of square
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Parameters Value Justification

Pass-band filter 0.67 Hz and 45 Hz Using this filter, the main sources of
noise such as the respiration noise
or the power line noise are canceled

N 3 As a trade-off between efficiency
and be able to check the variability
of the ECG signal

) 1071 A relative-low correlation threshold

L 2 seconds To guarantee the observation of 2 or
3 heart beats depending on how fast
each individual is beating

M 256 Number of coefficients needed to
keep the ECG information at a low
level (e.g., PQRST waves)

To 3 minutes Observation period to guarantee the
stability of the ECG signal

Tr 30 minutes Time-interval needed to character-
ize the “common” samples of a
user.

K-NN K=1 Greater values of parameter K do

not offer higher performances and
increase system complexity

Max. Num. in-
stances in mem-
ory in CA ap-
proach (S)

10% of the tested dataset

Trade-off between memory effi-
ciency and system performance

Table 3.1: Established parameters
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waves, called Walsh functions (WAL). Mathematically, the forward and
inverse HT of a signal x(¢) of length W are defined as

1 M-1

= g 2 mWAL(n,i)n=1,2,...,W —1 (3.7)
1=0
1 M-1

T = > yWAL(n,i),n=1,2,... W —1 (3.8)
i=0

Using the HT is justified by two main reasons. On the one hand, this
transform is computationally efficient as it just consists of a matrix mul-
tiplication (that of the signal and the Walsh matrix). On the other hand,
it has the ability of compressing the input signal, with the majority of the
signal information being kept on the lower coefficients in the transformed
domain. Therefore HT is efficient is terms of computation and memory
requirements. Note here that the usage of other transforms (e.g., Fourier or
Wavelet) were evaluated and discarded, mainly, due to their complexities
in terms of computational requirements.

As for the learner, the K-Nearest Neighbour (K-NN) is the algorithm
used. In the NCA setting, the dataset is divided into training and testing—
60/40 and 80/20 are the splits commonly used in this area [231]. In the CA
analysis, a tailored K-NN is employed as the learner, which uses a buffer
memory to keep a small portion of the instances (training ones). For updat-
ing, this buffer follows a sliding window strategy with a First-In-First-Out
(FIFO) rule. We refer the reader to [70] for a detailed introduction to data
streams and drift concept.

The reasoning of using this learner is twofold: 1) efficiency; and 2) sim-
plicity [3]. Regarding efficiency, a K-NN often outperforms more complex
learners [231]. In relation to simplicity, a K-NN does not require complex
computations. In detail, new samples are classified taking into account
the class to which a set of training samples (N nearest instances) belong.
Although more complex learners could have been used, we consider the
K-NN the most appropriated since it offers a high performance and its
simplicity facilitates the implementation of the system in portable devices
with constrained resources.

3.6.2 Results

The main goal of the system is to achieve a high performance in the iden-
tification of the users enrolled in the system. Two approaches have been
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evaluated depending whether the data is sent o not in a continuous fashion

to the learner (i.e., core of the CA system):

Non-Continuous Authentication (NCA) A data mining approach makes
sense when we deal with non-real time applications and there is not
severe memory restrictions. During a first phase (training), data
of all the enrolled users is recorded and stored in memory. The
classifier is then trained using these samples. After that, creden-
tials (ECG streams) of the users are checked (testing phase)—for
instance, user credentials are verified each time she/he attempts to
unlock the touchscreen of her/his smartphone. Note that, motivated
by the need to achieve high performance, the buffered approach is
applied in our experimentation.

In connection to the application scenario described in Sect. 3.4, the
credentials of each controller would be checked when s/he logs on
the system (e.g., whenever her/his computer is turned on).

Continuous authentication (CA) Classical approaches are not feasible

when data is provided in a continuous way and memory restrictions
exist. The use of an on-line analysis approach is much more suit-
able for processing data streams. Tools like Massive Online Analy-
sis (MOA) [14], VEML [100] and RapidMiner [95] are commonly
used for mining data streams.
Following the scenario introduced in Sect. 3.4, the credentials of
each controller would be verified at regular time intervals. In the un-
buffered approach there is only a distance of few seconds between
intervals, and this distance considerably increases to hundreds of
seconds in the buffered approach. Accordingly, we have evaluated
both approaches in Sections 3.6.4.1 (buffered approach) and 3.6.4.2
(unbuffered approach).

3.6.3 Non-Continuous Authentication (NCA)

We have a population of individuals and average feature vectors have been
acquired at regular intervals. For simplicity, we use regular intervals in
our experiments. This is not a limitation and non-regular intervals might
be also employed. In our experimentation, the population size is set to
10 and each individual was sensed during a period of 11 hours. To as-
sess the impact of the training dataset, the performance of the system has
been evaluated for different training sizes. Figure 3.5 shows the accuracy
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Figure 3.5: Assessment of the training size for a small population (NCA).

(correctly classified instances) and kappa statistic for several values of the
training set. For the hard case (i.e., 10% of the whole dataset or, in other
words, each individual is observed during around 1 hour) the accuracy is
over 93.5%. Therefore, the system performs well even when the training
phase is set to minimal values. When we use common values (60% or 80%
[231]) for the training set, the performance is almost perfect (97.4% and
97.9%). The value of kappa, which is greater than 0.81 for all the training
sizes, shows a perfect agreement [128]—that is, the influence of “random
guessing” is minimal.

To guarantee the robustness of our results, we have also tested the clas-
sifier using a 10-fold cross-validation. The accuracy and kappa statistic
are 97.90% and 97.68%, respectively. Apart from showing a significantly
high True Positive Rate (97.9%), as expected from a good identification
system, the weighted average False Positive Rate is extremely low (0.2%).
The detailed accuracy by class and the confusion matrix are summarized
in Tables 3.2 and 3.3, respectively. All in all, the metrics indicate that the
system is very close to an ideal identification system.
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Class TP Rate | FP Rate | Precision | Recall | F-Measure | ROC Area
1 0.995 0.002 0.986 0.995 0.991 0.997
2 0.982 0.001 0.995 0.982 0.989 0.991
3 0.936 0.007 0.936 0.936 0.936 0.965
4 0.968 0.004 0.964 0.968 0.966 0.982
5 0.955 0.005 0.955 0.955 0.955 0.975
6 1.000 0.000 1.000 1.000 1.000 1.000
7 0.982 0.001 0.995 0.982 0.989 0.991
8 0.991 0.001 0.991 0.991 0.991 0.995
9 0.986 0.002 0.982 0.986 0.984 0.992
10 0.995 0.002 0.986 0.995 0.991 0.997
] Weighted Avg. \ 0.979 \ 0.002 \ 0.979 \ 0.979 \ 0.979 \ 0.988 \

Table 3.2: Accuracy by class —NCA setting.
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Table 3.3: Confusion matrix —NCA setting
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Figure 3.6: System performance: CA (buffered approach).

3.6.4 Continuous Authentication (CA)

The buffered and unbuffered approaches have been tested —see Section
3.5 for a detailed explanation in the generation of the used ECG streams.

3.6.4.1 CA: buffered approach

We have tested the performance of the system for a population of individu-
als. According to the proposed use case (Section 3.4), assume that creden-
tials (ECG streams) of controllers working in the same room of the tower
are checked by a central unit in a continuous fashion at long-separated in-
tervals. In this context, each subject generates an ECG data stream in a
continuous way during a long period of time (i.e., 11 hours per individual
in our experiments). Each sample of the stream represents an average value
in the Hadamard domain, as explained in Section 3.5.2 (see Equation 3.5
for details). The population size has been set to 10 as in the NCA setting.
In Figure 3.6 we can see the evolution of the accuracy over the time
using a prequential evaluation. The learner employed is a nearest neighbor
(i.e., K-NN with K =1), as in the NCA setting but with a sliding window
(maximum number of instances stored in memory) of reduced dimensions.
In our experiments, 10% of the total instances are kept in memory. Having
overcome the penalty of the first instances, the system exceeds the thresh-
old of a 90% and swiftly stabilizes around 96% of correctly classified in-
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stances. Similarly, the kappa statistic rapidly exceeds the 80% threshold,
approaching an almost perfect classifier performance.

3.6.4.2 CA: unbuffered approach

We have assessed the system when the ECG streams are generated in a
continuous way and at a high speed rate. Again, based on the proposed use
case (Section 3.4), imagine a controller which has a cardiac problem and
the authentication should be permanently to ensure the proper functioning
of the system.

In the previously described scenario, we have a unique legitimate indi-
vidual. Therefore, the system has to distinguish between two classes. That
is, the data streams belong to the legitimate user (IMD holder in our exam-
ple) or to any other unauthorized /fraudulent user (the attacker, in general
terms). We have tested this setting for each one of the 10 individuals of the
buffered approach. Therefore, in each experiment there is a legitimate user
and the other ones are categorized within a unique class (fraudulent user).
The performance (accuracy) for each of these aforementioned experiments
in summarized in Figure 3.7. The accuracy is on average around 80%, with
a standard deviation of 3.7%. Therefore, the system works well —in most
cases, authorized users are correctly distinguished from intruders— and
is particular well-suited to cope with the slight changes in the ECG data
streams.

To assess the influence of whether the ECG streams are buffered or not,
we have tested this setting using both approaches. In Tables 3.4 and 3.5 we
show the obtained results. In terms of accuracy, the buffered approach of-
fers a benefit of around 15% in comparison with the unbuffered approach.
The Kappa statistic points out how the performance of the system switches
from “substantial” to “almost perfect” accuracy when we move from the
unbuffered to the buffered approach. Apart from performance metrics, the
use of one approach or the other depends on the requirements demanded
by the real-time application in question. The determining factor is the rate
at which the ECG streams are examined. In the unbuffered approach, the
ECG streams are provided almost instantly (i.e., intervals of two seconds).
In contrast, only 20 examples/hour is the sample rate used in the buffered
approach (i.e., intervals of 3 minutes). Therefore, the particular application
of the system will driven the used option.
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Figure 3.7: System performance: CA (unbuffered approach).

Subject Average | Average Subject Average | Average
Accuracy | Kappa Accuracy | Kappa
S1 81.98 63.95 S1 96.80 93.59
S2 81.39 62.79 S2 95.10 90.19
S3 79.28 58.57 S3 91.32 82.50
S4 76.00 52.05 S4 97.34 94.68
S5 77.81 55.58 S5 94.06 88.13
S6 72.75 45.49 S6 92.09 84.09
S7 81.02 62.04 S7 94.80 89.62
S8 77.17 54.35 S8 94.35 88.69
S9 84.12 68.18 S9 97.95 95.90
S10 73.51 47.12 S10 94.04 88.05
| Average | 7850 [ 57.01 | | Average | 9479 | 89.54 |
Table 3.4: CA: Unbuffered Table 3.5: CA: Buffered Ap-
Approach (two classes). proach (two classes).
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3.7 Discussion

Although some authors have already explored the problem of continuous
authentication with cardiac signals (e.g., ECG [78] and PPG [17], the used
datasets are made up of records with length of only a a few minutes), this
is the first time that ECG records are interpreted and processed as data
streams. In our opinion, a data stream approach fits perfectly the problem
of CA, particularly in the case of ECG signals —and, more generally, phys-
iological signals with a slight variability and a theoretical infinite length.
We have considered the typical assumptions for classification in the DSM
setting [15]: 1) each sample has a fixed number of attributes that are less
than several hundreds; 2) the number of classes is limited and small (in
our experiments, ten classes are considered at maximum); 3) we assume
that the learner has a small memory; the size of the training dataset is larger
than the available memory; and finally, 4) the speed rate of processing each
sample i1s moderate high (the precise value is conditioned to the device that
supports on-board the learner).

Data stream algorithms have the potential to deal with potential infi-
nite amount of data. Regarding physiological signals, as far as we know,
recordings are taken during a maximum period of 24 hours in the best case
[171]. The execution time of the algorithm used scales linearly with the
number of examples. In our experimental setting, the learner consumes
several tens of milliseconds per sample using a Quad Core 2.7 GHz Intel
Core 15 with 16GB of RAM. Using this value (or the equivalent if different
equipment is used), an upper bound of the time necessary for processing
an arbitrary number of examples may be computed.

Although important variations on ECG streams only occur after 5 years
observation period [28], we can find slight variations from time to time —
that is, data is not stationary. This is often referred as concept drift. To dealt
with this, old instances should become irrelevant to characterize the current
state of the system and this information would have to be forgotten by the
learner. The interested reader can consult [70] for a detailed explanation
of the main existing approaches in the literature. In our particular case, as
explained in Sect. 3.5.3, we keep only the most recent samples in memory
and the memory size is fixed —sliding window strategy.

Aside from using a limited memory, we can benefit from drift detection
mechanisms that reset the learner model and trigger the learning of a new

one when a significant change is detected. We have tested two well-known
methods: Drift Detection Method (DDM) and Early Drift Dection Method
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Approach Accuracy (average value)
KNN 84.1200 £ 1.5095
KNN-DDM 84.8000 +1.6290
KNN-EDDM 84.7300 +1.7921
KNN-DDM (with artificial noise) 78.2500 + 1.7060
KNN-EDDM (with artificial noise) 78.1600 + 1.9831

Table 3.6: Average performance: CA (unbuffered approach) with drift
detection

(EDDM) [76]. In a nutshell, DDM is based on monitoring the number of
errors produced by the learner during prediction —errors are modelled by
a binomial distribution. DDM performs well to detect abrupt changes and
not very slow gradual changes. EEDM was proposed with the aim of im-
proving the detection of gradual changes and keeping a good performance
with abrupt changes. Instead of considering only the number of errors as
in DDM, it also takes into account the distance (number of examples) be-
tween two classification errors.

The performance of the two aforesaid methods has been evaluated with
one of the subjects of the CA (unbuffered approach) setting which is our
more demanding scenario. The subject 9 has been selected for this exper-
imentation without prejudice to the generality in the results. More pre-
cisely, DDM and EDDM algorithms are used as a wrapper on the KNN
learner. We have tested two scenarios: 1) the original data stream; 2) ar-
tificial noise has been added to the original data —10% and 5% are the
fractions of attributes values and class labels that have been disturbed, re-
spectively. Figure 3.8 displays the obtained results and Table 3.6 sum-
marizes the average values. In both cases, DDM and EDDM converge to
the same accuracy values which points out that the gradual changes in the
ECG records are not very slow. In terms of performance, the KNN with
drift detection marginally improves our previous results of only using a
KNN with sliding window. In addition, drift detection methods work well
even when the data streams are quite noisy —the performance only suffers
a brief dip. Note that we have overstated the used example since the noise
remains during the whole data stream and often it is intermittent.

Finally, a key-aspect in the processing of cardiac signals is the time pe-
riod during which the ECG is observed. This aspect is examined at the
end of Section 3.6.4.2—see Tables 3.4 and 3.5 for details. In the buffered
approach, each stream is linked with the observation of the ECG during a
moderate long time period with the extra benefit of achieving a very high
performance. In the unbuffered approach, the sending of the examples to
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Figure 3.8: System performance: CA (unbuffered approach) with drift
detection.

the learner is almost instantaneous with the penalty of a slightly degrada-
tion of the performance in comparison with the buffered approach. The
choice of one approach or another would be conditioned by the processing
speed rate demanded by the learner. In our particular case (a CA system),
we have the possibility to check the credentials of an individual almost in-
stantaneously (each two seconds) or just remain patient and proceed with
the verification once every three minutes.
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4

ACIMD: A biometric
distance bounding protocol

4.1 Introduction

Significant advances have been made in the healthcare domain over the
past years. In particular, providing new communication capabilities to
medical systems and devices benefits all actors [189, 190, 49]. Users can
monitor their health status without interfering with their daily activities, the
medical staff has fast remote access to medical data and can also quickly
re-program these devices remotely. These new communication capabilities
also reduce the global costs of healthcare operations [29].

Implantable medical devices (IMDs) is such an example of device hav-
ing remote communication capabilities, including the access to teleme-
try data [143]. IMDs are electronic devices implanted within the body to
treat a medical condition, to monitor a physiological organ and to actuate
when necessary [86]. IMDs can be categorised in four main classes [29]:
cardiac implanted devices (pacemakers and implantable cardioverter de-
fibrillators), neurostimulators, drug delivery systems and biosensors. An
illustrative example of a generic neurostimulator and an insulin pump is
displayed in Fig. 4.1.

These monitoring and actuating operations are usually relayed by a
nearby device communicating directly over the radio channel with the IMD
and called Programmer. Two properties have to be achieved to enable this
communication between IMD and Programmer: (1) we must ensure that
the Programmer is authorized to interact with the implant: access control,
(2) the data at stake must only be accessible to the two entities commu-
nicating: confidentiality. In this paper, we focus on the provision of (1):
access control. Interested readers may refer to [29] for a survey on confi-
dentiality issues.
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4.1.1 Access control

Access control mechanisms guarantee that the requester has the necessary
privileges to execute a particular action. The existing solutions are very
diverse, including those based on access control lists and certificates [64]
or the ones based on biometrics [90, 186]. Other authors leave the access
control responsibility to an internal [86] or external device [51, 73].

A particular branch in access control for IMDs is based on measuring
the distance between this device and the Programmer. This technique is
referred to as distance bounding protocols and require the following three
definitions [8]:

Definition 4.1.1 (Authentication). One party is assured of both the identity
of a second party and her presence at the time of the protocol execution.
Definition 4.1.2 (Distance checking). One party (P) is assured of the dis-
tance (or a property derived from this) to a second party (V") at some point
of the protocol execution. The area in which P is considered to be close
enough to V' is called Neighbourhood Area (NA).

Definition 4.1.3 (Distance bounding). It combines identity verification (au-
thentication) and distance checking. Regarding the distance between P and
V', an upper-bound limit is often used.

Distance bounding protocols were proposed by Brands and Chaum [20)].
They were intended to cope with mafia fraud attacks, which are based on
the relaying of messages between dishonest entities [52]. In particular, the
attack consists in a man-in-the-middle attack between a honest verifier (V;
e.g, IMD) and a legitimate prover (FP; e.g., Programmer). The adversary
is made up of two entities: a rogue prover (P) and a rogue verifier (V).
V interacts with P and P communicates with V, respectively. In addi-
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tion, rogue entities (i.e., { P, V'}) forward the messages received from the
legitimate entities (i.e., {V, P}) between each other.

Distance bounding protocols guarantee to the IMD that the connected
Programmer i1s in its Neighbourhood Area (NA) and is not a distant third
party. For this purpose, these protocols check the delay between sending
a bit and receiving its corresponding response bit (fast-rapid-bit exchange,
see Fig. 4.2). This can be achieved through different means. The distance
can be calculated based on the received signal energy/power (RSS) [60].
This sort of solutions are not reliable whether the adversary can increase
the power of the emitted signals. A distance bounding protocol is one of
the most used solutions. Since the mushrooming of radio frequency iden-
tification (RFID) devices, a large numbers of distance bounding protocols
have appeared in the literature [111, 161, 9]. In the context of IMDs, for
instance, Rasmussen et al. proposed a distance bounding protocol, which
uses ultrasound signals to delimit the distance [177].

Among these techniques, a promising approach is the use of a key de-
rived from an internal (measured by the IMD) and external (recorded by
the Programmer/reader) physiological signal [114]. Thus, if the same key
(or two ones with only few different bits) is obtained, the proximity be-
tween both entities is assumed. In the context of cardiac IMDs, Inter-Pulse
Timing (IPI) is the common solution [4, 239] within this category.

4.1.2 Motivation and contribution

The motivation of this paper is twofold. On the one hand, current IPI-
based solutions rely upon a fiducial point (i.e., R peaks in Electrocardio-
gram (ECG) or Photoplethysmograph (PPG) signals). They are tied to the
assumption that this feature cannot be inferred from a distant place, which
has been proven to not hold [24]. This allows a malicious party to illegally
gain access to the IMD from a remote location.

On the other hand, access control for IMDs must accommodate with the
two operation modes of IMDs, namely normal and emergency modes. The
normal operation mode is the usual one that operates while no anomaly
regarding the health of the patient is detected. In contrast, the emergency
mode is triggered when the user suffers from a serious medical problem
(e.g., a heart attack, a hypoglycemic episode or an epileptic attack) that
endangers her life. Thus, access control mechanisms must meet a trade-
off between level of security and speed of the authentication such that a
programmer can have fast enough access to an IMD to quickly deal with
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Figure 4.2: Brands and Chaum Distance Bounding Protocol [20]

emergency situations and actuate the IMD appropriately.

To address these issues, in this paper a novel distance bounding protocol
(referred to as ACIMD) is proposed. ACIMD leverages the entire signal
(i.e., several QRS complexes of an ECG record), thus limiting the attacker
capabilities for remote acquisition. Particularly, ACIMD tests the proxim-
ity between the IMD and the Programmer by measuring the similarity be-
tween an internal and external physiological signals. Interestingly, ACIMD
can work under the normal and emergency operation modes, which is ben-
eficial for its real-world usage. ACIMD keeps computation and commu-
nication to a minimum to save battery and ease on-chip implementation.
ACIMD has been tested with real ECG signals of 199 users who were
recorded during a 24-hours period.

4.2 Methods and Materials

ACIMD is a distance bounding mechanism that ensures (1) that only an
authorized Programmer is entitled to communicate with a given IMD and
(2) that the Programmer is in the Neighbouring Area (NA) of the IMD.
For this purpose, two main steps are carried out, namely authenticating the
Programmer (Section 4.2.1) and checking its distance to the IMD (Sec-
tion 4.2.2). The way in which ACIMD deals with normal and emergency
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ATTACKER

Figure 4.3: A typical scenario: IMD, Programmer and adversary

operation modes of IMDs is described in Section 4.2.3.

Fig. 4.3 illustrates a typical authentication scenario to facilitate the un-
derstanding of the interactions between the main entities. The IMD records
an internal signal and the Programmer externally reads the same signal
through a wand. The proximity between both devices is verified using our
distance checking scheme. If both signals present enough similarity, the
Programmer is considered to be within the NA of the implant. In contrast,
any adversary is supposed to be out of NA and thus could not successfully
complete the authentication.

4.2.1 Authentication

In order to both parties be sure on the identity of the other one, a key agree-
ment scheme is applied [196]. Three main alternatives can be identified.
On the one hand, we can assume that a pre-established key is shared be-
tween both entities. This approach raises the risk of endangering future
communications if the key gets compromised or leaked to an adversary.
Alternatively, as suggested in [115] or [37], a fuzzy extractor can be em-
ployed for the key generation. Nevertheless, solutions based on fiducial
points like R-peaks in ECG or PPG signals are not secure from adversaries
who can infer that peaks from a long distance [24].

Due to the drawbacks of the aforementioned solutions, we propose the
use of a short-range and relatively secure channel for the transmission of a
session key. In particular as suggested in [114] the use of photobiomodula-
tion seems an interesting approach due to its resistance against eavesdrop-
pers —it allows short-range communications and needs line-of-sight be-
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tween the transmitter and the receiver. Photobiomodulation (or also known
as Low-Level Light Therapy, LLLT) consists in the emission of light by a
diode or laser in the spectral range of 600-1000 nm and at a low-power
(<500 nW) [142]. Therefore, the first step of our proposed scheme con-
sist in the exchange of the session key using LLLT. Let / Dy and I D; be
the identifiers of the Programmer and the IMD, {-}x. an authentication
token using key K, and “||” the concatenation operation, the exchange of
messages is as follows:

Step 1: The Programmer sends a “Wake-up” message and its identifier
I Dpg to the IMD.

Step 2: The IMD replies three values: a session key K, its identifier / Dy
and finally the starting time ¢, for recording the physiological sig-
nal. This means that the first recorded-window ECG I/)R starts at
that particular time.

Step 3: During the signal acquisition phase, IMD and Programmer record
ECG signals and compute ¢ and [, respectively (see Section 4.2.2
and Equation 4.3 for details).

Step 4: IMD sends to Programmer a random number /V;.

Step 5: Programmer generates a nonce Ny and computes an authentica-
tion token. The authentication token is computed using K'; and four
input values: the nonces { Ny, N;}, identifier I Dy of the IMD, and
finally 5. Finally, Programmer sends m; message to IMD (ml1 =
{Nr|INt|[1Dy]|B} k,)-

Step 6: The IMD checks the correctness of the authentication token. In
detail, it confirms the addressee of the message by checking the re-
ceived identifier / D; and also verifies the validity of nonces { Ny, N;}.

4.2.2 Distance checking

In ACIMD, the proximity of the Programmer and the IMD is assessed
by comparing the ECG signals recorded by each device. The extraction
of the features used for comparison rests on the wavelet transform and its
coefficients. We give an introduction to the wavelet transform computa-
tion in Section 4.2.2.1, the reader is referred to [1, 23, 139] for a more
detailed description. Afterwards, Section 4.2.2.2 describes ACIMD’s dis-
tance checking mechanism.
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4.2.2.1 Wavelet Transform
The Continuous Wavelet Transform (CWT) is defined as:

L t—D

- L1

The results of the CWT are many wavelet coefficients, which are func-
tion of scale (a) and position (b), where {a,b} € IR. The scale can be
viewed as a compression factor and it is linked to the frequency. Low scale
a values (compressed wavelet) correspond to high frequency and high scale
a values (stretched wavelet) are equivalent to low frequency. The posi-
tion factor represents the delay of the signal. v is the basic wavelet func-
tion, the so-called mother wavelet (e.g., daubechies, biorthogonal, symlets,
etc.), and the asterisk * represents the operation of complex conjugate. The
wavelet transform decompresses the signal into different scales with differ-
ent levels of resolution by stretching (or compressing) the mother signal.

The calculation of wavelet coefficients at any value of scale (a) and
position (b) is often redundant and requires a high amount of work. The
analysis can be done more efficiently if scales and positions are power of
two (dyadic scales and positions), which is called Discrete Wavelet Trans-
form (DWT). In CWT, if a = 2™ and b = n-2" and {m,n} € Z we obtain
the following equation:

— /j: FOR™2 p(27™ - (t —n))|dt = /_ZO f(@t) - b n((d2)

Wavelets can be calculated by iteration of filters with rescaling as de-
scribed below. Two sets of coefficients are generated at each stage: approx-
imations coefficients Y}, and detailed coefficients X ;. In detail, these
vectors are obtained by convolving f(t) with a low-pass filter hy (LPF)
and a high pass filter h; (HPF), followed by dyadic decimation — the signal
is represented by only half the number of samples. The process at each
step 1s summarized in Algorithm 2.

Algorithm 2 Decomposition Algorithm

1: procedure AT LEVEL-K

2: High-pass filter generates detailed coefficients: X ;,

3: Low-pass filter generates approximation coefficients : Y ;.
4: Signals are down-sampling.

5. end procedure
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4.2.2.2 Mechanism description

The steps for distance checking in ACIMD are depicted in Fig. 4.4 and

detailed as follows:

Step 1: Electrocardiogram signals are obtained from both the IMD (EC'G7)
and the Programmer (ECGR).

Step 2: The noise of the signals is eliminated and then ECG records are
split into windows of L,, seconds as further described in detail in

Section 4.2.4. The i-th window of length L,, is represented by £C G?)

when it comes from the IMD (or ECG%) for those from the Pro-
grammer).

Step 3: A multi-level analysis of each window is performed using wavelet
decomposition and then coefficients at level D are extracted. In par-
ticular, “Daubechies-3" 1s the mother wavelet used in our experi-
ments and D is set to 3 —these parameters have been tuned through
experimentation and taking into account the rule-of-thumb that the
number of levels must be less than logg(L ). The detailed coef-

ficients at level 3 of the i-th ECGY) I/R window are represented by

Xt CCin . To deal with these coefficients, the values have been quan-

tized using a dynamic quantizer with 2% levels as in [186].

Step 4: A set of NV windows from the external and internal signals are used
in the similarity checking module. The correlation coefficient has
been the metric used for the comparison of the coefficients. The N
parameter is set in order to optimize the performance of the system
and to minimize observation period of the signal, i.e. the time inter-
val required for recording the internal and external signals. Mathe-

matically,
(i) Q)
S(65,8) = §(XFCCT, XFCOR) 4.3)
xEcGy 1 [ xECGY
X ECGTY Y ECGHTY
= corr . ,
XECG(IiJr(Nfl)) XE.CG(Z+(N 1))

where corr represents the correlation operation.

Step 5: A decision is taken based on the similarity of the signals. If both
signals are considered sufficiently close, it means that the IMD and
the Programmer are within the neighbourhood area. The proximity
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Figure 4.4: Distance checking mechanism

implies that the Programmer is able to record the ECG signal with
all its fruitful components —the entire QRS complex is used. A
threshold « is defined for this comparison, see Eq. 4.4.

{ S (X BCGY x ECG%)) | <« Inside neighbourhood area

Otherwise Outside neighbourhood area
(4.4)

4.2.3 Normal and emergency modes of operation

ACIMD operates under normal and emergency scenarios. In a normal set-
ting, the user keeps doing her daily routines and no restrictions of time and
computation apply, apart from those intrinsic to IMDs. Thus the authen-
tication procedure can be time-consuming to ensure the maximum level
of security. On the contrary, in the emergency mode, keeping the IMD
holder alive is the priority. The access to the implant should not be de-
layed by heavy security mechanisms. Thus, a lightweight authentication
mechanism being less secure but faster can be considered.

In order to cope with these two scenarios, two modes of ACIMD are
proposed.

4.2.3.1 ACIMD in normal mode

In this mode, ACIMD performs the key agreement steps for authentica-
tion (recall Section 4.2.1). Moreover, distance checking procedure (recall
Section 4.2.2.2) is also carried out. The scheme is depicted in Fig. 4.5.
The access control decision is based on the result of both procedures. In
particular, after having the ECG signal of the holder and receiving message
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m; from the Programmer, the IMD computes its answer ms as follows:

mo = {N;||Ng||h(B]|1)}k, If L auth and|S(0,0)| < «

mo = {N;||Ng||h(5]|0)}k, If L auth and|S(6,8)| > «

me = random_value Otherwise

where h symbolizes a one-way hash function. This answer is sent to the

Programmer, which verifies its correctness. In particular, if ms is valid with
h(3]|1), it means that IMD and Programmer are (1) mutually authenticated
and (2) within the Neigbourhood Area (NA) of IMD. If it is not the case,
but m is valid with A(/3||0), this means that the mutual authentication is
successful but the reader is out of NA. Otherwise, none of these conditions
are fulfilled.

4.2.3.2 ACIMD in emergency mode

In emergency mode, we cannot assume that IMD and Programmer are un-
der a controlled environment. For instance, this can be the case when the
holder of the implant is in a foreign country or, for example, she is not in
her corresponding referral hospital.

Therefore, in emergency mode only distance checking (Section 4.2.2.2)
is applied. In Fig. 4.6 we sketch this mode of operation. Essentially, Pro-
grammer sends the ECG signal in clear to the IMD. This entity then com-
putes the similarity with its internal signal and takes a decision following
Equations 4.3 and 4.4, respectively.

Note that the security requirements are relaxed since the primary re-
quirement becomes the speed and success of the process in order to keep
the holder of the implant alive. The proposed solution is a trade-off be-
tween safety of the IMD holder and security of the system.

4.2.4 Dataset and Pre-processing

ACIMD has been evaluated using real physiological signals. Since ICDs
and pacemakers are the most extended IMDs, electrocardiogram (ECG)
signals have been used in our experimentation. In particular, cardiac sig-
nals from E-HOL-03-202-003 dataset (Telemetric and Holter ECG Ware-
house of University of Rochester), are the ECG recordings used in our
experiments [41]. In detail, this dataset was acquired using the SpaceLab-
Burdick digital Holter recorder (SpaceLab-Burdick, Inc., Deerfield, WI)
and a pseudo-orthogonal lead configuration with three electrodes { X, Y, Z}
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Figure 4.5: ACIMD in normal mode
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was used. The results shown in this proposal correspond to the pair of leads
{Y, Z}. Thus, the lead X is taken as EC'G and Y is taken as ECGp.

The rationale of using this dataset is four-fold. Firstly, as mentioned,
cardiac implants are currently the most widespread IMD in the health-
care sector. Therefore, ECG records seem an interesting signal for our
study. Secondly the dataset has a high number of individuals — 199 out
of 203 have been employed since 4 had an insufficient file size. Thirdly,
the recordings were taken during a long period of 24 hours. Last but not
least, we can assume that the population is homogeneous (without any
bias) since no important cardiac problems were detected over the subjects
under study.

Before any other processing, ECG signals must be cleaned. We fol-
low the procedure described below. We start eliminating the DC compo-
nent. After that, a filter is used aiming to eliminate the respiration and
the power-line source of noises. More precisely, ECG signals are passed
over a pass-band filter with 0.67 Hz (lower-cut-off-frequency) and 0.45
Hz (upper-cut-off-frequency). The respiration noise is eliminated though
the lower stop-band. On the other hand, the pass-band pursues to keep as
much information as possible while the upper-stop band is related with the
elimination of the power line noise.

Once cleaned, ECG records are split into windows of L,, = 2 seconds.
Since a healthy individual beats between 60 and 100 times per minute, it
entails that each window contains 2 or 3 heart beats. The usage of this
window size is inspired on previous works in ECG identification with high
accuracy rate [28, 160].

4.3 Results and Discussion

ACIMD has been assessed considering its three major elements — authenti-
cation, distance checking and its ability to operate on emergency scenarios.
Each issue is addressed separately.

4.3.1 Authentication

The security of the entity authentication scheme is guaranteed by its com-
pliance with ISO/IEC 9798-2 [19]. Assuming the use of a secure primitive
and L the length of session key K, the security of the protocol is upper
bounded 22% (cf. Section 4.2.1). Under the assumptions regarding the
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security of LLLT communications [114], which is used to transmit the ses-
sion key, the above security upper bound holds true.

4.3.2 Distance checking

Considering an IMD and a Programmer being in its neighbourhood area
(NA), we evaluate the accuracy of our system by computing the percentage
of ECG signals recorded by each device that succeed the distance checking
(Section 4.2.2). In addition, we evaluate the success rate of three consid-
ered adversary strategies:

Definition 4.3.1 (Replay attack). We define as A the advantage of an
adversary to overpass the system by using signals of a previous sessions of
the same subject. Mathematically,

p(AR) = p(|S(XECE XECGI| < ) wherei < j 4.5)

Definition 4.3.2 (Impersonation Attack). We define as .4; the advantage
of an adversary to overpass the system by using a signal captured from
another subject than the holder of the IMD performing the authentication.
There is no correspondence between the internal signal (/) recorded by the
IMD and the external signal (R’) played by the attacker. The comparison is
performed between the internal signal of a subject and the external signal
of a different subject. It can be expressed as:

p(Ap) = p(|S(XECCY XECCR)| <o) where | == R (4.6)

Definition 4.3.3 (Random guessing). We define as A the advantage of an
adversary to overpass the system by random guessing. Mathematically,

p(Ag) = p(|S(random, XECG?))\ < @) 4.7

Table 4.1 summarizes the accuracy of ACIMD for a normal authenti-
cation between two authorized devices (Accuracy) according to different
« values. In addition, the success rate of an attack considering the three
adversary advantages is provided. Four rows corresponding to four con-
sidered configurations are highlighted in the table. The choice of one or
the other is conditioned by specific design goals.

Configuration-A is the one with highest accuracy (87.07%) but the ad-
versary chances are a bit high (29.5% on average). Fortunately, configuration-
B offers a similar accuracy (81.2%) while the success probability for the
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«a Accuracy (%) | Ar(%) | Ar(%) | Ac(%)

0.050 87.069 36.083 35.902 16.574 | Configuration-A ‘
0.055 85.869 26.426 31.738 12.873

0.060 84.637 25.222 28.007 9.441

0.065 83.509 24.676 24.591 7.226

0.070 82.404 17.083 21.432 5.246

0.075 81.264 20.324 18.658 3.756 Configuration-B ‘
0.080 80.126 14.398 16.185 2.696

0.085 79.071 15.417 13.979 1.785

0.090 78.022 10.907 12.078 1.227

0.095 77.058 13.287 10.498 0.828

0.100 76.064 9.426 9.022 0.528 Configuration-C ‘
0.105 75.081 7.481 7.773 0.362

0.110 74.086 5.157 6.626 0.211

0.115 73.181 5.759 5.683 0.149

0.120 72.275 4.602 4.882 0.092

0.125 71.375 3.093 4.156 0.046 Configuration-D ‘

Table 4.1: ACIMD performance: Accuracy and Adversary Advantages
(N=3and L, =25.)

adversary reduces by around a half (14.23%). Configuration-C represents
the case in which the accuracy is slightly lowered (76.06%) but the adver-
sary chances are quite low (6.33%). The degeneration of configuration-3 is
configuration-4 with a negligible probability of success for the adversary
(2.39%) and a success rate for legitimate users of 71.38%. From a practi-
cal perspective, Configuration-C (or D) seems to be the most appropriate
since it offers an acceptable accuracy while mitigating the three adversary
advantages.

It is worth noting that the strategy to use signals of previous sessions or
signals from other users achieve similar success rate. On the other hand,
the success rate of an attacker using a random guessing approach is very
low and decreases rapidly to zero when the parameter « increases.

Regarding distance checking, parameter « can be set as in “Configuration-
C/D” in order to minimize the success rate of an adversary. The protocol
might be executed several times in case the distance checking fails and the
legitimate reader is, in reality, within the neighbourhood area.

4.3.3 Emergency mode

Considering that our authentication scheme must apply to emergency situ-
ations, the access to the implant must be guaranteed and fast in such sce-
narios. To ensure the access to the implant, the parameter  may be set
to 0.05 (configuration-A) or a lower value in order to increase the success
rate of authentication (>87%).
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One key-point in emergency situations is the duration of signal moni-
toring. We experimentally tuned this parameter and selected an optimal
value of 6 s. (considering N = 3 and L,, = 2 s.). The time consumed
for computing the three wavelet transforms must be added to these 6 sec-
onds. An upper bound on the time required for these operations is of
few milliseconds, considering the performance of implementing a wavelet
transform in a constrained device like a Field Programmable Gate Array
(FPGA) [7, 113]. Therefore, only a few seconds are consumed in the emer-
gency mode, which is reasonable to check proximity and to deal with the
critical condition of an individual.
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Conclusions

5.1 Implantable Medical Devices

Implantable Medical Devices improve the quality of life of patients and,
in some cases, play an important role in keeping them alive. The new
generation of IMDs are increasingly incorporating more computing and
communication capabilities. In this dissertation, we argued that advances
on novel and smarter IMD designs must incorporate security solutions by
design in order to provide the user with both safety and security guaran-
tees. We have provided a comprehensive overview of the main security
problems associated to the newest IMDs and have discussed how, in some
cases, the patient’s health can be seriously threatened by a malicious ad-
versary. It is therefore evident that security mechanisms have to be incor-
porated into these devices. Further cooperation among researchers coming
from manufacturing technologies, bioengineering, and computer security
are necessary to guarantee both the patient’s safety and the privacy and
security of the data and communications.

Given the tensions among the different security objectives and the solu-
tions proposed so far, it is unclear what the optimal choice would be. The
question still remains an open problem. Many proposals provide a rea-
sonably high security level but require too many resources (e.g., memory
or computation), which is infeasible taking into consideration the need to
save battery life. Alternatively, lightweight solutions are often vulnerable
to attacks as a consequence of their weak designs.

Apart from purely engineering solutions, the procedures that both the
medical personnel and the patients follow when interacting with the im-
plants have to be considered, and existing regulations and standards should
be also reviewed. However, nowadays these aspects are essentially ignored
[218]. Devices must be used responsibly, and users must know various de-
tails about its functioning and the possible threats in order to raise security
awareness.

Although some existing security solutions can be effective from a theo-
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retical point of view, patients are very likely to reject them. The IMD is a
computer system that is embedded into the human body. This is nowadays
a special and delicate situation and the user opinion should be taken into ac-
count as far as possible. Interested readers can find in [50] some guidelines
for designing security systems for IMDs considering the patient’s point of
view.

Looking even further ahead, medical implants open the door to other
types of devices to improve human abilities, such as memory or percep-
tion, or even integrate our physiology with silicon-based components to
improve our body. This looks certainly far ahead nowadays, but perhaps
pacemakers and neurostimulators were also considered a remote possibil-
ity before they were introduced [228]. The field of computer security has to
be ready to adapt and incorporate solutions for this new setting at the de-
sign phases, avoiding the develop-then-patch approach that has provided
disastrous results for the Internet.

5.1.1 Compressed ECG signals

The integration of smart homes and telecare services aims to improve qual-
ity life and the possibilities for independent living through the use of new
technologies and services. Smart devices at home pursue to increase com-
fort, energy efficiency, and security. On the other hand telecare services
allow people to stay in their homes without prejudicing the quality of the
health care services they are getting. The proper identification of the users
is crucial to secure the systems. This task can be done through the fea-
tures extracted from vital signals. Since the ECG signal is often monitored
for medical purposes, we can take advantage of this and use also this vital
signal for security purposes (e.g., identification or key generation). In our
proposal we show how compressed ECG signals are robust and effective
to unequivocally identify individuals.

In Chapter 2 we have evaluated the seven characteristics commonly de-
manded to biometrics systems. Apart from this, we would like to stress
several additional characteristics of the proposed system. On the one hand,
the use of compressed signals saves memory space, which could be critical
in constrained devices like an implantable medical device such as a pace-
maker or a holter monitor. Regarding the computational load, the penalty
is very small since a matrix multiplication is only required to obtain the
Hadamard coefficients. Furthermore no additional computations are re-
quired to extract the signal features—contrary to what occurs in systems
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Figure 5.1: Pacemaker with data compression and biometrics signature
modules

based on fiducial features. On the other hand, since only a small frac-
tion of the coefficients (the lower ones) are employed, even if the attacker
would acquired these coefficients, she could not reconstruct the original
signal. In conclusion, the proposed system is privacy preserving and works
with a highly compressed version of the signal. As illustration of how
the proposed system might be integrated in implantable medical devices is
sketched in Figure 5.1, showing how our proposal could contribute to the
design of more secure medical applications and devices. For instance, a
patient holding this sort of pacemaker could be remotely monitored once
she is identified in a secure way using features extracted from her own
heart signal.

As a future work, there are several research lines to continue with the
ideas presented in this article. The proposal has been only tested with a
database (MIT-BIH Normal Sinus Rhythm Database) of healthy individ-
uals. Other databases, which include patients with a heart disease (e.g.,
MIT-BIH Arrhythmia Database or MIT-BIH Long-Term ST Database) or
patients under stress conditions (e.g., MIT-BIH ST Change Database), could
be employed to assess the use of compressed ECG signals. In line with this,
in our proposal the Hadamard Transform is the core of our system for hu-
man identification. It would be interesting to perform a comparative study
using a wide set of transforms (e.g., Fourier, Wavelet, Hadamard, etc.).
Last but not least, the proposal could be extended to other vital signals like
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EEG or EMG.

5.1.2 ECG streams

We are currently in an era in which our surrounding devices generate and
transmit data in a continuous way. An example of these devices are those
belonging to the Internet-of-Things (IoT) or the new generations of Im-
plantable Medical Devices (IMDs) with wireless connectivity. These de-
vices receive data continuously and very frequently in a non-orderly fash-
ion. One use of such data is user authentication. In particular, the use
of biological signals has been previously studied for authentication pur-
poses. Cardiac signals (PPG or ECG) and brain signals (EEG) collected
from IMDs or body sensors, are widely used for authentication and some
authors have applied them to the CA scenario [17, 42]. However, given
the continuous nature of the authentication process, the system has to be
adapted to changes; for example, ECG signal may slightly change over
time. Thus, Data Stream Mining (DSM) emerges as a promising technique
to face this sort of problems. To the best of our knowledge, none of the
existing solutions use ECG signals as data streams.

We exploit the full potential of DSM for designing a CA system us-
ing ECG streams. The proposed real-time system has been evaluated us-
ing records of 10 individuals monitored during approximately half a day.
Our results show the potential of ECG streams for security purposes. In
fact, the behaviour of the classifier, which is the core of the CA system,
1s almost perfect. The CA approach achieves an accuracy as high as the
NCA approach but with the benefit of using a limited memory and being
able to process data streams. Moreover, we have tested the buffered and
unbuffered approaches in the CA setting to show how the use of one or
another is driven by the requirements of the real time application (e.g., cre-
dentials/second that must be checked by the CA system). Finally, we have
studied how drift detection techniques (e.g., DDM or EDDM) may help
to deal with the existing changes in the ECG data streams —a wrapper
approach has been tested. The results clearly indicate that drift detection
techniques are effective to build robust CA schemes even under very noisy
conditions.

As a future work, we plan to check whether the concept of ECG streams
can be extended to other physiological signals. We hope this contribution
can serve as seed to many other works that explore the use of biological
signals for continuous authentication.
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5.1.3 Emergency conditions

There is an agreed consensus about the benefits of incorporating teleme-
try into the new generation of IMDs. In particular, it improves the pa-
tients’ quality of life, facilitates its management by the medical personnel
and reduces costs. Unfortunately, security protection mechanisms are still
missing in comercial IMDs. Among the security requirements, controlling
which devices can read from or send commands to IMDs is paramount.
For this purpose, in this paper an access control protocol called ACIMD
has been introduced. ACIMD implements a distance bounding mechanism
based on physiological signals, particularly electrocardiograms. In partic-
ular, our proposed scheme allows to verify the proximity between an IMD
and a Programmer (distance checking) and also each entity is assured of
both the identity of the other party and her presence during the protocol
execution (mutual authentication).

ACIMD outperforms previous approaches since it considers the whole
ECG signal, which is difficult to acquire remotely. Moreover, it can work
under normal and emergency operation modes typical for IMDs. The fea-
sibility of the proposal has been evaluated with real ECG data.

Future work will be focused on applying lightweight cryptographic prim-
itives to reduce the cost of the different operations at stake. In addition,
regarding the similarity analysis, other alternatives will be tested.

5.2 Publications

During this PhD, the research work done has resulted in some scientific
papers which has been published in scientific journals [27, 28, 29, 31, 75,
170] and international conferences [30, 108]. This section describes the
published works and the impact or ranking of each of the journals where
they have been published.
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Abstract:

As a result of the increased demand for improved life styles
and the increment of senior citizens over the age of 65,
new home care services are demanded. Simultaneously,
the medical sector is increasingly becoming the new target
of cybercriminals due the potential value of users’ medi-
cal information. The use of biometrics seems an effective
tool as a deterrent for many of such attacks. In this pa-
per, we propose the use of electrocardiograms (ECGs) for
the identification of individuals. For instance, for a telecare
service, a user could be authenticated using the informa-
tion extracted from her ECG signal. The majority of ECG-
based biometrics systems extract information (fiducial fea-
tures) from the characteristics points of an ECG wave. In
this article, we propose the use of non-fiducial features via
the Hadamard Transform (HT). We show how the use of
highly compressed signals (only 24 coefficients of HT) is
enough to unequivocally identify individuals with a high
performance (classification accuracy of 0.97 and with iden-
tification system errors in the order of 1072).
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Abstract:

Wearable devices enable retrieving data from their porting
user, among other applications. When combining them with
the Internet of Things (IoT) paradigm, a plethora of ser-
vices can be devised. Thanks to IoT, several approaches
have been proposed to apply user data, and particularly
ElectroCardioGram (ECQG) signals, for biometric authenti-
cation. One step further is achieving Continuous Authen-
tication (CA), i.e., ensuring that the user remains the same
during a certain period. The hardness of this task varies
with the attacker characterization, that 1s, the amount of in-
formation about the attacker that is available to the authenti-
cation system. In this vein, we explore different ECG-based
CA mechanisms for known, blind-modelled and unknown
attacker settings. Our results show that, under certain con-
figuration, 99.5 % of true positive rate can be achieved for a
blind-modelled attacker, 93.5 % for a known set of attackers
and 91.8 % for unknown ones.
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Abstract:

Wearable devices are a part of Internet-of-Things (IoT) that
may offer valuable data of their porting user. This paper
explores the use of ElectroCardioGram (ECG) records to
encrypt user data. Previous attempts have shown that ECG
can be taken as a basis for key generation. However, these
approaches do not consider time-invariant keys. This fea-
ture enables using these so-created keys for symmetrically
encrypting data (e.g. smartphone pictures), enabling their
decryption using the key derived from the current ECG
readings. This paper addresses this challenge by propos-
ing EbH, a mechanism for persistent key generation based
on ECG. EbH produces seeds from which encryption keys
are generated. Experimental results over 24 h for 199 users
show that EbH, under certain settings, can produce perma-
nent seeds (thus time-invariant keys) computed on-the-fly
and different for each user—up to 95.97% of users produce
unique keys. In addition, EbH can be tuned to produce seeds
of different length (up to 300 bits) and with variable min-
entropy (up to 93.51). All this supports the workability of
EbH in a real setting.
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Abstract:

A huge amount of data can be collected through a wide va-
riety of sensor technologies. Data mining techniques are
often useful for the analysis of gathered data. This paper
studies the use of three wearable sensors that monitor the
electrocardiogram, airflow, and galvanic skin response of
a subject with the purpose of designing an efficient multi-
modal human identification system. The proposed system,
based on the rotation forest ensemble algorithm, offers a
high accuracy (99.6 % true acceptance rate and just 0.1 %
false positive rate). For its evaluation, the proposed system
was testing against the characteristics commonly demanded
in a biometric system, including universality, uniqueness,
permanence, and acceptance. Finally, a proof-of-concept
implementation of the system is demonstrated on a smart-
phone and its performance is evaluated in terms of process-
ing speed and power consumption. The identification of
a sample is extremely efficient, taking around 200 ms and
consuming just a few millijoules. It is thus feasible to use
the proposed system on a regular smartphone for user iden-
tification.
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