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Abstract: The existence of significant uncertainties in the models and systems required for trajectory prediction represent a major challenge
for Trajectory-Based Operations concept. Weather can be considered as one of the most relevant sources of uncertainty. Understanding and
managing the impact of these uncertainties is necessary in order to increase the predictability of the ATM system. We present preliminary
results on robust trajectory planning in which weather is assumed to be the unique source of uncertainty. State-of-the-art forecasts from
Ensemble Prediction Systems are used as input data for the wind field and to calculate convective risk. The term convective area is defined
here as an area within which individual convective storms may develop, i.e., a necessary (though not sufficient) condition. An ad-hoc robust
optimal control methodology is presented. A set of Pareto-optimal trajectories is obtained for different preferences between predictability,
convective risk and average efficiency.

I. INTRODUCTION

A major challenge for Trajectory-Based Operations (TBO) 
is the existence of significant uncertainties in the models and 
systems required for trajectory prediction. Understanding and 
managing the impact of these uncertainties is necessary in 
order to increase the predictability of the ATM system. In 
turn, predictability and robustness improvements in trajectories 
will produce gains in the high level goals (capacity, efficiency, 
safety, and environmental impact) pursued within a modern-

ized ATM system. Some examples of relevant uncertainty 
sources are: 1) meteorological uncertainty; 2) uncertainty in 
the aircraft performance model [1]; 3) uncertainty in initial 
mass[2] and other parameters and 4) uncertainty in the aircraft 
intent [3]. In this paper, the focus is on the former, i.e., 
meteorological uncertainty, one of the most important sources 
of uncertainty that affect the ATM system. Indeed, the recently 
granted SESAR ER TBO-Met Project1 focuses on the analysis 
of meteorological uncertainty coming from the following two 
sources: 1) wind, and 2) convective regions. While we won’t 
consider these additional uncertainty sources, we will note that 
out methodology could be extended to include them.

The main contribution of this paper is to extend the method-

ology for robust route optimization in [4], [5] to the considera-

1TBO-MET project (https://tbomet-h2020.com/) has received funding from 
the SESAR JU under grant agreement No 699294 under EU’s Horizon 
2020 research and innovation programme. Consortium members are UNI-

VERSITY OF SEVILLE (Coordinator), AEMET (Agencia Española de Me-

teorologı́a), METEOSOLUTIONS GmbH, PARIS-LODRON-UNIVERSITAT 
SALZBURG, and UNIVERSIDAD CARLOS III DE MADRID.

tion of convection risk. The focus is on the pre-tactical level (in 
this context, around 3 hours before departure). We make use of 
Ensemble Prediction Systems and optimal control techniques. 
Figure I sketches the intended methodology for the Trajectory 
planning problem in TBO-Met Project. The pre-tactical level 
is represented in the left hand side of the figure, considering 
both wind uncertainty and convective phenomena.

Convective regions are defined as areas within which in-

dividual convective storms may develop. The latter comprise 
individual storm cells, multi-cells, mesoscale convective com-

plexes and squall lines. Convective storms need a trigger 
mechanism and the onset and the location of those individual 
storms is impossible to forecast at the flight planning level. 
Nevertheless, one can obtain forecasts with some characteris-

tics that act as necessary conditions (however not sufficient) 
for the formation of storms, and that combined can provide a 
probability of convection, i.e., an indicator of convection risk 
than can be used for trajectory planning.

Numerical Weather Prediction (NWP) centers developed 
Ensemble Prediction Systems (EPS) in order to provide prob-

abilistic meteorological forecasts in addition to deterministic 
predictions. They seek to provide an estimation of the uncer-

tainty that is inherent to the NWP process [6], a task that 
cannot be achieved with deterministic forecasting. In an EPS, 
several runs of the NWP model are launched with different 
characteristics in order to produce a set of (typically) 10 to 50 
different forecasts or “members” of the ensemble. We refer to 
[7] for a review of the status of NWP as well as the relevance 
of EPS in a wider meteorological context.

1



...

Pre-Tactical Phase up to 3 Hours before departure Tactical Phase (during execution)
  Nowcasts available 3 to 1/2 hours in advance

T (departure)T -3HoursT -6Hours E- 1/2 to 3Hours E (event)

SBT Agreed

RBT

Executed

RBT

Revised

RBT

Robust Trajectory PlanningECMWF EPS forecasts

Convection Probability fields

Nowcasts

Storm avoidance 

Wind Uncertainty fields
probability of high-risk area

0.00 0.16 0.32 0.48 0.64 0.80 0.96

0 1000 2000 3000 4000 5000 6000 7000
−150

−100

−50

0

50

100

150

200

T
im

e
le
ad

or
la
g
(s
)

0 1000 2000 3000 4000 5000 6000 7000
250

260

270

280

290

300

310

G
ro
u
n
d
sp

ee
d
(m

/s
)

0 1000 2000 3000 4000 5000 6000 7000

Distance (km)

0.5

1.0

1.5

2.0

2.5

3.0

H
ea

d
in
g
(r
ad

)

Course

True heading

Figure 1. TBO-Met Trajectory Planning Methodology for both pre-tactical and tactical levels. Recall that the present paper focuses on the pre-tactical level.

The ATM research community has recently started to use 
EPS in order to study the predictability of flight plans and 
the sensitivity to weather prediction uncertainty. The main 
research effort in this direction has been undertaken within 
IMET, a SESAR WP-E project. It sought to develop a 
”probabilistic trajectory prediction” (PTP) system, where a 
deterministic TP is run once for each member in order to 
produce a trajectory ensemble. Preliminary results of this 
project were presented in [8] and a follow-up publication [9] 
showed how the information obtained with this approach could 
be used to improve decision-making at the pre-tactical level. 
Outside IMET, e.g., in [10] the authors present an analysis of 
the impact of uncertainty in average wind on final fuel 
consumption. In [4], [5] we developed (within the framework 
of SESAR’s TBO-Met project) a robust approach to aircraft 
trajectory planning under wind uncertainty using EPS. In par-

allel to the latter, an approach based on Dynamic Programming 
for aircraft trajectory planning under wind uncertainties (and 
also using EPS) has been recently published in [11]. All in all, 
the focus of all these works is on wind uncertainty. To the best 
of authors’ understanding, the inclusion of convective 
indicators in robust flight planning is an unexplored field. 
Thus, we go beyond the state of the art by extending the 
approach in [4], [5] to the consideration of convection.

The paper is structured as follows: we introduce convection 
and its associated indicators in Section II. The robust optimal 
control methodology is presented in Section III. In section IV 
we present a case study, including the simulation results and a 
discussion. Finally, some conclusions are drawn in Section V.

II. CONVECTION

A. Convection Indicators

Within this paper it is attempted to delimit high-risk areas

due to deep convection and their respective uncertainty. The

term convective area is defined here as an area of potentially

developing storms. The latter comprise individual storm cells,

multi-cells, mesoscale convective complexes and squall lines.

The onset and the location of those individual storms are diffi-

cult to evaluate for the time being and impossible to determine

in many cases. Favourable environmental characteristics and

conditions for certain types, however, are known, e.g.:

• A squall line (at least in Central Europe) very often devel-

ops several hundred kilometres ahead of and parallel to an

approaching cold front. It is initiated and recognized by a

boundary convergence line. Many such lines often occur

approx.10m km apart, but not all of them necessarily

develop into a squall line, though some of them do.

• Air mass storms preferably develop in the afternoon. The

onset time of first shallow clouds and the development

of deep convective clouds can be forecasted by standard

meteorological procedures.

• Moderate mid-level shear enhances the storm strength,

while too strong shear and no-shear environments are

more likely related to weak storms

• Long-lived storms are linked to the renewal and genera-

tion of new cells immediately ahead of a mature cell.

• Storms embedded in a cold front are out of scope of this

study as they can be forecasted very well by synoptic

forecasts of low pressure systems.

• The structure of the environmental temperature profile

(temp) allows deriving certain features of the storm.

Maritime dominated storms reveal a temp close to the

moist-adiabatic implying weak updrafts, while continen-

tal storms exhibit more potential energy to be released.

The latter is defined by the area between moist adiabatic

and the temperature profile.

• Environmental characteristics are used to derive empiri-

cally a range of convective indices.

Important to note is that the above characteristics are

necessary conditions, but they do not allow the forecast of the

precise location and onset. Convective storms need a trigger

mechanism. In order to precisely forecast a storm, we therefore

need to forecast the trigger mechanisms like e.g. boundary

convergence lines, tropospheric gravity waves, mountains or

surface temperature inhomogeneity.

From the above we conclude that we need an indicator to

describe the necessary precondition for the potential devel-

opment of convection and an indicator which comprises the
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essential activator in order to develop a storm which has to be 
avoided by aircraft. As described below this will be done by 
using a combination of two convection indicators Total Totals 
Index and Convective Precipitation, which are available by 
the EPSs. When both indicators exceed certain thresholds for 
a high number of EPS members, the grid point is assumed 
to lie within the zone of high probability (low uncertainty) of 
convection which can be interpreted as a no-fly-zone. If only 
one criterion is fulfilled for a high number of EPS members the 
grid point is located in a region of convective uncertainty. The 
boundary of uncertainty areas will delimit convective regions.

Those convective areas may have a persistence or life time of 
up to 60 hours. Carbone et al. [12] and previous studies 
investigated precipitation episodes and found much longer life 
times of those episodes, respectively travelling convective 
regions, than those of the individual storms de-veloping within. 
Here we pursue similar thoughts. Convective regions are 
perceived as areas with a high weather risk, the latter given by 
always occurring and unpredictable individual storms. 
Convective regions, therefore, must not necessarily be avoided 
but require a higher weather situation awareness by pilots and 
controllers. Also, trajectories passing through a convective area 
are subject to diversions resulting in increased flight duration 
and delays. Thus the intersection of a trajectory with a 
convective region does not imply, as already said above, that 
the whole area has to be circumnavigated, but rather that delays 
have to be expected. The dimension of the latter depends, 
among other factors, on the type of storms embedded in the 
convective area, density of cells, their orientation, the size of 
gaps separating the storms and the time of onset.

We decided to combine two indicators for convection:

1) Total Totals Index (T T ): 2 The sum of the vertical totals
(V T ) V T = T850 − T500 (temperature gradient between 850

hPa and 500 hPa) and the cross totals (CT ) CT = Td850
−T500

(moisture content between 850 hPa and 500 hPa by subtracting

the temperature in 500 hPa from dew point temperature in 850

hPa). As a result, TT accounts for both static stability and

850 hPa moisture, but would be unrepresentative in situations

where the low-level moisture resides below the 850 hPA level.

In addition, convection may be inhibited despite a high TT

value if a significant capping inversion is present. V T = 40
is close to dry adiabatic for the 850-500 hPa layer. However,

V T generally will be much less, with values around 26 or

more, representing sufficient static instability (without regard

to moisture) for thunderstorm occurrence. CT > 18 often is

necessary for convection, but it is the combined Total Totals

Index that is most important. The risk of severe weather

activity is operationally defined as follows (see also [13]):

• 44-45: isolated moderate thunderstorms

• 46-47: scattered moderate / few heavy thunderstorms

• 48-49: scattered moderate / few heavy / isolated severe

thunderstorms

• 50-51: scattered heavy / few severe thunderstorms and

Louisville, KY:
2attributable to National Weather Service

http://www.weather.gov/lmk/indices, accessed July 25, 
2016.

isolated tornadoes

• 52-55: scattered to numerous heavy / few to scattered

severe thunderstorm / few tornadoes

• >55: numerous heavy / scattered severe thunderstorms

and scattered tornadoes

2) Convective Precipitation (CP): 3 an estimation of the

precipitation coming from convective clouds. The total pre-

cipitation is the sum of the so-called large-scale precipitation 
and the convective precipitation.

The moist convection scheme is based on the mass-flux 
approach and represents deep (including cumulus congestus), 
shallow and mid-level (elevated moist layers) convection. The 
distinction between deep and shallow convection is made on 
the basis of the cloud depth (¡ 200 hPa for shallow). For 
deep convection the mass-flux is determined by assuming that 
convection removes Convective Available Potential Energy 
(CAPE) over a given time scale. The intensity of shallow 
convection is based on the budget of the moist static energy, 
i.e. the convective flux at cloud base equals the contribution 
of all other physical processes when integrated over the 
sub-cloud layer. Finally, mid-level convection can occur for 
elevated moist layers, and its mass flux is set according 
to the large-scale vertical velocity. The scheme, originally 
described in Tiedtke [14], has evolved over time and amongst 
many changes includes a modified entrainment formulation 
leading to an improved representation of tropical variability of 
convection [15], and a modified CAPE closure leading to a 
significantly improved diurnal cycle of convection [16].

B. Calculation of probability of convention/clear air

In order to fulfil the desired requirements, the following

data processing for convection will be provided which can be

applied individually or in a processing chain:

• Grid-based output of the Total Totals Index and the

Convective Precipitation: Using the ECMWF-ENS data,

both convective indicators, TT and CP are given. The

results of this workflow are the TT and CP for each

member at the horizontal nodes of the desired sub-grid.

• Ensemble-based probability of convection / clear air

for each grid point: With regard to flight trajectories

it is important to delimit regions of uncertain weather

conditions from regions where the forecast is more re-

liable. Convective regions of high uncertainty can then

be defined as those areas where neither convection nor

clear air can be safely predicted. So, the calculation of

two quantities is suggested:

– Probability of convection

– Probability of clear air

Probability of convection: The ensemble-based probabil-

ity of convection is the fraction of ensemble members with 
values above the given thresholds T TH and cpH for all T T 
and cp of the ensemble members. For T TH we suggest one 
of the threshold values given in the list above. For cpH we

3ECMWF, Reading, UK, accessed July 25, 2016:

http://www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-

physics.

3



Figure 2. Schematic illustration of the suggested classification of the focused
area into 3 different zones: clear air (white), high-risk areas (pink) and
uncertainty (grey).

suggest 0; which means that any given amount of convective

precipitation originates from convective events:

pc =
Nc

N
, (1)

where N is the numbers of ensemble members, Nc =
∑N

i=1
i,

and so that TTi > TTH ∧ cpi > cpH .

Probability of clear air: Value that can show regions of

clear air with low uncertainty:

pnc =
Nnc

N
, (2)

where N is the numbers of ensemble members, Nnc =
∑N

i=1
i,

and so that TTi ≤ TTH ∧ cpi ≤ cpH .

Considering both values pc and pnc at each grid node we

are able to divide the focused area into 3 zones (see Figure 2

for an schematic):

1) Convective zones i.e. high-risk areas with low uncertainty,

2) Clear air zones with low uncertainty,

3) Zones with high uncertainty.

With these two parameters (pc & pnc) further post-

processing (e.g., classifications as described above) can be

done.

High-risk areas for each ensemble member: : In order to

get high-risk areas where each zone is based on the individual

prediction of a single ensemble member, we look at the

forecasted values of TTi and cpi at each horizontal grid node.

In analogy to the ensemble-base probability of convection, we

define a high-risk area for an ensemble member as an area

where the following condition is fulfilled at each grid point:

TTi > TTH ∨ cpi > cpH .

That means that a high-risk area is delimited by the regions

of low uncertainty which include the regions of high probabil-

ity of convection. As the Total Totals Index is a smooth field,

we suppose that we get clear structures of convective zones

as well. Otherwise morphological operations can be applied to

the generated field in order to eliminate unreliable singularities

in the convective zones.

III. ROBUST OPTIMAL CONTROL

The class of dynamical systems that we will consider what

[17] calls a tychastic dynamical system. We denote the state 
vector by x ∈ Rn, the control vector by u ∈ Rm, t ∈ R 
is the independent variable (usually time) and the uncertain 
parameters are a continuous constant random variable ξ : Ω → 
R

q . The dynamics of the system are given by the function 
f : Rn × Rm × Rq × R → Rm, such that:

d

dt
x(ω, t) = f(x(ω, t),u(ω, t), ξ(ω), t) (3)

where ω ∈ Ω is the sample point on the underlying 
abstract probability space. Thus, for each possible realization 
of the random variable ξ(ω), the trajectory will follow the 
deterministic differential equation (III-B)4. To emphasize the 
dependence of the trajectories on the random variables, we 
will use the notation x(ω, t) and u(ω, t)

In order to fully determine the trajectory, we will need 
a control or guidance law in addition to the realization of 
the uncertain parameters ξ. We will discuss this topic in Section 
III-C; consider, meanwhile, a general control law

u (ω, t) = uL(t,x(ω, t))

A. Stochastic quadrature rules

The first component of this methodology is a stochas-

tic quadrature rule: a finite set of quadrature points {ξk},

k ∈ {1, . . . , N} and weights {wk}, k ∈ {1, . . . , N}, such

that we can build an approximation to the stochastic integral

I =
∫

Ω
g(ξ(ω))dω with the sum:

Qg =

N
∑

k=1

wkg(ξk)

where g(ξ) is an arbitrary function. Basic statistical quan-

tities, such as averages and variances, can be obtained with 
this integral by the corresponding function choices. There 
are a number of approaches with different approximation 
techniques that can provide a stochastic quadrature rule: 
Monte Carlo methods, Quasi-Monte Carlo methods (see e.g.

[18], [19]), Cubature techniques (see e.g.,[20] and [21]. In 
[17]), Stochastic Collocation of Generalized Polynomial Chaos 
(gPC) methods (see e.g., [22], and [23]). In this work, we do 
not need a stochastic quadrature rule because the uncertainty 
information is already presented in discrete scenarios (that we 
weigh equally) from EPS forecasts; however, integrating other 
sources of uncertainty in future work may require the usage 
of a stochastic quadrature rule.

B. The trajectory ensemble

Given a quadrature rule and a given number of samples

N , we define the trajectory ensemble associated to a control

law uL and a stopping criterion s as the set of trajectories

{(tf,k,xk,uk)} with k ∈ {1, . . . , N} such that the trajectory

4despite similarity in notation, this is not a stochastic differential equation
because the random parameters are not random processes, i.e., are constant.
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k is generated by the control and stopping rules with ξ = ξk
and the stopping criterion is met at t = tf,k, i.e.

d

dt
xk(t) = f(xk(t),uL(t,xk(t)), ξk(ω), t)

s(t,xk(t)) < 0, ∀t < tf

s(tf,k,xk(tf,k)) = 0

We consider a virtual dynamical system whose state vector

contains the state vectors of all the trajectories in the trajectory

ensemble, which evolve each according to the dynamics in

each scenario (i.e. for each value ξk of ξ). Using this trajectory

ensemble, the robust optimal control problem can be reformu-

lated as a large deterministic OCP, where the N trajectories

are considered simultaneously.

C. The “state-tracking” ROCP

In previous literature employing this approach (see [17],[24], 
[25] or [26]), the control law is considered as only depen-dant 
on time u(ω, t) = uL(t), thus leading to an “open-loop” control 
scheme. This “open-loop” formulation is, however, not a 
practical scheme for general optimal control problems. In some 
problems, the dynamic system could be unstable and the 
trajectories would diverge towards undesirable regions of the 
state space; in other (as the one we face in commercial aircraft 
trajectory optimization), we need to apply final conditions 
and/or have a unique path for some of the states.

Instead of looking for an optimal control, then, we will 
look for an optimal guidance; we designate some of the states 
as “tracked” states and we replace the unique controls uL(t) 
that are applied identically in all scenarios by scenario-specific 
controls uk(t) that ensure that the tracked states follow a 
unique trajectory for all likely values of the random variables 
(as long as it is feasible within the dynamics and constraints 
of the problem). In a real-world implementation, where the 
realized uncertainty would generally be a mix of the discrete 
scenarios that we are considering, we assume that the controls 
can be computed by existing controllers in order to track 
the calculated trajectory. In our context, the controls can be 
computed by the autopilot in order for the aircraft to follow a 
route at the calculated airspeeds and altitudes.

Let {i1, . . . , iq} be the indexes of the states we are interested 
in tracking (e.g. if we are tracking x2 and x5, i1 = 2 and 
i2 = 5). Let ei be the column vector that has a 1 at the 
position i; we define the matrix E ∈ Rq×n as

E =







eTi1
...

eTiq







We define the problem as:

min J = E

[

φ(xf ) +

∫ tf

t0

L(x(ω, t), u(ω, t), t)dt

]

subject to the differential equations (III-B), the state-

tracking condition:

E(x(ω1, t)− x(ω2, t)) = 0, ∀t, ∀ ω1, ω2 ∈ Ω

the stopping rule s(t,x(t)) = t − tf and the boundary

conditions:

x(ω, t0) = x0

E [ψ(x(ω, tf ))] = 0

where ψ is the function that represents the final conditions.

As emphasized earlier, the controls are no longer unique as

in the open-loop problem; they depend on the realization of

ξ(ω). Here, the final conditions that depend only on the tracked

states and the final time can be imposed exactly and not only

in average. The corresponding discretization is

min J =

N
∑

k=1

wk

[

φ(xk(tf )) +

∫ tf

t0

L(xk(t),uk(t), t)dt

]

subject to:

ẋk = f(xk(t),uk(t), ξk, t), k ∈ {1, . . . , N}

xk(t0) = x0, k ∈ {1, . . . , N}

E(xk(t)− x1(t)) = 0, ∀k ∈ {2, . . . , N}
N
∑

k=1

wkψ(xk(tf )) = 0

D. Application to aircraft robust trajectory optimization

We look to find routes that minimize a weighted sum of 
average fuel consumption, flight time dispersion (weighted 
with parameter dp as in dispersion penalty) and convection 
risk (weighted with parameter cp as convection penalty). By 
changing the relative weight of dp (assuming cp = 0), we can 
obtain routes that are more efficient on average or routes that 
are more predictable. dp = 0 means that we look for maximum 
average efficiency and higher values of dp put more weight 
on dispersion, which we will define as the difference between 
the earliest and the latest arrival time. By changing the relative 
weight of cp (assuming now dp = 0), we can obtain routes that 
are more efficient on average or routes that are less risky in 
terms of convection (less probable to run into storms). Higher 
values of cp put more weight on convective risk, and thus 
solution would try to avoid them.

The readers are referred to [5] for additional information 
and mathematical details of this methodology.

IV. CASE STUDY

A. Description and Statement

We consider an BADA3 A330 Aircraft model flying from

the vertical of New York (-73.7789 deg, 40.6397 deg) to

the vertical of Argel (3.2169 deg, 36.694 deg) at constant

barometric altitude 200hPa and constant Mach number 0.82

(temperature is assumed to follow ISA and thus True Airspeed

can be also considered constant). Initial mass has been set to

5
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Figure 3. Optimal trajectories for dp and cp values. Higher brightness in the trajectory color indicates higher values of the penalty. Top figures depict the

set of trajectories over a map with color regions of higher uncertainty, defined as
√

σ2
u
+ σ2

v
, with σu being the standard deviation of the u component of

wind across different members and σv analogous for the v-component. Down figures depict the set of trajectories over a map with color regions of higher
convective risk. Left trajectories are for dp values (0 to 50) with cp = 0. Right trajectories are for cp values (0 to 0.03) with dp = 0.

200 tons. A free routing airspace is assumed for the sake of

illustration. We use a forecast for a pressure of 200 hPa 9 hours

in advance for the 19th of December, 2016 from the ECMWF

ensemble, elaborated by the European Center for Medium-

Range Weather Forecasts (ECMWF)5 with 51 members. We

rely on the Pyomo library as NLP interface [27] and IPOPT

[28] as NLP solver.

B. Results and discussion

Figure 3 displays the geographical routes for different values

of dp and cp. It can be seen that routes computed with higher

dp (setting cp = 0) tend to avoid the high uncertainty zone in

the Atlantic in order to increase predictability, at the cost of

taking a more indirect route that is longer on average. It can

be also observed that routes computed with higher cp (setting

5http://apps.ecmwf.int/datasets/

dp = 0) tend to reduce the exposure to convective risk zones,

again at the cost of taking a more indirect route. The problem

could have been solved for additional cp-dp pairs (including

those with both values different than zero). It is important

to remark that the exposure to convective risk areas could

somehow turned into additional expected delay due to, for

instance, (tactical) ATFM regulations or ATC advisories to

avoid developed storms. This (relate cp with dp) is however

an open problem that we expect to face in the short term.

Figure 4.a shows the evolution of state and control variables

along the average-min-fuel-optimal trajectory (corresponding

to dp = 0 and cp = 0, the black line in 3). It can be seen

that the spread in the ensemble times, headings, and ground

speeds increases slightly when the aircraft crosses the area of

high uncertainty in the middle of the North Atlantic (that can

be seen in the left hand side Figures 3). Figure 4.b shows the

evolution of state and control variables along the average-most

predictable trajectory (corresponding to dp = 50 and cp = 0,
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Figure 4. State-space evolution of the variables. Time leads and lags are defined with respect to the average trajectory.

the yellow line in the left hand side trajectories of Fig.3). The 
spread in times and ground speeds are comparatively lower 
than in the previous case. Figure 4.c shows the evolution of 
state and control variables along the average-less convection 
exposure trajectory (corresponding to dp = 0 and cp = 0.03, 
the yellow line in the right hand side trajectories of Fig.3). In 
this case, minimizing time spread is not part of the objective 
and thus trajectories do not seek to avoid regions of wind 
uncertainty (this is why the time spread is rather high), but 
regions of convective risk (as it can be observed in Fig. 3).

Figure 5.c and 5.d present the different solutions for 
problems with different dp-cp pair values.

As for quantitative indicators: For the minimum average 
fuel case (dp = 0), the time dispersion at the final fix is 
above 2 minutes, whereas for the maximum predictability case 
(dp = 50), the time dispersion at the final fix is slightly below 
1.25 minutes. In other words, around one minutes reduction 
in time uncertainty could be achieved by flying the most 
predictable trajectory (dp = 50). This would be however at 
roughly 1500 kg of extra fuel burnt. Taking another point of 
the Pareto frontier (again of the subproblem with cp = 0), the 
increase in predictability of about 0.75 minutes would result 
in 750 kg of fuel consumption. In any case, the Pareto frontier 
shows different possible solutions with trade-offs dispersion-

consumption. Notice however that these numbers correspond 
to this particular case (route, day, and weather forecasts).6

6For instance in the case study solved in [4]) reductions in time dispersion 
due to wind phenomena of around 3 minutes were achieved.

Further studies should asses quantitative values in a more

systematic fashion.

V. CONCLUSIONS AND FUTURE WORK

A robust optimal control methodology has been used for

computing robust optimal routes based on Ensemble Prediction

Systems. Also, an approach to calculate risk of convection

using Ensemble Prediction Systems has been presented. This

risk, a necessary though not sufficient condition for the forma-

tion of storms, has been included in the objective functional of

the robust optimal control problem. We have demonstrated its

utility in studying trade-offs between efficiency, predictability

(measured in terms of dispersion in the final time) and

exposure to convention. We can conclude that by using this

method, uncertainty (in this case due to wind) can not only

be quantified, but also reduced by proposing alternative tra-

jectories. Also, convective areas can be avoided at the cost

of efficiency and predictability. This algorithms could be of

course interesting for both flight dispatchers (demand side of

the problema) and networks managers (capacity side of the

problem) for the design of a more robust ATM system and,

in turn, improve the ATM performance in terms of safety,

capacity (delays), and environment.
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