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The accurate description of the growth or dissolution dynamics of a soluble gas 
bubble in a super- or undersaturated solution requires taking into account a number 
of physical effects that contribute to the instantaneous mass transfer rate. One of 
these effects is the so-called history effect. It refers to the contribution of the local 
concentration boundary layer around the bubble that has developed from past mass 
transfer events between the bubble and liquid surroundings. In Part 1 of this work 
(Peñas-López et al., J. Fluid Mech., vol. 800, 2016b, pp. 180–212), a theoretical 
treatment of this effect was given for a spherical, isolated bubble. Here, Part 2 
provides an experimental and numerical study of the history effect regarding a 
spherical bubble attached to a horizontal flat plate and in the presence of gravity. The 
simulation technique developed in this paper is based on a streamfunction–vorticity 
formulation that may be applied to other flows where bubbles or drops exchange 
mass in the presence of a gravity field. Using this numerical tool, simulations are 
performed for the same conditions used in the experiments, in which the bubble is 
exposed to subsequent growth and dissolution stages, using stepwise variations in the 
ambient pressure. Besides proving the relevance of the history effect, the simulations 
highlight the importance that boundary-induced advection has to accurately describe 
bubble growth and shrinkage, i.e. the bubble radius evolution. In addition, natural 
convection has a significant influence that shows up in the velocity field even 
at short times, although given the supersaturation conditions studied here, the 
bubble evolution is expected to be mainly diffusive.
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1. Introduction
Mass transfer processes involving bubbles have gained a renewed interest over the

last few years due to their relevance in modern microfluidic applications connected
to topics such as carbon sequestration (Sun & Cubaud 2011; Volk et al. 2015). Due
to the small size of these bubbles they are spherical once they become smaller
than the channel’s size and are detached from the channel’s wall. Thus, in general
terms, the theory of Epstein & Plesset (1950) describing the diffusion-driven growth
or dissolution of an isolated, spherical particle should be applicable. However, as
discussed in Part 1 of this work (Peñas-López et al. 2016b), a number of effects not
included in the Epstein–Plesset theory, e.g. flow around the bubble, must be taken
into account to properly describe various experimental observations. Bubbles may also
interact with nearby surfaces or they may contain more than one chemical species
(Shim et al. 2014; Peñas-López, Parrales & Rodríguez-Rodríguez 2015). Another
effect that contributes to the diffusion-driven dynamics of a bubble is the so-called
history effect, discussed in Part 1 and more recently in Chu & Prosperetti (2016b).
It has been shown that any recent history of growth and/or dissolution (triggered by
past changes in ambient pressure) experienced by a particular bubble may leave, at
least for some time, a non-negligible imprint on the current state of the concentration
profile surrounding such a bubble. Consequently, the mass transfer rate is affected as
well. In Part 1, we proposed a modification to the theory of Epstein & Plesset to
take into account the history effect through a memory integral term for the case of
spherical, isolated bubbles. Moreover, we applied this modified equation to calculate
the bubble radius evolution when the bubble is subjected to some simple, yet relevant,
pressure–time histories. It is worth mentioning that history effects are common to
problems in which diffusion plays a central role, such as the viscous drag around
a body or, closer to the present mass transfer problem, the heat transfer around a
spheroid (Michaelides 2003).

The primary goal of the present paper is to quantify the relative importance of the
history effect in a canonical, yet experimentally relevant, configuration that does not
exhibit spherical symmetry, namely, that of a single spherical bubble tangent to a
horizontal flat plate that grows and dissolves in response to changes in the ambient
pressure and in the presence of gravity. In this configuration, the existence of the
history effect may become noticeable with a simple experiment: let us consider such
a spherical CO2 bubble that dissolves when the pressure is above saturation (see
figure 1). At a given time t≈ 60 s, the pressure is lowered to a new value still above
saturation (figure 1b). Despite the pressure being at all times above saturation, after
changing the pressure, the bubble is observed to grow for some time (figure 1a).
Naturally, part of this growth is due to the expansion of the gas. Thus, to observe
the effect purely due to diffusion, it is convenient to plot the ambient radius, R0. It
is defined as the radius one would observe if the liquid surroundings were at the
reference ambient pressure, P0, instead of the actual ambient pressure P∞(t):

R0(t)= R(t)
(

P∞(t)
P0

)1/3

. (1.1)

Here, R(t) is the measured bubble radius. Still, the ambient radius can be seen
to grow until approximately t ≈ 100 s, an effect purely driven by diffusion. Note
that R0 was referred to in Part 1 of this article (Peñas-López et al. 2016b) as the
pressure-corrected radius Rcorr. However, with the purpose of maintaining the standard
nomenclature, R0 will be used throughout this paper.
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FIGURE 1. Dissolution of a CO2 spherical-cap bubble tangent to a flat chip immersed
in a CO2-water solution under pressurised conditions (see later figure 9). The bubble is
subjected to (b) a pressure jump P∞(t), from P∞(0) = P0 = 7.4 bar to 6.5 bar. Both
pressures are above the saturation pressure, Psat = 6.1 bar (according to simulation). Panel
(a) shows the evolution in time of the measured bubble radius R(t) (white markers)
and ambient radius R0(t) (dark markers). The former is compared to simulation, which
in addition was employed to depict (c) the concentration profile along the z-axis above
the bubble at three different instants in time. The employed experimental and numerical
techniques are detailed in the main text.

This phenomenon may be explained by examining the concentration of dissolved
CO2 near the bubble (figure 1c). Indeed, although the concentration at the bubble
surface, given by Henry’s law, responds instantaneously to pressure changes, there
exists a boundary layer around the bubble where the concentration of CO2 is higher
than the instantaneous saturation one, as a result of the dissolution stage that took
place before the pressure drop. In the example depicted in figure 1(c), it can be seen
how the concentration gradient at the bubble’s top is actually positive at t = 65 s,
which explains the growth of the ambient radius. In this figure, numerical simulations
such as the ones described in §§ 3–5 have been used to compute the concentration
field along the z axis. These simulations are validated by comparing the predicted
bubble radius with the experimental one (see figure 1a).

This simple example illustrates that, to properly describe the time evolution of the
bubble radius observed in experiments, the history effect must be taken into account.
However, a question that was left open in our previous work (Peñas-López et al.
2016b) was the relative importance of this effect in a realistic experimental condition
where other effects such as the interference with a wall and natural convection may
greatly influence the diffusion-driven bubble dynamics, as was shown by Enríquez
et al. (2014). With this idea in mind, another objective of the present work is
to propose a numerical approach able to accurately describe the evolution of a
bubble attached to a horizontal flat plate and growing/dissolving in the presence of a
gravitational field.

While this work only deals with bubbles composed of a single soluble gas, it is
important to realise that the history effect is omnipresent in multicomponent bubbles.
In Part 1, the history effect was described as ‘the acknowledgement that at any
given time the mass flux across the bubble is conditioned by the preceding time
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history of the concentration at the bubble interface’. Thus, in dissolving/growing
multicomponent bubbles, the flow rate of a particular species across the bubble
interface will likely be different from the rest. The species composition inside the
bubble will thus change over time, which amounts to time-dependent partial pressures
and hence time-dependent interfacial concentrations. It is possible to artificially
discern the contribution of the history effect numerically, as was done by Chu &
Prosperetti (2016b) for the case of a dissolving two-gas bubble. Isolating the history
effect experimentally, on the other hand, is anticipated to be much harder.

Finally, it is worth mentioning that the history effect is naturally present in the
evaporation of multicomponent drops. Chu & Prosperetti (2016a) have recently
developed a formulation that includes a memory integral to describe the diffusion-
driven dynamics of multicomponent drops in the presence of a solvent, a phenomenon
of relevance in modern techniques of chemical analysis (Lohse 2016). In this problem,
the faster or slower dissolution of one of the components yields a time-varying
composition at the drop’s interface, which makes the inclusion of the history integral
in Fick’s law essential, even when the ambient pressure remains constant.

The paper is structured as follows: § 2 presents the experimental results that
illustrate the effect of history in the growth–dissolution of CO2 bubbles tangent to
a flat plate. Section 3 presents the general mathematical formulation of the problem
and sheds light on the importance of the different physical effects involved in the
experiments. In § 4, a formulation based on the streamfunction–vorticity method
is described to simulate the mass transfer and flow field around the bubbles. The
simulation results are then presented and discussed in § 5. Finally, § 6 summarises
the main conclusions.

2. Experimental characterisation of the history effect

We have carried out experiments to support our theoretical and numerical analyses
by subjecting single bubbles to well-controlled, step-like pressure jumps that super- or
undersaturate the liquid alternatively. This way, we can make bubbles grow and shrink
under repeatable conditions to expose the history effect. It becomes apparent through
the differences in the responses to successive identical pressure–time histories.

2.1. Experimental set-up and procedure
Although the experimental set-up has been described in a previous work (Enríquez
et al. 2013), a brief description is included here for convenience. The facility is fed
with water that is demineralised in a purifier (MilliQ A10) and degassed by making
it flow through a filter (MiniModule, Liquicel, Membrana). This water enters into the
mixing chamber (see figure 2), that has been previously flushed with CO2 to purge
the air from the system. There the water is stirred in the presence of CO2, kept at
the desired saturation pressure for approximately 45 min. Finally, the experimental
tank is pressurised with CO2 at this same pressure and then slowly flooded with
the carbonated water, so bubbles do not appear during the filling. This preparation
procedure ensures that in the experimental tank there are no other gas species present
within the liquid or gas phases apart from CO2 (at least in quantifiable amounts).

Placed at the centre of the experimental tank there is a silicon chip, treated to
become hydrophilic, with a black-silicon hydrophobic pit (50 µm in radius) at its
centre. The role of this pit is to force a single bubble to nucleate at a fixed location
in a repeatable way. Furthermore, in order to avoid slight temperature variations
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FIGURE 2. (Colour online) Sketch of the experimental set-up. See Enríquez et al. (2013)
for a detailed description.

to affect the diffusion-driven bubble dynamics, the measurement tank is kept at a
constant temperature by means of an external chiller.

Once the measurement tank is filled with the carbonated water, the following
experimental procedure is followed:

(i) The pressure is lowered below the saturation value until a bubble nucleates at the
pit and grows up to the desired size, Ri.

(ii) The tank pressure is set again to the saturation value. Then, the pressure is
finely adjusted manually until the bubble size does not vary in an observable
way for approximately five minutes. The pressure at which this occurs will be
hereafter the one used in the calculations as the saturation pressure. Notice that
this procedure allows us to determine the saturation pressure with more accuracy
than that given by the pressure controller during the mixing process.

(iii) At time t1 (see figure 3), the pressure is lowered by a given amount, 1p1, during
a prescribed time T = t2− t1. This turns the liquid supersaturated, which leads to
bubble growth.

(iv) Subsequently, at time t2, the pressure is increased by an amount 1p2, which
causes undersaturation and the bubble to shrink.

(v) When the bubble becomes slightly smaller than Ri at time t3a, the pressure is
gradually set back to the saturation level P0 (t3b) by means of a pressure drop
1p3. During this short period (t3a–t3b) the bubble expands and grows.

(vi) During a short time Ts after t3b, the pressure remains at saturation but the bubble
keeps growing and attains the initial size Ri at t4 due to the history effect
(portrayed in figure 1). At this point (t4), growth step (iii) and subsequent
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FIGURE 3. Experimental procedure during which the bubble is exposed to two identical
supersaturation–undersaturation cycles. The lower plot shows the pressure that the bubble
is subjected to, whilst the upper one illustrates its radius time evolution. In brief, once a
bubble is stabilised at a given radius Ri, it is forced to a growth cycle for a prescribed
time T and then to a dissolution cycle down to a size slightly smaller than Ri (t = t3a),
such that a short time Ts after the pressure returns to the initial level P0 (t = t3b), the
combination of previous gas expansion (during t3a–t3b) and history lead the bubble size
to the initial radius (t = t4). An identical pressure cycle is immediately imposed, which
results in a different time evolution of the bubble radius due to the history effect.

dissolution step (iv) are immediately repeated at identical 1p1 and 1p2

respectively.

It is imperative to realise that the pressure and bubble size conditions at t4,
just before the pressure jump, are identical to the initial conditions at t1. Namely,
R(t4) = R(t1), P∞(t4) = P∞(t1) and dP∞(t4)/dt = dP∞(t1)/dt = 0. The zero-pressure
time derivative condition is extremely important to ensure that the bubble is not under
the effect of any previous pressure-induced volumetric expansion or compression at
the time when 1p1 is suddenly imposed. Note that the sole purpose of the pressure
change between t3a and t3b and subsequent stabilisation period (t3b and t4) is precisely
to enforce this last condition. This complex procedure allows us to directly isolate and
quantify the history effect through direct comparison. Any differences between the
first growth rate (during t1–t2) and second growth rate (t4–t5) must be purely attributed
to the history effect. The differences arise because at t1 the bubble is in equilibrium
with its surroundings (uniform concentration field) and the contribution of history
term is essentially negligible. At t4, however, the concentration field surrounding
the bubble has evolved. It is no longer uniform, and the bubble is no longer in
equilibrium: thus, the contribution of the history term is now larger.

2.2. Experimental results and discussion
In this subsection we present the results of four experiments that manifest the effects
of history in bubble growth and shrinkage. Three of the experiments were carried out
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FIGURE 4. (Colour online) Results for experiment 1 showing the time-histories of (a) the
measured bubble radius R in response to (b) the imposed pressure P∞(t). In (c), the rate
of growth of the ambient radius R0, defined in (1.1), is plotted for the two growth cycles.
The time axis is initialised at t1 or t4 accordingly.

as described above, while in the fourth the order of the growth and shrinkage stages
was swapped, i.e. first shrinking and then growing.

In the experiments where the bubble is first made to grow (figures 4–6), the most
apparent difference between the two growth stages is the somewhat larger bubble
size achieved at the end of the second stage (see panels labelled (a)). This is a
consequence of a more important effect, namely the higher growth rate found during
the first instants of the second stage, as predicted by the modified Epstein–Plesset
equation with history effects provided in Part 1. To illustrate this point, panels (c)
show the time derivative of the ambient bubble radius. In all cases the growth
rate during the second stage lies above that of the first one, although both curves
eventually converge at longer times, when the memory of the previous dissolution
stage damps out. As demonstrated in Part 1, the CO2 accumulated around the bubble
during a dissolution stage yields a steeper concentration gradient at the interface that,
in turn, leads to a faster growth rate at short times once the pressure is reduced
and the liquid is supersaturated again. As the growth progresses, the influence of the
initial concentration profile becomes weaker and both growth rates converge to the
same curve.

As demonstrated in Part 1, the CO2 accumulated around the bubble during a
dissolution stage yields a steeper concentration gradient at the interface that, in turn,
leads to a faster growth rate after a short transient time once the pressure is dropped
and the liquid is supersaturated again. As the growth progresses, the influence of the
initial concentration profile becomes weaker and both growth rates converge to the
same curve. During the very early times after the pressure drop (up to approximately
ten seconds later), the contribution of the history effect on mass transfer is masked by
the large growth rates induced by the sudden decrease of the interfacial concentration
(induced by this pressure drop via Henry’s law) that leads to a steep interfacial
concentration gradient. The change in growth rates between the first and second
cycles is experimentally indiscernible. This does however agree with theory, as one
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FIGURE 5. (Colour online) Results for experiment 2 (see caption of figure 4). The range
of pressures is slightly different to the ones exposed in figure 4. However, the history
effect is repeatable.
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FIGURE 6. (Colour online) Results for experiment 3 (see caption of figure 4).

may observe from the numerically computed rates in figure 3 of Part 1 (Peñas-López
et al. 2016b).

It is interesting to compare this behaviour with that found when the bubble is forced
to first dissolve and then to grow (figure 7). Although unavoidable experimental
limitations of the control of the pressure in the facility in this case result in a
somewhat noisier time derivative of the ambient radius, the same qualitative behaviour
is found. Namely, the magnitude of the rate of change of the radius is larger in the
second dissolution stage, thus leading to a smaller radius at the end of this stage.
Analogously to what occurred in experiments 1–3, this is a consequence of the local
depletion of CO2 near the bubble caused by the intermediate growth stage.

Besides illustrating the history effect in the growth and dissolution of bubbles, these
experiments will serve as benchmark cases for the numerical simulations described in
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FIGURE 7. (Colour online) Results for experiment 4 (see caption of figure 4). This time,
the direction of the pressure jumps is inverted thereby replacing the two growth stages
observed in experiments 1–3 with two dissolution stages.

the following sections. These numerical analyses will allow us to quantify the relative
importance of the different physical effects that play a role in the processes illustrated
in figures 4–7 which, besides diffusion, include surface tension, boundary-induced
advection and natural convection.

In the theory that follows, we will assume that the bubble remains strictly spherical
at all times. Two experimental snapshots depicting the upper and lower extremes in
bubble size are provided in figure 8. The bubble is actually attached to a cylindrical
pit of 50 µm diameter and 30 µm depth. The gas volume contained inside the pit can
be neglected compared to the total volume of the gas bubble. In the experiments in
which the cycles start with a growth phase, where R> 200 µm, the bubble remains
spherical, as observed in figure 8(a). Only at the smallest radii during the experiments
starting with a dissolution phase, we observe a spherical cap, figure 8(b). However, the
assumption of perfectly spherical bubble at all time yields a relative error of less than
3 % as compared to the actual gas volume of the spherical cap and the pit. Therefore,
the assumption of strictly spherical gas bubble for the analysis is more than justified.

3. Numerical analysis: problem formulation
Our goal is to accurately predict the time evolution of the radius of a spherical CO2

bubble adhered to a horizontal flat plate in a CO2-water solution under the action
of gravity and variable ambient pressure, as sketched in figure 9. In this section
we formulate the mass transfer problem, which involves a non-stationary boundary
and that must be coupled with the equations of motion for the liquid assuming
axisymmetry around the vertical axis.

3.1. Mass transfer problem
The transport of dissolved gas species in the liquid is governed by the following mass
transport equation, usually referred to as the advection–diffusion equation,

∂C
∂t
+U · ∇C=Dm ∇

2C, (3.1)
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(a) (b)

FIGURE 8. (Colour online) Bubble snapshots at both extremes of the bubble size range
measured during our experiments. The largest radius is (a) R = 358 µm, corresponding
to the maximum radius attained during experiment 1 (see later figure 4), whereas (b)
R = 92 µm is the smallest radius, obtained during the dissolution experiment 4 (see
figure 7). The radius is computed by means of the light-blue circumference fitted to the
bubble contour. The horizontal red line marks the height of the bubble–substrate contact
line, below which there is the reflection of the bubble on the substrate surface.

g

x

z
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FIGURE 9. Sketch of a spherical CO2 bubble adhered to a flat plate. The relevant
parameters and functions used in the formulation of the mass transfer problem are also
indicated.

where C(x, t) is the molar concentration field, U(x, t) is the velocity vector field
and Dm is the mass diffusion coefficient. The initial concentration of dissolved gas
is assumed to be uniform throughout the liquid and equal to C∞, equal to the gas
concentration in the far field. The boundary condition of zero-mass flux holds across
the impermeable wall. The concentration boundary condition at the bubble surface,
Ci(t), is given by Henry’s law,

Ci(t)= kHPg(t), (3.2)

where kH is Henry’s (molar-based) solubility constant and Pg(t) is the total gas
pressure inside the bubble. A constant temperature environment T∞ is assumed, i.e.
kH remains constant, while the ambient pressure P∞(t) is set to vary with time t. The
bubble gas volume is related to the gas content and pressure via the equation of state
for an ideal gas,

4
3πR3Pg = nRuT∞, (3.3)
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where n(t) is the number of gas moles inside the bubble and Ru denotes the universal
gas constant. The total gas pressure inside the bubble, Pg, considering liquid–gas
surface tension γlg, but neglecting inertial and viscous effects inside the gas phase, is
given by

Pg = P∞ + 2γlg/R. (3.4)

The mass transfer problem is closed with Fick’s first law, which sets the molar flow
rate of gas across the bubble surface S to be

ṅ=D
∫

S
∇C · n̂ dS, (3.5)

where dS is an infinitesimal area element of the bubble surface, and n̂ is the outward-
pointing unit normal from the bubble surface.

Equations (3.1)–(3.5) represent the mass transfer problem equations. These must be
coupled with the equations of motion from which the velocity field U(x, t) may be
computed.

3.2. Modelling density-driven natural convection
The dissolved gas concentration profile around the bubble implies a non-uniform
density field of the surrounding liquid–gas solution which may trigger the onset of
‘density-induced natural convection’ (Takemura, Liu & Yabe 1996). The change in
solution density may be quantified through the concentration expansion coefficient, λ,
usually defined as (Bataller et al. 2009)

λ=
1
ρl

∂ρ

∂C
, (3.6)

where ρl is the density of the pure solvent. Any change in the solution density is
therefore assumed proportional to the change in dissolved gas concentration. For
dilute, monosolute solutions, the concentration expansion coefficient is approximately
given by (see appendix A)

λ≈
Mg

ρl
− V∞g , (3.7)

where Mg is the gas molar mass and V∞g is the (temperature dependent) partial
molar volume of the solute in the solvent at infinite dilution. For CO2 gas in pure
water, V∞g ≈ 34.2 cm−3 mol−1 (Harvey, Kaplan & Burnett 2005), which results in
λ≈ 9.8 cm−3 mol−1.

The variations in density considered here are small, of the order of 0.1 %. However,
these variations are sufficiently large to have a non-negligible effect on the motion
of the flow. Consequently, it was deemed appropriate to take this effect into account
via the Boussinesq approximation. This essentially results in the inclusion of a non-
uniform buoyancy term imposed by the local dissolved gas concentration into the
Navier–Stokes equation (3.11). The Boussinesq approximation allows for the flow to
be regarded as incompressible when treating the continuity equation. Therefore, the
incompressibility condition,

∇ ·U = 0, (3.8)

always holds. Moreover, the density ρ(x, t) of the liquid–gas solution shall be
approximated as constant, ρ(x, t) = ρl, in both the inertial and viscous terms of the
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momentum equation. However, we shall allow small variations in density in the body
force (gravity) term. The density field ρ(x, t) may then be expressed as

ρ(x, t)= ρl + ρ
∗(x, t), (3.9)

where ρ∗(x, t) is the density perturbation field arising from the non-uniform
concentration field and, evidently, |ρ∗| � ρl. Similarly, the pressure field in the
solution may be decomposed into

P(x, t)= P∞(t)+ Ph(x)+ P∗(x, t). (3.10)

Here Ph is the background hydrostatic pressure, ∇Ph = ρl g, where g denotes the
gravitational acceleration, and P∗(x, t) is the pressure perturbation arising from the
fluid motion. It likewise follows that for our experiments, Ph� P∞ and |P∗| � P∞.

3.3. Equations of motion in terms of the streamfunction and vorticity
Making use of (3.9) and (3.10), the Navier–Stokes momentum equation may be
written as

∂U
∂t
+ (U · ∇)U =−

∇P∗

ρl
+ ν∇2U +

ρ∗g
ρl
, (3.11)

where ν is the kinematic viscosity of the liquid. Since the flow is axisymmetric around
the vertical (z) axis, if we are able to define an orthogonal set of coordinates η, ξ, φ
where φ is the angle of rotation around the vertical axis, then the velocity field has
only two components, U = Uη(η, ξ) êη + Uξ (η, ξ) êξ , and the whole problem may
be treated as two-dimensional. The vorticity field Ω is then also unidirectional and
a vorticity scalar, Ω , exists:

Ω =Ω êφ =∇×U. (3.12)

Taking the curl of (3.11) eliminates the pressure term and the vorticity scalar transport
equation is obtained:

∂Ω

∂t
+U · ∇Ω =Ω êφ · ∇U − ν∇×

(
∇× (Ω êφ)

)
· êφ +

1
ρl
(∇ρ∗ × g) · êφ. (3.13)

It follows from (3.6) that ∇ρ∗ = λρl∇C, so the vorticity transport equation becomes

∂Ω

∂t
+ hφ U · ∇

(
Ω/hφ

)
=L2Ω + λ(∇C× g) · êφ. (3.14)

Here, we have made use of the following linear operator:

L2
=

1
h2

[
∂

∂ξ

(
1
hφ

∂

∂ξ

(
hφΩ

))
+
∂

∂η

(
1
hφ

∂

∂η

(
hφΩ

))]
, (3.15)

where hφ denotes the scale factor in the êφ direction and h the scale factor in both
the êξ and êη directions. The coordinate system and scale factors will be introduced
quantitatively in § 4. Incompressibility, along with the axisymmetric nature of the flow,
allow for the velocity field to be expressed in terms of a scalar streamfunction, Ψ :

U =∇× (Ψ /hφ êφ). (3.16)
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Combining (3.12) and (3.16) results in the following equation for the streamfunction,

L2
(
Ψ/hφ

)
=−Ω. (3.17)

In § 4, it will be shown how the fluid motion may be obtained by simultaneously
solving Ψ from (3.17) and Ω from (3.14) numerically by employing a streamfunction–
vorticity method in dynamic tangent-sphere coordinates. It will be seen that the
boundary conditions for Ψ and Ω can be determined from those for U through
careful analysis. From the physical point of view, the velocity field must satisfy the
kinematic and dynamic (zero-shear stress) boundary conditions along the moving
bubble boundary, in addition to the no-slip condition at the wall.

3.4. On the parameters and time scales of the problem
This subsection intends to shed light on the physics governing the diffusion-driven
growth and dissolution of a bubble attached to a flat plate. More specifically, the goal
is to prove that the concentration and velocity fields evolve over very disparate time
scales, which will allow for an efficient procedure to numerically solve the problem
formulated in previous subsections.

The processes involved in this problem introduce four characteristic time scales:
ts for bubble growth and dissolution, tm for mass diffusion of the dissolved gas,
tv for viscous diffusion of momentum and tb for the density-induced convection.
Let U denote the characteristic flow velocity. When the advection induced by the
moving boundary dominates over natural convection, then U is the interface velocity
Us ∼ Ṙ. When convection overcomes boundary-induced advection, then U becomes
the convection velocity Ub. The characteristic length scale is the bubble radius R.
For mass-diffusion-controlled growth driven by a molar concentration difference
1C between the bubble boundary and the bulk fluid, the flow behaviour may be
characterised using three dimensionless parameters. These are the Jakob (Szekely &
Martins 1971) and Grashof numbers for mass transfer, in addition to the Schmidt
number, defined as follows:

Ja=
Mg|1C|
ρg

, Gr=
λ|1C|gR3

ν2
, Sc=

ν

Dm
, (3.18a−c)

where ρg is the density of the gas bubble and g is the magnitude of the acceleration
due to gravity. The Jakob number, Ja, may be regarded as a measure of the driving
force for bubble growth induced by the concentration difference and gas solubility.
The Grashof number, Gr, represents the ratio of buoyancy (convection) and viscous
forces. The Schmidt number, Sc, is the ratio of momentum and mass diffusivities.

Here we shall consider bubble growth or dissolution that is primarily driven by
mass diffusion. We may then use the approximate result obtained by Epstein & Plesset
(1950) or Scriven (1959) to estimate bubble growth as

R∼ Ja
√

Dmt. (3.19)

It then follows that the bubble growth time scale and boundary-induced advection
velocity scales are

Us = Ṙ∼
Ja2Dm

R
, ts =

R
Us
∼

R2

Ja2Dm
. (3.20a,b)
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The magnitudes of the terms in the mass transport equation (3.1) are

∂C
∂t
∼
|1C|

tm
, U · ∇C∼

U|1C|
R

, D∇2C∼
Dm|1C|

R2
, (3.21a−c)

where tm is the characteristic time required for a significant concentration change over
characteristic length scale R. Similarly, taking Ω ∼U/R, the magnitudes of the terms
in the vorticity transport equation (3.14) are

∂Ω

∂t
∼

U
R tv

, U · ∇Ω ∼
U2

R2
, νL2Ω ∼

νU
R3
, λ∇C× g∼

λ|1C|g
R

, (3.22a−d)

where similarly tv refers to the time required for a significant vorticity change over the
same characteristic length scale R. For Sc∼ 1 or Sc� 1, the characteristic convection
velocity and time scale may be obtained from a balance between the viscous term
(3.22c) and the buoyancy term (3.22d) in the vorticity transport equation,

Ub ∼
λ|1C|gR2

ν
, tb =

R
Ub
∼

ν

λ|1C|gR
. (3.23a,b)

The ratio of velocities is given by Ub/Us=Gr Sc/Ja2. The ratio of the advection term
(3.21b) and the diffusive term (3.21c) in the mass transport equation yields a Péclet
number, Pe=UR/D. The ratio of the advection term (3.22b) over the diffusive term
(3.22c) in the vorticity transport equation similarly yields a Reynolds number, Re =
UR/ν. Neglecting natural convection, setting U =Us gives Pe= Ja2 and Re= Ja2/Sc.
Likewise, natural convection dominating over boundary-induced advection, U = Ub,
results in Pe=Gr Sc and Re=Gr.

From the above analysis, we may conclude that mass and momentum diffusion will
clearly dominate over advection and natural convection provided Gr Sc< 1 and Ja< 1
(i.e. Pe and Re are small). In such a case, the mass diffusion and viscous time scales
are the leading time scales in the mass transport and vorticity transport equations
respectively. The unsteady term in each transport equation may then be balanced by
the corresponding diffusive term, yielding

tm ∼
R2

Dm
, tv ∼

R2

ν
. (3.24a,b)

The ratios between the mass diffusion time scale and the other time scales are

tm

ts
= Ja2,

tm

tb
=Gr Sc,

tm

tv
= Sc. (3.25a−c)

As reference for the conditions explored in this work, a CO2 gas bubble with R =
0.25 mm growing in a 15 % supersaturated CO2-water solution at 5 bar and 293 K,
with λ= 9.8 cm−3 mol−1, results in Ja= 0.12, Gr= 0.038 and Sc= 523. The Rayleigh
number is Gr Sc= 19.6. Under these conditions, intentionally similar to those of our
experiments, equation (3.25) translates to

ts > tm ∼ tb� tv. (3.26)

The vorticity/velocity field around a bubble evolves at a time scale tv provided by
the viscous diffusion of momentum. This time scale is much faster than the time
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scale tm of mass transfer, i.e. the time required to observe a significant change in
the concentration field surrounding the bubble. Likewise, the time scale ts in which
a substantial change in the bubble radius may be observed is significantly larger than
tm. This means that the thin boundary layer approximation (valid when ts � tm, i.e.
Ja� 1), while suitable for treating the fast growth of bubbles in highly supersaturated
liquids (Rosner & Epstein 1972), is clearly not applicable here.

The time scale of interest is of course tm. Let us neglect density-driven convection
for the moment. At every time step of this slow time scale tm, provided tm � tv
(Sc � 1), viscous action ensures that the flow always reaches (over a much faster
time scale tv) a steady-state solution. In other words, at every time step of tm,
the advection term in the mass transport equation may then be computed from
the steady-state vorticity (hence velocity) solution imposed by the instantaneous
concentration field and interface velocity. We shall refer to it as the quasi-steady
advection approximation. It is worth pointing out that bubbles of other gases with
solubility parameter, Λ, smaller than that of CO2 (such as nitrogen or oxygen) can
be described as well with this approximation, as tm will be much smaller than ts.
In these cases, the history effect – which is a diffusive effect – will be even more
apparent since boundary-driven advection will have a smaller influence.

Considering now density-driven convection, provided tb� tv (Gr�1), then viscosity
is able to establish a quasi-steady velocity field in a time much shorter than that taken
by buoyancy to induce changes in the flow. In other words, although buoyancy must
be taken into account to properly compute the velocity field around the bubble,
it does not affect the validity of the quasi-steady advection approximation. This
knowledge will now be used in the next section when implementing the equations
into a numerical model.

4. Numerical analysis: implementation
4.1. Non-dimensionalisation

We begin by introducing the dimensionless time, radius and Cartesian coordinates,
ambient pressure and mole number:

τ =
Dm

R2
i

t, a=
R
Ri
, x̃=

x
Ri
, p=

P∞
P0
, µ=

RuT∞
4/3πR3

i P0
n. (4.1a−e)

In this work we have chosen the characteristic radius Ri to be the initial radius
R(t = 0). Similarly, the characteristic ambient pressure P0 corresponds to the initial
liquid pressure, P∞(0), whereas the mole number n is made dimensionless with that
contained in a bubble of radius Ri, immersed in a liquid at pressure P0 and in the
absence of surface tension. Note that the time scale of choice has been that of mass
diffusion, tm, presented in (3.24a). Additionally, the molar concentration field C and
the interfacial molar concentration Ci may be non-dimensionalised through

c=
C−C∞

kHP0
, ci =

Ci −C∞
kHP0

. (4.2a,b)

The dimensionless counterparts of the vorticity scalar, velocity and streamfunction are

ω=
R2

i

Dm
Ω, u=

Ri

Dm
U, ψ =

1
RiDm

Ψ . (4.3a−c)
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Lastly, let us present the following dimensionless parameters and dimensionless
numbers:

Υ =
C∞

kHP0
, Λ= kHRuT∞, σ =

2γlg

RiP0
, Gr0 =

λkHP0gR3
i

ν2
. (4.4a−d)

The parameter Υ refers to the initial saturation level of the solution, Λ is a solubility
parameter, σ is the surface tension parameter, while Gr0 is a reference Grashof
number, Gr0 =Gr kHP0/|1C|.

4.2. The tangent-sphere coordinate system
The problem can be conveniently recast in dimensionless tangent-sphere spatial
coordinates (η, ξ, φ), where

x̃= 2a
η

η2 + ξ 2
cos φ, ỹ= 2a

η

η2 + ξ 2
sin φ, z̃= 2a

ξ

η2 + ξ 2
. (4.5a−c)

The contours of η and ξ satisfy the following inverse relations (Moon & Spencer
1988; Batchelor 1979):

x̃2
+ ỹ2
+ z̃2
= (2a/η)

√
x̃2 + ỹ2, x̃2

+ ỹ2
+ z̃2
= (2a/ξ) z̃. (4.6a,b)

These coordinates, represented in figure 10, scale with the dimensionless radius of
the bubble, a(τ ). The scale factors are defined as

h̃=
hη
Ri
=

hξ
Ri
=

2a
η2 + ξ 2

, h̃φ =
hφ
Ri
=

2aη
η2 + ξ 2

. (4.7a,b)

The partial time derivative of any scalar function f described by fixed Cartesian
coordinates (x, y, z) expands as the material derivative when described by our R(t)-
scaling spatial coordinates (η, ξ ). Taking the partial derivative of f with respect to
time τ , we find

∂

∂τ
f (x̃, ỹ, z̃, τ )=

D
Dτ

f (η(τ ), ξ(τ ), τ )=
∂f
∂τ
+ η′

∂f
∂η
+ ξ ′

∂f
∂ξ
. (4.8)

The prime notation (′) denotes d/dτ . The terms containing η′ and ξ ′ represent the
apparent advection of a quiescent fluid relative to our time-varying coordinate system.
Let us define the a priori unknown corresponding (dimensionless) apparent velocity
field as urel(η, ξ, τ )= urel,η êη + urel,ξ êξ . The advection term on f would then be

(urel · ∇̃)f =
urel,η

h̃

∂f
∂η
+

urel,ξ

h̃

∂f
∂ξ
, (4.9)

where the operator ∇̃=Ri∇ is dimensionless. Comparing (4.8) and (4.9) immediately
reveals that urel,η = h̃η′ and urel,ξ = h̃ξ ′. Thus, the dimensionless velocity field of our
scaling coordinate system (relative to any fixed point in the physical domain) is just
equal to −urel = −(h̃η′ êη + h̃ξ ′ êξ ). Differentiating (4.6a) and (4.6b) independently
with respect to τ , one finds that

η′ = a′η/a, ξ ′ = a′ξ/a. (4.10a,b)
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FIGURE 10. Contour lines of the tangent-sphere η, ξ coordinates, plotted in the y = 0
(φ = 0) Cartesian plane. η = 0 lies on the z-axis, η → ∞ at the contact point. The
horizontal wall lies on the ξ = 0 isosurface, while the bubble surface is always mapped
by ξ = 1. The separation of the plotted contours is uniform (1η=1ξ = 0.1).

4.3. Streamfunction–vorticity formulation
The streamfunction satisfies the following equation,

L̃2(ψ/h̃φ)=−ω, (4.11)

which makes use of the dimensionless operator L̃2
= R2

0L2, and (4.11) may be
rewritten in terms of the coordinates η and ξ as

η2
− ξ 2

2ah̃2
φ

∂ψ

∂η
+
ηξ

ah̃2
φ

∂ψ

∂ξ
+

1

h̃2h̃φ

(
∂2ψ

∂η2
+
∂2ψ

∂ξ 2

)
=−ω. (4.12)

Boundary conditions are derived and explained in appendix B. These are

ψ(η, 0)= 0, ψ(η, 1)=−
2a2a′

η2 + 1
, ψ(0, ξ)=−2a2a′, ψ(∞, ξ)= 0. (4.13a−d)

Once ψ(η, ξ) is known, from the definition in (4.12), the dimensionless velocity
components may be computed by numerically differentiating ψ according to

uη =
1

h̃φ h̃

∂ψ

∂ξ
, uξ =−

1

h̃φ h̃

∂ψ

∂η
. (4.14a,b)

Expressions for the velocity field in the Cartesian reference frame are included in
appendix C. The dimensionless vorticity transport equation reads

∂ω

∂τ
+ h̃φ u · ∇̃

(
ω

h̃φ

)
= Sc L̃2ω+Gr0 Sc2 (∇̃c× ĝ) · êφ, (4.15)
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where ĝ= g/g. The Rayleigh number Gr0 Sc represents the ratio between the reference
buoyant transport of momentum and diffusive transport of mass. In (η, ξ ) coordinates,
the vorticity transport equation becomes

∂ω

∂τ
= L

∂ω

∂η
+M

∂ω

∂ξ
+ P

(
∂2ω

∂η2
+
∂2ω

∂ξ 2

)
+Q+ Sω, (4.16a)

where L, M, P, Q and S are time- and space-dependent coefficients given by

L=−Sc
η2
− ξ 2

2ah̃φ
−

a′η
a
−

uη
h̃
, M =−Sc

ξη

ah̃φ
−

a′ξ
a
−

uξ
h̃
, (4.16b,c)

P=
Sc

h̃2
, Q=−Gr0 Sc2

(
η2
− ξ 2

2a
∂c
∂η
+
ηξ

a
∂c
∂ξ

)
, (4.16d,e)

S=−
Sc

h̃

η2
+ 2ξ 2

+ ξ 4/η2(
η2 + ξ 2

)2 −
1

h̃η

uη
(
η2
− ξ 2

)
+ 2uξ ηξ

η2 + ξ 2
. (4.16f )

Coefficient Q contains the density-driven convection term. The cross product was
evaluated by first expressing ĝ in its (êη, êξ ) components via the transformation
matrix described in appendix C. Boundary conditions are derived and explained in
appendix B.3. These are

∂ω

∂ξ
(η, 0)=

h̃un

Sc1τv
,

∂ω

∂η
(η, 1)=

4a′η
a(η2 + 1)

+
2
a

uη(η, 1), (4.17a,b)

ω(0, ξ)= 0,
∂ω

∂η
(∞, ξ)= 0. (4.17c,d)

Here, 1τv is the computational time step for the viscous transport of momentum.
We shall report its meaning in § 4.5.

4.4. Formulation for the mass transfer problem
In dimensionless form, the advection–diffusion equation (3.1) becomes

∂c
∂τ
+ u · ∇̃c= ∇̃2c, (4.18)

or equivalently,
∂c
∂τ
= F

∂c
∂η
+G

∂c
∂ξ
+H

(
∂2c
∂η2
+
∂2c
∂ξ 2

)
, (4.19a)

with

F=−
η2
− ξ 2

2ah̃η
−

a′η
a
−

uη
h̃
, G=−

ξ

ah̃
−

a′ξ
a
−

uξ
h̃
, H =

1

h̃2
. (4.19b−d)

The velocity field components uη(η, ξ, τ ) and uξ (η, ξ, τ ) must of course be computed
beforehand as detailed in § 4.3. Boundary conditions for the concentration are

∂c
∂ξ
(η, 0)= 0, c(η, 1)= ci,

∂c
∂η
(0, ξ)= 0,

∂c
∂η
(∞, ξ)= 0. (4.20a−d)
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The interfacial concentration ci(τ ), appealing to Henry’s law, is given by

ci =

(
p+

σ

a

)
−Υ . (4.21)

The dimensionless molar flow rate µ′ across the interface may be computed non-
dimensionalising (3.5), resulting in

µ′ =−3Λa
∫
∞

0

η

1+ η2

∂c
∂ξ

∣∣∣∣
ξ=1

dη. (4.22)

Finally, the last equation remaining is the dimensionless ideal gas law,(
p+

σ

a

)
a3
=µ. (4.23)

4.5. Numerical procedure
The experiments were simulated by numerically solving the governing equations
presented in the previous section. To do so, we used a second-order finite-difference
discretisation in space and an implicit Euler method in time. The latter was chosen
in search for unconditional stability, bearing in mind that the grid spacing becomes
infinitesimally small as η→∞.

We have seen in § 3.4 that this problem involves multiple scales. The governing
equations have been non-dimensionalised in time with the time scale tm = R2

i /Dm for
mass diffusion, τ = t/tm. The mass transport equation will therefore require a time
step 1τm that suitably advances within tm. However, the momentum transport equation
requires a much smaller time scale tv and consequently, 1τv ∼ 1τm/Sc. Stability of
the scheme requires to advance in 1τv. Doing so, however, the overall number of
time iterations and computational cost required to span the whole duration of the
experiments would be exceedingly high.

This issue could be solved making use of the quasi-steady advection approximation,
validated in § 3.4. Essentially, this approximation allows to advance the simulation
in 1τm rather than in 1τv. After time step 1τm, time advances from τn to τn+1,
where subscript n refers to the nth time iteration. Given the actual concentration
field cn, suppose mass transfer across the bubble interface results in a change of
radius from an to an+1 with corresponding rate a′. What is the vorticity field ωn+1
for this new configuration? We first make the initial guess: ωn+1 = ωn. The vorticity
field is then allowed to independently evolve through the vorticity transport equation,
advancing with time step 1τv. By virtue of the quasi-steady advection approximation,
the concentration field, bubble radius and velocity are treated as invariants. After k
iterations, the vorticity converges to the steady-state solution. We used the following
criterion for convergence:

ε2
max =max

{
(ωk+1 −ωk)

2

max(ω2
k)

}
< 10−6. (4.24)

The resulting vorticity and velocities are then used to solve the advection–diffusion
equation to find cn+1. The process is then repeated for the following time step. This
way, the overall number of iterations and computational time are greatly reduced.

The numerical procedure followed at every time iteration n consists of the following
steps:
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Physical properties Exp. Ri P0 T∞ Υ Λ σ × 103 Gr0

(mm) (bar) (◦C)

kH = 3.36× 10−4 mol m−3 Pa−1 1 0.226 5.92 21.6 1.0 0.823 1.05 0.218
Dm = 1.92× 10−9 m2 s−1 2 0.226 6.48 21.8 1.001 0.824 0.96 0.240
γlg = 7.0× 10−2 N m−1 3 0.205 6.42 22.6 1.004 0.826 1.06 0.177
λ= 9.8× 10−6 m3 mol−1 4 0.233 5.45 21.9 1.0 0.824 1.10 0.221
ν = 1.004× 10−6 m2 s−1

TABLE 1. Values of the parameters used in the simulations, corresponding to the
experiments discussed in § 2. For completeness, the Schmidt number is Sc= ν/Dm = 523.

(i) Update time τn and primary variables: vorticity ωn, concentration cn and mole
number µn. Define the time step 1τm.

(ii) Obtain value of the externally applied pressures pn and pn+1 through linear
interpolation of the experimental pressure data.

(iii) (4.23) yields a cubic equation, pna3
n + σa2

n −µn = 0. Solve to obtain the radius
an.

(iv) Compute µ′n from (4.22) and integrate over 1τm to obtain µn+1.
(v) Obtain the radius an+1 in the same way as in step (iii) and then compute a′.

(vi) Compute ωn+1 and velocity components uξ and uη with the streamfunction–
vorticity method. First set ωk=0 =ωn. Define the secondary time step 1τv.

(a) Update ωk.

(b) Compute ψ from (4.12) using ωk.

(c) Compute uξ and uη from (4.14).

(d) Compute ωk+1 from (4.16).

(e) Check for convergence of ωk+1. If tolerance in (4.24) is met, ωn+1 = ωk+1;
otherwise, update k and return to step (a).

(vii) Compute cn+1 from (4.19).
(viii) Update n and return to step (i).

5. Simulation results and discussion
The simulation predictions for the bubble size history are compared with the

experiments in figure 11. The simulation input parameters consist of the physical
properties for CO2 gas and water, together with specific reference parameters for
each experiment. These are listed in table 1. The saturation level of the far field,
Υ = C∞/kHP0, was accurately determined from the initial evolution of the radius
time history of each experiment before the first jump in pressure, as described in § 2.

Case (i) in figure 11 corresponds to the full solution. For cases (ii) and (iii),
density-induced convection is neglected: λ= 0, thus Gr0= 0. This translates to setting
Q = 0 in the vorticity transport equation (4.16). Additionally (iii) is the solution for
pure diffusion, i.e. without any velocity. This implies setting uη = uξ = a′ = 0 in the
mass transport equation (4.19). Consequently, solution (iii) does not make use of the
streamfunction–vorticity formulation and the mass transfer problem can be solved
independently. Examination of panels (a), (b) and (c) (corresponding to experiments
1–3) of reveals that taking into account the interface-induced advection is essential
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FIGURE 11. (Colour online) Time evolution of the dimensionless bubble radius, a(τ ).
Simulation (black curves) is compared to experimental data (markers) for experiments (a)
1, (b) 2, (c) 3 and (d) 4. The time evolution of the dimensionless ambient pressure, p(τ ),
is also included (grey curve). The different simulation curves correspond to (i), (iv) the full
solution, (ii) solution where density-induced convection is neglected, (iii) solution for pure
diffusion (both density-induced convection and boundary-induced advection are neglected).
Moreover, case (iv) is only used to model experiment 4 as seen in (d), corresponding to
the full solution coupled with the CO2 stratification model, with Υwall = 1.25.

in order to reproduce the experimental results beyond the first growth stage. Note
that this holds although the Péclet numbers here are small, in fact of the order of
the dimensionless pressure jumps, i.e. approximately 0.1–0.2. It can be concluded
that, although the instantaneous rate of mass transfer may only be slightly affected
by advection, its effect accumulates over time and becomes important to describe
the evolution of the bubble when subjected to successive expansion–compression
cycles. In fact, neglecting advection will always yield smaller bubble sizes: during
growth, advection squeezes the concentration boundary layer around the bubble, thus
increasing the concentration gradient and therefore the mass transfer rate of gas into
the bubble. Analogously, during shrinkage, advection stretches the boundary layer and
smoothens up the gradient, which results in a dissolution slower than that predicted for
pure diffusion. In consequence, advection effects accumulate during both growth and
dissolution, which makes them noticeable over long times. Contrarily, our numerical
results show that taking into account convection barely modifies the calculated radius
time evolution. We will get back to the effect of convection below.

Experiment 4, whose results are shown in figure 11(d), deserves special attention.
The simulation predicts a complete dissolution of the bubble after the first jump
in pressure. Interestingly, the experimental dissolution rate is much slower. We
hypothesise that there exists a thin stably stratified layer of thickness . Ri above
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the substrate oversaturated with CO2. This high density layer can easily form during
the compression–expansion cycles used to stabilise the bubble size described in
§ 2.1. Indeed, we have observed in laser-induced fluorescence experiments reported
elsewhere (Peñas-López et al. 2016a) that such a layer can form in a matter of
seconds during bubble shrinkage. Notice that the accumulation of CO2 near the
substrate becomes more effective at inhibiting bubble dissolution as the bubble
becomes smaller. Contrarily, for the case of bubble growth, such a layer would affect
the mass flux in a region that corresponds to the ‘dead zone’ proposed by Enríquez
et al. (2014) (see discussion below), which would explain why its existence barely
affects experiments 1–3. Thus, for experiment 4, the far-field concentration can no
longer be taken as uniform. In fact, we may speculate that this layer is characterised
by a vertical concentration gradient bounded by Cwall at the wall and C∞ at the
unstratified, bulk fluid.

Our streamfunction–vorticity method has the limitation that the simulation domain
covers a small region in the vicinity of the bubble. Imposing a stratified concentration
field as the initial condition is ineffective, since the surplus of dissolved CO2 in this
small liquid volume is promptly engulfed by the bubble and a uniform concentration
field is quickly established.

We may bypass this limitation by modelling the effect of stratification essentially
through just an effective increase (decrease) of mass transfer towards (from) the
bubble. It consists in imposing a reduction on 1C = Ci − C∞ as the bubble
becomes sufficiently small. This is done by replacing C∞ by an ‘effective’ far-field
concentration, C∞,eff (R)>C∞, that depends on the current size of the bubble. As the
bubble shrinks, the effective far-field concentration increases and so 1Ceff =Ci−C∞,eff
gets positively closer to zero (slower dissolution) or becomes more negative (faster
growth). We propose a concentration profile for the dimensionless ‘effective’ far-field
concentration of the form

Υeff =

{
Υwall + (Υ −Υwall) a1/2, for a< 1
Υ , for a > 1, (5.1)

where Υeff =C∞,eff /kHP0 and the free parameter Υwall =Cwall/kHP0 is the extrapolated
saturation level at the wall. It is sketched in figure 12. Note that the ‘effective’
concentration profile proposed does not, by any means, represent the actual
stratification profile that one would observe experimentally. The exponent of 1/2
on a is chosen arbitrarily, on the grounds that the effect of stratification becomes
stronger closer to the wall. For our purposes, a linear relation (exponent of 1 on a)
would nonetheless yield similar results.

The replacement of 1C by 1Ceff can be easily implemented in the mass transfer
problem equations through the concentration boundary condition at the bubble
interface (4.20b). The dimensionless interfacial concentration defined in (4.21) now
becomes

ci,eff = ci − (Υeff −Υ )= p+ σ/a−Υeff . (5.2)

For the simulation corresponding to experiment 4, Υeff was found to vary within
a maximum of 10 % when taking Υ = 1.0 and Υwall = 1.25. Nevertheless, it has a
remarkable effect on the mass transfer rates across the bubble in our simulations, as
the bubble shrinks to a size comparable to the hypothesised thickness of the layer. We
stress that this artificial approach nonetheless portrays the physical significance that a
slightly oversaturated layer close the substrate can have a big impact on the bubble
dissolution rate.
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FIGURE 12. Sketch of the ‘effective’ far-field concentration as a function of the
instantaneous bubble radius as a means to model the effect of stratification on the mass
transfer rate across the bubble interface.
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FIGURE 13. (Colour online) Dimensionless concentration field contours for experiment 2
according to simulation at the instant of time when the bubble radius is a= 1.05 during
the (a) first growth stage and (b) second growth stage. The darker concentration contours
(from pink to green to dark blue) indicate positively increasing values.

We focus now on the history effect. As explained in the introduction, this effect is a
manifestation of the influence in the instantaneous concentration field of the previous
growth or dissolution stages that the bubble has been subjected to. To illustrate the
occurrence of this effect in the current configuration, figure 13 shows a comparison
of the concentration field for experiment 2 (cf. figure 5 and later figure 11b) obtained
at the (a) first and (b) second growth stage at the instant when the bubble radius
is of the same size: a = 1.05. The history effect on the growth rate is evident: the
concentration contours in (b) are noticeably closer together than those in (a). This
thinner shell translates to steeper gradients and increased mass transfer, which explains
the faster growth rates observed in the second cycle in figures 4(c), 5(c) and 6(c).

The results of our simulations can also be used to validate the hypothesis made
by Enríquez et al. (2014) about the existence of a ‘dead zone’ near the contact point
where mass transfer is almost zero. As these authors show, the growth rate of a bubble
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FIGURE 14. (Colour online) Dimensionless mass flux across the bubble interface as a
function of the angle θ for different times during the first growth stage of experiment 2.
The step-like markers indicate the angle θ∗ delimiting the effective bubble area available
for mass transfer, where cos(θ∗)=−a/(a+

√
πτ) according to Enríquez et al. (2014).

attached to a plate can be computed by considering that the mass flux is uniform
along the bubble surface, as given by the spherically symmetric solution, except in a
region close to the contact point between the bubble and the plate, where it is nearly
zero. The boundary of this region is given by the intersection of the plate with a
sphere of radius R+

√
πDmt, which approximately corresponds to the outer limit of

the concentration boundary layer around the bubble. Therefore, the overall mass flux
across the bubble interface can be modelled as if the mass exchange occurred only
across an effective area that excludes this zone. In figure 14 we plot the local mass
flux distribution along the bubble surface for different time instants during the first
growth cycle of experiment 2. The step-like markers indicate the start of the dead
zone computed using the model by Enríquez et al. (2014). It can be seen that the
effective area predicted by this model agrees fairly well with the region where the
mass transfer is nearly uniform, especially at short times.

Finally, we come back to the role of natural convection. Figure 15 portrays the
structure of the flow and concentration field around a growing bubble assuming there
is no natural convection. The boundary layer at the wall due to the no-slip condition
is highly distinguishable, as is the vorticity generation at the bubble boundary. It
follows that the structure of the flow field is identical for growth and dissolution,
except that the direction of the flow velocities are reversed. On the other hand,
density-induced natural convection greatly modifies the structure of the flow, as one
may observe from figure 16. Natural convection breaks down the symmetry of the flow
structure when comparing growth against dissolution. In dissolution, a low velocity
recirculation region surrounding the bubble is observed. As a result, the concentration
field is stretched upwards in growth and compressed downwards in dissolution.
However, despite the changes that convection induces in the velocity field, its effect
on the concentration boundary layer near the bubble is minute, as is revealed by
the comparison between figures 15(c) and 16(c). Consequently, under the conditions
investigated here, its effect on the bubble radius is barely noticeable. It should be
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FIGURE 15. (Colour online) Simulation snapshots for solution (ii) of experiment 1,
in which natural convection has been neglected. The snapshots are taken at τ = 3.5,
corresponding to the first growth stage (see figure 11a). These show (a) the velocity field
(arrows) and streamlines, (b) the vorticity field contours and (c) the concentration field
contours. The darker vorticity and concentration contours (from pink to green to dark blue)
indicate positively increasing values.

pointed out that, if the growth stage lasted longer, the relatively large value of the
Rayleigh number of these experiments (Ra ∼ 20) suggests that convection should
contribute significantly to the growth rate of the bubble, based on recent results by
Dietrich et al. (2016). Indeed, in figure 8 of that paper, it can be appreciated how for
a Rayleigh number of approximately 20, the Sherwood number exhibits a noticeable
difference with respect to the value for very small Rayleigh numbers. Although
the configuration that they explore, a sessile droplet of a liquid heavier than the
environment, is different, it is reasonable to conclude that a similar influence might
be expected here if the bubble was left to grow indefinitely.

6. Conclusions

We have experimentally and numerically explored the influence of the past history
of the ambient pressure experienced by a bubble on its instantaneous rate of mass
transfer – the so-called history effect. This effect is caused by a history-induced pre-
existing concentration boundary layer of dissolved gas that surrounds the bubble at
the beginning of a given growth or dissolution stage.

To illustrate the existence of the history effect in practical situations, we report here
several experimental results. Firstly, we show that the mass of the bubble, represented
by the ambient radius R0, can experience transient growths even when the (varying)
pressure is kept above saturation at all times. We would naively expect that such a
situation would lead to a monotonic dissolution, since the liquid is undersaturated
during the whole process.

Secondly, by subjecting the bubble to two consecutive identical expansion–
compression cycles, we are able to observe how the history effect becomes manifest
in a higher growth rate at the beginning of the second cycle. Thirdly, we report an
additional experiment in which the order of the expansion–compression stages has
been swapped, obtaining analogous results.

Subsequently, a vorticity–streamfunction formulation has been developed to
accurately describe the experimental results reported in the paper, and can be applied
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FIGURE 16. (Colour online) Simulation snapshots for solution (i) of experiment 1,
which takes into account natural convection. The snapshots of (a) the velocity field and
streamlines, (b) the vorticity field contours and (c) the concentration field contours are
taken at τ = 3.5, corresponding to the first growth stage (see figure 11a). Snapshots (d–f )
show the same fields as (a–c) above, but are taken at τ = 9.5, corresponding to the first
shrinkage stage. The darker vorticity and concentration contours (from pink to green to
dark blue) indicate positively increasing values. The thick black contour lines in (b) and
(e) mark the zero-vorticity contour. Despite the significant changes that natural convection
induces in the velocity field, its influence on the concentration field in the vicinity of the
bubble is minute, as is revealed by the comparison of the isoconcentration lines with and
without convection (panel c versus figure 15c).

to other situations of practical interest in areas such as microfluidics or carbon
sequestration.

By performing order of magnitude analyses, we show that our experiments belong
to a regime dominated by mass and viscous diffusion. Moreover, the flow around
a growing/dissolving bubble in presence of natural convection can be considered
quasi-steady, since the viscous time scale is much faster than the time scale of mass
transfer. Thus, the momentum equation can be decoupled from the mass transfer
problem. The simulations performed with this strategy are able to describe accurately
the experimental results in most cases.

One of the most important lessons learnt from these simulations is that boundary-
induced advection needs to be taken into account if the bubble radius is to be
described accurately. The reason for this is that advection enhances growth and
diminishes dissolution, thus its effects accumulate to yield larger bubble sizes.
Regarding natural convection, we have seen that it greatly modifies the overall
structure of the flow around the bubble, albeit its influence on the concentration
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boundary layer near the bubble surface – where mass transfer takes place – is
only subtle under the conditions explored here, i.e. a bubble subjected to successive
growth–dissolution periods rather than one that is left to growth for long times.

Finally, we must point out that our simulation strategy does not describe well the
case of a bubble that first dissolves and then grows. An explanation is proposed to fix
this problem, which consists in assuming the existence of a stably stratified, CO2-rich
fluid layer that accumulates on top of the plate. This way, as the bubble size becomes
of the order of the layer thickness, the apparent bulk concentration that the bubble sees
is higher. Therefore, it dissolves more slowly than theory predicts. Our estimations
suggest that even slight excesses in the apparent bulk concentration may have a strong
effect in the dissolution rate of the bubble.
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Appendix A. On the density change with concentration
For dilute solutions far from the solvent’s critical point, the partial molar volume of

the solvent can be taken as its molar volume in the pure state, and the solute partial
molar volumes are independent of concentration (Harvey et al. 2005). In addition, the
concentration of the solute is then approximately proportional to its mole fraction xg,
where xg� 1 (xg = 0.003 for a CO2–water solution saturated at 5 bar).

Let us then consider a binary solution at pressure P0 consisting of a single solute
(CO2) and solvent (pure water). At the experimental conditions, the ionisation of
CO2 (aq) into HCO−3 and H+ ions may be neglected since ionic concentrations are
low. In fact, we may prove this by defining a molar dissociation ratio (where we first
make the dilute solution approximation that molality is proportional to molarity) as

xHCO−3

xCO2

=
xH+

xCO2

≈

√
K

xCO2

=

√
K

kHVlP0
, (A 1)

where K is the equilibrium constant (K = 4.17 × 10−7 at 20 ◦C), kH is Henry’s
solubility constant and Vl is the partial molar volume of pure water. We see that the
dissociation ratio decreases with pressure or total CO2 concentration. For pressures
from 1 to 8 bars, the ionised form only accounts for around 2.5 % down to 1 % of
the total CO2 in solution, respectively.

Considering thus a non-ionic binary liquid–gas solution, Henry’s law relates the
molar concentration and the mole fraction of the solute to its partial pressure P0 by

C= kHP0, xg = kHVlP0, (A 2a,b)

where Vl denotes the partial volume of the solvent. The solution density may be
obtained from

ρ = ρl +1ρ =
xlMl + xgMg

xlVl + xgV∞g
, with xg + xl = 1. (A 3)
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Here Ml and Mg denote the molar masses of solvent and solute, while V∞g (T) is the
partial molar volume of the gas at infinite dilution. For dilute solutions, i.e. in the
limit xg→ 0, the density will change with concentration according to

∂ρ

∂C
≈ lim

xg→0
Vl
∂ρ

∂xg
= lim

xg→0
Vl

VlMg −MlV
∞

g

[Vl + (V
∞

g − Vl)xg]
2
=Mg −

MlV
∞

g

Vl
. (A 4)

The expression in (3.7) for the concentration expansion coefficient immediately
follows.

Appendix B. Boundary conditions
B.1. Boundary conditions for velocity

The velocity field at the moving bubble boundary must satisfy both the kinematic
and dynamic boundary conditions. The kinematic boundary condition refers to the
continuity of the velocity component normal to the interface. We recall that the bubble
boundary is described by ξ = 1 at all times. The interface normal velocity is thus
uξ (η, 1) and it must be exactly equal to −urel,ξ (η, 1) as derived in § 4.2. Therefore,

uξ (η, 1)=−h̃ξ ′. (B 1)

The dynamic boundary condition refers to the continuity of tangential stress across the
interface. Neglecting the viscosity of the gas, this condition reads

∂

∂η

(
uξ
h̃

)
+
∂

∂ξ

(
uη
h̃

)
= 0 on ξ = 1. (B 2)

The remaining set of boundary conditions for the dimensionless velocity field are no-
slip at wall, zero flow velocity at the contact point and symmetry conditions along
the vertical (z) axis:

uη(η, 0)= 0, uξ (η, 0)= 0, uη(∞, ξ)= 0, uξ (∞, ξ)= 0 (B 3a−d)

uη(0, ξ)= 0,
∂uξ
∂η
(0, ξ)= 0. (B 3e,f )

These boundary conditions are used to determine those for the streamfunction ψ and
vorticity scalar ω. It will be seen that the kinetic boundary condition (B 1), the zero
normal velocity at the wall (B 3b) and contact point (B 3c), in addition to the zero-
normal velocity across the z-axis (B 3e), shall be implicitly enforced by the boundary
conditions for ψ . Moreover, the zero-stress boundary condition (B 2), together with
the no-slip (zero-tangential velocity) at the wall (B 3a) and symmetry condition at the
z-axis (B 3f ) are enforced by the boundary conditions for ω. The vorticity boundary
condition at the contact point is derived following a special treatment.

B.2. Boundary conditions for the streamfunction
From (4.14b), boundary condition (B 3b) implies that ∂ψ/∂η = 0. Hence, ψ is
constant along the wall. The streamline value along the wall may be arbitrarily set
to zero, i.e. ψ(η, 0)= 0. Following the same argument, equation (B 3c) implies that
the streamfunction value at the contact point is also zero: ψ(∞, ξ)= 0.
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From (4.14a) and (B 1), the streamfunction at the bubble boundary must satisfy

∂ψ

∂η
= h̃2h̃φξ ′ on ξ = 1. (B 4)

Making use of the definitions for h̃, h̃φ and ξ ′ provided in (4.7) and (4.10b), analytical
integration of (B 4) results in

ψ(η, 1)=−
2a2a′

η2 + 1
+ f (ξ = 1), (B 5)

where f (ξ) accounts for the unknown function in ξ that would be obtained had we
been able to integrate ∂ψ/∂ξ . Nevertheless, we can easily determine the value of the
constant f (ξ = 1) from the boundary condition ψ(∞, 1)= 0. This, of course, yields
f (ξ = 1)= 0.

Finally, equation (B 3e) implies that ∂ψ/∂ξ = 0 and therefore ψ(0, ξ) must be
constant. Its value is found simply by evaluating (B 5) on η= 0.

B.3. Boundary conditions for vorticity
From (3.12), the velocity components are related to the vorticity ω through

ω=
1

h̃2

[
∂

∂η
(h̃uξ )−

∂

∂ξ
(h̃uη)

]
. (B 6)

The boundary condition for the vorticity generated at a free surface may be
conveniently expressed in terms of the tangential and normal velocity components
uη(η, ξ, τ ) and uξ (η, ξ, τ ) (Lundgren & Koumoutsakos 1999). Entering the zero-stress
boundary condition (B 2) into (B 6) leads to the following expression for the vorticity
at the interface:

ω=
2

h̃

∂uξ
∂η
+

2
a

uη on ξ = 1. (B 7)

An analytical expression of the first term may alternatively be obtained directly
through (B 1). This results in (4.17b). At the wall, the Dirichlet-type vorticity boundary
condition for no-slip

ω=−
1

h̃2h̃φ

∂2ψ

∂ξ 2
=−

1

h̃

∂uη
∂ξ

on ξ = 0 (B 8)

is usually used. The term ∂2ψ/∂ξ 2 can be easily expressed in discretised form
appealing to Thom’s formula (Thom 1933) or any of its variants (Weinan & Liu
1996). However, we must bear in mind that h̃2h̃φ→ 0 as η→∞, i.e. our coordinate
system is singular as it approaches the contact point. As a result, a Dirichlet-type
boundary condition at the wall was found to be highly unstable.

Takemura et al. (1996) employed the zero-vorticity gradient condition ∂ω/∂ξ = 0.
The zero-vorticity gradient assumes a zero-pressure gradient along the wall and
consequently there is no vorticity generation at the wall (Lighthill 1963). In other
words, the no-slip condition (B 3a) is not enforced.

The no-slip boundary condition may be alternatively imposed by Lighthill’s dynamic
description of vorticity. The idea is that the spurious non-zero slip velocity at the wall,
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i.e. uη(η, 0) 6= 0, obtained by numerically differentiating ψ , should be counteracted
by artificially creating vorticity on the wall. Koumoutsakos, Leonard & Pépin (1994)
derived a Neumann-type vorticity boundary condition for no slip,

ν
∂Ω

∂n

∣∣∣∣
wall

=−
Ut

1t
, (B 9)

where ∂/∂n = n̂ · ∇ denotes the directional derivative in the direction normal to the
wall, Ut is the spurious velocity tangential to the wall, and 1t denotes a small interval
of time (computational time step) in the viscous time scale tv (cf. § 3.4) in which
the vorticity flux is assumed constant. In our dimensionless variables, this vorticity
boundary condition becomes

∂ω

∂ξ
=

h̃ uη
Sc1τv

on ξ = 0, (B 10)

where 1τv is the viscous computational time step (see § 4.5).
The geometry of the bubble very close to the contact line can be approximated

by a two-dimensional wedge with contact angle θ and polar coordinates (r, ϕ). In
viscous corner flow, inertial effects may be neglected and Stokes momentum equation
is described by the biharmonic equation ∇4ψ = 0.

An approximate yet acceptable boundary condition for vorticity at the contact
point (η=∞) may be determined from the flow solution to the contact line pinning
(CR mode) scenario. The bubble surface is then taken as a hinged plane on ϕ = θ
which rotates around the origin with angular velocity θ ′ on which the zero-shear
stress condition applies. The horizontal plane (ϕ = 0) is a solid wall at rest which is
impermeable and allows no slip. Dimensional analysis gives a solution of the form
(Moffatt 1964; Gelderblom, Bloemen & Snoeijer 2012)

ψ = θ ′r2f (ϕ), (B 11)

where f (ϕ) is a suitable function. Hence, the vorticity close to the contact line must
be independent of r, i.e. ω=ω(ϕ). As η→∞, it may be shown that ϕ→ θξ , which
leads to the zero-vorticity gradient condition ∂ω/∂η= 0 across the contact line.

Finally, referring to (B 3e) and (B 3f ) to evaluate (B 6) on η = 0 results in a zero-
vorticity boundary condition (consistent with symmetry) on the z-axis.

Appendix C. Transformation matrix
Any vector expressed in Cartesian coordinates, v{x,y,z}= vx êx + vy êy+ vz êz, may be

mapped to tangent-sphere coordinates v{η,ξ,φ} = vη êη + vξ êξ + vφ êφ by

v{x,y,z} = J v{η,ξ,φ}, (C 1)

with

J =


−
η2
− ξ 2

η2 + ξ 2
cos φ −

2ηξ
η2 + ξ 2

cos φ − sin φ

−
η2
− ξ 2

η2 + ξ 2
sin φ −

2ηξ
η2 + ξ 2

sin φ cos φ

−
2ηξ

η2 + ξ 2

η2
− ξ 2

η2 + ξ 2
0

 . (C 2)
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Since J is orthogonal, then v{η,ξ,φ} = JT v{x,y,z} gives the opposite transformation. This
is useful for plotting purposes, since the Cartesian velocity components in the x–z
plane (φ = 0) may be easily obtained from uη and uξ as follows:

ux =−
(η2
− ξ 2)uη + 2ηξ uξ
η2 + ξ 2

, uz =
(η2
− ξ 2) uξ − 2ηξ uη
η2 + ξ 2

. (C 3a,b)
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