
!
Departamento de Informática

Bachelor Thesis

Malware engineering for
dummies

Author: Luis Buendía Carreño

Tutor: Sergio Pastrana Portillo

Leganés, September of 2016  

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �1

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �2

Título: Malware engineering for dummies

Autor:Luis Buendía Carreño 
Director: Sergio Pastrana Portillo

EL TRIBUNAL

Presidente: !

Vocal: !

Secretario: !

Realizado el acto de defensa y lectura del Proyecto Fin de Carrera el
día __ de _______ de 20__ en Leganés, en la Escuela Politécnica
Superior de la Universidad Carlos III de Madrid, acuerda otorgarle
la CALIFICACIÓN de:

VOCAL

	 	 	 	 	 	 	 	 	 	 PRESIDENTE	
SECRETARIO		

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �3

This page is intentionally left blank.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �4

Abstract

Malicious software has become a major threat to modern society. It affects to all sectors in
the industry all over the world[1] . The impact can vary being from an economic point of
view to privacy invasion or to damage the targeted system. Being able to understand what
a malware does can be used for detection and future prevention. For it, is crucial to train
our future professionals. Analyzing malware requires deep knowledge of Operating
Systems internal design and tools manipulation. All this knowledge was acquired and
demonstrated in practice along the project.

This project develops three malware samples and provides their correspondent technical
reverse engineer analysis. This material has been created with the goal of being used as
teaching resource at the laboratories of the Master in Cybersecurity at the University
Carlos III of Madrid. The subject which this material is done for is named Malware
analysis and engineering. Malware analysis is a really specific field with a limited
resource access of information for learning. This projects tries to make that barrier
narrower by proving a laboratory exercise for master students.

To keep the standards of the education quality policy of the university, this laboratory
exercise is developed for the latest Microsoft Windows platform. The books, articles and
tutorials followed during project development are mentioned in the document and
stablished as reliable sources. The followed methodology with all previously explained ,
ensures to provide nowadays technology and a high level technical skill for a high quality
education.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �5

Contents

1. Introduction 12
1.1 Context 12

1.2 Motivation 13

1.3 Goal of the project 14

1.4 Structure of the document 14

2. Background 15
2.1 PE files 15

2.2 Shellcode 20

2.3 Tools 22

2.4 State of art 22

3. Virus engineering 23
3.1 Analysis 23

3.2 Design 24

3.3 Implementation and testing 25

4. Trojan engineering 31
4.1 Analysis 31

4.2 Design 32

4.3 Implementation and testing 33

5. Ransomware engineering 38
5.1 Analysis 38

5.2 Design 39

5.3 Implementation and testing 41

6. Solution and evaluation of labs 46
6.1 Virus 46

6.1.1 Virus evaluation system 46

6.1.2 Virus solution 47

6.2 Trojan 53

6.2.1 Trojan evaluation system 53

6.2.2 Trojan solution 54

6.3 Ransomware 62

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �6

6.3.2 Ransomware evaluation system 62

6.3.1 Ransomware solution 63

6.3.4 Further ransomware research 68

7. Project planning budget and socioeconomic context 69

8. Regulatory framework 71

9. Conclusions and improvements 72
9.1 Conclusions 72

9.2 Improvements 72

10. Bibliography 73

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �7

Index of figures

Figure 1: costs caused by cyber crimes on August 2015 13

Figure 2: Basic PE format 15

Figure 3: _IMAGE_DOS_HEADER structure 16

Figure 4: _IMAGE_NT_HEADER structure 17

Figure 5: _IMAGE_FILE_HEADER structure 17

Figure 6: _IMAGE_OPTIONAL_HEADER structure 18

Figure 7: _IMAGE_SECTION_HEADER structure 19

Figure 8: Executables modules with Immunity Debugger of a HelloWorld.exe
sample 25

Figure 9: Memory diagram of the assembled virus 27

Figure 10: Hexadecimal view of the original virus and the infected file 29

Figure 11: Comparison between entry points of infected and not infected programs
29

Figure 12: Netcat infected on usage infecting other programs 30

Figure 13 & 14: Comparison of trojan substitution file 35

Figure 15 & 16: Comparison of windows registry modification 36

Figure 17: Netcat program backdoor when html file is opened 36

Figure 18: Connection of the trojan to another machine 37

Figure 19: Ransomware interface 41

Figure 20: Logs of the server 42

Figure 21: Ransomware decrypted file 43

Figure 22 && 23: Encryption timings 43

Figures 24, 25 && 26: Images used on different computers for ransomware testing
44

The Figures 27, 28 & 29 show files after during the infection 44

Figures 30, 31 && 32: Decrypted images in test 2 44

Figure 33: Logs of the server test 2 ransomware 45

Figure 34: Dependency Walker view of the jumper.exe sample 48

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �8

Figure 35: Monitor process of the sample louse.exe 49

Figure 36: Assembly routine finding kernel32.dll address 50

Figure 37 & 38: Routine storing functions addresses 50

Figure 39 & 40: Hexadecimal strings inside louse.exe 50

Figure 41: Assembly routine checking the magic number of target 51

Figure 42 & 43: Assembly routine checking the sanity check and writing on NT
header 51

Figure 44: Infected file AddressOfEntryPoint modified 51

Figure 45: Stored data of the original AddressOfEntryPoint 51

Figure 46: Routine for checking the current infections produced 52

Figure 47: Stored data of the number of infections and entry point in memory 52

Figure 48: Libraries imported by the sample 55

Figure 49: Function from kernel32.dll imported in the sample 56

Figure 50: Imported function of advapi32.dll 56

Figure 51: Imported functions of Shell32.dll by the sample 57

Figure 52: ProcessExplorer view when executing the sample 57

Figure 53: Registry modified value 58

Figure 54: Malware sample activity with one argument 58

Figure 55: Disassembly of the argument flow change 58

Figure 56: Disassembly of the string hardcoded to the stack 59

Figure 57: FindKernel32.dll function on the sample 59

Figure 58: Routine importing functions 60

Figure 59: Address and port where malware is trying to connect. 60

Figure 60: Imported functions kernel32.dll windowTimer.exe 64

Figure 61: Process monitor python libraries creation 66

Figure 62: First message of windowTimer.exe 66

Figure 63: Public key sent by server 67

Figure 64: Message sent before decryption 67

Figure 65: Deciphered password 67

Figure 66: Gantt chart of the project 69

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �9

 Index of tables

Table 1: Characteristics flags table of the _IMAGE_SECTION_HEADER 20

Table 2: Functions from kernel32.dll used in the virus 26

Table 3: Executables used during tests 28

Table 4: first test results 28

Table 5: Second test results 30

TABLE 6: Prototyped functions from kernel32.dll in trojan 34

Table 7: Prototyped functions from ws2_32.dll in trojan 34

Table 8: Executables used in trojan tests 35

Table 9: Executables used in trojan tests 36

Table 10: Files used in ransomware test 1 42

Table 11: Test 2 ransomware hash 43

Table 12: Fingerprint and data of the sample 47

table 13: Size of sample sections 49

Table 14: fingerprint and data of the sample 54

Table 15: Size of sections sample 55

Table 16: fingerprint and data of the sample 63

TAble 17: VirtualSize and SizeOfRawData of windowTimer.exe 64

Table 18: Personal expenses 69

Table 18: Expenses Equipment table 70

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �10

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �11

1. Introduction

This section introduces this Bachelor Thesis and presents an overall description of
the document. The context, detailing briefly the current situation of cybersecurity and
specially of reverse malware engineer. The motivation, covering why this project is needed.
The goal, that explains what is being tried to achieve with this project. And how the
content of the document is structured.

1.1 Context

This project is a teaching project for malware engineer students in the Master of
Cybersecurity of the university Carlos III of Madrid, concretely in the Malware Analysis
and Engineering course offered in the second semester .1

Malware is any software designed to disrupt computer normal operation and
perform any hurtful or undesired task. It is shorten of malicious software. This definition
does not include software that causes unintentional harm due to some deficiency. There
are several types of malware according the task they perform. Infectious malware goal is
to propagate, as viruses and worms. Others as trojans misrepresents itself to appear
useful. Rootkit goal is to stay concealed avoiding detection. And there are some other
types such as ransomware that operates for obtaining a direct financial retribution via
sabotage. Nowadays this malicious softwares have become really sophisticated and
complex to understand[2]. For doing so, is needed to understand little by little how it has
evolved and what is composed of. The discipline that studies malware is called malware
analysis.

Malware analysis is a discipline that requires knowledge of different fields but
mainly two: reverse-engineering, and tools usage. The techniques that can be utilized
while analyzing malware are next listed.

1.- Static analysis: this is the process of analyzing malware binaries without
executing them. It covers from looking at metadata from a file to disassembly or
decompilation of the malware code.

2.- Dynamic analysis: is the process of analyzing a piece of malware when
you are executing it in a live environment. In this case, you are often looking at the
behavior of the malware and track the side effects on the system.

3.- Automated analysis: this is to automatize the analysis process.
4.- Manual analysis: just needed if the malware is built with anti-debugging

routines or anti-analysis mechanisms.

 http://www3.uc3m.es/reina/Fichas/Idioma_2/288.12400.html1

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �12

http://www3.uc3m.es/reina/Fichas/Idioma_2/288.12400.html

The training on cyberdefense skills has become an imperative necessity. This project is built
for educational purposes. It contains three malware samples and the correspondence
reverse engineer analysis.

1.2 Motivation

Nowadays the resources of information for learning cybersecurity are spread by
the internet and is not always taught as technical and informed as it should be. A recent
study from the Ponemon Institute reveals the average annualized costs caused by cyber
crimes worldwide on August 2015, Figure 1. In the measured period, cyber crime caused
an average annualized loss of 13.5 million U.S. dollars in the global financial service
sector, 12.8 in the utilities and energy sector, 6.01 in the public sector and 3.34 in
hospitality. Malware is always involved on cybercrime activities. So it is clear this is a
threat affecting to all modern society.

Figure 1: costs caused by cyber crimes on August 2015

Also it is important to consider that another motivation of the project is to satisfy a need
that the university may have. This supplies an opportunity to do a project that will be
used with clear and clean purposes. This is really important if we are talking about
malware development. Malware development is normally involved with criminal actives
but this times follows the goal of being used as a study sample. Malware development
and analysis include fields from different disciplines of computer science. It is a hard but
profitable way of learning. Because of that it becomes a challenge.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �13

1.3 Goal of the project

The goal of the project is to produce a profitable material for the students. For that
is needed to cover the main concept of common malware techniques. This means: doing
practices with nowadays software and with all the possible details for their apprenticeship
to be complete. In order to do so a lot of effort was applied to bring to the new
technologies malware samples with old and modern malware techniques that are
explained along the project.

With it, it comes the goal of learning the techniques for designing, developing and
testing In order to analyze it is important to place yourself first as the designer. Moreover
is how to analyze it. It include reverse engineering skills. Also, knowing the architecture of
networks and systems. It is a core part of cybersecurity education. In order to deal with
possible threats knowing malware analysis is one of the main techniques for nowadays
cybersecurity professionals.

1.4 Structure of the document

This document is divided into different sections. Each of them covers part of the
information related to the work development of this project. This chapters are:

1.-Introduction: this chapters gives a global vision of the project providing the aim
and goal of it.

2.-Background: in this section is summarized the knowledge acquired for doing the
project, tools used and the state of art

3.- Virus engineering: this section explains how the virus was developed from
analysis to implementation and testing.

4.- Trojan engineering: this chapter covers the trojan analysis, design,
implementation and testing.

5.- Ransomware engineering: here is explained how the ransomware was done.
Covering analysis, design and implementation phase. Includes testing.

6.- Solution and evaluation of labs: in here the the practices are solved as how a
student should solve it providing also the questions and evaluation systems of them.

7.- Project planning budget and socioeconomic context: this chapter describes and
justifies how the project is planned . It is also included any economic impact on it.

8.- Regulatory framework: Related law with restrictions on the project.
9.- Conclusions and improvements: summary and possible improvements.
10.- Bibliography: this gives the link to all the information referred along the

document.

This defines the core structure of the document. However each of this sections may have
subsections also focusing on important aspects of the subject.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �14

2. Background

Here is described the main concepts of the background knowledge for the
development of this project. This covers: the PE header, the concept shellcode and
connect back method and some tools used along the project. The technical knowledge of
this section was acquired in order to develop the project.

2.1 PE files

The first important thing to take into account when doing the analysis phase is the
Operating System we want to develop the malware for. In this first case the target will be
Nt based OS. This means, Microsoft Windows Platforms. From now own we will refer to it
as Windows. This OS, has few file formats for executable programs. In this malware
sample we focus on the PE (Portable Executable) format. The information source referenced
on bibliography[3].This determines lots of features of how the development process will be
carried out and also discards any possible damage on other kind of OS or file formats.
Another important step for the analysis phase is the kind of PE file we will choose. PE files
are used for EXE, DLL, SYS and some other files types

Figure 2: Basic PE format

For understanding the design process first we need to look deeply in the PE structure. The
format contains at the beginning of the file different types of headers. These headers are
nested structures defined by Microsoft and can be found in the Microsoft SDK (Software
Development Kit). They provide the OS with the necessary information for the correct
execution of the program.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �15

There are five main structures that we need to understand of the PE headers. For that, we
break down the PE file into it’s various sections and examine them.

1. DOS header. The name of the predefined structure for this section is
_IMAGE_DOS_HEADER. This structure starts always with the letters MZ. These two
letters stand for Mark Zbikowski. Mark developed the first linker for DOS primitive OS.
That two letters became the “magic number” for windows executables. Also in this header
for Win32 executables you can find the string: This program cannot be run in DOS mode.
When these executables are run in a 16-bit DOS environment, they display the previous
error message.
The DOS header structure is showed on Figure 3:

Figure 3: _IMAGE_DOS_HEADER structure

From Figure 2 is important to mention what is the usage of the next fields:

1.- e_magic: Placed at the top of the DOS header, it exposes which kind of
file we are dealing with. We need to find the value 5A4D (MZ) which corresponds to a
executable Win32 PE file.

2.- e_res[4]: Normally it does not contain information. This place is used in
this laboratory for marking the infected files.

3.- e_lfanew: Placed at the the bottom of the DOS header, it contains a
pointer to the IMAGE_NT_HEADER structure.

2. Nt header.The next structure contains three sections of Figure 1 and also another two
structures that corresponds to those two extra sections. This structure is pointed by

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �16

e_lfanew. The name of the structure in the Win32 SDK is _IMAGE_NT_HEADER. The
section corresponding to the first field of this structure is the PE Signature. This is just for
indicating the ID signature with value “PE/0/0”. This provides two different pieces of
information. First one, it is a legitimate PE file. Second, the byte order of the file. The next
section is directly the following chunk of data to the signature and as previously said, it is
contained in the same data structure.

Figure 4: _IMAGE_NT_HEADER structure

From this structure is important to remark the next fields:

1.- FileHeader: It is a contained structure (_IMAGE_FILE_HEADER) inside
_IMAGE_NT_HEADER. It corresponds to the File header section.

2.-OptionalHeader: It is a another contained structure
(_IMAGE_OPTIONAL_HEADER). It corresponds to the Optional header.

3. File header. The COFF header (Common Object File Format) is present in object files and
in linked executable files. Nevertheless when the object file is linked and it turns into an
executable, then it is normally referred as File header. The structure name for this section,
as it is visible in Figure 3 is called _IMAGE_FILE_HEADER.

Figure 5: _IMAGE_FILE_HEADER structure

This data structure contains information such as the architecture the program was built to
run into (x86 or x86-64), the number of sections the program contains, the timestamp
indicating when the program was compiled, the size of the next data structure that the OS
needs to find, some features related to the file being an executable or dynamic library and
some other which does not concern us by now.
From the File header there is one important field which we need to take into account:

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �17

1.- NumberOfSections: This variable indicates how many sections the program
contains. It includes the code the data sections and any other one that is needed for the
program.

4.- Optional header. The set of data following the previous explained one belongs to the
Optional header. This data structure contains relevant information for the mapping of the
program into dynamic memory. Despite its name, is not an optional structure but
essential. The composition can be observed with detail on Figure 6:

Figure 6: _IMAGE_OPTIONAL_HEADER structure

The most remarkable variables of this structure are:

1.- SizeOfCode: Size of executable code.
2.- AddressOfEntryPoint: This field is the most interesting for the PE file

format. This field indicates the location of the entry point for the application. It is
relative to the image base address. For executable files, this is the starting address. In
DLL files is optional.

3.- BaseOfCode: Relative offset of code (".text" section) in loaded image.
4.- BaseOfData: Relative offset of uninitialized data (".bss" section) in loaded

image.
5.- SizeOfImage: Indicates the amount of address space to reserve in the

address space for the loaded executable image. This number is influenced greatly by

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �18

SectionAlignment. The linker determines the exact SizeOfImage by figuring each section
individually. It first determines how many bytes the section requires, then it rounds up
to the nearest page boundary, and finally it rounds page count to the nearest
SectionAlignment boundary. The total size is then the sum of each section's individual
requirement.

6.- SizeOfHeaders: This field indicates how much space in the file is used
for representing all the file headers, including the DOS header, File header, Optional
header, and Section headers. The section bodies begin at this location in the file.

7.- CheckSum: A checksum value is used to validate the executable file at
load time. The value is set and verified by the linker. This can be used to verify if the
actual file is the original one and did not suffer any modification.

8.- DataDirectory: This field is an array of sixteen positions with the RVAs
for setting up the correct execution environment. Inside of it it contains many different
structures for each module.

6. Section header. All the following data contained in the executable belongs to the
Section headers with the Mappable sections following it. All the Section headers are
contained inside a data structure that is named _IMAGE_SECTION_HEADER. This
structure is always 40 bytes length. The data structure is defined as showed in Figure 7:

Figure 7: _IMAGE_SECTION_HEADER structure

The remarkable fields of this structure are:

1.- VirtualSize: This is the total size in bytes, of the section when loaded into
memory. If this value is greater than SizeOfRawData the section is fulfilled with zeroes.
This field should be set to 0 for object files.

2.- VirtualAddress: The address of the first byte of the section when loaded
into memory, relative to the image base.

3.- SizeOfRawData: The size of the data on disk in bytes. This value is a
multiple of FileAlignment field on the_IMAGE_OPTIONAL_HEADER structure. If the
value is less than VirtualSize, the rest of the section would be fulfilled with zeroes.

4.- Characteristics: This indicates with predefined flags the properties of the
section. Some useful flags we need to remark are explained in the table below.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �19

TABLE 1: CHARACTERISTICS FLAGS TABLE OF THE _IMAGE_SECTION_HEADER

The sections can be of different types according to the type of data the contain and their
purpose. It is important not only to know the flags that indicates the OS the kind of data
dealing with but also the main types that we can normally face in a PE file.

The most common sections are:

1.- .text/.code/CODE/TEXT: Contains executable code
2.- .testbss/TEXTBSS: Present if Incremental Linking is enabled
3.- .data/.idata/DATA/IDATA: Contains initialized data
4.- .bss/BSS: Contains uninitialized data

2.2 Shellcode

This is a summary of some sections of Understanding windows Shellcode[4] paper,
studied in depth for the development of the project. In this chapter is covered the main
aspect of what shellcode is. It also focus on the explanation of Connectback method.

 The original word shellcode, comes from the code that was designed for recover from a
critical error. By lending the custom defined code to run where the program should have
crashed , it is possible to lunch a protective shell. However nowadays, the good usage of
it is obviously subjective. Nevertheless in this project personal opinion must be suspend
and instead, open the mind to a more objective side of the matter.

When attempting to write custom shellcode for Windows it is compulsory to understand
that, unlike Unix variants, the mechanisms for performing certain tasks are not as straight
forward as simply doing a system call. Though Windows does have system calls, they are
generally not reliable enough for use with writing shellcode.
Windows, as Linux, stores the system call number in the eax register. The system call
number in both operating systems is simply an index into an array that stores a function

Flag Meaning

IMAGE_SCN_CNT_CODE This section contains executable code

IMAGE_SCN_MEM_DISCARDABLE This section can be discarded if needed

IMAGE_SCN_MEM_EXECUTE This section can be executed as code

IMAGE_SCN_MEM_READ This section can be read

IMAGE_SCN_MEM_WRITE This section can be written.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �20

pointer to go to once the system call interrupt is received. The problem is that system call
numbers are prone to change between versions of Windows. In Linux this numbers are the
same on any of the different available versions. This difference is the source of the
problem about writing reliable shellcode for Windows. Because of this reason it is
considered a “bad practice” to write code for Windows that uses system calls directly vice
going through the native user-mode abstraction layer supplied by Ntdll.dll.
The other main problem with the use of system calls in Windows is that the feature set
exported by the system call interface is more restricted than in other operating systems.
Unlike Linux, Windows does not offer a socket API trough the system call interface. This
discards the option of interacting directly with the kernel.

The Connectback shellcode, or reverse shell , is the process from which a TCP connection is
established to a remote host and a command interpreter’s input and output are redirected
to and from the allocated socket handling the TCP connection. This is useful for times
when the remote network does not have outbound filtering, or, if it does, does not have
the filtering on the remote machine and port. If either of these cases are not true, one
should not use the Connectback shellcode as it will not pass through outbound firewalls.
The process involved in doing the previously explained technique on Windows is not as
straight forward as in other operating systems. Instead of using system calls, is needed to
use the standard socket API provided by winsock. The NT-based versions of Windows are
the targets of this analysis.

The first thing needed to do is to find the kernel32.dll address. With the address previously
found the following functions needs to be resolved: 1. LoadLibraryA , 2. CreateProcessA, 3.
ExitProcess. The next step is to use the resolved LoadLibraryA symbol to load the winsock
library ws2_32.dll. In many programs, ws2_32.dll is likely already loaded in memory. As
such, one can make use of LoadLibraryA to find out where address it was loaded at. If it
has yet to be loaded, LoadLibraryA will simply load it and return the address where it is
mapped at. Once ws2_32.dll is mapped into process space the same mechanism used to
resolve symbols in kernel32.dll to resolve symbols in ws2_32.dll. The following functions
need to be found and stored in memory for later use: 1. WSASocketA, 2. connect.
With all the required symbols loaded, one may now proceed to do the actual work. The
following steps outline the process:

1. Create a socket
2. Connect to the remote machine
3. Execute the command interpreter
4. Exit the parent process

The above four steps are all that is involved in implementing a version of Connectback on
Windows NT-based systems. Some features that one could add include the ability to have
the parent process wait for the child to exit before terminating itself by using
WaitForSingleObject.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �21

2.3 Tools

In here the main tools used in this project are listed with a brief explanation about their
utility:

1.- Ida pro: mainly it is used for static reverse engineering of malware. It provides a
good analysis of malware samples with diverse backgrounds. It also contains a module
that converts assembly language into easily read pseudocode. It has a graph view of the
code and it is possible to switch between both hexadecimal code and the graph view. The
tool also has debugging functionality.

2.- Dependency Walker: is a free utility that scans any 32-bit or 64-bit Windows
module (exe, dll, ocx, sys, etc.) and builds a hierarchical tree diagram of all dependent
modules.

3.- PE View: provides a quick and easy way to view the structure and content of 32-
bit Portable Executable (PE) and Component Object File Format (COFF) files.

4.- Process Monitor: Process Monitor is an advanced monitoring tool for Windows
that shows real-time file system, Registry and process/thread activity. Its a core utility in
malware hunting toolkit.

5.- Netcat: is a computer networking utility for reading and writing to network
connections using TCP or UDP.

6.- Wireshark: it is a network protocol analyzer. Dumps traffic and filters it offering
a functional GUI. It is used across many industries and educational institutions.

7.- VMWare: it is a multi virtual machine handler. It allows hardware configuration
and specifications. It is used for running all the Windows and Linux OS.

8.- Visual Studio: Platform of Microsoft for code development. It is a remarkable
IDE.

2.4 State of art

As expressed before malware analysis is a specific field of cybersecurity that
studies malware development and engineering. The reliable fonts of information for
learning are spread around the internet or in some academical papers. Cybersecurity
topics are normally possible to learn by self-studying. But as any other field can be quicker
and better learned if it is explained.

One of the nowadays most famous information sources about cybersecurity
education is SecurityTube online portal. This web offers many courses even some of them 2

with certification. Another portent with many content that was used in this project is
OpenSecurityTraining . This platforms and some other more not included are the best 3

information resource at everyones free disposal.

 Link: http://www.securitytube.net2

 http://www.opensecuritytraining.info3

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �22

http://www.securitytube.net
http://www.opensecuritytraining.info

3. Virus engineering

A virus is a type of intrusive malware that replicates itself and inserts copies of
itself in legitimate programs, where it carries out unwanted and often damaging
operations[1]. Taking this into account, the piece that we are going to describe below needs
at least to infect another program and perform some other action when the contaminated
program is executed.

For explaining all necessary details on how this software piece is developed we
need to go into further architectural details of a program inside the Operating System that
we choose as target for our malware.

3.1 Analysis

In this section we will examine the virus from an analysis phase perspective.
Requirements are expressed brief way. This because is not a software oriented project as
the program does not offer normal functionalities. The requirements are:

1.- User requirements:
1.1.- The virus needs to infect other files
1.2.- The target files for infection are executable files.
1.3.- The virus must work on latest Windows platform.
1.4.- The virus needs to be as stealth as possible in the graphical display.

2.- System requirements:
2.1.- The virus needs to keep the original AddressOfEntryPoint of the

infected executable.
2.2.- The virus needs to access core functionalities of the OS.
2.3.- The virus must not infect more than a predefined number of six times.
2.4.- It requires of administrator privileges for performing the infection.

3.- Functional requirements:
3.1.- The virus should offer traces for a profitable reverse engineer.
3.2.- The virus must infect in the last section of the PE.
3.3.- An infected executable must also behave normal when executed

4.- Non functional requirements:
4.1.- The virus will execute correctly if and only if is executed with

administrator privileges.
4.2.- The virus must not damage any device placed out of the virtual

machine that it is provided for the laboratory session.

With all this information now we are able to explain the infection process design
principles.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �23

3.2 Design

In order to perform an efficient malware the design of the infection needs to be
accurate. We will use all the previous information in order to inject code inside a PE
executable file and change all necessary fields for it to go on working “normally” after the
malware code is executed.

The basic algorithm of the virus is:

1.- Find an executable in a predefined directory.
1.1.- If an executable is found go to step 2.
1.2.- If no executable is found finish the program.

2.- Check if the executable file fulfills the necessary conditions (see Section 7)
for infecting it.

2.1.- If they conditions are fulfilled of to step 3.
2.2.- If the conditions are not met go back to step one.

3.- Read and store in buffer all the headers of the PE.
4.- Change al necessary information of the headers.

4.1.- Mark the e_res[0] field in the DOS header for knowing that is an
infected file and not to infect it any more.

4.2.- If in the Section header the Characteristics field of last section is
marked as discardable change it, so the program runs our new section.

4.3.- Set also in the Characteristics field the flags of read, write and
execute.

4.4.- Add to the field SizeOfRawData and VirtualSize the length of
the injected code (previously calculated).

4.5.- Copy the original AddressOfEntryPoint from the Optional
header.

4.6.- Modify the value of the entry point to the new one. This is the
point where the code will be copied. It is calculated by adding the VirtualSize and the
SizeOfRawData from the Section header and some extra space where our real
executable code will start.

5.- Write back to the file the modified headers.
6.- Store the original AddressOfEntryPoint inside the virus code in order to

jump after the code execution.
7.- Copy the virus code in the target executable.
8.- Jump back to where the program should have started.

However, it is important to consider that the first execution does not match with this
algorithm. The first time the program runs, it does not have an original entry point to go
back to. This point will be described and solved in detail in the implementation section.
Furthermore there are some error and exception cases not described in the algorithm.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �24

3.3 Implementation and testing

During the development of the virus several target OS where tested. Staring from
the original version Windows XP where the virus was developed. But one of the goals of
this thesis is to provide the students with the latest technology available so to have an
education on what they can confront in the real world. Because of it, the final version of
the virus is developed for working on Windows 10. Now that we finally now in which
system we are working I will explain how the development process was carried out.

For the implementation of the virus a different approach is used instead of how is
normally described. When implementing malware is important to be as stealth as possible
to avoid being detected with the common techniques. Many antivirus use heuristics based
on strings found on the hexadecimal dump of the suspicious executables as well as the
functions they are using.

For avoiding our functions to be seen in a basic static analysis we will not directly access
them using dynamic linking. In fact, if our code is going to be injected into other
executables is also possible that this files do not import the libraries that we require, so we
have to assume that we are going to be without nearly any predefined resource we would
likely need in a normal execution of our code. As we could expect, this needs to be done
by special techniques. The way explained in the paper Understanding Windows Shellcode[4]
gives an example on how to perform this task.

For importing all the basic functions in runtime we first need that the program loads in
memory the Kernel32.dll library. This contains a set of core functions of Windows OS as
the ones we are going to use. Normally, every program will import this dynamic library to
memory. So we need to access to the PEB (Process Environment Block) and search for the
address where the kernel32.dll is.

Figure 8: Executables modules with Immunity Debugger of a HelloWorld.exe sample

Even in a basic executable sample the Kernel32.dll is imported. It is important to remark 4

that if this library is not brought to memory, our code will work with unexpected
behaviors. The only library that is imported a 100% of times on Windows OS is the
ntdll.dll.

 The basic executable is referred to a program that displays “hello world” message.4

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �25

The routine FindKernel32 written in the virus, works for Windows OS Vista, 7, 8, 8.1 and
10 versions. When called, it access the base address of program in memory and iterates
trough the structures, returning the address where the library should be located. It was
developed from the one written on the Understanding windows Shellcode[4] document
that works for Windows XP.

After obtaining the address of the core library we just need to search inside it’s headers to
find the export directory that contains the address of functions table. Now we have access
to all the functions of this dynamic library. Every windows system can have different
kernel32.dll functions offset. This is due to updates, versions of the same version of the OS
or just directly different versions. So it is not recommended to hardcode the offset of the
functions. The advisable technique is to hash the functions and search for the match. This
may not save computational time, but it occupies less space (useful in malware injections)
and provides the expected output. Nevertheless it was not used in this virus. The reason is
not for simplifying the implementation but for not providing the students with a virus
that can work in every Windows platform.

So in this case the offset of the functions was searched inside the kernel32.dll and
hardcoded into the virus code. Beforehand a prototype of the functions needs to be
defined so when importing them having the appropriate container. For this task the most
suitable information source is the Microsoft documentation[5].

TABLE 2: FUNCTIONS FROM KERNEL32.DLL USED IN THE VIRUS

This functions are used all along the virus for different and fundamental tasks. As it can
be observed they are quite regular. The only thing that can be out of the scope at first
sight, are the arguments and return values. These primitives belongs to Microsoft.
Now that we now the functions lets begin with the explanation of how they are used.

Function Offset Arguments Return

CloseHandle 0x7D HANDLE BOOL

CreateFile 0xB9 LPCSTR, DWORD, DWORD, LPSECURITY_ATTRIBTUES,
DWORD, DWORD, HANDLE

HANDLE

FindFirstFile 0x16D LPCSTR, LPWIN32_FIND_DATA HANDLE

FindNextfile 0x17E HANDLE, LPWIN32_FIND_DATA BOOL

ReadFileA 0x45B HANDLE, LPVOID,DWORD, LPWORD, LPOVERLAPPED BOOL

SetCurrentDirectory 0x4EF LPCSTR BOOL

SetFilePointer 0x509 HANDLE, LONG, PLONG, DWORD DWORD

WriteFileA 0x5F4 HANDLE, LPVOID,DWORD, LPWORD, LPOVERLAPPED BOOL

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �26

Internally the code is divided in three different functions. The code is developed in
C and assembly. The main function which is only used in the first execution before the code
is injected. The second one was already described before and it’s name is: FindKernel32.
Last but no least InjectMe. This function, as it’s own name suggest contains all the code
that performs the injection. All the mechanism of finding files, headers modification and
propagation is done trough this function. However, is not the only one copied to the
others files. The function FindKernel32 is also copied. And for special reasons that are
going to be explained later, before the FindKernel32, 16 bytes contained in a function called
specialData are copied also when infecting.

The specialData function is composed by eight “emit” instructions which only function is to
produce an empty place of 64 bytes corresponding to two different integer numbers. The
first one is a counter that is incremented each time the virus produces a new infection.
This can be understood as a propagation control mechanism. So the same code does not
spreads more than the number that we specify. In our case five times. So when the
grandchild of the grandchild can not produce any new infection. This is controlled at the
beginning of the InjectMe function. The second integer is to store the original
AddressOfEntryPoint where the normal code should have started after being infected.

Figure 9: Memory diagram of the assembled virus

The final structure of the assembled virus should look like Figure 9. For being able to
obtain this structure it is essential to use special compile options. This requires disabling
any optimization or security check method.

In the design phase, a predefined directory was referred for searching the executable
victim. This directory is “C:\\Program Files\”. For being as stealth as possible the string
is not placed in the code as a variable in ASCII. The string is pushed into the stack in
assembly code. With this technique when a static analysis is performed it will not appear
as data of the program making harder to detect where the malware is trying to make
changes. So, first the pointer is placed in the directory and finds the executables inside it
with the function FindNextFile. For searching the executable the virus use the regular

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �27

expression “*.exe”. Again this string is not written directly as part of data. It is pushed into
the stack as hexadecimal code corresponding to the ASCII values. Once we find the
appropriate executable suitable for infecting, we mark the header with the the
hexadecimal number 0xf001 on the e_res[0] member of the DOS header structure so in
order to know if that file is already infected. After that, just follows the algorithm
described in the design section. Modify all the the necessary headers by dumping them
into a buffer doing all modifications. Write the new content on the targeted executable.
Finally copying all the bytes of the virus into the last section.

The final product of all this study is an executable of 12.888 bytes. For the first set of tests
I used HelloWorld programs. For the second test I used also a nectat executable. All of them
placed inside the “C:\\Program Files\” directory. The virus needs to be run with
Administrator privileges for being able to infect files inside this folder. As this is designed
for a malware analysis practice I did not developed it for achieving it’s goal without it.
With a vulnerability and the correct exploit it could perform the task without being run as
Admin.

TABLE 3: EXECUTABLES USED DURING TESTS

The first test was run to see the infection to other files, the infectious capacity of the
previous infected files and the limit infection control. As explained before this is up to five
executables.

TABLE 4: FIRST TEST RESULTS

As expected the last infected executable was not able to reproduce proving the control
mechanism.

File name MD5 Hash

VirusPE.exe aa5c073f7b1c948a4d5fbbf207f9329a

HelloWorld.exe 9fed129088d17163b6fca39b3d8ee568

nc.exe e6bd9bdfaccf78741d6fd0a7b83dbad0

Size before infection (btyes) Size after infection (bytes) Fertile

HelloWorld_1 9.216 15.719 Yes

HelloWorld_2 9.216 15.719 Yes

HelloWorld_3 9.216 15.719 Yes

HelloWorld_4 9.216 15.719 Yes

HelloWorld_5 9.216 15.719 Yes

HelloWorld_6 9.216 15.719 No

HelloWorld_7 9.216 - -

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �28

The results were positive and the piece succeeded the test perfectly. It is also possible to
see the hexadecimal code of the infected programs and in the down part observe the code
of the virus as showed in the next figure.

Figure 10: Hexadecimal view of the original virus and the infected file

As expected, the offset where the code starts is different since in the infected file the new
code is placed at the bottom of the last section. The specialData field empty in the
VirusPE.exe has the two corresponding values in the HelloWorld_1 infected file.
Moreover it is possible to see on the header the new AddressOfEntryPoint in comparison to
the old one. (Figure 10)

Figure 11: Comparison between entry points of infected and not infected programs

For the second test I used an own compiled version of the Netcat program. This test is
done to measure the correct performance of any program under the virus infection. The
reason for doing an own compilation of it was disabling the aslr (Address Space Layout

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �29

Randomization). This special security measure initializes the code in memory at a random
position making any calculation based on the ImageBase wrong.

The test was done with a clean HelloWorld program placed on the directory so when
executing the netcat program it would be infected.

Figure 12: Netcat infected on usage infecting other programs

The image above shows the netcat working for an incoming connection already infected
working perfectly infecting also the HelloWorld program.

TABLE 5: SECOND TEST RESULTS

It can be concluded that the virus is finished and working. The only possible issue are the
programs compiled with the ASLR flag. These programs when infected and executed are
able to infect other programs but when trying to jump to the original AddressOfEntryPoint
they crash as the address where they try to jump to, does not correspond to place where
the code is.

Size before infection (btyes) Size after infection (btyes) Fertile

netcat 27.648 34.151 Yes

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �30

4. Trojan engineering

A trojan horse, is a computer program that seems to produce an expected
functionality for the user but behind the scenes is performing malicious activities. The
name comes from ancient greek1.

That skill of performing an activity behind the scenes, makes the trojan horse a perfect
personal data stealer. Most of modern trojans base their activities on leak out the user key
strokes, stealing sensible information, web cam recording, private internet browsing,
mining cryptocurrencies etc…

This section explains how the trojan was thought, designed and developed and all the
information regarding to the activities and infectious operations that it performs.

4.1 Analysis

1.- User requirements:
1.1.- The trojan needs to infect the system and give a connection back shell.
1.2.- The target files for infection are executable files.
1.3.- The trojan must work on Windows platform.
1.4.- The trojan needs to provide the user with the graphical display that is

expected.
2.- System requirements:

2.1.- The trojan needs to modify some behavior of the system
2.2.- It needs to be executed stealthy, providing the expected behavior for the

user.
2.3.- The trojan needs to open backdoor on the system.
2.4.- It requires of administrator privileges for performing harmful activity.

3.- Functional requirements:
3.1.- The trojan must offer traces for a profitable reverse engineer.
3.2.- The trojan should be executed whenever a link to an html file is opened

from Internet Explorer program.
3.3.- The trojan opens a back door in the system when executed.

4.- Non functional requirements:
4.1.- The correct execution of the trojan happens if and only if it is executed

with administrator privileges.
4.2.- The trojan needs to work only on the virtual machine that it is provided

for the laboratory session.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �31

4.2 Design

The trojan is designed based on the bullmose.c[X] trojan. This trojan changes the windows
registry for execution of default html files. In order to execute the winupdate and insert a
script when an html file opened displaying: “Warning: This file has been detected by Windows
Defender to be infected with Win32/BullMoose!”. This is a basic functionality that can be
extended to provide good knowledge about common behaviors and patterns that a trojan
can have.

The basic algorithm for the trojan is:

1.- Check the number of arguments provided.
1.1.- If there are two arguments go to step 2
1.2.- Any other number go yo step 4

2.- Open a backdoor
2.1.- Create a socket for a client connection
2.2.- Connect it to the socket acting as server
2.3.- If connection is created go on, otherwise go to step 3.
2.4.- Create a shell in a new process with stdin and stdout piped to the

socket.
2.5.- Close the handlers to the process.

3.- Open the application of Internet Explorer with the argument received as
parameter.

4.- Find out the current path where the executable is being executed
5.- Copy from disk its own executable file in the place of C:\\Windows\

\System32\\tabcal.exe
6.- Modify the value of the key for html files in the system.

61.- Open the windows key registry for the predefined execution of html
files with Internet Explorer.

6.2.- Change the value for the tabcal.exe file to execute instead passing the
first argument to the program.

6.3.- Close the windows registry.
7.- Exit the program

For opening a backdoor in the system uses a method known as connectback. This method is
described in Understanding windows Shellcode[4] paper and in background section. In the
paper is described also the shellcode for doing it. The method is not entirely used. The
implementation in the trojan is done in a different way. But the abstract idea and the final
compiled code is nearly the same. This method creates a socket, and redirects the stdin
and stdout of a new shell process to it. The socket is previously connected to a system.
This is indirect connection as the victim connects to the server and not the other way
round. It is more reliable in some cases because many modern firewalls prevent the
computer from external connection but do not block outgoing connections.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �32

4.3 Implementation and testing

The implementation of the trojan can be described within the functions that compose it.
For each of them different techniques described are used to fulfill the requirements
exposed on the previous sections. The project started on Windows XP platform. At that
point the code did not provide any stealth mechanism being really easy to detect and
relying on the Internet Explorer program. The code is developed in C and assembly. The
functions of the actual version of the trojan are described as a list with all the explanation
about them.

1.- Main. This functions checks the given arguments to the program. If it is equal to two, it
calls the function openBackdoor. After that executes the browser by the shell command
open with the parameters of the Internet explorer for program to execute and the
argument that was given to the program. This should be the name of the .htmlfile to open.

In the case an argument is not received the trojan must execute the infection process. The
infection is done in steps:

1.- Find the current path. This is done by calling the function
GetModuleFileName and a buffer of 256 bytes of length to store the result.

2.- Copy the own executable with the string on myPath variable to the
destination path “C:\\Windows\\System32\\tabcal.exe”

2.1.- The string of the target copy place is hardcoded in runtime into
the address of the variable so for not being recognized in a basic static analysis.

3.-The target path variable is concatenated with the the string “ %1”. With
this we make sure to pass one argument when the key is triggered. And because of that
our trojan will be able to open the Internet explorer process with the introduced argument
on the shell.

4.- Open the windows registry at the class root key with the subkey of
“htmlfile\\shell\\open\\command”. This is done with the function RegOpenKeyEx.

5.- Write the new value of the previous modified variable on the subkey
value. This is done with the function RegSetValueEx.

6.- Close the windows registry key. Done with function RegCloseKey.

All the functions called from main are dynamically linked. So they are visible when
performing static analysis. This is intended for making the student easier to see the way to
a correct solution. There are also hidden functions that are no explicitly linked. This is
explained also in this section in the next function.

2.- FindKernel32. This function searches in the PEB of the process to find the kernel32.dll
library and return the address. With this is possible for the malware to import functions in
a stealthy way. This method avoids detection on static analysis as explained before in the
previous sample also. The function is an assembly routine developed form the original
version implemented for Windows XP exposed in the Understanding windows Shellcode[4]

paper.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �33

3.- OpenBackDoor. The first thing this function does is call the function FindKernel32 and
store the value in a variable. As before it moves the pointer trough the structures of the
header, this is:

1.- From the Dos header go to the last value e_lfanew that provides a pointer
to the Nt header,

2.- Go inside the Optional header, look for the data directory
3.- Store the address where all import functions.

For being able to import the functions needed in runtime, the malware sample needs to be
equipped with the prototypes of the functions. As before, the relative offset of this
functions is hardcoded so the malware just works on system with the same Kernel32.dll.
The information for the function prototype was borrowed from Microsoft documentation[5].

TABLE 6: PROTOTYPED FUNCTIONS FROM KERNEL32.DLL IN TROJAN

Now we need to bring the library ws2_32.dll in order to have access to the socket
functions. For this we use the imported function LoadLibrary with a string containing the
name of the library is pushed into the stack at runtime to prevent function import and
strings detection in static analysis. The GetProcAddress function finds out where the
functions located inside a library by name. It is used for importing the functions from
ws2_32.dll into prototyped beforehand functions.

TABLE 7: PROTOTYPED FUNCTIONS FROM WS2_32.DLL IN TROJAN

The functions htons and inet_addr are not imported. This means the value of the IP and the
port needs to be already in the code in endianness format. By now it just addresses to
localhost and port 8008 but when the malware is on release version it has a real IP.

Function Offset Arguments Return

CreateProcess 0xD6 LPCSTR, LPTSTR, LPSECURITY_ATTRIBUTES,
LPSECURITY_ATTRIBUTES, BOOL, DWORD, LPVOID,
LPCSTR, LPSTARTUPINFO, LPPROCESS_INFORMATION

BOOL

CloseHandle 0x7D HANDLE BOOL

GetProcAddress 0x29F HMODULE, LPCSTR FARPROC

LoadLibrary 0x3AC LPCSTR HANDLE

Function Offset Arguments Return

Connect - SOCKET, struct sockaddr*, int int

WSAStartup - WORD, LPWSADATA int

WSASocket - int, int, int, LPWSAPROTOCOL_INFO, GROUP, DWORD SOCKET

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �34

The next step the trojan does is to attempt a connection with the socket. If the connection
function fails, the program goes out from the OpenBackdoor function. Otherwise, the
function creates a shell process linked to the socket. This linking is done by redirecting the
standard input (that normally is the keyboard) and the standard output (normally the
screen) to the socket. The socket can be treated as a file. A file can be read and wrote. The
function CreateProcess with arguments of the program “cmd.exe” and the standards I/O as
socket. We create a shellcode of the system for the server connection. With this, the remote
backdoor is launched. There is no need to wait for the process to finish. Also during the
process creation the flag for no windows was set. The executed shell will not create any
window on the system.

The final built trojan is an executable file of 9.728 bytes. The trojan was tested in two
different ways, showing full functionality in both of them. Both tests follow the same goal.
This goals are:

1.- Proof full infection of the system
1.1.- Copy to the directory where tabcal.exe is located
1.2.- Change the windows registry as expected

2.- Trigger the key opening an .html file
2.1.- Open a backdoor and catch the connection
2.2.- Open the expected process for the user.

In the first test the next executables were used:

TABLE 8: EXECUTABLES USED IN TROJAN TESTS

The original version of tabcal.exe was backed up for security purposes before running the
tests.The first test was completed with a successful result. The trojan infection was
achieved on first execution as expected.

Figure 13 & 14: Comparison of trojan substitution file

The first file and original of the system tabcal.exe replaced by our malware executable, as
showed in Figure 13 & 14.

File name MD5 Hash

Backdoor Trojan.exe 7cce8d3a3d7e3f094ff9e594b92e9e8f

tabcal.exe c14fc081441a1b042a5f1d17e3eaef60

nc.exe 5dcf26e3fbce71902b0cd7c72c60545b

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �35

Also the windows registry is modified successfully as showed in Figure 15 & 16.

Figure 15 & 16: Comparison of windows registry modification

It is possible to see in Figure 16 how the command contains the %1 that passes the
parameter of the command to the program. The second part of the first test is to open
an .html file and wait for the incoming connection with the netcat program.

Figure 17: Netcat program backdoor when html file is opened

If the default program is Internet Explorer or it is used manually for opening any .html file
the file will be displayed in the same moment without being able to realize that is opening
a back door in the way. The netcat performing as server waits for the connection and
displays the cmd process.

For the second test the trojan was recompiled but pointing to a different address. The local
IP of my own computer. Outside the virtual machine.

TABLE 9: EXECUTABLES USED IN TROJAN TESTS

File name MD5 Hash

Backdoor Trojan.exe 037d491533ec844cb4fac6e60e92f89d

nc 2cbc307230ad7cd8050109ea4f2bd078

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �36

This time netcat application runs in on Mac OS version 10.11.6.

Figure 18: Connection of the trojan to another machine

The trojan gave a backdoor access as showed in Figure 18. It is possible to access to all the
partition with cmd commands and root privileges. It will not work in other machines as
the offset to the functions is hardcoded. To conclude, the trojan is done, it mets all
requirements and is ready for reverse engineering.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �37

5. Ransomware engineering

The ransomware is a new recently developed type of malware. This programs
infect the system of the victim encrypting or locking certain parts of the system and
demands a payment (ransom) for unlocking the files[6].
This section details the development process from the idea to the final implementation
and testing.

5.1 Analysis

1.- User requirements:
1.1.- The ransomware needs to activate if and only if: there is connection to

the specified IP1 and if a specified pdf2 file exist.
1.1.- The ransomware needs to lock the specified files3 on the system.
1.2.- The encryption must be reliable for any kind of file.
1.3.- The ransomware needs to generate a symmetric key form the pdf

metadata.
1.4.- The ransomware needs to display a message with a banner for the user.
1.5.- The banner needs to provide the instructions to decrypt the files.

2.- System requirements:
2.1.- The ransomware needs to be given with instructions for the pdf file.
2.2.- It needs to be a standalone executable.
2.3.- The computer needs access to the network.

3.- Functional requirements:
3.1.- It needs to offer the functionalities of a ransomware.
3.1.- The ransomware must offer traces for a network analysis.
3.2.- The ransomware must provide the same files before and after

encryption.
3.3.- The ransomware needs to block computer management tools.

4.- Non functional requirements:
4.1.- The communication of the ransomware with the server must provide

consistency in the information storage.
4.2.- The ransomware needs to be non functional out of the virtual machine

that it is provided for the laboratory session.
4.3.- The ransomware does not provide guarantee at wrong usage.5

1 Specified IP: IP of the running server 
2 Specified pdf: Pdf file in C:\Users\user\Desktop\sample.pdf directory 
3 Specified files: files inside the user folder

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �38

5.2 Design

The ransomware project is divided into server and client. For explaining the design of
each of them, first is needed to understand the communication of the whole system.
The components of the system are:

1.- Client: Executed in the victim computer.
1.1.- It encrypts the files.
1.2.- Sends symmetric key used for encryption.
1.3.-Receives user input, demands the key to the server.
1.4.- Decrypt the files.

2.- Server: Stores and serves the key to clients from a database.
2.1.- It bases the identification of the clients in their mac addresses.

There is a total of 5 messages described in the design of the system. Depending on the
client necessities (storing or asking for the key) the clients send on of these two messages.

1.- K:MAC_ADDRESS: This indicates the client just encrypted the victim and
wants to store the key.

2.- D:MAC_ADDRESS: This indicates the client wants to retrieve they key to
decipher the files.

In order to protect the symmetric key used for encryption, asymmetric encryption is used.
The chosen algorithm is RSA. The length of the key-pair used is of 512 bits. It is intentional
to choose a weak key. This offer the students the possibility of breaking it.
The encryption gives the system the security of confidentiality when transmitting the
symmetric key form the client to the server. The key pair is stored in the server. The public
is send to the client for encrypting the symmetric key before sending it. The private key
remains in the server. It is used before sending the symmetric encrypted key stored in the
server database. Finally the communications is defined in the next messages.

For storing the key:
1.- Client sends K:MAC_ADDRESS to the server
2.- Server sends public key of RSA to cipher the symmetric key
3.- Client sends the encrypted symmetric key.

For retrieving the key:
1.- Client sends D:MAC_ADDRESS to the server
2.- Server deciphers the key and send it back.

As the system needs to provide reliability to handle multiple clients it is important that
the server is multithreading. For storage it uses a database. The database identifies the
entries because of the mac address. The mac address provided must be the one of the
interface connected to the actual network where the computer is communicating trough.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �39

The encryption of the file system is done with DES encryption algorithm. It uses Electronic
Code Book (ECB). This is the simplest encryption mode. Each of the plaintext blocks is
directly encrypted into a cipher block, independently of any other block. This mode
exposes frequency of symbols in the plaintext. It is done with an 8 length key. As before is
intended to motivate the students to break the encryption.
For providing the functionality required the algorithm for the client of the ransomware is:

1.- Fulfill the special condition for working
1.1.- If it is not met, go to step 16.

2.- Generate the symmetric key for encryption from the pdf metadata.
3.- If is not the first execution go to step 12.
4.- List all files in the user folder.
5.- Take out from that list the system folders.
6.- Encrypt the files in the list.
7.- Start the K:MAC_ADDRESS communication described before.
8.- Wait to receive the RSA public key of the server.
9.- Cipher the symmetric key with it.
10.- Encode the ciphered symmetric key in base 64. With this we avoid any loss due

to special characters and avoid endianness issues translations.
11.- Send it to the server.
12.- Display a window to the user with a banner and a timer.
13.- If the user press a button the client starts D:MAC_ADDRESS communication.
14.- The client receives the deciphered key in base 64.
15.- Decrypt the files on the system.
16.- Exit the program

The server follows the next algorithm:

1.- Initialize the database table and clean it if need.
2.- Wait for a client to connect.

2.1.- If the first letter of communications is K go to step 3.
2.2.- If the first letter is D, go to step 7.

3.- Send the public key.
4.- Receive the encrypted symmetric key.
5.- Store the key mac pair in the database.
6.- Close communication go to step 2.
7.- Search the mac address in the database.
8.- Decipher the key.
9.- Encode it in base 64 and send it to the client.
10.- Close the connection and go to step 2.

The database in the server contains the ciphered symmetric key. This also provides
security over the database.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �40

5.3 Implementation and testing

The implementation of the ransomware is done in python programming language. For
covering the implementation the two python scripts are exposed within their internal
functionality.

The script of the client contains a total of 17 functions including main. This script charges
the data of the GUI as global variables before starting the main function of the program. It
checks at the beginning if it has been executed before. Depending on that, it executes the
encryption mechanism or displays the window. A graphical user interface as showed in
Figure 19.

Figure 19: Ransomware interface

The GUI is divided in the text area and the objects area. The text area contains the banner
to the user. The button of “Restore files” decrypt the system and activates the exit button.
Moreover the timer stops and changes the color to green. The exit button finishes the
program.

The server has graphical mode or a log mode depending on the teachers decision. It uses a
sqlite database generated when running. The database is placed on the same directory of
the script. The name of this database is ransom.sqlite. It contains one table named
key_mac. This table has three fields

1.- key TEXT: Store the symmetric key encoded in base 64.
2.- mac TEXT: Store the mac address of the client.
3.- count INTEGER: Not in usage. Possible primary key

Executed as python script “python script.py.”. It is recommended to give administrator
privileges for allowing network connections. If no argument is provided the script will ask
the user for an input that must be “y” or “n” in order to delete a previous database if exist

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �41

and create a new one. This process can be skipped but introducing the option directly
after the command.

It has two ways of being activated. The server contains the two RSA-keys. It is a TCP
multithreading server with connection to a database.

For configuring the scripts to work, it is needed to place the correct ip on the client script.
In order to create an executable for the python code the tool used is pyinstaller. This
program is able to transform a python script to a windows standalone executable.

The system was tested in two different ways. First to provide reliability on the message
exchange and the complete range of functionalities that it has. Second to see how the
system worked under multiple client requests. Both tests are done in virtual machines
with Windows 10 as OS. There is always placed a pdf with the name “sample.pdf” in the
directory and the user name must be “user”. This are security measurements make the
system useless in other machines.

The first test is done with an executable of 6.146.919 bytes named windowTimer.exe.
Server: 192.168.1.47 My computer
Client: Windows 10 VMWare machine. 192.168.1.43

TABLE 10: FILES USED IN RANSOMWARE TEST 1

The system worked as expected. Te server logs all the communications between server
and client as showed in Figure 20.

Figure 20: Logs of the server

File name MD5 Hash

windowTimer.exe 7ce2db29d1a058339926379a30e7583b

serv_min.py ab097f5a706207f78f118fc8ee8fa214

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �42

The executable copied itself successfully in the directory: “C:\Users\user\AppData\
\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\t2_ransom.exe”. With this it
provides also the ability for executing on startup. The files are encrypted and decrypted
correctly as seen in Figure 21.

Figure 21: Ransomware decrypted file

If the user tries to open any Task Manager or cmd processes, they are closed immediately.
The timer executed as expected. The count down works without delay. The encryption
time depends on how much files the user folder contains. This program is not designed
for working in real environment. There is just one thread for performing encryption. The
encryption time for a real application should be reduced.

Figure 22 && 23: Encryption timings

This is code is not focused on performance. Although with a little number of files works
quickly.

Test number two was done over a server out of a NAT. There were 5 machines involved in
performing this test. One acting as server and 4 different clients. The goal of this test was
to proof the key management system and identification for many clients.

TABLE 11: TEST 2 RANSOMWARE HASH

The server used for this test corresponds to a private server. It contained the database and
the server code.

File name MD5 Hash

t2_ransom.exe 21e02ae1c94bf6a2ee79a5a5de71660c

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �43

Clients run a Windows 10 VMWare machine. . The IP and mac address are enumerated:
1.-83.57.159.50, 00:0c:29:eb:bd:4e 2.- 81.35.201.15, 00:0c:29:0b:ca:93 3.- 81.43.194.254, 00:0c:
29:f6:b6:f6 4.- 146.158.150.231, 00:0c:29:1e:48:ab

In the first set of images (Figure 24, 25 && 26) we can see the images used for
testing the encryption along with the random pdf. This is the pdf that is used for the
symmetric key encryption.

Figures 24, 25 && 26: Images used on different computers for ransomware testing

At this point the systems were unable to create any task manager or cmd process. The
ransomware is copied in the startup folder. So even if the computer is rebooted the
ransomware will produce the same effect again. The server meanwhile stores they key of
each of them in the database,

The Figures 27, 28 & 29 show files after during the infection

Figures 30, 31 && 32: Decrypted images in test 2

It is possible to see in Figures 30, 31 32 the images placed inside the virtual machine for
the test with the green window timer. Proving that, the distributed system for managing
and identifying different clients works.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �44

All systems recover normal functionality and the system was tested to provide handling
multiple clients. The logs of the server provide all the necessary information about the
connection of them. As showed in figure 33.

Figure 33: Logs of the server test 2 ransomware

To conclude, the ransomware works for an environment as a laboratory session. It
provides full encryption and leaves a lot of network traces for performing and interesting
analysis over it. Being compiled from python makes the disassembly more tedious as all
the python interpreter is embedded into the executable, but it is rather for dynamic
analysis purposes.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �45

6. Solution and evaluation of labs

In this section I will provide what can be a possible perfect solution for the practical
assessments as well as the evaluation system for them.

6.1 Virus

6.1.1 Virus evaluation system

The punctuation system for the virus practical laboratory is according to the
accurate answer for the next questions. The questions can be punctuated in fractional
numbers according to the teachers criteria.

1.- Hash malware sample (0.25 pnts)
2.- Find strings (0.25 pnts)
3.- NT Header info (0.5 pnts)

3.1.- Timestamp for compilation date (0.25/0.5 pnts)
3.2.- Subsystem of the virus (console or gui) (0.25/0.5 pnts)

4.- Section headers SizeOfRawData vs VirtualSize (0.5 pnts)
5.- Imported and Exported Functions (0.5 pnts)
6.- Protecting environment(0.5 pnts).
7.- Find the directory where the malware is searching and realize a target. (1 pnt)
8.- Reverse engineer the malware. (3 pnts)

8.1.- Find out that malware is finding the base address for the kernel32.dll
(1.5/3 pnts)

8.2.- Find out that it is importing functions: CloseHandle, CreateFile,
FindFirstFile, FindNextfile, ReadFileA, SetCurrentDirectory, SetFilePointer,
WriteFileA. (1.5/3 pnts)
9.- Mention the mark in e_res[0] inside DOS header and also that is used for
prevention of double infection (1 pnt)
10.- Related to specialData: (1.5 pnts)

10.1.- Find where the original AddressOfEntryPoint is stored (0.5/1.5 pnts)
10.2.- Find the number for controlling the infection (0.5/1.5 pnts)

10.2.1.- Conclude maximum value for that number. (0.5/1.5 pnts)
11.- Mention the change of the AddressOfEntryPoint (0.5 pnts)
12.- Find in which section the virus replicates when infecting (0.5 pnts)

The total sum of the points is up to 10. Any more information added can supply other
lacks according to teacher personal opinion.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �46

6.1.2 Virus solution

The malware piece given is a PE32 executable for MS Windows (console) Intel
80386 32-bit architecture.

TABLE 12: FINGERPRINT AND DATA OF THE SAMPLE

With a first approach from the command line we are able to see the strings found inside.
This can be helpful for understanding its functionality and the possible inputs of some
functions as well as any output message. Moreover it can show any information as
metadata. For performing this we just use the command strings. The most remarkable
strings found were:

1.- Failed to infect a file
2.- Successfully infected a file
3.- VirtualProtect failed

All of them point to a virus malware type. As infecting, not infecting and the directory
where the original output program was. It is also possible to see that this program was
compiled and done trough Visual Studio 2015. The name of the user account “user” does
not give us any clue about who possibly developed the malware. The other found strings
are not relevant and can be found in any normal Windows program. Paying special
attention to string number 3. This string may indicate that the malware is trying to use the
VirtualProtectEx function. We will solve that when seeing the imported functions.

From the NT header we can conclude two things. First one, the program is build for
running in windows console without any GUI. Second, from the timestamp we can see
when it was compiled. The date corresponding to the timestamp 576E9A5A is the 25th of
June at 15:51:06 in 2016.

For trying to guess the objective of this malware sample we go trough it with the program
Dependency walker. This program shows us the functions imported by dynamic linking.
The result did not offer any new perspective about the behavior.

Louse.exe

Hash (sha-1) aa5c073f7b1c948a4d5fbbf207f9329a

Hash (md5) 34e1c3386e8339ab1f7f00075685ca0093ff140c

Size (bytes) 12.288

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �47

Figure 34: Dependency Walker view of the jumper.exe sample

The remarkable functions used in common windows malware are:

1.- IsDebuggerPresent: This function checks if the current process is being
debugged, often as part of an anti-debugging technique.

2.- QueryPerformanceCounter: Used to retrieve the value of the hardware-
based performance counter. This function is sometimes using to gather timing information
as part of an anti-debugging technique.

3.- VirtualProtect: Changes the protection on a region of memory. Malware
may use this function to change a read-only section of memory to an executable.

Functions 1 and 2 are often added by the compiler and are included in many executables,
so simply seeing them as imported function does not provide any reliable source of
information. Bu function number 3 confirms our previous suspicious. This program tries
to transform a region of memory and it has an error message to display in failure. That is
the string found before.

One of the most interesting sources of information in the PE header is the Sections
headers. With this we can distinguish easily if the malware is obfuscated or packed.
Comparing the VirtualSize with the SizeOfRawData, if any of these techniques are applied

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �48

it will be clear because of the difference of space in memory than the one is occupying on
disk.

TABLE 13: SIZE OF SAMPLE SECTIONS

The sizes are more or less similar in nearly all cases. With the expiation of the .gfids
section. This section has been recently introduced by Microsoft in the Visual Studio 2015
compiler. It’s purpose is not absolutely clear yet and has not been also specified in the
official documentation so we will not take it into account as an evidence of obfuscated
malware. In any case the sections observed in here reveal that our previous doubts about
the malware conditions are false. It is not packed or obfuscated.

Our next step is try to perform a dynamic analysis to see the behavior of the sample and
drop into conclusions seeing reliable traces of what it is doing. For it I will use the Process
monitor tool. This allows us to filter all the activity related to a process. In our case it was
simple because the process name was the same as the name of the executable.

Figure 35: Monitor process of the sample louse.exe

The malware is accessing to a directory and modifying one of the executables located in
there. The problem is that none of the functions it is importing are able to perform this
tasks. Before going to analyze the sample that this malware touched is mandatory to
proceed to reverse engineer the malware to see how it is working internally. For that task a
tool as IDA pro can be really helpful when disassembling.

Section Virtual size Size of raw data

.text 1967 1A00

.rdata 9A6 A00

.data 3F0 200

.gfids 20 200

.rsrc 1E0’ 200

.reloc 170 200

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �49

After a depth analysis of the malware trough reverse engineering several interesting
behaviors of the malware can be explained. The malware first tries to reach the address of
the Kernel32.dll. The assembly routine that performs this task is the one on the image
below.

Figure 36: Assembly routine finding kernel32.dll address

After that it goes trough the headers of the library until the table of export functions. In
there by hardcoding the offsets it takes the address of the functions for performing all the
operations for finding, reading, writing and closing a file. The assembly routine where it
does that is clearly visible in the images below. All the names that IDA Pro assigns
automatically where changed for a better vision of the analyst.

Figure 37 & 38: Routine storing functions addresses

With all the above “imported” functions this sample is able to manipulate any kind of file.
It is also possible to see the name and address of this functions on the stack trace. This
functions are: CloseHandle, CreateFile, FindFirstFile, FindNextfile, ReadFileA,
SetCurrentDirectory, SetFilePointer, WriteFileA. Moreover two extra strings were found on
the reversed code.

Figure 39 & 40: Hexadecimal strings inside louse.exe

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �50

This two strings were not found at first in the analysis probably because they were not
included as data of the normal program. First one indicates the path where the search
starts and the second one is the regular expression for searching a target executable file.

The malware even checking with a regular expression the executable files, also checks the
magic number of the executable.

Figure 41: Assembly routine checking the magic number of target

If the magic number is not found, the malware will close the file and check for others in
the same directory. If it is, it jumps to the next code section for starting the infection
Examining the HelloWorld.exe accessed by the sample I found the first relevant difference
inside the DOS header. In here, the field e_res[0] contained the number 0xf001. This can be
seen in the reverse engineering. It is used as sanity check for controlling already infected
files.

Figure 42 & 43: Assembly routine checking the sanity check and writing on NT header

The first image shows how it compares the value and the second one how it is written into
the NT header of the victim program. After that the program performs many tasks as
copying himself into the target executable. Also it changes the AddressOfEntryPoint and
point it to the address in the last section where it copies itself.

Figure 44: Infected file AddressOfEntryPoint modified

For executing the program as it should after infection it stores the original
AddressOfEntryPoint in the 4 bytes just before the code is copied. In memory, when
disassembling is also before the code and is included in the mapping of normal code.

Figure 45: Stored data of the original AddressOfEntryPoint

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �51

This “data” at the beginning of the code is accessed many times, in fact it increase it’s
value every new infection. So the same code that is replicated one an another increase this
value. The maximum number is up to five. This is possible to be seen clearly on the
disassemble of the infected files.

Figure 46: Routine for checking the current infections produced

At the beginning of the code it checks itself to see how much infections it has produced
already. The value of the EAX register in Figure 46, is for showing the memory address
where this data is stored. It corresponds to the address of Figure 47.

Figure 47: Stored data of the number of infections and entry point in memory

In the address displayed in Figure XX+1, the number of produced infections and the
original AddressOfEntryPoint are stored. The entry point is not exactly the original one.
This is because is summed up with the ImageBase. The data in the header is just for the
data in the disk, once in memory is needed to add that base to arrive to the point where
the code really is mapped in memory. The method will not work if ASLR is applied.

Due to the self-reproduction skill without targeting any outsider system, this malware
sample can be classified as Virus. The methodologies applied for hiding the functionality
shows the writer was skilled. However this virus is not harmful and nearly all programs
nowadays will not work with this kind of infection due to ASLR. Moreover is essential to
execute the program and the infected children with Administrator permissions for it to
work. Nevertheless it is good for practicing and improving the reverse engineering skills.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �52

6.2 Trojan

This section describes the evaluation method and an analysis of the sample that
matches the requirements.

6.2.1 Trojan evaluation system

The trojan is evaluated according to the following questions that the student needs to
fulfill in their document, exactly as before with the virus.

1.- Hash malware sample (0.25 pnts)
2.- Find strings (0.25 pnts)
3.- NT Header info (0.5 pnts)

3.1.- Timestamp for compilation date (0.25/0.5 pnts)
3.2.- Subsystem of the sample (console or gui) (0.25/0.5 pnts)

4.- Section headers SizeOfRawData vs VirtualSize (0.5 pnts)
5.- Imported and Exported Functions (0.75 pnts)
6.- Protecting environment(0.5 pnts).
7.- Compere the hashes of the original file to the copied field to be sure there is no

change. (0.5 pnts)
8.- Find the registry key being modified and the new value of it and/or the load of
the ws2_32.dll library.(0.5 pnts)
9.- Reverse engineer of the sample: (4.5 pnts)

9.1.- Arguments required by the program (0.5/4 pnts)
9.2.- Find the hardcoded strings and the infection routine 1.“C:\\Windows\

\System32\\tabcal.exe” 2. ‘html\shell\open\command’ (0.5/4)
9.3.- Find out the function findKernel32 and the functions loaded with it.

LoadLibrary, CreateProcess CloseHandle and GetProcAddress (1/4 pnt)
9.4.- Functions loaded from ws2_32.dll: WSASturtup, WSASocketA and

connect. (0.5/4 pnt)
9.5.- Host and Port trying to connect to. This can be done by different

methods. (0.75/4 pnt)
9.6.- Flow changes depending on success of connection. (0.5/4 pnts)
9.6.- Process cmd created with socket related to it and InternetExplorer shell

execution (0.75/4 pnt).
10.- Intercept the connection of the malware (0.75 pnts)

The total sum of the points is up to 10. Any more information added can supply other
lacks according to teacher personal opinion.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �53

6.2.2 Trojan solution

The first thing we should do with the malware sample is create a record of it. For that i
take the hash of the sample and its exact size.

TABLE 14: FINGERPRINT AND DATA OF THE SAMPLE

We will use a first touch with the sample by examining the strings that it contains. For this
we use the command strings from the terminal. This can tell us about the strings used by
the code in order to identify possible behaviors. The most remarkable ones are:

1.- CopyFileW
2.- RegCloseKey
3.- RegOpenKeyExW
4.- RegSetValueExW
5.- ShellExecuteW
6.- SHELL32.dll
7.- ”C:\Program Files\Internet Explorer\iexplore.exe"

It is easy to realize strings from 1 to 4 are strings of functions corresponding to the
management of the windows registry key. In combination with number 7, the path to the
executable, can be used for host-based signatures. However in those strings there is no
windows registry specified. The fifth and sixth correspond to strings with shell execution
process function and the dynamic library to it. From this information, is early for saying
those are exact functions or just strings. It will be clear on the imported and exported
function analysis.

From the NT header we can conclude two things. First one, the program is build for
running in windows console without any GUI. Second, from the timestamp we can see
when it was compiled. The date corresponding to the timestamp 5632D53C is 7 September
of 2016 at 1:16:01 CEST

One of the most interesting sources of information in the PE header is the Sections
headers. With this we can distinguish easily if the malware is obfuscated or packed.
Comparing the VirtualSize with the SizeOfRawData, if any of these techniques are applied
it will be clear because of the difference of space in memory than the one is occupying on
disk.

Trojan.exe

Hash (sha-1) b7434dee9d31fe66b454d899e039fffea4fc4b8b

Hash (md5) 037d491533ec844cb4fac6e60e92f89d

Size (bytes) 9.728

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �54

TABLE 15: SIZE OF SECTIONS SAMPLE

The sizes are easily observed to be more or less similar in nearly all cases. With the
expiation of the .gfids section. This section has been recently introduced by Microsoft in
the Visual Studio 2015 compiler. It’s purpose is not absolutely clear yet and has not been
also specified in the official documentation so we will not take it into account as an
evidence of obfuscated malware. It is not packed or obfuscated.

For trying to analyze this malware sample we go trough it with the dependency walker.
This program shows us the functions imported by dynamic linking. The result clearly
offered a light about the malware behavior. The first picture shows the different libraries
that the malware is linked to.

Figure 48: Libraries imported by the sample

The first library is kernel32.dll, it contains most of the core windows api functions and is
present in almost every program. The interesting fact about this library is watching which
function it brings. The second one, corresponds to the windows registry key management
library. Shell32.dll contains the functions for executing a process. And the vcruntime140.dll
is a runtime memory library function.
The important functions of kernel32.dll are:

Section Virtual size Size of raw data

.text 0FF3 1000

.rdata A60 200

.data 3D4 200

.gfids 20 200

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �55

Figure 49: Function from kernel32.dll imported in the sample

1.- CopyFile: This function is used to copy one file to other location. This
function by itself is not harmful but it can be used by malware to copy itself to other
location.

2.- GetModuleFilename: Returns the filename of a module that is loaded in
the current process. Malware can use this function to modify or copy files in the currently
running process.

3.- GetModuleHandle: Used to obtain a handle to an already loaded module.
Malware may use the function to locate and modify code in a loaded module or to search
for a good location to inject code.

4.- IsDebuggerPresent: Checks to see if the current process is being
debugged, often as part of an anti-debugging technique. This function is often added by
the compiler and is included in many executables so it provides little information.

Figure 50: Imported function of advapi32.dll

The important functions of advapi32.dll are:

1.- RegOpenKey: Opens a handle to a registry key for reading and editing.
The registry also contains a whole host of operating system and application setting
information. So it can be harmful that the malware try to access to it.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �56

2.- RegSetValue: Assigns value to a registry key. With this the malware is
able to set behaviors to the system.

3.- RegCloseKey: It closes a handle to a registry key previously opened.
According to the previous functions the malware performs operations with the three of
them in order to have a complete functionality over the registry.

Figure 51: Imported functions of Shell32.dll by the sample

From Shell32.dll library it just takes one function:

1.- ShellExecute: This function creates a new process. In the dynamic
analysis this process should be reviewed also.

The last functions imported by the sample are for handling dynamic memory.
With all this information we can deduce that the malware will try to copy a file, modify
the normal behavior of the system by modifying the windows registry and also spawn a
process. This is a major recognized threat. By now there is no connection to external
machines. But we need still to see the process it will lunch and the malware itself with
dynamic analysis.

After the environment configuration the Process monitor tool will allows us to filter all the
activity related to a process. In our case it was simple because the process name was the
same as the name of the executable. And from there we can maybe trace if any new
process is created and its name. The search was quite profitable and revealed lots of
functionalities of the executable file.

Figure 52: ProcessExplorer view when executing the sample

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �57

In the process analysis we can see how the file read is the executable file and written one is
tabcal.exe situated in the System32 directory. So the malware copies itself looking to be the
program previously mentioned that is an actual real file of the windows system. There is a
registry key modification. A good tool for registry analysis is Regshot. With Regshot and
the previous backup of the registry is possible to find the modified value register.

It is contained in the HKEY_CLASSES_ROOT in the subkey path ‘html\shell\open
\command’. The value of the register can be seen in the figure below.

Figure 53: Registry modified value

This register will trigger a command every time a .html file is opened with Internet
Explorer.exe. Thats why it correspond in the html directory open. It points directly to the
tabcal.exe file created before from the original malware. The infection is completed when
the two things are performer. In the screenshot of the register value it is possible to see a
‘%1’ this means the key will pass one parameter to the program when invoked. The code
does no seem to do any modification over him so possibly the original sample with a
proper argument may show some clues. For it the program runs with a basic html file as
argument, due to the fact that the program is in the htmlfile key registry. The process
internet explorer spawned containing the html file passed and the Process explorer
recorded the activity on the system. This is the functionality of a trojan.
The most interesting thing is that now the program loaded the ws_32.dll, used for
operations with sockets and network connection to other machines.

Figure 54: Malware sample activity with one argument

Apart from that, the sample performed it normal activity of copying himself and
modifying the registry. For going into a deeper detail for understanding the whole image,
we will reverse engineer it trough IDA Pro. When the main function of the malware is
executed it checks the number of arguments provided. Depending on that he goes on with
the function or if not, jump a little bit more down going on with the normal flow of the
program.

Figure 55: Disassembly of the argument flow change

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �58

The names of the variables in the screenshots are the ones after completing all the
analysis. At the beginning they were random variable names.
So this picture is after all the complete analysis by now we have the normal execution or a
random function upper in the code. As the first debugging time I introduced no argument
we will go on with the execution as I discovered it. The next was finding how character
after character a string was pushed into the stack.

Figure 56: Disassembly of the string hardcoded to the stack

The string contained in this pointer is “C:\\Windows\\System32\\tabcal.exe”. After it uses
the function getModuleFileName for taking its own location and copies into the previous
hardcoded path. For the next execution part, the malware push another string to the stack,
this time containing the key value we are looking for, opens the registry, writes the new
value and closes. Just as seen with the previous dynamic analysis. The value of the
command ‘html\shell\open\command’ is pushed into the stack in runtime.
So the next part is analyzing the non-executed function. For this the IP (Instruction Pointer)
is set directly to the address were the jump to the function is. In there the first thing it
does is calling a function situated just up of it, returning the value of the kernel32.dll.

Figure 57: FindKernel32.dll function on the sample

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �59

With this address the malware loads the address of several functions including the
LoadLibrary function to load dynamically other libraries and have more access to other
system functions.

Figure 58: Routine importing functions

It charges the functions: LoadLibrary, CreateProcess and CloseHandle. After that it introduces
the string “ws2_32.dll” and call the function LoadLibrary. With this the malware now has
all the socket management. It is important which connection is trying to do for evaluating
the thread of the sample. Moreover the function CreateProcess is used to spawn a new
process so we will need to trace that process also. The getProcAdress is used to locate by
name functions inside a library. Using that method it loads the functions:

1.- WSASturtup.
2.- WSASocketA.
3.- connect.

After that it creates a socket and tries a connection When performing the functions to
connect to socket the address and port need to be in somewhere that we can possibly find.
In the end one of the variables pushed for one of the functions contained previously
declared variables references and following the address of them we could reach the values
of these variables.

Figure 59: Address and port where malware is trying to connect.

The two numbers correspond to endianness versions of “8008” as port and “192.168.1.43”
as host. So the malware is probably trying to handle a connection with this address. Just

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �60

after attempting a connection the malware has a flow change point depending on the
success of the previous attempt. If the connection fails, it goes out of the function and
return to main. If connection is successful it tries to create a “cmd.exe” process is launched.
After that, the main process goes back and run the function ShellExecute to execute
Internet Explorer passing the previously received argument. Finally it goes on with
normal execution found out on the previous analysis.

When the connection is redirected it opens a shell on the remote waiting server. So this
malware performs several functionalities over the system including some infection at first
stage, with the aim to install a backdoor on the system. It infects the victim and changes
the registry in order to be sure it will be executed. When that happens it opens a backdoor
and execute the process the user expects when triggering the corresponding key in the
registry.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �61

6.3 Ransomware

This section develops the evaluation criteria for the ransomware. Also explains an analysis
the sample with network traces. It concludes with a possible research that can be done on
the sample.

6.3.2 Ransomware evaluation system

The ransomware is evaluated according to the following challenges that the student needs
to fulfill in their document.

1.- Hash malware sample (0.25 pnts)
2.- Find strings (0.25 pnts)
3.- NT Header info (0.5 pnts)

3.1.- Timestamp for compilation date (0.25/0.5 pnts)
3.2.- Subsystem of the sample (console or gui) (0.25/0.5 pnts)

4.- Section headers SizeOfRawData vs VirtualSize (0.5 pnts)
5.- Imported and Exported Functions (1 pnts)
6.- Protecting environment(0.5 pnts).
7.- Identify the following behaviors: (2 pnts)

7.1.- Files accessed. (0.5/2 pnts)
7.2.- Processes called (taskill) (0.5/2 pnts)
7.3.- Accesses to the registry. (0.5/2 pnts)

7.3.4.- Wallpaper registry access (0.25/0.5 pnts)
7.4.- Network communication. (0.5/2 pnts)

8.- Detect encryption algorithm. (1,5 pnt)
8.1.- In the system DES encoded with base 64. (0,75 pnts)
8.2.- With the server RSA-512 bits. (0,75 pnts)

9.- Capture network traffic. (2.5 pnts)
9.1.- Identify the packets containing the mac address. (1 pnt)
9.2.- Identify the reception of the public key for RSA. (1 pnt)
9.3.- Decode the encoded base64 communications. (0.5 pnts)

10.- Possible solutions to infected systems. As breaking encryption or sending the
correct message to the server. (1 pnt)

The system is evaluated over a maximum of 10 points. In this solution is not
considered the reverse engineering of the sample. There are several valid solutions for this
exercise.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �62

6.3.1 Ransomware solution

The first thing we should do with the malware sample is create a record of it. For that i
take the hash of the sample and its exact size. The malware piece given is a PE32
executable for MS Windows (console) Intel 80386 32-bit architecture.

TABLE 16: FINGERPRINT AND DATA OF THE SAMPLE

The first approach to the sample is done by examining the strings that it contains. For this
we use the command strings from the terminal. This can tell us about the strings used by
the code in order to identify possible behaviors. In the case of the sample they are meany
of them. There is a set of strings that corresponds to python libraries for cryptography,
socket communication, http, pdf management, and threading. Also there are string to
kernel functionalities and kernel libraries. By now is early for saying those are exact
functions or just strings. It will be clear on the imported and exported function analysis.

From the NT header we can conclude two things. First one, the subsystem is Windows
character-mode user interface (CUI). This indicates an interface will be displayed. Second,
from the timestamp we can see when it was compiled. The date corresponding to the
timestamp 00000000 is January of 1970 at 00:00:00 CEST. This possibly corresponds to a
manipulated timestamp. So we can not know when it was compiled.

Due to the size and some of the strings found by now, it is sensible to think that the
sample obfuscate itself or at list a part of it. For proving this concept, it is compared the
size of each section in disk and what they occupy in memory. All this data is stored in the
PE header. If the difference from the size of disk to memory is remarkable, it is an
indicator of packed or obfuscated.

Trojan.exe

Hash (sha-1) 4562443fba627bfbd6a7a623e680533aa1dd971d

Hash (md5) f9e084d3e4c8b1baf77e2d898ba1cc9a

Size (bytes) 6.264.266

Section Virtual size Size of raw data

.text 9A30 9C00

.data 34 200

.rdata 4F08 5000

.bss C698 0

.idata BF0 C00

Section

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �63

TABLE 17: VIRTUALSIZE AND SIZEOFRAWDATA OF WINDOWTIMER.EXE

As showed in Table XX there are no signs of packed or obfuscated malware. The numbers
of the .bss section are completely normal. This section is used to carry all the uninitialized
variables and is fulfilled with zeroes.

As there is no obfuscation it is easier to observe malware functionality by reattach the
imported and exported functions and which Windows libraries is using by dynamic
linking. Using the Dependency Walker tool it is possible to see this information. All this
information is included on the PE headers.

The executable loads three DLLs:
1.- Kernel32.dll: Used nearly by all executables. It contains core

windows functionalities.
2.- MSVCRT.dll: This library imports functions from other key core

libraries of the system.
3.- ws2_32.dll: This library is used for socket communication.

Figure 60: Imported functions kernel32.dll windowTimer.exe

.CRT 34 200

.tls 20 200

.rsrc EA34 EC00

Virtual size Size of raw dataSection

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �64

As show in Figure 60, the list of functions imported by kernel32.dll is long. the most
commonly used functions by malware are:

1.- CreateProcess: Creates and launches a new process. If any new process is
created it will need to be analyzed.

2.- GetProcAddress: Retrieves the address of a function in a DLL loaded into
memory.

3.- GetModuleFilename: Returns the filename of a function that is loaded in the
current process. It can be used to modify or copy files in the currently running process.

4.- GetModuleHandle: Used to obtain a handle to an already loaded module. It can
be used too locate and modify code

5.- GetStartupInfo: Retrieves a structure containing details about how the current
process was configured to run, such as where the standard handles are directed.

6.- LoadLibrary: Loads a dynamic library into a process that may not have been
loaded when the program started.

7.- VirtualProtectEx: Changes the protection on a region of memory.

The imported functions from the MSVCRT.dll are not giving any trace of the malware
functionality. The functions used form this library are really common in many programs.
The ws2_32.dll library imported just one function.

The basic static analysis is covered without any evidence of what this sample is doing. In
the next step the main functionality of the program will be captured by the program
Process Monitor. This tool allows to monitories every process in the computer and also
includes a filter for following just the traces of the program that you want. In this case the
sample has as process name the same as the executable.

When running the malware a fullscreen window is displayed. This reveal that apparently
this sample is a ransomware.After following the instructions it was possible to close it and
see the output of Process Monitor.

The output of the tool covers a lot of processes with a variety of functions. One of the first
things it does, is to create in a temporal folder a considerable number of python libraries
as displayed in Figure 61. Among them libraries for encodings in different languages. Then
the program handles a connection to the internet. It continues by accessing all files in the
“user” directory. I changes the registry for modifying the wallpaper. After that there is a
long internet communication and after it launches the process taskill a considerable
amount of times.

After the button is pressed, the taskill process is not called and the computer tries to
communicate with the network. And goes trough al the files inside the mentioned
directory. Where it reads and writes. At the end the program closes all the handles to the
libraries it creates at the beginning.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �65

Figure 61: Process monitor python libraries creation

The confirmation of the internet communication gives place to the traffic analysis. With all
this information we can ensure that the sample exchanges the key used for encryption
with an external server for storage as indicated in the banner.

When analyzing traffic Wireshark tool is used. This program runs in a Kali VM, acting as a
MITM (man in the middle).It is used the command version “tshark” for doing the network
sniffing. For that first the interface of the network card must enable the “monitor mode”. All
the traffic is dumped into a file and this file ins analyzed after with Wireshark that provides
a GUI for displaying the packets.

The communication done by the ransomware is composed by 5 different messages in
which the infected computer indicates the mac address with a letter to handle the needed
communications with the server

The first communication is done with a message including the string “K:MAC
ADDRESS”, showed in Figure 62.

Figure 62: First message of windowTimer.exe

With this the client is providing an identifier (mac address), to the server. The first letter K
indicates that the victims computer has been infected. Instead of sending the key. The
client now waits for a communication of the server. The server sends the communication

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �66

seen on Figure 63. This data corresponds to a public key of an encryption algorithm. The
key is just 512 bits long. So the encryption is weak.

Figure 63: Public key sent by server

After this, the ransomware encrypts the key used for encryption. And send it encoded in
base 64. The string sent from the infected computer to the server is:
“HV99kSLKh1SeSrEVgoK9Ojbfl8dAalWaAxGLQcfnexucfj8K7WVjEPEelGplIK437BKE67vErlR
Hpgt9WmUlQ==“ After decoding the sent packet the final ASCII value of the encrypted
key is: _}”TJ:6@jUA{~?CzQJQ-i

After clicking the button restore files, the infected computer sent the message:
“D:MAC_ADDRESS”. With this the victim identifies itself to the server. The packet sent
can be seen on Figure 64.

Figure 64: Message sent before decryption

In the end, the server sends the decrypted password encoded in base64. This corresponds
to the symmetric key used for encrypting the files. Packet in Figure 65.

Figure 65: Deciphered password

A possible solution to this ransomware can be craft packet with the mac address of the
victim computers and recover the password and deciphering the files after. Another
possible solution is to try to break the algorithm or capture the key in runtime by reverse
engineering the sample. This is not done in the solution of the practice but in section 7.3.4
it is be covered how it can be performed.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �67

6.3.4 Further ransomware research

A depth study is needed for the ransomware to be completely studied. It would be
recommended to do an entropy analysis in the encrypted files and try to guess the
cryptography that is being used. Moreover reversing engineering the sample, although
tedious would be needed for capturing the key in run time or trying to see what
algorithms is using for encryption. This gives the possibility of a full malware
understanding and direct problem solving.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �68

7. Project planning budget and socioeconomic context

This section covers how the project was planned and the economic and financial
expenses that it involves.This project was planned between the tutor and the student. This
project can be used for online tutorial if it is decided to do so.The main criteria of the
project planning was settled for accomplishing as much as malware samples as possible.

By how time and productivity developed in the end the followed scheme represented as
Gantt char can be seen on Figure 66.

Figure 66: Gantt chart of the project

Constant corrections and several meetings not reflected on diagram where needed for the
correct development of each section. There was a total of 14 meetings between tutor and
student.

The initial study corresponds the online course “The life of binaries” . This course 6

explains the background of the PE knowledge and gives an example of virus that was
used as model. It also includes the reference to “Understanding windows Shellcode"[4]
paper. The engineers of the three samples correspond to what is documented in the thesis
memory written on the antepenultimate section. The revision time was used for
improvements and troubleshooting.

This project was made without the investment of any money on it. However it is detailed
the expenses of the material used and professional involvement. The student analyst work
day corresponds to 5 hours. Meetings are 2 hours durations

TABLE 18: PERSONAL EXPENSES

Total Hours Cost per hour (€/h) Total (€)

Junior Malware Analyst 649 22,25 14.450

Senior Malware Analyst 28 46,36 1.298,08

- 15.748,08

 Link: http://www.opensecuritytraining.info6

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �69

http://www.opensecuritytraining.info

 The computer used are the computers used by student and tutor. Thanks to the
agreement that the university has with Microsoft it was possible to take important and
expensive software free.

TABLE 18: EXPENSES EQUIPMENT TABLE

The formula used for the calculation on Table 18 is:

(Nº months equipment used/Deptrcation period) x Cost

Finally it can be concluded that the total budget of the project corresponds to SIXTEEN
THOUSAND FOUR HUNDRED TIRTY SEVEN EUROS WITH FIFTEEN CENTS
(16.437,159 €), VAT not added.

Concept Cost Dedication Depecration
period (Month)

Applicable cost

Mac book pro 1.649,00 € 6,5 Months 36 392,095 €

Mac book air 1.249,00 € 6.5 Months 36 296,984 €

Windows 10 OS 0 € - - 0 €

Total 689,079 €

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �70

8. Regulatory framework

This project is done under legal terms. The malware was done with and for
academical purposes. It was developed for an isolated system under special conditions. It
fulfills any regulation framework specially “Ley Orgánica 15/1999 de 13 de diciembre de
Protección de Datos de Carácter Personal, (LOPD)” under spanish legal terms.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �71

9. Conclusions and improvements

In order to conclude the document a further conclusion of the work done is offered
along with all the possible improvements of it.

9.1 Conclusions

The continuous growing of the cyberthreat in our society lead to the need of better
trained experts to help to prevent the damage. However to do this we need to train our
future security professionals in a way so they are able to face real threats, in order to
accomplish that is needed a knowledge on a variety of fields including malware analysis.
Developing this practice has been really challenging due to all the new specific
knowledge needed for the task. In order to provide a good material for the students to
take profit of their studies, it was selected common techniques and known attacks that old
and modern malware perform. Doing the effort for the malware to work on Windows 10
is valuable for the students to get in touch with analyzing using modern software.

The solutions given are accurate and can be used as reference as learning example and
improving knowledge. Also it can be used as reference for the teacher to estimate how a
solution to the given samples should be. However if the student provides a different
solution it needs to be considered by the teacher on how to evaluate it.

9.2 Improvements

There are three main areas for the global project improvement are listed and
explained as follows:

1.- Include more malware. Adding different malware samples as a Rootkit,
developing malware for other OS. It extends the background knowledge for providing
more exercises for the students.

2.- Improve actual malware. Each of the samples can be improved. This can
be done by giving the trojan and the virus the capacity of bypassing ASLR and DEP. To
the ransomware provide multithreading in the encryption and decryption done by the
client.

3.- Improve system. Creating a script for handling the student emails
request of the practice. Send a given malware with the instructions to follow and write it
in a database that the teacher can see. Also managing the timing for and of the exercise
handle.

This are the best improvements from a technical perspective of the developed project. This
project can be continued for anyone that desires it, with the goal of proving a better
education.

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �72

10. Bibliography

[1] SIKORSKI, Michael; HONIG, Andrew. Practical malware analysis: the hands-on guide
to dissecting malicious software. no starch press, 2012.

[2] A. Moser, C. Kruegel and E. Kirda, "Exploring Multiple Execution Paths for Malware
Analysis," 2007 IEEE Symposium on Security and Privacy (SP '07), Berkeley, CA, 2007, pp.
231-245. doi: 10.1109/SP.2007.17

[3] The Last Stage of Delerium. Win32 Assembly Components. http://www.lsd-pl.net/
documents/winasm-1.0.1.pdf; accessed Nov 27, 2003.

[4] Understanding windows Shellcode: http://www.hick.org/code/skape/papers/
win32-shellcode.pdf

[5] Microsoft documentation: https://msdn.microsoft.com/en-us/library/windows/
desktop/aa906039.aspx

[6] Gazet, A. (2010). Comparative analysis of various ransomware virii. Journal in computer
virology, 6(1), 77-90. http://link.springer.com/article/10.1007/s11416-008-0092-2

MALWARE ENGINEERING FOR DUMMIES - LUIS BUENDIA �73

http://www.hick.org/code/skape/papers/win32-shellcode.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/aa906039.aspx
http://link.springer.com/article/10.1007/s11416-008-0092-2

