
UAV PLANNING, AUTONOMOUS TRACKING, AND
OBSTACLE IDENTIFICATION AND AVOIDANCE

By

ÁLVARO MELGOSA PASCUAL

Department of Bioengineering and Aerospace Engineering
UNIVERSIDAD CARLOS III DE MADRID

SEPTEMBER 2016

Supervisors:
Manuel Soler Arnedo

Xin Chen

ABSTRACT

The large growth that the civil Unmanned Aerial Vehicles (UAVs) market has experienced
in the last decade is now triggering the urge of both professionals and enthusiasts to use
this technology to perform tasks that would be more difficult to accomplish with their

traditional procedures. However, many times these tasks require precision flight and do not allow
the slightest physical contact of the UAV with its surroundings. Currently, very qualified pilots
are needed since there have not been significant advancements on on-board obstacle detection
technologies, and manual control is still a must.

The main goal of this thesis is to develop an affordable Obstacle Alert and Collision Avoidance
System (OCAS) that can be easily deployed to a wide range of UAVs. The approach followed is
to embark a series of ultrasonic rangefinders to continuously monitor the minimum distance
of the vehicle with its surroundings. The data provided by the sensors is then processed on an
onboard computer, and control commands are sent to the main controller board in the case that
an obstacle is detected and a possible collision identified. The final result is an integrable payload
subsystem that would improve the situational awareness capabilities of any UAV that integrates
it, reducing the risk of collision with its surroundings.

Keywords: UAV, obstacle detection, collision avoidance, system integration, ultrasonic rangefinder,

Ardupilot

i

DEDICATION AND ACKNOWLEDGEMENTS

F irstly, I would like to dedicate this thesis to my family, who have always supported me and
are making a big effort to provide me with the best education.

Secondly, a big thank you to Xin Chen, who not only was the person which I could discuss
technical issues with, but also motivated me every day through her endless optimism. Thank you
also to Manuel Soler for trusting on my progress even though he was not aware of the state of the
most technical parts of the project.

And last but not least, my appreciation for all my friends and classmates at UC3M, who
accidentally excited me to keep working by showing their most sincere interest on the topic I was
working on.

iii

TABLE OF CONTENTS

Page

Abstract . ii

Dedication and Acknowledgements . iv

Table of Contents . v

List of Figures . ix

List of Tables . xi

List of Acronyms . xiii

1 Introduction 1
1.1 Background information . 1

1.2 Socioeconomic environment . 2

1.3 Legal framework . 3

1.4 Motivation . 3

1.5 Project objectives . 4

1.6 Methodology . 5

1.7 Time planning . 5

1.8 Budget . 5

1.8.1 Personnel expenses . 5

1.8.2 Software cost . 7

1.8.3 Hardware cost . 7

2 State of the art 9
2.1 Environment sensing . 9

2.1.1 Radar . 9

2.1.2 Sonar . 10

2.1.3 Lidar . 11

2.1.4 Computer vision . 11

2.2 Collision avoidance . 11

2.2.1 TCAS on conventional aircraft . 12

2.2.2 DJI Phantom 4 . 12

3 A brief introduction to Ardupilot 15

v

TABLE OF CONTENTS

3.1 Basic features . 15

3.2 Ardupilot as part of a UAS . 16

3.3 Advanced features . 18

3.3.1 Flight modes . 18

4 Problem statement 21

5 System design 23
5.1 Requirements capture . 24

5.2 Logical Decomposition . 26

5.2.1 Functional Architecture . 26

5.2.2 Functional Flow Block Diagram (FFBD) . 26

5.2.3 Product Breakdown Structure (PBS) . 30

5.2.4 Functional-Physical matrix . 30

5.2.5 Interfaces definition (N2 diagram) . 31

6 System implementation 35
6.1 The OCAS within the UAS . 35

6.1.1 Overview of the existing UAS . 35

6.1.2 Integration of the OCAS . 36

6.2 Component choice . 37

6.2.1 Sensors . 37

6.2.2 Computer board . 39

6.2.3 Other components . 40

6.3 OCAS peripheral connections (hardware interfaces) 40

6.3.1 Power connection . 41

6.3.2 MAVlink connection . 41

6.3.3 GCS connection . 41

6.3.4 GPIO connection . 42

6.4 Software: Bringing everything together . 44

6.4.1 The Operating System . 44

6.4.2 MAVproxy . 45

6.4.3 The Python environment . 46

6.5 The Python script . 47

6.5.1 Script architecture . 48

6.5.2 Multi-threading capabilities . 48

6.5.3 Log information . 48

6.5.4 Connect to UAV . 50

6.5.5 Observe state . 50

vi

TABLE OF CONTENTS

6.5.6 Take control of UAV . 52

6.5.7 Avoid obstacle . 53

6.5.8 Return control to the pilot . 54

6.5.9 The “main” file . 54

6.6 Graphical User Interface . 54

6.7 Hardware implementation . 55

7 Testing and results 59
7.1 Testing methods . 59

7.1.1 Component testing . 59

7.1.2 Software testing: SITL . 61

7.1.3 System testing . 62

7.2 Results . 63

7.2.1 Ultrasonic rangefinders . 63

7.2.2 Simulator . 64

7.2.3 UAS + OCAS . 65

8 Conclusions 69
8.1 Summary of contributions . 70

8.2 Future work . 71

A Creation of GCS wireless network 73

B SSH connection with the GCS 75

C Technical documentation of the HC-SR04 rangefinder 79

D Threads.py 83

E Logging setup 85

F Connect.py 87

G Sonar.py 89

H Control.py 93

I Auto.py 97

J Main.py 99

K Temperature sensitivity of ultrasonic rangefinders 105

vii

TABLE OF CONTENTS

L GUI.pyw 107

M Raspberry Pi’s interfaces configuration 111

N SonarDriver.py 113

O Channel 7 script trigger 115

P Observe.py 117

Bibliography 121

viii

LIST OF FIGURES

FIGURE Page

1.1 Distribution of potential UAV markets [31] . 2

1.2 Gantt Diagram of the Project . 6

2.1 Highly directional radiation pattern. Source: cisco.com . 10

2.2 The stereo matching problem Source: [9] . 12

2.3 DJI Phantom 4 with stereo camera OCAS . 13

3.1 FlySky FS-i6 Remote Control (www.flyskyrc.com) . 16

3.2 Screenshot of Mission Planner GCS, implementing the MAVlink protocol 17

3.3 Vehicle configurations supported by Ardupilot . 19

5.1 Cost to fix a design error. Source: [29] . 23

5.2 The Logical Decomposition phase . 26

5.3 OCAS Functional Architecture . 27

5.4 Symbology used for the FFBDs . 27

5.5 OCAS Functional Flow Block Diagram. TOP LEVEL . 28

5.6 OCAS Functional Flow Block Diagram. 1st STAGE . 28

5.7 OCAS Functional Flow Block Diagram. 3rd STAGE . 28

5.8 OCAS Functional Flow Block Diagram. 4th STAGE . 29

5.9 OCAS Functional Flow Block Diagram. 5th STAGE . 29

5.10 OCAS Functional Flow Block Diagram. 6th STAGE . 29

5.11 OCAS Product Breakdown Structure . 30

5.12 Example of a N2 diagram . 32

5.13 OCAS N2 diagram for interfaces definition . 33

6.1 Regular Ardupilot UAS architecture . 36

6.2 OCAS-equiped UAS architecture . 37

6.3 Chosen ultrasonic rangefinder: HC-SR04. Source: arduinolearning.com 39

6.4 Raspberry Pi 2 Model B. Source: raspberrypi.org . 39

6.5 Testing platform, with OCAS already integrated . 40

6.6 OCAS hardware layout . 41

ix

cisco.com
www.flyskyrc.com
arduinolearning.com
raspberrypi.org

LIST OF FIGURES

6.7 GPIO pins on the Raspberry Pi 2 model B Source: raspberrypi.org 43

6.8 Schematic of a voltage divider . 43

6.9 Connection of the HC-SR04 sensor to the Raspberry Pi 43

6.10 Software architecture of the OCAS computer . 44

6.11 MAVproxy setup . 45

6.12 Functional flow diagram of the Python script . 49

6.13 Prediction of a collision by the OCAS . 53

6.14 Graphical User Interface . 55

6.15 Default F450 configuration. Source: rcgroups.com . 56

6.16 Final platform architecture . 56

7.1 Testing obstacle . 62

7.2 Ultrasonic rangefinder FOV test setup . 63

7.3 Initial testing site within the city . 65

7.4 Results of the flight test . 66

x

raspberrypi.org
rcgroups.com

LIST OF TABLES

TABLE Page

1.1 Prototype hardware costs . 7

3.1 Summary of the relevant flight modes . 19

5.1 OCAS System-level Requirements . 25

5.2 OCAS Functional-Physical matrix . 31

6.1 Sensor alternatives trade-off study . 38

6.2 Functional and component allocation matrix . 47

xi

LIST OF ACRONYMS

UAV Unmanned Aerial Vehicle

UAS Unmanned Aerial System

RPAS Remotely Piloted Aircraft System

MAV Micro Aerial Vehicle

OCAS Obstacle Collision Avoidance System

TCAS Traffic alert and Collision Avoidance System

GCS Ground Control Station

RTL Return To Launch

VLOS Visual Line Of Sight

BVLOS Beyond Visual Line Of Sight

RADAR RAdio Detection And Ranging

SONAR SOund Navigation And Ranging

LIDAR LIght Detection And Ranging

FFBD Functional Flow Block Diagram

PBS Product Breakdown Structure

SITL Software In The Loop

RC Radio Control

PWM Pulse Width Modulation

IMU Inertial Measurement Unit

GPS Global Positioning System

SBC Single Board Computer

RPi Raspberry Pi

USB Universal Serial Bus

SSH Secure SHell

GPIO General Purpose Input / Output

GND Ground

VCC Voltage of Continuous Current

API Application Programming Interface

GUI Graphical User Interface

TRL Technology Readiness Level

xiii

C
H

A
P

T
E

R

1
INTRODUCTION

The aim of this Chapter is to acquaint the reader with the emerging UAV (Unmanned

Aerial Vehicle) market, and the challenges it is facing on its way towards maturity. Also,

the reasons for its rapid evolution will be exposed and finally, focusing on the contents of

this thesis, the personal motivation and the methodology will be explained to further expand on

the topics of interest in the following chapters.

1.1 Background information

The first remotely radio controlled models appeared in the early twentieth century as small proto-

types for potential manned aircraft. Afterwards, and during most of the century, the investigation

and development lines were directed towards the military scope, in which the main objective of

UAVs, which is still applied today, was to substitute manned aircraft in three types of military

operations, commonly known as “the three D’s" [12, 5]:

• Dirty: operations performed in a contaminated environment.

• Dangerous: operations entailing some risk for the pilot.

• Dull: long and monotone operations, such as monitoring operations.

In the 70’s and the 80’s, efforts were directed to improve the technical characteristics of these

vehicles. But it was not until the late 80’s when a revolution in the industry took place with the

introduction of the GPS navigation system, whose accuracy in geolocation opened a whole new

spectrum of possibilities.

Regarding the civil sector, the potential applications of UAVs in the non-military field are

much more diverse. Nowadays these vehicles are in the process of finding new niche positions

1

CHAPTER 1. INTRODUCTION

in the civilian market, having been introduced up to now in different industry sectors such as

agriculture, forest fire fighting, search and rescue, aerial photography, cartography, or security

and surveillance, among others. Despite the latter, the use of UAVs for civil purposes is relatively

recent in comparison with the military sector. This late implementation in the civilian field was

caused mainly by two limitations which are of minor relevance in the fighting industry: economy

and legislation. [3]

1.2 Socioeconomic environment

Apart from “the three D’s” mentioned in Section 1.1, another reason for the embracement of

UAVs within the industry shall be considered. The final goal of any company is to create profit

to their shareholders, which can be done either by increasing the revenues or by decreasing the

costs of their activities. UAVs enter in the latter category. The consistent usage of smaller tools as

compared with the manned workpower usually means that the equipment costs can be lowered,

as well as the man-hours needed to perform the task [4], not to mention that most of the time the

number of workers needed can be reduced to as low as one or two, in charge of operating the UAS

(Unmanned Aerial System1).

This phenomenon is already proving to be very effective for the companies taking advantage

of it, but research also shows an even bigger potential that is still waiting to be exploited, claiming

that UAVs could have replaced $127 billion worth of human labour in 2015 [31], distributed in

the sectors shown in Figure 1.1.

Value
Infrastructure $45.2bn
Agriculture $32.4bn
Transport $13bn
Security $10bn
Media $8.8bn
Insurance $6.8bn
Telecommunication $6.3bn
Mining $4.4bn

Figure 1.1: Distribution of potential UAV markets [31]

1UAS refers to the bigger system that incorporates one or more UAVs, as well as the Ground Control Station and
other related subsystems

2

1.3. LEGAL FRAMEWORK

1.3 Legal framework

Due to the fast-evolving UAV industry, the aviation authorities have not yet been able to de-

velop a reasonable set of regulations and standards to harmonize the legislation across borders.

Aditionally, this regulatory framework should consider the idea that each system has unique

capabilities and characteristics and also that development and innovation are very important

concepts in the field, and should not be dampened by restrictive rules [30]

However, there have already been some efforts from ICAO to outline some general rules

to give a global sense of what is expected from the UAV sector [20]. In addition to that, some

countries are creating their own legislation to enable the operation of Unmanned Aerial Vehicles

within their territory.

For example, the Spanish government issued an urgent provisional regulation on October

2014 [2] that affects to Remotely Piloted Aircraft Systems (RPAS2) not exceeding 150 kg of

Maximum Take Off Mass (MTOM). Heavier UAVs are subjected to European regulations [14]

Focusing on the smaller segments, UAVs are separated according to their MTOM as follows:

MTOM < 2 kg: Flights Beyond Visual Line Of Sight (BVLOS) are allowed, but conditioned to

the publication of a NOTAM (NOtice To AirMen). Apart from that, all the other rules in the

2 kg to 25 kg apply.

2 kg ≤ MTOM < 25 kg: Only operable in areas separated from groups of buildings in cities, or

groups of people elsewhere. Flight shall always take place in uncontrolled airspace, within

Visual Line Of Sight (VLOS) and at a maximum distance of 500 m from the position of the

pilot, not exceeding 400 ft of height over the terrain.

25 kg < MTOM: Flight is only allowed for firefighting, search and rescue missions. They shall

only operate in uncontrolled airspace and according to the limitations stablished in their

Airworthiness Certificate, as emited by AESA.

Nevertheless, even if Spain or other countries have their own regulations to control the usage of

UAVs in their territories, it is still important to have an international and stable legislation to

allow the sector to grow to its full potential.

1.4 Motivation

Traditionally, the most important payload that could be carried in an aircraft was human

beings, that would perform their mission while aloft. Nevertheless, the advancements on sensing

technology and wireless communications have forced a change on traditional aviation. Apart

from commercial aviation, where the final objective is to transport people form one place to

2RPAS are considered as a subset of the UAV group. Fully automatic vehicles do not belong to the RPAS category,
since the existence of a remote pilot is required at any time

3

CHAPTER 1. INTRODUCTION

another, in almost any other mission the role of the human workforce is to pilot the aircraft

and/or operate the payload systems. This secondary role of the human operators implies that,

given the maturity of the involved technology, they could be substituted by intelligent computer

systems or, at least, disembarked form the aircraft into a safer Ground Control Station (GCS).

The process of “unmanning” the aircraft also brings the advantages of decreasing the weight of

the aircraft and thus improving its endurance and manoeuvrability, avoids putting the pilot in a

dangerous situation, and helps alleviate the errors associated with tedious and repetitive tasks,

among others.

However, there are also some downsides. In the technical department, there are still some

issues regarding the electromagnetic spectrum allocation for the data-link with the vehicle [18],

as well as accommodating unmanned aircraft within the Airspace System [7]. In addition, the

most accused issues for experienced pilots are those related with the loss of situational awareness

that comes as a result of eliminating the physical cues (body inertia, vibrations, noise. . .) and

relying on instrumental readings only [11]. Hence, some enhanced systems need to be integrated

into the vehicle to overcome these limitations, providing the pilots with additional information

for the safe execution of the mission.

Finally, for this project, the goal is to provide a system that reduces the risk of the widest

range of UAVs from crashing with nearby obstacles, so that regular operations are carried with a

higher level of safety. Eventually, the authorities could consider the increase in overall safety

as a standard, triggering the modification of existing regulations to a more permissive set, and

allowing the industry to take advantage of all the benefits that the incorporation of UAVs could

bring to their activities.

1.5 Project objectives

According to the motivation as stated in Section 1.4, the final goal of this project is to develop

a working prototype for proof of concept of a system able to detect and avoid obstacles that

threaten the integrity of the UAV. Towards that end, some more specific objectives can be defined

as follows:

• Identify the requirements needed for the Obstacle Collision Avoidance System (OCAS) to

correctly fulfill its purpose

• Define the functional architecture of the OCAS

• Define the interfaces (communication channels and protocols) to be used by the OCAS for

its correct integration on the UAV.

• Define the interaction channels and procedures between the operator and the UAV equiped

with the Obstacle Collision Avoidance System.

4

1.6. METHODOLOGY

• Develop a first working prototype as proof of concept of the Obstacle Collision Avoidance

System (both hardware and software) and integrate it on a real UAV.

Additionally, the architecture of the solution should be designed with modularity in mind,

permitting easy adaptation of the algorithms for later research activities.

1.6 Methodology

As it can be noticed, the objectives defined in Section 1.5 remember of the initial steps that

are usually taken in the Systems Engineering approach for interdisciplinary design [21]. That

approach will be adapted to the project, and some useful tools and concepts will be used from the

NASA Systems Engineering Handbook [1], such as the requirements capture, the Functional

Flow Block Diagram (FFBD), the Functional Architecture definition or the product integration

via interfaces definition.

Finally the prototype created from the process will be tested in a series of common situations

to prove that the product is capable of completing its task. Also, it will be demonstrated how the

OCAS has been designed with flexibility and modularity in mind, explaining the possibilities to

expand its features and proposing some ideas for future work.

1.7 Time planning

For any big project with defined deadlines, time management is of utmost importance. The

elaboration of the thesis has been carried out during more than 10 months, and the different

work phases have been monitored with a project management software tool. The resulting Gantt

Diagram can be consulted on Figure 1.2.

1.8 Budget

This section describes all costs associated to the project and proposes an estimate of the budget

needed to replicate it. The final cost results on 9521.48 AC, which is divided as follows.

1.8.1 Personnel expenses

The base annual engineering salary for an Engineering Degree holder in Spain is, according to

the Spanish “XVI Convenio colectivo nacional de empresas de ingeniería y oficinas de estudios

técnicos” [15], of at least 17,038.62 AC per year, with a maximum of 1800 working hours. Thus, the

minimum salary can be calculated as 17038.62 AC/1800 h = 9.47 AC/h. With an estimated working

time of approximately 880 hours, the calculated personnel expenses are 8333.60 AC.

5

CHAPTER 1. INTRODUCTION

2015 2016

11 12 01 02 03 04 05 06 07 08 09

Problem statement
Objectives definition

Objectives defined
State of the Art (at Centum)

Legislation study
Familiarisation with F450

GCS software tools
Data-link range improvement

Familiarisation with
Arduino/Electronics

Default sensors
Additional sensors

Serial communication
GPS study

Modular payload
Ardupilot study

Build new platform
Calibration

SITL setup
MAVproxy
MAVproxy

No-fly Zrone
Alternative position determination

Electromagnetic radiation
Stereoscopic cameras

Stereoscopic tests
Problem solving
Platform assembly

Platform calibration
Test platform ready

Software coding on GCS
Software testing on GCS

Raspberry Pi deployment
GUI deployment

Sonar integration
Dronekit scripts incorporation

Final tests
Software frozen

Memoir writting
Thesis hand-in

Figure 1.2: Gantt Diagram of the Project

6

1.8. BUDGET

1.8.2 Software cost

Most of the work has been performed on open-source software systems, such as Arduino /

Ardupilot and Raspberry Pi / Linux. However, the calibration and initial programming and

testing, prior to the payload deployment, was done on a laptop machine running Windows 10 Pro,

listed at 279 AC per license on the Microsoft Store.

1.8.3 Hardware cost

For the hardware part of the project, the aforementioned laptop will be considered together with

all the components needed to build the test platform.

The PC was bought for 500 AC. Assuming a linear depreciation period of 4 years, and that

the dedication to the project equals the amount of total labour hours, the resultant expense is

estimated as 12.58 AC.

As one might expect, the prototype is composed of numerous individual components acquired

to different sources. In Table 1.1, an estimation of their cost is done according to current prices

on relevant stores. Notice that the F450 kit already includes most of the components needed for

the UAV to fly (motors, controller board, frame. . .) as covered by M. Arteta in [17].

Component Unitary Price Units Total
F450 kit 399 AC 1 399 AC
Propeller blades 2 AC 4 8 AC
Radio transmitter / receiver 51 AC 1 51 AC
Telemetry radio 48 AC 1 48 AC
Primary battery 40.85 AC 5 204.25 AC
Secondary battery 14 AC 1 14 AC
Raspberry Pi 33.81 AC 1 33.81 AC
Wireless WiFi adapter 19.95 AC 1 19.95 AC
Ultrasonic range finder 4.50 AC 8 36 AC
Resistor 0.05 AC 30 1.50 AC
Connection wires 0.10 AC 50 5 AC
Camera 24 AC 2 48 AC
Optical flow sensor 36 AC 1 36 AC
TOTAL 904.51 AC

Table 1.1: Prototype hardware costs

7

C
H

A
P

T
E

R

2
STATE OF THE ART

The relatively recent history of “small” (considered as weighting less than 25 kg) commer-

cial UAVs implies that the technologies involved have not reached a high Technology

Readiness Level (TRL) [26] until very recently, or are still under development (TRL 6-7).

For that reason, most of the work considered in the present chapter is not yet ready for the

market and has a great capacity to improve. Universities are actively exploring the autonomous

aptitudes of UAVs, but the economical exploitation potential is still small due to the low reliability

issues that these systems are encountering in non-controlled environments.

In the present chapter, some elements that might be of interest through the development

of the project will be mentioned, together with their most characteristic features. Hence, the

objective of this chapter is to provide some background information on which to later base the

decisions that are to be made during the design phase, rather than exploring all the ongoing

research on the diverse and very active field of UAVs.

2.1 Environment sensing

Knowing the environment is the initial step towards any interaction of a system with its sur-

roundings. That knowledge could in principle be acquired a-priori and then copied into the system,

but when either time-changing or completely unknown scenarios are considered, having a means

of sensing the environment is essential.

2.1.1 Radar

Radar stands for RAdio Detection And Ranging. Its usage dates back to 1904, when Hülsmeyer

registered the patent for his Telemobiloscope [19], using a primitive variant of the radar for

9

CHAPTER 2. STATE OF THE ART

detecting metallic ships.

Nowadays, the radar works by emitting one powerful radio signal impulse against the object

that needs to be located. If the signal reaches a solid object on its path, the electromagnetic

wave will be distorted and part of it will be reflected back to the emission point, where a second

listening antenna can detect it.

The distance of the detected object is calculated by measuring the flight time of the signal

since it was emitted until it is detected, applying the signal propagation speed (3×10
8
m/s for

electromagnetic waves) as correction factor. The azimuth position of the object can be estimated

if the initial signal was created by a highly directional antenna, since the orientation of the

transmitting antenna can be measured, and the sensed object must be contained within the

electromagnetic radiation field.

Figure 2.1: Highly directional radiation pattern. Source: cisco.com

The fact that radar uses electromagnetic waves implies that the response time can be very low,

although some technical issues may arise for the same fact at the time of processing the returned

signal. For that reason, radar-based sensor systems focus on temporal processing techniques to

improve the results of the measurements [23].

2.1.2 Sonar

The ultrasonic rangefinder (commonly known as sonar, for SOund Navigation And Ranging)

relies, like the radar, on the measurement of the flight time of a signal rebounding against the

target. However, instead of being electromagnetic waves, the carriers are sound waves, with a

frequency usually beyond the human hearing range upper threshold (hence ultrasonic).

It is important to mention that the calculation of distance from the flight time of the rebounded

signal is to some degree dependent on the environment: The speed of propagation of sound

depends on the temperature of the medium through which it propagates as a =√
γRgT . Thus,

the temperature of the air should be monitored to compensate for variations during the flight.

Fortunately, the error associated with temperature changes around room temperature is of the

same order than the accuracy of the sensor itself, so it is safe to consider ambient temperature at

the initial calibration stage only and assume it stays constant thereafter.

10

cisco.com

2.2. COLLISION AVOIDANCE

2.1.3 Lidar

LIght Detection and Ranging also works by measuring the time of flight of a signal. In this case,

it is a visible light pulse, usually produced by a laser for its high coherence and low dispersion.

This system is convenient for ranging objects that are small or at a long distance from the

sensor, but the small measuring point of the laser beam has some limitations when the mapping

of a large area is required. In these situations, multiple measurements are usually performed

sequentially with a rotation of the laser emitter between pulses, but the procedure significantly

increases the latency of the system for obstacle detection, and also the complexity of the sensor

system itself.

In summary, lidar is a good alternative for ranging, but not so much for detection.

2.1.4 Computer vision

The usage of regular cameras for physical environment sensing is certainly different than the

previously considered, since it is not the flight time of a pulsated signal what encodes the

information. Instead, one or more cameras provide a two-dimensional array of data each that can

be processed to extract information of distance and location, among others, of any object that is

within frame.

It is in that processing where both the advantages and draw backs of computer vision lie.

On one hand, many different transformations can be applied to the stream of data from the

cameras, and information can be extracted on very diverse aspects such as colour, luminosity,

movement, position, texture. . . [9] Additionally, advanced processing techniques and even artificial

intelligence can be applied to the image, which is a very flexible source of information. On the other

hand though, the aforementioned processing tasks should be computed on a relatively high rate

video stream, which implies several transformations on various video streams (for stereoscopic

vision) with a few million pixels per image, at several frames per second. Furthermore, if obstacle

detection and ranging needs to be performed, more than one viewpoint (and hence more than

one camera) are required, and the matching problem (Figure 2.2) of the objects seen by the two

and the geometric transformations are also quite demanding computational problems. Such a

workload can only be dealt with by higher-end computer graphics cards nowadays at a reasonable

rate for the effective control of a moving vehicle.

2.2 Collision avoidance

The conventional sense and control problem has two very defined parts: the data acquisition

stage that has been studied in Section 2.1 and the actuation of the control variables to modify the

state of the system. In this section, the application alternatives of the latter in TRL 9 (Actual

system proven through successful mission operations [26]) products will be studied.

11

CHAPTER 2. STATE OF THE ART

Figure 2.2: The stereo matching problem Source: [9]

2.2.1 TCAS on conventional aircraft

The Traffic alert and Collision Avoidance System is the standard system mandated for use by

commercial aircraft. It creates a virtual safety volume around the aircraft, which is based on the

time to the Closest Point Approach (CPA) [28].

For the system to work, the host aircraft and the threatening aircraft must both equip an

ATC transponder. If the external aircraft has only a Mode A transponder, only Traffic Advisories

(TA) can be issued by the TCAS; when it is Mode C or S, also Resolution Advisores (RA) are

issued; if the external aircraft is also equipped with a TCAS II, vertical coordination between the

two aircraft is additionally provided by means of an ask-answer procedure.

The system relies on two antennas that are usually placed at the top and bottom of the

fuselage to provide antenna diversity. The signal carriers are 1030 MHz radio waves for the

asking signal and 1090 MHz for the replying ones.

Regarding the actuation component of the system, it is fully manual. When a TA or RA are

issued, the pilots are responsible to take the control of the aircraft and perform the recommended

manoeuvre. Thus, the system itself cannot be considered to be the one avoiding the collision, but

rather helping the higher-level aircraft + crew system accomplish it.

2.2.2 DJI Phantom 4

An Obstacle Collision Avoidance System was not available for commercial UAVs until as recent

as March 2016. Chinese manufacturer DJI unveiled their Phantom 4 emphasising its “aerial

camera” role for video professionals.

Their reason for including such a system is to facilitate the creative process of filming while

the UAV manages the flying aspect of the mission as autonomously as possible. To that end, apart

from the primary recording camera, the Phantom 4 also incorporates two smaller front-facing

cameras that use stereoscopic vision algorithms to detect potential obstacles in the planned

trajectory and modify it on-the-fly. In addition, it also incorporates a lower-level failsafe: when

the vehicle is not able to compute a reasonable alternative trajectory before the obstacle enters

12

2.2. COLLISION AVOIDANCE

within a predefined distance to the vehicle as measured by the stereoscopic cameras, the flight

controller will command a full stop to stationary flight until the obstacle is manually cleared by

the pilot.

Stereoscopic
cameras

Figure 2.3: DJI Phantom 4 with stereo camera OCAS

13

C
H

A
P

T
E

R

3
A BRIEF INTRODUCTION TO ARDUPILOT

As it was mentioned in Section 1.4, it is intended to bring the technology developed within

this project to the widest range of UAVs. However, there exist in the market several

families of controller boards (which mainly consist on a microcontroller or microprocessor,

in charge of all the basic functions required for an stable flight) that can only be used with specific

hardware and/or software, not being compatible with each other since they implement different

communication protocols. Furthermore, some manufacturers work with proprietary software, of

which little information on the low-level functioning is available to the public.

It is clearly impractical to try to target all the existing standards for this project, so a

compromise needs to be made. The thesis will be elaborated for the Ardupilot family of controllers,

for being the most widespread open-source1 alternative. Some of the leading companies [22]

in the sector actively support the Dronecode Project, of which Ardupilot is part, such as Intel,

Qualcomm, Parrot, 3DR, Yuneec, AUAV, Walkera. . . [13]

It is important nonetheless to clarify some concepts and features of any Ardupilot-equipped

UAV. More information can be found at www.ardupilot.org.

3.1 Basic features

The most basic but important feature of the controller is to give control to the pilot over the

vehicle. There are several components that make this function possible.

Firstly, the pilot expresses the desired movements of the vehicle through a Radio Control (RC)

transmitter, shown in Figure 3.1a. The signal at 2.4 GHz is received by the RC receiver located in

the vehicle, depicted in Figure 3.1b. Then the receiver translates the electromagnetic wave into

1The software is being developed at GitHub: https://github.com/ArduPilot/ardupilot

15

www.ardupilot.org
https://github.com/ArduPilot/ardupilot

CHAPTER 3. A BRIEF INTRODUCTION TO ARDUPILOT

several PWM (Pulse Width Modulation) signals, one for each input channel up to a maximum of

8 channels, which are inputted to the controller board. However, for the primary control of the

vehicle, only 4 channels are needed: throttle, roll, pitch and yaw. The additional channels are

used to control extra features such as the flight mode, the landing gear or the camera controls.

(a) RC transmitter (b) RC receiver

Figure 3.1: FlySky FS-i6 Remote Control (www.flyskyrc.com)

The second step is to translate the commands from the pilot into signals to the control

elements of the vehicle. These can vary depending on the type of vehicle (for example the yaw

command affects the rudder in the case of a fixed-wing aircraft, the tail rotor collective control for

a conventional helicopter or the differential throttle in the diagonals for a multicopter) but the

underlying processes are similar.

Every Ardupilot controller board must have at least and Inertial Measurement Unit (IMU)

consisting of a 3-axis accelerometer plus a 3-axis gyroscope for the state determination of the

vehicle. Additionally, a barometer, a GPS and other sensors can be integrated. Hence, reading the

pilot’s commands from the RC receiver and the state of the vehicle from the IMU, the output to

the control elements can be computed by some regular PID control loops (more information on

the topic can be found in [24]). To the output pins of the controller board are connected the control

elements, be it some servo-motors for the control surfaces of a fixed-wing aircraft or brushless

motors with propellers for the case of a multicopter. These elements are externally powered by

the primary battery.

3.2 Ardupilot as part of a UAS

If Ardupilot wants to be used as a professional tool to enhance production or reduce costs, it can

not rely on manual control only. For more advanced missions and proper calibration of vehicles

with diverse configurations and physical properties, it is necessary to tweak the parameters

that the control loops necessitate for their real-time computations. It is in those cases when a

Ground Control Station can become useful. By connecting the vehicle to an external computer,

the operator is no longer limited to the 8 input channels that the RC transmitter can provide.

16

www.flyskyrc.com

3.2. ARDUPILOT AS PART OF A UAS

Instead, the limit on the amount of information that the Ardupilot board can broadcast or absorb

is only bound by the communication protocol that is implemented between the two.

For the Ardupilot ecosystem the protocol used is also open-source and receives the name of

MAVlink2 (MAV stands for Micro Aerial Vehicle). Its open nature allows developers to create a

very diverse set of software and applications to communicate with the UAV, from the widespread

Mission Planner and APM planner, to versions that run on Android devices for on-the-field

operation or developer-oriented libraries that run under Python, for example.

Another feature that is worth mentioning is the lightweight nature of the protocol, which not

only permits the connection via USB cable, but also wirelessly through what is usually called

a telemetry radio, which effectively is a serial transmission of data over a 433 MHz radio wave

carrier.

An experienced operator can take advantage of all the mentioned features to receive real-time

information on the state of the vehicle while it is on the air, and also to send high-level commands

to the vehicle. Those options will be further discussed in Section 3.3.

Figure 3.2: Screenshot of Mission Planner GCS, implementing the MAVlink protocol

2More information on the protocol can be found on qgroundcontrol.org/mavlink/start. The message defini-
tions and generator code can be found at its GitHub repository github.com/mavlink/mavlink/

17

qgroundcontrol.org/mavlink/start
github.com/mavlink/mavlink/

CHAPTER 3. A BRIEF INTRODUCTION TO ARDUPILOT

3.3 Advanced features

For an Ardupilot UAV to be able to automate some missions and procedures there are some

additional requirements. Firstly, the IMU is appropriate for the evaluation of the vehicle’s state

variables, but the knowledge of its environment can only be acquired through absolute positioning

sensors. Those sensors are usually a GPS module for horizontal positioning and a barometer

for altitude measurement. Secondly, a wireless data-link provides a much more flexible way of

interacting with the UAV during the execution of the mission.

3.3.1 Flight modes

Ardupilot has separated the mentioned advanced features in different flight modes, which can be

activated with the 5th channel on the RC transmitter or from the GCS. At the time of writing,

there are 15 different flight modes, but only the most relevant ones for the project will be described

here. A summary of the most important features can be found in Table 3.1.

From this point onwards the concepts involving Ardupilot will be particularised for the

quadcopter variant, since it is the type of aircraft that will be used for the prototype. Similar

information can be found for the rest of supported vehicle configurations, shown in Figure 3.3.

STABILIZE The default mode for manual control. Uses only the IMU data to control the flight.

The pitch and roll channels define the Euler angles (instead of the rotation rate of Acrobatic

mode) so that when the controls are released to neutral position, the vehicle will level off

automatically. The yaw channel does control the yaw rate of the UAV instead, while for the

throttle channel Ardupilot will not compensate for wind or other disturbances.

ALTITUDE HOLD Very similar to the Stabilize mode. The only difference is on the throttle

channel, which controls the ascension rate instead of raw power transmitted to the motors.

When the throttle stick is centered, the vehicle will hold the current altitude using the

information measured by the onboard barometer.

LOITER Incorporates the GPS data to the Altitude hold mode, making it possible for the UAV to

compensate for wind and IMU drift. The pilot still has control on the vehicle similarly to

Altitude hold but when the control sticks are released, the position will be kept within a 1

metre error (provided good quality GPS signal).

AUTO This mode allows to automate missions and procedures. With the help of a GCS application,

such as the one shown in Figure 3.2, the operator can click on a map to define waypoints

and actions (take of, land, point to a certain direction, etc. are within the options) and save

a data file to the vehicle’s internal storage. Later, when the mode is activated, the vehicle

will follow the predefined route without the need of direct input from the pilot. The throttle,

yaw, pitch and roll controls will be disregarded when Auto mode is active, but the pilot can

change the active mode at any time from the RC transmitter.

18

3.3. ADVANCED FEATURES

RTL (RETURN TO LAUNCH) RTL mode is commonly used as a failsafe feature, when commu-

nication either with the pilot or the GCS is lost. It is a very specific version of the Auto mode

that automatically starts the return to Home procedure, landing the vehicle exactly where

it took off from. The Home location is defined as the point were the motors were initially

armed (the arming procedure resembles the engine startup of a conventional aircraft: the

motors will not spin unless the vehicle is armed)

GUIDED The only difference between the Auto and the Guided modes is that whereas in the Auto

mode the mission needs to be completely defined and uploaded to the vehicle before it is

executed, the Guided mode allows for on-the-fly control of the vehicle from the GCS, taking

complete advantage of the MAVlink commands over the telemetry link. This characteristic

makes it very flexible for real-time development of applications.

Mode Sensors used Throttle Roll/Pitch Features
Stabilize IMU Power Euler angles Fully manual

Altitude hold IMU + Barometer Ascension rate Euler angles
Enhanced altitude
control

Loiter
IMU + Barometer
+ GPS

Ascension rate Euler angles Disturbance rejection

Auto
IMU + Barometer
+ GPS

No control No control Mission automation

RTL
IMU + Barometer
+ GPS

No control No control Failsafe

Guided
IMU + Barometer
+ GPS

No control No control Real-time commands

Table 3.1: Summary of the relevant flight modes

Figure 3.3: Vehicle configurations supported by Ardupilot

19

C
H

A
P

T
E

R

4
PROBLEM STATEMENT

The objectives of the project have already been stated in Section 1.5. Following those ideas,

the problem that is to be answered in this thesis can be stated with the following question:

Is it possible to improve the operational safety of a wide range of UAVs
by developing an intermediate functional layer that prevents physical
collisions between the UAV and its surroundings?

The above statement tries to condense the main idea of the thesis in a compact and precise

manner. Nonetheless, some concepts within it might need some clarification:

Operational safety: A reliable collision avoidance system reduces the workload of the pilot so

that higher-level tasks directly related to the operation of the mission can be performed

more efficiently and safely.

Wide range of UAVs: As stated in Chapter 3 the project will focus on the widely-spread Ardupi-

lot firmware, which is currently the leading alternative of open-source UAV controller

software available.

Intermediate functional layer: The proposed solution shall be easily integrable within exist-

ing UAVs; offered as an enhancement to the toolbox of functions of the system. Thus, the

solution shall incorporate additional features to the UAS, while the functions provided by

Ardupilot should remain unaffected.

21

CHAPTER 4. PROBLEM STATEMENT

The problems is believed to be worthwhile answering since, as it was proven in the State of

the Art study (Chapter 2), the technology is not mature and has not been implemented except on

very specific products like the DJI Phantom 4.

Furthermore, a fully operable and reliable OCAS would allow for a more autonomous operation

of the UAV, avoiding the pilot from needing to be focused on the immediate surroundings of the

vehicle, thus permitting for an improved situational awareness and leading to a better overall

execution of the mission. Ultimately, a higher safety level of general UAV operations could lead

the authorities to reconsider the possibility of them flying for civil purposes with less restrictions,

thus enabling companies to save vast amounts of money and manpower on the execution of

activities that are currently being accomplished in a less effective way by human workers.

22

C
H

A
P

T
E

R

5
SYSTEM DESIGN

As mentioned in Section 1.6, the design of the Obstacle Collision Avoidance System will

follow the Systems Engineering approach. The main reason is that Systems Engineering

provides some methods that prevent the errors with the highest consequences when

the system to be designed is complex. As explained by Rolls-Royce Global Chief of Systems

Engineering [10]:

Systems Engineering collects and organises all the information needed to understand

the whole problem, explores it from all angles, and then finds the most appropriate

system solution.

Furthermore, a key study published through INCOSE [29] looked at the phase of detection

of errors, and the consequent cost of fixing them. Cost modelling was validated against a cross-

industry range of defence and aerospace projects. Figure 5.1 shows the results of the study.

Phase of error detection Cost to fix
Requirements ×1 (reference)
Design ×3 to ×8
Build ×7 to ×16
Test ×21 to ×78
Operations ×250

Figure 5.1: Cost to fix a design error. Source: [29]

Hence, in the present chapter, some of the most relevant Systems Engineering tools from the

NASA Systems Engineering Handbook [1] will be applied.

23

CHAPTER 5. SYSTEM DESIGN

5.1 Requirements capture

The design process for a system is requirement driven, since the requirements are what will

define the cost, design, schedule. . . A requirement is a statement about or a characteristic of

something that is needed.

Requirements can be derived from a variety of sources, like customer needs, stakeholders,

regulations, procedures, constrains, etc. However, for this project, customers and stakeholders

will be disregarded (since none exist) and the motivation and problem statement as described in

Section 1.4 and Chapter 4, respectively, will be used instead.

In the present section some requirements will be posed, but only those that directly apply to

the OCAS subsystem or its interfaces, since the platform is considered to be completely functional

prior to the introduction of the solution (following the modularity concept).

Req.

ID
Requirement Traceability

(sourced from)

Traceability

(allocated to)

Certification

1.1 The UAV shall meet European regulations EC No 218/2008 All

1.2 The UAV shall meet Spanish regulations Ley 18/2014 All

Architecture

2.1 The OCAS shall work independently of the UAV Motivation
Power,

communications

2.2 The OCAS shall be self-contained within the UAV Integration Power

Functionality

3.1
The OCAS shall detect obstacles surrounding the

UAV
Motivation Sensors

3.2
The OCAS shall avoid collisions with the detected

obstacles
Motivation

Processing,

actuation

3.3
The OCAS shall take control of the UAV in case

of danger
Req. 3.2 Actuation

3.4
The OCAS shall not interfere with existing

Ardupilot functions
Motivation Communications

3.5
The UAV shall maintain a communications data-

link with the GCS at all time
Safety / FFBD Communications

Performance

4.1
The OCAS shall detect obstacles within the stop

region of the UAV

Technical

constraint
Sensors

4.2
The OCAS shall detect all obstacles of threaten-

ing size

Technical

constraint
Sensors

4.3 The OCAS shall be powered along the full mission Safety / FFBD Power

24

5.1. REQUIREMENTS CAPTURE

Interfaces

5.1 The OCAS shall know the state of the UAV FFBD Communications

5.2 The OCAS shall send commands to the UAV FFBD Communications

5.3 The OCAS shall be accessible from the GCS Human factors Communications

5.4
The OCAS shall be activated and deactivated by

the pilot

Safety / Human

factors
Communications

Safety

6.1
The OCAS shall improve the operational safety

of the UAV
Motivation

Processing,

actuation

6.2
The operation of the OCAS shall not be disrupting

to the workflow of the pilot
Motivation Communications

Reliability

7.1 The OCAS shall avoid any physical collision Motivation Actuation

7.2
The OCAS shall be operative regardless of the

state of the controller board
Safety

Power,

processing

Ergonomics and human factors

8.1
The OCAS shall be operable after a short training

by any pilot
Motivation Communications

8.2
The OCAS should be engaged and disengaged at

discretion of the pilot
Safety / FFBD Communications

Loads

9.1 The OCAS shall stand the same loads as the UAV Integration Structure

Weight

10.1
The UAV + OCAS shall not weight more than the

limit of the UAV segment
Regulations Hardware

Environment

11.1
The OCAS shall withstand the effect of open-air

flight
Integration Hardware

Table 5.1: OCAS System-level Requirements

Notice that Table 5.1 is not static, and should be updated during the design process, since

some of the tools of Systems Engineering are designed to expose missing requirements. Thus,

some requirements have been written at later design stages, as the “Traceability (sourced from)”

column shows. Also, the fourth column is to be completed in the subsystem design stage, when

the system requirements will be allocated to one or more specific subsystems or components.

25

CHAPTER 5. SYSTEM DESIGN

5.2 Logical Decomposition

The Logical Decomposition is an intermediate step between the Requirements Capture and the

Design phases. Its purpose is to understand the manner in which the requirements affect the

way that the system functions, for the requirements loop; and to identify a feasible solution that

functions in a way that meets the requirements, for the design loop, as shown in Figure 5.2

Requirements

Logical
decomposition

Design

Requirements

loop

Design

loop

Figure 5.2: The Logical Decomposition phase

5.2.1 Functional Architecture

The logical decomposition performed during the functional analysis decomposes the top level

requirements and allocates them down to the lowest desired levels. The main outcome of the

process is the Functional Architecture (Figure 5.3), which helps establish relationships between

requirements, and ultimately build a System Architecture.

The main purpose is to create an association between the requirements and the functions that

the system needs to be able to perform in order to meet them. In the process, any discrepancy or

missing items can (and should) be identified and corrected in an iterative manner.

5.2.2 Functional Flow Block Diagram (FFBD)

Once the functions of the system are defined, it is useful to dispose them so that the sequential

use of each of them during the mission is shown. To that end, the Functional Flow Block Diagram

is used. In the FFBD each function is represented by a block, and it is described in terms of

inputs, outputs and interfaces. In the case that a function is composed of several sub-functions,

those will be represented hierarchically from the top level down to the most specific sub-function,

maintaining the general flow.

The FFBD shows what must happen, and provides an end-to-end path considering all the

functionality of the system and the predefined use-case scenarios. Parallel or alternate paths

might be considered.

For the block diagrams depicted in Figures 5.5 to 5.10, the symbology explained in Figure 5.4

is used.

26

5.2. LOGICAL DECOMPOSITION

OBSTACLE COLLISION AVOIDANCE SYSTEM

Communicate with
Ground Control

Create
data-link

Start OCAS

Log information

Send information
to GCS

Stop OCAS

Communicate
with UAV

Create
data-link

Read state

Send commands

Detect obstacle

Monitor environment

Confirm detection

Determine distance

Determine velocity

Establish level of threat

Decide on action

Avoid collision

Compute trajectory

Determine
recquired actuation

Command actuation

Figure 5.3: OCAS Functional Architecture

Function
Represents an individual function or subfunction as defined in the Functional
Architecture from Figure 5.3.

Logic
Represents a logical and or or gate for defining parallel or alternative paths,
respectively.

Reference
Represents a reference block that specifies the origin or destination of a path
from an external function of the system.

Boundary Represents the boundaries of the functional description, be it the whole system
or a subfunction of it.

Indicates the sequential order that is to be followed from one function to another.

Indicates an information flow between two functional blocks.

Figure 5.4: Symbology used for the FFBDs

27

CHAPTER 5. SYSTEM DESIGN

1.0/ Pre-launch
stage

2.0/ Start
mission

and

3.0/ Detect
obstacle

4.0/ Avoid
collision

5.0/ Communicate
with UAV

6.0/ Communicate
with GCS

7.0/ Provide
power

8.0/ Terminate
mission

Figure 5.5: OCAS Functional Flow Block Diagram. TOP LEVEL

Ref./
Pilot input

1.1/ Create
data-link
with GCS

1.2/ Start
OCAS

1.3/ Create
data-link
with UAV

Ref. 2.0/
Start mission

Figure 5.6: OCAS Functional Flow Block Diagram. 1st STAGE

Ref. 2.0/
Start mission

3.1/ Monitor
environment

Ref. 6.0/
Communicate

with GCS

3.2/ Confirm
detection

and

3.3/ Evaluate
distance

3.4/ Evaluate
velocity

3.5/ Evaluate
level of threat

3.6/ Decide
on action

Ref. 4.0/
Avoid collision

Unsafe

Safe

Figure 5.7: OCAS Functional Flow Block Diagram. 3rd STAGE

28

5.2. LOGICAL DECOMPOSITION

Ref. 3.0/
Detect obstacle

4.1/ Compute
trajectory

4.2/ Determine
actuation

4.3/ Command
actuation

Ref. 7.0/
Terminate

mission

Ref. 5.2/
Communicate

with UAV

Figure 5.8: OCAS Functional Flow Block Diagram. 4th STAGE

Ref. 2.0/
Start mission

and

5.1/ Read
state

5.2/ Send
command

Ref. 4.3/
Avoid collision

Ref. 8.0/
Terminate

mission

Figure 5.9: OCAS Functional Flow Block Diagram. 5th STAGE

Ref. 2.0/
Start mission

Ref. 3.1/
Detect obstacle

6.1/ Send
information

to GCS

6.2/ Log
information

Ref. 8.0/
Terminate

mission

Figure 5.10: OCAS Functional Flow Block Diagram. 6th STAGE

29

CHAPTER 5. SYSTEM DESIGN

5.2.3 Product Breakdown Structure (PBS)

Once the functions are properly defined, they need to be allocated to the subsystems that will be

in charge of accomplishing them. To that end, the system is decomposed in its forming subsystems

ensuring that all the functions can be achieved by the system. The decomposition process is

visually shown via the Product Breakdown Structure, which is represented in Figure 5.11.

OBSTACLE COLLISION AVOIDANCE SYSTEM

Hardware

1.0/ Computer
board

1.1/ Processing
unit

1.2/ Peripheral
connections

2.0/ Sensors 3.0/ Structure

3.1/ Sensor
mount

3.2/ Computer
mount

4.0/ Power

Software

5.0/ Program
driver

5.1/ GCS
connector

5.2/ Sensor
operator

5.3/ Signal
processor

5.4/ Actuation
calculator

5.5/ UAV
connector

Figure 5.11: OCAS Product Breakdown Structure

5.2.4 Functional-Physical matrix

Finally, to couple the Requirements (Table 5.1) with the Functional Architecture (Figure 5.3) and

with the Physical product (Figure 5.11), a functional-physical matrix can be built. This tool is

very relevant since it exposes possible mismatches between the three steps, which would lead to

requirements not being met or a product that cannot perform its intended functions. Thus, by

filling the matrix, the designer can go back to previous steps and adjust anything that is needed

in order to avoid the exponential increase in cost that was mentioned at the beginning of the

present Chapter.

For the matrix represented in Table 5.2, the requirements, functions and subsystems have

been represented by their ID as defined in Table 5.1, Figures 5.5 to 5.10 and Figure 5.11,

respectively.

30

5.2. LOGICAL DECOMPOSITION

Subsytem ID
Hardware Software

Req. ID Funct. ID 1.1 1.2 2.0 3.1 3.2 4.0 5.1 5.2 5.3 5.4 5.5
1.1 All ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1.2 All ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2.1 All ∗
2.2 All ∗ ∗ ∗
3.1 3.0 ∗ ∗ ∗ ∗ ∗ ∗
3.2 4.0 ∗ ∗ ∗ ∗ ∗ ∗
3.3 4.3 ∗ ∗ ∗ ∗ ∗ ∗ ∗
3.4 5.2 ∗ ∗ ∗ ∗
3.5 6.0 ∗ ∗ ∗ ∗
4.1 3.1-3.4 ∗ ∗ ∗ ∗ ∗
4.2 3.1-3.4 ∗ ∗ ∗ ∗ ∗
4.3 7.0 ∗
5.1 5.1 ∗ ∗ ∗ ∗
5.2 5.2 ∗ ∗ ∗ ∗
5.3 6.1 ∗ ∗ ∗ ∗ ∗
5.4 1.2 ∗ ∗ ∗ ∗
6.1 4.0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
6.2 6.0 ∗ ∗ ∗ ∗ ∗ ∗
7.1 4.0 ∗ ∗ ∗ ∗
7.2 6.0 ∗ ∗ ∗ ∗ ∗
8.1 1.0,6.0 ∗ ∗ ∗
8.2 1.2 ∗ ∗
9.1 Perf. ∗ ∗ ∗ ∗ ∗ ∗

10.1 Perf. ∗ ∗ ∗ ∗ ∗ ∗
11.1 Perf. ∗ ∗ ∗ ∗ ∗ ∗

Table 5.2: OCAS Functional-Physical matrix

As it can be seen for requirements 9.1, 10.1 and 11.1, they are requirements affecting the

entire system, and thus cannot be associated to any function: they are requirements that impose

hardware constrains only.

5.2.5 Interfaces definition (N2 diagram)

For the correct integration of the system the definition of its interfaces is of utmost importance.

The N2 diagram is commonly used for the development of those interfaces [16].

In the N2 diagram, an N×N matrix is built. In the main diagonal all the systems or subsystems

are placed, while the upper and lower triangles are reserved for the interfaces, which are clasified

into inputs and outputs. An input to any of the modules is represented through its vertical cells,

while the output is placed on the horizontal rows. An example N2 diagram can be found in Figure

5.12.

31

CHAPTER 5. SYSTEM DESIGN

A

B

C

In
pu

ts

In
pu

ts

In
pu

ts

(a) N2 inputs

A

B

C

Outputs

Outputs

Outputs

(b) N2 outputs

A
Out. of A

In. of B

B

Out. of C

In. of A
C

(c) N2 diagram

Figure 5.12: Example of a N2 diagram

For the Obstacle Collision Avoidance System N2 diagram in Figure 5.13, the subsystems

defined in the Product Breakdown Structure (Figure 5.11) will be placed in the main diagonal.

In this Figure, the grey blocks represent external systems to the OCAS, while the blue ones

are subsystems of the OCAS itself. In a regular UAV, with no OCAS implemented, the pilot would

only be executing the outermost green loop: only in direct control with the UAV. Nonetheless, the

OCAS provides an additional layer of safety that is functionally placed between the pilot and the

UAV; but also adds another interface the pilot has to deal with: the GCS connector is the gate

to the OCAS, which in turn connects via the Central Processing Unit to the rest of the system.

Hence, the green interfaces designate the human links with both the OCAS and the UAV.

Further, the yellow interfaces have been highlighted since they represent the traditional

sensing and control problem. Notice how the state of the UAV is transmitted from the UAV

connector (that information is relayed by the UAV) and the sensors to the Processing Unit.

From the hardware-software interface downwards, the information is processed, the actuation

calculated and ultimately the command is sent to the UAV.

The blue interface has been created for information logging in response to Function 6.2 as

defined in the FFBD. It could also serve as a debugging channel during the implementation

phase.

Finally, the black interfaces on the hardware side shows how the system has been designed

meeting requirements 2.1 and 2.2, which stated that the OCAS shall be independent of the UAV

and self-contained. In this case, it has been decided that the OCAS would carry its own power

source to provide energy to its components. However, the power is not transmitted down to the

UAV, which could be more weight efficient but would significantly modify the architecture of the

original UAV, disregarding one of the main requirements from the motivation of the project.

32

5.2. LOGICAL DECOMPOSITION

PILOT

Power

Computer
mount

Sensor
mount

Sensors

Processing
unit

GCS
connector

Sensor
operator

Signal
processor

Actuation
calculator

UAV
connector

UAV

Hardware
Software

Figure 5.13: OCAS N2 diagram for interfaces definition

33

C
H

A
P

T
E

R

6
SYSTEM IMPLEMENTATION

The product realisation phase of the Systems Engineering approach will be presented in

the current chapter instead of the previous one since the focus of this phase was put in

the software part, for the hardware one (mainly structural mounts) being too dependant

on the configuration of the existing UAV. Hence, all the design, implementation and testing of

the software branch of the project were conducted in a parallel manner, as will be exposed in

this part of the thesis. Nevertheless, the final hardware assembly of the system in the working

prototype will also be discussed at the end of the present Chapter for completeness.

Chapter 6 will describe the complete implementation of the Obstacle Collision Avoidance

System within the Unmanned Aerial System starting from the uppermost level and deepening

through the execution of the interfaces and the software layers down to the custom-built control

script.

6.1 The OCAS within the UAS

This section describes the architecture of the UAS prior to the implementation of the OCAS. Then,

the uppermost integration level is explained, emphasising the compliance with Requirement 3.4

(lack of interference with the Ardupilot functions).

6.1.1 Overview of the existing UAS

The regular Ardupilot-based Unmanned Aerial System with Ground Control Station capabilities

is composed of three main subsystems:

Firstly, the UAV, which is considered to be fully operable. That is, the UAV concept encloses

the airframe, propulsion, power source and all the other components as described in [17]; but

35

CHAPTER 6. SYSTEM IMPLEMENTATION

most importantly, the controller board with the Ardupilot software, considered as the brain of the

UAV, which dictates how the vehicle will behave during operation.

Secondly, the pilot with the Radio Control transmitter (see Figure 3.1a) will also be considered

a subsystem of the UAS. He/she has direct control of the UAV when flying in manual mode, plus

is responsible of the operation of the GCS when the UAV is in Automatic or Guided modes (see

Chapter 3).

Thirdly, the computer running the GCS software and having a real-time wireless connection

with the UAV while in the air.

Pilot

GCS

UAV

Radio Control Physical

Telemetry

Figure 6.1: Regular Ardupilot UAS architecture

In addition, the interfaces between these subsystems are depicted in Figure 6.1 and work as

follows:

The Radio Control (RC) link is established between the RC transmitter held by the pilot

and the RC receiver that is directly connected to the controller board. A 2.4 GHz radio wave

transmits information on the position of the control sticks as a PWM signal directly to the

Ardupilot software, as explained in Section 3.1.

Likewise, the telemetry link consists of a 433 MHz duplex radio wave that carries MAVlink

messages from the UAV to the GCS and viceversa, allowing for configuration, calibration and

operation of the autonomous flight modes while the vehicle is aloft.

Finally, the pilot has direct physical access to the GCS computer.

6.1.2 Integration of the OCAS

The integration of the OCAS into the UAS shall preserve the basic Ardupilot functions. Thus, the

architecture should not be significantly modified. he final decision on the UAS architecture after

the integration of the OCAS is shown in Figure 6.2.

With this setup, the original connections and functions are maintained while the OCAS,

which is mounted onboard the UAV, communicates with it through a USB cable via the MAVlink

protocol (the same one used for the telemetry link). Additionally the GCS has a second wireless

36

6.2. COMPONENT CHOICE

Pilot

GCS

UAV

OCAS

RC
Physical

Telemetry

MAVlink (USB) SSH (WiFi)

Figure 6.2: OCAS-equiped UAS architecture

link to the OCAS via WiFi, making use of the SSH (plus optional X Window System forwarding)

protocol. More information on these interfaces is provided in Section 6.3.

6.2 Component choice

Only after properly defining the requirements, functions and architecture of the Obstacle Collision

Avoidance System can the components be chosen to ensure that the system is correctly designed

to meet specifications.

6.2.1 Sensors

The most relevant sensing alternatives were already exposed in Section 2.1. In this Section, the

most appropriate one for the project will be chosen according to the specifications.

Certainly, all the options considered have their advantages and disadvantages. The purpose

of the selection process is to evaluate all of those in a trade-off study which ensures that the final

selection provides the best alternative to the system. The steps to a successful trade-off study are

[25]:

1. Definition of the problem

2. Definition of the constraints

3. Generation of alternative solutions

4. Definition of the evaluation criteria

5. Definition of the weight factors

37

CHAPTER 6. SYSTEM IMPLEMENTATION

6. Fulfillment of the trade study

7. Ranking of the solutions

For the three first steps, those have already been done in Chapter 4, Section 5.1 and Section

2.1, respectively. For the rest of the steps, a tabular format will be used.

The evaluation criteria can be defined as the parameters considered important for the sensors

to fulfill towards the correct achievement of their function, and will be presented on the first

column of the table.

A weight factor will be given to each of the evaluation criteria according to their importance

in the sensing and integration problems. Those will be normalised ensuring that the sum of all of

them add up to unity, and will be presented in the second column of the table.

The trade study will then be fulfilled by rating each of the alternatives on the evaluation

criteria as previously defined. The mark given, ranging from 0 to 1, represents the general

capability of the alternative on the corresponding evaluation criteria.

Finally, the ranking of the solutions is performed by combining (multiplying) the weight

factors with the ratings given to the alternatives on each of those criteria, to ultimately sum all of

those and obtain a single figure for every alternative considered. The objectively most appropriate

alternative is the one with highest rating after the trade-off study.

Computer vision Sonar Lidar Radar
Criteria Weight factor Rating Combined R. C. R. C. R. C.
Accuracy 0.1 0.4 0.04 0.8 0.08 1 0.1 0.6 0.06
Range 0.12 1 0.12 0.4 0.048 0.8 0.096 0.6 0.072
Ease of operation 0.12 0.6 0.072 1 0.12 0.6 0.072 0.4 0.048
Ease of integration 0.15 0.6 0.09 0.8 0.12 0.6 0.09 0.2 0.03
Ease of processing 0.12 0.2 0.024 1 0.12 0.8 0.096 0.6 0.072
Availability 0.12 0.8 0.096 0.8 0.096 0.6 0.072 0.6 0.072
Cost 0.1 0.6 0.06 1 0.1 0.2 0.02 0.8 0.08
Flexibility 0.05 1 0.05 0.4 0.02 0.4 0.02 0.6 0.03
Weight 0.12 1 0.12 0.8 0.096 0.4 0.048 0.8 0.096
TOTAL 0.672 0.8 0.614 0.56

Table 6.1: Sensor alternatives trade-off study

As it can be seen in Table 6.1, the most appropriate sensor to be used in the OCAS according

to the performed trade-off study is the ultrasonic rangefinder. The reasons for that are mainly the

high score obtained in the ease of operation, integration and processing, as will be seen during

the implementation process, as well as its low cost; which were all considered to be important

properties for the chosen sensor to meet for this project.

In particular, the chosen sonar for this project is the HC-SR04, shown in Figure 6.3.

38

6.2. COMPONENT CHOICE

Figure 6.3: Chosen ultrasonic rangefinder: HC-SR04. Source: arduinolearning.com

6.2.2 Computer board

The choice of processing unit for the OCAS is not nearly as difficult as the sensor case. The main

available alternatives are either a microcontroller board or a Single Board Computer (SBC),

which differ in the type of CPU architecture.

A microcontroller board can be as simple as a single Atmel AVR microchip, although they

generally incorporate additional features for easier programming and connection with other

peripherals. The best example of microcontroller boards is the Arduino family. These board usually

incorporate an 8-bit processing unit, which can be considered computationally underpowered

according to present standards, and thus the programs are frequently coded in C/C++ languages

due to their high resource efficiency. Also, these boards do not have any software feature out-of-

the-box, which implies that every required function needs to be programmed from scratch on the

chip.

On the other hand, an SBC can be thought of as a full Personal Computer, except in a

reduced form-factor. These computers do not generally exceed the footprint of a credit card, albeit

embodying all the necessary components such as RAM and non-volatile memory, USB ports

and even the convenient General Purpose Input / Output (GPIO) pins for low-level hardware

integration. Moreover, SBCs are driven by complete Operating Systems (OS), featuring convenient

general kernel and communications tools. Additionally, these computers are able to run virtually

any computer software available, which also means that applications can be programmed in a

wide range of languages.

Figure 6.4: Raspberry Pi 2
Model B. Source: raspberrypi.

org

This brief analysis should be enough to prove that an SBC is

more capable on almost any aspect than a microcontroller board

and significantly more flexible. Thus, for this project, a Raspberry

Pi 2 Model B SBC was selected for the reasons mentioned above

and additionally because it is widely available and runs a full

Debian Operating System. The only disadvantage is its higher

power consumption as compared with the Arduino family of mi-

crocontrollers, which can nevertheless be neutralised by powering

the OCAS with an off-the-shelf portable USB battery pack which

outputs a continuous current of 5V, 2A: just enough to provide

energy to the Raspberry Pi and all the peripherals.

39

arduinolearning.com
raspberrypi.org
raspberrypi.org

CHAPTER 6. SYSTEM IMPLEMENTATION

6.2.3 Other components

Clearly, the most important components of the OCAS are its sensors and processing unit. The

other elements are less critical and the selection process was less exhaustive. The component list

considered for the prototype will only be listed here for completeness and to aid any interested

researcher on the reproduction of the project.

POWER SOURCE As mentioned in the previous section, any portable USB battery pack with at

least 5V, 2A continuous current will sufice to power the computer board and its peripherals.

The one used for the project is the Amazon Basics 5600 mAh battery, which can potentially

last more than two hours of operation with the OCAS.

NETWORK ADAPTER For the connection with the Ground Control Station, a wireless WiFi

network will be used. Unfortunately, the Raspberry Pi does not include any wireless

antenna, so the external TP-Link TL-WN822N has to be mounted on the testing platform,

although any other similar model would be just as suitable.

TESTING PLATFORM The testing part of this project is based upon the Bachelor Thesis by M.

Arteta [17], which provided an already calibrated and flight-capable F450 quadrotor UAV.

Figure 6.5: Testing platform, with OCAS already integrated

6.3 OCAS peripheral connections (hardware interfaces)

As already stated in Section 5.2.5, the main component of the OCAS is the computer board, which

can be considered as a hub on which the rest of the components of the OCAS are brought together.

Thus, the first step is to define the information pathways of the Raspberry Pi with the other

hardware components.

The physical layout of the OCAS is shown in Figure 6.6. Notice that only Raspberry Pi

peripherals are being considered. They are connected in the following manner:

40

6.3. OCAS PERIPHERAL CONNECTIONS (HARDWARE INTERFACES)

OCAS

UAV

GCS

RPi GPIO

Power

MAVlink

SSH (WiFi)

Figure 6.6: OCAS hardware layout

6.3.1 Power connection

For the Raspberry Pi to boot up, the only requirement is to provide a continuous current of 5V

and enough current to power any other peripheral as well as the board, which in any case will

not be higher than 2A. Thus, the battery pack, providing a continuous source of energy during

during the whole duration of the mission is enough to meet the requirement. It is connected to

the Raspberry Pi SBC via a conventional USB type A, at the battery end, to micro-USB type B,

at the computer end; no additional action being required.

6.3.2 MAVlink connection

The connection with the UAV (i.e. with the Ardupilot controller board) is done also via a regular

USB cable, making use of the serial communications protocol. The serial protocol is a simple

manner of tranfering information which consists on transmitting the data one bit at a time,

avoiding the synchronisation problem. Hence, the only issue is that both ends must agree in

advance on the transmission rate. This is done by setting a common “baud rate”, where a baud is

the unit for symbol change (signal event) rate, commonly measured in bits per second. In the

particular case of communicating with the UAV, the messages transmitted through the serial

link are defined according to the MAVlink protocol.

6.3.3 GCS connection

The link with the Ground Control Station is composed of two intermediate steps:

On one hand, the network adapter is connected to a USB port on the Raspberry Pi to provide

the SBC with wireless networking capabilities. This connection is entirely handled by the kernel,

41

CHAPTER 6. SYSTEM IMPLEMENTATION

the drivers of the adapter itself and the operating system, and needs no further action from the

integrator.

The second step is decidedly more complex. Firstly, the Raspberry Pi needs to be set up to

wirelessly connect to the same network as the GCS computer. There are several ways to achieve

this goal, but an uncomplicated one is to create an ad-hoc network from the GCS computer

(running Windows) to which the Raspberry Pi is directly connected. The specific details are

explained in Appendix A. This approach has been mainly chosen for its simplicity and portability,

but notice that there exist more advanced network architectures that could provide significantly

better performance. Secondly, the SSH connection needs to be stablished over the network. The

process involves searching for the Raspberry Pi’s address on the network, connecting to the SSH

port and, optionally, setting up an X server for an easier Graphical User Interface (GUI) with the

OCAS. More details on the steps to be taken are developed in Appendix B.

6.3.4 GPIO connection

The General Purpose Input / Output pins on the Raspberry Pi operate on a notably lower level

than the previous hardware connections. As their name implies, the GPIO pins are the most

general type of connection the Raspberry Pi can handle. The reason is that these pins have to be

manually operated; that is, each of the pins can be set via software to either a HIGH or LOW

state, meaning 3.3V or 0V with respect to the Ground (GND) potential, respectively.

In this project, the GPIO pins will be used to both trigger the ultrasonic rangefinders and

read the returning signal that encodes the information on the distance from the sensor to the

detected obstacle.

Besides, the sonar is equipped with its own microcontroller, which handles the lowest-level

signals. For its operation, it counts with 4 different pins (see Figure 6.3):

1. GND, or Ground, specifies the reference voltage of the device.

2. VCC, which stands for Voltage Continuous Current, powers the sensor at 5V.

3. Trigger is an input signal pin. A HIGH value on this pin triggers (hence the name) a series

of short bursts of sound from the piezoelectric speaker, which will rebound on any close

obstacle.

4. Echo is the output signal pin. The sensor’s microcontroller processes the sound captured

by the microphone and sends a pulse through the echo pin which lasts exactly the same

amount of time that the ultrasonic signal took to rebound on the obstacle and be received

back at the sensor. Knowing the speed of propagation of sound (given by a =√
γRgT) and

the time taken for the wave to travel to the obstacle and back, the distance can be calculated

with d = a · t/2

42

6.3. OCAS PERIPHERAL CONNECTIONS (HARDWARE INTERFACES)

The ultrasonic rangefinder’s technical documentation can be found in Appendix C.

On the Raspberry Pi side, the VCC pin shall be connected to any 5V pin, the GND pin to a

Ground pin, and the Trigger and Echo pins to any numbered GPIO pins, depicted in Figure 6.7.

Figure 6.7: GPIO pins on the Raspberry Pi 2 model B Source: raspberrypi.org

There is one important issue that needs to be noticed, though. The rangefinders work on 5V

only and, while the Raspberry Pi can provide 5V to power the sensors, the GPIO pins can be

damaged if operated at more than 3.3V. Thus, the signal pins must be reduced from 5V to 3.3V

before being connected to the SBC. The solution to the problem is to use a “voltage divider”, which

is a passive circuit that outputs a fraction of the input voltage by means of a pair of resistors,

which are connected as shown in Figure 6.8.

GNDR2R1
Vin

Vout

Figure 6.8: Schematic of a voltage divider

In the present case, for the voltage to drop from 5V to 3.3V, the resistors need to meet:

(6.1)
Vin

R1 +R2
= Vout

R2
⇒ Vin

Vout
= R1

R2
+1 ⇒ R1

R2
= 5V

3.3V
−1 ⇒ R1

R2
= 1

2

So finally, an ultrasonic rangefinder connected to GPIO pins 14 and 15, for instance, would be

connected a shown in Figure 6.9.

R1

R2

Figure 6.9: Connection of the HC-SR04 sensor to the Raspberry Pi

43

raspberrypi.org

CHAPTER 6. SYSTEM IMPLEMENTATION

6.4 Software: Bringing everything together

Having several flows of information arriving to the Raspberry Pi, it is crucial to set up a system

that acquires all the data before it can be processed. In the present section such a system will be

described.

6.4.1 The Operating System

The first software layer on the Raspberry Pi (apart from the kernel) is the Operating System

(OS). In this case, the Linux OS is Raspbian Wheezy, which is a version of Debian adapted to be

run on the ARMv7 chip of the Raspberry Pi.

Raspbian is a complete OS, and as such its abilities are varied, being the most relevant

for the project the network management tools and the capability of running external software

applications. Within the OCAS, Raspbian will be used as container of the software subsystems

specified in the Logical Decomposition phase of the design process (Figure 5.11), plus it will

directly handle the functions associated to the GCS connector. An schematic of the relevant

software architecture to the OCAS is represented in Figure 6.10.

RPi

GCS

UAV

Raspbian

Network tools
SSH client

Python

GUI

MAVproxy

Control
script

SSH

Unix
shell

MAVlink

Figure 6.10: Software architecture of the OCAS computer

As it can be deduced from Figure 6.10, all the interaction from the Ground Control Station

to the OCAS computer is performed through the Unix Shell, which only provides a command

interface with the user. Nevertheless, the SSH connection allows an optional X Window System

protocol forwarding (as mentioned in Section 6.1.2); and a Graphical User Interface (GUI) will be

developed in response to Requirement 8.1, allowing the execution of MAVproxy as well as the

custom control scripts graphically in order to enhance the intuitive operation of the system by

the pilot.

44

6.4. SOFTWARE: BRINGING EVERYTHING TOGETHER

6.4.2 MAVproxy

MAVproxy is an open-source Ground Control Station piece of software that is distributed as a

Python application. Thus, it can be run on any machine on which a Python distribution can be

installed (virtually any operating system).

Its most significant difference compared with traditional GCS software such as Mission

Planner or QGroundControl is that MAVproxy is built for the command line and does not

need a graphical desktop environment to operate (although a small state window and map are

also implemented), which means that it is the most adequate alternative for the operation of

the UAV from the OCAS. Furthermore, another decisive feature is the ability of MAVproxy of

forwarding the MAVlink messages that are received from and sent to the UAV, allowing the

possibility of operating as an intermediate software layer between the UAV and other GCS pieces

of software. This functionality in particular shapes the chosen architecture for the OCAS in terms

of communication between the UAV and the custom control scripts, which will be covered in

Section 6.5.

Concerning the present section, the setup of MAVproxy will be explained.

UAV
/dev/ttyUSB0

MAVproxy

State window

Map
Custom
control
script

Other GCS
software

Serial comm.
UDP: 127.0.0.1:14550

UDP: –.–.–.–:—

Figure 6.11: MAVproxy setup

As previously mentioned and shown in Figure 6.11, the connection from the UAV to the

Raspberry Pi is done via a serial communication through USB cable. The Ardupilot software

utilises a baud rate of 115200 bd/s by default, which is an important parameter that needs to be

specified to MAVproxy before connecting to the vehicle (else the connection will fail). In addition,

the address given by the OS to the USB port (/dev/ttyUSB0 in Figure 6.11) has to be provided too.

Finally, the redirection of MAVlink messages is done via the User Datagram Protocol (UDP),

making use of the Internet Transport Layer. However, a remote Internet connection is not needed,

since both MAVproxy and the intended target (the custom control script) will be running on the

same machine; hence the local IP address can be used (127.0.0.1) together with any available

port of choice. The optional second rerouting path is to be defined at the operator’s discretion,

and can be either a local or remote address.

45

CHAPTER 6. SYSTEM IMPLEMENTATION

The auxiliary Map and State windows are internally created by MAVproxy, using only Python

function calls and libraries.

For completeness, the command to be executed in order to run the MAVproxy GCS software

with the mentioned settings is:
mavproxy.sh Page 1

 1 $ sudo mavproxy.py ‐‐master=/dev/ttyUSB0 ‐‐baud=115200 ‐‐out=127.0.0.1:14550 ‐‐out=
127.0.0.1:14551

6.4.3 The Python environment

Python is an open-source general-purpose programming language built to be powerful and easy

to use. Additionally, it is implemented to run on virtually any machine, providing interpreters

and compilers for most of the operating systems available, which means that the source code

can be seamlessly ported from one system to another without any modifications to the source

code. Furthermore, Python has a considerable community of developers that contribute to the

development of the language through a vast repository of libraries which allow for a greater

abstraction and automation of common tasks.

These features and flexibility of Python make it ideal for the development of the OCAS. In

particular, there exists a community of developers leaded by 3D Robotics who are creating an

Application Programming Interface (API) that provides several useful tools for the communication

and operation of Ardupilot-based UAVs. For instance, DroneKit API1 creates a vehicle class

upon connection to a MAVlink stream (both serial and UDP protocols are supported) which

is automatically updated at a rate of 50 Hz and stores the instantaneous values of important

state variables of the UAV, such as absolute GPS position (latitude, longitude, altitude), relative

position with respect to the take-off location (north, east, down) or velocity in the body-fixed

reference frame, among others. Moreover, it also provides some routines that translate commands

like take-off, change flight mode or guiding instructions and reference states into MAVlink

messages that can be readily sent to the UAV through the vehicle class.

In addition, DroneKit includes a branch of development that aims to provide other developers

with an Ardupilot Simulator. The approach taken is to simulate the Arduino control board and

other hardware on the UAV by means of software, hence the name Software-In-The-Loop (SITL)

simulator. However, DroneKit-SITL does not aim to provide an accurate physical representation

of the UAV [8], since the physical properties change from vehicle to vehicle; the main goal of the

simulator is to emulate the Ardupilot firmware, so that MAVlink communication and commands

can be safely tested prior to their implementation on the physical platform. Conveniently enough,

DroneKit-SITL can be installed as a Python application, and outputs the MAVlink messages via

the TCP Internet protocol, which is additionally supported by MAVlink as an input data stream,

similarly to the Serial communication by the real UAV.

1Documentation can be found at www.dronekit.io

46

www.dronekit.io

6.5. THE PYTHON SCRIPT

Additional documentation on the DroneKit project can be found on their webpage: python.

dronekit.io/.

6.5 The Python script

At this point it can be useful to collect all the information generated in Chapters 5 and 6 to

determine what functions and components have still not been covered and shall be implemented

within the custom control script. To that end, an allocation matrix can be created as represented

in Table 6.2. In this matrix, the functions as defined in Figure 5.3, the subsystems from Figure

5.11 (software branch) and the implementation in Chapter 6 up to this point will be related.

Besides, a fourth column will represent the structure that the Python script will follow, and will

be used during its development and coding phases.

Function Logical component Actual component Script component
GCS data-link GCS connector WiFi / SSH
Start OCAS GCS connector GUI GUI
Send data to GCS GCS connector SSH
Log information Program driver Script Logger
Stop OCAS GCS connector SSH SSH
UAV communication UAV connector Script DroneKit API
Monitor environment Sonar operator Script Sonar class
Determine distance Sonar operator Script Sonar class
Determine velocity Sonar operator Script Sonar class
Confirm detection Signal processor Script Sonar class
Level of threat Signal processor Script Sonar class
Decide on action Signal processor Script Auto class
Compute trajectory Sonar operator Script Sonar class
Determine actuation Actuation calculator Script main
Command actuation UAV connector Script DroneKit API

Table 6.2: Functional and component allocation matrix

As it can be noticed, there are some script components that have not been made modular

(encapsulated in a class). The reason is that those actions are very dependent on the actual

computational approach taken by the developer, and can become significantly complex algorithms.

Since the development of those algorithms is not within the objectives of the project, the coding

phase has been simplified by inserting those functions directly into the main function as simple

routines, even though if complex functionality is to be implemented, the most adequate approach

would be to create classes to group all the related information needed to perform those tasks.

47

python.dronekit.io/
python.dronekit.io/

CHAPTER 6. SYSTEM IMPLEMENTATION

6.5.1 Script architecture

The tasks to be performed by the script are quite time dependent, since they have to be executed

alongside the main mission. Thus, the nature of the script needs to be relatively sequential (fol-

lowing the functional paths from the FFBD in Figures 5.5 to 5.10). Nevertheless, the Functional

Diagrams also show that some tasks need to be performed simultaneously for the correct execu-

tion of the mission. Hence, for the diverging paths in Figure 6.12, a multi-threading processing

approach has been implemented on the functions that are to be evaluated in parallel to each

other.

Figure 6.12 represents the main.py file within the script, from which additional classes and

methods are derived and used during execution. For instance, the “Observe state” blocks are

indeed performed by the Sensor operator from the PBS, and has been implemented as a set of

variables and methods within the Sonar class, allowing for example for the simplified operation

of multiple rangefinders by creating multiple instances of the same class.

In the following subsections within Section 6.5, all the functionality of the Python script will

be explored, starting from the auxiliary classes and functions to finally combine all the missing

parts of the Obstacle Collision Avoidance System into the main Python script. The complete

Python files will be included in the Appendices for completeness.

6.5.2 Multi-threading capabilities

As mentioned earlier, it is important for the OCAS to execute several critical tasks at in par-

allel, avoiding interference between them. Fortunately, Raspbian is a multitasking Operating

System, and Python provides a threading library that manages the system calls invisibly to

the user (more information and derived methods can be found on docs.python.org/2/library/

threading.html).

For achieving better accessibility, the thrd class has been developed to allow calls to the

threading library to perform actions defined by functions which might or might not demand

additional arguments. The complete code is copied in Appendix D.

6.5.3 Log information

Information report is done from the script in two manners: text with relevant data is immediately

printed on the GCS screen through the SSH connection, but additionally those same messages

are stored in a dedicated log folder contained in the script’s directory with precise information on

the time each event is recorded. The logs are handled with the logging library, which is set up

at the beginning of the main file as shown in Appendix E.

Additional information on the logging library can be found on docs.python.org/2/library/

logging.html.

48

docs.python.org/2/library/threading.html
docs.python.org/2/library/threading.html
docs.python.org/2/library/logging.html
docs.python.org/2/library/logging.html

6.5. THE PYTHON SCRIPT

SCRIPT START

Logging setup

Connect
to UAV

Log information

Alert pilot

Observe state:
- Monitor env.
- Confirm detection
- Evaluate distance
- Evaluate velocity
- Compute trajectory

Evaluate
level of threat

Take control
of UAV

Observe
state

Avoid obstacle:
- Determine actuation
- Command actuation

Threat avoided?

Return control
to pilot

SCRIPT END

Safe Unsafe

Yes No

Figure 6.12: Functional flow diagram of the Python script

49

CHAPTER 6. SYSTEM IMPLEMENTATION

6.5.4 Connect to UAV

The file connect.py (see Appendix F) defines the function Connect() which conveniently encap-

sulates the function dronekit.connect2 and makes the default arguments equal to the output

settings of MAVproxy as defined in Section 6.4.2. In addition, the syntax Connect(mode,address)

can be used for the cases when MAVproxy is not set up to work as an intermediate layer, accepting

the Serial, UDP and TCP communication protocols on any local or remote address.

The output of the function is the vehicle class which handles all the communications with the

UAV (through MAVproxy or otherwise) and updates the values of the state variables automatically

on the background, as well as providing some convenient methods for interacting with it.

6.5.5 Observe state

The Sonar class performs the most important functions of the OCAS. It is not only responsible

for operating the ultrasonic rangefinders via the built-in RPi.GPIO library, but also performs

some basic signal processing to determine the speed and velocity of the UAV with respect to the

detected obstacle, deciding if it could become a threat for the flight and triggering the avoidance

manoeuvre. In the future, it might be interesting that these functions, which in principle could

contain rather complex algorithms and processing techniques, would be developed in separate

classes to enhance the modularity and upgradeability of the system.

The Sonar class defines three different methods which operate the sonar and calculate the

distance to the closest obstacle, compute the velocity from distance measurements and evaluate

the potential of a collision to trigger the avoiding manoeuvre, respectively, as can be seen in

Appendix G.

6.5.5.1 Measure distance

The measureDistance() (Appendix G. Lines 41 to 91) method triggers the ultrasonic rangefinder

defined at the initialisation (__init__()) of the class to take a measurement following the

procedure from the technical documentation of the sensor (Appendix C), which specifies to start

with the Trigger pin in LOW state, change it to HIGH state for at least 10 µs, and return to LOW

state. These commands are sent in a parallel thread, created with the thrd class, to avoid timing

issues with the main script. After the Trigger signal is sent, two system interrupts are set with

the help of the Raspberry Pi’s GPIO library to listen to the Echo pin for both the rising and falling

edge, storing the times at which they happen. The distance to the obstacle can be calculated with

the flight time of the ultrasonic signal, which has the same duration as the HIGH state time of

the Echo signal returned by the sonar, with Equation (6.2) where d is the distance to the obstacle,

2In Python, functions derived from libraries prepend the name of the library to the function itself, separated by
the “dot” syntax

50

6.5. THE PYTHON SCRIPT

techo is the time of the HIGH state in the Echo pin and a(T) is the speed of propagation of sound.

(6.2) d = a(T)× techo

2

Unfortunately, the speed of sound depends on the temperature of the air it propagates through.

Thus, if the most accurate results were to be achieved, a temperature sensor should be integrated

to compensate for temperature variations during operation. Nevertheless, the effect that reasona-

ble temperature fluctuations have on the final measured distance is relatively small, as shown in

Appendix K, and can be effectively neglected, setting a(T)= 340m/s as the standard and constant

value for the speed of sound.

Occasionally, the rangefinders give incorrect measurements (probably due to multipath errors,

cross-interference or noise) that can make the algorithms believe that the UAV is moving closer

or faster to the detected obstacle than reality, which causes false-positive activation of the

avoidance procedures. To prevent these kind of errors, a rolling average with a default window of

5 measurements is computed on the distance, even though more advanced filtering techniques

could be implemented in the future, ranging from a basic low-pass filter to the more complex

Extended Kalman Filter (EKF) combined with IMU data [27], for instance.

6.5.5.2 Compute velocity

The computeVelocity() method in the Sonar class computes the speed of the vehicle with

respect to its closest detected obstacle. Notice that since the ultrasonic rangefinders are non-

directional (they provide the distance to the obstacle regardless of the direction it is found, as

long as it lies within its field of view), the returned speed is effectively the normal component of

the velocity vector of the UAV with respect to the obstacle.

Again, due to noise issues, the signal should be filtered before being fed to the decision

module; but this time the rolling average does not seem appropriate since the velocity can be

modified at a fairly high rate on quadcopter vehicles as is the case for the testing platform. Thus,

a first-order, three-data-points backward difference approach is suggested [6], since it provides

convenient damping properties, although higher-order or bigger stencil approximations would

also be appropriate.

The mathematical derivation is as follows:

The normal component of velocity obeys the equation

(6.3) v = dx
dt

where x is the distance measurement taken by the ultrasonic rangefinder.

Performing the Taylor expansion to that equation at both the previous data point and its

preceding, that is, at t1 = t0 −∆t1 and t2 = t0 −∆t2 being t0 the most recent data point, the

51

CHAPTER 6. SYSTEM IMPLEMENTATION

expressions obtained, respectively, are:

x1 = x (t1)= x (t0)− dx
dt

∣∣∣∣
t0

(t0 − t1)+O
(
∆t2)

(6.4)

x2 = x (t2)= x (t0)− dx
dt

∣∣∣∣
t0

(t0 − t2)+O
(
∆t2)

(6.5)

Summing both equations together:

(6.6) x1 + x2 = 2x0 − dx
dt

∣∣∣∣
t0

[(t0 − t1)+ (t0 − t2)]

Since dx
dt

∣∣
t0
= v(t0):

(6.7) v (t0)= v0 = 2x0 − x1 − x2

2t0 − t1 − t2

From equation (6.7), v0 is the returned value that is used to predict a potential collision.

6.5.5.3 Calculate collision

To successfully predict a potential collision, the future state of the vehicle shall be estimated. For

the first prototype, the collision will be anticipated considering the present position and velocity

of the UAV with respect to the closest obstacle, together with some intrinsic parameters.

The algorithm computes the parameter tsaf e which encapsulates all the available information

so that when tsaf e < 0, a collision is expected to happen.

(6.8) tsaf e = tcoll ision − treaction − tstop − tmargin

From equation (6.8), tcoll ision is the estimated time to the obstacle computed with the actual

velocity as computed in Section 6.5.5.2, treaction is the time taken by the Python script to actually

take control of the UAV after the obstacle situation has been considered as unsafe, tstop can be

estimated according to the avoidance procedure as the time it would take to completely stop the

vehicle after control has been taken by the script, and finally tmargin is a figure representing the

clearance to the obstacle after the avoidance manoeuvre is complete, also accounting for possible

sensor errors, as shown in Figure 6.13.

6.5.6 Take control of UAV

When the condition is met that the UAV is approaching the detected obstacle and tsaf e is

calculated as smaller than zero, the trigger is released for the Python script to take control in

order to avoid the collision. The most appropriate way, as explained in Section 3.3, is to activate

Ardupilot’s Guided mode to allow the script to send commands to the UAV in real time.

Thus, the Control class defines the methods take(), checkTake(), give() and checkGive()

which, when called in pairs, perform the actions given as arguments (e.g. send a MAVlink

52

6.5. THE PYTHON SCRIPT

x0

v0

tcoll ision
Crash

treaction

v0

Script
in control

tstop

v = 0

tmargin

Figure 6.13: Prediction of a collision by the OCAS

command to the UAV) while simultaneously check for a certain condition to be met (for instance:

the message was successfully sent, the vehicle has stopped or reached the commanded position,

etc.), both in independent parallel threads to avoid interference with the main function or with

themselves (the complete code can be found in Appendix H).

Finally, when both the take() and checkTake() threads are terminated (indicating that the

action was successful) the script advances to the so called “autonomous flight”, which in the

Python script’s scope represents the avoidance manoeuvre, not to be confused with Ardupilot’s

Auto mode.

6.5.7 Avoid obstacle

The obstacle avoidance phase can be accomplished in a wide variety of actions, from real-time

control to higher-level trajectory planning. However, being Ardupilot the main controller of the

UAV, some of its features can be used to make the algorithms simpler in this first proof of concept.

For example, the default behaviour of the quadcopter UAV when Guided mode is activated

and no other MAVlink command is received from the GCS (or the OCAS) is to loiter in place by

making use of the GPS data, which is a reasonably effective manner of preventing the collision

by completely stopping the vehicle.

Furthermore, the MAVlink protocol defines several message headers which allow for the

straightforward definition of the desired position or velocity, being responsible for the state

transitions the Ardupilot board itself. Thus, any function defining a MAVlink command can

be passed to the Auto class (full code in Appendix I) which, operating in a similar manner as

the Control class, performs the specified action in one thread while a second one checks for a

53

CHAPTER 6. SYSTEM IMPLEMENTATION

condition to be satisfied before killing the first thread and itself, hence considering the avoidance

manoeuvre as complete.

6.5.8 Return control to the pilot

Once the obstacle is considered to be cleared, control needs to be returned to the pilot in a safe

manner. The procedure is handled by the Control class’s methods give() and checkGive() in

an identical way as explained in Section 6.5.6.

Besides, it has been found that the most appropriate action to return control is to change to

Altitude Hold mode, since such mode will try to balance the UAV while maintaining a constant

altitude, provided that the control sticks of the transmitter are in a centred position.

6.5.9 The “main” file

Finally, the main.py file is what should be executed by the pilot. It contains the required sequen-

tial calls to the previously mentioned functions and methods, together with the definition of the

functions that are passed to them as arguments.

The complete file can be found in Appendix J, but the main blocks it is divided in are:

1. Import of the relevant libraries and files.

2. Logging setup, as explained in Section 6.5.3.

3. Connect to the vehicle (Section 6.5.4), returning the vehicle class.

4. Operate and monitor the information from the ultrasonic rangefinders (Section 6.5.5). This

phase will not be exited until tsaf e < 0.

5. Take control of the vehicle, changing to Guided mode as explained in Section 6.5.6.

6. Perform the manoeuvre to avoid the detected obstacle (Section 6.5.7). The manoeuvre is

also defined within this step, and passed as argument to the Auto class.

7. Safely return control to the pilot, as described in Section 6.5.8.

8. End the script by closing the external connections and resetting the GPIO pins on the

Raspberry Pi (to avoid errors on subsequent executions).

6.6 Graphical User Interface

The task of the GUI is to facilitate the operation of the OCAS by a briefly trained pilot without

much knowledge on Linux systems. Hence the GUI shall be able to generate the software

architecture depicted in Figure 6.11 effortlessly every time the OCAS is initialised.

54

6.7. HARDWARE IMPLEMENTATION

A graphical Python application has been created with that purpose, making use of the

Tkinter library, whose code can be seen in Appendix L, with further documentation on docs.

python.org/2/library/tkinter.html. A screenshot of the application itself is shown in Figure

6.14.

(a) Windows version

(b) Linux version

Figure 6.14: Graphical User Interface

As it can be seen, the two versions have minimal differences. Mainly, the Windows version,

which was used in the early testing phases, provides the options of launching the SITL simulator

as well as the Mission Planner GCS software for in-depth analysis of the incoming data (the

lower branch in Figure 6.11). Also, both versions autocomplete the MAVproxy fields according to

the system they are run from, minimising errors and avoiding the memorisation of parameters

by the pilot.

6.7 Hardware implementation

The default configuration of the F450 frame is with the main battery directly on top and the

Ardupilot board between the upper and lower plates, to better avoid shocks and electromagnetic

noise from the motors, as shown in Figure 6.15

However, the inclusion of the OCAS, with its independent power source, sensors and computer

board, implies that the platform needs to be modified in order to fit the additional components.

The followed approach is to add a second bottom plate below the original one, separated by 5 cm.

Also, the landing gear shall be extended to avoid touching ground with the belly of the vehicle.

The distribution of the components had to be altered to improve the stability and accessibility

55

docs.python.org/2/library/tkinter.html
docs.python.org/2/library/tkinter.html

CHAPTER 6. SYSTEM IMPLEMENTATION

Figure 6.15: Default F450 configuration. Source: rcgroups.com

of the UAV, moving the heavy main battery to the lower deck and mounting the Raspberry Pi

and its power source on the upper plate. Room was also made for the sensor mount and the WiFi

adapter over the lower plate, next to the main battery.

The resulting platform is displayed in Figure 6.16.

(a) Front view (b) Side view

(c) Top view (d) Back view

Figure 6.16: Final platform architecture

56

rcgroups.com

6.7. HARDWARE IMPLEMENTATION

Notice that the F450 platform is not designed to carry the OCAS. This fact imposes some

limitations to the UAV since the weight is significantly increased, affecting manoeuvrability and

flight time. Nevertheless, the main purpose of this project is not to develop the platform, being

the existing one adequate enough for the testing phase of the OCAS.

57

C
H

A
P

T
E

R

7
TESTING AND RESULTS

In order to prove the effectiveness of the Obstacle Collision Avoidance System, it needs to

be tested to check that it meets the requirements and design specifications. Hence, a set

of individual tests have to be designed to assess the capabilities of each of the components

involved in the system.

The present chapter will cover the experimental setups and results of those experiments

performed on the critical components, subsystems and, finally, the system as a whole in a realistic

environment.

7.1 Testing methods

Most of the testing was done in parallel to the implementation of the design into the real product,

ensuring that the system was built over robust and properly working components, since possible

modifications to the design are significantly more costly the later the development phase in

which errors are detected (see Figure 5.1). Furthermore, tests can give valuable insight on the

functioning of the components, which can prove useful in the decision making process within the

implementation stages, effectively improving the overall performance of the system.

Thus, the actions described in this chapter can be seen as complementary and, in some sense

also contributing, to the implementation phase of the OCAS.

7.1.1 Component testing

The validation of each individual component is assumed to be successfully done by the manufac-

turer. Therefore, comprehensive testing will only be performed on the parts of the system that

have been actively developed during the execution of this project, such as the interfaces and the

59

CHAPTER 7. TESTING AND RESULTS

operation algorithms of the ultrasonic rangefinders, since they are a critical component of the

OCAS.

7.1.1.1 Interfaces

Assuming that the stock UAV interfaces (RC transmitter / receiver, telemetry link with GCS)

are already tested and working, the connections to be verified are those involving the OCAS

only, shown in Figure 6.6. In particular, the GCS connection over WiFi is of higher interest, since

the power connection is straightforward to check by ensuring that the Raspberry Pi boots when

plugged; and the MAVlink serial connection should not entail any difficulty once the appropriate

communication port and baud rate are selected upon startup of MAVproxy (which is automatically

done when using the GUI for that purpose). Also, the testing of the GPIO connection will be

covered in Section 7.1.1.2.

Concerning the network connection of the Raspberry Pi, it is controlled by the Raspbian OS.

Having set up the ad-hoc network from the Windows machine at the GCS as specified in Appendix

A, the Dynamic Host Configuration Protocol (DHCP) server should be properly configured to

imitate the Local Area Network (LAN) settings to which the GCS machine is connected. Thus, the

DHCP service will provide the Raspberry Pi with a compatible IP, together with other important

network parameters, automatically.

Nevertheless, the problem with DHCP is that the address of the computers connected to the

network will occasionally change, altering the settings for a successful SSH connection (those

varying settings can be found by following the steps in Appendix B). Thus, for a more convenient

debugging option, an static IP interface was selected on the Raspberry Pi’s ethernet port.

Finally, in order to resemble the described setting on the Raspberry Pi, the configuration

must be done by modifying the interfaces file which is present in all Debian-based Operating

Systems at /etc/network/interfaces. The specific file for the OCAS computer board is copied in

Appendix M for completeness, together with an example of the wpa_suplicant.conf file which

holds the parameters for the wireless network connections.

In terms of the evaluation of the connection, within the scope of the project, it is considered

that the interface is successfully connected if the communication is responsive and stable, which

can be certainly proven by construction1, following the steps in Appendices A and B.

7.1.1.2 Ultrasonic rangefinders

The selected HC-SR04 sensors are mainly built to be connected to Arduino microcontrolers, which

operate at 5 V. Hence, in order to obtain some familiarity with their usage, as documented by the

manufacturer (see Appendix C), the operation was initially made from an Arduino Mega board,

1From Wolfram Mathworld: A constructive proof is a proof that directly provides a specific example, or which
gives an algorithm for producing an example. Constructive proofs are also called demonstrative proofs

60

7.1. TESTING METHODS

which would trigger the ultrasonic signal and receive the processed echo to be transformed into

the distance to the closest obstacle.

Ensuring that all the connections on the Arduino board were successful, the following logical

step is to perform the same test from the Raspberry Pi, which inherits the inclusion of the voltage

dividers (Figure 6.8) and the Python GPIO libraries. It was during this stage that the Sonar class

was developed, requiring only a “driver” file which would make calls to the Sonar’s methods, and

can be found in Appendix N.

Apart from triggering the ultrasonic rangefinders, the driver file would print the measured

distance for any amount of attached sensors and display a graph with their values together with

the calculated velocity, to help with their study in the Results section.

On the hardware side, it is known that the ultrasonic rangefinders are rather directional

sensors and do not perform at their best if the obstacle is not situated directly on the symmetry

plane. In order to assess the maximum spatial capability of the sensors, a 4m2 aluminium plate

was used as object to be detected, placing it in various positions in order to determine the spatial

range limits in terms of maximum angles at which the ultrasonic signal is adequately reflected

back to the sensor, getting a successful reading on the distance.

7.1.2 Software testing: SITL

Prior to the implementation of the OCAS in the real UAV, and knowing by individual tests that

the hardware components were working properly, it was necessary to test the definition of the

MAVlink messages that were to be sent to control the UAV in flight. Furthermore, it was of utmost

importance that the navigation coordinates were correctly defined, and also the transformations

between different reference systems, since the MAVlink protocol only supports commands in the

global (latitude, longitude, altitude) reference system, while for physical obstacle navigation it is

more convenient to define the procedures either in Flat Earth (North, East, Down) or even body

fixed (x, y, z) reference frames, from which the transformations needed to be computed.

To ensure safety during the software testing phase, the scripts were initially tested in a

simulator. In particular, the DroneKit development team provides a Software-In-The-Loop (SITL)

simulator that works in a similar manner than a real Ardupilot UAV would.

Software-In-The-Loop means that, for the control algorithms, only software input is consid-

ered. Hence, the physical characteristics of the UAV, together with its default sensors (IMU,

barometer, GPS. . .) all have what is considered to be a reasonably accurate software representa-

tion of their hardware counterparts (accuracy which, in the case of the SITL simulator, is not

where the emphasis has been put as studied in [8]). Nevertheless, the existent inaccuracies do

not present any major problems for the script testing since the closed-loop PID control algorithms

ensure that disturbances and errors are cancelled, finally reaching the requested state albeit by

taking slightly different transient responses.

61

CHAPTER 7. TESTING AND RESULTS

What is of higher importance in the software testing phase is the actual interpretation of

the MAVlink commands by the Ardupilot control board, and the general physical response to

them. Fortunately, it is in the Ardupilot firmware simulation where the SITL software excels,

since the simulator runs the exact same source code, only adapted to run on a regular computer

rather than an Arduino board and to receive input from the software models rather than the real

sensors.

However, the simulation of the default sensors via software means that the OCAS is not

implemented (for being a custom build for this project). Thus, the tsaf e < 0 condition can not

be computed in the simulated environment. For the purpose of testing, the sonars step in the

main.py file of the custom script was adapted to include the monitorisation of Channel 7 on

the RC transmitter, which would cause the same reaction as the ultrasonic rangefinders at the

change of state of the corresponding switch, by modifying the lines 41 to 93 on Appendix J by the

fragment of code in Appendix O, accompanied by the Observe class from Appendix P.

Finally, it is worth mentioning the role of the simulator within the rest of the subsystems of the

OCAS, since SITL is only aimed at replacing the UAV block from Figure 6.6. The MAVlink stream

of data out of the simulator is transmitted using the TCP protocol, which can be substituted in

the MAVproxy startup options instead of the serial address that is used for the connection with

the UAV. Hence, the two leftmost blocks in Figure 6.11 would be substituted by the simulator,

with the TCP interface with MAVproxy, being this change completely transparent to the Python

script, which does not need any further modification.

In addition, in the Windows version of the GUI application, the option to launch the simulator

and autocomplete the address and port fields on the MAVproxy parameters (see Figure 6.14) was

included to facilitate the testing stages of the project, together with the Mission Planner button,

which greatly simplify the testing workflow.

7.1.3 System testing

Figure 7.1: Testing obstacle

As the last step in the validation process, the

OCAS shall be tested as a complete system

in a realistic scenario. For that purpose, the

full operative UAS was taken to a flight field

and flown against a simulated soft (cardboard)

obstacle to avoid any serious damage in case of

failure, as shown in Figure 7.1. In this stage,

the logs (defined in Section 6.5.3) acquire max-

imum importance since they allow to compare

and contrast the data and sequence of events

with the video footage from the tests.

62

7.2. RESULTS

7.2 Results

In the present section, the results concerning the previously described tests from which a valuable

lesson can be extracted will be discussed. Successful tests in which the systems work as expected

will be left out of the discussion in the case that they do not contribute to any further knowledge

on the functioning of the system.

7.2.1 Ultrasonic rangefinders

Two main issues appeared when assessing the performance of the sonars: First, the Field Of View

(FOV) of each individual sensor is quite limited, which encouraged for the incorporation of an

array of several sensor with slightly different orientations to cover a wider range. On the other

hand, the implementation of more than one rangefinder created some unwanted effects when

operating simultaneously, since the signal from one of them could be seen as the echo reflection

of the previously triggered sensor, causing ghost signals and bad readings.

In terms of the sonar’s capabilities, the tests with the aluminium plate as obstacle placed at

approximately 2 m from the sensor unveiled that their maximum FOV against a large surface

completely perpendicular to the line of sight is of 35◦, while the maximum inclination that reflects

a valid signal is of 20◦ with respect to the plane of symmetry, as shown in Figure 7.2.

< 35◦

< 20◦

Sonar

≈2m

Figure 7.2: Ultrasonic rangefinder FOV test setup

These limitations in the maximum FOV imply that more than one sensor with slightly

different orientations shall be used to cover the complete space in front of the UAV. For the first

prototype, 3 sonars were mounted with approximately 20◦ between them, which ensures that the

complete frontal path is covered during forward flight.

63

CHAPTER 7. TESTING AND RESULTS

However, operating more than one ultrasonic rangefinder generates an additional problem,

since they generate and receive identical signals for their measurements, implying that the signal

generated from one sensor can be captured by a different one, creating misleading signal flight

times. This problem can be mitigated in two different ways. First, triggering the sonars all at the

same time would generate an assortment of similar signals from which no sensible discrimination

can be done; the solution is to send the trigger signals at different intervals in time, ensuring

that the echo signal from one sonar is received before the trigger signal of the next one is sent.

Nevertheless, there can still be lost signals and multipath errors which need to be alleviated.

Thus, the second step can be to filter the signals to account for suspicious discrepancies, which in

the scope of the first prototype was done by performing the rolling average of the last several

measurements (see Section 6.5.5.1), although more advanced signal processing techniques can

definitely provide better results.

7.2.2 Simulator

There is one essential difference between a simulator and reality: any simulator represents a

model of the physical world, but the physical world is so complex that no simulator can achieve

an infinitely precise representation of reality.

That being said, there are some physical effects that are not implemented in the SITL

simulator. For example, the input from the simulated sensors perfectly represents the calculated

state of the UAV, albeit with some artificial gaussian noise added to them according to their

individual accuracy and response rates.

This fact became a problem when the SITL validated software was to be tested on the real

UAV. For example, while the relative location computations and MAVlink commands appeared to

work perfectly well in the simulator, there was some unknown phenomenon that was causing

the real UAV to behave violently instead of maintaining the position when the Guided mode was

activated by the script.

After several weeks trying to find the root of the problem, and analysing all the inputs that

could be affecting the behaviour of the Ardupilot controller, it was concluded that, since the GPS

sensor was a requirement for the loitering capabilities of the Guided mode, and the tests were

being done in a controlled space within the city (see Figure 7.3), surrounded by high buildings,

there was a significant chance that the reception of the very weak GPS signals from the satellites

(orbiting in Medium Earth Orbit at around 20,200 km) were being blocked and / or affected by

the surrounding walls.

This phenomenon is called multipath error: the GPS sensor can determine its position by

receiving the signals from at least 4 satellites for which their location in the sky (ephemeris) and

the precise time of transmission of those messages is known. By comparing the time of arrival of

the signal with the time of emission, the GPS module can calculate the exact distance to that

particular satellite. Then, by triangulating (intersecting the spherical loci of) those distances

64

7.2. RESULTS

Figure 7.3: Initial testing site within the city

(and solving for the clock bias), the global position of the vehicle can be precisely determined.

However, the high propagation speed of the electromagnetic waves (speed of light, ≈ 3×108 m/s)

conveys that a small mismatch in the time of arrival of the signal can generate large errors in

the final calculated distance from the GPS module to the satellite. Furthermore, the GPS signals

can rebound on the walls of buildings, effectively covering more distance than the straight line

that joins the satellite and the sensor, significantly magnifying the effect.

Once the possible source of error was pointed down, the only action needed to verify or discard

it was to move to a countryside location for the tests, which indeed proved the multipath error to

be the source of the unwanted behaviour of the UAV in the preceeding tests.

The lesson to be learnt from these events is the dependence of the Guided mode on a high

quality GPS signal, which implies that the solution presented in this thesis is not still applicable

to indoor nor urban flight; at least not if the control commands encode information on the global

location of the UAV. Nevertheless, in future work, some control procedures could be implemented

in order to consider the input streams from the ultrasonic rangefinders as the main source

of information for the navigation algorithms, overriding the RC transmitter channels directly

instead of commanding higher level “go-to” manoeuvres to the Ardupilot control board.

7.2.3 UAS + OCAS

Finally, it is necessary to confirm that each of the subsystems are properly integrated and are

able to work together for a common goal within the UAS. After a realistic flight test, the logged

information provides some valuable insight on the execution of the tasks and their effectiveness

65

CHAPTER 7. TESTING AND RESULTS

to actually avoid the collision with foreign obstacles.

For the selected flight test, vast amounts of data are recorded (more than 5000 individual

messages) containing information on the complete state of the UAV as recorded from all the

onboard sensors. Fortunately, since the particular script that was run defined as the avoidance

manoeuvre to command a climb of the vehicle and the vehicle was flying mostly forward during

the test, the different stages of the flight can be easily recognised from the relative altitude

and the y-position with respect to the take off location in the body-fixed reference frame plots,

depicted in Figures 7.4a and 7.4b, respectively.

Additionally to Ardupilot’s logs, the data recorded from the Python script itself is overlayed

to show the precise moments at which commands are being sent to the UAV, and its response

to them, indicating who is in control of the vehicle as the test progresses. Furthermore, from

the telemetry logs the flight modes of the UAV at any instant of time can be extracted, as are

displayed at the bottom of the plot.

t [s]
0 5 10 15 20 25 30

h
[m

]

-3

-2

-1

0

1

2

3

4

Stabilize Guided Loiter Stabilize

Pilot in
control Taking

control
Script in control

Returning
control

Pilot in
control

tsafe < 0

(a) Relative altitude during the flight test

t [s]
0 5 10 15 20 25 30

y
[m

]

-12

-10

-8

-6

-4

-2

0

2 Stabilize Guided Loiter Stabilize

Pilot in
control

Taking
control

Script in control
Returning
control

Pilot in
control

tsafe < 0

(b) Longitudinal position during the flight test

Figure 7.4: Results of the flight test

As it can be seen, the initial stages of the flight are quite unsteady on the altitude side while

the pilot tries to approach the testing obstacle. Then, when the ultrasonic rangefinders determine

66

7.2. RESULTS

that the state of the UAV with respect to the obstacle is not safe enough, the Guided mode

gets activated (after a ≈1 second delay), and the vehicle stabilises trying to keep the position

of activation of the mode and effectively stopping the UAV while the command is sent. A set of

functions translates the position that lies exactly 4 metres over the actual position of the UAV at

the time of the computation and sends the MAVlink message to Ardupilot, which starts to climb

to the commanded location, which will be maintained until the pilot is given back control. Notice

that the GPS localisation is only accurate up to one metre, and small variations can be seen on

the horizontal position of the UAV for that reason, while the altitude is better maintained during

the Guided phase as a result of the more precise barometer.

After a small delay, the Python script assumes that the UAV has reached the commanded

location, and proceeds to return control to the pilot, which takes ≈2 seconds. The control of the

vehicle is given back to the pilot in Loiter mode, since it allows for adjustments in the horizontal

plane while the vertical controls behave similarly to Altitude Hold mode (see Chapter 3), allowing

for a smooth transition. Finally, the pilot changes back to Stabilize mode and performs the landing

manually.

Observe that the landing altitude lies 2 metres below the reference take off altitude; such

discrepancy is due to the fact that the take off was done from an elevated site to avoid false-

positive activation of the avoidance stage by the reflection of the ultrasonic signals on the ground

itself.

67

C
H

A
P

T
E

R

8
CONCLUSIONS

The main goal of this thesis was to make unmanned flight more secure and flexible by means of

a modular Obstacle Collision Avoidance System, as defined in Chapter 4. From the work done

during the project, it can be concluded that:

• There exists a large capacity of improvement in terms of the safety levels that could be

achieved during the operation of Unmanned Aerial Vehicles, being the Obstacle Avoidance

feature a mere example of the available potential. Advanced communications, ADS-B

surveillance, decentralised swarming. . . would also contribute to the common safety issue.

• There are several options in terms of environment sensing alternatives which provide

various advantages and drawback to the OCAS in terms of range, accuracy or flexibility.

The ultrasonic rangefinders have been chosen mainly for their ease of use and small

processing requirements.

• The design phase of a complex system depends on a large amount of variables and as-

sumptions, which are difficult to track if a systematic design procedure is not followed. For

this project, as well as for the vast majority of systems developed by the most important

companies, the Systems Engineering approach was selected for the orderly flow of ideas

due to its proved reliability.

• The definition of interfaces is of utmost importance for the system to work as a whole and

properly perform its functions. When two subsystems or components cannot communicate

in a common language, an intermediate translation layer shall be created to translate the

information. For example, between the UAV and the Python scripts, MAVproxy acted as a

translator; or between the Python algorithms and MAVproxy, the DroneKit API translated

the commands into usable MAVlink messages.

69

CHAPTER 8. CONCLUSIONS

• Some decisions on the scripts architecture were made during the implementation and

programming phases which nevertheless should have been made through the Systems

Engineering methods applied to the design of each particular (software) subsystem.

• The theoretical or simulator-based inferences should be considered incomplete, and only

blindly applicable to the scenarios that accurately represent the mathematical model being

studied, as shown in Section 7.2.2.

• Systematically testing the design and implementation of the product and its components is

a very important step in the development process, allowing to validate both the solution

and the process itself, and avoiding later modifications of the system that could be really

expensive to resolve in the production or operation phases.

Finally, it is worth mentioning that Systems Engineering is a much more exhaustive activity

than what was shown in this thesis, involving a large set of engineers and specialists working on

projects that span several years of development and implementation.

8.1 Summary of contributions

Naturally, the main body of this thesis (Chapters 5, 6 and 7) contains all the contributions that

have been made to the field of UAVs during the execution of the project. Nonetheless, they will be

summarised here for easier access:

• A conceptual safety layer has been designed to operate between the UAV and its physical

surroundings. Such safety layer (the OCAS) gives additional information of the environment

to the UAS so that more complex decisions can be made automatically, enhancing the

situational awareness and overall safety of the vehicle.

During the design process, a study has been made on the requirements that should be

fulfilled by the Obstacle Collision Avoidance System, together with a logical decomposition

of its functional and physical architectures, and the definition of the interfaces with the

rest of the UAS.

• The proposed design has been implemented into a prototype as a proof of concept, focusing

on the integration of the system and the creation of the interfaces. This approach was

followed after the belief that once the successful integration of the system is complete, it

will hardly need any modification, simplifying future research on the technical problems

that are still to be solved (information capture, signal processing. . .), while the robust

baseline remains unchanged.

Naturally, the proposed implementation is just one among many different alternatives, and

the capabilities of the OCAS could be extended or enhanced with some modifications to the

solution, while still meeting the requirements and the architecture of the system.

70

8.2. FUTURE WORK

• Finally, a working prototype has been built according to the design guidelines, testing it in a

series of realistic scenarios which show that the proposed solution is completely functional

and fulfills the problem statement from Chapter 4, representing a good baseline on which

to base further research.

8.2 Future work

The development of a complex system like the OCAS can by no means be complete within the

duration of one single Bachelor’s Thesis. Thus, this project has been focused on providing a

capable baseline on which to found future research. In particular, some of the ideas that have

been generated during the execution of the project but could not be further developed even though

they can be interesting to work on in the future are:

• The acquisition of data from the ultrasonic rangefinders can be greatly improved; from the

location of the sensors for better spatial awareness to the triggering procedure, the noise

filtering of the incoming signal to reduce false-positives or the processing of the data with

more sophisticated algorithms to better predict a potential collision.

• The integration of alternative sensors, especially stereoscopic cameras but also radar or

lidar, which can be more difficult to operate and extract useful information from than the

sonar but also provide other advantages over it, as explained in Section 6.2.

• The improvement of the algorithms that predict the trajectory of the UAV with respect to

the obstacle, to obtain a more reliable avoidance of potential collisions.

• The implementation of real-time control algorithms, in order to avoid the complete reliance

on a quality GPS signal for the avoidance procedures.

• The automation / simplification of the connection of the GCS with the OCAS and the script

initialisation procedures.

• The improvement of the testing platform, since the available one has serious limitations in

terms of the flight duration and the additional weight that the OCAS entails.

• The application of the UAV + OCAS system to real life problems, such as precise positioning

in GPS neglected areas, indoor / urban navigation, localisation and mapping (SLAM), etc.

71

A
P

P
E

N
D

I
X

A
CREATION OF GCS WIRELESS NETWORK

The wireless network to which the OCAS will be connected for communication with the GCS

shall meet two major requirements:

1. The network shall allow the wireless communication between the OCAS and the GCS via

SSH protocol

2. The network should provide the OCAS with an internet connection (to allow for an easier

Python scripts updating, programming, and debugging and the download of logs for analysis

at the GCS via git)

Additionally, since the GCS consists of a Windows laptop, the tools to be used shall be

compatible with the Windows 10 Operating System.

The simplest network architecture that allows for peer-to-peer communication of computers

is the ad-hoc network. Furthermore, Windows 10 Professional provides all the tools required

to create such a network, which will additionally share its main Internet connection with their

peers when available.

The steps to be followed on the GCS for a successful connection of the OCAS to the Windows

machine are:

1. Open a Command Prompt window as Administrator (network commands cannot be run by

regular users for safety reasons)

2. Create a new ad-hoc network by running the command:[No Name] Page 1
 1 netsh wlan set hostednetwork ssid=quad_network key=********

3. Start the newly created network, making it available for other devices to connect:

73

APPENDIX A. CREATION OF GCS WIRELESS NETWORK

[No Name] Page 1
 1 netsh wlan start hostednetwork

4. Edit the wpa_suplicant.conf file on the Raspberry Pi to include the settings from the

ad-hoc network (see example in Appendix M)

5. If the Raspberry Pi does not automatically connect to the network, restart the wireless

interface by running:[No Name] Page 1
 1 sudo ifdown wlan0 2 sudo ifup wlan0

6. Check that the Raspberry Pi is connected to the Windows’ network by checking the MAC

address of connected devices:[No Name] Page 1
 1 > netsh wlan show hostednetwork 2 3 Configuración de red hospedada4 ------------------------------5 Modo: permitido6 Nombre de SSID : "quad_network"7 Nº máximo de clientes : 100 8 Autenticación : WPA2-Personal 9 Cifrado : CCMP1011 Estado de la red hospedada12 --------------------------13 Estado : Iniciado14 BSSID : 6a:5d:43:2d:47:0415 Tipo de radio : 802.11n16 Canal : 117 Número de clientes : 118 e8:de:27:a2:c3:86 Autenticado

In this case the Raspberry Pi’s MAC address is e8:de:27:a2:c3:86, showing that the

OCAS is connected to the GCS via the ad-hoc network

74

A
P

P
E

N
D

I
X

B
SSH CONNECTION WITH THE GCS

Assuming that the steps in Appendix A were successfully completed, this Appendix explains how

to obtain the parameters needed to set up the SSH connection between the OCAS and the GCS.

1. Open a Command Prompt window as Administrator (network commands cannot be run by

regular users for safety reasons)

2. Check that the Raspberry Pi’s MAC address by showing the devices that are connected to

the Windows’ network:[No Name] Page 1
 1 > netsh wlan show hostednetwork 2 3 Configuración de red hospedada4 ------------------------------5 Modo: permitido6 Nombre de SSID : "quad_network"7 Nº máximo de clientes : 100 8 Autenticación : WPA2-Personal 9 Cifrado : CCMP1011 Estado de la red hospedada12 --------------------------13 Estado : Iniciado14 BSSID : 6a:5d:43:2d:47:0415 Tipo de radio : 802.11n16 Canal : 117 Número de clientes : 118 e8:de:27:a2:c3:86 Autenticado

In this case the Raspberry Pi’s MAC address is e8:de:27:a2:c3:86

3. Match the MAC address to the assigned IP given by the DHCP server

75

APPENDIX B. SSH CONNECTION WITH THE GCS

[No Name] Page 1
 1 > arp -a 2 3 Interfaz: 192.168.137.1 --- 0xb 4 Dirección de Internet Dirección física Tipo 5 192.168.137.76 e8-de-27-a2-c3-86 estático 6 192.168.137.255 ff-ff-ff-ff-ff-ff estático 7 224.0.0.22 01-00-5e-00-00-16 estático 8 224.0.0.251 01-00-5e-00-00-fb estático 9 224.0.0.252 01-00-5e-00-00-fc estático 10 239.255.255.250 01-00-5e-7f-ff-fa estático 11 255.255.255.255 ff-ff-ff-ff-ff-ff estático

If the ARP cache is cluttered and the MAC address cannot be found, a flush might be

helpful to clear unused entries:[No Name] Page 1
 1 netsh interface ip delete arpcache

In the example, the Raspberry Pi has been assigned the IP 192.167.137.76

4. To make use of the SSH protocol (being the 22nd port the one reserved for SSH communica-

tions) from a Windows machine, third party software is required.

PuTTY is the most common option for all types of network communication, but can be

slightly limited for the operation of the OCAS

However, there exist more powerful alternatives to PuTTY, such as MobaXterm, which

apart from SSH communications, can also handle X Window System forwarding; useful for

the execution of graphical application directly on the Raspberry Pi, mirroring the interface

on the Windows machine

76

5. After connecting to the Raspberry Pi, user will be prompted to type the username and

password. The default values are:[No Name] Page 1
 1 user: pi 2 password: raspberry

6. From this point the user will have complete access to the Linux system, in the same way as

if they were operating directly from a terminal window

77

A
P

P
E

N
D

I
X

C
TECHNICAL DOCUMENTATION OF THE HC-SR04 RANGEFINDER

79

 Tech Support: services@elecfreaks.com

Ultrasonic Ranging Module HC - SR04

 Product features:

Ultrasonic ranging module HC - SR04 provides 2cm - 400cm non-contact
measurement function, the ranging accuracy can reach to 3mm. The modules
includes ultrasonic transmitters, receiver and control circuit. The basic principle
of work:
(1) Using IO trigger for at least 10us high level signal,
(2) The Module automatically sends eight 40 kHz and detect whether there is a
pulse signal back.
(3) IF the signal back, through high level , time of high output IO duration is
the time from sending ultrasonic to returning.
Test distance = (high level time×velocity of sound (340M/S) / 2,

 Wire connecting direct as following:

� 5V Supply
� Trigger Pulse Input
� Echo Pulse Output
� 0V Ground

Electric Parameter

Working Voltage DC 5 V

Working Current 15mA

Working Frequency 40Hz

Max Range 4m

Min Range 2cm

MeasuringAngle 15 degree

Trigger Input Signal 10uS TTL pulse

Echo Output Signal Input TTL lever signal and the range in

proportion

Dimension 45*20*15mm

 Vcc Trig Echo GND

Timing diagram

The Timing diagram is shown below. You only need to supply a short 10uS
pulse to the trigger input to start the ranging, and then the module will send out
an 8 cycle burst of ultrasound at 40 kHz and raise its echo. The Echo is a
distance object that is pulse width and the range in proportion .You can
calculate the range through the time interval between sending trigger signal and
receiving echo signal. Formula: uS / 58 = centimeters or uS / 148 =inch; or: the
range = high level time * velocity (340M/S) / 2; we suggest to use over 60ms
measurement cycle, in order to prevent trigger signal to the echo signal.

 Attention:

� The module is not suggested to connect directly to electric, if connected
electric, the GND terminal should be connected the module first, otherwise,
it will affect the normal work of the module.
� When tested objects, the range of area is n ot less than 0.5 square meters
and the plane requests as smooth as possible, otherwise ,it will affect the
results of measuring.

www.Elecfreaks.com

A
P

P
E

N
D

I
X

D
THREADS.PY

threads.py Page 1
 1 import threading 2 3 class thrd(threading.Thread): 4 5 def __init__(self,fun,*args): 6 threading.Thread.__init__(self) 7 self.function=fun 8 if len(args)!=0: 9 self.arguments=args 10 11 def run(self): 12 13 try: 14 self.arguments 15 except: 16 self.function() 17 else: 18 self.function(*self.arguments)

83

A
P

P
E

N
D

I
X

E
LOGGING SETUP

main.py Page 1
 20 ## Set-up logging ## 21 logFilename=os.path.dirname(os.path.realpath(__file__))+"/logs/"+str(time.strftime("%Y%m%d-%H%M%S"))+".txt" 22 23 fid=open(logFilename,"w") # Open and then close to create a new file 24 fid.close() 25 26 logging.basicConfig(filename=logFilename,level=logging.DEBUG,format='%(asctime)s %(name)s:%(levelname)s %(message)s')

85

A
P

P
E

N
D

I
X

F
CONNECT.PY

connect.py Page 1
 1 import dronekit 2 3 def Connect(mode="udp",address=["127.0.0.1",14550]): 4 """ Connects to the vehicle defined in the arguments and returns its class 5 Admissible modes: udp (default), serial or tcp """ 6 7 if mode=="serial": 8 connection_string=address[0] 9 baudrate=str(address[1]) 10 elif mode=="udp": 11 connection_string=str(address[0])+":"+str(address[1]) 12 elif mode=="tcp": 13 connection_string="tcp:"+str(address[0])+":"+str(address[1]) 14 else: 15 raise Exception('Connection mode has to be "serial", "udp" or "tcp"') 16 17 18 print "Connecting on: %s" % connection_string 19 if mode=="serial": 20 vehicle=dronekit.connect(ip=connection_string,wait_ready=True,rate=50,baud=baudrate) 21 else: 22 vehicle=dronekit.connect(ip=connection_string,wait_ready=True,rate=50) 23 24 print "Vehicle connected" 25 return vehicle

87

A
P

P
E

N
D

I
X

G
SONAR.PY

89

sonar.py Page 1
 1 import RPi.GPIO as GPIO 2 import time 3 import signal 4 import numpy 5 6 from threads import thrd 7 8 class Sonar(): 9 10 def __init__(self,trigPin,echoPin,bufferLen=5): 11 12 GPIO.setmode(GPIO.BCM) 13 14 self.echoPin=echoPin 15 self.trigPin=trigPin 16 17 GPIO.setup(self.trigPin,GPIO.OUT) 18 GPIO.setup(self.echoPin,GPIO.IN) 19 20 self.distance=100 21 self.distanceBuffer=[100]*bufferLen 22 self.avgDistance=100 23 24 self.velocity=1e-5 25 self.velocityBuffer=[1e-5]*bufferLen 26 self.avgVelocity=1e-5 27 28 self.initialTime=time.time() 29 self.timeArray=[time.time()-self.initialTime]*bufferLen 30 31 self.Tcollision=100 32 self.Treaction=0.5 33 self.Tstop=1 34 self.Tmargin=0.5 35 self.Tsafe=100 36 37 def __del__(self): 38 GPIO.cleanup() 39 40 41 def measureDistance(self): 42 43 time.sleep(0.05) # Wait a bit to avoid interference from previous measurement 44 45 def triggerSonar(): 46 GPIO.output(self.trigPin,False) 47 time.sleep(2e-6) # 2 microseconds 48 GPIO.output(self.trigPin,True) 49 time.sleep(1e-5) # 10 microseconds 50 GPIO.output(self.trigPin,False) 51 thrdTriggerSonar=thrd(triggerSonar) 52 thrdTriggerSonar.start() 53 54 # while GPIO.input(self.echoPin)==0: # Overwrite pulseStart until pulse is detected 55 # pulseStart=time.time()-self.initialTime 56 # Performing rolling average over the buffers to reduce noise-related errors 57 58 # while GPIO.input(self.echoPin)==1: # Overwrite pulseEnd until pulse has ended 59 # pulseEnd=time.time()-self.initialTime

sonar.py Page 2
 60 61 GPIO.wait_for_edge(self.echoPin,GPIO.RISING,timeout=100) 62 pulseStart=time.time()-self.initialTime 63 GPIO.wait_for_edge(self.echoPin,GPIO.FALLING,timeout=100) 64 pulseEnd=time.time()-self.initialTime 65 66 try: 67 68 pulseDuration=pulseEnd-pulseStart 69 70 sonarDistance=(pulseDuration/2.0)*340 71 72 if sonarDistance<4: # Sensor not accurate for higher values 73 self.distance=sonarDistance 74 75 # Update buffer 76 for b in range(len(self.distanceBuffer)-1,0,-1): # Shift position of the old values 77 self.distanceBuffer[b]=self.distanceBuffer[b-1] 78 self.distanceBuffer[0]=self.distance # Include latest measurement 79 80 # Update filtered distance 81 self.avgDistance=numpy.mean(self.distanceBuffer) 82 83 # Update time array 84 for t in range(len(self.timeArray)-1,0,-1): 85 self.timeArray[t]=self.timeArray[t-1] 86 self.timeArray[0]=(pulseEnd+pulseStart)/2 87 88 return self.distance 89 90 except: 91 print "Error reading the distance. Trying again" 92 93 94 def computeVelocity(self): 95 96 try: # To avoid divisions by 0 from throwing an error 97 98 # Backward differences with a three-data-points stencil 99 self.velocity=(2*self.distanceBuffer[0]-self.distanceBuffer[1]-self.distanceBuffer[2])/(2*self.timeArray[0]-self.timeArray[1]-self.timeArray[2]) 100 101 except: 102 pass 103 104 else: 105 for v in range(len(self.velocityBuffer)-1,0,-1): 106 self.velocityBuffer[v]=self.velocityBuffer[v-1] 107 self.velocityBuffer[0]=self.velocity 108 109 self.avgVelocity=numpy.mean(self.velocityBuffer) 110 111 return self.avgVelocity 112 113 114 def calculateCollision(self): 115 116 self.Tcollision=self.avgDistance/self.avgVelocity 117 self.Tsafe=self.Tcollision-self.Treaction-self.Tstop-self.Tmargin 118 119 return self.Tsafe

A
P

P
E

N
D

I
X

H
CONTROL.PY

93

control.py Page 1
 1 import threading # For thread events 2 from threads import thrd # For other threads 3 import sound 4 import time 5 6 class Control: 7 8 def __init__(self,takeFun,checkTakeFun,giveFun,checkGiveFun,takeArgs=None,checkTakeArgs=None,giveArgs=None,checkGiveArgs=None): 9 self.takenFlag=threading.Event() # Create event flag to allow input from check() thread 10 self.takeFun=takeFun # Function executed to take control 11 self.checkTakeFun=checkTakeFun # Condition checked for control taken (Boolean function) 12 self.giveFun=giveFun # Function executed to give control 13 self.checkGiveFun=checkGiveFun # Condition checked for control give (Boolean function) 14 15 if takeArgs!=None: self.takeArgs=takeArgs 16 if checkTakeArgs!=None: self.checkTakeArgs=checkTakeArgs 17 if giveArgs!=None: self.giveArgs=giveArgs 18 if checkGiveArgs!=None: self.checkGiveArgs=checkGiveArgs 19 20 21 def take(self): 22 23 def takeThrd(): 24 while not self.takenFlag.isSet(): 25 try: 26 self.takeArgs 27 except: 28 self.takeFun 29 else: 30 self.takeFun(self.takeArgs) 31 self.takenFlag.wait(5) # Lock thread until released via self.takenFlag.set() in self.check() method or timed out 32 33 takeClass=thrd(takeThrd) 34 takeClass.name="takeClass" 35 takeClass.start() 36 37 38 def checkTake(self): 39 40 def checkTakeThrd(): 41 while not self.takenFlag.isSet(): 42 try: # Call function either with or without arguments 43 self.checkTakeArgs 44 except: 45 if self.checkTakeFun(): 46 time.sleep(0.1) 47 sound.beep(1000,1000) 48 self.takenFlag.set() 49 else: 50 if self.checkTakeFun(self.checkTakeArgs): 51 time.sleep(0.1) 52 sound.beep(1000,1000) 53 self.takenFlag.set() 54 55 checkTakeClass=thrd(checkTakeThrd) 56 checkTakeClass.name="checkTakeClass" 57 checkTakeClass.start() 58

control.py Page 2
 59 60 def give(self): 61 62 def giveThrd(): 63 while self.takenFlag.isSet(): 64 try: 65 self.giveArgs 66 except: 67 self.giveFun 68 else: 69 self.giveFun(self.giveArgs) 70 self.takenFlag.wait(0.02) # Lock thread until released via self.takenFlag.set() by self.check() method or timed out 71 72 giveClass=thrd(giveThrd) 73 giveClass.name="giveClass" 74 giveClass.start() 75 76 77 def checkGive(self): 78 79 def checkGiveThrd(): 80 while self.takenFlag.isSet(): 81 try: # Call function either with or without arguments 82 self.checkGiveArgs 83 except: 84 if self.checkGiveFun(): 85 self.takenFlag.clear() 86 else: 87 if self.checkGiveFun(self.checkGiveArgs): 88 self.takenFlag.clear() 89 90 checkGiveClass=thrd(checkGiveThrd) 91 checkGiveClass.name="checkGiveClass" 92 checkGiveClass.start() 93

A
P

P
E

N
D

I
X

I
AUTO.PY

97

auto.py Page 1
 1 import threading 2 from threads import thrd 3 4 5 class Auto: 6 7 def __init__(self,missionFun,stopFun,missionArgs=None,stopArgs=None): 8 self.stopAutoFlag=threading.Event() # For stopping the autonomous flight at any time 9 10 self.missionFun=missionFun 11 self.stopFun=stopFun 12 13 if missionArgs!=None: self.missionArgs=missionArgs 14 if stopArgs!=None: self.stopArgs=stopArgs 15 16 17 def fly(self): 18 19 def flyThrd(): 20 while not self.stopAutoFlag.isSet(): 21 try: 22 self.missionArgs 23 except: 24 self.missionFun 25 else: 26 self.missionFun(self.missionArgs) 27 28 flyClass=thrd(flyThrd) 29 flyClass.name="flyClass" 30 flyClass.start() 31 32 33 def stop(self): 34 35 def stopThrd(): 36 while not self.stopAutoFlag.isSet(): 37 try: 38 self.stopArgs 39 except: 40 if self.stopFun: self.stopAutoFlag.set() 41 else: 42 if self.stopFun(self.stopArgs): self.stopAutoFlag.set() 43 44 stopClass=thrd(stopThrd) 45 stopClass.name="stopClass" 46 stopClass.start() 47 48 49 50 51 52

A
P

P
E

N
D

I
X

J
MAIN.PY

99

main.py Page 1
 1 # Stock modules 2 import os 3 import sys 4 import logging 5 import time 6 import dronekit 7 import threading 8 import numpy 9 import math 10 11 # Custom modules 12 from connect import Connect # For connecting to the vehicle 13 from observe import Observe # For observing the state of the vehicle 14 from threads import thrd # For multithreading capabilities 15 import sound # For playing sounds on the background (without affecting main thread) 16 import angle # For operations with angles (to avoid discontinuities) 17 from control import Control # For taking and giving control to the pilot, checking if it was successful 18 from auto import Auto # For controling autonomous flight 19 from sonar import Sonar # For sonar sensors operation 20 21 ## Set-up logging ## 22 logFilename=os.path.dirname(os.path.realpath(__file__))+"/logs/"+str(time.strftime("%Y%m%d-%H%M%S"))+".txt" 23 24 fid=open(logFilename,"w") # Open and then close to create a new file 25 fid.close() 26 27 logging.basicConfig(filename=logFilename,level=logging.DEBUG,format='%(asctime)s %(name)s:%(levelname)s %(message)s') 28 29 30 #### Step 1: Connect to vehicle #### 31 32 logStr = "\nStart of script" 33 print logStr 34 logging.info(logStr) 35 36 vehicle = Connect() 37 38 logStr = "Vehicle connected" 39 print logStr 40 logging.info(logStr) 41 42 #### Step 2: Observe state until "take control" condition is met #### 43 44 sonars=[Sonar(3,4),Sonar(14,15),Sonar(17,18)] 45 46 """ 47 for c in range(10): # Measure several times to have data on velocity 48 for s in range(3): 49 sonars[s].measureDistance() 50 sonars[s].computeVelocity() 51 """ 52 53 for c in range(10): # Pre-populate arrays 54 print "" 55 56 for s in range(3): 57 sonars[s].measureDistance() 58 sonars[s].computeVelocity() 59 sonars[s].calculateCollision()

main.py Page 2
 60 61 logStr = "S%d>> Distance: %.3f [m] Velocity: %.2f [m/s] Tcollision: %.2f [s] Tsafe: %.2f [s]" % (s,sonars[s].avgDistance,sonars[s].avgVelocity,sonars[s].Tcollision,sonars[s].Tsafe) 62 print logStr 63 logging.info(logStr) 64 65 66 logStr = "Starting measurements" 67 print logStr 68 logging.info(logStr) 69 70 while not (sonars[s].Tsafe < 0 and sonars[s].Tcollision > 0): 71 72 for s in range(3): 73 74 sonars[s].measureDistance() 75 sonars[s].computeVelocity() 76 sonars[s].calculateCollision() 77 78 logStr = "S%d>> Distance: %.3f [m] Velocity: %.2f [m/s] Tcollision: %.2f [s] Tsafe: %.2f [s]" % (s,sonars[s].avgDistance,sonars[s].avgVelocity,sonars[s].Tcollision,sonars[s].Tsafe) 79 print logStr 80 logging.info(logStr) 81 82 logStr = "" 83 print logStr 84 logging.info(logStr) 85 86 87 logStr = "Condition met" 88 print logStr 89 logging.info(logStr) 90 91 sound.beep(440, 200) 92 93 94 #### Step 3: Take control #### 95 96 def changeMode(mode): 97 vehicle.mode = dronekit.VehicleMode(mode) 98 99 100 def checkMode(mode): 101 return vehicle.mode.name==mode 102 103 104 ctrl = Control(takeFun=changeMode, checkTakeFun=checkMode, giveFun=changeMode, checkGiveFun=checkMode, 105 takeArgs="GUIDED", checkTakeArgs="GUIDED", giveArgs="LOITER", checkGiveArgs="LOITER") 106 107 logStr = "Taking control" 108 print logStr 109 logging.info(logStr) 110 111 ctrl.take() 112 ctrl.checkTake() 113 114 while not threading.activeCount() <= 3: 115 time.sleep(0.02) 116

main.py Page 3
 117 logStr = "Control taken" 118 print logStr 119 logging.info(logStr) 120 121 122 #### Step 4: Autonomous flight #### 123 124 def do_move(distance,tMove,direction=[1,0,0]): 125 126 # def goto_position_target_local_ned(north, east, down): 127 # """ 128 # Send SET_POSITION_TARGET_LOCAL_NED command to request the vehicle fly to a specified 129 # location in the North, East, Down frame. 130 131 # It is important to remember that in this frame, positive altitudes are entered as negative 132 # "Down" values. So if down is "10", this will be 10 metres below the home altitude. 133 134 # At time of writing, acceleration and yaw bits are ignored. 135 136 # """ 137 # msg = vehicle.message_factory.set_position_target_local_ned_encode(138 # 0, # time_boot_ms (not used) 139 # 0, 0, # target system, target component 140 # mavutil.mavlink.MAV_FRAME_LOCAL_NED, # frame 141 # 0b0000111111111000, # type_mask (only positions enabled) 142 # north, east, down, # x, y, z positions (or North, East, Down in the MAV_FRAME_BODY_NED frame 143 # 0, 0, 0, # x, y, z velocity in m/s (not used) 144 # 0, 0, 0, # x, y, z acceleration (not supported yet, ignored in GCS_Mavlink) 145 # 0, 0) # yaw, yaw_rate (not supported yet, ignored in GCS_Mavlink) 146 # # send command to vehicle 147 # vehicle.send_mavlink(msg) 148 149 150 def body2ned(frontBody,leftBody,upBody=-vehicle.location.global_relative_frame.alt): 151 152 yaw=vehicle.attitude.yaw 153 yawCorrected=yaw+40/180/math.pi # Weird offset. Don't know why, but it works 154 north=frontBody*math.cos(yawCorrected)+leftBody*math.sin(yawCorrected) 155 east=frontBody*math.sin(yawCorrected)-leftBody*math.cos(yawCorrected) 156 down=-upBody 157 return [north,east,down] 158 159 def ned2global(original_location, dNorth, dEast, dDown=0): 160 """ 161 Returns a LocationGlobal object containing the latitude/longitude `dNorth` and `dEast` metres from the 162 specified `original_location`. The returned LocationGlobal has the same `alt` value 163 as `original_location`. 164 165 The function is useful when you want to move the vehicle around specifying locations relative to 166 the current vehicle position. 167 168 The algorithm is relatively accurate over small distances (10m within 1km) except close to the poles.

main.py Page 4
 169 170 For more information see: 171 http://gis.stackexchange.com/questions/2951/algorithm-for-offsetting-a-latitude-longitude-by-some-amount-of-meters 172 """ 173 earth_radius=6378137.0 #Radius of "spherical" earth 174 #Coordinate offsets in radians 175 dLat = dNorth/earth_radius 176 dLon = dEast/(earth_radius*math.cos(math.pi*original_location.lat/180)) 177 dAlt = -dDown 178 179 #New position in decimal degrees 180 newlat = original_location.lat + (dLat * 180/math.pi) 181 newlon = original_location.lon + (dLon * 180/math.pi) 182 newalt = original_location.alt + dAlt 183 if type(original_location) is dronekit.LocationGlobal: 184 targetlocation=dronekit.LocationGlobal(newlat, newlon, newalt) 185 elif type(original_location) is dronekit.LocationGlobalRelative: 186 targetlocation=dronekit.LocationGlobalRelative(newlat, newlon, dAlt) 187 else: 188 raise Exception("Invalid Location object passed") 189 190 return targetlocation; 191 192 193 vehicle.simple_goto(ned2global(vehicle.location.global_frame,body2ned(distance*direction[0],distance*direction[1],distance*direction[2])[0],body2ned(distance*direction[0],distance*direction[1],distance*direction[2])[1],body2ned(distance*direction[0],distance*direction[1],distance*direction[2])[2])) 194 # goto_position_target_local_ned(*body2ned(distance*direction[0],distance*direction[1],distance*direction[2])) 195 print "Moving" 196 197 time.sleep(tMove+1) 198 199 200 def wait(seconds): 201 time.sleep(seconds) 202 return True 203 204 205 autoMove = Auto(do_move, wait, [3,10,[0,0,1]], 10) 206 207 208 print "Starting autonomous flight" 209 autoMove.fly() 210 autoMove.stop() 211 212 while not threading.activeCount() <= 3: 213 time.sleep(0.02) 214 print "Mission finished" 215 216 217 #### Step 5: Return control to the pilot #### 218 219 logStr = "Returning control" 220 print logStr 221 logging.info(logStr) 222 223 # Recovering ctrl class instance that was created in step 3 224 ctrl.give() 225 ctrl.checkGive() 226

main.py Page 5
 227 while not threading.activeCount() <= 3: 228 time.sleep(0.02) 229 230 logStr = "Control returned" 231 print logStr 232 logging.info(logStr) 233 234 sound.tripleBeep(700, 150, 600, 150, 500, 300) 235 236 logStr = "\nTerminating script\n" 237 print logStr 238 logging.info(logStr) 239 vehicle.close() 240 241

A
P

P
E

N
D

I
X

K
TEMPERATURE SENSITIVITY OF ULTRASONIC RANGEFINDERS

The ultrasonic rangefinders rely on an accurate definition of the speed of propagation of

sound in air in order to compute the distance to the closest detected object. However, the

speed of sound depends on the temperature of the medium, which could be fluctuating

along the duration of the mission.

In the present appendix it will be proven that reasonable temperature fluctuations actu-

ally have a negligible effect on the distance measurements within the scope of the ultrasonic

rangefinders.

The speed of propagation of a sound wave in an ideal gaseous medium obeys the equation

(K.1) a =
√
γRgT

where γ= 1.4 is the adiabatic coefficient and Rg = 287 J
kg·K is the specific gas constant of air.

For the variation of a with temperature:

(K.2)
da
dT

=
√
γRg · 1

2
p

T

Considering that the speed of sound at room temperature is a298K = 340m/s, the speed of

sound gradient is:

(K.3)
da
dT

∣∣∣∣
298K

= 0.581
m/s
K

Assuming measurements of the order of 1 metre, the order of times being dealt with is:

(K.4) x =∆t ·a(T)∼ 1m ⇒ ∆t ∼ 2.9×10−3s

Finally, differentiating equation (K.4) with respect to temperature gives:

(K.5)
dx
dT

∣∣∣∣
T=298K

=∆t · da
dT

∣∣∣∣
T=298K

∼ 1.7×10−3m

105

APPENDIX K. TEMPERATURE SENSITIVITY OF ULTRASONIC RANGEFINDERS

So, for an extreme temperature departure of 10 K from the calibrated standard speed of

sound, the resulting distance error would be in the order of the millimetre, which lies within the

accuracy levels of the sensor itself, making the measurement errors due to temperature change

effectively negligible.

106

A
P

P
E

N
D

I
X

L
GUI.PYW

107

GUIwin.pyw Page 1
 1 import Tkinter 2 import ttk 3 import subprocess 4 5 6 window = Tkinter.Tk() 7 window.title("DroneKit Launcher") 8 try: 9 window.iconbitmap('C:\\Users\\Usuario\\Documents\\GitHub\\quadcopters-tfg-lvaro\\Dronekit\\favicon.ico') 10 except: 11 pass 12 window.resizable(0,0) 13 14 mainFrame=Tkinter.LabelFrame(window,relief=Tkinter.RIDGE) 15 mainFrame.grid(sticky=Tkinter.NS) 16 17 #### PLATFORM #### 18 19 20 platform=Tkinter.LabelFrame(mainFrame,text="Platform") 21 platform.grid(row=0,rowspan=2,column=0,padx=5,pady=5,ipadx=5,ipady=5,sticky=Tkinter.NS) 22 23 24 def changeSelection(*args): 25 if str(platformValue.get())=="SITL": 26 platformSITLlaunch.configure(state=Tkinter.NORMAL) 27 mvpyPortText.configure(text="Port") 28 mvpyAddress.set("tcp:127.0.0.1") 29 mvpyPort.set("5760") 30 elif str(platformValue.get())=="UAV": 31 platformSITLlaunch.configure(state=Tkinter.DISABLED) 32 mvpyPortText.configure(text="Baud rate") 33 if str(platformUAVselect.get())=="USB": 34 mvpyAddress.set("com6") 35 mvpyPort.set("115200") 36 elif str(platformUAVselect.get())=="Telemetry": 37 mvpyAddress.set("com4") 38 mvpyPort.set("57600") 39 else: 40 mvpyAddress.set("") 41 mvpyPort.set("") 42 43 def launchSitl(): 44 openCMD='START CMD /K ' 45 sitlRoute='"C:\\Users\\Usuario\\Google Drive\\TFG Alvaro Melgosa Pascual\\WinPython-64bit-2.7.10.3\\python-2.7.10.amd64\\Scripts\\dronekit-sitl.exe" ' 46 sitlArgs='copter-v3.2.1 --model x --home=40.333266, -3.765728,620,0' 47 subprocess.call(openCMD + sitlRoute + sitlArgs, shell=True) 48 49 50 platformValue=Tkinter.StringVar() 51 52 platformSITL=Tkinter.Radiobutton(platform,text="SITL",variable=platformValue,value="SITL",command=changeSelection) 53 platformSITL.grid(row=0,column=0,padx=5,pady=5) 54 55 platformSITLlaunch=Tkinter.Button(platform,text="Launch",command=launchSitl,width=8) 56 platformSITLlaunch.grid(row=0,column=1,padx=5,pady=5) 57 58 platformUAV=Tkinter.Radiobutton(platform,text="UAV",variable=platformValue,value="U

GUIwin.pyw Page 2
AV",command=changeSelection) 59 platformUAV.grid(row=1,column=0,padx=5,pady=5) 60 61 platformUAVconnect=Tkinter.StringVar() 62 platformUAVselect=ttk.Combobox(platform,width=7,textvariable=platformUAVconnect) 63 platformUAVselect['values']=("USB","Telemetry") 64 platformUAVselect.bind("<<ComboboxSelected>>",changeSelection) 65 platformUAVselect.grid(row=1,column=1,padx=5,pady=5) 66 67 68 #### MAVPROXY #### 69 70 mvpy=Tkinter.LabelFrame(mainFrame,text="MAVProxy",relief=Tkinter.GROOVE) 71 mvpy.grid(row=0,rowspan=2,column=1,padx=5,pady=5,ipadx=5,ipady=5,sticky=Tkinter.NS) 72 73 74 def launchMavproxy(address,port): 75 openCMD='START CMD /K ' 76 mavproxyRoute='"C:\\Users\\Usuario\\Google Drive\\TFG Alvaro Melgosa Pascual\\MAVProxy\\mavproxy.exe" ' 77 if address[0:3]=="com": 78 mavproxyArgs=' --master=' + address + ' --baud=' + port + ' --out=127.0.0.1:14550 --out=127.0.0.1:14551' 79 else: 80 mavproxyArgs=' --master=' + address + ':' + port + ' --out=127.0.0.1:14550 --out=127.0.0.1:14551' 81 subprocess.call(openCMD + mavproxyRoute + mavproxyArgs, shell=True) 82 83 mvpyAddressText=Tkinter.Label(mvpy,text="Address") 84 mvpyAddressText.grid(row=0,column=0,padx=5,pady=5,sticky=Tkinter.E) 85 86 mvpyAddress=Tkinter.StringVar() 87 mvpyAddressValue=Tkinter.Entry(mvpy,textvariable=mvpyAddress,width=12) 88 mvpyAddressValue.grid(row=0,column=1,padx=5,pady=5) 89 90 mvpyPortText=Tkinter.Label(mvpy,text="Baud rate") 91 mvpyPortText.grid(row=1,column=0,padx=5,pady=5,sticky=Tkinter.E) 92 93 mvpyPort=Tkinter.StringVar() 94 mvpyPortValue=Tkinter.Entry(mvpy,textvariable=mvpyPort,width=12) 95 mvpyPortValue.grid(row=1,column=1,padx=5,pady=5) 96 97 mvpyConnect=Tkinter.Button(mvpy,text="Connect",command=lambda:launchMavproxy(str(mvpyAddress.get()),str(mvpyPort.get()))) 98 mvpyConnect.grid(row=2,column=1,padx=5,pady=5,sticky=Tkinter.E) 99 100 101 #### SCRIPT #### 102 103 script=Tkinter.LabelFrame(mainFrame,text="Script",relief=Tkinter.GROOVE) 104 script.grid(row=0,column=2,padx=5,pady=5,ipadx=5,ipady=5) 105 106 def runScript(route): 107 openCMD='START CMD /K ' 108 scriptRoute='"C:\\Users\\Usuario\\Documents\\GitHub\\quadcopters-tfg-lvaro\\Dronekit\\' + route + '\\main.py"' 109 subprocess.call(openCMD + scriptRoute, shell=True) 110 111 scriptLabel=Tkinter.Label(script,text="File location") 112 scriptLabel.grid(row=0,column=0,padx=5,pady=5) 113 114 scriptFileLocation=Tkinter.StringVar() 115 scriptFile=Tkinter.Entry(script,textvariable=scriptFileLocation,width=15)

GUIwin.pyw Page 3
 116 scriptFile.grid(row=1,column=0,padx=5) 117 118 scriptRun=Tkinter.Button(script,text="Run script",command=lambda:runScript(str(scriptFileLocation.get()))) 119 scriptRun.grid(row=1,column=1,padx=5,pady=5) 120 121 122 #### MISSION PLANNER #### 123 124 def launchPlanner(): 125 openCMD='START CMD /K ' 126 plannerRoute='"C:\\Program Files (x86)\\Mission Planner\\MissionPlanner.exe"' 127 subprocess.call(openCMD + plannerRoute, shell=True) 128 129 planner=Tkinter.Button(mainFrame,text="Launch Mission Planner",command=launchPlanner) 130 planner.grid(column=2,row=1,padx=5,pady=5) 131 132 133 134 135 window.mainloop() 136 137

A
P

P
E

N
D

I
X

M
RASPBERRY PI’S INTERFACES CONFIGURATION

/etc/network/interfaces
1 auto lo2 iface lo inet loopback34 auto eth05 allow-hotplug eth067 iface eth0 inet static 8 address 169.254.190.99 9 netmask 255.255.0.010 gateway 169.254.255.2551112 auto wlan013 iface wlan0 inet manual14 wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf1516 auto wlan117 iface wlan1 inet manual 18 wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf 19

/etc/wpa_suplicant/wpa_suplicant.conf
 1 ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev 2 update_config=1 34 network={5 ssid="quad_network"6 psk="********"7 proto=RSN 8 key_mgmt=WPA-PSK 9 pairwise=CCMP10 auth_alg=OPEN11 priority=10012 }

111

A
P

P
E

N
D

I
X

N
SONARDRIVER.PY

113

sonarDriver.py Page 1
 1 from sonar import Sonar 2 from threads import thrd 3 4 import time 5 import threading 6 import matplotlib.pyplot as plt 7 import numpy as np 8 9 #sonar1=Sonar(3,4) 10 #sonar2=Sonar(14,15) 11 #sonar3=Sonar(17,18) 12 sonars=[Sonar(3,4),Sonar(14,15),Sonar(17,18)] 13 14 plt.figure("distance") 15 #plt.figure("velocity") 16 plt.ion() 17 plt.show() 18 plt.hold(False) 19 20 t=np.arange(-len(sonars[0].timeArray),0,1) 21 dist=np.zeros((3,len(sonars[0].distanceBuffer))) 22 vel=np.zeros((3,len(sonars[0].velocityBuffer))) 23 24 for c in range(5): # Pre-populate buffers 25 for s in range(3): 26 sonars[s].measureDistance() 27 sonars[s].computeVelocity() 28 29 while True: 30 31 for s in range(3): 32 sonars[s].measureDistance() 33 sonars[s].computeVelocity() 34 35 print "%.3fs> Sonar 0: %s [m] %s [m/s]" % (sonars[0].timeArray[0],sonars[0].distance, sonars[0].velocity) 36 print "%.3fs> Sonar 1: %s [m] %s [m/s]" % (sonars[1].timeArray[0],sonars[1].distance, sonars[1].velocity) 37 print "%.3fs> Sonar 2: %s [m] %s [m/s]" % (sonars[2].timeArray[0],sonars[2].distance, sonars[2].velocity) 38 print "" 39 40 41 plt.figure("distance") 42 plt.plot(sonars[0].timeArray,sonars[0].distanceBuffer,sonars[1].timeArray,sonars[1].distanceBuffer,sonars[2].timeArray,sonars[2].distanceBuffer) 43 plt.axis([min(min(sonars[0].timeArray),min(sonars[1].timeArray),min(sonars[2].timeArray)),max(max(sonars[0].timeArray),max(sonars[1].timeArray),max(sonars[2].timeArray)),0,4]) 44 plt.legend(["Sonar 0","Sonar 1","Sonar 2"]) 45 46 plt.figure("velocity") 47 plt.plot(sonars[0].timeArray,sonars[0].velocityBuffer,sonars[1].timeArray,sonars[1].velocityBuffer,sonars[2].timeArray,sonars[2].velocityBuffer) 48 plt.axis([min(min(sonars[0].timeArray),min(sonars[1].timeArray),min(sonars[2].timeArray)),max(max(sonars[0].timeArray),max(sonars[1].timeArray),max(sonars[2].timeArray)),-1,1]) 49 plt.legend(["Sonar 0","Sonar 1","Sonar 2"]) 50 51 plt.pause(1e-6) 52

A
P

P
E

N
D

I
X

O
CHANNEL 7 SCRIPT TRIGGER

main.py Page 1
 22 #### Step 2: Observe state until "take control" condition is met #### 23 24 ch7Obs=Observe(vehicle.channels["7"], 2001) 25 print "Waiting for condition to be met" 26 27 ch7Obs.update(vehicle.channels["7"]) 28 while not ch7Obs.geq(ch7Obs.value-200): # 200 PWM tolerance 29 timeLoop = time.clock() 30 while (time.clock()-timeLoop) < 0.2: 31 pass # Do not continue until there is new data to update 32 ch7Obs.update(vehicle.channels["7"]) 33 print "CH7 current value: %i CH7 target: %i" % (ch7Obs.variable, ch7Obs.value) 34 35 print "Condition met" 36 sound.beep(440, 200)

115

A
P

P
E

N
D

I
X

P
OBSERVE.PY

117

observe.py Page 1
 1 class Observe: 2 """ 3 The Observe class stores two values: 4 self.value is the target value on a certain state variable of the observed system 5 self.variable is the actual (probably changing) value of that state variable 6 7 self.value and self.variable can be set at instance initialization, or with the self.update() method 8 Additionally, there exist some methods that allow for easy comparison of self.variable vs self.value: 9 Method | .equ() .neq() .gtr() .geq() .lss() .leq() | 10 Equivalent | == != > >= < <= | 11 With these methods self.value will not be updated 12 """ 13 14 def __init__(self,*args): 15 if len(args)==0: 16 self.initial=None 17 self.value=None 18 self.variable=None 19 elif len(args)==1: 20 self.initial=args[0] 21 self.value=None 22 self.variable=None 23 elif len(args)==2: 24 self.initial=args[0] 25 self.value=args[1] 26 self.variable=None 27 elif len(args)==3: 28 self.initial=args[0] 29 self.value=args[1] 30 self.variable=args[2] 31 32 def update(self,var,*args): 33 self.variable=var 34 if len(args)>0: 35 self.value=args[0] 36 37 def equ(self,*args): 38 if len(args)==1: # If argument inserted, compare against it instead of using self.value 39 if self.variable==args[0]: 40 return True 41 else: 42 return False 43 else: 44 if self.variable==self.value: 45 return True 46 else: 47 return False 48 def neq(self,*args): 49 if len(args)==1: # If argument inserted, compare against it instead of using self.value 50 if self.variable!=args[0]: 51 return True 52 else: 53 return False 54 else: 55 if self.variable!=self.value: 56 return True 57 else:

observe.py Page 2
 58 return False 59 def gtr(self,*args): 60 if len(args)==1: # If argument inserted, compare against it instead of using self.value 61 if self.variable>args[0]: 62 return True 63 else: 64 return False 65 else: 66 if self.variable>self.value: 67 return True 68 else: 69 return False 70 def geq(self,*args): 71 if len(args)==1: # If argument inserted, compare against it instead of using self.value 72 if self.variable>=args[0]: 73 return True 74 else: 75 return False 76 else: 77 if self.variable>=self.value: 78 return True 79 else: 80 return False 81 def lss(self,*args): 82 if len(args)==1: # If argument inserted, compare against it instead of using self.value 83 if self.variable<args[0]: 84 return True 85 else: 86 return False 87 else: 88 if self.variable<self.value: 89 return True 90 else: 91 return False 92 def leq(self,*args): 93 if len(args)==1: # If argument inserted, compare against it instead of using self.value 94 if self.variable<=args[0]: 95 return True 96 else: 97 return False 98 else: 99 if self.variable<=self.value: 100 return True 101 else: 102 return False

BIBLIOGRAPHY

[1] National Aeronautics and Space Administration. NASA systems engineering handbook.

1st ed. Washington: US National Aeronautics and Space Admin, Dec. 2007. Chap. 4 (cit. on

pp. 5, 23).

[2] AESA. Ley 18/2014, de 15 de octubre, de aprobacion de medidas urgentes para el crec-

imiento, la competitividad y la eficiencia. Art. 50, Sec. 3. AESA, Oct. 15, 2014 (cit. on

p. 3).

[3] Gemma Aguado, Álvaro Melgosa, Alberto de Miguel, Álvaro Ordax, Jesús Perales, Jorge

Luis Sáez, and Lara Cristina Sánchez. “UAV application in Search & Rescue at sea”. UC3M,

May 2016 (cit. on p. 2).

[4] Airbus. Airbus demonstrates aircraft inspection by drone at Farnborough. July 2016. URL:

http://www.airbus.com/presscentre/pressreleases/press- release- detail/

detail/airbus-demonstrates-aircraft-inspection-by-drone-at-farnborough-

innovation-and-digitalisation-for-production-ramp-up/ (visited on 08/01/2016)

(cit. on p. 2).

[5] Unmanned aerial vehicle systems association applications. UAS Applications. 2016. URL:

http://www.uavs.org/applications (visited on 08/01/2016) (cit. on p. 1).

[6] Richard Asselin. “Frequency Filter for Time Integrations”. In: Monthly Weather Review

(June 1972), pp. 487–490 (cit. on p. 51).

[7] Aerospace Industries Association. Unmanned Aircraft Systems: Perceptions and Potentials.

Tech. rep. Arlington, May 2013. URL: http://www.aia-aerospace.org/assets/AIA\

_UAS_Report_small.pdf (visited on 2016) (cit. on p. 4).

[8] Rubén Vega Astorga. “Simulation of an Unmanned Aerial Vehicle”. BSc Thesis. Leganés,

Madrid: Universidad Carlos III de Madrid, June 2016 (cit. on pp. 46, 61).

[9] Dana H. Ballard and Christopher M. Brown. Computer vision. New Jersey: Prentice Hall,

1982. Chap. 2.2 (cit. on pp. 11, 12).

[10] Richard Beasley. Systems Engineering - What and why? Magistral lecture. University of

Bristol, Feb. 2015 (cit. on p. 23).

121

http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/airbus-demonstrates-aircraft-inspection-by-drone-at-farnborough-innovation-and-digitalisation-for-production-ramp-up/
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/airbus-demonstrates-aircraft-inspection-by-drone-at-farnborough-innovation-and-digitalisation-for-production-ramp-up/
http://www.airbus.com/presscentre/pressreleases/press-release-detail/detail/airbus-demonstrates-aircraft-inspection-by-drone-at-farnborough-innovation-and-digitalisation-for-production-ramp-up/
http://www.uavs.org/applications
http://www.aia-aerospace.org/assets/AIA_UAS_Report_small.pdf
http://www.aia-aerospace.org/assets/AIA_UAS_Report_small.pdf

BIBLIOGRAPHY

[11] Pia Bergqvist. Drone Jobs: What It Takes to Fly a UAV. June 2014. URL: http://www.

flyingmag.com/aircraft/drone-jobs-what-it-takes-fly-uav (visited on 08/02/2016)

(cit. on p. 4).

[12] Jim Daily. Dull, dirty, dangerous - it’s robot work. GE Digital. Feb. 19, 2015. URL: https:

//www.ge.com/digital/blog/dull-dirty-dangerous-its-robot-work (visited on

08/01/2016) (cit. on p. 1).

[13] Dronecode. Apr. 28, 2016. URL: https://www.dronecode.org/ (visited on 08/03/2016)

(cit. on p. 15).

[14] EASA. Regulation (EC) No 216/2008. Annex II, p. 79/33. EASA, Feb. 20, 2008. URL:

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:079:0001:

0049:EN:PDF (cit. on p. 3).

[15] Gobierno de España. Disposición 16097 de BOE núm. 274 de 2011. BOE-A-2011-16097.

Art. 23 & 33. Ministerio de la Presidencia, Oct. 13, 2011. URL: http://www.boe.es/boe/

dias/2011/10/13/pdfs/BOE-A-2011-16097.pdf (visited on 08/02/2016) (cit. on p. 5).

[16] R. Ian Faulconbridge and Michael J. Ryan. Managing Complex Technical Projects: A

Systems Engineering Approach. Norwood, MA, USA: Artech House, 2003. Chap. 4.3.2,

pp. 100–103 (cit. on p. 31).

[17] Maite Arteta Fernández. “Assembly, modeling, simulation and control of a quadcopter for

application to solar farm inspection”. BSc Thesis. Leganés, Madrid: Universidad Carlos III

de Madrid, Sept. 2015 (cit. on pp. 7, 35, 40).

[18] Bloomberg Government. Civilian Unmanned Aerial Vehicles Ready For Takeoff. Tech. rep.

Apr. 2012 (cit. on p. 4).

[19] Christian Hulsmeyer. “Verfahren, um entfrente metallische Gegenstände mittels elek-

trischer Wellen einem Beobachter zu meiden”. Pat. Apr. 1904. URL: https://commons.

wikimedia.org/wiki/File:DE165546.pdf (visited on 08/05/2016) (cit. on p. 9).

[20] ICAO. Manual on remotely piloted aircraft systems (RPAS). Ed. by ICAO. 1st ed. Interna-

tional Civil Aviation Organization. Montréal, Canada, 2015 (cit. on p. 3).

[21] INCOSE. What is systems engineering? URL: http://www.incose.org/AboutSE/WhatIsSE

(visited on 08/02/2016) (cit. on p. 5).

[22] Drone Industry Insights. TOP20 Drone Company Ranking Q2 2016. Tech. rep. Ham-

burg, Germany, June 2016. URL: http://www.droneii.com/project/drone-company-

ranking-q2-2016 (visited on 2016) (cit. on p. 15).

[23] Jeffrey Krolik. Radar and Sonar Signal Processing: Similarities and Differences. May 2005.

URL: http://people.ee.duke.edu/~jk/SAM%20Group_files/radarsonarcompare.pdf

(visited on 08/06/2016) (cit. on p. 10).

122

http://www.flyingmag.com/aircraft/drone-jobs-what-it-takes-fly-uav
http://www.flyingmag.com/aircraft/drone-jobs-what-it-takes-fly-uav
https://www.ge.com/digital/blog/dull-dirty-dangerous-its-robot-work
https://www.ge.com/digital/blog/dull-dirty-dangerous-its-robot-work
https://www.dronecode.org/
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:079:0001:0049:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:079:0001:0049:EN:PDF
http://www.boe.es/boe/dias/2011/10/13/pdfs/BOE-A-2011-16097.pdf
http://www.boe.es/boe/dias/2011/10/13/pdfs/BOE-A-2011-16097.pdf
https://commons.wikimedia.org/wiki/File:DE165546.pdf
https://commons.wikimedia.org/wiki/File:DE165546.pdf
http://www.incose.org/AboutSE/WhatIsSE
http://www.droneii.com/project/drone-company-ranking-q2-2016
http://www.droneii.com/project/drone-company-ranking-q2-2016
http://people.ee.duke.edu/~jk/SAM%20Group_files/radarsonarcompare.pdf

BIBLIOGRAPHY

[24] Katsuhiko Ogata. Modern Control Engineering. 5th ed. Prentice Hall, 2010. Chap. 8 (cit. on

p. 16).

[25] Kevin N. Otto and Erik K. Antonsson. “Trade-off Strategies in Engineering Design”. In:

Research in Engineering Design. Vol. 3. 2. 1991. Chap. 2, pp. 87–104 (cit. on p. 37).

[26] Assistant Secretary of Defense for Research and Engineering. Technology Readiness As-

sessment (TRA) Guidance. Tech. rep. USA, Apr. 2011, 2–13 and 2–14 (cit. on pp. 9, 11).

[27] J.Z. Sasiadek, Q. Wang, and M.B. Zeremba. “Fuzzy adaptive Kalman filtering for INS/GPS

data fusion”. In: Intelligent Control, 2000. Proceedings of the 2000 IEEE International

Symposium. 2000, pp. 181–186. URL: http://ieeexplore.ieee.org/document/882920

(visited on 08/27/2016) (cit. on p. 51).

[28] Mike Tooley and David Wyatt. Aerospace engineering e-mega reference. Ed. by Elsevier.

1st ed. United Kingdom: Butterworth-Heinemann, Mar. 2, 2009 (cit. on p. 12).

[29] INCOSE UK. Why invest in Systems Engineering. July 2016. URL: http://incoseonline.

org.uk/Documents/zGuides/Z3_Why_invest_in_SE.pdf (visited on 09/14/2016) (cit. on

p. 23).

[30] Kimon P. Valavanis and George J. Vachtsevanos. Handbook of Unmanned Aerial Vehicles.

New York: Springer Reference, 2015. Chap. 75, pp. 1817–1841 (cit. on p. 3).

[31] Adam Wisniewski and Michal Mazur. Clarity from above PwC global report on the commer-

cial applications of drone technology. Tech. rep. May 2016. URL: http://www.pwc.pl/pl/

pdf/clarity-from-above-pwc.pdf (visited on 08/01/2016) (cit. on p. 2).

123

http://ieeexplore.ieee.org/document/882920
http://incoseonline.org.uk/Documents/zGuides/Z3_Why_invest_in_SE.pdf
http://incoseonline.org.uk/Documents/zGuides/Z3_Why_invest_in_SE.pdf
http://www.pwc.pl/pl/pdf/clarity-from-above-pwc.pdf
http://www.pwc.pl/pl/pdf/clarity-from-above-pwc.pdf

	Abstract
	Dedication and Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background information
	Socioeconomic environment
	Legal framework
	Motivation
	Project objectives
	Methodology
	Time planning
	Budget
	Personnel expenses
	Software cost
	Hardware cost

	State of the art
	Environment sensing
	Radar
	Sonar
	Lidar
	Computer vision

	Collision avoidance
	TCAS on conventional aircraft
	DJI Phantom 4

	A brief introduction to Ardupilot
	Basic features
	Ardupilot as part of a UAS
	Advanced features
	Flight modes

	Problem statement
	System design
	Requirements capture
	Logical Decomposition
	Functional Architecture
	Functional Flow Block Diagram (FFBD)
	Product Breakdown Structure (PBS)
	Functional-Physical matrix
	Interfaces definition (N2 diagram)

	System implementation
	The OCAS within the UAS
	Overview of the existing UAS
	Integration of the OCAS

	Component choice
	Sensors
	Computer board
	Other components

	OCAS peripheral connections (hardware interfaces)
	Power connection
	MAVlink connection
	GCS connection
	GPIO connection

	Software: Bringing everything together
	The Operating System
	MAVproxy
	The Python environment

	The Python script
	Script architecture
	Multi-threading capabilities
	Log information
	Connect to UAV
	Observe state
	Take control of UAV
	Avoid obstacle
	Return control to the pilot
	The ``main'' file

	Graphical User Interface
	Hardware implementation

	Testing and results
	Testing methods
	Component testing
	Software testing: SITL
	System testing

	Results
	Ultrasonic rangefinders
	Simulator
	UAS + OCAS

	Conclusions
	Summary of contributions
	Future work

	Creation of GCS wireless network
	SSH connection with the GCS
	Technical documentation of the HC-SR04 rangefinder
	Threads.py
	Logging setup
	Connect.py
	Sonar.py
	Control.py
	Auto.py
	Main.py
	Temperature sensitivity of ultrasonic rangefinders
	GUI.pyw
	Raspberry Pi's interfaces configuration
	SonarDriver.py
	Channel 7 script trigger
	Observe.py
	Bibliography

