
UNIVERSITY CARLOS III OF MADRID

BACHELOR IN TELECOMMUNICATION TECHNOLOGY
ENGINEERING

BACHELOR THESIS

VIRTUAL DISTRIBUTED
ENVIRONMENTS FOR SYSTEMS WITH

TIME REQUIREMENTS

Author: Carlos Antonio Perea Gómez
Tutor: Marisol Garćıa Valls

June 2016

Acknowledgments

To my supportive family, specially those who will not be able to share
this moment, and my Bicho, for having to deal and yet never quit believing
in Carlos’s Style.

Not to forget those friends who supported me during my whole bachelor,
a time full of happiness but also some frustrating moments. Unforgettable
chapter of my life

Also to Marisol, my tutor, that despite the abnormal situation decided
and committed to supervise my project throughout its duration.

i

ii

Abstract

Virtualization is widely propagating technology that is used to run
multiple virtual machines on the same computational unit by means of a
piece of firmware, hardware or software called a hypervisor.

Despite having been used since the 60âs, the current indisputable
need for fast reliable communication may put this technology to question.
This project analyzes the amount of impact the virtualization has on
the transmission times. In the first part, the Xen hypervisor, configured
with different virtual environments, simulating complex scenarios, will be
evaluated to determine the size of the impact. As a bridge between the
multiple virtual machines, middleware Ice, will be used.

Furthermore lower in the scale, for embedded systems, the XtratuM
hypervisor was designed to support real-time systems. The second part is
dedicated to evaluating whether the communication maintains the real time
property of these systems. Bare boned virtualization will be implemented in
this second part of the project.

Keywords: virtualization, hypervisor, middleware, Ice, XtratuM, Xen,
transmission time

iii

iv

Contents

1 Introduction 1

1.1 Project Motivation . 1

1.2 Objectives . 3

1.3 Contents . 4

2 State of Art 7

2.1 Real Time Systems . 7

2.2 Virtual Environments . 9

2.3 Xen . 10

2.4 Xtratum . 13

2.4.1 System Operation . 16

2.4.2 Development Process Overview 19

2.5 Middleware . 20

2.5.1 Internet Communication Engine 20

2.5.2 IceStorm . 22

2.5.3 Data Distribution Service (DDS) 26

2.6 Research Context . 29

3 Project Development: Xen 31

3.1 System Requirements . 31

3.1.1 Software Requirements 31

3.1.2 Hardware Requirements 32

3.2 Design . 33

3.3 Architecture: Computer A . 33

3.4 Architecture: Computer B . 35

3.5 Network . 36

3.6 Xen: Domain Creation . 39

3.6.1 Control Domain: Dom0 39

3.6.2 Guest Domains: DomU 40

v

4 Trials: Xen 45
4.1 Configuration A . 46

4.1.1 Results: Configuration A 46
4.2 Configuration B . 48

4.2.1 Results: Configuration B 48
4.3 Configuration C . 49

4.3.1 Results: Configuration C 49
4.4 Configuration D . 50

4.4.1 Results: Configuration D 51
4.5 Conclusions . 52

5 Project Development: XtratuM 55
5.1 System Requirements . 55
5.2 Architecture & Design . 56
5.3 Building XtratuM . 56
5.4 Building Partitions . 57

5.4.1 Application: Partition 0 59
5.4.2 Application: Partition 1 61

5.5 Networking . 62

6 Trials: XtratuM 65
6.1 Scheduling Plan A . 65
6.2 Scheduling Plan B . 67
6.3 Scheduling Plan C . 68
6.4 Scheduling Plan D . 69
6.5 Conclusion . 70

7 Project’s General Information 73
7.1 Project’s History . 73
7.2 Encountered Problems and Mended Errors 75
7.3 Legal Framework . 76
7.4 Environmental-Economic Sphere 77
7.5 Budget . 78

8 Conclusions and Future Works 79
8.1 Conclusions of the Project . 79
8.2 Future Works . 80

Appendix A Time Measurements 83
A.1 Xen Time Measurements . 83
A.2 XtratuM Time Measurements 84

vi

Appendix B Configaration File XtratuM - cf.ia32.xml 85

Appendix C Summary 87

vii

viii

List of Figures

2.1 KVM Architecture . 9
2.2 Hypervisor Types . 10
2.3 Xen Architecture . 11
2.4 Virtualization Modes’ Properties 13
2.5 Xtratum Architecture [7] . 14
2.6 System States and Transitions [12] 17
2.7 Partition States and transitions [12] 18
2.8 Interaction between Integrator and Partition Developer 19
2.9 Ice [15] . 21
2.10 IceStorm [15] . 23
2.11 Ice Federation [15] . 25
2.12 DDS [12] . 27
2.13 DDS [12] . 28

3.1 Basic Design . 34
3.2 HDD Partition Table . 34
3.3 Final Architecture Computer A 35
3.4 Final Architecture Computer B 36
3.5 $ brctl show Output . 37
3.6 /etc/network/interfaces configuration file 37
3.7 Computer A: Network Devices Structure 38
3.8 Computer B: Network Devices Structure 39
3.9 xl list Computer A . 40
3.10 Guest Domain Installation Flowchart 41
3.11 ubuntu16 1.conf Guest Domain Configuration File 43

4.1 Configuration A . 47
4.2 Time Results Configuration A 47
4.3 Configuration B . 48
4.4 Time Results Configuration B 48
4.5 Configuration C . 49
4.6 Time Results Configuration C 50

ix

4.7 Configuration D . 51
4.8 Time Results Configuration D 51
4.9 Transmission delay . 52
4.10 Correlation between Percentile Delay and Data Size 53

5.1 Architecture for XtratuM . 57
5.2 XtratuM Compilation . 58
5.3 XAL Example File . 59
5.4 Hardware Description XM CF 60
5.5 XAL: Partition 0 . 61
5.6 XAL: Partition 1 . 62
5.7 Port Configuration . 63
5.8 Port Configuration . 63
5.9 Port Configuration . 63

6.1 Results 500 ms . 66
6.2 Results 50 ms . 67
6.3 Results 5 ms . 68
6.4 Results 5 ms (1:1 Ratio) . 69
6.5 Percentile Variation XtratuM 70
6.6 XtratuM Context Switch [12] 72

7.1 Project Development Gantt Chart 73
7.2 Project Budget . 78

A.1 Xen Table of Time Measurements 83
A.2 XtratuM Table of Time Measurements 84

B.1 Xen Table of Time Measurements 86

x

List of Tables

2.1 Xen 4.6 Specifications for Different Architectures 13

3.1 Minimum System Requirements 32
3.2 Hardware Specification of Working Nodes 33

5.1 Required Packages . 55
5.2 Hardware Configuration VMware 56

6.1 Scheduling Plan A . 66
6.2 Practical Range of Results A 66
6.3 Scheduling Plan B . 67
6.4 Practical Range of Results B 67
6.5 Scheduling Plan C . 68
6.6 Practical Range of Results C 68
6.7 Scheduling Plan D . 69
6.8 Practical Range of Results D 70

xi

xii

Chapter 1

Introduction

1.1 Project Motivation

Technology must keep up with the needs of the new innovative optimized
systems. If the automotive or aeronautic technology field is taken as a
reference, an increasing tendency of using pure electronically systems to
handle complete systems can be observed. In modern cars, barely anything
is still driven manually in a mechanic manner.

For instance traditional steering or throttle has been modified to
electronically driven systems. In airplanes, fly-by-wire technology has
been developed to optimize the old fashioned hydraulic systems. Stability,
precision and stand-alone ability are some of the properties of modern
systems.

All these electronic systems need a computational circuit to perform
all the arithmetic calculations as well as logic, I/O and control operations.
Furthermore additional complex hardware components are required to run
the systems. Due to the large amount of different electronic systems found
inside an aircraft multiple computational units may be required. This high
demand of units has a negative impact on the cost effectiveness of the
aircraft or cars. In addition physical available weight and space are affected.

Making use of complete systems, consisting of multiple computational
units to achieve the desired functionality, from a technological point of view
may give the impression of being outdated. A different approach must be
taken when designing and implementing the system if an optimum trade-off
between performance and cost effectiveness is to be achieved.

1

The possibility of making use of virtual environments offers a advantages
such as improving the execution of specific applications. Furthermore,
physical space reduction is perhaps the most obvious advantage being able
to run all systems from the same computational unit.

Closely related with the space reduction is the weight reduction. From
the aerospace industry it is know that carrying weight on board causes
an increase in fuel consumption, hence the decrease of such weight will
perhaps leave space for some further equipment, or simply just save fuel
hence money. Additionally this would be contributing to the environment
as emissions are reduced.

However the possibility of turning multiple machines into a single one,
keeping up the performance of the different virtual machines is not as
straight forwarded. There are many factors that must be examined in
depth before knowing whether the system is capable of running in a virtual
environment.

One of the more critical aspect, regardless of whether the virtual CPUs,
or the shared storage are good enough for the system, is the connectivity
between the different systems.

Inside an automobile or an aircraft, the systems are interconnected with
each other, as complex data cross reference operations are made to calculate
millions of instructions, and outcomes. This requires a perfect connectivity
pattern among the different systems. And here lies the crucial aspect of
virtualization. Is the transmission using this technology fast enough? Is it
as reliable as traditional communication systems?

Time is a critical factor, milliseconds, even microseconds may change
the course of outcome in a specific situation. Taking the ESP system as an
example, the continuous monitoring and comparison of two data samples,
the intended and the actual moving direction, helps keep the car on the
track under any circumstance. In the event of an icy patch, the system
reacts and corrects the trajectory to keep the car safe on track.

If the communication under harsh circumstances would fail, the system
would turn useless and the car and its passengers may stumble into a
unfavorable situation, which may lead to an accident, causing minor or
major personal and material damages.

2

As communication is not entirely instantaneous, there always exist a
transmission delay. These systems are designed to cope with a time delay
tolerance. This delay inevitably is affected when operate within a virtual
layer.

The study of time in the systems and how it behaves under certain
circumstances is hence the key for properly assessing virtual systems.

For real time systems, it is crucial to know the temporal working
execution limits. Therefore it is necessary to use techniques that offer
deterministic executions and the correspondent support tools, such as OSes
of virtualization software among others.

1.2 Objectives

Answering whether the communication between virtual machines is
predictable and reliable for the systems to run properly is a complex matter
that requires to carry out a responsible study.

The aim of this project is to contribute towards the analysis of temporal
behaviour of virtualized systems by means of performing structured per-
formance tests on two largely different virtual environments and capturing
delivery times.

On the one hand, a virtual environment is set up with Xen, and on the
other hand a virtual environment is set up with XtratuM. Two different
hypervisors. XtratuM is used for embedded real time systems, and the
opensource Xen hypervisor offers a large compatibility with many different
Unix and Linux distributions. [6]

The first part of the project, related to Xen will aim to determine the
time cost of the virtual implementation of a complex system composed of
multiple virtual machines running separate OSes. Analyzing delay times
with different system loads. Determining this way speed and reliability
these virtual systems can have under a high system load.

In order to obtain clear and usable results from the trials four different
environments will be developed. The system will be tested making use of

3

a middleware, an IceStorm service application will be developed. Sub-
scriber and Publisher will be programmed and executed in the multiple
environments.

In order to achieve the communication for the IceStorm service, an
additional IceBox service must run in the system, in order to deliver,
receive and forward the different set of data to the respective data owner.

On the second part of the project, focused on a simple bare-boned system,
XtratuM will be put under analysis. The deployment of the hypervisor and
the inter-partition communication will be used to analyze the effectiveness
of the real time hypervisor, and prove whether the communication among
virtual machines (partitions) is indeed without any delay.

Merging these two parts of the project the overall objective is to
analyze the responsiveness and time cost in the transmissions within virtual
environments when it comes to communication. With this analysis, an
assessment can be made for, or against the use of virtual systems.

1.3 Contents

This document is branched into the following chapters:

• Chapter 1: Introduces the related topic by means of the project mo-
tivation and objectives.

• Chapter 2: Holds latest virtual environments and virtual technologies,
the state of art, that will be used and analyzed throughout the project.

• Chapter 3: The development of Xen, the first part of the project, is
described. Requirements and architectures among other information
can be found here

• Chapter 4: Trials of the Xen development with the results and con-
clusions.

• Chapter 5: The development of XtratuM, the second part of the
project, is described. Requirements and architectures among other
information can be found here.

• Chapter 6: Trials of XtratuM development with the results and con-
clusions.

4

• Chapter 7: Holds general information about the project such as the
project history, encountered obstacles, and a short legal, economic and
environmental sphere analysis.

• Chapter 8: The conclusions to the main objectives and details about
future works are described in this last section

5

6

Chapter 2

State of Art

2.1 Real Time Systems

A real time system is any information processing system which has to
respond to externally generated input stimuli within a finite and specified
period of time, i.e. hardware and software subject to time constraint. This
constraint is usually known as “deadline” and can be understood in the
orders of milliseconds or microseconds depending on the user’s specification.

It is important to note that only the combination of the correct logic
output of this system together with the exact delivery time will result in a
successful result. Any correct logic output at a non-desired time is beyond
acceptance. The differentiation between a wrong logic output and an off
time result is nonexistent. [1][2]

Examples of these systems can be found in the automobile sector, for
example ABS, ESP or TC systems, as well as in spacecraft sector using the
Eurofighter Typhoon as an example of a fly-by-wire aircraft.

Some requisites of a RTS are the small physical size, predictable quick
response to triggers and high processor utilization in order to avoid system
over-sizing.

7

Real Time Systems can be classified under three different categories de-
pending on the consequence of missing a deadline:

• Hard Real Time System : The consequence of overrunning a given
deadline results in a potential complete system failure.

• Firm Real Time System : A system failure is discarded if the dead-
line is not met, however the result will be obsolete and of no further
use.

• Soft Real Time System : The consequences of overrunning a given
deadline are not as critical to the system as with the Hard Real Sys-
tems, nevertheless the continuous overrunning of deadlines will affect
the QoS.

Furthermore a fourth category can be used when describing a system
where only n out of k deadlines have to be meet in order to be fully
functional. These systems can be classified as Weakly Hard Real Time
Systems.

As for the RTSs we can differentiate between Event Triggered Systems,
an event initiates the correspondent activities, and Time Triggered Systems,
execution of one or more sets of tasks according to a predetermined task
schedule and Cyclic Systems. [3]

This can be implemented in a Task Model with Periodic Tasks (time
triggered), Aperiodic Tasks (event Triggered) and Sporadic Tasks, Aperiodic
Tasks with known minimum inter-arrival times. Together with the definition
of Task Constraints such as Deadline, Resource and Precedence constraints,
can be used to perform Schedulability and Worst Case Execution Time
(WCET) Analysis.

Even though multiprocessor and multithread capability is not a manda-
tory requirement, it is desired to improve performance, throughput, fault
tolerance and reliability of a RTS.[3]

Different HW configuration can be used to obtain Symmetric Mul-
tithreading (SMT), Symmetric Multiprocessor (SMP), Asymmetric
Multiprocessor and Distributed Systems.

8

2.2 Virtual Environments

KVM (for Kernel-based Virtual Machine) is a full virtualization solution
for Linux on x86 hardware containing virtualization extensions (Intel VT or
AMD-V). It consists of a loadable kernel module, kvm.ko, which provides
the core virtualization infrastructure and a processor specific module,
kvm-intel.ko or kvm-amd.ko.

Using KVM, one can run multiple virtual machines running unmodified
Linux or Windows images. Each virtual machine has private virtualized
hardware: a network card, disk, graphics adapter, etc.[4]

Figure 2.1: KVM Architecture
Source: https://upload.wikimedia.org/wikipedia/commons/4/40/Kernel-
based Virtual Machine.svg

QEMU is an emulator and virtualization machine that allows you to run
a complete operating system as just another task on your desktop. It can
be very useful for trying out different operating systems, testing software,
and running applications that won’t run on your desktops native platform.

QEMU runs on x86 systems running Linux, Microsoft Windows, and
some UNIX platforms, and can host target systems from a range of different
microprocessors.[5]

9

It is important to note that KVM is a fork of Qemu executable. A system
can run Qemu by itself and it will handle all the virtual machine resources as
well as all the virtual HW and CPU. The only drawback is the extreme slow
communication between the host and guests CPU’s. This aspect can be opti-
mized using KVM on top, which only focuses on the acceleration of the CPU.

If we define the hypervisor or Virtual Machine Monitor (VMM) as a
system that creates and runs VM then we can affirm that QEMU is a
fully standalone hypervisor whereas KVM is just an accelerator that uses
processor extensions.

2.3 Xen

Now called Xen Project is a native hypervisor (Type 1) which makes it
possible to run various instances or rather different operating systems on a
single machine. Some of the applications Xen is used for are virtualization
of servers and desktops or IaaS applications.

Figure 2.2: Hypervisor Types
Source: https://upload.wikimedia.org/wikipedia/commons/e/e1/Hyperviseur.png

Due to the microkernel design, Xen only generates a small memory
footprint (around 1MB) and restricts a limited interface to the guests. This

10

enforces the robustness and security of the hypervisor.

Additionally it provides us with driver isolation. This guarantees that
a driver’s fault within a VM does not affect the rest of the system. And
last but not least one of the most important and advantageous features of
Xen is the Paravirtualization. It will be described further on in more detail.[6]

Looking into the architecture of Xen, first we must define some key
components for a better comprehension.

Domain: Running instance of a virtual machine

Domain 0 : contains drivers for the hardware, as well as the toolstack to
control VMs

Toolstack : section that covers various toolstack front-ends available as
part of the Xen Project Stack and the implication of using each

Figure 2.3: Xen Architecture
Source: http://wiki.xen.org/wiki/Xen Project Software Overview

As pictured it can see that the hypervisor runs directly on the HW and
is responsible for managing the memory, the CPU and diverse Input/Output
interrupts. As mentioned before the domain 0 is a special domain that apart
from containing the drivers it will control and manage creation, destruction

11

and configuration of further virtual machines of the system.[6]

Mentioned above, Xen offers Paravirtualization (PV), but this is not the
only approach that Xen offers when running the guest operating systems,
Hardware Assisted Virtualization (HVM) is also supported. From these two,
up to five different modes can be depicted:

• PV: efficient and lightweight technique that does not require to em-
ulate the full set of hardware and firmware services. Guest operating
systems are aware of the hypervisor and run more efficiently without
the emulation nor the virtualization of HW, i.e. no explicit virtualiza-
tion support. However PV-Kernel and PV-drivers are essential.

• HVM: also known as full virtualization, makes use of virtualization
extensions from the host CPU to achieve guest virtualization. Qemu is
used to emulate HW, adapters and the BIOS, The extensions are used
for performance boost purposes. Kernel support is not required.

• HVM with PV Drivers: Based on HVM, the utilization of PV
drivers for I/O speeds up the performance of HVM.

• PVHVM: also known as PV-on-HVM drivers instead of the default
PV drivers. These drivers bypass the emulation for disk and network
IO. As a result performance is boosted.

• PVH: PV guest OS using the default PV drivers for boot and I/O, for
the remaining drivers HW virtualization extensions is used. (without
emulation)

All of this previous configurations can be summarized in the following
figure:

12

Figure 2.4: Virtualization Modes’ Properties [5]

Another advantage when using Xen is the ability to live migrate the
guest operating systems between physical hosts across a network without
the loss of availability.

Even though x86 as well as ARM architectures are supported by Xen,
the difference of scalability of the systems is remarkable. The following table
represents data for the latest Xen 4.6 version[6]:

x-86 Architectures ARM Architectures

Host
Physical CPUs 4095 8/128
Physical RAM 16 TB 16 GB/ 5 TB

Guest
Virtual CPUs 512 (PV) 8/128
Virtual RAM 512 (PV) 1 TB

Table 2.1: Xen 4.6 Specifications for Different Architectures

2.4 Xtratum

Xtratum is real time hypervisor (Type 1) that provides a framework
to run several operating systems (or real-time executives) in a robust
partitioned environment. It can be used to build partitioned systems.
It meets safety critical real-time requirements and was designed as a
nanokernel, i.e. it virtualizes the essential HW devices for the execution

13

of several concurrent OSes, being at least one a Real Time Operating System.

Furthermore in order to reduce the design complexity and increase the
reliability, XtratuM was designed as a monolithic, nonpreembale kernel.
It is important to note that it is independent of Linux and bootable. In
order to describe XtratuM we first need to clarify the main concept of this
technology, the Partitioning Concept.[8]

Figure 2.5: Xtratum Architecture [7]

Architecture

XtratuM is in charge of the virtualization of the services to the partitions.
CPU, memory interrupts and some I/O ports are virtualized. The lower
layer of the diagram pictures the internal architecture of the hypervisor.
Furthermore three layers can be identified[9][7]:

• Hardware-dependent layer: Implantation of drivers required for
strictly necessary hardware such as CPU. HAL (Hardware Abstraction
Layer) isolates this layer.

• Internal-service layer: Provides the strictly necessary C-functions
such as strcpy, and data structures. This layer is not accessible by any
partition.

• Virtualization-service layer: Provides para-virtualization services,
via hypercall mechanism.

14

The internal architecture of the hypervisor includes:

• Scheduling A cyclic scheduling policy is used.

• Memory Management Spatial isolation using hardware mechanisms.

• Interrupt Management XtratuM handles the interrupts and propa-
gates these to the different partitions if necessary.

• Clock and Timer Management

• IP Communication The communication between partitions is mod-
eled using ports. XtratuM is in charge of creating the ports, and the
correspondent channels for data flow.

• Health Monitor Detects and reacts to any anomaly that may arise
during the session.

• Tracing XtratuM provides a mechanism for tracing.

Partitioned System

A partition is defined as an execution environment managed by the
hypervisor, analogous to a VM. Each partition consists of one or multiple
processes implemented by the guest OSes. These partitions need to be
virtualized in order to be able to be executed on top of the hypervisor.

The development on top of XtratuM requires to write the code in the
corresponding partition. Additionally XtratuM takes control of the system
at boot time and initializes the HW, after this the partition code is executed.
The partition code can be classified under three categories:

• An application compiled to be executed on a bare-machine

• A real time operation system and its applications

• A general purpose operating system and its applications

The resulting execution of the partitions in each case can be once again
classified as:

• Bare Application: Application designed to run directly on the HW,
being aware of it.

15

• Operating System Application: The OS deals with the virtualiza-
tion and needs to be virtualized, implies that the application is not
virtualized as it runs on top of a real time OS and uses its services.

Further relevant features of XtratuM are among others the use of PV
techniques, strong temporal isolation via a fixed cyclic scheduler, which
makes it impossible for an application to run in parallel with another
application; strong spatial isolation, meaning that partitions do not share
memory, each partition has its own allocated memory and can only be
accessed by the correspondent owners. It also provides a strong robust
communication mechanism. [14]

XtratuM can be seen as a spatial and temporal isolation layer between
the HW and the various guest OSes. [10]

Recapping the robust communication mechanism between partitions,
it is crucial to underline that it is a port-based communication. XtratuM
implements the channel between at least two ports. This channel can
be access by the different partitions using the access points i.e. ports.
Two modes are provided: sampling and queuing. It is the hypervisor
responsibility to encapsulate and transport the messages.

Xtratum also provides us with a Fault Management Model. By fault we
understand the event of a system trap, including HW and SW interrupts
and/or processor interrupts, or an event triggered by the hypervisor. The
faults are at first detected and handled by the hypervisor itself, then
propagated to the corresponding partitions. Furthermore a Health Monitor
is part of the hypervisor and is in charge of detecting and reacting to
anomalous events or states.

As a result of the isolation of the different partitions subsystems will not
be affected by a faulty partition.

2.4.1 System Operation

XtratuM uses a cyclic scheduler to run the various partitions, therefore
the system must consist of states and transitions.

16

Figure 2.6: System States and Transitions [12]

The general schema of how the system behaves can be found in fig. 2.6.
At Boot, the software loads XtratuM in main memory. During the boot
time the partition scheduler is not initialized yet and as a consequence the
partitions are not yet started.[12]

When the system boots successfully, the system reaches the normal
state. Here the normal execution of XtratuM takes place. The scheduler is
initialized and partitions start to function. Note that no input is required to
get from Boot to Normal state, the transition is made automatically.

The last stage that the system is made of, is the Halt state. This state
can be reached from Normal state if an error is encountered or if the system
invokes the halt call.

As mentioned, during the Normal state the partitions work under the
scheduler configuration. Again this procedure behaves accordingly to a state
transition schema.

During the initialization the partitions find themselves in the Boot state.
There the preparation of the virtual machine and the standard execution
environment, consisting of communication, I/O, interrupt ports etc., occurs.
After this the partition changes to Normal state. Again this transition
happens automatically, as it is the case during the system initialization. [12]

These first two states are indifferent for the hypervisor, as both happen
during the fixed time slot provided. However for better studying of the
complete process the states are differentiated.

17

Figure 2.7: Partition States and transitions [12]

During Normal state, the partition is executed as programed. Three
sub-states are differentiated during this state:

• Ready Stand-by state. The partition can be executed, but not in the
own time slot. Hence has to wait for the correct time.

• Running the partition is being executed.

• Idle This state can be access using the idle call. The partition is cur-
rently in the time slot to be executed, however it does not want to
execute anything, and relinquishes the processor, until the next time
slot, or the appropriate interrupt.

From the Normal state the last two states can be reached. If an error
occurs or the partition sends the appropriate call, the partition may be
halted, and reaches the Halt state. All the resources associated are hence
released, and the partition will have to boot again, as the Normal state is
unreachable from this state.

The other state, is the Suspend state. The partition can be suspended
and resumed by the system. During the suspension all interrupts will be
buffered and are left pending.

18

2.4.2 Development Process Overview

The simplest scenario for developing XtratuM is composed of two
different actors, a partition developer (PD) and an integrator (I). The
interaction of these two will allow the establishment of a correct working
environment for XtratuM.

Figure 2.8: Interaction between Integrator and Partition Developer [12]

The above figure shows the task’s flow and interaction of both parties.
Firstly the PD defines the required resources and sends this data to the
integrator. With this information the integrator configures the XtratuM
source code, adapting it to the requirements, and builds the hypervisor
binary, user libraries and tools (menuconfig).

Additionally the integrator then allocates the available system resources
to the partitions. This is the creating the XM CF configuration file, where
memory areas, scheduling plans, port and channel creation among other
resources are detailed described for further processing.

19

These resulting binaries are then sent to the PDs. These are unique and
if more than one partition developer is in action, all have to receive and use
the same binaries. With such the PD can develop and build the execution
environment.

Once the environment is built, the PD can move on to creating the
partition application. An image of this is created and sent back to the
integrator, which will pack the gathered image together with the resident
software, the binaries, partition and configuration files, so that the system
can be deployed and run.

Even though the idea behind this procedure may result easy to under-
stand, each step described, includes multiple sub-steps and the use of the
extensive XtratuM tool’s library. More detailed procedure can be found in
the section 5.3.

2.5 Middleware

The middleware can be described in its wide sense as software glue. It
lies between the OSes and applications and enables multiple components of
a system to communicate and share data.

2.5.1 Internet Communication Engine

Ice is an object oriented middleware platform. It provides tools, APIs
and library support to be used in heterogeneous environments, being unnec-
essary that both emitter and receiver are written in the same programming
languages. It can be run on different OSes and machine architectures,
communicating using various networking technologies.[15]

Each Ice object contains an interface with a certain number of operations.
These operations, as well as interfaces and data types are exchanged between
both ends using the Slice language.

This custom language fulfills the heterogeneous environment support by
defining a client-server contract, which is compiled for a specific program-
ming language correspondent to a specific interface defined, the so called

20

Slice.

The translation of Slice into the different programming languages
is called Language Mapping. Currently Ice supports C++, C#, Java,
JavaScript, Python, Objective-C, PHP and Ruby. This language is purely
declarative and no statement for execution can be written in Slice.

Figure 2.9: Ice [15]

Taking a deeper look into the Client-Server Structure, we can conclude
that both consist of a mixture of application, and Slice generated code.

• The Ice core provided as a number of libraries, contains the runtime
support for remote communication.

• The part that is independent of the specific types defined in Slice is
called the generic part of the Ice core, and is accessed through the
Ice API. This is used to take care of administrative chores such as
initializing and finalizing the Ice runtime.

• The object adapter is part of the Ice API for the server side. It has 3
major functions. It is responsible for the creation of proxies. It maps
incoming requests to specific objects. And it can be associated with
more than one transport endpoint (for example with TCP and UDP).

• The proxy code is generated from the Slice definition. It’s two major
functions are on the one hand providing a down call interface for the

21

client which ends up in sending an RPC message that invokes the cor-
responding function on the target object in the server; and on the other
hand providing marshalling and unmarshalling1 code.

• The skeleton code is generated from the Slice definition. It is equivalent
to the proxy code, but on the server side. It provides an up-call interface
that permits to transfer the thread of control to the application code.

As the client sends an RPC message, it is to underline that Ice provides
an RCP protocol that can use indistinctly TCP or UDP as the underlying
transport. Hence no real time?. SSL for encryption is also supported.
Briefly the Ice protocol defines a number of message types, a protocol
state machine that determines the sequence of message exchange, encoding
rules, and a header. Compression with a configuration parameter is sup-
ported to conserve bandwidth, as well as bidirectional operation is supported.

Ice ships with various services that provides us with the sophisticated
platform for distributed application development. This services are worth
mentioning, Freeze and FreezeScrip, IceGrid, IceBox, IceStorm, IcePatch2
and Glacier2. IceStorm, IceBox and Glacier2 will be used to perform further
development.

This platform provides several benefits for developers. Support for multi-
ple interfaces, as well as synchronous and asynchronous messaging. Machine,
language and transport independence and security among others.

2.5.2 IceStorm

IceStorm is an efficient publish subscribe service for Ice applications
in need of multicasting or even broadcasting information to multiple
destinations. For a better understanding of the concept behind publish and
subscription we can take a look at the following example.[15]

Suppose we take a pitot tube monitoring application. Measurements
such as wind speed and temperature are collected periodically from a control
center. This information must then be transmitted to various monitors,
for further processing of such. The main performance disadvantage of this

1“Marshaling is the process of serializing a complex data structure, such as a sequence
or a dictionary, for transmission on the wire. The marshaling code converts data into a
form that is standardized for transmission and independent of the endian-ness and padding
rules of the local machine. Unmarshaling is the reverse of marshaling.”

22

scenario and implementation is clear: the collector must not only collect the
data, bus must then redirect the data accordingly to specific parameters, to
the correct destinations. Hence, data collection, monitor registration, data
delivery, and error recovery must be handled by the collector.

Using IceStorm as a gateway between the various monitors, allows the
collector to get rid of the extra duties, and ensures just a single collector
functionality.

Figure 2.10: IceStorm [15]

The IceStorm Service simplifies substantially the implementation of the
collector. It acts as a mediator between the collector and the monitors,
publisher and subscribers respectively. Various advantages are offered by
this service:

• Collector makes only a single request on the IceStorm server when a
new set of data is ready to be transmitted. The IceStorm server takes
over all pertinent actions to forward this data to the subscribers.

• Subscribers only communicate with the IceStorm server for subscribing
and unsubscribing tasks. Enlightening off administrative tasks from the
collector.

• Smooth simple actions must be taken when deploying IceStorm in both,
publisher and subscriber.

In order to fully understand the IceStorm’s capabilities we can discuss
some fundamental concepts:

• Message: It is represented by an invocation of a Slice operation. The
operation consists of a name, and some parameters. The name defines

23

the type of operation whereas the parameters define the message con-
tent. If we invoke such operation on an IceStorm proxy, the message
is then published. Analogous the subscriber receives the message as
a servant up call. It is important to note that IceStorm uses a push
model for the delivery of messages. Polling is not supported.

– IceStorm Messages are strictly unidirectional. They have a void
return type and hence cannot contain out parameters nor raise
user exceptions. The Publisher cannot receive messages.

These messages are automatically discarded once they are published to
the correspondent subscribers. If an error occurs during the transmis-
sion a copy of the message will not be queued. Additional IceStorm
will automatically remove the subscription from the topic.

• IceStorm Topic: is essentially equivalent to an application-defined Slice
Interface. In order to understand better this concept we can go back
to a traditional client server style. This application interface is hence
the contract/protocol between the server and the client. If an applica-
tion is interested in a specific type of message it can subscribe to such
topic. The publisher will then send the message and the subscriber
must hence implement the topic interface in order to obtain that type
of message. It is important to underline that IceStorm forwards each
message to multiple subscribers. Furthermore IceStorm does not sup-
port a verification of the compatible interfaces on both ends.

• Federation: Also known as topic graphs. A Federation or topic graph
is formed by creating a unidirectional link from one topic to another.
Each link carries a cost. If the message cost of exceeds the link cost,
the message will not be published.

The following figure represents an example of what a Federation could
look like.

24

Figure 2.11: Ice Federation [15]

This example combines a collection of three different topics, T1, T2,
T3, with their correspondent publishers, P1, P2, P3, and a total of four
subscribers. We can see that T1 is linked to T2, and T3 respectively
depicted with the arrows. S1 and S2, as depicted, are subscribed to T2, but
due to the link, they will receive the messages from T2 as well as T1. The
same occurs with S4, it receives the messages from T3 and T1 even though
it is only subscribed to T3. Moreover S3, only subscribed to T1, will only
receive the message from that topic.

From this example we can extract two pieces of additional information.
Firstly the publication of the messages to the different destinations happens
hop by hop, i.e. T1 will first publish the message to the S3, and then it will
publish it to its links. This implies a delay in the transmission that was
introduced as link cost. Secondly IceStorm is not optimized and will send
duplicate messages from different topics, depending on the topic federation,
to the same subscriber. In our example S5 will receive the message from T1
twice as it is subscribed to T2 and T3.

IceStorm supports two different modes of behavior, the persistent mode,
and the transient mode. By default IceStorm operates in persistent mode.
This mode implies a database where IceStorm stores all the information
related to the topics, links and subscribers. Replication, which provides
higher availability, is supported in this mode.

Alternatively IceStorm can run without a database, in transient mode.
Same operational behavior but without support of replication.

25

Highly Available IceStorm

Furthermore, IceStorm provides a highly available mode. It uses the
replication of master-slave with automatic recovery in case the master would
fail. The idea behind this mode is elaborated by using the Garcia-Molina
”Invitation Election Algorithm”.

This algorithm sets a priority to each replica and sorts it into a replica
group. Inside that group the replica with the highest priority becomes the
master or coordinator, turning all other replicas into slaves of it. All these
replicas are configured in a static way containing information about the rest
of the replicas. This way when overcoming an error, the replicas can group
themselves back together, knowing the information of each other.

In addition, the masters will periodically be looking out for replicas
and replica groups pursuing the aim of forming larger, but fewer groups.
Moreover, the slaves will also be periodically contacting their corresponding
master to check whether it is the correct master of the group. The replica
will turn its state into error otherwise, performing hence the recovery
procedure.

The only limitation of this algorithm while used with IceStorm is major-
ity. A group of replicas must contain the majority of the replicas, implying
a minimum of three replicas. This is necessary if network partitioning wants
to be avoided. During the full system startup, the replication starts only
when every replica in each group participates. When a majority group is
formed, the databases contain the states are compared. The latest one
is hence transferred to all replicas and replication can begin to function
properly.

The IceStorm replicas can have four different states which can be divided
into node states, or group states. Nodes can either be inactive, when
awaiting an election, or election when electing a master or coordinator.
On the other hand, the groups can have the state of reorganization, or the
normal state which implies a normal active replicating status.

2.5.3 Data Distribution Service (DDS)

The DDS for RTS is a data communication standard managed by
Object Management Group (OMG) that provides scalable, low-latency, high

26

performance, interoperable data exchange for distributed applications. It is
suitable for real time and near real time systems.

The DDS Standard includes a well defined API that allows the creation
of portable code. The DDS standard references the Real Time Publish
Subscribe (RTPS) Wire Protocol standard which defines the wire protocol
for DDS communications. Generally speaking DDS is a p2p communication
model requiring no gateway, server nor daemons that have to be running
nor configured.

For developing purpose I have chosen OpenDDS, which is an open-source
version supporting the capability defined in the DDS 1.2 Specification
and version 2.2 of The Real-time Publish-Subscribe Wire Protocol DDS
Interoperability Wire Protocol Specification (DDS-RTPS). However the
term DDS will be used instead of OpenDDS for simplicity reasons.

A very basic conceptual view of the mentioned Publish Subscribe
Architecture can be seen in the following picture.

Figure 2.12: DDS [12]

The basic components are: Topic, Publisher, Subscriber, DataWriter
and DataReader.

Topics contain information about a single data type, the distribution and
availability. They can have more than one DataReaders and DataWriters.

27

Publishers apply control and restrictions to flow of data from DataWriters.
Analogously Subscribers apply control and restrictions to flow of data from
DataReaders. The DataWriters create and DataReaders receive Samples
(Data values) of a single application data type. Both can only have a single
Topic.

A Publication or a Subscription can have many associated Subscriptions
or Publications receptively.

It is important to note that an application can be either a Publisher a
Subscriber or eventually both. Hence the data flow can be easily understood
by following the arrows in the conceptual diagram. The publishing side
initiates the flow of data by writing a Sample into the DataWriter. It gets
published, and sends the Samples to the associated subscribers. These
input the received Sample into the DataReaders. The flow ends when the
subscribing applications retrieves the data from the DataReaders. The flow
of data is controlled by QoS Policies. Aspects of QoS can be Real-time
deivery, Bandwidth Redundancy or Persistance.

The association of a publication and a subscription exists only when
a DataReader’s Topic is compatible with a DataWriter’s Topic. Then the
Publication and Subscription become associated and data is published
between them.

Figure 2.13: DDS [12]

However if we look at the actual components in a system we can find two
new specific components. The domain which is a conceptual container of the

28

system. The communication can only occur between components within the
same domain. Note that all components inside a domain are called Entities.

The DCPSInfoRepo which is an OpenDDS object that detects when
association can occur and notifies both parties to make the association.

The specification to enable interoperability amongst DDS implemen-
tations was initially called RTPS, now it is know as DDS Interoperability
Protocol (DDSI). In our case, OpenDDS supports unicast as well as multi-
cast. The transport design is particular to actual domains. Usually some of
the already existent transports are combined with higher lever protocol and
must be accommodated for the specific use.

Again in our case OpenDDS separates the transport from higher level
protocols by means of Extensible Transport Framework (ETF) [11]

2.6 Research Context

The presented bachelor thesis is framed in the research context of real
time distributed systems and cyber-physics. More precisely it is based
on the challenges, tasks and solutions identified in [16] for virtualization
technologies in predictable cloud computing, and in [19] for middleware
technologies in cyber-physic systems.

The middleware Ice, specially, was improved in various contributions
proposed by a group who has developed a project [30] in which different
parameters were adjusted to improve performance. Moreover, in the project
[31] a centralized architecture for real time distributed systems was made
to support a variable greater number of clients. Proposals for online
verification of cyber-physic systems connected as in [33], [45] and [34] as well
as middleware with augmented logic in order to support changes in the dy-
namic structure of real time distributed systems in service [17], [36], [35], [37].

This project is enclosed within the efficient management of the execution
platform resources, not only in the participating nodes but also in the
interaction and communication between the nodes by means of the improved
middleware technology. Likewise, it is enclosed within the dynamic manage-
ment which requires augmented logic [46].

29

With the management of the resources in the participating nodes, a
better exploitation of the computational resources (CPU, memory, energy,
etc.) is obtained using priority and temporal planning managers as in [?],
[28], [29], [26], [27], [?], [20], [21] or [43]. In the management of the com-
munication between the nodes based on middleware, for a system with time
requirements, or in general for real time systems it is necessary to analyze
the reliability of the platform, its performance and temporal stability. In this
context the following projects have been developed. An application for rail
traffic and its use in laboratories is orchestrated in [38]. In [41] a surveillance
video application, activated by sensors and supporting structural changes
in real time was design. The design and implementation of a system for
the composition of services based on Jini, Java technology, can be found
in [42]. In [44] a study about DDS for paravirtualization in virtualBox
can be found. A bridge for adapting middleware to different communica-
tion paradigms is presented in [39]. And lastly, augmented interconnection
between iLand and the distributed annex Ada (Ada DSA) is presented in [40].

This bachelor thesis focuses to an extend with these contributions, which
establish the research environment developed throughout this project.

Firstly, it is related with the performance analysis of middleware for
distributed environments with time requirements. Secondly, it is also
strongly related with the operating system, as it is fundamental to know
certain details about this component in order to be able to add pertinent
improvements to the middleware. This latter, analyzes the CPU consump-
tion affected by the physical memory in order to obtain the load limits of
the machines, above which anomalies in the middleware are encountered.

And lastly it is related with the dynamic management of the structure and
reconfiguration of safe distributed systems with a brief insight into quality
software management [48], [47].

30

Chapter 3

Project Development: Xen

The first step of the development is to install and configure the hypervisor
Xen. This chapter explains the whole procedure that must take place in
order to achieve a clean correct installation of a distributed system. Detailed
descriptions of the different configurations can be found in the previous
sections.

The performance analysis will then be executed on this configured
platformed. By creating a unique and fully tailored system, achieving a
perfect and complete overview of what the configurations, any external
alterations that may influence the results, are minimized.

3.1 System Requirements

In order to successfully achieve the aims presented, minimum software
and hardware requirements set by Xen must be met. Table 3.1 contains
these requirements.

3.1.1 Software Requirements

Starting off with the software requirements, it is clear that the use of Xen
is a popular election when making use of virtual technology. Additionally
a UNIX distribution is required to run the configuration domain as well
as the guest domains. This way a proper paravirtualized system can be
implemented.[15]

31

IceStorm Requirements

In order to be able to use Ice‘s Service IceStorm, a system with either
UNIX or Windows Operating System is required. For this service simple
sockets in the network layer will be used. Moreover no different requirements
than the installation of the Zeroc Ice SDK, and the Ice’s services is necessary.

In this case the C++ SDK will be installed, and hence an appropriate
compiler is necessary in order to program,, build and execute the code in
matter. The friendly GNU C++, g++ compiler is used in this case.

3.1.2 Hardware Requirements

The hardware that is needed to run such software is depicted in the table
3.1 where the two columns hold the correspondent described hardware.

On the one hand Ubuntu requires a standard processor with at least 700
MHz of clock-speed. 512 MB of RAM and 5 GB of free HD space.

On the other hand Xen does not restrict the clock-speed but rather the
architecture of processor. Only x 86 and ARM processors are supported for
the virtualization. As far as the physical memory, it’s requirement doubles
the one from the Ubuntu distribution and rises to 1024 MB. [6]

Ubuntu Xen
CPU 700 MHz x 86, ARM
RAM 512 MB 1024 MB
HDD 5 GB -

Graphic VGA 1024 x 768 Intel/AMD-V

Table 3.1: Minimum System Requirements

As the domains will run Ubuntu, its specifications must be met within
the correspondent virtual machines. Additionally the requirements for Xen
has to be taken into account. If a top-down implementation approach is
taken, all together the System must have at least 1024 Mb of RAM, run
under at least 700 Mhz CPU and reserve at least 5 Gb of free disk storage
the for every domain planned to be installed. The system should have
Intel/AMD Virtualization Technology for Directed I/O support.

32

A physical network card, even though a basic component found in almost
any system nowadays, is essential to perform the desired tests. Without
a network card, the network virtualization among the different virtual
machines could be affected in terms of could be achieved, that is no virtual
link could be establish

3.2 Design

In order to achieve a close and deep interaction with the virtual envi-
ronments, two working nodes with different virtualization layers have been
implemented. The main working station, named ”Computer A” onwards,
is based on an HP EliteBook 6930p laptop, whereas the second working
station, named ”Computer B” onwards, is an up to date modern Lenovo
E460 laptop. The hardware specifications of both working nodes can be
analyzed in the following table. Clearly they meet the minimum required
specifications stated in the previous section.

Computer A Computer B
Intel Core 2 Duo P8700 Intel i5-6200U

CPU 2x2.6 GHz 2x2.8 GHz
RAM 1.5 GB 16 GB
NIC Intel 82567 Intel AC-3160

Max. Speed 1 Gbps 150 Mbps

Table 3.2: Hardware Specification of Working Nodes

Further on in the Trials section the different configurations of the dif-
ferent environments will be explained. Note that the choice of using two
different working stations connected with each other allows to have all pos-
sible different scenarios when it comes to performance testing. Summing up,
in basic terms, the final distribution of the design is observed in the following
figure:

3.3 Architecture: Computer A

As mentioned above, in order to achieve a wide interaction with the
virtual environments, this working station consists of the deployment of a
Xen 4.4 hypervisor, which acts as the bonding layer between the hardware

33

Figure 3.1: Basic Design

and the different virtual machines, depicted in Fig. 3.3.

Computer A is platformed with the latest Ubuntu Xenial Xerus distri-
bution (version 16.04). As the Xen hypervisor is included in the standard
Ubuntu repository, it can be simply downloaded and installed as if it would
be a regular software. In this case the 64-bit hypervisor was installed, and
even though the dom0 works only with a 32-bit kernel, this version will
allow to run 64-bit guest machines.

As each different domain requires at least 5 GB of storage capacity, two
different 10 GB partitions of the physical HDD are made in order to hold
the different domains.

Figure 3.2: HDD Partition Table

Moreover in order to achieve connectivity between the different guest
machines and host, a further network configuration has to be implemented
in order to guarantee such. This can be achieved using the bridge-utils. See

34

section 3.5 for further information.

For this purpose, two additional virtual machines have been configured
and installed. The installation procedure of these guests is described in
section 3.6.

Figure 3.3: Final Architecture Computer A

The figure above shows the exact final architecture of Computer A, a
bottom layer of pure hardware contained in the EliteBook. The middle
block is the hypervisor which supports the dom0 and two further guest
machines. All three of these virtual machines hold the same OS.

3.4 Architecture: Computer B

This working station named Computer B, is perhaps more complicated
and complex from a virtual point of view. The base system is a normal
Windows 10 Education edition, installed on a Lenovo E460 laptop.

Inside Computer B, Oracle VM Virtual Box 5.0. is installed in order
to be able to have an UNIX environment. In this case Ubuntu 14.04 LTS
is installed as a virtual machine using the KVM virtualization offered by
Oracle VM VirtualBox.

35

Figure 3.4: Final Architecture Computer B

The network configuration of the VirtualBox virtual machine is setup
in the Bridge mode so that no further configuration has to be made in the
adapters.

From this point onwards in the configuration, the same procedure was
followed as in Computer A to install Xen with the control domain dom0
and, in this case, one guest domain vm-1.

3.5 Network

Unfortunately one of the constrains associated to the usage of the Xen
hypervisor, is the difficulty encountered when virtualising a wireless connec-
tions. Therefore in order to avoid additional hurdles with the configuration,
wired connections are used.

As the guest domains have been configured following paravirtualization,
they have access to their virtual network interfaces. Rather than emulating
the real network devices, these virtual interfaces, vifx.y, provide a much
faster and more efficient network communication for the domains.

A paravirtualised network device consist of a frontend and a backend

36

network device:

• The backend network device resides in the domain dom0 and it con-
tains the domain ID and the index of the device, x and y respectively.

• The frontend network device is located in the guest domain and acts
basically as any normal network interface. It is bounded to the xen-
netfront driver and creates the traditional ethN network device.

These devices are interconnected via a virtual link. Furthermore a con-
nection between the virtual devices and the real device must be established.
This can be achieved using bridging.

Figure 3.5: $ brctl show Output

Bridging the backend domain will allow the frontend domains to become
independent members of the network.

In order to use this configuration a software bridge, acting as a virtual
switch, is created so that it links the backend devices with the physical
device again via a virtual channel. To do so the interfaces configuration file
found under /etc/network/ must be modified adding the bridge interface
and setting up the bridging.

Figure 3.6: /etc/network/interfaces configuration file

This bridge is then set up in the guest configuration file to create the
guest domain. As it is set to DHCP, the guest domain will be provided with

37

an IP address within the same network as the host.

For this specific case depicted in Fig. 3.1 both machines A and B were
configured in such a way so that each domain can be reached independently
of the other domains. A schematic of the internal network devices follow:

Figure 3.7: Computer A: Network Devices Structure

As explained above, each paravirtualized connection is made up of the
two different virtual devices, all which are then interconnected via a virtual
link. For computer A where there are two different guest domains, the
bridge is connected to both virtual interfaces. The figure above clearly
shows the final setup of the network layer.

Below, analogously to computer A, the configuration of computer B is
depicted. In this case only one guest domain is being used, hence we basically
have the same configuration as computer A, just with one paravirtualized
connection less.

It is important to note that for simplicity purposes all incoming, outgoing
and forwarding connections in the respective firewall have been enabled to
prevent conflict while doing the trials.

38

Figure 3.8: Computer B: Network Devices Structure

3.6 Xen: Domain Creation

The Xen hypervisor can be installed through the UNIX terminal console
without any further difficulties. Note that the virtualization must be
supported by the system’s chip, and accordingly enabled in the BIOS. If any
errors during the installation would occur, the installation process will exit
returning the correspondent error.

If the hardware specifications meet the minimum requirements for
Xen. section 3.1.2, no further problems should be encountered during the
installation process.

3.6.1 Control Domain: Dom0

To install the Control Domain, simply using the following command
should suffice:

$ sudo apt-get install xen-hypervisor-amd64

Once the hypervisor is installed the GRUB will automatically boot the

39

system into the host machine, known as control domain, dom0. After a
reboot the correct configuration of the system can be checked with the xl
list command. Now the system is ready to accept the installation of guest
virtual machines.

It is an easy procedure as no further configuration steps are required
to achieve the installation of the control domain. The following subsection
explains in detail how to install the guest domains. After the successful
installation of such, for Computer A the following output to the xl list
command is observed:

Figure 3.9: xl list Computer A

3.6.2 Guest Domains: DomU

According to the community documentation there are two different ways
creating a Virtual Machine within Xen:

• Automatically: pre-build guest images can be downloaded from
project based sources

• Manually: A set of tools such as virt-builder, which is part of
libguestfs; virt-manager, belonging to libvirt; and xen-tools allows to
genereate and build a customized VM.

This later procedure can be divided into two different virtualization
modes that Xen supports: PV and HVM.

Knowing the differences in these two virtualization principles, it is worth
mentioning that HVM will be more complex in the setup phase. Devices
such as Ethernet or ATA/SATA have to be emulated while the CPU and
memory has to be virtualized using hardware if good performance is to be
achieved.

Moreover it is suggested to use PV drivers within the HVM domain as
the default emulated devices tend to be very slow. In the sight of the above

40

the main focus of this matter sets back to Guest PV. The process of creating
a PV virtual machine can be summarized in the following chart:

Figure 3.10: Guest Domain Installation Flowchart

xl-utils tool stack simplifies the whole procedure and by simply writing
out the correct configuration file a guest domain can be created in matter of
minutes.

Starting off by getting the Netboot Images for the desired distribution
and saving them on the system. With this information the guest domain
configuration file can be created, for demonstration purposes, the same file
as the one used in the configuration of one of the guest images in Computer
A architecture is used.

In this configuration file, several information about the guest domain
must be introduced. Name, UUID for the domain are essential pieces of
information, but more important is initially to configure the kernel image to
boot together with the ramdisk path (previously downloaded for the desired
distribution).

Hardware specs such as the initial RAM allocation and number of virtual
CPUs, together with the network and disk device must be represented in
the configuration file.

Using the simple $ xl create -c name.conf command, Xen parses the

41

configuration file and starts off the installation procedure in a normal manner.

Once the installation is completed without any errors, the configuration
file must once more be modified in order to point to the hypervisor the path
to the bootloader and to remove the kernel and ramdisk lines to prevent the
domain to boot into installation mode ever again.

This simpler procedure could be achieved without the help of the Xen
utilities. Nevertheless it can be concluded that the existence of a high
error risk, points towards the use of these tool utilities which simplifies and
guarantees a quick and simple install.

42

Figure 3.11: ubuntu16 1.conf Guest Domain Configuration File

43

44

Chapter 4

Trials: Xen

A series of performance test has been carried out to obtain the var-
ious delays that may incur when working with virtual environments. As
mentioned previously four different environments were used during the trials.

As the application used for the trials is the IceStorm service provided by
Zeroc Ice, needs at least one Publisher, one Subscriber and the local Icebox
service to run, these services will run on different locations to determine the
delay times in the different configurations.

In all four configuration scenarios, the same procedure takes place:

• IceBox server will be running from one of the domains, and will allow
the interconnection between the publisher and the subscribers.

• Publisher instance will be running from one of the domains. It will
broadcast every 1 second a message with a specific topic name and
desired data size in Bytes. Additionally the system publication time
will be sent as part of the message.

• Subscriber instance will be running from one of the domains. It will
subscribe to the subscriber’s topic, and hence receive the messages,
a simple operation will extract the time sent by the publisher and
calculate how long it has taken to transmit the message.

To standardize the trials, in each scenario the same performance tests
will be performed. Publishing 1, 1024 and 6144 bytes of data under a normal
CPU load, and while the system is undergoing a stress situation. A further
69 Bytes of data containing time values, for further calculations, is also

45

sent, but is tared to achieve standard results for the amount of data described.

The stress on the system will be performed with the stress workload
generator. It imposes a configurable amount of CPU, memory, I/O, and
disk stress on the system.

$ stress –cpu 8 –io 4 –vm 2 –vm-bytes 128M –timeout 10s as an example.

In order to keep the analysis consistent, stress was used with different
configuration parameters so that the CPU is 100% loaded and the physical
memory reaches a utilization quota of around 77%.

The analysed period of time records about half a minute. During
this time, ten time samples have been taken into account and averaged.
Each time sample measures the transmission time a topic suffers since
it is published until it reaches the subscriber. From this data, the most
significant figures, such as the average, maximum and minimum has been
recorded for further analysis. The detailed table with the exact times can
be found in the Annex A.1.

Represented in the graph figures of this chapter are the average time mea-
surements obtained as mentioned above. In the legend of the figures normal
represents the transmitted time under minimum system load. Loaded on the
other hand measures the transmissions times when the system undergoes the
call of the stress function.

4.1 Configuration A

In this configuration only Computer A is used. As we can see below both
instances of the IceStorm service as well as the IceBox service run within the
same domain, the control domain hp.

This configuration will resemble the best case scenario, as no connection
with other guest domains or machines is required. It will be used as a
reference for making conclusions of further analysis.

4.1.1 Results: Configuration A

The resulting time delays can be observed in the following bar graph.
The transmission delay of 1 Byte under normal circumstances hols a time

46

Figure 4.1: Configuration A

of 1,237 ms. For 1 Mb and 6 Mb the time rises to just below 2 ms 1,941 ms
and 1947 ms respectively.

Figure 4.2: Time Results Configuration A

With an overloaded system, these times increased up to 134,95 %. An
important increase which translates into doubling the transmission delay.
The delay is significant compared to the small transmission times under
normal circumstances. This system would not be usable for the transmission
of small sets of data.

47

4.2 Configuration B

For this configuration again only the Computer A is used. The only
difference from Configuration A is the placement of the Subscriber. For this
configuration the subscriber instance will run from a guest domain, in this
case ubuntu1.

Figure 4.3: Configuration B

4.2.1 Results: Configuration B

Initially the prediction of this configuration is an increase in the trans-
mission time as the Subscriber now doesn’t reside within the same domain,
but on a guest domain. Additionally as the hp domain will have one less
duty during the stress period, it’s performance should be noticeable.

Figure 4.4: Time Results Configuration B

48

Indeed the transmission times in a relaxed state have increased notice-
able, and also as predicted the increase in time during the stressed state has
been proportionally decreased.

The fact that now the work is shared among two different domains
counteracts in the increase of time during the stressed state. Only on
average, the transmission was delayed by 50 %, half the time compared to
Configuration A.

Talking about a relaxed time of 6,7 ms, 17 ms and 23,6 ms respectively
for the different amount of data sent, the delay has increased on average up
to 7 ms depending on how much data was sent by the Publisher. Again a
more detailed results can be found in Annex A.1

Evaluating these results in aspects of percentile efficiency, again the
higher the volume of data sent the better the performance.

4.3 Configuration C

This configuration is the last one to use just one workstation. In this
latter configuration each instance of the application is deployed in individual
domains, so the IceBox service is run from the control domain and subscriber
and publisher run from the domains ubuntu1 and ubuntu2 respectively.

Figure 4.5: Configuration C

4.3.1 Results: Configuration C

What is expected is an even lower delay time while the system is stressed,
as each domain only has to cope with one duty. The delay incurred due
to the fact that now three domains are being used, should affect the times

49

considerably.

Figure 4.6: Time Results Configuration C

In fact the delay while using a stressed system varies from 5% to 29,5%,
so far the best results achieved.

Dividing the duties among domains, clearly favours the transmission
times during a stressed system. However the transmission times under nor-
mal CPU load are significantly increased when compared to Configuration A
and B. The delay proportion may be low, but the overall delay compared to
the simple configuration is remarkable high, and should be taken seriously
into account.

The times raise from 1,2 ms in Configuration A up to 25,2 ms in this
configuration when using a relaxed system and 1 Byte of data is sent.

4.4 Configuration D

This is the last configuration adopted for the performance trials. This
configuration involves both computers. Again only one instance of the
application is run on a single domain, as in the previous configuration. This
time around the publisher will run within Computer B on the vm-1 domain.
On ubuntu2 host no applicatino will run.

50

Figure 4.7: Configuration D

4.4.1 Results: Configuration D

Predicted during this configuration are large transmission times during
a relaxed state compared to the basic configuration, but with very similar
delays in a stress situation of the systems. The times measured are from the
second subscriber located in the vm-1 domain.

Figure 4.8: Time Results Configuration D

These results are very similar when it comes to delay time, in ms, of
the loaded system, compared to the basic configuration. However, from a
percentile point of view, this configuration holds the best results of the trials.

The low transmission delay achieved from Computer A to Computer B
is due to the fact that Computer B is a much more powerful unit, and the
processing time is reduced to a minimum leaving the actual transmission
time from one end to another neglectable.

51

Surprisingly the resulting delays are lower than in the previous configu-
ration. In a relaxed state 11,6 ms 24,2 ms and 27, 5 respectively. Resulting
in 14 ms, 5 ms and 17 ms faster transmission times.This can only be due
to the same reason mentioned a few lines above. The processing time
is much better on Computer B and hence the times. From these results
further conclusions can be drawn, and are explained in the upcoming section.

4.5 Conclusions

As there are no given baseline time values to compare these results
with, further analysis of the resulting data is required, the times simply by
themselves do not hold a decision of whether the development and the trials
have been done correctly or not.

Figure 4.9 shows the transmission delay of the four different scenarios.
This is the time difference calculated when the system works under a high
load. The consecutive bars represent 1 Byte, 1 Mb and 6 Mb consecutively.
Unfortunately no fundamental conclusion can be drawn from this results.

Figure 4.9: Transmission delay

52

However if the transmission delay times are compared to the normal
transmission times in the different scenarios, conclusions can be drawn.

TxDelay(%) =
StressedTxT ime−RelaxedTxT ime

100

The relationship between the delay in time increase calculated in natural
units and in percentage is important result to highlight. An extend delay in
milliseconds does not necessarily imply an extreme delay in time compared
to the should value of the transmission time.

This idea is reflected if the most extreme results from Configuration A
and Configuration D are compared. The delay of 1.7 ms with a normal
transmission time of 1.23 ms, corresponds to approximately 134% of
delay in the transmission, where as, in the latter configuration 1.38 ms of
delay only translates into 5%, as the normal transmission time is above 27 ms.

Figure 4.10: Correlation between Percentile Delay and Data Size

Moreover from the results it can also be concluded that the size of the
transmitted data affects the results. Initially it could be predicted that the
larger the packet sent, the larger the percentile delay would be, however
that is not always the case.

53

Analyzing and relating the percentile delays with the amount of data
sent, yields a negative linear correlation. The percentile delay in the
transmission tends to be lower when the amount of data sent increases.
Making this system more optimized for larger data transfers. This idea is
depicted in figure 4.10

Additionally this finding reveals that the larger the size of the transmitted
data, the higher the transmission time is. A straightforward conclusion that
matches the theory of communications:

PacketTransmissionT ime =
PacketSize

BitRate

The above equation states that if the bit rate is set constant, the
higher the packet size the higher the transmission time will be. Again, this
behaviour can be observed in the collected transmission times of the trials
performed.

Taking into account that the data has been extracted from over 300
records, and that both, the negative correlation and the higher transmission
time for larger sized data, matches the theoretical background a correct
performance can be assumed.

It is important to highlight that the results obtained, during the loaded
stages, are distant to be comparable to real time values. On average the
absolute delay is just below 5 ms, and although the time delay tolerance
may vary from system to system, these results do not make Xen and Ice
much of use for real time critical systems.

54

Chapter 5

Project Development: XtratuM

During this second part part of the project, the XtratuM hypervisor was
used, to determine the efficiency and eventually the time criticality of the
communication among virtual machines, in this case partitions.

As seen in the previous sections, in order to run and execute XtratuM
and the partitioned system, ten complex steps must be taken, Fig. 2.8.
These steps require specific requirements in order to be completed.

5.1 System Requirements

XtratuM is independent of Linux and self-bootable. However Linux
is used as the bare OS in order to ease the development of the complete
system. Several packages need to be installed in the Linux environment.
The table below shows the required packages that need to be installed in
the Linux system. [12]

Pacakge Linux Package Name Purpose
host gcc gcc-4.4 req Build host utilities
make make req Core
libncurses libncurses5-dev req Configuration source code
binutils binutils req Core
x86-toolchain gcc-4.4 req Core
libxml2 libxml2-dev req Configuration parser
qemu qemu req Simulated run

Table 5.1: Required Packages

55

As far as the hardware is regarded, the only restriction is made with the
processor. So far from the Sparc v8 architectures, the LEON2, LEON3 and
the multicore LEON4 processors are supported, in addition to generic x86
and ARM processors.

5.2 Architecture & Design

For the development of the environment XtratuM xmvm-x86-2.4 was
used. This is the only available version to download from the official website.
As suggested by the official guide, the bottom OS layer is a Debian Linux
distribution, to be precise version 3.2. The reason for using such old version
is simply by suggestion of the official XtratuM documentation.

The actual hardware was fully virtualized using VMware, for the purpose
of keeping it as clean and simple as possible. The following architecture was
design. Note that once the XtratuM system was deployed it detects 2397.982
MHz processor speed.

CPU Architecture i686
CPU mode 32-bit & 64-bit
Clock Speed 2400.001 MHz
Number of CPUs 1
Core/socket 1
RAM 1 GB

Table 5.2: Hardware Configuration VMware

On top of the hypervisor layer two different partitions will be deployed
as seen on the following figure.

5.3 Building XtratuM

With the configured hardware and all the previous requirements met,
the next step ought to be building XtratuM. The first step is to compile
the hypervisor, but just before that a deep clean may be performed in or-
der to remove any configurations that may interfere with the eventual system.

As described in the theory section, section 2.4.2, the XtratuM sources
have to be compiled and executed. In order to accomplish a correct output

56

Figure 5.1: Architecture for XtratuM

the PATH variables of the source file xmconfig must be filled in accordingly
to with the path of the required locations, as for example the root folder of
the XtratuM files.

During this configuration a configuration wizard will pop up, and assist
the user during the configuration. Most importantly is the selection of the
correct processor from the menuconfig.

Once the configuration is finished, the next step is to compile the sources
combined with the created configuration files. Using the simple command $
make will automatically compile and build all necessary files. The output of
this step can be observed in fig. 5.2

When done, binaries for distributing among partitions are required.
This can be simply achieved with a self-extracting installer invoking $ make
distro-run. This will generate xtratum-2.4.run file.

This file is then simply to be executed in order to install and deploy the
final system. If all steps are done correctly a ”Installation completed.” should
print on the terminal.

5.4 Building Partitions

As mentioned, a partition is an execution environment. It can be a bare-
application, a real-time OS or a general purpose OS with its applications.

57

Figure 5.2: XtratuM Compilation

For the purpose of this project, two different bare-application partitions will
be created. This partitions are known as XAL, are minimal developing bare
C applications.

As the performance of the communication between partitions is to be
analyzed, one client and one server have been programmed into the two
different XAL applications, with the purpose of establishing a connection
between them and send data from the server to the client.

This bare C applications or XAL partitions have to have a special
structure. The xm header for hypercalls, and the standard stdio header
may be used for normal C functions. Furthermore there must be a void
PartitionMain(void) function where the executing code can be found.

The above partition will simply print out to the terminal the status and
then the partition will be halted.

58

Figure 5.3: XAL Example File

Additionally to the actual XAL code which is in charge of running
the desired functions, the configuration file must be tailored to meet the
required criteria. This file called xm cf.ia32.xml is the core for a satisfactory
configuration of the system.

The file may contain various amount of information and properties of
the desired partitioning configuration. The most relevant configuration
properties that are relevant to the project and that can be found in the file
are:

• Physical Memory Area

• Hardware Description

– Processor Selection

– Cyclic Plan Table

– Memory Layout

• Partition Table, i.e. properties of the two partitions

• Channel information

Taking a look at the actual xml file, we can observe the Hardware
Description section. The complete configuration file can be found in Annex
B.

5.4.1 Application: Partition 0

Partition with Id. 0 contains a simple XAL application that behaves like
a casting server. It will use the inter-partition communication techniques to

59

Figure 5.4: Hardware Description XM CF

send data to the other partition, the client. In this case sampling ports will
be used.

The correct configuration is reflected in the XM CF. With this, the
port can be created inside the XAL application and the desired data
can be written into it. Both these operations can be accomplished with
XM create sampling port(char *portName,xm u32 t maxMsgSize, xm u32 t
direction) and XM write sampling message(xm s32 t portDesc, void *msg-
Ptr, xm u32 t size) respectively. The appropriate parameters are chosen to
achieve the correct implementation.

In order to analyze the performance, the transmitted data will be a
long variable, which contains the value of the time elapsed since the last
hardware reset. This can be obtained using the XM get time(xm u32 t
clockId, *xmTime t time). As clockId the XM HW CLOCK will be used.

The partition will only write one data sample to the port in each
execution period. The reason for this is to avoid data loss and assure the
correct transmission of the data. The different time configurations of the
partition will be explained in more detail in the Trial section. As for the
physical memory are, this partition will have 1 MB available to use.

As it is a bare C application no much resources will be needed, and the
allocated memory should suffice.

60

Figure 5.5: XAL: Partition 0

5.4.2 Application: Partition 1

On the other side, the partition with Id. 1 will resembles a simple
straightforward client. Again based on a XAL application, this partition
will create another sampling port, in order to read the data.

After the port for reading is created, the application will read the
data inside that port. To do so the XM read sampling message(xm s32 t
portDesc, void *msgPtr, xm u32 t size, xm u32 t *flags). This function will
write to the pointed variable the contents of the port. In the case of this
application it will read the elapsed time, at the point in time just before the
data was sent from the server partition.

Yet again this client calculates the elapsed time on this partition since the
last hardware reset, right after the data was received correctly. Naming this
last obtained elapsed time t client and the received elapsed time t server,
simple arithmetic will allow to calculate the delay time since, the data was
written in the sampling port, until it was read again from the sampling port.

61

TransmissionT ime = t client− t server

Figure 5.6: XAL: Partition 1

5.5 Networking

The correct configuration of the network is essential for the project.
This communication between the different partitions is port based, and fully
virtualized.

In order for these ports to be utilized by the XAL applications, they
have to appear on the configuration file according with the requirements.
For this project, two different ports are going to be utilized. One for writing
and another one for reading.

The actual configuration information of the port, name, type and
destination, can be found within the actual Partition section.

62

Figure 5.7: Port Configuration

Figure 5.8: Port Configuration

Additionally the virtual channel that will interconnect the ports
with each other has to be captured in the configuration file. There will
only be a single channel that connects the writing port with the reading port.

Figure 5.9: Port Configuration

With the correct configuration special hypercalls inside the XAL appli-
cation can be used in order to create, the configured ports, send and receive
the desired data.

63

64

Chapter 6

Trials: XtratuM

During this chapter various results obtained from performing different
tests will be carefully analyzed. The first three sections have been completed
with a 5:1 time ratio between the allocated time for the server and for the
client. The last section, D, will have a ratio of 1:1. During all performance
tests, the same amount of data has been transferred, 4 Bytes, the changing
variable will be the scheduling plans.

Around 20-30 samples of the delayed times have been recorded. With
these samples, the average and standard deviation were calculated. This is
used to generate 20.000 statistical samples following a normal distribution.
With this large amount of data a histogram has been created and hence the
Gauss bell diagram represent the probability of having a certain delay time.
By delay the total transmission time is understood. This is because if the
system is considered real time, any elapsed time can be considered as an
actual delay.

It is worth to note that even tough a theoretical wide range time values
are represented in the diagrams, the practically obtained correspondent
maximum transmission times and minimum transmission times are to be
seen in the correspondent tables. No practical results were obtained outside
the max-min boundary.

6.1 Scheduling Plan A

Given the following scheduling table the system was configured. In this
case, and for the rest of the upcoming scenarios, the Major Time Frame is

65

a complete cycle of both partitions, this way the system is optimized, no
waiting times occur and no inter-exchange in the order of the partitions will
occur. The server partition will always run first and the client partition will
run second.

MF: 600 ms Start Duration
Server 0 ms 500 ms
Client 500 ms 100 ms

Table 6.1: Scheduling Plan A

The calculated average resulted to be 499532µs. This result compared
to the Server’s schedule times, coincides almost to the µs with the duration
of such. From this comparison, it can be stated that the transmission de-
lay is simply neglectable. The time taken is just the duration of the partition.

4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4

Delay Time (µs) ×10
5

P
ro

b
a
b
ili

ty

Probability Delay Time

499.5327 ms

Figure 6.1: Results 500 ms

Max Time Min Time
500200µs 493279µs

Table 6.2: Practical Range of Results A

66

6.2 Scheduling Plan B

In this case the calculated average resulted to be just some µs above
the duration of the Server’s duration, 50030µs. Again the average equals
the duration of the Server’s partition. However 30µs of overtime can be ob-
served. This implies only a 0.06% of increase in the time. This overtime can
be considered as neglectable, as the appreciation of 30µs is close to zero time.

MF: 60 ms Start Duration
Server 0 ms 50 ms
Client 50 ms 10 ms

Table 6.3: Scheduling Plan B

4.7 4.8 4.9 5 5.1 5.2 5.3

Delay Time (µs) ×10
4

P
ro

b
a
b
ili

ty

Probability Delay Time

50.0308 ms

Figure 6.2: Results 50 ms

Max Time Min Time
50945µs 43642µs

Table 6.4: Practical Range of Results B

67

6.3 Scheduling Plan C

This is the last scenario where the ratio 5:1 is used. Again it can be
observed that the average transmission time is very similar to the duration
of the Server’s partition. In this case the average holds 5085µs.
Again in this scenario the average exceeds the duration of the Server’s
partition. In this scenario 85µs which correspond to 1.7%.

MF: 6 ms Start Duration
Server 0 ms 5 ms
Client 5 ms 1 ms

Table 6.5: Scheduling Plan C

3000 3500 4000 4500 5000 5500 6000 6500 7000

Delay Time (µs)

P
ro

b
a
b
ili

ty

Probability Delay Time

5.0851 ms

Figure 6.3: Results 5 ms

Max Time Min Time
50945µs 43642µs

Table 6.6: Practical Range of Results C

During the trials with this scheduling plan, there occurred some anoma-
lies. Values doubling the average time measurement as for example 11060µs

68

were found. An explanation to this is presented in the conclusion section.

6.4 Scheduling Plan D

On this latter scenario, the scheduling plan has been modified so that
it holds a 1:1 ratio regarding the partition’s durations. The average now
is 4894µs. It can be observed that this time the average lies below the
duration of the server’s partition duration. The average lies 2.12 % below
the time duration.

This resembles a significant improvement in performance if compared to
the previous scenario.

MF: 600 ms Start Duration
Server 0 ms 5 ms
Client 5 ms 5 ms

Table 6.7: Scheduling Plan D

3000 3500 4000 4500 5000 5500 6000 6500 7000

Delay Time (µs)

P
ro

b
a
b
ili

ty

Probability Delay Time

4.8941 ms

Figure 6.4: Results 5 ms (1:1 Ratio)

69

Max Time Min Time
50940µs 3839µs

Table 6.8: Practical Range of Results D

6.5 Conclusion

Analyzing the obtained results the conclusion that can be made is clear.
The relationship between the Server’s partition and the time taken to deliver
the data does not oscillate more than 2.1% with respect to that time. A
time variation of just a few µs does not necessary mean a failure in the
application or in the system.

Hence the system does actually communicate without any noticeable
delay.

Figure 6.5: Percentile Variation XtratuM

The actual transmission time of the data in addition to the execution
time that the application needs for creating the ports and writing or reading
from them will from now onwards described as the neto time.

The measured times during the trials do not correspond entirely to just
the neto time. Additionally to the neto time, a partition’s content switch
overhead time must be taken into consideration.

70

As pictured in the figure 6.6a XtratuM saves and loads the partition’s
context, here the optimum operation is pictured.

Since the optimum case can not be guaranteed all the time, XtratuM
will try to adjust as much as possible the beginning of the transition. This
can be observed in 6.6b.

In the case where the partition execution time reaches beyond the
planned time slot, it may be the case if a hypercall is executed just at the
end of the time slot, the context switch will delay the beginning of the next
partition. This can be seen in 6.6c.

The delay added to the neto time results in the final measured time.
This explains why there are transmission times that may take longer than
the partition duration.

This case clearly occurred in scenario C, as anomalous results were
obtained. Here the context switch was offsetting the starting times with
every cycle.

As no time margins were pre-configured, the slot times of the partitions
left for execution of the applications suffered a cyclic reduction. Therefore
every n cycles, the client partition had been reduced up to an extend where
it could not run the application satisfactory and had to wait for the next
cycle to properly read the data. Note that that unread data sample is lost
and will never reach the destination.

This latter delay, correspondent to the context switch, can be removed if
the worst case execution time of the context switch is introduced as margin
between the partitions. Represented in 6.6d. Nevertheless deeper research
into how that time is calculated is required.

Concluding, regardless of the fact that the measured times take into
account the execution time of creating/writing/reading the ports and the
eventual context switching times, these transmission times are simply not
exceeded by a factor for them not to be considered real time communication.

The data will just take as long to reach the destination, as the duration
of the sending partition is. Hence the main and one factor that will affect
this transmission time is simply the duration of the transmitting partition.

71

Figure 6.6: XtratuM Context Switch [12]

The transmitting partition’s duration must be long enough for the it
to create and read the port. Otherwise no transmission will occur as the
idle state will be reached before achieving the successful transmission.
Analogously, the receiving partition must have enough time to create and
read the port.

72

Chapter 7

Project’s General Information

7.1 Project’s History

This project started back in October 2015 and took place until June 2016.
During those nine months diverse targets were set and multiple stages created
with the aim of achieving a structured and time efficient work.

Figure 7.1: Project Development Gantt Chart

The first stage, taking place in October, consisted mainly in collecting
information and documentation about the virtual environments and real
time based systems, with high detail to the Project Xen, XtratuM and both
the Ice and DDS middleware. A deep analysis and insight was gained during
this period of time.

With all the information it had to be determined what type of environ-
ments would be implemented. Regarding the middleware the decision was
taken to use Ice. Simply the available resources, examples and guides over

73

matched those of DDS. Another advantage of this choice was the possibility
of developing this application in any of the programming languages, Java,
C++, C#, php, Ruby etc. However C++ SDK was finally chosen.

As the actual real time of the system was going to be evaluated and put
under performance tests, both Xen and XtratuM hypervisors were going to
be installed in order to have notice the difference between what is supposed to
work in real time, XtratuM, and a normal type 1, bare bone, hypervisor Xen.

During the second stage the installation and system test of Xen, Xtratum
and the different Ice Services was put under test in the Oracle VM Virtu-
alBox environment. This way, it is very easy to install and test multiple
configurations of host operating systems and network configurations, with
the possibility to backup working states of the machine, and restoring them
in the case of future failure.

After taking into account the user experience and stability of the diverse
configurations the decision of using Ubuntu 14.04 LTS was taken. Later this
OS would be upgraded to the Xenial Xeros version.

The third stage, the configuration was intended to be implemented
in a Lenovo E460 Laptop, but unfortunately this laptop was an out of
the box developers edition yet, that did not have vitalization capabilities
enable through the BIOS. An update that was eventually to come had to
be installed. Two weeks of intensive research to find a workaround solution
were spent, but without success. Finally an old laptop had to be taken in
order to start of with the development of the system. At this stage the
project got behind schedule.

Finally the Xen hypervisor was installed, and afterwards the corre-
spondent guest domains. Now the system was ready to start off with the
developing of the Ice service.

During the fourth stage the Subscriber and Publisher were programmed
to performed the desired task of being able to measure the time taken since
the publisher publishes into a topic until the subscriber receives from that
topic. Additionally a performance test protocol was established for the
future testing.

After failing to deploy the IceStorm service, it came obvious that an extra
Ice service was necessary, IceBox. A few days of research were necessary

74

as it was completely new to the project. However no further problems
were encountered and no delay was caused in the project’s schedule. The
operational and user tests turned out successfully.

Stage number five was the most time consuming stage from all the
previous stages. The performance trials were performed during this period
of time. Repetitive tests, saving logs, and ordering the collecting data. As
mentioned over 300 records of date were stored for further analysis.

Once the trials had been performed, and made sure that the results were
coherent, consistent and accurate, XtratuM was installed on the machine.

Lastly the same trials as in stage 5 were performed, once again very
repetitive and time consuming stage of the project.

7.2 Encountered Problems and Mended Er-

rors

During the eight-nine months of the project no big incidentals occurred.
Perhaps the most significant one right at the beginning, when the BIOS of
the new laptop did not accept the installation of Xen, was one of the major
delays of the project.

Moreover, as no wireless connections could be virtualized the use of a
wireless access point to convert the connection to a physical cable one was
necessary. Just a couple of days until the delivery of the AP were necessary,
from then onwards the AP did no interfere at all in any way with the
execution of the project.

During the XtratuM part of the project, a big amount of time was
invested searching for information. The official company, a spin off of the
polytechnic school of Valencia, offers an academic version. However the
version provided is out-dated and various examples do not compile. This
makes the procedure more complex.

Additionally, no previous analysis like this has been done previously and
a lot of self try and error had to be invested to reach the final application
environment.

75

Summing up, one hardware issue and one software issue tried to set back
the project, but in the end the project was finished successfully within the
planned time, and fully in line with the milestones expected.

7.3 Legal Framework

During the development of the project numerous pieces of software
were used. No legal restrictions, further than complying with the license
agreements, have to be taken into account if these systems are to be used.

In the following paragraphs the different licence agreement of the
software used is described in detail.

Ubuntu is a collection of thousands of different programmes and docu-
ments created by numerous individual people companies and teams. These
may come under different licenses depending on the authors wish. However
all the different programs used during this project inside Ubuntu, stress,
and the g++ compiler are both free software licensed under the GPLv2.

GPLv2 can be summarized as allowing copying and distribution of the
verbatim copies, but the modification of them is not permitted.

Moving on to the commercial software used for this project. Surprisingly
it was the case to be that all the additional software used during the project
had open-source license for developing and research purposes.

Project Xen was released under the terms of the GPLv2 and hence no
further End User License is required. The only restriction that comes while
using Xen is the trademark policy to ensure that all the different branded
hypervisors are actually fully compatible and will run the available virtual
machines. Note that Project Xen is owned by Citrix, and so is its trademark.

As for the second hypervisor used, XtratuM, the academic version under
the GPL was used, there exist however a professional version which contact
with the company has to be made in order to get a pricing and licensing
information.

With regard to the middleware, Ice, belonging to the Zeroc company,

76

puts their software under the two different open-source license: GPLv2
and BSD 3-Clause. This latter license offers the possibility to modify the
binaries and source code files, but the enclosure of the copyright notice is
mandatory, and cannot be used to promote a final product without specific
authorization of the owner.

However for commercial purposes of the Ice application an economic
agreement with the owner company must be met prior to the deployment of
such.

7.4 Environmental-Economic Sphere

Currently the world is undergoing a global warming phase that has been
caused by the excess of mistreat of the earth’s environment. High emissions
of pollutants are contributing to the destruction of the planet. And even
though the society is aware of this reality, few people take counter-measures
to reduce the personal impact on the environment.

A simple electronic device unfortunately has a negative impact on the
environment throughout its life-cycle.

Starting off with the manufacturing of such devices, composed mainly
by semiconductors and plastic, later on while the device is used, the energy
upkeep, generates a pollution footprint. And finally when the device is not
usable anymore, the dumping of such device again generates a negative
impact on the environment.

The objective of this project was to asses virtual systems to determine
the degree of usability of these virtual environments studying the possibility
of substituting multiple traditional systems into a single virtual systems.

Hence if the virtualization is imposed and virtual systems are deployed a
positive impact to the environment will be made, as the amount of devices
manufactured is reduced.

Taking a first hand experience, at the University Carlos III of Madrid,
the computer labs contain two different CPU towers with all components.
One runs a Linux distribution and the other one is based on Windows. With
a single tower holding both virtual environments half of the CPU towers

77

could be spared.

The reduction of the manufacturing does not just mean a positive
impact on the environment, but also on the economy. To compare the price
difference of a RAM component. An 8 GB HyperX Fury RAM module has
a price on the market of 49, 37¬ where the same model but 2x4 GB modules
cost 76, 68¬ around 55 % more than the one module. This cost reduction
for the different companies, that make use of this technology, could be
translated into a higher profit, better investment or a lower price on for the
consumer.

Summarizing, virtual systems have a positive impact on the environment,
as they reduces the amount of electronic devices. This as well will mean a
cost reduction for the owner of the systems. The large amount of scalability
that a virtual environment offers with minimum effort is to be taken into
account.

7.5 Budget

Figure 7.2: Project Budget

As seen in the figure the total budget of the project was 32.171,98 EUR.

78

Chapter 8

Conclusions and Future Works

8.1 Conclusions of the Project

The conclusions of the two parts are highlighted in more detail in the
correspondent conclusion sections. However an assessment of the overall
general objective of the project follows.

The objective, was to analyze the responsiveness of the transmissions
while using the virtual environments, to asses the possibility of virtualization.

From the results in the first part, the conclusion is clear. There exists
a noticeable proportional delay when transmitting under a stress situation.
Overall the measured delay are factors of milliseconds, and hence this virtual
distributed environment can not be considered for hard real time systems.

Additionally the lower the amount of data sent the higher the propor-
tional delay will be, another drawback encountered during this first part.

It would depend on what the time specifications for the individual
systems actually are, but if up to 15 ms delay are regarded as acceptable,
theses complex virtual system are absolutely safe for reproduction, as no
data was lost during any of the transmissions

Hence the implementation of a virtual environment can be recommended
for soft real time systems that transmit megabytes of data.

Moving on to the second part, which focuses on bare-bone virtualization.
The conclusion that is taken from analyzing these results is that the

79

transmission time matches the partition duration under normal operation.
XtratuM handles the systems with extreme accuracy, and the real time
property is respected.

However there exists a limitation when working with XratuM and it
is the complex deployment of the system. Previous calculations must be
taken into account in order to avoid switch context delays. If a correct
configuration and deployment of the system is made, the transmission occurs
with no delay, else the switch overhead will cause to one of the partitions to
not operate every n cycles. In this project the loss of a transmitted data
”packet” was the result of this effect.

XtratuM should be used for systems where just bytes of data are sent.
Best practice in embedded systems, such as controlling units.

Overall analyzing the results and applying these in a more general
context, the virtual environments should be used to replace multiple
separated units. This represents no legal restrictions more than complying
with the license agreements. Furthermore it has a positive impact on earth’s
environment and may contribute to saving substantial amounts of money.

With this project it is proven that XtratuM behaves indeed in a respon-
sive manner, with almost neglectable time delay, but with the possibility of
encountering anomalies under one circumstance. On the other hand Xen
was fully reliable during the trials and the only limitation of this hypervisor
is the considerable delay, to bear in mind, while experience a high system
load.

8.2 Future Works

During this project only a small portion of the virtualization world has
been analyzed. The decision was made to use two different hypervisors.
However the market holds many more commercial hypervisors, such as Red
Hat Enterprise Virtualization, or VmWare vSphere, that could be analyzed
as well.

XtratuM offers so many different functions that makes it possible for it
to be tailored to meet the specific individual needs. More insight into this
exquisite hypervisor could be done to find the perfect optimum configuration.

80

Despite the fact that the sources of XtratuM did not contain much
information, further research of just this hyervisor could be made. More
complex virtual environments with real time operating systems can be put
under tests to see how they behave.

From the environmental impact aspect of the virtualization, analysis of
pollution emissions can be elaborated to obtain actual real values of such
factor. Perhaps an economic analysis of savings can be computed to asses
the cost-effectiveness of using virtual environments.

81

82

Appendix A

Time Measurements

A.1 Xen Time Measurements

Figure A.1: Xen Table of Time Measurements

83

A.2 XtratuM Time Measurements

Figure A.2: XtratuM Table of Time Measurements

84

85

Appendix B

Configaration File XtratuM -
cf.ia32.xml

Figure B.1: Xen Table of Time Measurements

86

Appendix C

Summary

Technology must keep up with the needs of the new innovative optimized
systems. If the automotive or aeronautic technology field is taken as a
reference, an increasing tendency of using pure electronically systems to
handle complete systems can be observed. In modern cars, barely anything
is still driven manually in a mechanic manner.

All electronic systems need a computational circuit to perform all
the arithmetic calculations as well as logic, I/O and control operations.
Furthermore additional complex hardware components are required to run
the systems. Due to the large amount of different electronic systems found
multiple computational units may be required. This high demand of units
has a negative impact on the cost effectiveness of the aircraft or cars. In
addition physical available weight and space are affected.

The possibility of making use of virtual environments offers a advantages
such as improving the execution of specific applications. Furthermore,
physical space reduction is perhaps the most obvious advantage being able
to run all systems from the same computational unit.

However this possibility of turning multiple machines into a single one,
keeping up the performance of the different virtual machines is not as
straight forwarded. There are many factors that must be examined in
depth before knowing whether the system is capable of running in a virtual
environment.

One of the more critical aspect, regardless of whether the virtual CPUs,
or the shared storage are good enough for the system, is the connectivity
between the different systems.

87

Complex data cross reference operations are made to calculate millions
of instructions, and outcomes. This requires a perfect connectivity pattern
among the different systems. And here lies the crucial aspect of virtualiza-
tion. Is the transmission using this technology fast enough? Is it as reliable
as traditional communication systems? If the communication would fail, the
system would turn useless.

As communication is not entirely instantaneous, there always exist a
transmission delay. These systems are designed to cope with a time delay
tolerance. This delay inevitably is affected when operate within a virtual
layer.

The aim of this project is to contribute towards the analysis of temporal
behaviour of virtualized systems by means of performing structured per-
formance tests on two largely different virtual environments and capturing
delivery times.

On the one hand, a virtual environment is set up with Xen, and on the
other hand a virtual environment is set up with XtratuM. Two different
hypervisors. XtratuM is used for embedded real time systems, and the
opensource Xen hypervisor offers a large compatibility with many different
Unix and Linux distributions. [6]

The first part of the project, related to Xen will aim to determine the
time cost of the virtual implementation of a complex system composed of
multiple virtual machines running separate OSes.

In order to obtain clear and usable results from the trials four different
environments will be developed. The system will be tested making use of
a middleware, an IceStorm service application will be developed. Sub-
scriber and Publisher will be programmed and executed in the multiple
environments.

On the second part of the project, focused on a simple bare-boned system,
XtratuM will be put under analysis. The deployment of the hypervisor and
the inter-partition communication will be used to analyze the effectiveness
of the real time hypervisor, and prove whether the communication among
virtual machines (partitions) is indeed without any delay.

Merging these two parts of the project the overall objective is to

88

analyze the responsiveness and time cost in the transmissions within virtual
environments when it comes to communication. With this analysis, an
assessment can be made for, or against the use of virtual systems.

As there are no given baseline time values to compare these results with,
the obtained times simply by themselves do not hold a decision of whether
the development and the trials have been done correctly or not.

The time difference calculated when the system works under a high load
is one of the obtained results from the first part of the project.Unfortunately
no fundamental conclusion can be drawn from these results.

However if the transmission delay times are compared to the normal
transmission times in the different scenarios, conclusions can be drawn.

The relationship between the delay in time increase calculated in natural
units and in percentage is important result to highlight. An extend delay in
milliseconds does not necessarily imply an extreme delay in time compared
to the should value of the transmission time.

Moreover from the results, it can also be concluded that the size of the
transmitted data affects the results. Initially it could be predicted that the
larger the packet sent, the larger the percentile delay would be, however
that is not always the case.

Analyzing and relating the percentile delays with the amount of data
sent, yields a negative linear correlation. The percentile delay in the
transmission tends to be lower when the amount of data sent increases.
Making this system more optimized for larger data transfers. This idea is
depicted in figure 4.10

Additionally this finding reveals that the larger the size of the transmit-
ted data, the higher the transmission time is. A straightforward conclusion
that matches the theory of communications.

Taking into account that the data has been extracted from over 300
records, and that both, the negative correlation and the higher transmission
time for larger sized data, matches the theoretical background a correct
performance can be assumed.

It is important to highlight that the results obtained, during the loaded

89

stages, are distant to be comparable to real time values. On average the
absolute delay is just below 5 ms, and although the time delay tolerance
may vary from system to system, these results do not make Xen and Ice
much of use for real time critical systems.

During the second part of the project Xtratum was analyzed. The
obtained measurements resulted in a clear conclusion. The relationship be-
tween the Server’s partition and the time taken to deliver the data does not
oscillate more than 2.1% with respect to that time. A time variation of just
a few µs does not necessary mean a failure in the application or in the system.

Hence the system does actually communicate without any noticeable
delay.

In the case where the partition execution time reaches beyond the
planned time slot, it may be the case if a hypercall is executed just at the
end of the time slot, the context switch will delay the beginning of the next
partition. This can be seen in 6.6c. This explains why there are transmission
times that may take longer than the partition duration.

Anomalous results were obtained during this second part. Here the
context switch was offsetting the starting times with every cycle.And as no
time margins were pre-configured, the slot times of the partitions left for
execution of the applications suffered a cyclic reduction. Therefore every n
cycles, the client partition had been reduced up to an extend where it could
not run the application satisfactory and had to wait for the next cycle to
properly read the data. Note that that unread data sample is lost and will
never reach the destination.

The data will just take as long to reach the destination, as the duration
of the sending partition is. Hence the main and one factor that will affect
this transmission time is simply the duration of the transmitting partition.
However the partition’s duration must be long enough for the it to create
and read the port. Otherwise no transmission will occur as the idle state
will be reached before achieving the successful transmission. Analogously,
the receiving partition must have enough time to create and read the port.

Overall analyzing the results and applying these in a more general
context, the virtual environments should be used to replace multiple
separated units. This represents no legal restrictions more than complying
with the license agreements. Furthermore it has a positive impact on earth’s

90

environment and may contribute to saving substantial amounts of money.

With this project it is proven that XtratuM behaves indeed in a respon-
sive manner, with almost neglectable time delay, but with the possibility of
encountering anomalies under one circumstance. On the other hand Xen
was fully reliable during the trials and the only limitation of this hypervisor
is the considerable delay, to bear in mind, while experience a high system
load.

91

92

Bibliography

[1] Stefan M. Petters. Real-Time Systems. 2007
http://www.cse.unsw.edu.au/c̃s9242/08/lectures/09-realtimex2.pdf.
Addison-Wesley, Reading, Massachusetts, 1993.

[2] Ben-Ari, M., ”Principles of Concurrent and Distributed Programming”,
Prentice Hall,1990. Ch 16

[3] Gerhard Fohler. Time Triggered and Event Triggered, Off-line Schedul-
ing. 2004
http://www.win.tue.nl/ johanl/educ/2IN20/TT-ET+offline.pdf

[4] Pont, M.J. (2001) ”Patterns for Time-Triggered Embedded Systems”,
Addison-Wesley/ ACM Press. ISBN 0-201-331381

[5] Linux-KVM
http://www.linux-kvm.org/page/MainPage

[6] Xen Project Wiki. Support and Documentation Resources
http://wiki.xen.org/wiki/XenOverview

[7] XtratuM Hypervisor
http://www.xtratum.org/

[8] M. Masmano, I. Ripoll, A. Crespo, J.J. Metge, and P. Arberet. Xtratum:
An opensource hypervisor for tsp embedded systems in aerospace. In
DASIA 2009. DAta SystemsIn Aerospace., May. Istanbul 2009.

[9] S. Peiro, A. Crespo, I. Ripoll, M. Masmano ,Partitioned Embedded Ar-
chitecture basedon Hypervisor: the XtratuM approach. Eighth European
Dependable Computing Con-ference, EDCC-8 2010, Valencia, Spain,
28-30 April 2010. IEEE Computer Society 2010,ISBN 978-0-7695-4007-8

93

[10] XtratuM-Real time Nanokernel for Linux Nicholas Mc Guire Dis-
tributed & EmbeddedSystems Lab, Lanzhou Univeristy, China

[11] Open DDS Overview
http://www.opendds.org/about.html

[12] FENTISS /UPVLC. XtratuM Hypervisor for INTEL x86. Volume 3:
User Manual. September 2012.

[13] FENTISS /UPVLC. XtratuM Hypervisor for INTEL x86. Volume 3:
Reference Manual. September 2012.

[14] M. Masmano, J. Coronel, fentISS, Valencia, Spain, P. Balbastre, A. Cre-
spo, J. Simo, S. Peiro Universitat Politecncia de Valencia, Spain ”Xtra-
tuM hypervisor for mixed-criticality systems”

[15] Zeroc Inc. Ice 3.6.1 Documentation Manual
https://download.zeroc.com/Ice/3.6/Ice-3.6.1.pdf

[16] M. Garćıa-Valls, T. Cucinotta, C. Lu. Challenges in real-time virtual-
ization and predictable cloud computing. Journal of Systems Architecture
60(9), pp. 726–740. 2014.

[17] M. Garćıa-Valls, L. Fernández Villar, I. Rodŕıguez López. iLAND: An
enhanced middleware for real-time reconfiguration of service oriented dis-
tributed real-time systems Transactions on Industrial Informatics 9(1),
pp. 228-236. 2013.

[18] M. Garćıa-Valls, A. Alonso, J. Ruiz, A. Groba. An architecture for a
quality of service resource manager middleware for flexible multimedia
embedded systems Proc. 3rd Int’l Conference on Software Engineering
and Middleware (SEM). LNCS, vol. 2596, pp. 36–55. 2003.

[19] M. Garćıa Valls, R. Baldoni. Adaptive middleware design for CPS: Con-
siderations on the OS, resource managers, and the network run-time.
Proc. 14th Workshop on Adaptive and Reflective Middleware (ARM). Co-
located to ACM ACM/IFIP/USENIX Middleware. Vancouver, Canada.
December 2015.

[20] J. Cano, M. Garćıa-Valls. Scheduling component replacement for timely
execution in dynamic systems. Software: Practice and Experience, vol.
44(8), pp. 889-910. January 2013.

94

[21] J. Cano, M. GarćıaâValls, P. BasantaâVal. Component framework for
supporting safe and dynamic replacement in realâtime systems. RIAI
â Revista Iberoamericana de Automática e Informática Industrial, vol.
11(1), pp. 98â108. 2014.

[22] J. Duenas, A. Alonso, W. Lopes Oliveira, M. Garcia, G. Leon. Software
architecture assessment. In: Software architecture for product families:
principles and practice. Addison-Wesley. 2000.

[23] B. Bouyssounouse, et al. Programming languages and real-time systems.
In: Embedded systems design: the ARTIST roadmap for research and
development. Springer, 2005.

[24] B. Bouyssounouse, et al. QoS Management. In: Embedded systems de-
sign: the ARTIST roadmap for research and development. Springer, 2005.

[25] B. Bouyssounouse, et al. Adaptive real-time systems development. In:
Embedded systems design: the ARTIST roadmap for research and devel-
opment. Springer, 2005.

[26] M. Garćıa-Valls, A. Alonso, J. A. de la Puente. A dual priority assign-
ment mechanism for dynamic QoS resource management. Future Gener-
ation Computer Systems, vol. 28(6), pp.902-911. June 2012.

[27] C. M. Otero Pérez, L. Steffens, P. van der Stok, S. van Loo, A. Alonso,
J. Rúız, R. J. Bril, M. Garćıa Valls. QoS-Based Resource Management
for Ambient Intelligence. In: Ambient Intelligence: Impact on Embedded
Sytem Design, pp. 159–182. Kluwer Academic Publishers. 2003.

[28] M. Garćıa-Valls. Calidad de servicio en sistemas multimedia empotra-
dos mediante gestión dinámica de recursos. Universidad Politécnica de
Madrid. (2001)

[29] M. Garćıa-Valls, A. Alonso, J.A. de la Puente. Mode change protocols for
predictable contract-based resource management in embedded multimedia
systems. In Proc. of IEEE Int’l Conference on Embedded Software and
Systems (ICESS), pp. 221-230. May 2009.

[30] M. Garćıa-Valls, C. Calva-Urrego, A. Alonso, J.A. de la Puente. Adjust-
ing middleware knobs to suit CPS domains. Proc. of 31st ACM/SIGAPP
Symposium on Applied Computing (SAC), pp. 2027-2030. Pisa, Italy.
April 2016.

95

[31] M. Garćıa-Valls. A proposal for cost-effective server usage in CPS in
the presence of dynamic client requests. Proc. of 19th IEEE International
Symposium on Real-time Distributed Computing (ISORC). York, UK.
May 2016.

[32] A. Alonso, M. Garćıa-Valls, J. A. de la Puente. Assessment of timing
properties of family products. In: ARES Workshop – Development and
Evolution of Software Architectures for Product Families. LNCS, vol.
1429, pp. 161–169. Springer. 1998.

[33] M. Garćıa-Valls, D. Perez-Palacin, R. Mirandola. Time sensitive adap-
tation in CPS through run-time configuration generation and verification.
Proc. of 38th IEEE Annual Computer Software and Applications Confer-
ence (COMPSAC), pp. 332–337. 2014

[34] M. M. Bersani, M. Garćıa-Valls. The cost of formal verification in adap-
tive CPS. An example of a virtualized server node. Proc. of 17th IEEE
High Assurance Systems Engineering Symposium (HASE). 2016.

[35] M. Garćıa-Valls, P. Basanta-Val. A real-time perspective of service com-
position: key concepts and some contributions. Journal of Systems Archi-
tecture, vol. 59(10), pp. 1414–1423. November 2013.

[36] M. Garćıa-Valls, P. Basanta-Val. Low complexity reconfiguration for
real-time data-intensive service-oriented applications. Future Generation
Computer Systems, vol. 37, pp. 191-200. July 2014.

[37] M. Garćıa-Valls, P. Basanta -Val. Comparative Analysis of different mid-
dleware approaches to real-time reconfiguration. Journal of Systems Ar-
chitecture, vol. 60(2), pp. 221-233. February 2014.

[38] M. Garćıa Valls, P. Basanta Val. Usage of DDS data-centric paradigm
for remote monitoring and control laboratories. IEEE Transactions on
Industrial Informatics, vol. 9(1), pp. 567-574. February 2013.

[39] I. Rodŕıguez-López, M. Garćıa-Valls. Architecting a Common Bridge
Abstraction over Different Middleware Paradigms. Ada-Europe 2011, pp.
132-146. Edimburgh, UK. June 2011.

[40] M. Garćıa-Valls, F. Ibánez-Vázquez. Integrating Middleware for Timely
Reconfiguration of Distributed Soft Real-Time Systems with Ada DSA.
Ada-Europe 2012, pp. 35-48. Stockholm, Sweden. July 2012.

96

[41] M. Garćıa-Valls, P. Basanta-Val, I. Estévez-Ayres. Adaptive real-time
video transmission over DDS. Proc. of 8th IEEE International Conference
on Industrial Informatics,. pp. 130–135. Osaka, Japan. July 2010.

[42] M. Garćıa-Valls, I. Estévez-Ayres, P. Basanta-Val. CoSeRT: a frame-
work for composing service-based real-time applications. Proc. of Business
Management Workshops. Lecture Notes in Computer Science, vol. 3812,
pp. 329-341. 2005.

[43] M. Garćıa-Valls, A. Crespo, J. Vila. Resource management for mobile
operating systems based on the active object model. International Journal
of Computer Systems Science & Engineering, vol. 28(4), 195–205. 2013.

[44] R. Serrano-Torres, M. Garćıa-Valls, P. Basanta-Val. Virtualizing DDS
middleware: performance challenges and measurements. Proc. of 11th

IEEE International Conference on Industrial Informatics (INDIN). July
2013.

[45] M. Garćıa-Valls, D. Perez-Palacin, R. Mirandola. Time-sensitive adap-
tation in CPS through run-time configuration generation and verifica-
tion. Proc. of 38th IEEE Computer Software and Applications Conference
(COMPSAC). Vasteras, Sweden. July 2014.

[46] M. Garćıa-Valls, F Gómez-Molinero. Real-time reconfiguration in com-
plex embedded systems: A vision and its reality. Proc. of 9th IEEE Inter-
national Conference on Industrial Informatics (INDIN). Lisbon, Portugal.
July 2011.

[47] J. Garćıa-Muñoz, M. Garćıa-Valls, J. Escribano-Barreno: Improved Met-
rics Handling in SonarQube for Software Quality Monitoring. Proc. of
13th International Conference Distributed Computing and Artificial In-
telligence (DCAI). Sevilla, Spain. 2016.

[48] J. Escribano-Barreno, J. Garćıa-Muñoz, M-.Garćıa-Valls, M.: Integrated
metrics handling in open source software quality management platforms.
ITNG. (2016)

[49] L. Cappa-Banda, M. Garćıa-Valls. Experimenting with a load-aware
communication middleware for CPS domain. ITNG. (2016)

97

