
TESIS DOCTORAL

Transient error mitigation by means of
approximate logic circuits

Autor:
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Resumen

Los avances tecnológicos en la fabricación de circuitos electrónicos han permitido me-
jorar en gran medida sus prestaciones, pero también han incrementado la sensibilidad
de los mismos a los errores provocados por la radiación. Entre ellos, los más comunes
son los SEEs, perturbaciones eléctricas causadas por el impacto de partı́culas de alta
energı́a, que entre otros efectos pueden modificar el estado de los elementos de memo-
ria (SEU) o generar pulsos transitorios de valor erróneo (SET). Estos eventos suponen
un riesgo para la fiabilidad de los circuitos electrónicos, por lo que deben ser tratados
mediante técnicas de tolerancia a fallos.

Las técnicas de tolerancia a fallos más comunes se basan en la replicación completa
del circuito (DWC o TMR). Estas técnicas son capaces de cubrir una amplia variedad
de modos de fallo presentes en los circuitos electrónicos. Sin embargo, presentan un
elevado sobrecoste en área y consumo. Por ello, a menudo se buscan alternativas más
ligeras, aunque no tan efectivas, basadas en una replicación parcial. En este contexto
surge una nueva filosofı́a de diseño electrónico, conocida como computación aproxima-
da, basada en mejorar las prestaciones de un diseño a cambio de ligeras modificaciones
de la funcionalidad prevista. Es un enfoque atractivo y poco explorado para el diseño
de soluciones ligeras de tolerancia a fallos.

El objetivo de esta tesis consiste en desarrollar nuevas técnicas ligeras de tolerancia
a fallos por replicación parcial, mediante el uso de circuitos lógicos aproximados. Estos
circuitos se pueden diseñar con una gran flexibilidad. De este forma, tanto el nivel de
protección como el sobrecoste se pueden regular libremente en función de los requisitos
de cada aplicación. Sin embargo, encontrar los circuitos aproximados óptimos para
cada aplicación es actualmente un reto.

En la presente tesis se propone un método para generar circuitos aproximados, de-
nominado aproximación de fallos, consistente en asignar constantes lógicas a ciertas
lı́neas del circuito. Por otro lado, se desarrollan varios criterios de selección para, me-
diante este mecanismo, generar los circuitos aproximados más adecuados para cada
aplicación. Estos criterios se basan en la idea de aproximar las secciones menos tes-
tables del circuito, lo que permite reducir los sobrecostes minimizando la pérdida de
fiabilidad. Por tanto, en esta tesis la selección de aproximaciones se realiza a partir de
medidas de testabilidad.

El primer criterio de selección de fallos desarrollado en la presente tesis hace uso de
medidas de testabilidad estáticas. Las aproximaciones se generan a partir de los resul-
tados de una simulación de fallos del circuito objetivo, y de un umbral de testabilidad
especificado por el usuario. La cantidad de fallos aproximados depende del umbral
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escogido, lo que permite generar circuitos aproximados con diferentes prestaciones.
Aunque inicialmente este método ha sido concebido para circuitos combinacionales,
también se ha realizado una extensión a circuitos secuenciales, considerando los bies-
tables como entradas y salidas de la parte combinacional del circuito. Los resultados
experimentales demuestran que esta técnica consigue una buena escalabilidad, y unas
prestaciones de coste frente a fiabilidad aceptables. Además, tiene un coste compu-
tacional muy bajo.

Sin embargo, el criterio de selección basado en medidas estáticas presenta algunos
inconvenientes. No resulta intuitivo ajustar las prestaciones de los circuitos aproxima-
dos a partir de un umbral de testabilidad, y las medidas estáticas no tienen en cuenta los
cambios producidos a medida que se van aproximando fallos. Por ello, se propone un
criterio alternativo de selección de fallos, basado en medidas de testabilidad dinámicas.
Con este criterio, la testabilidad de cada fallo se calcula mediante un análisis de pro-
babilidades basado en implicaciones. Las probabilidades se actualizan con cada nuevo
fallo aproximado, de forma que en cada iteración se elige la aproximación más favo-
rable, es decir, el fallo con menor probabilidad. Además, las probabilidades calculadas
permiten estimar la protección frente a fallos que ofrecen los circuitos aproximados
generados, por lo que es posible generar circuitos que se ajusten a una tasa de fallos
objetivo. Modificando esta tasa se obtienen circuitos aproximados con diferentes pres-
taciones. Los resultados experimentales muestran que este método es capaz de ajus-
tarse razonablemente bien a la tasa de fallos objetivo. Además, los circuitos generados
con esta técnica muestran mejores prestaciones que con el método basado en medidas
estáticas. También se han aprovechado las implicaciones de fallos para implementar
un nuevo tipo de transformación lógica, consistente en sustituir nodos funcionalmente
similares.

Una vez desarrollados los criterios de selección de fallos, se aplican a distintos
campos. En primer lugar, se hace una extensión de las técnicas propuestas para FPGAs,
teniendo en cuenta las particularidades de este tipo de circuitos. Esta técnica se ha va-
lidado mediante experimentos de radiación, los cuales demuestran que una replicación
parcial con circuitos aproximados puede ser incluso más robusta que una replicación
completa, ya que un área más pequeña reduce la probabilidad de SEEs. Por otro lado,
también se han aplicado las técnicas propuestas en esta tesis a un circuito de aplica-
ción real, el microprocesador ARM Cortex M0, utilizando un conjunto de benchmarks
software para generar las medidas de testabilidad necesarias. Por último, se realiza un
estudio comparativo de las técnicas desarrolladas con la generación de circuitos apro-
ximados mediante técnicas evolutivas. Estas técnicas hacen uso de una gran capacidad
de cálculo para generar múltiples circuitos mediante ensayo y error, reduciendo la po-
sibilidad de caer en algún mı́nimo local. Los resultados confirman que, en efecto, los
circuitos generados mediante técnicas evolutivas son ligeramente mejores en presta-
ciones que con las técnicas aquı́ propuestas, pero con un coste computacional mucho
mayor.

En definitiva, se proponen varias técnicas originales de mitigación de fallos me-
diante circuitos aproximados. Se demuestra que estas técnicas tienen diversas aplica-
ciones, haciendo de la flexibilidad y adaptabilidad a los requisitos de cada aplicación
sus principales virtudes.



Abstract

The technological advances in the manufacturing of electronic circuits have allowed to
greatly improve their performance, but they have also increased the sensitivity of elec-
tronic devices to radiation-induced errors. Among them, the most common effects are
the SEEs, i.e., electrical perturbations provoked by the strike of high-energy particles,
which may modify the internal state of a memory element (SEU) or generate erroneous
transient pulses (SET), among other effects. These events pose a threat for the relia-
bility of electronic circuits, and therefore fault-tolerance techniques must be applied to
deal with them.

The most common fault-tolerance techniques are based in full replication (DWC or
TMR). These techniques are able to cover a wide range of failure mechanisms present
in electronic circuits. However, they suffer from high overheads in terms of area and
power consumption. For this reason, lighter alternatives are often sought at the expense
of slightly reducing reliability for the least critical circuit sections. In this context a new
paradigm of electronic design is emerging, known as approximate computing, which
is based on improving the circuit performance in change of slight modifications of the
intended functionality. This is an interesting approach for the design of lightweight
fault-tolerant solutions, which has not been yet studied in depth.

The main goal of this thesis consists in developing new lightweight fault-tolerant
techniques with partial replication, by means of approximate logic circuits. These
circuits can be designed with great flexibility. This way, the level of protection as
well as the overheads can be adjusted at will depending on the necessities of each
application. However, finding optimal approximate circuits for a given application is
still a challenge.

In this thesis a method for approximate circuit generation is proposed, denoted
as fault approximation, which consists in assigning constant logic values to specific
circuit lines. On the other hand, several criteria are developed to generate the most
suitable approximate circuits for each application, by using this fault approximation
mechanism. These criteria are based on the idea of approximating the least testable
sections of circuits, which allows reducing overheads while minimising the loss of re-
liability. Therefore, in this thesis the selection of approximations is linked to testability
measures.

The first criterion for fault selection developed in this thesis uses static testability
measures. The approximations are generated from the results of a fault simulation of
the target circuit, and from a user-specified testability threshold. The amount of approx-
imated faults depends on the chosen threshold, which allows to generate approximate
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circuits with different performances. Although this approach was initially intended for
combinational circuits, an extension to sequential circuits has been performed as well,
by considering the flip-flops as both inputs and outputs of the combinational part of
the circuit. The experimental results show that this technique achieves a wide scala-
bility, and an acceptable trade-off between reliability versus overheads. In addition, its
computational complexity is very low.

However, the selection criterion based in static testability measures has some draw-
backs. Adjusting the performance of the generated approximate circuits by means of
the approximation threshold is not intuitive, and the static testability measures do not
take into account the changes as long as faults are approximated. Therefore, an alter-
native criterion is proposed, which is based on dynamic testability measures. With this
criterion, the testability of each fault is computed by means of an implication-based
probability analysis. The probabilities are updated with each new approximated fault,
in such a way that on each iteration the most beneficial approximation is chosen, that
is, the fault with the lowest probability. In addition, the computed probabilities allow
to estimate the level of protection against faults that the generated approximate circuits
provide. Therefore, it is possible to generate circuits which stick to a target error rate.
By modifying this target, circuits with different performances can be obtained. The
experimental results show that this new approach is able to stick to the target error rate
with reasonably good precision. In addition, the approximate circuits generated with
this technique show better performance than with the approach based in static testa-
bility measures. In addition, the fault implications have been reused too in order to
implement a new type of logic transformation, which consists in substituting function-
ally similar nodes.

Once the fault selection criteria have been developed, they are applied to differ-
ent scenarios. First, an extension of the proposed techniques to FPGAs is performed,
taking into account the particularities of this kind of circuits. This approach has been
validated by means of radiation experiments, which show that a partial replication with
approximate circuits can be even more robust than a full replication approach, be-
cause a smaller area reduces the probability of SEE occurrence. Besides, the proposed
techniques have been applied to a real application circuit as well, in particular to the
microprocessor ARM Cortex M0. A set of software benchmarks is used to generate
the required testability measures. Finally, a comparative study of the proposed ap-
proaches with approximate circuit generation by means of evolutive techniques have
been performed. These approaches make use of a high computational capacity to gen-
erate multiple circuits by trial-and-error, thus reducing the possibility of falling into
local minima. The experimental results demonstrate that the circuits generated with
evolutive approaches are slightly better in performance than the circuits generated with
the techniques here proposed, although with a much higher computational effort.

In summary, several original fault mitigation techniques with approximate logic
circuits are proposed. These approaches are demonstrated in various scenarios, show-
ing that the scalability and adaptability to the requirements of each application are their
main virtues.



Chapter 1

Introduction

1.1 Outline

The advances on the manufacturing technology of electronic circuits over the years
have allowed to improve performance over time. With the shrinking of transistor sizes,
electronic devices have gained in integration density, operation frequency and reduction
of power consumption. This fact has helped to greatly extend the application field of
electronic devices up to levels not seen before. But at the same time, this reduction
of transistor sizes is responsible for the growing sensitivity of electronic devices to
transient, intermittent and permanent errors [3].

These errors may come from different sources, such as the manufacturing process
itself, environmental conditions, and ageing effects. Specially relevant is the kind of
radiation-induced error denoted as Single Event Effect (SEE). Basically, a SEE is an
electric perturbation caused by the strike of an individual high-energy particle. Such
perturbation may manifest in multiple ways, being the most common ones the mod-
ification of the state of a memory element (known as Single Event Upset (SEU)) or
the generation of an erroneous transient pulse which may propagate through the circuit
(known as Single Event Transient (SET)).

The presence of errors represents a risk for the reliability of electronic circuits.
For this reason, it is a common practice to implement some mechanisms for either
detecting the presence of errors, or minimising their effects when they occur. The
first step consist in the manufacturing test, which tries to determine the existence of
errors which might be produced during the manufacturing process. Nevertheless, this
is not sufficient as errors may be produced during the whole lifetime of the circuit (for
example, due to SEEs), and therefore some on-line error mitigation mechanisms should
be considered from the design of robust electronic circuits.

Fault-tolerant design has been an active area of research for decades. Many error
mitigation techniques have been developed, covering different fault mechanisms and
abstraction levels (from transistor level to complete microprocessor systems), and with
different cost requirements. Among them, the most popular approaches consist in the
full replication of the circuit to protect, combined with logic for either detecting faults
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(by comparing the results of two identical instances of the target circuit) or correcting
them (by voting the results of three copies, and choosing the majority value). These
approaches are known respectively as Duplication with Comparison (DWC) and Triple
Modular Redundancy (TMR), and they have the advantage of covering a wide variety
of failure mechanisms which are present in electronic circuits, specially in the modern
technologies. However, these techniques suffer from high overhead in terms of area
and power consumption (more than 100% and 200% respectively). To alleviate these
overheads, alternative techniques have been proposed based on partial fault detection
or masking.

In relation with this interest in developing low overhead systems, a branch of elec-
tronic circuit design has emerged which is based in the idea of improving the costs or
the timing response of a given design by means of slight deviations of the intended
functionality. This paradigm is known as approximate computing. This strategy has
the particularity of potentially generating better implementations with respect to area,
power consumption or delay than with conventional synthesis approaches, although
this approach is suited mainly for applications which can tolerate some degree of mis-
behaviour. Applied to the fault-tolerance field, approximate logic may allow to develop
flexible and low cost solutions for partial error mitigation, which is the main goal of
this thesis.

This introductory chapter is structured as follows. First, section 1.2 provides an
introduction about the main sources of errors in electronic circuits, with an empha-
sis in those causes which are more relevant with respect to this thesis. Then, section
1.3 shows the motivations of the research conducted in this thesis. Later, section 1.4
summarizes the research goals proposed for this thesis. Finally, section 1.5 closes this
chapter with a brief summary of the contents of this document, chapter by chapter.

1.2 Preliminary concepts
Errors in electronic circuits are usually classified as soft errors and hard errors. The
first type are errors which originate a temporal misbehaviour without causing any phys-
ical harm to the circuit, such as a bit flip in one of the bits in a register, while the latter
type include those errors which cause a permanent damage to the physical circuit, for
example a burnout in a line or the creation of a parasitic transistor. A special case of
errors are intermittent errors, a kind of error which appears from time to time. An inter-
mittent error may be caused by either a permanent damage on the circuit which is only
excited on particular conditions, or by a soft error which persist over time and therefore
may periodically show up. All these errors may come from different sources, including
manufacturing process variations, environmental conditions and ageing. Some of this
error sources are presented here in more detail.

First, manufacturing process variations are a dominant source of static variability
that may significantly affect yield. The results of such variations are defective circuits
which deviate from the original intended functionality, and therefore they may present
an erroneous response under certain stimuli. In the past, variations were mostly due to
imperfect process control, but now intrinsic atomistic effects, such as random dopant
fluctuations or line edge roughness have become relevant in technologies under 45
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nanometers, as devices of atomic sizes are achieved [4]. Manufacturing tests are in-
tended to detect such variations in advance to normal operation, although due to the
increasing difficulty of testing, some defects may escape the manufacturing test and
may cause intermittent failures resulting in errors during normal operation.

Environmental conditions may induce errors during the lifetime of circuits. In par-
ticular, electronic circuits are sensitive to radiation effects, which may cause errors of
various degrees of criticality. There are some environments which are specially ex-
posed to radiation, such as the outer space, but it is present everywhere, including the
Earth surface. And although there are some measures which can be implemented in or-
der to shield the circuits against these radiation-induced effects, it is extremely costly
to completely get rid of them. In practice, every circuit is exposed to suffer from errors
caused by radiation.

Finally, ageing consist in the progressive degradation of the electrical character-
istics of electronic circuits with their use over time. This would eventually make the
circuit to fail, a process which may be accelerated by some environmental conditions,
such as supply voltage or temperature variations, extreme temperatures or high radia-
tion environments.

Let us focus on the radiation effects. Here the radiation is understood as a continu-
ous flow of highly energetic particles, which collide against the electronic devices. On
each one of these strikes, the colliding particle may deposit some electric charge in-
side the semiconductor components of the electronic circuit, affecting its performance
in different ways. As said before, the radiation is present everywhere, although there
are some environments which are exposed to the radiation with higher intensity than
others.

With respect to the nature of radiation-induced errors, there are two different mech-
anisms. On the one hand, a single particle strike may cause an electric perturbation high
enough to immediately generate either a soft or a intermittent error, or even a hard er-
ror. Generally speaking, this phenomenon is denoted as SEE. Depending on the circuit
elements affected by the strike and its effects, SEEs are classified into several types.
If a memory element is affected, causing a bit flip on its content, the effect is denoted
as an SEU. On the contrary, if a combinational node receives the strike, a temporary
erroneous electric pulse may be originated, which is denoted as an SET. Both SEUs
and SETs are soft errors, and they constitute the majority of SEEs which can be orig-
inated in electronic circuits. SEUs have traditionally been more studied because they
can directly modify the state of any given circuit, while SETs still need to propagate
through the circuit in order to cause a noticeable error, either to a primary output or
until they are captured by a memory element. The probability of SET occurrence is
higher than for SEUs because they can be originated in any combinational node, al-
though a fraction of these errors is naturally filtered out due to several masking effects,
known as electrical masking, logical masking and temporal masking.

• Whenever an SET is originated, it propagates through the circuit to either a pri-
mary output or to a memory element, possibly traversing several logic gates
along its propagation path. The electrical masking effect refers to the case where
the faulty transient pulse is progressively attenuated by subsequent logic gates
along its propagation path, until it is eventually filtered out.
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• Logical masking applies when the transient pulse is originated in a path which is
naturally blocked due to the signal assignments at that particular moment. If an
SET is generated in a logic path which is not sensitized, it will never be able to
manifest.

• Finally, for a transient pulse to be captured by a memory element, the transient
must arrive in synchronization with the capturing phase of the memory element.
Temporal masking occurs when the transient pulse arrives at the input of the
memory element outside of its capturing window time, and therefore it is not
registered.

However, in modern technologies both electrical and temporal masking effects are di-
minishing, and therefore SETs are increasing in relevance, up to the point of being as
important as SEUs.

There are other types of SEEs too, although less probable and more specific. In
some applications, either an SEU or an SET affecting the control logic may cause the
circuit to hang or to enter in an unknown state from where it cannot normally be re-
covered. In other words, the device functionality is lost. This situation is known as a
Single Event Functional Interrupt (SEFI), and due to its nature it is dependant on the
functionality of the circuit. A SEFI has to be cleared by either a logic reset or a power
reset [5]. Another kind of SEEs imply hard errors, such as the Single event Hard Er-
ror (SHE) or the Single Event Latch-up (SEL). A SHE is a kind of SEU with so much
energy that the affected memory cell is stuck in a particular value, being unable to
change its state [6]. On the other hand, a SEL is the generation of a latch-up condition,
this is, a parasitic structure which short circuits the power supply of a transistor, caused
by a SEE. This event requires a power reset in order to cancel it. On the contrary, the
high currents generated by the short circuit may permanently damage the device [7].
Finally, with the progressive reduction of transistor sizes, electronic components are
becoming small enough for a single particle strike to hit multiple elements, thus poten-
tially originating several bit flips in a row. This phenomenon is known as a Multiple
Bit Upset (MBU) [8], and it is more characteristic of modern technologies.

On the other hand, even if SEEs do not occur, each one of these particle strikes may
deposit a bit of electric charge inside the semiconductor components of an electronic
circuit. Over time, with the accumulation of electric charge due to a continuous expo-
sure to radiation, a progressive degradation of the electrical characteristics of electronic
components can be observed, affecting the circuit performance. Eventually, the accu-
mulation of electric charge may result in a permanent failure. This effect is known as
Total Ionizing Dose (TID), and it is associated with the accelerated ageing of electronic
components in the presence of radiation.

Although the effects of TID are generally more harmful in the long term, these can
be monitored and foreseen due to its progressive nature. On the contrary, SEEs may
happen any time during the lifetime of the circuit without notice. In addition, with
the shrinking of transistor sizes, the energy required to change the state of circuits has
diminished. But this means too that it is easier for unwanted external sources such as
SEEs to generate perturbations within electronic circuits. Therefore, SEEs now more
than ever constitute a concern for the reliability of electronic circuits. This is why in
this thesis, the main focus is put over the soft errors induced by SEEs.
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1.3 Motivation of research
Soft errors have become a significant threat to circuit reliability. Reduction of transis-
tor sizes and supply voltages, and increase of operation frequencies make electronic
devices more sensitive to soft errors. It is therefore required to implement solutions
aimed to reduce the impact of these effects in order to maintain acceptable reliability
levels.

Among the different types of soft errors, SEUs have traditionally been more studied
because they can directly modify the state of a circuit. Consequently, it is a well-known
problem. Several techniques for SEU mitigation have been developed, some of which
are commonly used. For example, hardened memory cells such as Dual Interlocked
Storage Cell (DICE) [9], or replication of memory elements with either fault detection
or correction, are approaches used today.

However, with technology scaling, SETs are also becoming very relevant [10]. Ac-
tually, the probability of SET occurrence is higher than of SEUs because they can be
originated in any combinational node. Nevertheless, there are several effects (logical,
electrical and temporal masking) that naturally may prevent a SET from provoking an
error.

In fact, SET detection and mitigation approaches take advantage on these masking
mechanisms as a means to either block the propagation of transient pulses or detecting
when they occur. Electrical masking is exploited by using larger transistors or nodal ca-
pacitances [11]. Temporal masking is achieved by using time redundancy, i.e., latching
data at different times [12]. Finally, logical masking is exploited by introducing some
sort of redundancy in the functionality of the target design. This requires implement-
ing additional logic in order to either detect a faulty logic value in certain points of the
circuit or block the propagation path of a transient pulse before it reaches a sensitive
element of the circuit.

This work is focused on logical masking techniques, which can be classified in three
categories: hardware redundancy, time redundancy and information redundancy tech-
niques [13]. The first group consist in replicating the target design, either completely
or partially, so the same computation is performed multiple times. This is combined
with either an error detection module or a voter, depending on the number of instances.
Among them, TMR and DWC are well-known techniques which are widely used for
critical applications. It must be noted that they can be used at different levels of ab-
straction, from system to transistor level. Time redundancy techniques are based on
the same principle as hardware redundancy, but without replicating any logic. Instead,
required computations are performed multiple times on the same logic, and compared
or voted thereafter. Therefore, such techniques present little area overhead at the cost
of severe performance penalties. Finally, information redundancy techniques are based
on performing some additional computations on data, thus generating extra bits for
each value that allows to check their integrity and even correct some faults. Examples
of these are parity bits and Error Detection And Correction (EDAC) codes such as the
Hamming code. They can be very effective for single or double errors, so they are
well suited for memories or communication protocols, but they cannot be applied in
the general case because a low multiplicity of errors cannot be guaranteed.

The capability of DWC and TMR techniques to mitigate both transient and perma-
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nent errors makes them good approaches to tackle the variety of potential failure mech-
anisms that must be considered for advanced technologies. However, These techniques
suffer from high overhead in terms of area and power (more than 100% and 200% re-
spectively), which might not be acceptable for certain applications. To alleviate this
overhead, alternative techniques have been proposed based on partial error detection or
masking. An early partial error masking approach is proposed in [14] which consists
on triplicating and voting the nodes with the highest soft error susceptibility. Subse-
quent approaches attempt to insert redundancies that protect against the most common
errors or to resynthesize the circuit to improve reliability [15–19]. Within this context,
approximate computing has recently emerged as an alternative approach for building
partial DWC/TMR solutions.

Approximate computing is based in the idea of optimizing a given circuit in terms
of resource utilization, power consumption or delay, by deviating from the intended
functionality. For example, if some parts of a given circuit are rarely excited, they
could be removed in order to save some resources, with a reduced impact in the overall
functionality. The degree of misbehaviour which can be tolerated in order to gain
in either resources, power or timing will depend on the specifications of the target
application. Logic circuits which are designed by applying this kind of optimizations
are denoted as approximate circuits.

The reduced overheads associated with approximate circuits makes them good can-
didates for implementing partial error mitigation solutions. As it is not required to ex-
actly match the original circuit, the approximate circuit can be smaller but it can still be
used to detect or correct errors where it overlaps with the original circuit. Approximate
logic circuits provide a systematic framework for the implementation of fault tolerant
designs. In addition, they provide a flexibility that other partial DWC/TMR approaches
do not have. They can be implemented to satisfy a wide range of error protection or
area overhead requirements, while at the same time optimizing the trade-off between
both parameters.

1.4 Research goals
The goal of this thesis consist in devising novel approaches for soft error mitigation
by logic masking, based on the concepts of the approximate computing. The use of
approximate logic circuits will serve to a double purpose: reducing the area overheads
with respect to the full DWC/TMR solutions, while providing a flexibility in their de-
sign which is not possible with the partial DWC/TMR approaches. Therefore, the
proposed techniques have to be designed with the ability of tuning the level of redun-
dancy to different application requirements. Of course, each proposed approach has to
be validated by adequate experiments.

In addition, it is desirable that the proposed approaches would be predictable, that
is, that the characteristics of the generated solutions could be inferred in advance from
the tuning parameters. In that way, the process is more user-friendly, and trial and error
iterations are avoided.

Finally, once after the error mitigation approaches will be developed and validated,
they should be demonstrated on real applications.
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1.5 Document structure
The present document is divided in seven chapters, including this introductory chapter.
The rest of this document is structured as follows.

Chapter 2, titled Background and previous work on approximate logic circuits,
introduces the main concepts about approximate circuits and presents the state of the
art in relation with approximate computing and fault tolerance with approximate logic
circuits.

Chapter 3, Circuit approximation method, introduces the fundamental mechanisms
which are proposed in this thesis in order to generate approximate circuits. The pro-
posed logic transformations constitute the base on which the heuristics for generation
of approximate circuits are built.

Chapter 4, Circuit approximation using static testability measures, deals with the
first approximation generation heuristic developed in this thesis, which is based on
static testability measures. This approach is initially developed for combinational cir-
cuits, although an extension to sequential circuits is later presented.

Chapter 5, titled Circuit approximation using dynamic testability measures, intro-
duces an alternative approximation generation heuristic, based on dynamic testability
computations. This change is motivated by the limitations of the previous approach,
which are here exposed. This new approach makes use of fault probability computa-
tions by means of implications, and therefore an introduction to this field can be found
in this chapter. The fault implications are later exploited to introduce a new type of
logic transformation for the generation of approximate logic circuits, which is denoted
as node substitution.

Chapter 6, Applications, exposes the different applications of the previously pre-
sented approximation generation heuristics which have been developed within the scope
of this thesis. Namely, the extension of the techniques developed in this thesis for Field
Programmable Gate Arrays (FPGAs), the development of a fault tolerant version of
a real application microprocessor using approximate logic circuits, and a comparative
study of the techniques presented here with evolutionary approaches.

Chapter 7, Conclusions and future work, closes this document. Here, the main
contributions and conclusions of this thesis are summarized, and some future research
lines which could extend this work are proposed.





Chapter 2

Background and previous work
on approximate logic circuits

2.1 Introduction

This chapter serves as an introduction to the concepts of the approximate computing.
The main idea behind the approximate computing consist in generating circuits that
performs a possibly different but closely related logic function to the correspondent
original circuit. Such circuits are denoted as approximate logic circuits. A classifica-
tion of the different types of approximate logic circuits according to their characteristics
is done. This classification determines how a particular approximate circuit can be used
to either detect or correct faults.

Fault mitigation with approximate logic circuits is based in the classic DWC and
TMR approaches, but replacing the additional copies of the target circuit with approx-
imate versions. In that way, the area and power consumption overheads are reduced at
the expense of leaving some faults unprotected. This trade-off between the overheads
and the error protection level can be tuned to satisfy the requirements of each particular
application. In addition, a careful design of the error mitigation scheme is required in
order to ensure a correct functionality, because when approximate circuits are used,
differences may be observed even in the absence of faults.

Finally, a review of the state of the art on the approximate computing field is per-
formed, with special emphasis in those techniques which make use of approximate
logic circuits to implement fault mitigation mechanisms.

With respect to the rest of the chapter, this is structured as follows. Section 2.2
introduces the main concepts about approximate logic functions and gives a classifica-
tion of them according to their characteristics. Then section 2.3 explains the general
schemes of fault tolerance with approximate logic circuits, and section 2.4 presents
some techniques already developed about this topic. Finally, section 2.5 concludes the
chapter.

9
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2.2 Approximate logic fundamentals
In this work, the use of approximate logic circuits for partial logical masking is pro-
posed. Therefore, first of all it is required to give a definition of this concept.

Given a target logic function G, an approximate logic function with respect to G is
another logic function Ĝ which partially implements G. That is, function Ĝ gives the
same result as G for a fraction of its input space [20]. An approximate logic circuit is
simply any circuit that implements an approximate logic function Ĝ.

It must be noted that the concept of approximate logic refers to functional similarity
between logic functions or circuits instead of functional equivalence, in which both
TMR and partial TMR techniques are based. In addition, the degree of similarity has
no restrictions, and so it can be as high or low as required. The proportion of the
input space in which the approximate logic function Ĝ correctly predicts the result
of G gives the quality of the approximation. The comparison between target G and
any approximate logic function Ĝ divides the input space in two parts. The set of input
vectors for which bothG and Ĝ give the same result is denoted as the correct subspace,
while the remaining input vectors (for which G and Ĝ differ) conform the incorrect
subspace. If the relative size of the correct subspace is high, then the approximate logic
function Ĝ is close to G. On the contrary, if the relative size of the correct subspace is
low, Ĝ is a poor approximation with respect to G. As an example, consider the target
logic function G = ab̄ + bcd, whose Karnaugh map appears on Figure 2.1a. Now
consider the function Ĝ1 = ab̄+cd, represented on Figure 2.1b. With respect toG, Ĝ1

serves as an approximate logic function, as both functions partially overlap. Moreover,
Ĝ1 is a very close approximation, because there is only one input vector for which the
results are different, which is marked as the red cell on Figure 2.1b, that is, it has a big
correct subspace. On the other hand, consider the function Ĝ2 = ā+ b, represented on
Figure 2.1c. This is also an approximate logic function with respect to G, but a very
poor one. Ĝ2 correctly predicts the result of G just for two input vectors, therefore its
correct subspace is very small.
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(a) Target function
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(b) Unidirectional approx.
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(c) Bidirectional approx.

Figure 2.1: Example approximate logic functions

Another interesting conclusion is that the domain of any approximate function Ĝ
is a subset of the domain of G. In other words, function Ĝ can be implemented with
a reduced amount of inputs with respect to the original function G. Considering the
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previous example, Ĝ2 = ā + b is implemented with just two of the outputs from
target function G. This fact can be exploited to build cost efficient approximate logic
functions, which is a key point for the application of this kind of circuits to the field of
fault tolerance.

Approximate logic functions can be classified regarding to the characteristics of
its correct and incorrect subspaces. If the incorrect subspace of a given approximate
function Ĝ is a subset of either the onset or offset of the target function G, then Ĝ is
an unidirectional approximation. On the contrary, Ĝ is considered a bidirectional ap-
proximation if its incorrect subspace overlaps with both the onset and offset of function
G [20]. For an unidirectional approximation, every difference with respect the target
logic function has the same direction, either 0→ 1 or 1→ 0. Function Ĝ1 = ab̄+cd on
Figure 2.1b is an example of an unidirectional approximation, as its incorrect subspace
is a subset of the offset of function G. On the other hand, a bidirectional approxima-
tion has differences of both types with respect to its target function, such as the case of
Ĝ2 = ā+ b on Figure 2.1c. This classification determines how approximate functions
can be used for fault tolerance, as it is explained on section 2.3.

By definition, an unidirectional approximation satisfies an implication relationship.
Given a target logic function G, an unidirectional approximation F which fulfils F ⇒
G is denoted as an under-approximation with respect toG. This is equivalent to say that
F ⊂ G. On the other hand, an approximationH is called an over-approximation ofG if
it satisfies H̄ ⇒ Ḡ, i.e., G⇒ H . Which is equivalent to H ⊃ G [20]. As an example,
consider again the target logic function G = ab̄ + bcd and its approximation Ĝ1 =
ab̄+ cd, whose Karnaugh maps are represented on Figures 2.2a and 2.2b respectively.
According to previous definitions, Ĝ1 = H is an over-approximation of G, because
it expands onset of G, that is, the incorrect subspace of H belongs to the offset of
function G. Now consider the logic function F = ab̄ represented on Figure 2.2c. This
function works as an under-approximation of G, because it has a reduced onset with
respect to function G, and therefore the incorrect subspace of F is a subset of the onset
of G.
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(a) Target function
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(b) Over-approximation
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(c) Under-approximation

Figure 2.2: Example over- and under-approximations
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2.3 Error mitigation by means of approximate logic cir-
cuits

The application of approximate logic circuits to the field of fault tolerance is based
on the full DWC/TMR approach, but using approximate versions of the target circuit
instead of exact copies of it to either detect errors or masking them [21,22]. The interest
of this approach lies in implementing approximate circuits which require less resources
than the target circuit, so some savings in terms of area and power consumption are
obtained at the expense of slightly reduce error mitigation capabilities of the whole
system.

Original Circuit

Approximate 
Circuit

Outputs

Checker

Inputs

Error

(a) Detection scheme - Approximate DWC

Over 
Approximation

Original Circuit

Under 
Approximation

Voter
Inputs

Outputs

(b) Correction scheme - Approximate TMR

Figure 2.3: Fault tolerant schemes using approximate logic circuits

Depending on how many approximate instances are implemented, we talk about
either an error detection or correction scheme, which are shown in Figure 2.3. An error
detection scheme is built with just one approximate version of the target circuit and
the target circuit itself in a DWC-like scheme as shown in Figure 2.3a [22]. Therefore,
this approach is called Approximate DWC (ADWC) as well. A checking module is
included with the purpose of comparing the outputs of both circuits, signalling an error
in the case a fault is observed. On the other hand, an error correction scheme is built by
using several approximate versions of target circuit. The simplest way of implement-
ing this approach makes use of the target circuit along with two different approximate
versions of it in a TMR-fashion [21] (see Figure 2.3b), this approach also receives the
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name of Approximate TMR (ATMR). A voter is used to select the majority output, thus
being able to mask errors produced in any of the three circuits under certain conditions.
Of course, additional instances can be implemented, thus having a n-Modular Redun-
dancy built with approximate logic circuits. But all these solutions require a careful
design due to the fact that, as approximate circuits are not functionally equivalent to
target circuit, outputs may differ even in the absence of faults.

In the approximate DWC approach, the target circuit works in parallel with one of
its approximations, and outputs or both circuits are compared by a checking module,
which activates an error signal when it observes a mismatch [22]. Because outputs
may differ in the absence of faults, the checker has to work only when the outputs
of both circuits are expected to coincide. In the general case, this requires an addi-
tional logic function which explicitly indicates the overlapping cases. This extra cir-
cuit, referred to as indicator function, enables the checker module just in the correct
cases. This predictor-indicator approach has been proposed in [20]. As a major draw-
back, this approach cannot detect faults produced in either the indicator function or
the approximate circuit, so they have to be intrinsically robust by design. Moreover,
the additional indicator function imposes an extra overhead, thus reducing the bene-
fits of using approximate logic circuits. Alternatively, ADWC can take advantage on
unidirectional approximations in the following way. As said in section 2.2, every uni-
directional approximation satisfies an implication relationship with respect to the target
circuit. Therefore, if an unidirectional approximation is used in an ADWC, the checker
only has to check for violations of that implication relationship, thus greatly simplify-
ing the logic required to perform the checking [22]. If an under-approximation F is
implemented along with target circuit G, then implication F ⇒ G has to be met. Any
situation that produces F = 1 andG = 0 is identified as an error, because by definition
such output combination is not possible unless there is a fault. Therefore, the checking
module is simply the logic gate F · Ḡ. With this approach, faults of type 1→0 on the
output of G can be detected when F = 1, as well as faults 0→1 on F in the case of
G = 0. Alternatively, the ADWC can be implemented with an over-approximation
H . In this case the implication relationship that applies is H̄ ⇒ Ḡ, and the output
combination that violates this rule is H = 0 and G = 1. Whenever this output com-
bination is observed, it indicates the presence of a fault. In consequence, the checker
has to implement just the logic function H̄ · G. This implementation is able to detect
both faults of type 0→1 on G when H = 0 and faults 1→0 on H for G = 1. Because
the ADWC with unidirectional approximations is able to detect errors occurring in the
target circuit in just one direction, this approach is well suited for logic functions with
either a large onset or offset.

With respect to the approximate TMR approach, it implements the target circuit
along with two different approximate versions of it, and the outputs of all three in-
stances are voted to select the majority value for each output. As the ATMR approach
includes two approximate circuits, a careful design is required in order to, at least, en-
sure a correct functionality in the absence of faults. This condition is met when, for
every input vector, at least one of the approximate circuits agrees with the target circuit.
In other words, it is required that incorrect subspaces of both involved approximations
do not overlap. Otherwise, if the two approximate circuits agree in an incorrect value,
the ATMR will produce a wrong result. There are many types of approximate logic
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circuits that can satisfy this requirement. Among them, the simplest way of assuring
this condition is by means of unidirectional approximations. As said in section 2.2, for
an under-approximation F with respect to target circuit G, F ⊂ G holds, that is, the
set of input vectors for which both functions differ is a subset of the onset of G. On the
other hand, the incorrect subspace of an over-approximation H with respect to G fully
belongs to the offset of G, or in other words, G ⊂ H . Therefore, by implementing an
ATMR with target circuit G, an under-approximation F and an over-approximation H
as represented on Figure 2.4a, at least one of the approximate instances agrees with G
for every input vector, thus ensuring a correct functionality in the absence of faults by
construction.

(a) Approximate TMR scheme (b) Representation of logic functions [21]

Figure 2.4: Approximate TMR with unidirectional functions

How this scheme works can be better explained with the diagram of Figure 2.4b,
where the on-sets of all three logic functions are represented, and the Table 2.1, which
summarizes the possible output combinations of the ATMR scheme under normal op-
eration (that is, in the absence of faults). From both it is clear that the ATMR scheme
satisfies the relationship F ⊂ G ⊂ H [21]. In the offset of G, both G and F outputs
are set to 0, so the voter provides the correct result independently from the value of
H . On the other hand, in the onset of G, both G and H functions generate a logic 1,
thus the correct value is driven to the output no matter what the result of function F is.
In conclusion, the relationship F ⊂ G ⊂ H ensures that this scheme is functionally
equivalent to target function G. But in addition, it has fault masking capabilities. In
the onset of function F , all three circuits are set to 1. Because the three instances are
implemented separately, a single fault can only affect one circuit and therefore its ef-
fect will be masked in any case. The same applies in the offset of H , where all circuits
give a logic 0. In any of these situations, the scheme behaves like a full TMR. There-
fore, total protection is provided for the set of input vectors included in F ∪ H̄ , which
corresponds with the shadowed area in Figure 2.4b. On the contrary, in the area in be-
tween one of approximate functions already produces an incorrect result. By default,
this wrong value is masked by the voter, but a fault in any of the other two instances
may cause a second wrong value which would propagate to circuit outputs. In the in-
correct subspace of F , F = 0 while both G and H provide a logic 1. Therefore, any
fault which causes a 1→0 change in either G or H outputs will not be masked, thus
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provoking an error. It must be noted that in this situation, circuit F is still protected
against faults, because any fault which causes a bit flip on its output simply corrects
the discrepancy caused by the approximation. Similarly, in the incorrect subspace of
H , circuit outputs are F = 0, G = 0 and H = 1. Faults of type 0→1 in either F
or G will arise an error, while any fault affecting H will be masked. Therefore, the
level of protection provided by this approach is related to the combined probability of
these incorrect subspaces. In conclusion, the challenge of the ATMR approach con-
sist in finding approximations of target circuit with an optimal trade-off between the
probability of their incorrect subspaces and the overhead they impose.

F G H Output Notes
0 0 0 0 All errors masked
0 0 1 0 0→1 errors in F or G are not masked
0 1 1 1 1→0 errors in G or H are not masked
1 1 1 1 All errors masked

Table 2.1: Summary of the ATMR operation

The approach based on unidirectional approximations is the preferred way of im-
plementing an ATMR scheme in this work, because it is straightforward and unidi-
rectional approximations can be automatically generated by means of simple trans-
formations of the original circuit under certain conditions that depend on structural
properties, as it will be explained in chapter 3. But there are alternative configurations
with bidirectional approximations that can also be implemented. Moreover, even the
target circuit could be replaced with another approximate circuit in the ATMR, thus
having a full ATMR scheme built with approximate circuits exclusively, as proposed
in [23]. The only requisite is that the incorrect subspaces of the different approximate
circuits do not overlap. However, all these alternative schemes require a careful design
in order to ensure a correct functionality in the absence of faults, even more than with
the conventional ATMR.

In any case, it must be noted that approximate versions of target circuit are sus-
ceptible to faults, and any fault affecting any of approximations may propagate to an
error in case that the other approximate circuit already generates an incorrect result.
However, this situation can be detected because, considering the restrictions imposed
for the selection of approximations, it is not possible that both approximate circuits
disagree with the target circuit unless there is an error. Thus, all faults generated in the
approximate logic circuits can be either masked or detected. In general, it is expected
that the contribution to the global error rate due to the additional approximate circuits
is compensated by the amount of errors masked in the target circuit. However, if that
is not the case, the voter can be complemented with an error detector, thus ensuring
that global error rate always diminishes as long as the quality of approximations in-
creases (i.e., incorrect subspaces of approximate circuits reduce, thus becoming more
functionally similar to the target circuit).

All these approaches rely on an additional module which is in charge of either
detecting errors (a checker module) or masking them (a voter), exactly as with full
DWC/TMR approaches. It is well known that these modules constitute a vulnerable
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point in all these techniques. A fault affecting the voter will not be masked and will
cause an error, while a fault in the checking module will cause a false positive in the
error detection. This problem is typically solved by means of fault tolerant versions of
these modules. With that goal, the simple voter of the TMR approaches can be replaced
by a triple voter, in such a way that any fault originated in the voting logic will affect
just one of the three instances. Similarly, the checker module of DWC approaches can
be replaced by a totally self-checking checker with two-rail error coding.

2.4 Overview of approximate logic techniques
Up to date, several techniques aimed at applying approximate logic circuits to the field
of fault tolerance have already been proposed. While the general schemes for imple-
menting error mitigation with approximate logic circuits are clear and well documented
(see section 2.3 for details), generation of optimal approximate versions of a target de-
sign constitutes an open question with many alternatives. Here is where the different
approaches widely differ.

When generating approximations of a target design, two major questions arise: 1)
how are approximate circuits designed? and 2) which are the requirements of target
application to be satisfied? For the second question, several constraints in terms of
area overhead, power consumption, delay, reliability and different error metrics can
be used, depending on the particular requirements of each application. With respect
to the first question, several approaches can be followed. Although it is possible to
manually generate approximations for a given design, thus having full control of the
characteristics of approximations, the limited applicability of this approach renders it
less interesting than the automated generation of approximate circuits. In the field
of fault tolerance, the latter is the preferred approach for approximate circuit design.
When opting to implement an automated design method, the previous questions can be
reformulated as: 1) which mechanism is applied to generate approximations? and 2)
which criteria are used to selectively apply this mechanism? Each one of the different
existing techniques propose its own answer to these questions. It must be noted that
these decisions are influenced by the preferred circuit description format.

The first technique in the list, proposed in [21], generates approximations by means
of transformations applied over the Binary Decision Diagram (BDD) representing tar-
get logic function. By selectively redirecting some paths within the BDD it can be en-
sured that either an over- or under- approximation is generated. The authors focus on
fault masking, so both over- and under-approximate circuits are used. Then each pair
of over- and under-approximations is evaluated in terms of soft error rate reduction,
which is computed as the difference between the proportion of masked input vectors
and the estimated area overhead. In order to implement fault tolerance, the authors
propose a modified version of the ATMR scheme, where the majority voter is replaced
with the masking function F +G ·H . While this masking function is simpler, it makes
also the whole system more vulnerable to errors, because 0→1 errors in F cannot be
masked in any case.

The technique proposed in [22] focuses on fault detection with unidirectional ap-
proximations. In that work, the preferred circuit description format is a multilevel
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technology-independent network. This consists in a directed acyclic graph where
each node constitutes a partial logic function, which is represented as a Sum of Prod-
ucts (SOP) expression. The approximation process is performed in two stages. First,
each node in the list is assigned a type according to both the type of immediately sub-
sequent nodes and the local observability of the node. Although the authors use a
particular terminology, the node types are closely related to the bidirectional, over- and
under-approximation types. Thereafter, local functions of certain nodes, according to
their types, are simplified by selecting a subset of cubes or terms. Two different meth-
ods for cube selection are proposed. In the first one, cubes are selected directly from
the SOP expression of the node. While this first approach guarantees the generation of
unidirectional approximations, it considerably limits the solution space. Alternatively,
authors propose a second cube selection method that takes advantage of observability
don’t-cares to expand the range of feasible solutions. However, this alternative method
does not guarantee the generation of unidirectional approximations, thus requiring a
Boolean Satisfability Problem (SAT) solver in order to ensure correctness. The gen-
erated ADWC schemes are subsequently evaluated with respect to concurrent error
detection rate. This approach is extended in [20] by considering predictor-indicator
bidirectional approximations. In addition to the previous procedure, these functions
can be further optimized by taking advantage on the don’t-care interdependencies ex-
isting between them. In particular, all those input vectors where the indicator function
evaluates to 0 (that is, when target and approximate functions are expected to differ)
can be considered as don’t cares for the predictor (i.e. approximate) function. Simi-
larly, all those input vectors where the predictor agrees with target logic function can
be used as don’t-cares for optimizing the indicator function. Additionally, the work
in [20] proposes the implementation of fault masking by using just one approximation.
This can be seen as a borderline case of an ATMR where one of the approximations
has been reduced to a logic constant. This particular topic will be discussed in section
4.2.

In a similar way, the technique in [24] builds approximations by selectively choos-
ing cubes from the target logic function expressed as a SOP. But in this case, the SOP
expression is computed for the whole logic function, without splitting it into pieces.
In addition, this approach is intended for an ATMR scheme, so both under- and over-
approximations are considered. The first is generated by selecting cubes among the
logic function minterms, while the latter is generated by choosing among the cubes
representing the function maxterms. In this approach don’t-cares are not considered,
thus meaning that target logic function is completely defined. Cubes are iteratively
selected according to a fault reduction metric, which is a combination of the number
of terms covered by the cube (i.e., the number of input vectors that will be protected
by the cube, which is related to the gate size) and the fault propagation probability
through that cube, estimated by statistical fault injection. On each iteration, the best
cube according to this metric is selected and included as a part of its correspondent ap-
proximate function, and the fault reduction value of all remaining cubes is recomputed,
updating also the coverage of each cube in order to reflect the overlap with respect to
all previously selected cubes.

Finally, the approach proposed in [25] performs an analytical decomposition of the
target logic function into their simplest literals, which are then recombined according to
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certain rules in order to generate valid unidirectional approximations. Besides, once the
over- and under-approximate functions have been generated, some layout techniques at
transistor level are applied with the goal of minimising the SET sensitivity of each indi-
vidual logic gate specifically for the input vectors belonging to the incorrect subspaces
of the generated approximate circuits. Due to the characteristics of this approach, only
small logic functions can be processed with it.

Approximate logic circuits have other applications in addition to error mitigation.
Their potentially superior performance in terms of area, power consumption and speed
with respect to their original circuits make approximate logics well suited for those
applications which can tolerate some degree of misbehaviour. In these cases, the origi-
nal circuit can be replaced by an approximate version of it, which is less accurate than
the original circuit, but offers lower overheads and reduced computation time. This is
denoted approximate computing. In this paradigm, the same questions previously con-
sidered about the design of approximate versions of target circuit and its relationship
with the expected requirements of target application still apply. But in addition, there
is the issue of performing functional verification of the final application, because now
incorrect outputs can be generated even in the absence of faults.

With respect to the design of approximations in this field, there are several works
focused on generating efficient approximations for specific common designs, such as
approximate adders [26,27] and multipliers [28]. But, because this kind of approaches
are limited to specific designs, research has been done on design automation methods
as well, so the benefits of approximation can be applied to any design. With this goal,
several synthesis approaches have been proposed, including SOP reduction [29], redun-
dancy propagation [30], don’t-care-based simplifications [31], formal verification tech-
niques [32], dedicated three-level circuit construction heuristics [33] and And-Inverter
Graph (AIG) rewriting [34].

Finally, another interesting approach consist on evolutionary generation of approx-
imate circuits. Evolutionary algorithms are used in many applications to solve hard
optimization and design problems, making use of the high processing capabilities of
latest technologies in order to explore a wide range of solutions by trial and error.
Since the beginning of research in evolutionary computation, this techniques has been
applied for purposes of hardware optimization. Several monographs [35, 36] summa-
rize the applications from the field of electronic design, diagnostics, and testing. Later,
evolutionary algorithms were applied not only to optimize parameters of existing cir-
cuits, but also to generate complex circuit structures and dynamically adapt them [37].
Recently, evolutionary algorithms have been applied to the generation of approximate
circuits [38, 39], a field which suits well for this kind of techniques. As the method
is intrinsically based on the trial and error approach, it is usually very time consum-
ing, but, on the other hand, capable of discovering solutions hard to reach by other
automated design methods. A more detailed explanation of this kind of techniques is
addressed in Section 6.4.1.
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2.5 Conclusions
This chapter has presented the main concepts on approximate logic circuits, and how
they can be used for error mitigation.

The approximate computing provides a systematic framework for the implemen-
tation of partial error mitigation solutions. Approximate logic circuits can be used
for either error detection or correction in those situations where the approximate logic
function overlaps with the target function. The degree of functional similarity can be
tuned for different trade-offs between error coverage and overheads. However, gener-
ating approximate circuits with an optimal trade-off for a particular application is still
a challenging issue.

A review of the state of the art in relation with fault mitigation approaches based in
approximate computing has been done. The techniques presented are quite recent, so
this research topic is still young. Besides, most of the existing techniques are synthesis
oriented and depart from a conceptual description of the target circuit. In such con-
ditions, estimating the effect of approximations in terms of either overheads or error
protection level is a really difficult task.

This thesis is devoted to develop novel fault mitigation techniques based in ap-
proximate logic circuits which overcome the limitations of these previous approaches.
On the one hand, in this thesis the generation of approximations is based in structural
properties of circuits. Therefore, departing from a circuit implementation instead of a
higher abstraction level allows estimating area overheads with more accuracy. On the
other hand, the approximation generation will be driven by testability measures, mak-
ing use of some heuristics to guide the approximation process. In that way, approximate
circuits which minimize the impact on the error coverage may be favoured.





Chapter 3

Circuit approximation method

3.1 Introduction

In this thesis, the preferred way of implementing error mitigation with approximate cir-
cuits is by an ATMR scheme. In this scheme, target circuit is grouped with two different
approximate circuits, and the output is selected by voting among the three instances,
which allows masking errors. The ATMR has been selected because it can potentially
protect against every fault affecting the circuit while it assumes that additional logic
can be sensitive to errors as well. However, a careful design of the approximate cir-
cuits is required to both ensure the correctness of the ATMR in the absence of errors
and optimize the trade-off between error protection and overheads.

When designing approximate logic circuits, two main aspects have to be consid-
ered: which mechanism is used to generate approximations and which criteria are used
to selectively apply them. This chapter addresses the first question.

The circuit approximation approach adopted in this thesis is based on assigning
logic constants to circuit lines. This mechanism is called fault approximation, because
it is equivalent to force stuck-at faults, or line approximation. But in order to ensure
a correct operation of the ATMR in the absence of faults, not every line can be ap-
proximated. Specifically, only by approximating faults in unate lines the unidirectional
approximations required to ensure the correctness of the ATMR can be generated. Fault
approximations in the same direction can be combined for further savings.

However, there are multiple other ways to generate approximations, such as BDD
simplification, cube adition or removal, subcircuit resynthesis, etc. The reader may
consult section 2.4 for details. The method applied is usually influenced by the pre-
ferred circuit description format, which in this thesis is a gate level netlist.

Approximating a binate fault generates a bidirectional approximation, which is not
valid for an ATMR. In order to approximate a fault in a binate line, first it is necessary
to perform some logic transformations, jointly denoted as unate expansion. The unate
expansion consist in duplicating all binate nodes, and separating their connections ac-
cording to the parity of each connection. In that way, any circuit can be transformed
into a fully unate circuit.

21
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The penalty of the unate expansion is an increased circuit area. As a way of min-
imising this effect, an adaptive fault approximation mechanism is proposed. With this
approach when a fault is approximated, instead of just forcing a constant logic value
on a line, an additional gate with a don’t-care input is introduced, in such a way that
the approximation can be taken or discarded depending on the logic value assigned to
the don’t-care input. An external synthesis software would be in charge of assigning
the values of all those inputs for an optimal solution.

With respect to the approximation selection criteria, several heuristics have been
developed over the whole thesis, which are properly described in chapters 4 and 5. All
these heuristics are based in the fault approximation mechanism presented here.

The structure of this chapter is as follows. Section 3.2 introduces some relevant
concepts which are necessary in order to understand the proposed technique, such as
the concepts of unidirectional and unate circuits. Next, section 3.3 explains the basic
fault approximation approach and how it can be applied to generate approximate logic
circuits. Section 3.4 describes the unate expansion procedure. Then, section 3.5 ad-
dresses the adaptive fault approximation approach. Finally, section 3.6 concludes the
chapter.

3.2 Unidirectional circuits
The approximation generation mechanism applied in this thesis consist on forcing
faults within the circuit. In particular, the interest of this approach resides in forc-
ing unidirectional faults, as it will be explained in section 3.3. An unidirectional fault
is a fault which appears in such a way that, for any input vector, all erroneous outputs
are affected in the same direction, either 0→ 1 or 1→ 0. From here it can be deduced
that any fault which propagates to just one output is unidirectional too, as well as any
fault which cannot propagate to any output. A circuit is denoted as unidirectional with
respect to a given set of faults Φ if every fault f ⊂ Φ is unidirectional [40]. From now
on, it will be assumed that Φ is the set of all stuck-at faults within the target circuit.

According with this previous definition, checking whether a circuit is unidirectional
or not would require a fault simulation in the general case. In order to avoid this, an
alternative property is used instead.

A logic function F (x1, x2, . . . , xn) is said to be positive in xi if, expressing F as a
sum of products, xi does not appear complemented. Analogously, F is negative in xi
if xi only appears complemented in the sum of products. This holds not only for the
function inputs, but also for any intermediate result by performing a variable change.
Therefore, a positive function F in xi can be expressed as

F = xiF1(x1, . . . , xi−1, xi+1, . . . , xn) + F0(x1, . . . , xi−1, xi+1, . . . , xn) (3.1)

while a negative function can be expressed as

F = xiF1(x1, . . . , xi−1, xi+1, . . . , xn) + F0(x1, . . . , xi−1, xi+1, . . . , xn) (3.2)

A logic function F is said to be unate in xi if F is either positive or negative in xi,
otherwise it is binate in xi [41]. When considering multiple output functions it is said
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that F is unate in xi if either every partial logic function Fj corresponding to outputOj

is positive in xi, or negative instead. Otherwise it is binate in xi. It must be noted that
if some outputs are positive in xi while the rest are negative, then the whole function is
binate in xi.

From these definitions it can be inferred that if a logic function is unate in xi, then
the faults xi stuck-at 0 and xi stuck-at 1 are both unidirectional. Unate condition is
more restrictive but it ensures unidirectionality while it is a property which can be
easily checked, because it depends on structural characteristics as explained below.
In practice, only a very small proportion of binate lines may present unidirectional
faults [40].

A logic circuit is the logical representation of a multiple output logic function. It
is said that a node or line xi within a logic circuit has even parity if every logical path
from xi to the outputs of the circuit has an even number of inversions. Analogously, xi
has odd parity if all propagation paths form xi to the outputs have an odd number of
inversions [42]. If node or line xi within logic circuit C has even or odd parity, then C
is positive or negative in xi respectively, which implies that C is unate in xi. Otherwise,
xi has no parity, and therefore C is binate in xi.

Parities in a circuit can be computed by traversing the network from primary out-
puts to primary inputs using the following algorithm [43]. Here, the parity of a line
is considered as a variable with three possible values: 0 corresponds to even parity, 1
means odd parity, and x denotes no parity.

1. For a primary output O, parity(O) = 0.

2. For an output wi of a gate G with output wo, parity(wi) = parity(wo) ⊕
Inv(G). Here, Inv(G) denotes the inversion value of gate G. This value equals
to 0 for a non-inverting gate -AND, OR- and has value 1 for an inverting gate
-NOT, NAND, NOR. If wo has no parity or gate G has no inversion value -case
of XOR and XNOR gates-, then the inputs of that gate have no parity either.

3. On a multiple fanout point, the stem wire parity equals the parity of the branches
if every branch has the same parity. Otherwise, the stem line has no parity.

Figure 3.1 shows an example of how parities are computed with the previous algo-
rithm. First of all, even parity is assigned to primary outputs, and then the circuit is
traversed towards the inputs, analysing each gate. The first node, n4, is non-inverting,
so its inputs mantain the output parity. The same applies with gate n3. With respect to
node n2, it has one non-inverting input, corresponding to primary input a, which pre-
serves even parity, while the other input has an inverter, and therefore its parity changes
to value 1. Now, the output of gate n1 is a stem line, and therefore its parity depends
on the parities of the branches, which have different values. Therefore, the output of
n1 has no parity, and consequently neither inputs c and d have parity.

Even if a logic circuit has binate lines, it can be modified through logic transforma-
tions in order to become fully unate. This topic is discussed in section 3.4.
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Figure 3.1: Parity computation example

3.3 Unidirectional fault approximation

Fault approximation is the approximation generation method applied in this work.
Given a target logic circuit, approximations are generated by simply assigning a con-
stant value to any of the lines of the circuit, which is equivalent to forcing a stuck-at
fault on that particular line. In principle, any stuck-at fault could be forced in order
to generate an approximation. However, this thesis work is focused on the generation
of unidirectional approximations, because they ensure the correctness of the ATMR
scheme presented in section 2.3 for error correction. In that case, fault approximation
must be limited to unate lines. The justification of this statement is presented below.

Let be a logic functionG unate in x. Then the cofactors ofG obtained by assigning
x = 0 and x = 1 are both unidirectional approximations with respect to G. If G is
positive in x, then G(x = 0) is an under-approximation of G and G(x = 1) is an
over-approximation. On the contrary, if G is negative in x, then G(x = 0) is an over-
approximation, while G(x = 1) is an under-approximation with respect to F . This
is demonstrated by realizing that, if function G is positive in x, then G = xG1 + G0

according with equation 3.1, where logic functions G0 and G1 do not depend on x.
Therefore the cofactors of G with respect to x would be G(x = 0) = G0 and G(x =
1) = G1 +G0. It can be verified that G(x = 0) = G0 ⇒ G, i.e., F = G(x = 0) is an
under-approximation ofG. In the other hand,G(x = 1) = G0 ·G1 ⇒ G, which means
that H = G(x = 1) is an over-approximation with respect to G. Demonstration for a
negative function is analogous by simply considering that G = xG1 + G0, according
with equation 3.2 [43].

In summary, if a line x has even parity, assigning a logic 0 or 1 on x (i.e. forcing
x stuck-at 0 or 1) will result in an under- and over-approximation respectively. On the
contrary, if x has odd parity, then assigning a logic 0 generates an over-approximation,
and a logic 1 generates an under approximation. To illustrate this, consider the example
circuit of Figure 3.2a, along with its Karnaugh map. It can be verified that every line
within this circuit has even parity with the only exception of input b, whose branch
to node n1 has odd parity. Within this circuit, consider a line with even parity, such
as input d. If a logic 1 is assigned to that input, then the circuit of Figure 3.2b is
obtained, and it can be verified by means of Karnaugh maps that the circuit is an over-
approximation with respect to the original circuit. On the contrary, if a logic 0 is
assigned on input d, circuit of Figure 3.2d is obtained, which is an under-approximation
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compared with the circuit in Figure 3.2a. Now, let us focus on a line with odd parity,
i.e., the wire from input b to node n1. By forcing a stuck-at 0 at that line, circuit of
Figure 3.2c is obtained, while circuit in Figure 3.2e is generated by forcing stuck-at 1.
It can be verified that Figure 3.2c is an over-approximation of Figure 3.2a and 3.2e is
an under-approximation with respect to the original circuit.
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Figure 3.2: Unidirectional fault approximation examples

Approximations can also be generated by combining several assignments on the
same circuit as long as the final result is either an under- or an over-approximation. To
this purpose, the transitive property applies to unidirectional approximations. Given the
logic functionsG, F1 and F2, if F1 is an under-approximation ofG and F2 is an under-
approximation of F1, then F2 is an under-approximation with respect to G as well.
The demonstration is straightforward by taking into account that every unidirectional
approximation satisfies an implication relationship. In other words, if F1 ⇒ G and
F2 ⇒ F1, then F2 ⇒ G. The same property applies in case of over-approximations.
Given logic functions G, H1 and H2, if H1 is an over-approximation of G and H2 is
an over-approximation of H1, then H2 is also an over-approximation with respect to
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G. Or, expressing it with implications, if H1 ⇒ G and H2 ⇒ H1, then H2 ⇒ G. In
summary, if several assignments are combined, the resulting circuit will be an under-
approximation if each individual assignment leads to an under-approximation. On the
contrary, if each individual assignment generates an over-approximation, the result of
combining them will be an over-approximation. To illustrate this, let us take again the
previous example from Figure 3.2. There, faults d stuck-at 1 and b→n1 stuck at 0
both produce over-approximations when forced (Figures 3.2b and 3.2c respectively).
Therefore, both transformations can be combined to create another circuit, which is
shown on Figure3.3 and works as an over-approximation of the original circuit on
Figure 3.2a. As long as logic transformations are applied on unate lines, the final result
will not depend on the order in which faults are approximated, because parities do not
change due to such transformations.
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Figure 3.3: Multiple fault approximation

From now on, approximating a particular fault is said to denote that the fault is
forced. In addition, line approximation is used to denote that a constant is assigned on
a particular line of the circuit, i.e., that a fault is approximated on that line.

3.4 Unate expansion
The fault approximation method described in the previous section can be applied to
any fault within the target circuit, but to ensure that the result will be either an under-
or an over-approximation, the approximated fault must be unidirectional. Otherwise,
the resulting circuit would not meet the characteristics required in order to implement
an ATMR scheme. To illustrate this, consider the logic circuit represented in Figure
3.4a. In this circuit, node n1 is binate because it has one path to the output with one
inversion (through n2) and another with no inversion (through n3). Now suppose an
approximation is generated by approximating (i.e. forcing) fault d stuck-at 1. The re-
sulting approximate circuit after proper simplifications is shown in Figure 3.4b. By
comparing the Karnaugh maps corresponding to both circuits it can be seen that ap-
proximation is a bidirectional one, because neither the on-set or the off-set of original
circuit are preserved.

Fortunately, any circuit can be made fully unate by means of logic transformations,



3.4. UNATE EXPANSION 27

n2

n3

n4n1

a

b

c

d

00 01 11 10

00 0 0 0 0

01 0 0 1 0

11 1 1 1 1

10 1 1 0 1

ab
cd

(a) Binate circuit

a

b

c

00 01 11 10

00 0 0 0 0

01 0 0 1 1

11 1 1 1 1

10 1 1 0 0

ab
cd

(b) Approximation of fault d stuck-at 1

Figure 3.4: Binate fault approximation

with the only exception of primary inputs. This is achieved by traversing the circuit
from outputs to inputs while computing the parity of each node. If a binate node is
found, it is duplicated and the paths from that node are split between the two copies.
Paths with even parity are assigned to one replica, and paths with odd parity to the other
replica. This process is repeated until primary inputs are reached on every propagation
path [44]. Applied to the previous example (circuit of Figure 3.4a), it requires to du-
plicate the binate node n1 as shown in Figure 3.5. Then the original node is connected
to gate n2, while the replica n1’ is linked to gate n3. If there were additional nodes
in the transitive fanin of n1, this process should be repeated until primary inputs were
reached. The expanded circuit is completely unate, excluding primary inputs c and d
which cannot be directly approximated. However, it must be noted that individual lines
from c and d to n1 and n1’ do have parity and therefore can be approximated, despite
the stem line is still binate.

XOR and XNOR gates interfere with computation of parities. As previously said
in section 3.2, these gates have no inversion value, because the output inverts inputs
or not depending on its input values. For the sake of approximation, XOR and XNOR
gates are temporarily substituted by their equivalent with AND, OR and NOT gates.
Figure 3.6 shows the equivalent for a XNOR gate. Equivalent for XOR is analogous.

Due to these transformations the circuit size may increase, but this phenomenon is
expected to be compensated by fault approximation, or by undoing the transformations
performed in case no faults are approximated. In those cases where the penalties of
applying the unate expansion are greater than their benefits, the adaptive fault approx-
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Figure 3.6: XNOR equivalent

imation approach presented in the next section can be applied, which is intended to
minimise the overheads due to the unate expansion. On the other hand, these trans-
formations are not mandatory, but helpful. In a fully unate circuit every fault can be
approximated, which results in more opportunities for resource savings. But there is
no problem in working with a partially binate circuit, as long as faults on binate lines
are never approximated.

3.5 Adaptive fault approximation
The unate expansion introduced in the previous section allows approximating the cir-
cuit sections which could not be normally approximated. However, this has the cost of
increasing the area of the target circuit, and by extension the area of the approximate
circuits can be affected too, because they are initially created as exact replicas of the
target circuit. In the general case it is expected that the area of the approximate circuits
will decrease because of the approximations performed over them. But it may happen
too that the area of the resulting approximate circuits is greater than the original circuit
itself. For example, this can be the case of a fully binate circuit where, after perform-
ing the unate expansion, only faults in one of the two unate branches are approximated,
leaving the other branch unmodified, in such a way that both branches cannot be later
recombined through synthesis. Such situation is not desirable at all, because it does not
improve the area overhead with respect to the traditional DWC or TMR solutions.

Therefore, when the unate expansion is applied, it would be desirable to have a
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mechanism which would decide if approximating a given set (or subset) of faults is
worth or not. However, the area of the approximate circuits cannot be accurately es-
timated until the whole approximation process has been completed. Because of this,
the fault approximations should be annotated somehow in the circuit during the ap-
proximation process, and in a later step each one of the suggested fault approximations
should be taken or not in order to optimize the area. Here a method for inserting
fault approximations which can be optionally undone is proposed, which is denoted as
adaptive fault approximation . The subsequent optimization step can be performed by
a synthesis tool, for example.

In the proposed adaptive fault approximation approach, a fault is approximated
by inserting an auxiliary 2-input logic gate in the corresponding line, instead of just
assigning a constant logic value. The type of the logic gate depends just on the logic
value of the approximated fault: AND for stuck-at 0 faults, and OR for stuck-at 1. The
particularity of the approach is that the side input of the auxiliary gate has a don’t-care
logic value. In that way, depending on the logic value finally assigned to the don’t care
input, the auxiliary gate may force the line to a logic constant (forcing the intended
stuck-at fault on the line) or alternatively behave as a buffer (thus discarding the logic
transformation).

a0

a

‘-‘

(a) Stuck-at 0 fault

a1

a

‘-‘

(b) Stuck-at 1 fault

Figure 3.7: Instruments for adaptive fault approximation

Figure 3.7 shows the logic gates which are inserted in order to approximate faults
with the adaptive fault approximation approach. A stuck-at 0 fault is approximated by
inserting an AND gate with a don’t-care input (Figure 3.7a). The other input (labelled
with a) is connected to the line where is located the fault being approximated. If the
don’t-care input is assigned to 0, it sets the output of the AND gate to a logic 0, effec-
tively forcing the fault stuck-at 0 on line a. On the other hand, if the don’t-care input
is set to 1, then the output of the AND gate is dominated by the logic value of the line
a, which leaves the approximated fault without effect. On the contrary, a stuck-at 1 is
approximated by inserting an OR gate (Figure 3.7b). In this case, setting the don’t-care
input to 1 forces the same value at the output (thus taking the approximation), while
setting a 0 allows propagating the logic value of the original circuit line (discarding the
approximation).

An application example of the adaptive fault approximation approach is explained
here, using the circuit of Figure 3.2a as the target circuit. From that circuit, two faults
have been selected for approximation: d stuck-at 1 and b→n1 stuck-at 0. The fault in
the input d is approximated by inserting an OR gate, as it can be seen in the Figure
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Figure 3.8: Adaptive fault approximation example

3.8a. If the don’t-care input is set to 1, then the approximation is taken, resulting
in the approximate circuit of Figure 3.2b. On the contrary, by setting a logic 0 the
approximation is discarded, obtaining the target circuit itself. On the other hand, the
stuck-at 0 fault from the input b to the node n1 is approximated by inserting an AND
gate (Figure 3.8b). In this case, by assigning the don’t-care input to 0 the fault is forced,
generating the circuit of Figure 3.2c, while the approximation is undone by setting a
logic 1 on the don’t-care input. These both faults are of the over-approximate type, and
therefore they could be grouped together by inserting both auxiliary logic gates at the
same time.

Once all the selected approximate faults have been inserted in the circuit, all the
don’t-care inputs have to be set to a value, either a logic 0 or 1. This decision is per-
formed individually for each don’t-care input with the goal of optimising the resulting
circuit area. For each approximated fault, it can be decided either to take it, reducing
area from the fault approximation, or to discard it and try to reduce area by merging the
duplicated logic (assuming that in the first place an unate expansion was performed).
The complexity of this optimization problem rapidly grows with the number of don’t-
care inputs and it is not addressed here. Instead, it is proposed that an external synthesis
tool performs the optimization step. However, the synthesis tool has to be instructed to
deal with this kind of instruments. In some cases, synthesis tools struggle when pro-
cessing don’t-care inputs, which is an inconvenient for the application of the adaptive
fault approximation approach.

3.6 Conclusions
This chapter introduces the basic method for the generation of approximate circuits
applied within this thesis, which is denoted as fault approximation. In summary, ap-
proximations are generated by assigning logic constants to any circuit line, which is
equivalent to forcing stuck-at faults. Any fault can be forced in order to generate an
approximation, but to ensure that the logic transformation leads to either an under- or
an over-approximation with respect to the original circuit it is necessary that the forced
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fault is unidirectional, i.e., the circuit has to be unate with respect to the fault injection
point. Moreover, approximations can be generated by combining several assignments
as long as each approximated fault is unidirectional and produce a change in the same
direction (either to an under- or to an over-approximation).

In order to approximate a fault in a binate line, first an unate expansion is required,
which consist on duplicating every binate node and separating its outputs according
to their parities. The penalty of this approach is an increased circuit area. As a way
of minimising such penalties, an adaptive fault approximation approach has been pro-
posed, based in don’t-care inputs. Then, the approximations are taken or discarded
depending on the logic values assigned to the don’t-care inputs.

In addition, several improvements of the basic fault approximation approach have
been studied and implemented along this thesis. Such improvements are introduced
here, and are explained in detail in their corresponding sections.

• Complimentary to assigning logic constants to lines, the possibility of substitut-
ing a line with any other line within the circuit has been studied. In this way the
range of possible logic transformations is expanded, allowing to reach solutions
out of the scope of the basic fault approximation method. To ensure that some
circuit properties are preserved, there are some constraints that lines have to meet
in order to become candidates for substituting a given line. This technique is de-
noted as node substitution, and is explained in depth in section 5.4.

• Bidirectional faults cannot be directly approximated, even after unate expansion
is performed. In fact, bidirectional faults are split into a pair of complimen-
tary unidirectional faults. Therefore, approximation of a bidirectional fault re-
quires approximating two faults in opposite directions simultaneously, which is
not straightforward. This procedure intends to minimize the area overhead due
to unate expansion, as it is explained in section 6.2.3. Bidirectional fault approx-
imation is described in detail in that section.





Chapter 4

Circuit approximation using
static testability measures

4.1 Introduction

When using approximate logic circuits for fault tolerance, fault sensitivity plays an
important role. Whenever a fault is approximated, a difference is generated with respect
to the original circuit, which leaves a fraction of it unprotected in case the approximate
circuit is used for error detection or masking. In practice, fault testabilities can be used
in order to measure fault sensitivity. The impact of approximating a particular fault on
the global protection level depends somehow on the testability of that fault. If a given
fault has low testability, then there are few test vectors capable of testing that fault,
and therefore approximating it has a low impact on global protection against faults. To
sum up, the main interest for fault tolerance with approximate logic circuits consist in
approximating faults with the lowest testability. In that way, resources are saved while
maximizing the error mitigation capabilities.

To achieve this goal, the first solution adopted within this thesis is based on static
testability measures. In other words, the testability of each fault is obtained by means
of an initial analysis of the original circuit, such as fault simulation or fault injection.
Then, the results obtained are used to guide the approximation generation. An arbitrary
testability threshold is applied to discriminate which faults should be approximated
first.

Therefore, in this approach the approximation transformations are linked to fault
testabilities. This way, it is possible to quantify the impact of each approximation, and
to select the most beneficial logic transformations. This is a distinctive key feature over
alternative state-of-the-art approaches.

Initially, this heuristic has been used for combinational circuits, for the sake of sim-
plicity. But in practice circuits do have sequential elements. Hence, an extension for
sequential circuits has been developed. It must be noted that accurate testability anal-
ysis is much more difficult for sequential circuits compared with combinational ones
because its response depends on its internal state in addition to the input vectors. This
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technique has been validated with experiments for both combinational and sequential
circuits.

The structure of the chapter is as follows. Section 4.2 explains how static testabil-
ity measures are applied in order to generate approximations for combinational circuits.
Section 4.3 extends the same procedure to sequential circuits, taking into account the
particularities of such kind of circuits. Section 4.4 shows the setup of experiments per-
formed as well as the experimental results. Finally, section 4.5 presents the conclusions
of this chapter.

4.2 Approximation of combinational circuits
A first version of the fault selection heuristic has been developed for combinational
circuits, for the sake of simplicity. In this kind of circuits, the outputs depends only on
the input vectors, which makes testability analysis easier than with sequential circuits.

In this work, static testability measures are obtained by performing a fault simula-
tion on the original circuit, after unate expansion is completed. Stuck-at fault model is
applied on this process, which is carried out by means of a parallel simulator. In par-
ticular, we have used the fault simulation tool HOPE [45]. Without loss of generality,
randomly generated input vectors are used, although it would be useful to apply typical
workloads in those cases where they are known beforehand. In addition, the amount of
tested input vectors has to be high enough for results to become representative.

Fault sensitivity is linked to the proportion of input vectors capable of testing each
particular fault. In this way, HOPE provides information about the faults which are de-
tected for each input vector, as well as the list of undetected faults. All this information
is processed and a list of faults within the circuit is generated, along with the number
of occurrences for each fault. It has to be noted that HOPE automatically generates a
collapsed fault list, i.e., at gate inputs only those faults corresponding to the sensitiza-
tion value of that gate are tested. This means, as an example, that a stuck-at 0 fault at
an AND gate input is never tested, because it is equivalent to a stuck-at 0 fault at the
output of that gate.

Once testability measures are obtained, approximations are generated in the fol-
lowing way. First, two replicas of the unate original circuit are generated, and faults
within the circuit are split into two groups, according to whether they produce under-
or over-approximations. Bidirectional faults are not taken into account. Then a testa-
bility threshold is set, which is an arbitrary value between 0 and 1, and every fault
whose testability lies under the threshold value is approximated. Faults on stem lines
are excluded, only individual branches become approximated. Faults which produce
an under-approximation are assigned to one of the replicas of the original circuit, and
faults that generate an over-approximation go to the other replica. In the present work,
this process is performed by a custom made software program. Finally, both approx-
imate circuits are simplified by means of a synthesis tool, with the aim of removing
all logic constants, thus reducing area overhead. In this way, a pair of complimentary
unidirectional approximate circuits are generated as result, which can be used to build
a masking scheme along with the original circuit or to detect errors that violate the
implication relationships among circuits.
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The testability threshold provides the required flexibility to the method. Setting
a proper testability threshold according to the requirements of the target application
is crucial, because it determines the actual trade-off between resources consumption
and protection against faults. The lower the testability threshold, the fewer faults are
approximated, which implies that approximate circuits are more similar to the original
one and therefore the error masking rate is higher. In the extreme case where the
testability threshold is set to 0, no faults are approximated and a pure TMR is obtained.
On the other hand, a higher testability threshold allows approximating more faults,
which results in greater savings in terms of area and power consumption at the expense
of reducing robustness. In the extreme case where every fault becomes approximated,
approximate circuits are reduced to just logic constants and the ATMR reduces to the
original circuit. This is denoted as the trivial approximation.

As a consequence of fault approximations, it may happen that some of the approx-
imate circuits outputs are tied to logic constants. In this case, further savings can be
obtained by simplifying the voting logic. Figure 4.1a shows an implementation of the
majority voter for a single output. Let us assume that the under-approximation output
becomes approximated, which implies that one of the three voter inputs is a constant
logic 0. Therefore, the voter can be simplified to just an AND gate, as illustrated in
Figure 4.1b. Likewise, if the over-approximation output is approximated, the majority
voter can be replaced by an OR gate (see Figure 4.1c). Finally, in the case of trivial
approximation, 2 out of 3 output signals always present opposite values. This implies
that voting logic can be completely removed, as in Figure 4.1d
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Figure 4.1: Implementation of voting logic

A detailed example of how this approximation generation method is applied is pro-
vided in appendix A.3.
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4.3 Sequential circuits

In practice, real application circuits usually have sequential elements. Therefore, it is
important to consider the application of the fault approximation criteria to sequential
circuits. In principle, extension to sequential circuits is very straightforward. It consist
in approximating the combinational part of the circuit, considering the sequential ele-
ments as inputs and outputs of the combinational logic. However, the consideration of
the sequential nature of the circuit may lead to improved results.
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(c) ATMR scheme - voter before flip-flops

Figure 4.2: Approximate DWC and TMR schemes with sequential circuits

In the first place, approximate TMR and DWC schemes now include sequential el-
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ements, and therefore they require some small changes with respect to basic schemes
introduced in section 2.3. In the ADWC scheme in Figure 4.2a there is an additional
checker to compare flip-flop contents. Besides, the original circuit flip-flops are fed
back to both instances, because approximate circuit flip-flops may hold incorrect val-
ues. On the other hand, the ATMR scheme includes additional voters for flip-flops,
whose results are fed back to all three circuit versions. Voters can be placed either
after or before flip-flops (Figures 4.2b and 4.2c respectively). In the last case (with
the voter being placed before the flip-flops) each triad of flip-flops could be replaced
by just one flip-flop in order to save resources, as all three flip-flops always receive
the same assignment, but at the expense of being vulnerable to SEUs. Therefore, this
choice requires SEU-resilient flip-flops, such as DICE [9].

Another relevant point is related to how testability measures are obtained. Test of
sequential circuits is much more difficult than combinational test, due to the complex-
ity of reaching all possible states. This is often alleviated by means of scan techniques,
which consists in making all sequential elements completely controllable and observ-
able. Scan techniques transform the sequential test problem into a combinational one,
which is significantly easier. But when the goal is to obtain representative testability
measures, combinational testability approaches may lead to inaccurate results. As a
matter of fact, it has been proved that certain faults may be testable from a combina-
tional point of view, but sequentially redundant at the same time. Such kind of faults
can be classified into three different categories, which are the following: 1) faults that
cause the interchange or creation of equivalent states, 2) faults which affect only the
transitive fanout of an invalid state and therefore they cannot be reached during normal
operation, and 3) faults that just modify the encoding of states. The opposite may also
happen, that is, a line may be tested by few combinational input vectors, but these are
highly probable in the sequential circuit. The following example illustrates this fact.

Figure 4.3: One-shot timer

Consider the circuit in Figure 4.3, which represents a one-shot timer. It consists of
a counter with Enable and Load inputs. The circuit has only one stable state, which
corresponds to the maximum value of the counter. In this state, the Carry Out output
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signal is high and the counter is disabled. When the load signal is asserted, a new value
is loaded into the counter, the output will be low and the counter is enabled until the
maximum value is reached again. Consider the stuck-at 0 fault at the Carry Out output.
From a combinational point of view, this fault has low testability, because there is only
one single counter state that can activate this fault. Considering the inputs and outputs
of the flip-flops as primary outputs and inputs of the circuit, respectively, this fault can
be tested only by a single input vector, which corresponds to the maximum value of
the counter. Thus, this line could be a good candidate for approximation. The resulting
approximate circuit is the trivial one (Carry Out = 0). However, from a sequential point
of view, the state required to activate this fault is highly reachable, because it is the
only stable state. Actually, the circuit will evolve to the stable state from any initial
state and considering a random usage of the circuit, this is expected to be in the stable
state more than in any other one. Therefore, the approximation at the output line is a
poor approximation when sequential behaviour is taken into account.

In summary, there are two different approaches to compute testability measures for
a sequential circuit, each one with pros and cons. Testability in a sequential context
is more accurate, but harder to measure. On the contrary, combinational testability
measures are easier to obtain, but more imprecise.

In addition, sequential circuits usually have two recognisable parts: the control
logic and the data processing unit. The first part manages the circuit execution flow,
while the second one is in charge of computing the proper data according with the
actual phase within the execution flow. This distinction is relevant here because of
the different criticality of errors in both parts. While faults affecting data computation
may temporarily affect circuit outputs, faults in the control logic are potentially much
more dangerous. They may affect the execution flow, causing either a temporary or
a permanent misbehaviour. Therefore, testability of faults in control logic tends to be
higher than in data flow. Although approximate logic is not intended as a control flow
technique, when applying it with a sequential circuit it is much more likely that control
logic is preserved.

As with combinational circuits, resource savings can be achieved when some ap-
proximate outputs are tied to logic constants by simplifying the voting logic. But in
addition, with sequential circuits further savings can be obtained when flip-flops in-
puts or outputs become approximated. To this purpose it must be considered that every
flip-flop is going to be replaced with a modified flip-flop including a majority voter,
which can be placed either before or after the flip-flop, as shown in Figures 4.4a and
4.4b respectively. The actual savings will depend on the position of the majority voter
with respect to the flip-flops. Therefore if a flip-flop input is tied to a logic constant, for
the scheme of Figure 4.4a it means that majority voter can be simplified as in the left
part of Figure 4.4c, as one of its inputs receives a constant value. In this case no flip-
flops are removed as their values still depend on the remaining versions of the circuit.
However if the voter is placed after flip-flops not only the voter can be reduced, but
the correspondent flip-flop can be removed as well, because it always holds the same
value (see right side of Figure 4.4c). On the other hand, if a flip-flop output becomes
approximated, in the voter-before-flip-flops scheme the flip-flop can be removed, be-
cause its value is no longer necessary. However, for the voter after flip-flops scheme
no savings are possible, as the flip-flop content is still used to compute the result of
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remaining circuits and the voter cannot be simplified. These cases are shown in Figure
4.4d.
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Figure 4.4: Implementation of voting logic for sequential circuits

The generation of approximation for sequential circuits will be illustrated with an
example. Benchmark s27 from LGSynth93 set has been selected to conduct this ex-
ample, which is represented in Figure 4.5. In addition, the figure shows the parity
computed for each line within the circuit, according to the method explained in section
3.2. It must be taken into account that the flip-flops in the circuit are considered as
inputs and outputs for the purposes of parity computation and approximation genera-
tion. Therefore, the circuit can be considered fully unate with the only exception of
flip-flop G6, whose input should have a parity value of 0 as it is considered as a cir-
cuit output. This would normally require to duplicate some nodes as explained in the
unate expansion method (see section 3.4), but in this case a more intelligent solution
can be adopted by inserting inverters in G6 input and output as shown in Figure 4.6.
In this way, the parity mismatch is solved while the circuit functionality is preserved,
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all with a minimum cost. It must be noted that this is an ad hoc solution that can be
applied only if the conflicting output or flip-flop is unate on its own but it interferes in
the global computation of parities.
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Figure 4.5: s27 benchmark
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Figure 4.6: Unate version of s27 benchmark

Later, testability measures are obtained. In this example this is performed by a
stuck-at fault simulation of the full sequential circuit with parallel simulator HOPE.
Table 4.1 shows the sensitivity results for the collapsed fault list of the benchmark
by using a sample of 1000 randomly generated input vectors. Fault testabilities are
computed as the proportion of input vectors that test each fault. Testabilities are ordered
in descending value.

Next, the faults are separated into two groups: those that result in under- approx-
imations and those that result in over-approximations, respectively. In this example,
faults are classified as follows:

• Under-approximation faults: G1/0, G5/0, G6/1, G7/0, G9/0, G10/0, G11→G6/1,
G13/0, G14→G8/1, G15/1, G16/1 and G17/0.

• Over-approximation faults: G2/0, G3/0, G8→G15/0, G8→G16/0, G11→G6/0,
G11→G10/0, G10/1, G12→G13/0, G12→G15/0, G13/1, G14→G10/0 and G17/1.
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Fault Prob. Fault Prob.
G17 /0 0.860 G10 /1 0.140
G11 /1 0.860 G14→G10 /0 0.140
G9 /0 0.860 G14 /0 0.140
G8 /1 0.860 G12 /0 0.140
G14 /1 0.857 G2 /0 0.140
G14→G8 /1 0.857 G13 /1 0.140
G15 /1 0.291 G5 /0 0.121
G12 /1 0.291 G10 /0 0.121
G1 /0 0.291 G7 /0 0.070
G6 /1 0.168 G13 /0 0.070
G11→G6 /1 0.167 G11→G6 /0 0.057
G16 /1 0.163 G8 /0 0.057
G17 /1 0.140 G8→G15 /0 0.053
G12→G15 /0 0.140 G8→G16 /0 0.043
G3 /0 0.140 G11→G10 /0 0.039
G11 /0 0.140 G12→G13 /0 0.026

Table 4.1: Results of fault testability analysis for s27

Faults G8/0, G8/1, G11/0, G11/1, G12/0, G12/1, G14/0 and G14/1 correspond to stem
lines, and therefore they are not taken into account. Under-approximation faults are
assigned to one of the circuit replicas when approximated, while over-approximation
faults correspond to the other replica. Therefore two copies of s27 benchmark are
initially generated. This way, if no faults were approximated a pure TMR scheme with
three identical circuits would be obtained.

Then approximations are generated by assigning an arbitrary testability threshold.
Every fault whose testability is below the selected threshold becomes approximated.
This result in several lines forced to logic 0 or 1 in the approximate circuits. Finally,
constants are removed by simplifying the resulting approximate circuits. In this ex-
ample four different solutions are shown with threshold values of 5%, 10%, 15% and
20%.
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Figure 4.7: Approximation of faults for a 5% threshold
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Figure 4.8: Approximate circuits for a 5% threshold

First, for a threshold of 5% faults G8→G16/0, G11→G10/0 and G12→G13/0 are
approximated. They all are over-approximation faults and therefore are forced in the
same circuit (see Figure 4.7). This circuit should be eventually optimised, thus ob-
taining the final over-approximation circuit of Figure 4.8a. In this case no under-
approximation faults have a testability value under the selected threshold. For this
reason, the under-approximate circuit is an exact replica of s27 benchmark as shown
in Figure 4.8b. Circuits in Figure 4.8 could be used to build a masking scheme in
conjunction with the initial s27 benchmark.

The following threshold value is 10%. Under this level lay faults G7/0 and G13/0
from the under-approximation side, and faults G8→G15/0, G8→G16/0, G11→G6/0,
G11→G10/0 and G12→G13/0 from the over-approximation side. All these faults are
approximated in their respective circuit replicas. After simplification, circuits of Figure
4.9 are obtained. It can be seen that, as a consequence of fault approximations, some
flip-flops have been isolated, that is, their inputs are tied to logic constants and their
outputs are left open. This is the case of G6 in the over-approximate circuit (Figure
4.9a) and G7 in the under-approximation of Figure 4.9b. This allows to remove both
flip-flops in the final implementation of the masking scheme as well as simplifying the
voting logic.

Now let us assume a testability threshold of 15%. From the under-approximation
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Figure 4.9: Approximate circuits for a 10% threshold

side, faults G5/0, G7/0, G10/0 and G13/0 become approximated. Figure 4.10b shows
the resulting under-approximation after simplification of logic constants. Here flip-
flops G5 and G6 have been completely approximated. On the other side, fault testability
of every over-approximation fault is below the selected threshold. Hence, the over-
approximate circuit is reduced to the trivial approximation as shown in Figure 4.10a,
where all outputs and flip-flops have been reduced to logic constants.

Finally, consider a testability threshold of 20%. Under-approximation faults which
lie under that value are G5/0, G6/0, G7/0, G10/0, G11→G6/0 and G13/0. After sim-
plifying logic constants, circuit of Figure 4.11a is obtained, where all flip-flops have
been reduced to logic constants. On the other hand, the trivial over-approximation is
generated (see Figure 4.11b).

The results shown previously were obtained by using sequential testability mea-
sures. Would there be any differences if combinational measures were used instead of
sequential ones? Table 4.2 collects the sensitivity results for the combinational part of
s27 benchmark. These results have been obtained with exactly the same sample of 1000
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Figure 4.10: Approximate circuits for a 15% threshold

G0

G1

G2

G3

G17_PO
G15

G7G5 G6

(a) Under-approximation

G0

G1

G2

G3

G17_PO

G7G5 G6

(b) Over-approximation

Figure 4.11: Approximate circuits for a 20% threshold
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input vectors used for the sequential measures. By comparing these results with those
of Table 4.1, noticeable differences can be observed. For example, faults G11→G6/1,
G13/1, G10/1 and G10/0 have significantly higher sensitivity with combinational mea-
sures. On the other hand, faults G9/0 and G14→G8/1 present much higher testability
when sequential measures are computed. As a consequence of these differences, it is
expected that the results of logic approximation will somehow be different with respect
to the previous ones.

Fault Prob. Fault Prob.
G17 /0 0.860 G6 /1 0.168
G11 /1 0.860 G12→G13 /0 0.157
G11→G6 /1 0.860 G15 /1 0.156
G13 /1 0.662 G17 /1 0.140
G10 /1 0.523 G11 /0 0.140
G14 /1 0.477 G11→G6 /0 0.140
G10 /0 0.477 G7 /0 0.107
G14 /0 0.440 G16 /1 0.078
G12 /1 0.421 G5 /0 0.073
G9 /0 0.383 G12→G15 /0 0.070
G8 /1 0.383 G3 /0 0.070
G14→G10 /0 0.383 G8 /0 0.057
G2 /0 0.343 G14→G8 /1 0.057
G13 /0 0.338 G8→G15 /0 0.051
G1 /0 0.206 G11→G10 /0 0.039
G12 /0 0.193 G8→G16 /0 0.030

Table 4.2: Results of fault testability analysis for combinational part of s27
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Figure 4.12: Approximate circuits for a 10% threshold - combinational version

For example, consider a testability threshold of 10%. By using the results of Table
4.2, under-approximate faults G5/0, G14→G8/1 and G16/1 become approximated, as
well as over-approximation faults G3/0, G8→G15/0, G8→G16/0, G11→G10/0 and
G12→G15/0. These transformations eventually lead to circuits of Figure 4.12, which
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are rather different from those obtained with sequential testability measures (see Figure
4.9). It is particularly remarkable that now the output of the over-approximation is tied
to a logic constant while that is not the case for the circuit on Figure 4.9a. Similarly,
with sequential testability measures flip-flop G7 was isolated in the under-approximate
circuit (see Figure 4.9b), while it is not now. In addition, it must be noted that output of
flip-flop G5 is unconnected in both the under- and over-approximate circuits. Notwith-
standing, such flip-flops cannot be removed, as their inputs still affect to the value of
the corresponding flip-flop in the original circuit.
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Figure 4.13: Approximate circuits for a 15% threshold - combinational version

In the same way, by applying a testability threshold of 15% circuits of Figure 4.13
are obtained. Over-approximate circuit is identical with respect to the previous step
(Figure 4.12b) and different to the trivial approximation obtained with sequential mea-
sures for the same threshold (Figure 4.10a). On the other hand, under-approximation
has also differences with respect to the sequential counterpart in Figure 4.10b.
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Figure 4.14: Approximate circuits for a 20% threshold - combinational version

Finally, with a threshold value of 20%, circuits of Figure 4.14 are generated. Dif-
ferences between these circuits and those obtained with sequential testability measures
(see Figure 4.11) can be appreciated.
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4.4 Experimental results
This section details the experiments performed with the technique described in this
chapter, both for combinational and sequential circuits. In addition, results of these
experiments are presented and subsequently discussed.

The section is organised as follows. Subsection 4.4.1 explains the experimental set-
up, which includes benchmark selection, masking scheme building and fault emulator
configuration. Later, subsection 4.4.2 shows the results of experiments performed on
combinational circuits and discuss them. Finally, subsection 4.4.3 does likewise for
sequential circuits.

4.4.1 Experimental set-up
Experiments with combinational circuits have been conducted with a group of 19
benchmarks from LGSynth93 set. The selected combinational benchmarks have been
the following: alu1, alu2, c17, c432, c880, c5315, c7552, cmb, cordic, dalu, des, frg2,
i2, i8, i10, s444, term1, unreg and x1. For each one of these circuits, several solu-
tions have been generated with different degrees of approximation. A fault masking
scheme has been implemented for this group of experiments, that is, using both over-
and under-approximations and a majority voter. Experiments have consisted in two
fault emulation campaigns for each solution, namely injecting transient pulses of criti-
cal path duration and fixed 300ps lengths.

Later, experiments with sequential circuits have been performed. Up to 11 bench-
marks from ISCAS89 set have been selected to run the experiments, which are: s27,
s298, s344, s349, s444, s510, s641, s713, s832, s938, s1494 and s3330. Again, several
testability thresholds have been applied to each benchmark, by using both combina-
tional and sequential testability measures in order to compare both approaches. The
preferred configuration for these experiments has been an error masking scheme with
voter placed after flip-flops, such as in Figure 4.2b. Fault emulation campaigns with
transient pulses of just the critical path duration have been performed as the experi-
ments.

Fault emulation campaigns have been carried out by means of the Autonomous
Multilevel emulation system for Soft-error Evaluation (AMUSE) tool [46], developed
by Microelectronics and Applications Group of Electronic Technology department
from Universidad Carlos III de Madrid. AMUSE is an emulation-based fault injec-
tion system which provides a very high performance with an accuracy close to electric
simulation by means of a quantized representation of time, voltage and delays. It con-
sists in a group of hardware modules capable of fully controlling the fault injection
campaign over a properly instrumented design, thus speeding up the whole process
with respect to software based simulations in several orders of magnitude. AMUSE is
intended to be implemented in a configurable logic device, such an FPGA.

The experimental set-up process for both combinational and sequential circuits is
summarized in the diagram of Figure 4.15. The starting point is a description of the
target circuit in BENCH format. First, parities within the target circuit are computed
according to the algorithm detailed in section 3.2 and, in the case of binate circuits,
the unate expansion procedure described in section 3.4 is applied in order to generate a
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Figure 4.15: Experimental set-up with AMUSE

fully unate circuit in BENCH format. Remember that, in the case of sequential circuits,
parities are computed for the combinational part of the circuit, considering the inputs
and outputs of flip-flops as respectively the outputs and inputs of the circuit. This step
is performed by a custom made BENCH parser.

Next, a fault simulation is performed on the unate version of the target circuit,
by means of parallel simulator HOPE. During the simulation 10000 input vectors are
applied, which are pseudo randomly generated by a Linear Feedback Shift Regis-
ter (LFSR) whose size depends on the number of circuit inputs. As a result a file is
generated which contains the faults detected by each input vector as well as the list of
undetected faults. This file is post-processed by a custom made software program in
order to obtain the required testability measures: a list with the number of occurrences
for every fault. In the case of sequential circuits, these testability measures are ob-
tained in two different ways by simulating both the whole circuit and its combinational
part itself. Thus, testability measures in a sequential and combinational context are
respectively obtained.

After fault simulation is performed, testability measures and the unate version of
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the target circuit are both used to generate the under- and over-approximate circuits by
means of the same custom made bench parser. The user must set a testability threshold
that determines which faults are approximated, and subsequently which approxima-
tions are generated. Resulting circuits are described in BENCH format. This format
does not allow logic constants, and therefore approximation of faults are handled in the
following way. Two additional inputs, VCC and GND, are created for the approximate
circuits, which corresponds to logic values 1 and 0 respectively. Any time a fault is ap-
proximated the corresponding line is then substituted by a connection with either VCC
or GND, depending on the fault’s value.

After approximations are generated, the approximate circuits along with the unate
version of the original circuit are translated into Verilog format by means of ABC
synthesizer [47]. In addition, in the case of sequential circuits the combinational part
is extracted. The resulting modules are individually encapsulated into a VHDL design
which in the case of approximate circuits assigns the proper logic values to VCC and
GND inputs, thus making the process user-friendly. This capsule also reintroduces the
extracted flip-flops in the case of sequential circuits, and makes them accessible from
outside, allowing the insertion of voters for the flip-flops afterwards. After this step,
each design is individually synthesized in order to avoid logic sharing. Synthesis are
performed with Synopsys for the logic cell library SAED90nm [48]. In addition, voters
of proper size and a testbench are synthesized. The testbench is required for AMUSE
emulation, and it consists on a LFSR for random number generation, similar to the one
employed for simulation with HOPE.

After synthesis, each one of the target circuit versions as well as the synthesized
benchmark and voters must be instrumented for AMUSE implementation. Instrumen-
tation consists on substituting circuit components by modified versions that preserve
the functionality and in addition support fault injection. This step is performed by
means of VIOLIN software, a companion tool of the AMUSE system. It must be noted
that faults are only injected in target circuit and its approximations, and therefore voters
are instrumented just with the error detection capabilities.

Later, all instrumented designs (testbench, original circuit, approximations and
voters) are properly interconnected in one high-level entity known as Circuit Under
Test (CUT). Finally, the CUT is implemented in AMUSE system, being ready for
the fault injection campaign. This can be performed in two different ways: emulation
through implementation in a configurable logic device, or simulation by means of a
digital circuit simulator software. The latter option is much slower than the first, but
it does not require a final synthesis step which can be time consuming. Therefore it
is feasible for small circuits. In fact, in these set of experiments the method has been
chosen depending on the target circuit size. Up to a size of 300 logic gates, AMUSE
simulation with Modelsim has been performed, while for larger circuits the emulation
system has been implemented in a Xilinx Virtex5 XC5VLX110T FPGA by means of
Synplify and Xilinx ISE software tools.

On each fault emulation campaign, 10000 randomly generated input vectors have
been applied. Faults have been injected in the target circuit as well as its approxima-
tions, considering transient pulses with a length equal to the critical path. This can
be considered as a non-persistent stuck-at fault or a worst-case SET. These results
can be scaled for SETs of a particular pulse width. For combinational benchmarks, an
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additional campaign with 300ps transient pulses has been performed. The high perfor-
mance of the AMUSE system allowed an exhaustive analysis, injecting faults in every
gate for every input vector applied.

4.4.2 Results on combinational circuits

Bmk. Gates Threshold Area overhead (%) Error masking rate (%)
(%) Over Under Stuck-at SET

alu1 31

100 0 0 42.98 42.98
12.5 16.13 51.61 76.03 76.03

7 61.29 61.29 91.35 91.35
6.4 87.10 74.19 94.57 94.57

alu2 267
100 0 0 68.75 93.29

1 19.48 36.33 79.78 95.66
0.5 47.19 79.03 83.68 96.49

c17 6 100 0 0 18.67 18.67
13 33.33 100 86.67 86.67

c432 133
100 0 0 69.70 93.62

8 36.84 40.60 82.98 96.42
3 56.39 75.94 87.81 97.43

c880 213

100 0 0 56.44 90.45
6 12.21 22.07 77.07 94.97
2 13.62 53.05 81.17 95.87
1 84.51 65.73 93.62 98.60

c5315 1097
100 0 0 56.18 92.90
10 21.15 36.28 79.12 96.61
3 74.38 73.93 94.98 99.19

c7552 1007 100 0 0 51.51 93.24
10 52.83 89.77 94.56 99.30

cmb 31
100 0 0 83.05 88.85
0.1 0 41.94 93.85 95.95

0.06 22.58 67.74 97.82 98.56

cordic 141

100 0 0 93.81 96.38
0.1 3.55 7.80 93.56 96.24

0.05 37.59 10.64 95.37 97.57
0.03 60.28 18.44 96.51 98.53

dalu 577
100 0 0 77.24 95.01

3 0.17 3.81 80.72 95.77
0.5 62.39 62.05 94.82 98.91

des 2826

100 0 0 30.53 90.28
3 27.18 24.38 63.60 96.22
1 70.42 68.22 82.94 98.09

0.7 93.38 89.77 91.30 98.98
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Bmk. Gates Threshold Area overhead (%) Error masking rate (%)
(%) Over Under Stuck-at SET

frg2 666

100 0 0 55.08 87.28
5 11.56 11.86 74.35 92.13
1 19.07 14.11 85.70 95.58

0.5 55.41 18.77 91.18 97.29
0.3 60.06 56.91 97.26 99.16
0.1 73.87 70.12 99.23 99.77

i2 89
100 0 0 95.89 97.84
1 0 4.49 96.26 98.03

0.01 0 25.84 96.80 98.32

i8 656
100 0 0 43.38 86.97
0.5 67.07 67.23 81.74 95.80
0.3 84.45 96.65 84.92 96.66

i10 1346

100 0 0 45.39 92.66
11 27.56 25.19 77.87 96.46
7 35.22 30.61 83.77 97.43
3 41.68 38.34 89.01 98.24
2 47.10 44.73 90.21 98.42
1 55.13 59.14 92.05 98.75

0.5 63.45 62.70 93.10 98.93
0.2 75.41 72.36 95.29 99.27
0.1 83.43 83.66 96.75 99.51

s444 96
100 0 0 38.10 65.71
13 44.79 26.04 75.31 87.01
3 66.67 67.71 92.31 96.15

term1 208
100 0 0 87.11 94.57
0.3 19.71 21.15 97.09 98.78
0.1 38.46 49.52 98.80 99.49

unreg 83
100 0 0 21.12 30.81
15 40.96 19.28 85.37 87.16
6.3 75.90 42.17 91.33 93.91

x1 381
100 0 0 70.29 88.42
1 15.49 20.21 93.90 97.17

0.1 41.73 41.73 95.01 97.69
Table 4.3: Experimental results - static testability measures with combinational circuits

Results of fault injection campaign on combinational circuit are collected in Table 4.3,
grouped by benchmark. The first two columns show respectively the name of each
circuit and its size, measured in number of logic gates. The third column contains the
different testability thresholds applied on each benchmark. Next, results of experiments
are given. First, area overheads due to each approximate circuit are shown, which are
referred to the area of the target circuit’s unate version. Last, rate of masked faults
for both pulses of critical path duration and SETs of 300ps is reported. In those cases
where critical path is shorter than 300ps both results coincide.
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These results show that error masking with approximate circuits is an interesting
technique, capable of reaching good enough protection level against faults with rea-
sonable area overheads. For example, x1 benchmark with a 1% testability threshold
masks 94% of stuck-at faults and 97% of SETs with an area overhead smaller than
36%. Another relevant cases are cmb at 0.1% (with 98% of masked stuck-at faults and
99% of SETs for a 42% area overhead), frg2 at 0.5% (error masking rates of 91% and
97% respectively with an additional area of 74%), or term1 at 0.3% (protection of 97%
and 99% against stuck-ats and SETs respectively with an area overheat of 41%). Apart
from that, it can be appreciated that error masking rate for SETs is noticeable higher
than for faults with the duration of the critical path, in general. More over, these differ-
ences tend to grow for high testability thresholds, and with large circuits, which usually
have longer critical paths than smaller circuits. This is due to the fact that, the shorter
the transient pulse duration is with respect to the critical path, the more relevance have
temporal and electrical masking effects. Therefore, results with stuck-at faults can be
considered as the worst case.
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Figure 4.16: Scalability of technique for frg2 benchmark

In order to show the scalability of the technique, two benchmarks have been se-
lected to graphically represent the error masking rate against the area overhead. In
particular, experimental results of frg2 and i10 benchmarks are shown in Figures 4.16
and 4.17 respectively. Area overhead in these charts is the sum of over- and under-
approximate circuits. The marks denote the testability threshold applied on each point.
In both cases, as long as the testability threshold goes down, the error masking rate
increases, as well as the size of approximate circuits. Therefore, there is a correlation
between the level of protection against faults and overheads. In addition, it can be ap-
preciated that the error masking rate is higher when pulses are shorter, because it is
more difficult that the transient pulse effectively propagates through the circuit to the
outputs.
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Figure 4.17: Scalability of technique for i10 benchmark

4.4.3 Results on sequential circuits
Table 4.4 contains the results of experiments on sequential circuits. The first three
columns indicate, from left to right, the name of each benchmark, and its size expressed
in number of logic gates and flip-flops. Next, the testability threshold applied on each
experiment is given. Later, experimental results with approximate circuits generated
by means of testability measures in a sequential context are shown, including the area
overhead due to both over- and under-approximations, as well as the error masking rate
against non-persistent stuck-at faults. Area overheads are computed with respect to the
unate version of the target circuit. Finally, the same results for the solutions generated
with combinational testability measures are shown.

From these data it can be appreciated that different results are obtained depend-
ing on which kind of testability measures are used in order to generate approximate
circuits. In general, area overhead in sequential mode is smaller than in combinational
mode for the same threshold level. Such is the case of s641 benchmark approximated at
0.1% (164% area overhead against 176%) or s3330 benchmark with a threshold of 3%
(42% area overhead against 56%). Some cases can be found where both approaches
give similar protection against faults, but the sequential approach usually generates
smaller circuits than the combinational one. Such is the case of s444 benchmark ap-
proximated at 13%, which presents 4% against 71% area overhead. Even there are
some results in which sequential approach presents higher protection against faults
with greater overheads, as for example s344 benchmark with 8% threshold (89% error
masking rate and 82% area overhead against 83% and 58%). On the contrary, there are
cases where combinational approach gives better results, such as s510 at 10% with a
116% area overhead against 168% for a similar error masking rate. These results show
that when applying fault mitigation techniques in a sequential circuit considering just
the combinational behaviour may produce suboptimal results.
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Bmk. Gates FFs Th.
(%)

Sequential measures Combinational measures
Area ov. (%) EMR Area ov. (%) EMR
Over Under (%) Over Under (%)

s27 10 3

100 0 0 52,12 0 0 31,34
17 30 0 69,87 20 10 64,55
10 40 20 76,67 30 90 84,55
5 90 50 89,91 50 100 88,33

s298 72 14

100 0 0 56,14 0 0 47,81
10 16,67 2,78 70,16 13,51 6,76 64,18
4 27,78 11,11 93,01 33,78 22,97 74,57

0,2 47,22 33,33 97,99 100 100 100

s344 105 15

100 0 0 49,39 0 0 41,43
20 23,81 27,62 77,18 8,57 8,57 57,45
8 41,90 40 89,46 30,48 27,62 83,13
3 61,90 56,19 93,98 76,19 83,81 96,61

s349 105 15

100 0 0 50,18 0 0 41,02
20 23,81 28,57 77,66 8,65 7,69 56,42
6 44,76 47,62 92,03 55,77 46,15 88,10
2 63,81 80,95 97,06 96,15 96,15 98,39

s444 103 21

100 0 0 68,43 0 0 38,10
13 2,91 0,97 75,93 44,79 26,04 75,31
3 4,85 0,97 76,42 66,67 67,71 92,31

0,01 9,71 1,94 81,19 100 100 98,24

s510 174 6

100 0 0 52,30 0 0 53,55
50 58,05 63,22 87,95 8,94 2,23 62,67
30 71,26 75,29 91,07 34,64 23,46 79,71
10 85,63 82,18 95,46 68,72 47,49 95

s641 114 19

100 0 0 54,67 0 0 32,50
10 11,40 14,91 82,53 31,82 30 75,07
3 35,96 25,44 95,02 59,09 59,09 90,84

0,1 87,72 76,32 99,31 90,91 85,45 99,17

s713 115 19

100 0 0 54,55 0 0 32,31
15 0,87 13,91 74,04 13,04 14,78 54,09
10 9,57 14,78 81,03 30,43 26,09 71,09
2 44,35 18,26 94,52 64,35 57,39 89,65

0,01 90,43 100 99,67 92,17 101,74 98,42

s832 191 5

100 0 0 67,01 0 0 65,94
5 2,09 5,24 77,08 3,66 2,62 69,53
1 4,19 19,90 79,58 30,89 26,18 88,44

0,1 14,14 26,18 88,07 88,48 76,44 99,30

s938 210 32

100 0 0 56,11 0 0 55,76
5 0,48 3,33 58,19 21,05 10,05 75,37
1 2,38 9,52 63,18 42,58 23,44 96,52

0,01 11,90 30,48 77,78 68,90 89 99,98
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Bmk. Gates FFs Th.
(%)

Sequential measures Combinational measures
Area ov. (%) EMR Area ov. (%) EMR
Over Under (%) Over Under (%)

s1494 430 6

100 0 0 47 0 0 63,77
10 1,16 5,58 54,66 1,38 0,92 65,88
3 5,35 7,21 63,67 13,79 7,36 75,21

0,1 5,35 10 63,89 91,72 93,10 99,63

s3330 697 132

100 0 0 62,96 0 0 53,46
10 10,90 12,20 81,01 13,13 14,14 71,84
3 21,66 20,37 85,69 31,75 24,24 81,64

0,1 42,04 45,91 92,79 72,73 73,45 99,07

Table 4.4: Experimental results - static testability measures with sequential circuits

Figure 4.18 graphically shows the difference between the sequential and combi-
national approaches for s713 benchmark. The chart plots the error masking rate with
respect to the sum of the area overheads of both approximate circuits. The marks de-
note the testability threshold applied on each case. It can be observed that for the
same threshold value the sequential approach reaches higher protection against faults
at lower cost. Therefore, for this particular case approximation generation by means of
sequential testability measures is more efficient than the combinational approach.
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Figure 4.18: Comparative between sequential and combinational approximations for
s713 benchmark

4.5 Conclusions
This chapter presents the first fault selection criteria developed within this thesis for
approximate logic circuit generation applied to fault mitigation. This approach is based
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on static testability measures, and it consists in performing an initial fault simulation
of the target circuit’s unate version with the aim of obtaining representative data about
sensitivity of faults within the circuit. Later, a testability threshold is set and every fault
whose sensitivity lies below that value becomes approximated, thus obtaining a pair of
complementary approximate logic circuits. By varying the testability threshold a wide
range of solutions can be obtained between pure TMR and trivial approximation, with
different trade-offs between fault mitigation capabilities and overheads. Initially, this
approach has been developed for combinational circuits.

The technique has been validated through fault emulation experiments. Results are
reasonably good, and they show that this approach is widely scalable, and therefore
capable of adapting to different requirements in terms of reliability or costs. Apart
from that, the technique can be implemented with a low computational cost.

However, the fault selection criteria based in static testability measures has some
drawbacks. The first one is that the range of feasible solutions depends on the initial
structure of the target circuit, as it influences the testability measures and the set of
possible logic transformations. This issue can be addressed by means of an initial
synthesis and logic optimization step. Another question refers to the static nature of
testability measures. Whenever a fault is approximated, testability of the rest of faults
may change, and therefore simulation results become less and less representative as
more logic transformations are performed, which may subsequently lead to suboptimal
solutions. This issue is discussed in detail in the next chapter. Finally, experimental
results show that there is little correspondence between applied testability thresholds
and effective costs or fault mitigation capabilities of generated solutions. Of course
there is a qualitative correlation between them, but the testability threshold is not a good
estimator of any relevant metric, and therefore achieving an specific error masking rate
or area overhead can only be done by trial-and-error.

An extension for sequential circuits has later been developed, motivated by the fact
that real application circuits usually have sequential elements. This has been done in
a straightforward manner, by approximating the combinational part of the circuit and
considering flip-flops as inputs and outputs of the combinational logic. In addition, the
implementation of fault detection and correction schemes suffer small changes com-
pared with combinational version, allowing the comparison or voting the contents of
flip-flops in addition to outputs. A major concern about this approach is how testa-
bility measures are obtained. It is widely known that testability analysis of sequential
circuits is a difficult task, due to the complexity of reaching certain states. On the con-
trary, testing just the combinational part of a sequential circuit is much easier, but the
results may be inaccurate. Experimental data show that there are noticeable differences
between the results obtained with both approaches.

With the idea of addressing some of the issues of the fault selection method based
in static testability measures, an improved criteria has been developed which makes use
of probability analysis in order to estimate fault sensitivities. In this way, testability of
faults can be recomputed each time a logic transformation is performed. In addition,
probability computations can be used to keep an estimation of the final error protection
level. This improved approach is described in chapter 5.



Chapter 5

Circuit approximation using
dynamic testability measures

5.1 Introduction

The approximation generation method based on static testability measures introduced
in chapter 4, although it is widely scalable and has low computational cost, presents
several drawbacks that should be addressed. First, the testability threshold, which is
the metric used to discriminate which faults are approximated, is not a good estimator
of the final error protection level. Moreover, the most important flaw is the fact that,
whenever a fault is approximated, the testability of the rest of the faults may change,
thus making static measures less accurate as more faults become approximated. The
following example illustrates this.
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Consider the circuit of Figure 5.1, which represents the c17 benchmark. Table 5.1
shows the results of testability analysis under several conditions. Columns labelled
with ”Initial prob.” contains the sensitivity results over the target circuit, which coin-
cides with the static testability measures. Those measures have been obtained through
fault simulation with 1000 randomly generated input vectors. Let us assume that the
first approximated fault is PI2→n7/1, the least testable fault. The resulting circuit is
shown in Figure 5.2a. After performing this transformation, fault testabilities are com-
puted again in the new circuit by means of fault simulation with the same 1000 input
vectors, and their values are presented in the columns denoted as ”1st approx”. By
comparing these results with those corresponding to the initial circuit, several changes
can be observed. For example, faults PO0/0, n7/1 and PI0/1 now have higher testability,
while faults PO0/1, n9→PO0/1 and PI1/1 are less testable. Now suppose that the next
fault with the lowest testability is approximated, which is the fault n8→n11/1 accord-
ing to static testability measures. This transformation produces an over-approximation
exactly as the previous one, so both can be paired together, resulting in the circuit of
Figure 5.2b. If a fault simulation with the same 1000 input vectors is performed in
this new approximate circuit, results of columns ”2nd approx” are obtained, which are
completely different to the initial testability measures.

Fault Initial 1st 2nd Fault Initial 1st 2nd

prob. approx approx prob. approx approx
PO0 /0 0.590 0.704 0.704 PI2→n8 /1 0.200 0.200 0.105
n9 /0 0.572 0.293 0.446 n9→PO1 /1 0.198 0.198 0.198
n8 /0 0.566 0.566 0.293 n8 /1 0.198 0.198 0.098
PO1 /0 0.566 0.566 0.700 n7 /1 0.196 0.310 0.620
PO1 /1 0.434 0.434 0.300 PI3 /1 0.196 0.196 0.103
PO0 /1 0.410 0.296 0.296 PI0 /1 0.188 0.296 0.296
n9 /1 0.361 0.293 0.293 PI4 /1 0.180 0.180 0.300
n9→PO0 /1 0.318 0.181 0.181 n11 /1 0.172 0.172 0.612
PI1 /1 0.318 0.261 0.261 n8→n9 /1 0.135 0.135 0.098
PI2 /0 0.295 0.198 0.098 n8→n11 /1 0.134 0.134 -
PI2 /1 0.286 0.200 0.105 PI2→n7 /1 0.114 - -

Table 5.1: Results of fault testability analysis for c17

This phenomenon may lead to suboptimal solutions in case static testability mea-
sures are applied to generate approximate logic circuits. It may happen that a fault
initially has a low testability, but it starts to grow as long as faults are approximated, up
to the point that it no longer is a good candidate for approximation for a given testabil-
ity threshold. Conversely, it may happen that a fault is not approximated due to its high
initial testability, but in the end its value lies under the selected testability threshold. In
order to solve this problem an alternative method has been developed, which consists in
approximating faults one by one, and every time a fault is approximated, testability of
the remaining faults are recomputed. Thus, every sensitivity change due to logic trans-
formations is taken into account, and the most promising candidate can be selected on
every step. This approach is said to be based on dynamic testability measures.
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Figure 5.2: c17 over-approximations

In this new approach, testability measures can still be computed by means of fault
simulation. But performing a fault simulation per approximated fault imposes a very
high computational cost, specially in the case of large circuits. In order to alleviate
this cost, testability measures could be recomputed after a given number of faults are
approximated, for example every 5 or 10 faults, thus reducing accuracy in favour of
computational cost.

However, there are alternative methods for obtaining testability measures. In this
chapter an approach is proposed, that is based on implication reasoning and probability
computation. First, each fault is properly justified with the aim of finding the necessary
set of assignments that allows the propagation of the fault. Then signal probabilities
are computed based on the deduced assignments, which are finally combined in order
to obtain the correspondent fault probability. With this approach, the sensitivity of each
fault is linked to the analytical probability of testing that fault. In addition, sensitiv-
ity results obtained with this method are deterministic, as opposed to static testability
measures obtained by simulation, where it may be slight deviations caused by random
generation of input vectors.

Therefore, an iterative process is adopted here. In each iteration, fault probabilities
are recomputed and the best candidate is selected and approximated, if any. As an
advantage, this method allows to partially reuse computations from one step to another
and incrementally update the testability measures, as the difference between two steps
is assumed to be small, thus reducing computational cost.

Moreover, these probability computations can be used to keep an estimation of the
effect of approximations on the global error rate. In practice, this estimation serves as
the ending condition of the iterative process. In other words, the user now specifies a
certain error target, and the algorithm starts approximating faults until the estimated
error rate meets that value. In theory, the resulting approximate circuits should provide
an error rate similar to the specified target value when implemented in an error masking
scheme along with the target circuit. This approach has been validated through fault
simulation experiments.

Additionally, advantage can be taken on the fault justification process. The set of
deduced assignments for each fault can be used to implement a new type of logic trans-
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formation, which consists on replacing lines with others within the same circuit instead
of assigning logic constants. This technique receives the name of node substitution, and
allows to generate solutions which are not reachable by means of fault approximation.
In practice both approaches can be combined to widen the range of feasible solutions.
This approach has also been validated through fault simulation experiments.

The rest of this chapter is organized as follows. Section 5.2 introduces the main
concepts and techniques about computation of fault probabilities. Later, section 5.3
deals with how this probability computation is applied to approximate circuit gen-
eration. Next, node substitution technique is explained in section 5.4, which is an
improvement over the approach based in dynamic testability measures. Section 5.5
describes the experiments performed in relation with the techniques described in this
chapter and presents its results. Finally, section 5.6 summarizes the main conclusions
of this chapter.

5.2 Fault probability computation
The basic notions about signal probability computation were established by Parker and
McCluskey in [49]. Signal probability P (s = v) refers to the probability of evaluating
signal s to the value v. If that condition is denoted as the assignment a = {s = v},
then we can likewise speak in terms of probability of assignment P (a). The joint
probability of a set of assignments A = {a1, a2, ..., ai, ...}, P (A), is the probability of
simultaneously satisfying every assignment in A. This can be computed by using the
probability chain rule:

P (A) = P (∩ni=1ai) =

n∏
i=1

p(ai| ∩i−1j=1 aj) (5.1)

In addition, if every assignment ai is not dependent from the others, the probability of
the whole set of assignments can be computed as the product of probabilities of each
assignment, thus making:

P (A) = P (∩ni=1ai) =
n∏

i=1

p(ai) (5.2)

Signal probabilities in a combinational network can be computing by traversing the
circuit from inputs to outputs [49]. Initial values are assigned to input probabilities,
typically either 0.5 or a value which models a typical workload, in case it is known
beforehand. Then at each node, signal probability at the output is computed as a func-
tion of the probability of input signals and the node type. Later, testability of each fault
is computed by combining certain signal probabilities according to the controllability
and observability conditions of the fault [50].

Testability analysis of circuits has been widely studied, and multiple techniques
have been developed within this subject. Among them, the simplest approach for fault
probability computation is the Computation of Probabilities (COP) algorithm [50].
This technique computes signal probability at the output of a node by direct appli-
cation of intersection, union and complementary properties, assuming that inputs are
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independent. Table 5.2 shows the formulas for signal probability computation accord-
ing to COP algorithm for some basic logic gates. All probabilities in the table are
referred to the correspondent signal being evaluated to value 1. Formulas for NAND,
NOR, XNOR and more complex gates can be deduced from these ones.

Logic gate Scheme Formula

NOT ba P (b) = 1− P (a)

AND ai b P (b) =
∏n

i=1 P (ai)

OR bai P (b) = 1−
∏n

i=1(1− P (ai))

XOR b
a1

a2

P (b) = P (a1)(1− P (a2)) +
+(1− P (a1))P (a2)

Table 5.2: Probability computation with COP

COP algorithm has the advantage of being simple and intuitive, and it requires
very low computational cost. Nevertheless, probabilities computed by means of COP
algorithm are generally inaccurate. This is due to the reconvergent fanout problem,
which contradicts the assumption of every signal being independent from the others.

Other approaches try to solve this problem. For instance, the PREDICT algo-
rithm [51] introduces the concept of super gates, thus achieving more precise esti-
mations at the expense of a higher complexity and computational effort. The testability
analysis tool SCOAP [52] does not make use of probability estimations, but instead
computes the costs of controlling and observing each node within a given circuit, which
are related with intrinsic testability. The cutting algorithm [53] computes the lower and
upper bounds for each signal probability -instead of exact values- by cutting all multiple
fanout branches in the circuit, converting it in a tree network where probabilities are far
easier to calculate. Parker and McCluskey propose an algorithm [49] to compute sig-
nal probabilities by analysing the logic equations that a given logic circuit implements,
although its application may soon become infeasible for large circuits. The improved
cutting algorithm [54] combines the cutting and Parker-McCluskey algorithms in order
to reduce the computed probability intervals with respect to the original cutting algo-
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rithm. The algorithm chooses a subset of fanout branches for cutting and the others for
formal analysis.

Among all existing testability analysis techniques, it is worth mentioning the Testa-
bility Analysis by Implication Reasoning (TAIR) algorithm [55] as the base of the dy-
namic probability computation developed within this work. It makes use of implication
reasoning to deduce interdependencies between signals. The TAIR algorithm departs
from signal probabilities computed with COP and then calculates fault probabilities,
refining them by applying correlating factors according to the assignments deduced
during implication of each fault.

5.3 Approximation generation with dynamic measures

This section explains how dynamic testability measures are computed and how are
they applied to approximation generation. Similarly to the TAIR algorithm [55], this
approach makes use of implication reasoning to deduce interdependencies between
signals. The main difference is that here signal probabilities are computed after im-
plication of each fault, taking into account the set of deduced assignments. Therefore,
there is no need of applying correlation factors to derive fault testabilities from sig-
nal probabilities. The different concepts and procedures developed for this approach
are progressively introduced in the following subsections. Subsection 5.3.1 tells how
faults are justified by using implications. Later, subsection 5.3.2 deals with how fault
probabilities are computed based on deduced assignments during justification, and how
probabilities are updated every time a fault is approximated. Next, subsection 5.3.3 ex-
plains how global error rate is estimated thanks to computed fault probabilities. Finally,
subsection 5.3.4 shows the whole algorithm designed to generate approximate circuits
with dynamic testability measures.

It is important to remark that this approach is intended for unate circuits. If the tar-
get circuit is binate, logic transformations introduced in section 3.4 have to be applied
in order to obtain a fully unate initial circuit.

5.3.1 Fault implication

In this approach, the first step towards the computation of probability of a fault consists
in its implication, i.e., deducing its Mandatory Assignments (MAs) and checking their
consistency [56]. The mandatory assignments of a given fault are the set of assignments
required to test that fault. Any input vector must satisfy the mandatory assignments of
a fault in order to be able to test it.

Several concepts must be introduced before properly explaining the implication
method. The transitive fanout of a given fault f is the set of all reachable points for
fault f , or in other words, the set of all propagation paths from the fault injection site
to the primary outputs of the circuit. A node n is a dominator of fault f if every
propagation path in the transitive fanout of f goes through n, i.e., n is common to all
those propagation paths. There are two types of dominators. Static dominators are
those which can be simply deduced from the topology of the circuit. On the contrary,
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dynamic dominators are those which appear during the implication process, as a con-
sequence of some propagation paths being blocked due to deduced assignments. Given
a node n belonging to the transitive fanout of a fault f , the side inputs of n with respect
to f are all the immediate inputs to n which are not in the transitive fanout of f . The
controlling value of a logic gate is the logic value which, when assigned to one of its
inputs, uniquely determines the output value regardless of the values of the remaining
inputs. From this definition it can be deduced that for an OR gate the controlling value
is 1, and 0 for an AND gate. The inverse of the controlling value is denoted as the
sensitizing value.

The rest of this section is divided in several subsections, explaining the functioning
of the proposed fault implication method over cases with increasing complexity. Start-
ing with the case of faults which propagate through just one output (subsection 5.3.1.1),
then we move to the situation with multiple outputs (subsection 5.3.1.2). Later, the
conditions of previously approximated faults are introduced in the implication (subsec-
tion 5.3.1.3), and finally the proper is done in the case of multiple outputs (subsection
5.3.1.4).

5.3.1.1 Basic implication mechanism

The fault implication process is based on the implication engine developed in [57] for
redundancy identification. Basically, implication of a fault consists in applying the con-
trollability and observability conditions necessary to excite the fault and propagate it to
any circuit output, respectively. The controllability condition is the MA which assigns
the activating value in the fault injection point, that is, the logic value opposed to the
faulty one. On the other hand, the observability conditions are the MAs which assign
the respective sensitizing values to the side inputs of all static dominators of the fault.
Once these assignments have been deduced, they are propagated through the circuit by
direct implication, i.e., either deducing the output value of a gate from its inputs values
(which is known as propagation) or vice-versa, deducing input assignments from its
output value (denoted as justification). It may happen that, as a consequence of the
implication process, some propagation paths become blocked. As a result, new dy-
namic dominators may appear for that fault. Whenever a dynamic dominator is found,
observability conditions are immediately applied to it, and then the implication process
is resumed. This is performed until no more assignments can be deduced. Additional
mandatory assignments can be found by using more sophisticated methods such as
recursive learning [58], although they require a considerable computational cost.

As previously said, this procedure was originally intended in [57] for redundancy
identification. If there is an inconsistency detected during the implication of a certain
fault, then that fault is redundant. On the contrary, the main objective in this work is es-
timating fault probabilities. Therefore, the fault implication process is intended here to
find the simplest Set of Mandatory Assignments (SMA) that satisfy the fault controlla-
bility and observability conditions with the minimum number of signal dependencies,
that is, the justification frontier of the fault. The initial SMA results from the direct
application of controllability and observability conditions. Whenever a mandatory as-
signment is justified backwards in the circuit, that assignment is removed from the
SMA and replaced with the new deduced assignments, if any. If a dynamic dominator
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is found, its observability conditions are added to the SMA. When the implication pro-
cess is complete, the final SMA will contain those assignments which cannot be further
justified, which becomes the justification frontier of the fault, also known as Justified
Set of Mandatory Assignments (J-SMA).
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Figure 5.3: Implication of fault n11/1 in c17 benchmark

To show an application example of the implication process, let us imply fault n11/1
from c17 benchmark (Figure 5.1). First of all, controllability and observability con-
ditions are applied. On one hand, the controllability condition is the one that excites
the fault, in this case the MA n11=0. On the other hand, observability conditions are
those which ensure fault propagation to circuit outputs, which are linked to fault domi-
nators. As fault n11/1 has only one possible propagation path, all nodes in its transitive
fanout (node PO1 and output PO1 PO) automatically become static dominators of it.
Among them, only node PO1 has one side input (n9) which is set to the sensitizing
value, thus having the MA n9=1. Both conditions (n9=1 and n11=0) form the initial
SMA as shown in Figure 5.3a. Now, these assignments are propagated through the
circuit by direct implication. Assignment n11=0 can be justified, as at node n11 there
is only one combination of inputs which can set its output to 0: PI4=1 and n8=1. These
assignments replace the former one in the SMA of the fault. In addition, the value of
output PO1 can be deduced from n9 and n11 values. These steps are reflected in Figure
5.3b, where the highlighted assignments correspond to those which currently belong to
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the SMA of the fault. Finally, assignment n9=1 implies that at least one of the inputs
of node n9 must be set to 0. Because n8=1, that means the other input (PI1) must hold
value 0. Therefore, assignment n9=1 is justified and removed from the SMA, being
replaced by the new assignment PI1=0, as shown in Figure 5.3c. The implication pro-
cess stops here, as no more assignments can be deduced, and the SMA PI1=0, PI4=1
and n8=1 becomes the justification frontier of fault n11/1. It can be verified that these
assignments do not have interdependencies, which simplifies subsequent probability
computations.

Once the justification frontier is obtained for a given fault, its probability can be
computed as the joint probability of assignments in the J-SMA, as explained in section
5.3.2. For instance, in the previous example the probability of the fault n11/1 would
be computed as P (n11/1) = P (PI1 · PI4 · n8) = 1/2 · 1/2 · 3/4 = 3/16. In
addition, the justification frontier serves to deduce additional mandatory assignments
for circuits with multiple outputs, which contributes to refine probability estimations.
Finally, justification frontiers of approximate faults can be taken into account when up-
dating probabilities for the remaining faults, thus obtaining the incremental probability
of approximating a new fault. All these cases are covered in the next subsections

5.3.1.2 Fault implication with multiple outputs
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Figure 5.4: Implication of fault PI2→n8/1

In circuits with multiple outputs it may be harder to adequately estimate fault prob-
abilities. As faults may propagate through several outputs, it is less likely to find fault
dominators, and the set of mandatory assignments deduced may not accurately rep-
resent the testability conditions. Consider as an example the fault PI2→n8/1 in c17
benchmark. It must be noted that, similarly to the approximation method with static
testability measures, only individual branches may be approximated, not the stem lines.
The controllability condition of fault PI2→n8/1 generates the MA PI2=0. On the other
hand, that fault has only node n8 as dominator, because it has propagation paths to
both outputs. Therefore, only the MA PI3=1 can be deduced as observability condi-
tion. These assignments can just be propagated to nodes n7 and n8, as shown in Figure
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5.4. In conclusion, the set of mandatory assignments for that fault is insufficient for
an accurate probability estimation, because it does not include the requirement that the
fault must be propagated to at least one primary output. To solve this problem, the
propagation of faults is implied independently for each output, thus obtaining for each
fault a justification frontier per output. This requires to compute dominators indepen-
dently for each output. In this way more assignments can be deduced, at the expense
of a greater computational cost. Then, the complete fault probability is computed from
the union of the partial J-SMAs for each output. The possible interdependencies of
these J-SMAs are solved by using the probability chain rule, as explained right after.

Let us denote the J-SMA of the propagation of fault f through node output Oi

as Jfi . For the first output O1, Jf1 is computed by directly applying the implication
reasoning procedure explained above. Jf2 for output O2 is then computed in the same
way, but with the addition of checking that Jf1 is not fulfilled. This may generate
additional MAs for the partial fault or make it redundant, or on the contrary it allows
deducing a probability correlation coefficient as explained in section 5.3.2. Jf3 for
output O3 is computed in the same way, with the additional conditions Jf1 and Jf2 ,
and so on. In summary, when computing J-SMA for output Oi the input vectors which
propagate the fault to any of the previous outputs are excluded. This way the different
Jfi are guaranteed to be mutually exclusive in theory, thus simplifying computation
of the total fault probability (see section 5.3.2). If a given fault f cannot propagate
through output Oi or it becomes redundant, then its correspondent Jfi will be null.
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Figure 5.5: Implication of fault PI2→n8/1 through output PO0

Let us see how this procedure is applied to previous example. Instead of computing
J-SMA of fault PI2→n8/1 for all possible propagation paths simultaneously, this is per-
formed in an output by output basis. First, propagation through output PO0 is implied.
According to the circuit topology, the initial SMA for this partial fault is formed by the
assignments PI1=1, PI2=0, PI3=1 and n7=1, as shown in the Figure 5.5a. Now they
are propagated by direct implication as depicted in the Figure 5.5b. Finally, the partial
J-SMA is extracted, which contains the assignments PI1=1, PI2=0 and PI3=1. In other
words, JPI2→n8/10 = PI1 · PI2 · PI3.

For the second output (PO1) the same process is performed, but with the additional
restriction JPI2→n8/10 . The idea is to find those input vectors which propagate the
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Figure 5.6: Implication of fault PI2→n8/1 through output PO1

fault through PO1 and not through PO0. Initially, controllability and observability con-
ditions are inferred as usual. In this case the initial SMA is just formed by MAs PI2=0
and PI3=1, and these values can be propagated as shown in the Figure 5.6a. Without
any additional information, the implication process would stop here. But when exclud-
ing input vectors belonging to the previous J-SMA, additional MAs can be inferred. In
particular, the condition JPI2→n8/10 implies PI1 · PI2 · PI3 = 0. As PI2 and PI3
already have values 0 and 1 respectively, the only way this restriction can be fulfilled
is assigning PI1=0, which is automatically included in the SMA. As a consequence of
this new implied MA, the propagation path through n9 becomes blocked, causing node
n11 to become a dynamic dominator of the fault. Observability conditions are imme-
diately applied to the new dominator, which results in the new MA PI4=1, which is
included in the SMA too. The mandatory assignment PI1=0 ensures that the dynamic
side input of node PO1 (n9) is assigned to its sensitizing value, thus ensuring at least
one propagation path to output PO1. All this process is depicted in Figure 5.6b. The
partial J-SMA for the second output finally includes the assignments PI1=0, PI2=0,
PI3=1 and PI4=1, i.e., JPI2→n8/11 = PI1 · PI2 · PI3 · PI4. It can be verified that
both justification frontiers JPI2→n8/10 and JPI2→n8/11 are mutually exclusive, while
at the same time both together contain the whole set of input vectors which allows
propagation of fault PI2→n8/1 to any circuit output.

5.3.1.3 Inferring approximation conditions

Whenever a fault is approximated, the probabilities of the remaining faults may vary.
This is a consequence of the effects that an approximation causes on the controllability
and observability conditions of the remaining faults. The justification frontier of a
fault can be used to estimate the impact over every other fault probability when it is
approximated, as described below.

When a fault is selected to be approximated it is implied again in order to extract
its J-SMA. But this time implication is performed on its correspondent approximation
instead of the original circuit, thus taking into account the effect of previous approx-
imated faults. The J-SMA of a fault f computed on the approximate circuit, i.e., the
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approximation condition, is denoted as Af . This represents the set of input vectors
which differ between the original and approximate circuits because of the approxima-
tion of the fault f and therefore are susceptible to errors. Given any other fault g,
its unmasked area as a consequence of fault f approximation equals the intersection
Jg ∩Af . Therefore, whenever a fault is approximated all remaining faults must be im-
plied again, forcing the additional condition Af as part of its J-SMA. This procedure
provides information about which faults become affected, which allows updating fault
probabilities as explained in section 5.3.2.
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Figure 5.7: Approximation condition of fault PI2→n7/1

For example, consider PI2→n7/1 as the first fault selected for approximation in
c17 benchmark. In order to estimate the effect of its approximation over remaining
faults, first the approximation conditions of that fault have to be obtained. This is
achieved by implying the selected fault in the correspondent approximate circuit (over-
approximation in this case). This is done before the fault is effectively approximated.
Therefore, as this is the first approximated fault, the approximate circuit is still an
exact copy of the original. The initial MAs for this fault are PI0=1, PI2=0 and n9=1, as
shown in the Figure 5.7a. Then, these conditions are propagated through the circuit by
direct implication, as indicated in the Figure 5.7b. Finally the J-SMA API2→n7/1 =

PI0 · PI1 · PI2 is inferred, which becomes the approximation condition of the fault.
When the fault PI2→n7/1 is approximated, the circuit is unprotected for the set of input
vectors which satisfy this condition.

Once API2→n7/1 is obtained, the effect over remaining faults can be estimated.
Let us consider fault PI1/1, for example. In order to know which test vectors from this
fault become unmasked, we first imply it in the original circuit as usual, departing from
the initial SMA PI1=0, n7=1 and n8=1 as in Figure 5.8a. It must be noted that only
propagation through output PO0 is considered here, because the approximated fault
does not affect the output PO1. But in addition, the J-SMA of fault PI1/1 is intersected
with the approximation condition API2→n7/1 = PI0 · PI1 · PI2. This generates the
new MAs PI0=1 and PI2=0, which are propagated as usual. The process is shown in
the Figure 5.8b. Finally, the J-SMA PI0 · PI1 · PI2 is inferred, that indicates which
test vectors from fault PI1/1 are unmasked when fault PI2→n7/1 is approximated. The
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Figure 5.8: Effect of PI2→n7/1 approximation over PI1/1

same procedure is applied to the rest of faults within the circuit.
As the objective consists in computing the incremental effect of approximating a

new fault, intersection with all previous approximated faults should be excluded when
forcing a set of faults in sequence. The goal is to know which input vectors are newly
unmasked for each fault which were not already unmasked with previous approximated
faults. Fortunately, for single output circuits it is guaranteed that the different Af

conditions resulting with any sequence of approximate faults are mutually exclusive.
This applies to faults which propagate to just one output as well.

5.3.1.4 Approximation conditions with multiple outputs

In the case of faults which propagate through several outputs, however, the incremental
effect of approximating a new fault is a bit harder to compute. Whenever a fault f
is selected to be approximated, an approximation condition Afi is computed for each
output Oi, that indicates the whole set of input vectors which allow propagation of
fault f through output Oi in its correspondent approximate circuit. If any given fault
cannot propagate through a certain output, then the correspondent Afi will be null.
Approximation conditions of different faults are still mutually exclusive as long as
they refer to the same circuit output, but this may not hold when comparing different
outputs. In other words, consider faults f and g. Afi and Agi are guaranteed to be
disjoint whatever output Oi is considered. But when considering different outputs, Afi

and Agj with i 6= j they may not be mutually exclusive.
For example, suppose that fault n8→n9/1 is selected for approximation in second

place after the fault PI2→n7/1 is approximated. Then the approximation conditions
for that fault are computed in the correspondent approximate circuit, which is the over-
approximation, where PI2→n7/1 has already been forced. This means that the line
connecting PI2 and n7 has been removed, and node n7 has been replaced with an in-
verter (see Figure 5.9a). As fault n8→n9/1 can propagate to both outputs, one approx-
imation condition is derived for each primary output. This results in the approximation
conditions An8→n9/1,0 = PI0 ·PI1 ·PI2 ·PI3 and An8→n9/1,1 = PI1 ·PI2 ·PI3
for outputs PO0 and PO1 respectively. The full implication process followed to ob-
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Figure 5.9: Approximation condition of fault n8→n9/1 through output PO0

tain these conditions is summarized in the Figures 5.9 for output PO0, and 5.10 for
output PO1. It must be noted that when deducing the approximation conditions of
any given fault through several outputs, the J-SMAs corresponding to previous outputs
are not taken into account. By comparing An8→n9/1,0 with the approximation condi-
tion of the previously approximated fault (API2→n7/1 = PI0 · PI1 · PI2) it can be
verified that both sets of assignments are disjoint. This is due to the fact that both ap-
proximation conditions are referred to the same primary output, PO0. With respect to
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Figure 5.10: Approximation condition of fault n8→n9/1 through output PO1

the approximation condition through output PO1, An8→n9/1,1, there is no overlapping
withAPI2→n7/1 even though they correspond to different outputs. Therefore, effect of
approximating this fault over any other fault can be computed incrementally by simply
intersecting with approximation conditions of fault n8 → n9/1. Notwithstanding, the
contrary may also happen.

Now consider that fault PI4/1 is approximated instead of n8→n9/1. This fault
corresponds to the over-approximate part too, but it only can propagate through output
PO1. In order to obtain the approximation condition for this fault, it is implied in the
proper approximate circuit as usual, as shown in Figure 5.11. At the end of this process,
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Figure 5.11: Approximation condition of fault PI4/1

the approximation conditionAPI4/1 = PI1·PI4·n8 is obtained. It can be verified that
API4/1 overlaps with the approximation condition for the first approximated fault,
API2→n7/1 = PI0 · PI1 · PI2. Therefore, when incrementally computing the effect
of approximation of this fault over any other fault in the same circuit it may happen
that some test vectors which were already unmasked with fault PI2→n7/1 are counted
again.

This fact obliges to explicitly exclude faulty input vectors already counted with all
previously approximated faults which refer to different outputs. In the general case, it
will be necessary to compute the effect of the last approximated fault, g, over a remain-
ing fault, h, while having a set of fi already approximated faults. This is computed
in an output per output basis, exactly as when implicating simple faults. For the first
output, O0, the set of conditions that we are looking for correspond to the formula

Jh0
= h0 ∩Ag0

⋂
i,j 6=0

(h0 ∩Afi,j ) (5.3)

where h0 is the set of conditions which allow propagation of the fault h through the
output O0, Ag0 is the approximation condition of fault g over the output O0, and h0 ∩
Afi,j is part of the set of input vectors already unmasked with the approximation of
fault fi. In the case that fault h propagated just to one output, this last term would
not be necessary, because all approximation conditions referring to the same output are
necessarily disjoint. However, in the general case the circuit will have multiple outputs.
For each one of the remaining Ok outputs, the incremental effect of approximating g
will be computed by discounting the sets of input vectors already considered in all the
previous Ok, according with the formula

Jhk
= hk ∩Agk

⋂
i,j 6=k

(hk ∩Afi,j )
⋂
j<k

Jhj
(5.4)

To see how these formulas work, let us compute the effect of PI4/1 approximation
over fault PI1/1, once PI2→n7/1 has been approximated. Controllability condition
PI1=0 and observability conditions n8=1 and n11=1 form the initial set of mandatory
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Figure 5.12: Effect of PI4/1 approximation over PI1/1

assignments of fault PI1/1 as shown in Figure 5.12a. Then this SMA is intersected
with approximation condition of fault PI4/1, which is API4/1 = PI1 · PI4 · n8 as
deduced in previous example. This leads to the additional MA PI4=0, which automati-
cally justifies n11=1 (see Figure 5.12b). It must be noted that this J-SMA is computed
with respect to output PO1, because the approximation condition of fault PI4/1 for
output PO0 is null. As PI4/1 is not the first approximated fault, test vectors already un-
masked with previous faults (PI2→n7/1 in this case) should be properly discounted. In
a previous example has already been computed that approximation of fault PI2→n7/1
unmasks those test vectors from the J-SMA of fault PI1/1 which fulfil the condition
PI0 · PI1 · PI2, which is associated to output PO0. Therefore, these test vectors
have to be explicitly excluded, what is done by imposing the additional restriction
PI0 · PI1 · PI2 = 0. This condition does not allow to deduce any additional MA,
but it is still used to derive a probability correlation coefficient, as explained in section
5.3.2.

5.3.2 Probability analysis
Once a fault has been implied and its J-SMA has been obtained, the fault probability
can be derived from the assignments belonging to the J-SMA. This section explains
how is this computation performed, considering all possible cases, which appear in in-
creasing complexity order. Therefore, the first subsection (5.3.2.1) explains how fault
probabilities are computed from the implied J-SMAs for single output cases, which is
then extended to multiple outputs in subsection 5.3.2.2. Later, by introducing approx-
imation conditions, the incremental update of these fault probabilities is addressed.
Subsection 5.3.2.3 deals with probability updating for single output cases, while sub-
section 5.3.2.4 does the same for multiple outputs.

5.3.2.1 Implication-based probability computation

After a fault has been adequately justified by implication, its probability can be com-
puted as the joint probability of assignments belonging to its justification frontier. If
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the J-SMA of a given fault is null (for having no propagation path) or inconsistent (for
being redundant), then it is assigned a probability equal to 0. The probability of each
individual assignment can be computed by means of the COP algorithm. By default it
is assumed that every input has a 50% chance of holding a logic 1, and consequently
another 50% of having a logic 0. Alternatively, signal probability of inputs can be set
to other values in order to model a specific workload.

As an example, consider fault n11/1 in c17 benchmark. Implication of this fault
has already been performed in section 5.3.1.1 (see Figure 5.3) resulting in the J-SMA
PI1 ·PI4 ·n8. Therefore the probability of fault n11/1 can be computed as the product
of the probabilities of assignments PI1=0, PI4=1 and n8=1, as they are all independent.
Input probabilities are assumed to be 0.5, while probability of assignment n8=1 is
computed applying COP, thus having P (n8) = P (PI2 · PI3) = 3/4. As result,
P (n11/1) = P (PI1 · PI4 · n8) = 1/2 · 1/2 · 3/4 = 3/16.
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Figure 5.13: Implication of fault n7/1

However, the COP algorithm may not be accurate when there is reconvergent
fanout. This may lead to inaccurate probability estimations in case not all interdepen-
dencies between mandatory assignments have been resolved. Consider as an example
the fault n7/1 in c17 benchmark. Initially MAs n7=0 and n9=1 conform the SMA for
this fault (see Figure 5.13a). Then these MAs are propagated as in Figure 5.13b. In
the end, the J-SMA of fault n7/1 becomes PI0 · PI2 · n9. By using simple COP,
probability of assignment n9=1 is computed as

P (n9) = P (PI1 · n8) = 1− P (PI1) · P (n8) = 1− 1

2
· 3

4
=

5

8

and therefore probability of fault n7/1 results P (n7/1) = P (PI0 · PI2 · n9) =
1/2 · 1/2 · 5/8 = 5/32. However, the correct result is 3/16. This is due to the fact
that the implication process has not been able to resolve all signal dependencies. In
particular, the mandatory assignment n9=1 is correlated with PI2=1. To solve this, sig-
nal probabilities are computed with a modified version of the COP algorithm where all
assignments inferred during implication are taken into account. Actually, this means
computing signal probabilities conditioned to the whole set of already deduced assign-
ments. Applied to previous example, probability of assignment n9=1 is now computed
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as

P (n9|PI2) = 1− P (PI1) · P (n8|PI2) = 1− P (PI1) · P (PI3) = 1− 1

2
· 1

2
=

3

4

and fault probability becomes P (n7/1) = 1/2 · 1/2 · 3/4 = 3/16, which is the correct
result.

5.3.2.2 Probability computation with multiple outputs

In the case of faults which propagate through multiple outputs, implication is made in-
dividually for each output as explained in section 5.3.1.2. Therefore, fault probabilities
are computed as the union of all partial justification frontiers. Assuming the simplest
case of having two outputs, the probability of any fault f would be computed with the
formula

P (f) = P (Jf1 ∪ Jf2) = P (Jf1) + P (Jf2)− P (Jf1 ∩ Jf2) (5.5)

In the general case, this means computing the intersection of the different J-SMAs.
But the implication process takes advantage on previous justification frontiers in such a
way that all J-SMAs inferred are mutually exclusive. This greatly simplifies probability
computations, as there is no intersection between different justification frontiers, and
the probability of any fault can be computed as just the sum of probabilities all partial
J-SMAs.

For example, let us compute probability of fault PI2→n8/1 in c17 benchmark. This
fault has already been justified in a previous example in section 5.3.1.2, obtaining J0 =
PI1 · PI2 · PI3 for output PO0 and J1 = PI1 · PI2 · PI3 · PI4 for output PO1 as
J-SMAs, depicted in Figures 5.5 and 5.6 respectively. As these conditions are disjoint,
the total fault probability is computed as the sum of probabilities of both J-SMAs, thus
having P (PI2→ n8/1) = P (J0) + P (J1) = 1/8 + 1/16 = 3/16.

With faults which propagate through multiple outputs it may happen that, when
implicating the fault through a particular output, some of the conditions associated
to previous J-SMAs are not properly justified. In that case, they are still taken into
account in order to compute fault probabilities. From unjustified restrictions a proba-
bility correlation coefficient kJ is derived in the following way. After fault implication,
a probability is computed for each unjustified Jfi condition as if they were part of the
circuit, taking into account the set of already deduced assignments. Then the correla-
tion coefficient is computed as kJ = 1 −

∑
i P (Jfi), assuming that the different Jfi

conditions are mutually exclusive. This coefficient is multiplied with the fault proba-
bility of the corresponding output.

Consider as example the fault PI3/1 in c17 benchmark. At first place it is implied
through output PO0. Controllability and observability conditions of the fault result
in the SMA PI1=1, PI2=1, PI3=0 and n7=1, as shown in Figure 5.14a. Then these
assignments are propagated through the circuit by direct implication as depicted in
Figure 5.14b. It is relevant to mention that assignment n7=1 becomes justified by
PI0=0, the only possibility after PI2 is already assigned to logic 1. Implication finishes
and the J-SMA JPI3/10 = PI0 · PI1 · PI2 · PI3 is extracted, with a probability of
1/16.
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Figure 5.14: Implication of fault PI3/1 through output PO0

Then propagation of fault PI3/1 through output PO1 is implied. Because there are
several propagation paths for output PO1, only MAs PI2=1 and PI3=0 can be inferred
as SMA, as shown in Figure 5.15. In this case even imposing the restriction JPI3/10

does not allow deducing additional MAs, so implication stops here. The J-SMA for
output PO1 is then JPI3/11 = PI2 · PI3, which is corresponded a probability of 1/4.
This is clearly not the real probability for this partial fault, but a correlation coefficient
can still be applied because JPI3/10 condition has not been completely justified. Con-
sidering the already deduced assignments for this fault, the probability of the J-SMA
for output PO0 is P (JPI3/10 |JPI3/11) = P (PI0) · P (PI1) = 1/4. The correlation
coefficient is then kJ = 1 − 1/4 = 3/4, and the probability of fault through PO1 is
estimated as P (JPI3/11) · kJ = 3/16. This is still not the real probability of propagat-
ing fault PI3/1 through PO1 and not through PO0, which would be equal to 1/8, but it
is closer than if correlation coefficient were not applied. This discrepancy is due to an
incomplete fault justification, which suppose a source of inaccuracy in this method. As
previously said, with more sophisticated implication methods more MAs can be found,
which results in better probability estimations at the expense of a higher computational
cost.

5.3.2.3 Incremental probability updating

Once the probability of every fault has been computed, the best candidate among faults
in the original circuit is approximated. In this approach a greedy heuristic is employed,
selecting on each iteration the fault with lowest probability. The idea behind this cri-
teria consist in minimizing the global impact of approximating a fault, as the lower
the probability, the smaller the difference from the original circuit when that fault is
approximated. If there is more than one fault with minimum probability value, the one
with produces the greatest area savings is approximated. Area savings are estimated as
the size of the transitive fanin until multiple fanout points.

Whenever any fault is approximated, this may have an impact over remaining faults.
Faults in the same approximate circuit may change its probability, while in the other
instances faults may be partially or totally unmasked. Therefore, whenever a fault is
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Figure 5.15: Implication of fault PI3/1 through output PO1

selected for approximation fault probabilities have to be updated. In theory, probabil-
ity of every fault in the correspondent approximate circuit should be recomputed, but
several considerations allow to adopt a different approach to this problem.

On the one hand, each approximate circuit is constrained to approximate faults in
one particular direction. In other words, in the under-approximate circuit only faults
with direction 1→0 are approximated, while the over-approximation is reserved for
faults of type 0→1. Thus, for the sake of selecting the next best approximation can-
didate, faults 0→1 in the under-approximate circuit are irrelevant, as well as faults
1→0 in the over-approximation. In conclusion, whenever a fault is approximated only
probability of faults in the same direction need to be recomputed.

On the other hand, let us consider the effect of approximating a fault over remain-
ing faults in the same circuit and direction. Faults in the same direction may have their
probabilities decreased due to the offset/onset reduction caused by the logic transfor-
mation. But they may also increase as a consequence of the appearance of new valid
test vectors in the reduced offset/onset, favoured by the fault approximation. The first
effect can be computed by means of intersection between approximation conditions of
last approximated fault and justification frontier of the considered fault in the origi-
nal circuit, which is equivalent to affected test vectors in the approximate circuit. As
advantages, this computation can be incrementally performed and in addition it can
be reused to estimate the global effect of fault approximation over any other fault, as
explained in section 5.3.3. However, the latter contribution, which tends to increase
fault probabilities, cannot be observed in the original circuit and cannot be incremen-
tally computed. But this effect is less relevant than the first one because, as the goal
is selecting the fault with lowest probability, it is more likely that the next best candi-
date will be one whose probability diminishes instead of increasing. Neglecting this
effect may result in some fault probabilities being underestimated, which is acceptable
as long as the least testable fault is correctly identified. Nevertheless, this effect could
become more relevant the more faults were approximated, selecting a suboptimal fault
as consequence. Besides, in any case it may happen that any fault becomes redun-
dant cause of every propagation path being blocked. This phenomenon can only be
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appreciated by implying faults in the correspondent approximate circuit.
Taking all this into account, the following method for fault probability recomputing

is proposed. First, the approximation condition Af of the selected fault f is deduced,
i.e., its justification frontier computed in the correspondent approximate circuit, before
that fault is approximated. This represents the input vectors for which now one of the
instances hold an incorrect value. ThenAf is intersected with the justification frontiers
of certain faults g, thus having Af ∩ g. This intersection is computed in the original
circuit, and it is extended to all faults in the same direction as f , including f itself.
The probability of these intersections is then computed, applying the same method as
with J-SMAs. Finally, the probability of each Af ∩ g condition is subtracted to the
former probability value of the considered fault g. In other words, probabilities are
updated by discounting those input vectors which become newly unmasked after fault
approximation.

In order to see how this method works, consider fault PI1/1 in benchmark c17.
Let us assume that probability of this fault has already been computed with a result
of P (PI1/1) = 11/32, which is in fact the real probability value. Suppose now that
fault PI2→n7/1 is approximated in the first place. Approximation condition for this
fault has already been computed in a previous example in section 5.3.1.3, resulting
in API2→n7/1 = PI0 · PI1 · PI2 with respect to output PO0 (see Figure 5.7) and
the null set for output PO1. Intersection between API2→n7/1 and J-SMA of fault
PI1/1 has already been computed too in other example, obtaining the subset J ′PI1/1 =

PI0 · PI1 · PI2 (as shown in Figure 5.8). This is the set of input vectors which now
may generate an error if fault PI1/1 appears in one of the two correct instances, which
has associated a probability of P (J ′PI1/1) = 1/8. Finally, the probability of fault PI1/1
can be updated by subtracting the probability of unmasked test vectors, thus obtaining
P ′(PI1/1) = P (PI1/1)− P (J ′PI1/1) = 11/32− 1/8 = 7/32.

When approximating several faults in sequence it is necessary to update fault prob-
abilities on each step. As it has already been explained, this is done by computing the
probability of the conditions which allow fault propagation with the last approximated
fault but not with previous faults. For single output circuits this incremental comput-
ing can be implemented in an easy manner, because it is guaranteed that the different
approximation conditions are mutually exclusive. The only necessary steps in order to
update the probability of fault g when a new fault f is approximated are:

1. Compute the approximation condition of fault f , Af .

2. Compute the intersection of Af with the set of conditions which allow the prop-
agation of the fault g, Af ∩g, and the probability of this intersection, P (Af ∩g).

3. Subtract P (Af ∩ g) to the former probability value of fault g.

This applies to faults which propagate to just a single output as well. In the case
of faults reaching multiple outputs, however, probability updating is a bit harder to
compute, as it is explained in the next section.
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5.3.2.4 Probability updating with multiple outputs

As previously said, when approximating several faults in sequence it is necessary to
update fault probabilities on each step. In the case of faults reaching multiple outputs,
the approximation conditions associated to different faults and outputs may intersect
as explained in section 5.3.1.4, and these intersections have to be properly discounted.
This is performed by imposing an additional restriction h ∩Afi for each already ap-
proximated fault f and each output Oi when re-implying any given fault h, as told in
section 5.3.1.4. And as explained in section 5.3.2.2, if any of these conditions is not
properly justified a probability correlation coefficient kA is then derived.

For the sake of clarifying, let us consider first the case of just two outputs, namely
O1 and O2. Later the study will be extrapolated to circuits with more than two out-
puts. Consider fault g as the next candidate to be approximated, fault h as one of the
remaining faults, and a set of already approximated fi faults. In this case we have to
compute the effect of the new fault approximation over h with respect to O1 and O2

independently. According to the formulas 5.3 and 5.4, to perform this computation the
set of conditions h1 ∩Ag1

⋂
i(h1 ∩Afi2) has to be imposed with respect to output O1

(obtaining a J-SMA J ′h1
), and h2 ∩ Ag2 ∩ J ′h1

⋂
i(h2 ∩Afi1) with respect to O2 (re-

sulting in a J-SMA J ′h2
). These sets of conditions are first resolved by implication. If

all the conditions are adequately justified, then their probabilities are simply computed
with the modified COP algorithm explained in section 5.3.2.1, and we can directly up-
date the probability of fault h by subtracting P (J ′h1

) and P (J ′h2
). But in the opposite

case we will have an incomplete J-SMA, either J ′h1
or J ′h2

, and a set of unjustified
conditions h1 ∩Afi2 or h2 ∩Afi1 . In such situation, the probabilities inferred from
the J-SMAs J ′h1

or J ′h2
will be inaccurate, but the unjustified conditions can be used

to derive correlation coefficients (kA1
or kA2

) to adjust these probabilities as explained
below. These correlation coefficients will then modify the probability of the J-SMAs
J ′h1

and J ′h2
, thus obtaining a more realistic probability estimation of the full set of

conditions. In the end, the probability of fault h will be updated as

∆P (h) = −P (J ′h1
) · kA1

− P (J ′h2
) · kA2

Now let us see how these correlation coefficients are computed, starting with kA1 .
By applying the conditional probability theorem, the probability of the full set of con-
ditions with respect to the output O1 can be expressed as

P (h1 ∩Ag1

⋂
i

(h1 ∩Afi2)) = P (J ′h1
) · P (

⋂
i

(h1 ∩Afi2)|J ′h1
) = P (J ′h1

) · kA1

From here, the correlation coefficient kA1 can be easily computed when realizing that
the different Afi2 conditions are disjoint, because all of them are referred to the same
output. Thus,

kA1
= P (

⋂
i

(h1 ∩Afi2)|J ′h1
) = 1−

∑
i

P ((h1 ∩Afi2)|J ′h1
)

In order to compute kA1 , the probability of each h1∩Afi2 condition is computed condi-
tioned to the set of assignments deduced in J ′h1

. It must be noted that if any h1 ∩Afi2
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condition is justified during the implication process its contribution to the correlation
coefficient will be null.In the case that all the conditions are properly justified, then
kA1 = 1, and the probability P (J ′h1

) remains unchanged.

The correlation coefficient kA2 is computed in the same way, with the additional re-
striction J ′h1

, which ensures that contributions associated to each output do not overlap.
Analogously to the previous case, now we have

P (h2 ∩Ag2 ∩ J ′
h1

⋂
i

(h2 ∩Afi1)) = P (J ′
h2
) · P ((J ′

h1

⋂
i

(h2 ∩Afi1))|J
′
h2
) = P (J ′

h2
) · kA2

In this case the correlation coefficient includes the term J ′h1
. But this supposes no

problem when realizing that J ′h1
is a subset of Ag1 , which by construction does not

overlap with any other Afi1 condition. Therefore, all terms within kA2
are mutually

exclusive, and it can be computed simply as

kA2
= 1− P (J ′h1

|J ′h2
)−

∑
i

P (h2 ∩Afi1 |J ′h2
)

where again, the probability of each term is calculated conditioned to the set of deduced
assignments in the J-SMA J ′h2

.

As an example, consider again the fault PI1/1. After the approximation of fault
PI2→n7/1, the subset J ′PI1/1 = PI0 · PI1 · PI2 becomes unmasked, so the prob-
ability of fault PI1/1 is reduced to P ′(PI1/1) = 7/32, already computed in previ-
ous examples. Now suppose that the fault PI4/1 is approximated. Its approximation
condition has already been inferred in an example in section 5.3.1.4, and it is equal
to API4/1 = PI1 · PI4 · n8 (see Figure 5.11 for details). It must be noted that
API4/1 is referred to output PO1, while J ′PI1/1 has been computed with respect to
output PO0. Therefore, the effect of approximating the fault PI4/1 over PI1/1 has to
be computed by imposing the conditions API4/1 and J ′PI1/1 over the J-SMA of PI1/1
with respect to output PO1. This leads to the J-SMA J ′′PI1/1 = PI1 · PI4 · n8 as
indicated in the Figure 5.12, which has a probability equal to 3/16. But the impli-
cation process is not able to fully justify the restriction J ′PI1/1, and consequently a
correlation coefficient kA is derived. This is computed from the probability of the un-
justified restriction, conditioned to J ′′PI1/1. That is, kA = 1 − P (J ′PI1/1|J

′′
PI1/1) =

1−P (PI0 ·PI2) = 3/4. Finally, the probability of fault PI1/1 is updated, thus having
P ′′(PI1/1) = P ′(PI1/1)−P (J ′′PI1/1) · kA = 7/32− 3/16 · 3/4 = 5/64. There is a
little imprecision in the result, because the implication method is not able to find the de-
pendence between input PI2 and node n8, being 3/32 the real probability result. Again,
a more sophisticated implication method would be able to find more dependencies and
consequently probability estimations would be more accurate.

In the case of circuits with more than two outputs, the probability updating is done
in a similar way. In the general case, for each output Ok the probability of the set of
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conditions defined in the formula 5.4 have to be computed, which can be expressed as

P (hk ∩Agk

⋂
j<k

J ′hj

⋂
i,j 6=k

(hk ∩Afij )) =

= P (J ′hk
) · P ((

⋂
j<k

(J ′hj
|J ′hk

)
⋂

i,j 6=k

(hk ∩Afij ))|J ′hk
) ≈ P (J ′hk

) ·
∏
j 6=k

kAkj

It must be noted that, in order to imply the J-SMA J ′hk
, all J-SMAs corresponding

to previous outputs (J ′hj
with j < k) should have been already computed. Again, if

some of these conditions are not properly justified, the implied J-SMA (J ′hk
) will be

incomplete, and its probability can be adjusted by a factor derived from these unjus-
tified conditions. In this case, this factor is obtained as a product of several partial
correlation coefficients kAkj

, one per output Oj . This is a simplification intended to
reduce computation complexity, as explained below. Once all the partial probabilities
have been computed, the probability of fault h is updated as

∆P (h) = −
∑
k

(P (J ′hk
) ·

∏
j 6=k

kAkj
)

As previously said, the probability of the J-SMA J ′hk
is adjusted by a factor derived

from all the conditions not justified during implication. In theory, this factor should be
computed as the probability of the intersection of all unjustified conditions, conditioned
to the set of assignments J ′hk

. But such computation presents some drawbacks, due to
the fact that the approximation conditions from different outputs may overlap. There-
fore, in order to accurately adjust the probability of the J-SMA, it would be required to
compute all cross terms, i.e., the joint probability that test vectors from hk are simulta-
neously unmasked by approximation conditions from two different outputs, and three,
and so on. But the computation complexity of such procedure grows exponentially
with the number of outputs, which is not practical. Alternatively, a simplification is
proposed to alleviate the computational cost. A partial correlation coefficient, kAkj

, is
computed per output by grouping all the unjustified conditions which refer to the same
output Oj , according to the formula

kAkj
=

{
1−

∑
i P (hh ∩Afij |J ′hk

) if j > k

1− P (J ′hj
|J ′hk

)−
∑

i P (hh ∩Afij |J ′hk
) if j < k

and the adjusting factor is obtained as the product of every kAkj
.

The computation of each correlation coefficient kAkj
is mathematically exact, be-

cause the approximation conditions referring to the same output are always disjoint.
But the interdependencies between the conditions from different outputs are neglected.
In practice, it is assumed that approximation conditions with respect to different out-
puts are independent between them. Although this assumption may not be true, and
therefore some little imprecisions can be made, it greatly simplifies probability com-
putations.
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5.3.3 Estimation of total error probability
The methodology for probability computation exposed in section 5.3.2 is intended to
guide an optimal selection of approximation candidates. On each iteration, the best
candidate is approximated, and probability of each remaining fault is incrementally
updated. In addition, this procedure allows to estimate the impact of approximating a
fault in the overall protection level of the circuit. This is achieved by aggregating all
incremental probabilities over every fault from each approximation made.

With this goal in mind, the concept of Total Error Probability (EP) is introduced.
Given a set Φ of faults fi of size n, the EP is the average probability that any fault
in Φ propagates to circuit outputs and therefore generates an error. This definition
corresponds to the formula

EP =

∑
i P (fi)

n
(5.6)

where P (fi) denotes the probability of testing fault fi. Here it is assumed for simplic-
ity that all faults have the same probability of occurrence, which may not be true. This
average can be weighted by probability of each fault occurrence, if such information
can be estimated. Do not confuse probability of fault occurrence (i.e., the probability
that a certain fault is generated within the circuit due to external factors) with proba-
bility P (fi) of testing that fault (which is the probability that, assuming a certain fault
appears in the circuit, this is propagated to primary outputs). In addition, only stuck-at
faults are considered in this work for the sake of simplicity. However, this average can
be extended to SETs by applying electrical and timing de-rating factors.

The previous definition can be used as a metric of error masking capabilities of
any given circuit. For a completely unprotected circuit, the contribution of each fault
to EP is equal to its fault probability. On the other hand, consider the same circuit
is implemented with a TMR scheme. In that case, the total error probability for the
set of faults from all three circuit instances is null because all of them are masked,
supposing that each fault can only affect a single instance. In an intermediate point, a
partial TMR scheme will have some faults completely masked which do not contribute
to EP, and others completely unprotected whose contribution to EP is equal to its fault
probability. From a global perspective, EP for a partial TMR scheme will be greater
than pure TMR, but lower than the same circuit without protection mechanisms.

The same concept can be applied to error masking schemes with approximate logic
circuits. In this case, the contribution of each fault to EP is not so simple as all or
nothing. Each fault may be totally or partially unmasked depending on which input
vectors are unprotected, i.e., which differ between target circuit and its approximate
versions. First, let us consider only faults within target circuit. If the set of unprotected
input vectors is denoted as A, then formula 5.6 transforms into

EP =

∑
i P (fi ∩A)

n
(5.7)

For a fault becoming an error it is not only necessary to propagate the fault to any
primary output, but in addition faulty outputs must hold a wrong value in any of other
two circuit instances, so the voting scheme gives a wrong result. Because of that the
contribution of any fault fi to EP is now computed as P (fi∩A), at least for faults from
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target circuit. Faults belonging to approximate instances require a special consideration
which is discussed later.

A represents the union of approximation conditions from every approximated fault.
As more faults become forced, more input vectors are included in A and therefore EP
grows. This is consistent with the previous reasoning. In a masking scheme with no
approximated faults all three instances are identical, which is equivalent to pure TMR,
and therefore A is the null set and EP=0. On the other hand, in a trivial approximation
all faults have been approximated, so A is the whole set of possible input vectors and
all faults can normally propagate to primary outputs. In this situation the contribution
of each fault to EP is maximum and equation 5.7 transforms into 5.6, exactly as in the
fully unprotected circuit. As EP tends to grow with the number of approximated faults,
it can be used as a metric of the approximation process overall progress. In practice, it
is used as the ending condition of the algorithm, as explained in section 5.3.4

As the approximation generation process consist in approximating faults one by
one, computing the incremental EP for each latest approximated fault is the preferred
way of keeping an estimation of total error probability. Consider a masking scheme
with already k approximated faults. In this point, EP has a value of EPk and the union
of approximation conditions of all k faults isAK . Now suppose an additional fault k+1
is approximated, whose approximation condition corresponds to Ak+1. Then the total
error probability for this new set of approximated faults can be computed as

EPk+1 =

∑
i P (fi ∩ (AK ∪Ak+1))

n
=

∑
i(P (fi ∩AK) + P (fi ∩Ak+1 ∩ fi ∩AK))

n

EPk+1 = EPk +

∑
i P (fi ∩Ak+1 ∩ fi ∩AK)

n
(5.8)

In other words, the incremental contribution of each fault to EP as a consequence of
the last approximated fault is the probability of those input vectors which newly allow
propagation for the considered fault. This is exactly the same value which is discounted
from each fault during the probability updating phase. Therefore, EP can be estimated
by simply aggregating all incremental probabilities computed for each approximated
fault during the whole process.

However, as faults may originate in any of the three instances, in theory EP should
be computed with respect to the whole set of faults within approximate circuits F and
H as well as the original circuit G. As previously said, a fault in one of the instances
may become an error only if correspondent output belonging to any of the other two
instances already holds a wrong value. It must be noted that, in absence of faults,
only approximate circuits may hold incorrect values, while target circuit always gives
the right result. Therefore, a fault in an approximate circuit may generate an error
only for those input vectors which test any of the approximated faults in the oppo-
site approximation. Let us split the set A of approximation conditions in two groups:
AF and AH , which represents the union of all approximated faults in the under- and
over-approximation respectively. In that way, faults in the under-approximation F may
generate an error just in AH , the set of approximation conditions belonging to over-
approximate circuit. Similarly, faults in the over-approximation H may induce an error
only in AF . But there are some faults in the approximate circuits that cannot produce
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an error in any case, and therefore its contribution to EP is always null. This is due to
the implication relationships existing between involved logic functions. Let us consider
a certain primary output O in all the three instances. In the absence of faults, possible
output combinations OfOgOh are the following: ”000”, ”001, ”011” and ”111”. The
first and last cases correspond to a TMR situation where all circuits give the same re-
sult and every fault is masked. Case ”001” implies that over-approximate circuit holds
an incorrect value, which happens with those input vectors belonging to AH . In this
situation, any 0→1 fault in either F or G which successfully propagates to primary
outputs will not be masked and therefore causes an error. Faults of type 1→0 in H
may propagate to primary outputs as well, but as their effect consist in correcting the
mismatch caused by fault approximation they cannot be observed, and therefore this
kind of faults do not contribute to EP in any case. Similarly, for those input vectors in
AF output ”011” is obtained, which implies that under-approxiation disagrees with the
other two instances. In this situation, faults of type 1→0 in either G or H which prop-
agates to primary outputs generate an error. On the contrary, faults 0→1 in F cannot
be observed in any case, and therefore they never contribute to EP. In conclusion, the
error probability extended to all instances is computed as follows

EP =

∑
G P (f0→1

g ∩AH) +
∑

G P (f1→0
g ∩AF )

n
+

+

∑
F P (f0→1

f ∩AH) +
∑

H P (f1→0
h ∩AF )

n

(5.9)

But incremental computation of this formula presents some issues. On first place, here
n represents the size of considered fault list, taking into account the three instances.
As faults are approximated, sections of approximate circuits are removed. Therefore,
some faults may no longer appear, effectively reducing the number n of possible faults
as approximation process progresses. But even more important is the fact that testing
conditions of faults in the approximate circuit may change during the approximation
process. The EP can be incrementally computed just for the set of faults in the original
circuit G because the fault list always has the same size n and testing conditions of
every fault in G remain always constant. In that situation, the contribution to EP of
each approximated fault (which has the effect of gradually expandingAF andAH sets)
can be easily computed in an incremental way. When faults in approximate circuits are
included into the equation, it is no longer true that testing conditions of all faults remain
constant. If a fault corresponding to the under-approximation F is forced, then AF

expands and the set of conditions that test each fault in F may either enlarge or reduce.
Contributions to EP of faults in both G and H can be incrementally computed, because
its testing conditions do not change, but that is not the case for faults in F. Some of the
input vectors included inAH may be no longer valid test vectors for any of the faults in
F, and therefore the intersection f0→1

f ∩AH should be recomputed again for each fault
in F. On the contrary, if a fault in H is approximated, the contribution to EP of faults in
either F or G can be incrementally computed, but not in the case of circuit H. For this
reason, it has been decided to implement EP computation just for the set of faults in
the target circuit.

It must be noted that EP is not a reliability measure on itself. It gives the average
probability of, assuming that any fault has appeared in the circuit, this generates an
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error. But in addition reliability takes into account the probability of fault occurrence,
which is correlated with circuit area. The larger a circuit is, the greater the probability
for a highly energetic particle to collide and cause a faulty transient pulse. Therefore,
fault approximation presents two opposed effects. On one hand, approximating any
fault tends to degrade fault masking capabilities of circuit thus increasing EP, which
is detrimental with respect to reliability. But on the other hand, it also tends to reduce
the size of approximate instances and subsequently the whole system, which is bene-
ficial for reliability as it diminishes the probability of fault occurrence. Which of both
effects prevails cannot be easily determined during approximation generation process,
but after circuit synthesis, and it depends on both the target circuit and the degree of
approximation. In an extreme case, it may happen that certain solutions have even
worse reliability than the original unmitigated circuit. This is more likely to happen
with heavily approximated instances and significant area overheads. In such cases, re-
liability can be improved by means of a combined detection and masking scheme. In
that way, all faults originated in any of approximate instances are either detected or
masked.

5.3.4 Approximation generation algorithm
Now all the different aspects about fault justification and probability computation have
been addressed, the full process for approximation generation can be explained. Figure
5.16 shows the general scheme of the approximation generation algorithm as a pseudo-
code. The process needs as inputs the target design G to be protected and an error
probability target EPT , and it generates a pair of approximate circuits that adjust to
given EP target. Following paragraphs will explain the different steps that the algorithm
contains.

First of all it is required to analyse unateness of target circuit, and perform any nec-
essary logic transformations in order to obtain a fully unate initial design. Right after,
two replicas of the unate version of target circuit are generated, which will become
the resulting approximate circuits. At this point there are no approximated faults yet.
Therefore, EP = 0 and the sets of approximation conditions AF and AH are null.

Later, the list of candidate faults is generated based on the structure of unate version
of target circuit. By default, only the compact fault list is considered, i.e., only the faults
which forces the sensitizing value at the inputs of each gate are considered, plus the
faults at primary outputs. The reason for this is that the opposite fault, which forces
the controlling value of the gate, is equivalent to some other fault located at output
of the gate. Nevertheless, the procedure could be easily adapted to the whole set of
faults within target design. And as usual, faults in stem lines are not considered, just
individual branches.

Next, fault probabilities are computed for the first time. This is performed by im-
plying each fault as explained in section 5.3.1 to obtain its justification frontier, and
then computing the probability of that J-SMA as told in section 5.3.2. These probabil-
ity values are supposed to be the superior limit of each fault, and they are stored for
comparison and updating.

Then, the main loop in the algorithm is entered. In each iteration, the best candidate
fault is selected and approximated, and probability of every remaining fault is updated,
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Input: Target design G, error probability target EPT

Output: Under-approximation F, over-approximation H
if G is binate then

Make G unate;
F← G, H← G, EP← 0;
AF ← ∅, AH ← ∅;
Create list of faults;
foreach fault fi in G do //Initial probability computation

Imply J-SMA(fi) in G;
Compute probability P(fi);

while EP < EPT and non-approximated faults remain do
Select best fault fA;
if fA is an under-approximate fault then

AfA ← imply fA in F;
foreach under-approximate fault fi in G do //Probability updating

Imply J-SMA((fi ∩AfA) ∩ (fi ∩AF )) in G;
P’(fi)← P((fi ∩AfA) ∩ (fi ∩AF ));
P(fi)← P(fi) - P’(fi);
Store J-SMA;

Update EP;
Approximate fA in F;
AF ← AF ∪AfA ;
foreach under-approximate fault fi in F do //Redundancy check

Imply J-SMA(fi) in F;
if fi is redundant then

Approximate fi
else //fA is an over-approximate fault

AfA ← imply fA in H;
foreach over-approximate fault fi in G do //Probability updating

Imply J-SMA((fi ∩AfA) ∩ (fi ∩AH)) in G;
P’(fi)← P((fi ∩AfA) ∩ (fi ∩AH));
P(fi)← P(fi) - P’(fi);
Store J-SMA;

Update EP;
Approximate fA in H;
AH ← AH ∪AfA ;
foreach over-approximate fault fi in H do //Redundancy check

Imply J-SMA(fi) in H;
if fi is redundant then

Approximate fi

Figure 5.16: Approximation generation algorithm
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as well as the error probability. The loop is repeated as long as estimated EP lies below
the target EP, or until every fault has been approximated. Following paragraphs explain
the steps of this loop in more detail.

First step in the main loop consists in selecting the best candidate fault fA among
the remaining faults, i.e., those which have not been yet approximated. The criteria
for fault selection is based in fault testability. In each iteration, the fault with minimum
probability value is selected. In case of several faults sharing the least probability value,
then the one among them which produces the highest area reduction is selected. This
is measured as the number of wires that would be removed in case of that fault being
approximated, i.e., the transitive fanin until multiple fanout points.

Once a fault has been selected for approximation, this is implied in the correspon-
dent approximate circuit in order to obtain the approximation conditions AfA for that
fault. This is required to update fault probabilities, which is the next step in the loop.
Only probability of faults of the same type than selected fault fA need to be recom-
puted, while faults associated with the opposite approximation are not affected by ap-
proximation of fault fA. For each fault fi, first the set of newly unmasked input vectors
is deduced, i.e., the set of conditions (fi ∩AfA) ∩ (fi ∩AF ) is implied. Once the jus-
tification frontier for this set of conditions is deduced, its probability is computed as
explained in section 5.3.2, thus obtaining a partial probability P’(fi). Then probability
of fault fi is updated by subtracting P’(fi) from the former value. And finally the im-
plied J-SMA is stored in order to facilitate future probability updatings as part of the
fi ∩AF term. After updating probabilites of all faults, the EP is updated too by adding
all the P’(fi) probabilities computed for each fault.

After probability updating, selected fault fA can be finally approximated in its cor-
respondent instance by replacing correspondent line with a logic constant. From this
point, fA belongs to the set of approximated faults AF if this is an under-approximate
fault or AH if it belongs to the over-approximation. But this logic transformation
may cause some other faults to be redundant. So at last, all other faults of the same
type as fA are re-implied in the correspondent approximate circuit, and those faults
which become redundant are marked as approximated as well. Approximated faults
are excluded from selection, implication and probability updating processes. And then
another iteration of the loop starts.

The ending condition of the loop is associated with EP estimation. When this is
equal or greater than the target EP, the algorithm ends. The current state of both under-
and over-approximate circuits constitute the result of the algorithm. Resulting circuits
have to be then synthesized in order to remove generated logic constants.

5.4 Node substitution
Up to this point, the approximation generation mechanism has been based on assigning
logic constants to certain lines within the replicas of the target circuit, which is equiva-
lent to force some stuck-at faults. In conjunction with a good fault selection heuristic,
this procedure has been proved to be useful with respect to the goal of achieving rea-
sonable protection levels against faults with reduced costs. Notwithstanding, with this
mechanism the set of reachable logic transformations is limited to the set of stuck-at
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faults within the target circuit, while other valid solutions are left.
With the aim of widen the set of reachable solutions, a new type of logic transfor-

mation is proposed: replacing a line with a functionally similar signal. This mechanism
is denoted as node substitution and its interest relies on finding logic transformations
that cannot be obtained by fault approximation. The idea is to use both mechanisms
together to generate approximate circuits. It must be noted that substitution is limited
to the approximate circuit itself. In other words, it does not imply logic sharing with
the target circuit or between approximate instances.

Identifying functionally similar nodes may seem a difficult task, but the approxi-
mation generation method based on dynamic testability measures provides some useful
tools. In particular, advantage can be taken on fault implications performed during the
generation of approximations. When a given fault is implied, a set of assignments is in-
ferred that allow activation and propagation of that fault. Each pair of such assignments
represents in fact an implication relationship and therefore a possible substitution. For
the sake of simplicity, let us just consider substitutions of the fault injection point with
any other line which receives an assignment. If it is assumed that the line where a
given fault f is located is identified by its source node s and its destination node d and
v denotes the activating value of fault f , then it can be referred to as f : s → d/v.
Implication of such fault will generate assignments in certain circuit nodes ni of value
vi. Each one of those assignments denotes a potential substitution candidate. If vi = v,
then source node s could be replaced with ni. In the opposite case of vi = v, then s
could be substituted with ni, that is, inserting an inverter. These kinds of substitutions
are denoted respectively as direct and inverting. As an example, consider the circuit in
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O2

(a) Example circuit
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1

1

1

1

1

(b) Implication of fault n1/0

Figure 5.17: Example of node substitution

Figure 5.17a and let us suppose that fault n1 stuck-at 0 is implied. According to the
procedure described in section 5.3.1, first controllability and observability conditions
are identified (n1=1 and c=0). These values are then justified, thus obtaining the set of
assignments in Figure 5.17b. Every node which has received an assignment indicates a
candidate substitution with respect to node n1, which has been set to 1. Therefore, ev-
ery other line with the same logic value (a, b, n2 and n3) would replace n1 with a direct
substitution. On the contrary, input c is assigned to the opposite logic value, so in this
case an inverting substitution would be performed. In the case of faults propagating to
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multiple outputs, a particular node ni will be a suitable candidate for substitution only
if the same value vi is inferred with respect to every relevant output. In other words,
the intersection of the sets of assignments resulting from implication of fault f with
respect to each individual output has to be performed first.

Not all potential substitutions are valid candidates, however. There are several
restrictions which must be taken into account in order to preserve certain circuit prop-
erties. These are now listed, and applied to current example:

• First of all, it must be ensured that the result of any logic transformation is either
an under- or an over-approximation with respect to target circuit, similarly to the
line approximation approach. For this reason, the parities of involved nodes must
be coherent. In a direct substitution, that is, vi = v, the outputs of both replaced
node s and replacing node ni must have the same parity. On the other hand,
in an inverting substitution with vi = v, both node outputs must have different
parity values due to the addition of an inverter. Primary inputs are an exception
to this rule, because they are not required to be unate. In the example of Figure
5.17 it can be seen that all potential substitutions are valid according to this rule.
All lines have the same parity because there are no inverting gates in the whole
circuit and all lines receive the same value with the only exception of primary
input c. If node c had not been a circuit input, then substituting n1 with c would
not meet the parity constraint and therefore it would not be valid.

• Asynchronous combinational feedback loops are forbidden. For this reason, all
nodes in the output cone of implied fault f are excluded. In current example,
only output O1 is affected.

• Substitutions have to be performed in such a way that critical the path should not
increase with respect to the target circuit. Although delays can only be precisely
computed by means of logic synthesis, an estimation based in circuit topology
is used instead. A level is assigned to each node in such a way that this is al-
ways greater than any other node in its input cone. Only substitutions where the
destination node d has greater or equal level than the source node s are allowed.
According to this rule, the output O1 must be excluded in the current example.

• To avoid substitutions which are equivalent to a line approximation, all side in-
puts of every node in the fanout cone of the considered fault f are excluded. In
the current example, primary inputs a, b and c are affected. It is true that node n1
could be replaced with any of these signals to obtain a valid approximate circuit,
but the same result can be obtained by simply approximating a certain fault in
the target circuit.

• Finally, area overhead must be taken into account. A node substitution is only
interesting if the logic transformation effectively reduces circuit area, the con-
trary will result in a degradation of functionality without obtaining any benefits
in terms of resource utilization. For this reason, the replaced node s should not
be a multiple fanout point.
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Figure 5.18: Example of node substitution

In summary, all potential substitutions originated from fault n1/0 are not suitable,
with the only exception of node n3. That is, n3 is the only valid substitution discov-
ered from n1/0 implication in order to replace node n1. Substitution is performed by
connecting node n3 to n2 (see Figure 5.18a) and removing the line from n1 to n2. Note
that the connection from c to n2 becomes redundant because of the new connection.
Therefore, both lines can be removed, thus obtaining the circuit in Figure 5.18b. In this
example the same result could have been obtained by approximating fault a suck-at 1
and following a logic optimization step, but this demonstrates that the node substitution
technique is compatible with line approximation approach.

When substituting a circuit node with another, a discrepancy is originated with re-
spect to the target circuit. In order to decide whether performing the substitution is
adequate or not, the difference due to logic transformation has to be somehow evalu-
ated. In practice, it can be quantified by computing the probability of the virtual fault
fsubs : ni → d/v. This is the fault associated to node substitution, or in other words,
the substitution fault. It must be noted that this probability is computed before perform-
ing the correspondent logic transformation. Therefore, the implication mechanism has
to be able to test a virtual fault, that is, a fault located in a line that does not really exist.
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Figure 5.19: Implication of substitution fault n3→n2/0
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In the current example, differences between the target circuit of Figure 5.17a and
the approximation resulting from substituting node n1 with n3 (see Figure 5.18b) are
computed as the probability of substitution fault n3→n2/0. This is located at the ad-
ditional connection of Figure 5.18a but, because probability computation is performed
prior to node substitution, such line is virtual, and therefore it is represented in the
Figure 5.19 as a discontinuous line. Notwithstanding, implication is made as usual.
Controllability condition n3=0 is assigned to the source node of the fault injection
point, while observability conditions are applied to fault dominators, resulting in as-
signments c=0 and n1=0. This initial set of mandatory assignments is shown in Figure
5.19a. Then they are propagated through the circuit by direct implication. Assign-
ment n3=1 is justified by b=1 because input c is already set to 0. At the same time,
this causes assignment a=0 to be inferred as the only way of justifying n1=0. Finally,
the output O1 receives a value based on the real inputs of node n2 (the connection
from n3 to n2 is virtual and does not really exists). This process is shown in Figure
5.19b. In the end, the justification frontier a=0, b=1, c=0 is obtained, with a probability
of 1/8. This can be verified by comparing the logic functions for output O1 in both
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c
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Figure 5.20: Karnaugh maps for output O1 before and after node substitution

target circuit (see Figure 5.20a) and approximation with node substitution (in Figure
5.20b). Among the 8 possible input combinations, differences can be observed in just
one of them. In addition, this demonstrates that the resulting circuit of Figure 5.18b
is an over-approximation with respect to target circuit because it expands its on-set.
In fact, this logic transformation is based on the implication relationship n3=0⇒n1=0,
i.e., O1 ⇒ Ô1, which is the definition of over-approximation given in section 2.2.
It must be noted that substitution of node n1 with n3 produces an approximation of
the opposite type to the elimination fault n1/0. That is, fault n1/0 produces an under-
approximation. In conclusion it can be inferred that, given an unidirectional fault f ,
any approximation by substitution deduced from it according to the rules defined previ-
ously and which preserves the unateness of target circuit would be of the opposite type
to f . This fact requires some modifications to the approximation generation algorithm
as it is next explained.

Integration in the main approximation algorithm introduced in section 5.3.4 is
based on reusing implication of basic stuck-at faults in order to infer potential substi-



5.4. NODE SUBSTITUTION 91

foreach fault fi in G do
Imply J-SMA(fi) in G;
Compute probability P(fi);
Identify valid substitution faults fsub,i;
foreach substitution fault fsub,i do

Imply J-SMA(fsub,i) in G;
Compute probability P(fsub,i);
Include fsub,i in the list of faults;

Figure 5.21: Initial probability computation with node substitution

tutions. Figure 5.21 shows the modifications over the initial step of the approximation
generation algorithm in 5.16 required to implement node substitution. After each cir-
cuit fault is implied, potential substitutions are identified from it. Whenever a valid
node substitution is discovered, it is implied and its probability is computed as usual.
Finally, the correspondent substitution fault is included in the list of candidate faults. If
a node substitution is selected as the next fault to be approximated, its approximation
conditions are inferred and applied to all the remaining circuit faults as usual. It must
be noted that inferred potential substitutions are only valid until the approximate circuit
is modified. When a new approximation candidate is selected, all previous substitution
faults associated to that approximate circuit are removed from the fault list and new
candidates have to be inferred.

foreach fault fi in F do
Imply J-SMA(fi) in F;
if fi is an under-approximate fault then

if fi is redundant then
Approximate fi

else //fi is an over-approximate fault
Identify valid substitution faults fsub,i;
foreach substitution fault fsub,i do

Imply J-SMA(fsub,i) in G;
Compute probability P(fsub,i);
Include fsub,i in the list of faults;

Figure 5.22: Redundancy checking step with node substitution

Therefore, on each iteration of the algorithm the process of identifying potential
substitutions and evaluating its probabilities has to be repeated. In these cases impli-
cations performed with the aim of updating fault probabilities are not useful due to the
intersection with approximation conditions of current approximated fault, which limits
the scope of each fault. In addition, logic functions of target and approximate circuits
differ, so it is better to identify potential substitutions in the same circuits where such
transformations are performed. In conclusion, new substitutions have to be inferred by
implying faults in the approximate circuit. In the approximation generation algorithm
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there is a step where all faults are re-implied in the correspondent approximate circuit
right after approximating a fault with the aim of detecting redundancies. Therefore,
this redundancy check can be reused to discover potential substitutions. But it was
previously explained that all substitutions inferred from a particular fault f generate
an approximation of the opposite type to f . That is, in the under-approximation it is
required to imply over-approximate faults with the goal of inferring logic transforma-
tions which agree with considered approximate circuit and vice-versa. In conclusion, in
the redundancy check step implication have to be extended to all faults independently
from their types. Figure 5.22 shows the changes in the redundancy check step required
with respect to the under-approximate circuit. For the over-approximation changes are
analogous. Implication is extended to faults of all types. For those faults of the same
type than considered circuit, redundancy check is performed as usual. Faults of oppo-
site type are implied to identify potential substitutions, and any valid transformation is
included in the list of faults and its probability is evaluated as usual.

With respect to the fault selection heuristic, two of them are proposed to use in
conjunction with the node substitution approach:

• Heuristic 1. This is the classical heuristic proposed for the basic method with
dynamic testability measures. It is based on the criteria of minimum fault prob-
ability. If there are several candidates with the lowest value, the one which pro-
duces the greatest reduction in area is selected. Area savings are quantified as the
net reduction in the number of connections if a particular logic transformation
is performed. It must be noted that in the case of substitution faults an addi-
tional connection is generated. This criteria favours logic transformations with
minimal impact on reliability.

• Heuristic 2. An alternative criteria is proposed apart from the classical one. This
new criteria is based in the ratio between fault probability and area savings. The
lowest values in this ratio are selected, with the idea of approximating the most
cost-effective faults.

The node substitution technique is presented as a complement of the basic approxi-
mation generation approach based on dynamic testability measures. It has the capacity
of greatly expanding the range of possible solutions. But it is also a novel idea which
needs further development in order to exploit all its potential. Some possible improve-
ments consist in expanding the scope of candidate substitutions apart from those where
the fault injection point is replaced with any other line. Besides, faults in the additional
lines generated due to node substitutions should be later included in the list of faults
with the idea of allowing their approximation with the classic approach or inferring
additional substitutions.

5.5 Experimental results
This section deals with experiments performed for both techniques explained in this
chapter. Experimental results are presented and subsequently discussed.

The section is structured as follows. First, subsection 5.5.1 summarizes the exper-
imental set-up, including benchmark selection, approximation generation process and
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configuration of tests. Subsection 5.5.2 presents the results of experiments performed
for approximation generation with dynamic testability measures and discuss them. Fi-
nally, subsection 5.5.3 does likewise in the case of the node substitution technique.

5.5.1 Experimental set-up
Experiments have been conducted with a group of benchmarks from LGSynth93 set.
For the approximation method based on dynamic testability measures, up to 23 circuits
have been chosen: alu1, alu2, b1, b9, b12, c17, c432, c880, c1908, c3540, cmb, cordic,
dalu, frg1, frg2, i2, m4, rd73, rd84, s444, term1, unreg and x1. For each benchmark,
approximate circuits with several error targets have been generated, thus resulting in
different error masking solutions. With respect to the experiments on the node substi-
tution technique, these have been performed with a subset of these benchmarks: alu1,
alu2, b1, b9, b12, c17, c432, c880, cmb, frg1, i2, rd73, rd84, s444, term1 and un-
reg. Several error masking solutions with different error targets have been generated
too and, in addition, for some of these circuits approximations have been generated
with the alternative fault selection criteria introduced in section 5.4. Experiments have
consisted in stuck-at fault simulation campaigns by means of parallel simulator HOPE
with random input vectors. In this case stuck-at faults have been preferred as the test
vehicle instead of SETs in order to evaluate the accuracy of probability estimations in
the approximation generation algorithm. This way, logical masking is the only allowed
mechanism for fault mitigation. Notwithstanding, the results can be easily extended to
SETs by applying appropriate de-rating factors.

The experimental set-up for both proposed techniques is summarized in the dia-
gram of Figure 5.23. The process starts with a description of target circuit in BENCH
format. First of all, this circuit is optimized by synthesis. To this purpose, the tar-
get circuit is first translated to verilog format by means of ABC synthesizer [47],
then it is synthesized with the aid of Synopsys software against the logic cell library
SAED90nm [48] and finally the resulting netlist is translated again to BENCH format
by means of a custom made VHDL parser. The idea behind this initial step is to start
the approximation process on a simplified circuit, as it is used in practice, and in the
format required by our tools.

Later, a parity analysis according to the algorithm detailed in section 3.2 is per-
formed over the optimized target design. At the same time, unate expansion is per-
formed in the case of binate circuits as explained in section 3.4, including expansion of
XOR and XNOR gates. Then the list of faults within target unate circuit is generated,
which is later used in experiments. Next, approximate instances of target circuit are
generated based on its unate version and the error target specified by the user, accord-
ing to the algorithms previously described either in section 5.3.4 or 5.4. One under-
and over-approximate circuits are generated simultaneously on each execution of the
approximation algorithm, which are described in BENCH format. All this steps are
performed by means of a custom made BENCH parser. This format does not allow
logic constants, and therefore approximation of faults are handled in the following
way. Two additional inputs, VCC and GND, are created for the approximate circuits,
which corresponds to logic values 1 and 0 respectively. Whenever a fault is approxi-
mated the corresponding line is then substituted by a connection with either VCC or
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Figure 5.23: Experimental set-up with HOPE

GND, depending on the fault value.
After approximate circuits have been generated, they have to be synthesized in

order to remove logic constants. This is done in the following way. First, approximate
circuits are translated into Verilog format by means of ABC synthesizer. Resulting
modules are individually encapsulated into a VHDL design which assigns the proper
logic values to VCC and GND inputs, thus making the process user-friendly. After this
step, each design is individually synthesized in order to avoid logic sharing. Synthesis
are performed by means of Synopsys software with the logic cell library SAED90nm.
Finally, resulting netlists are translated again to BENCH format by using the same
VHDL parser as before.

The final step consist in generating the error masking system by grouping the unate
version of target circuit and both optimized approximations in a TMR-like scheme.
This step is performed by the BENCH parser, which is in charge of generating the
proper voting logic for each triad of corresponding primary outputs, taking into account
if any of them has been approximated in order to optimize the additional logic. As a
result, the final circuit under test is obtained. This CUT is then tested by means of
HOPE simulator, using the list of faults previously generated.
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As said before, fault simulation campaigns have been performed with HOPE sim-
ulator. On each one of these tests, 50000 randomly generated input vectors have been
applied. For each input vector, every fault within the initially generated list has been
simulated. With respect to these experiments, the collapsed list of faults in the target
circuit has been generated. Faults in the approximate circuits are not considered, with
the aim of validating the assumptions for which EP is estimated in the approximation
generation algorithm. The goal is therefore evaluating the accuracy of probability esti-
mations. At the end of simulation, HOPE returns the number of faults detected by each
input vector, among those included in the given fault list. The experimental error prob-
ability has been calculated as the average number of faults detected per input vector,
divided by the size of the fault list, according to equation 5.6. For simplicity, all faults
were considered equally likely.

5.5.2 Results on dynamic testability measures
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Figure 5.24: Comparative of error probabilities for c17 benchmark

To show the error probability prediction capabilities of the approximation genera-
tion algorithm with dynamic testability measures, c17 benchmark has been analysed in
depth as a case study. The full example is described in detail in appendix A.4, where
every step of the algorithm applied to this example is explained. Only the results of all
generated solutions are commented here. Figure 5.24 shows the correlation between
the area overhead due to each pair of generated approximate circuits with respect to the
original design and the error probability obtained when implementing an error masking
scheme with them. The labels report the error target specified to obtain correspondent
points. The reported area overhead is based on the number of cells of each circuit. On
the other hand, EP measures obtained from three different ways are reported: probabil-
ity values predicted by the approximation generation algorithm (Estimated EP), those
obtained through fault simulation with random input vectors (Experimental EP) and
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Bmk. Gates Error probability (%) Area overhead (%)
Target Estimated Real Error Over Under

alu1 31

100 21.65 21.31 -0.33 0 0
10 10.29 10.28 0.02 15.67 30.20
5 5.15 5.14 0.01 66.87 53.07
1 1.19 1.18 0.01 100 80.24

alu2 264

100 7.14 4.35 2.79 0 0
4 4.06 2.62 1.44 31.27 77.06
2 2.01 1.55 0.46 67.27 77.06
1 1.07 0.94 0.13 93.25 84.34

b1 4

100 26.79 26.85 -0.06 0 0
20 21.43 21.40 0.03 14.29 14.29
10 10.71 10.74 -0.03 50 50
5 5.02 5.00 0.02 50 100

b9 88

100 15.08 15.05 0.03 0 0
10 10.09 10.09 0 5.16 7.75
5 5.02 5.00 0.02 28.20 21.28
1 1.02 1.12 -0.10 77.23 78.42

b12 66

100 12.36 13.86 -1.50 0 0
6 6.55 7.91 -1.36 8.33 15.99
3 3.11 4.13 -1.02 30.99 23.35
1 1.03 1.19 -0.17 55.62 70.32

c432 131

100 10.82 6.63 4.19 0 0
6 6.23 4.91 1.32 94.29 16.16
4 4.06 3.32 0.74 102.71 82.21
2 2.02 1.85 0.17 104.10 96.65
1 1.02 1.14 -0.12 97.63 100.20

c880 216

100 10.27 10.60 -0.33 0 0
5 5.01 4.51 0.50 22.54 41
2 2.00 1.38 0.62 66.14 89.96
1 1.00 0.64 0.36 94.74 118.26

c1908 201

100 15.10 11.42 3.67 0 0
10 10.38 9.77 0.61 6.58 71.34
5 5.00 6.28 -1.28 39.46 69.17
1 1.01 1.23 -0.22 78.23 76.83

c3540 717

100 19.65 6.52 13.13 0 0
15 15.01 3.00 12.01 100.60 3.16
10 10.84 2.27 8.57 100.60 117.39
5 5.01 1.32 3.69 100.60 128.15
1 1.02 0.39 0.63 100.60 124.30

cmb 31

100 6.47 6.67 -0.20 0 0
2 2.03 2.03 0 0 44
1 1.36 1.36 0 18.87 45.35

0.03 0.03 0.03 0 30.52 45.35
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Bmk. Gates Error probability (%) Area overhead (%)
Target Estimated Real Error Over Under

cordic 79

100 2.16 1.75 0.41 0 0
1 1.14 0.81 0.33 16 25.43

0.5 0.51 0.24 0.27 38.08 38.81
0.1 0.10 0.08 0.02 80.16 69.37

dalu 523

100 14.88 5.49 9.40 0 0
10 10.17 3.09 7.08 71.24 77.14
2 2.05 0.87 1.18 95.65 77.14

0.2 0.20 0.06 0.14 102.13 95.81

frg1 177

100 2.94 2.73 0.21 0 0
1.5 1.50 1.26 0.24 3.70 14.36
1 1.00 0.94 0.06 42.07 51.07

0.1 0.11 0.17 -0.06 61.77 51.07

frg2 629

100 15.76 14.94 0.81 0 0
10 10.03 9.72 0.31 12.99 13.83
6 6.40 6.27 0.14 42.49 23.79
1 1.09 1.55 -0.46 52.20 39.66

0.5 0.50 0.71 -0.21 52.87 57.96
0.2 0.25 0.32 -0.07 59.28 56.23
0.1 0.10 0.20 -0.10 79.47 79

i2 91

100 0.33 0.40 -0.07 0 0
0.1 0.123 0.180 -0.057 0 3.96
0.01 0.019 0.032 -0.013 0 24.49

0.001 0.001 0.005 -0.004 41.20 43.80

m4 335

100 5.73 6.54 -0.81 0 0
5 5.11 6.02 -0.91 2.75 2.45
3 3.00 4.22 -1.22 13.03 22.93
1 1.01 1.87 -0.86 64.53 55.35

rd73 20

100 14.73 20.49 -5.76 0 0
10 10.32 16.56 -6.24 88 0
6 6.21 10.22 -4.01 109.85 71.48
1 1.02 3.37 -2.35 109.85 94.76

rd84 26

100 19.62 20.45 -0.82 0 0
10 10.36 14.23 -3.87 109.47 0
6 6.01 9.51 -3.50 114.66 72.09
1 1.05 2.55 -1.50 108.98 110.34

s444 97

100 19.22 17.98 1.25 0 0
10 10.11 9.62 0.49 19.12 7.64
5 5.04 5.34 -0.30 48.03 19.85
1 1.03 1.20 -0.16 93.11 84.92

term1 177

100 4.79 4.33 0.46 0 0
2 2.00 1.84 0.17 4.25 2.96
1 1.01 1.08 -0.07 10.80 6.66

0.1 0.12 0.12 -0.01 52.61 59.81
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Bmk. Gates Error probability (%) Area overhead (%)
Target Estimated Real Error Over Under

unreg 83

100 22.40 22.26 0.14 0 0
18 18.00 17.85 0.15 0 17.99
5 5.63 5.75 -0.12 43.93 17.99
1 1.03 0.95 0.08 100 64.42

x1 329

100 8.96 8.56 0.40 0 0
5 5.02 4.65 0.37 5.57 12.87
2 2.09 1.90 0.19 23.61 23.57
1 1.02 1.00 0.02 27.96 26.15

0.1 0.10 0.11 0 58.02 58.73
Table 5.3: Experimental results with dynamic testability measures

the real probability values resulting from exhaustive simulation (Theoretical EP). It
can be seen that all three methods give practically identical results. The estimated EP
values coincide exactly with the theoretical ones, while the experimental EP presents a
maximum deviation of 0.1% due to the random selection of test vectors.

Table 5.3 contains the results of fault simulation experiments with dynamic gener-
ation of approximate logic circuits, grouped by benchmark. First columns on the left
shows the name of each benchmark and its size in number of logic gates. Then the
different error targets applied on each benchmark appear, followed by the error prob-
ability estimated in each case by the approximation generation algorithm. It can be
appreciated that the estimated EP is always equal or greater than target EP, except in
those cases where the trivial approximation is obtained. Next the experimental error
probability obtained through fault simulation is shown, along with the error in the esti-
mation of EP. Minor discrepancies in the EP deviation can be observed due to rounding
errors. The last two columns show the area overhead due to each one of the approx-
imate versions of the circuit with respect to the combinational area of target design
prior to unate expansion. These data are obtained from the synthesis steps performed
for logic optimization.

In general, the approximation generation algorithm estimates accumulated error
probabilities with a reasonably good accuracy, although noticeable differences can be
appreciated depending on each circuit. For example, in benchmarks alu1, b1, b9, cmb,
i2 and unreg probabilities are estimated with high accuracy, with absolute error mar-
gins lower than 0.33%. In particular, alu1 and cmb benchmarks are predicted almost
perfectly, with the only exception of the trivial approximation. On the other hand, in
benchmarks such as c432, c3540, dalu and rd73 probability estimations tend to be very
poor, specially with high error targets, close to the trivial approximation. In conclusion,
accuracy of EP estimations are strongly influenced by circuit structure. From data in
Table 5.3 it can be seen that probability estimations in small circuits (for example alu1,
b1, b9, cmb, cordic, i2 or unreg) tend to be more precise than in the case of large cir-
cuits (such as c1908, c3540 or dalu). Despite of this, there are large circuits which are
predicted with reasonably good accuracy, such as c880, x1 or frg2. The last bench-
mark is represented in Figure 5.25 to illustrate this. The graphic shows the trade-off
between error probability and the combined area overhead due to both approximations
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for the whole set of solutions tested in the experiments for benchmark frg2. Both es-
timated and experimental EP are shown for each error target, and it can be seen that
predicted values are very close to the real ones, with a maximum deviation of 0.81%.
With respect to area, the results show that low error rates can be achieved with limited
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Figure 5.25: Comparative of error probabilities for frg2 benchmark

resources. For example, in b9 benchmark a 10% error rate can be obtained (i.e., 90%
of errors are masked) with an area overhead smaller than 13%. If larger circuits are
considered, a 6% error probability is obtained for m4 benchmark with around 5% area
overhead, 1.5% EP with 18% additional area in the case of frg1, or less than 2% error
rate with around 7% extra area for term1. On the other hand, there are some approxi-
mate circuits with an area overhead greater than 100%. This is the case of c432, c880
at 1% error target, c3540, dalu at 0.2%, rd73 and rd84. This phenomenon is due to
the unate expansion. In circuits with a high degree of binateness many nodes have to
be duplicated, and it may happen that even after approximating several faults resulting
approximations are bigger than the original circuit, specially with low error targets. In
such cases it is recommended to discard approximate circuits and use a classic TMR
solution instead. In addition, it can be seen that in this kind of circuits probabilities
tend to be more difficult to estimate. In conclusion, probability estimations work better
in unate circuits, or in those with low degree of binateness.

5.5.3 Node substitution results

First, in order to show the potential benefits of the node substitution technique with
respect to the simple fault approximation approach, a detailed comparison of the se-
quence of approximations produced with and without substitution for c17 benchmark
is presented. Results are graphically shown in Figure 5.26, depicting the different
points in the design space reached along the approximation process for each approx-
imation mechanism, considering the experimental error probability and the combined
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Figure 5.26: Comparative of approximation mechanisms for c17 benchmark

area overhead of both generated approximate circuits. In the cases where node sub-
stitution is allowed, heuristic number 1 has been applied, i.e., preference is given to
faults with lowest probability. Initially, approximate circuits are exact replicas of target
design with 0% EP and 200% area overhead, and as approximation progresses error
probability increases while area overhead diminishes. Therefore, the approximation
process proceed from right to left. In this case, it can be observed that including node
substitution along with fault approximation generally produces equal or better results
than just the basic approximation mechanism. In some points node substitution can
reach a better solution in terms of either area overhead or error probability, showing
that more optimal points in the solution space can be reached thanks to the node sub-
stitution. Nevertheless, eventually both approaches converge. It can be seen as well
that node approximation produces at a certain point a suboptimal solution where both
EP and area overhead increase due to a particular logic transformation, although this is
immediately corrected in the next step.

Table 5.4 shows the results of simulations performed with approximate logic cir-
cuits generated with node substitution by applying heuristic 1. In this heuristic faults
with minimum probability are approximated, and in case of a draw the fault with pro-
duces the greatest area saving is selected. The table shows for each benchmark and er-
ror target combination the experimental error probability and the combined area over-
head of each pair of generated approximate circuits. These data are compared with
those correspondent to the approximation generation method without substitution, in-
ferred from table 5.3. The results show that node substitution with the classical fault
selection criteria has a marginal improvement over the original approach with dynamic
testability measures. There are some concrete cases where better results in terms of
area or error probability are obtained, such is the case of b9 with an error target of 1%
(where with a similar EP of about 1.13%, area overhead diminishes in around 14%
with node substitution) or c432 approximated at 6% (2.67% EP with node substitution
against 4.91% without it for an area overhead a 2% smaller in case substitution is al-
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Bmk. Gates
Error Node substitution Fault approximation
Target EP (%) Area EP (%) Area

(%) ov. (%) ov. (%)

alu1 31

100 21.31 0 21.31 0
10 10.74 52.13 10.28 45.87
5 5.26 112.30 5.14 119.94
1 1.08 188.46 1.18 180.24

alu2 264

100 4.34 0 4.35 0
4 2.54 124.11 2.62 108.33
2 1.79 161.66 1.55 144.33
1 0.63 225.95 0.94 177.59

b1 4

100 26.75 0 26.85 0
20 21.43 28.57 21.40 28.57
10 10.67 100 10.74 100
5 6.25 150 6.26 150

b9 88

100 15.06 0 15.05 0
10 10.10 12.92 10.09 12.92
5 5.07 50.93 5 49.48
1 1.14 141.30 1.12 155.65

b12 66

100 13.85 0 13.86 0
6 7.52 27.53 7.91 24.32
3 3.87 58.03 4.13 54.34
1 1.19 125.94 1.19 125.94

c432 131

100 6.61 0 6.63 0
6 2.67 108.03 4.91 110.45
4 1.68 208.44 3.32 184.93
2 0.67 226.88 1.85 200.75

c880 216
5 3.76 103.15 4.51 63.54
2 1.63 192.54 1.38 156.09
1 0.95 226.01 0.64 213.01

cmb 31

100 6.68 0 6.67 0
2 2.03 44 2.03 44
1 1.36 64.22 1.36 64.22

0.03 0.03 75.87 0.03 75.87

frg1 177
1.5 1.21 62.26 1.26 18.05
1 0.06 130.83 0.94 93.14

0.1 0.04 131.47 0.17 112.84

i2 91 0.01 0.031 24.49 0.032 24.49
0.001 0.005 85 0.05 85

rd73 20 6 11.69 187.57 10.22 181.33
1 3.38 204.61 3.37 204.61

rd84 26 10 9.87 177.13 14.23 109.47
1 1.59 208.74 2.55 219.31



102 CHAPTER 5. APPROXIMATION USING DYNAMIC TESTABILITY MEASURES

Bmk. Gates
Error Node substitution Fault approximation
Target EP (%) Area EP (%) Area

(%) ov. (%) ov. (%)

s444 97

100 17.96 0 17.98 0
10 9.15 43.84 9.62 26.76
5 5.13 107.39 5.34 67.88
1 4.34 132.46 1.20 178.03

term1 177

100 4.33 0 4.33 0
2 1.93 7.29 1.84 7.20
1 1 21.60 1.08 17.46

0.1 0.10 114.57 0.12 122.42

unreg 83

100 22.26 0 22.26 0
18 17.91 17.99 17.85 17.99
5 5.70 61.92 5.75 61.92
1 0.97 164.42 0.95 164.42

Table 5.4: Experimental results with node substitution

lowed). But in the general case the results obtained with both approaches are pretty
similar, or even identical in the case no node substitutions are performed. This indi-
cates that in order to appreciate clear differences, an alternative fault selection heuristic
which favours node substitutions should be applied. On the other hand, there are some
cases where node substitution achieves worse results than with the classic approach, for
example with alu2 approximated at 4%, or frg1 with an error target of 1.5%. That can
be originated by either the local minima problem or the inability of approximating addi-
tional faults that appear due to node substitutions, which is pendant to be implemented.
Finally, similarly to the approach without substitution, there are some solutions that ex-
ceed the limit of 200% area overhead due to the unate expansion. When this happens
implementing a classic TMR instead is preferable.

The results of experimental error probability and combined area overhead for node
substitution with heuristic number 2 are shown in Table 5.5. Correspondent data from
heuristic 1 in Table 5.4 and approximation generation method without substitution from
Table 5.3 are included for the sake of comparison. This shows no clear winner. For
instance, heuristic 1 is clearly better in the case of c17 at 14% target, producing both
less error and less overhead, whereas heuristic 2 is clearly better in the case of b9 at
5% target (with reduced area overhead with respect other two solutions), or b12 with
6% error target (where both EP and area overhead are the lowest). It must be noted that
in some cases one the two aspects, either the error probability or the area overhead,
improves at the expense of the other. For some cases, all three approaches give exactly
the same results (for example, cmb at any error target or unreg at 1%). The reason
is that no interesting substitutions are found in those cases, or that there are several
approximations which finally converge to the same result.



5.6. CONCLUSIONS 103

Bmk.
Error Node substitution 1 Node substitution 2 Fault approximation
target EP (%) Area EP (%) Area EP (%) Area
(%) ov. (%) ov. (%) ov. (%)

alu1

100 21.31 0 21.32 0 21.31 0
10 10.74 52.13 10.28 45.87 10.28 45.87
5 5.26 112.30 5.05 115.50 5.14 119.94
1 1.08 188.46 1.09 180.15 1.18 180.24

b9

100 15.06 0 15.05 0 15.05 0
10 10.10 12.92 10.18 19.89 10.09 12.92
5 5.07 50.93 5 41.35 5 49.48
1 1.14 141.30 1.09 159.84 1.12 155.65

b12

100 13.85 0 13.86 0 13.86 0
6 7.52 27.53 6.11 22.63 7.91 24.32
3 3.87 58.03 3.12 77.07 4.13 54.34
1 1.19 125.94 1.17 119.36 1.19 125.94

c17

100 26.97 0 26.97 0 26.93 0
20 24.25 14.19 22.25 28.83 21.13 53.23
14 14.73 47.78 16.43 67.46 14.49 77.07
7 7.06 148.24 8.59 115.70 7.02 148.24

cmb

100 6.68 0 6.67 0 6.67 0
2 2.03 44 2.04 44 2.03 44
1 1.36 64.22 1.35 64.22 1.36 64.22

0.03 0.03 75.87 0.03 75.87 0.03 75.87

s444

100 17.96 0 17.94 0 17.98 0
10 9.15 43.84 8.62 29.35 9.62 26.76
5 5.13 107.39 5.87 58.98 5.34 67.88
1 4.34 132.46 1.13 181.21 1.20 178.03

term1

100 4.33 0 4.33 0 4.33 0
2 1.93 7.29 1.81 14.53 1.84 7.20
1 1 21.60 0.97 21.90 1.08 17.46

0.1 0.10 114.57 0.07 118.77 0.12 122.42

unreg

100 22.26 0 22.26 0 22.26 0
18 17.91 17.99 22.27 0 17.85 17.99
5 5.70 61.92 5.17 105.62 5.75 61.92
1 0.97 164.42 0.96 164.42 0.95 164.42

Table 5.5: Comparison between fault selection heuristics

5.6 Conclusions
In this chapter an alternative fault selection method for approximate logic circuit gen-
eration has been presented, which is based in dynamic testability measures. In this
approach fault testabilities are analytically computed, with the aid of an implication
motor in order to overcome the reconvergent fanout problem. The best fault according
to the criteria of minimum probability and maximum area saving is selected. When-
ever a fault is approximated, fault probabilities are dynamically updated, thus taking
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into account the effect of last approximated fault, and the next best candidate fault is
selected in an iterative process. In that way, testability measures are always representa-
tive of the current state of the circuit and no suboptimal transformations are performed,
except for the local minima problem. These are relevant improvements with respect to
the approach based in static testability measures. In addition, variations in computed
fault probabilities allow estimating the total error rate for the whole set of faults consid-
ered, which eventually serves as the ending condition of the approximation generation
process. Therefore, with this approach approximate circuits which roughly meet a
specified target error rate can be generated. This is another improvement over the pre-
vious approach, where trial and error was required. Error target is now the parameter
which provides flexibility to the method, allowing to generate solutions with different
trade-offs between error rate and overheads, from pure TMR to the trivial approxima-
tion.

With respect to the solution based in static testability measures, the dynamic ap-
proach generates solutions with a finer granularity at the expense of a higher computa-
tional effort. And by making use of dynamic testability measures, the approximation
threshold (i.e., the error target) is more representative of achieved error protection level,
which is useful for the final user.

Possible improvements of the proposed approach include avoiding the problem of
local minima and improving the accuracy of probability estimations in the most diffi-
cult cases. Both issues can be addressed by implementing recursive learning at different
levels in the approximation generation algorithm, at a cost of an increased execution
time. It is possible to develop alternative fault selection heuristics as well, in order to
favour other criteria. Finally, the global error probability estimation can be improved to
include faults originated in all three instances and not just in the original circuit. Math-
ematical computations required to do so have been presented, although it has been
proved that such computation cannot be done incrementally, which further increases
computational costs.

It must be noted that this technique has been developed just for combinational cir-
cuits. Its application to sequential circuits is really difficult, due to the fact that signal
probabilities depends not only on primary inputs, but also on current and past circuit
states. Therefore, accurate computation of signal probabilities in a sequential circuit is
considered a irresolvable problem. Alternatively, it is suggested to consider sequential
elements as inputs and outputs with respect to circuit combinational logic, although
this is not fully representative of the real behaviour of the circuit.

In addition, over this method it has been implemented the possibility of substituting
nodes as a way of generating approximations, complementary to logic constant assign-
ment. This is denoted as node substitution, and it allows reaching solutions out of the
scope with the classic line approximation approach. It makes use of the implications
inferred during probability computations in the approximation generation method with
dynamic testability measures in order to deduce candidate substitutions. A probabil-
ity is associated to each discovered substitution, so it is evaluated along with all other
circuit faults. In order to favour node substitutions over fault approximations, an alter-
native fault selection heuristic is proposed, consisting in optimizing the ratio between
the fault probability and the area savings. Experimental results show a marginal benefit
of this approach with respect to the classic fault approximation method, and no clear
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winner between both proposed fault selection heuristics. Further development would
be required in order to exploit the full potential of this node substitution mechanism.





Chapter 6

Applications

6.1 Introduction

In this thesis a new method for approximate logic circuit generation in the context of
error mitigation has been developed. This technique consist, on the one hand, in an ap-
proximate generation mechanism based on stuck-at fault forcing, which has been intro-
duced in chapter 3, and on the other hand, in a fault selection criteria which selectively
applies this mechanism to generate approximate versions of a given target circuit. Two
different heuristics are proposed in this work, based respectively on static and dynamic
testability measures, which has been described in chapters 4 and 5 respectively.

Once the proposed method has been developed, it has been applied to several con-
texts, taking into account its potential benefits. In particular, the following applications
have been proposed:

• Generation of approximations with the aim of implementing approximate TMR
in Field Programmable Gate Arrays (FPGAs). Circuits are typically synthesized
in an FPGA in the form of a structure of Look-Up Tables, as opposed to the
logic gate structure used in the proposed technique, which is better suited for
Application Specific Integrated Circuits (ASICs). Therefore, in the context of
circuit design for FPGAs, several considerations have to be taken in order to
benefit from the approximation generation method proposed in this thesis.

• Implementation of an approximate TMR for a real application circuit. In partic-
ular, the ARM Cortex M0 microprocessor has been selected as the target circuit
for this application.

• Comparison of the approximation generation method with alternative novel ap-
proaches. In particular, the proposed approach based on dynamic testability mea-
sures, which follows a greedy heuristic to decide among circuit manipulations,
has been compared against evolutive techniques for generation of approximate
circuits, which can randomly generate multiple approximations by trial and error.

107
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In the first two applications the approximation generation method based on static testa-
bility measures has been used, while for the comparison with evolutive approaches the
dynamic approach has been preferred,

Some of these applications have been motivated by the collaboration with exter-
nal institutions from industry as well as from academia. In particular, the approximate
TMR for the Cortex M0 microprocessor is the product of a collaboration with CISCO
(USA) IROC Technologies (France) and University of Saskatchewan (Canada). The
group Concepcão de Circuitos Integrados from Universidade Federal do Rio Grande
do Sul (Brasil) has collaborated with the tests of ATMR in FPGAs. Finally, the com-
parison with evolutive techniques was possible by means of a collaboration with Brno
University of Technology (Czech Republic).

The following sections address each one of these topics in detail. Thus, section 6.2
deals with the application of the approximate TMR to FPGAss and presents the results
of the tests performed in relation with it. Then, section 6.3 is about the implementation
of an ARM Cortex M0 microprocessor hardened by approximate TMR. Next, section
6.4 introduces the evolutionary generation of approximate circuits and presents the re-
sults of the comparison between that approach and the one based in dynamic testability
measures. And finally, section 6.5 concludes the chapter.

6.2 Extension to FPGA-based circuits

An FPGA is a logic device whose functionality can be externally programmed. It con-
tains a fixed amount of logic blocks which can be configured and interconnected as de-
sired in order to implement any target design, up to the point its resources allow. Their
flexibility and relatively low cost make FPGAs well suited for prototyping tasks and
applications with low volume of production, where manufacturing a dedicated ASIC
would be too expensive. In recent years, their performance and power consumption
have improved as well, motivating their use in space applications, among others. How-
ever, FPGAs are susceptible to errors due to radiation effects, and therefore any design
implemented on them would require some mitigation mechanisms when operating in
radiation environments.

Currently there are three different technologies that allow the configuration of those
programmable logic devices

• In Static RAM (SRAM)-based FPGAs, the configuration elements consists in
static Random Access Memory (RAM) memory cells. Since SRAM is volatile
and cannot keep data without power source, the FPGA must be configured upon
start, either by an external device or by means of a non-volatile memory imple-
mented along with the FPGA, which stores the FPGA configuration. Although
they demand higher power with respect to other FPGA technologies, the major-
ity of commercial FPGAs are SRAM-based due to its reduced transistor sizes,
which allow higher integration densities.

• Flash-based FPGAs make use of non-volatile memory elements (floating gate
switches) in order to store the FPGA configuration. Therefore, configuration is
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not lost when the power is disconnected. They consume less power in compar-
ison with SRAM-based FPGAs. However, they require a flash-based manufac-
turing process that makes them less competitive.

• In antifuse FPGAs, antifuses are used as configuration elements. These are ele-
ments that by default work as an open circuit, but after ”burning” they conduct
current (as opposed to a fuse). This process is not reversible, hence this type of
FPGAs can only be configured once.

These different technologies are affected by radiation effects in different ways. In the
antifuse technologies, the main effects are SETs in the combinational logic or SEUs
in sequential elements, like an ASIC. The SRAM-based FPGAs, however, are mainly
susceptible to SEUs in the configuration memory, which may modify the programmed
functionality almost permanently (at least until power is removed or the device is re-
configured). With respect to flash-based FPGAs, their configuration bits require much
more energy to be modified, so they are less sensitive to SEUs in the configuration
memory. But with technology shrinking, the sensitivity of flash memory cells will
gradually increase.

The approximate TMR technique can be implemented in an FPGA for sure. Usu-
ally, any given design will not make use of all resources available inside the FPGA,
meaning that additional logic can be used to implement approximate versions of such
target design in a TMR fashion. This allows a wide range of solutions with differ-
ent tradeoffs between error mitigation capabilities and overheads for those applications
that may allow some temporary misbehaviour, in contrast with the partial TMR ap-
proach where the options are limited to replicate or not each one of the components of
given design. This approach can be combined with scrubbing in those cases where the
configuration memory is susceptible to SEUs, typically in SRAM-based FPGAs.

In an FPGA, the combinational part of a circuit is implemented as a set of Look-
Up Tables (LUTs) properly configured and routed. A LUT is a small memory that
implements a logic function of its inputs, typically up to 6 inputs in modern FPGA
technologies. These LUTs work as partial truth tables of the logic design. In contrast,
the approximation technique proposed in this work is based in a logic gate structure. A
single LUT can implement a logic function equivalent to a group of logic gates, which
means that some logic transformations which were valid in a logic gate circuit may
not produce any resource savings on its LUT counterpart. Therefore, it is required to
know the correspondence between both circuit structures in order to generate adequate
approximations in this new context.

In practice, real application circuits tend to have sequential elements, and in the
case of circuits implemented in an FPGA this is no exception. Indeed, the programmable
logic of an FPGA includes configurable flip-flops among its resources, and even in
some technologies the LUTs may be configured to work as shift registers. Therefore,
in order to be able to process sequential circuits, the approximation generation method
based on static testability (described in chapter 4) measures has been preferred for this
extension.

The approximation generation method proposed in this thesis is based on the prop-
erties of unate functions. This requires to perform a unate expansion for binate circuits,
as explained in section 3.4. This expansion poses two significant problems. On the one
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hand, the area of the target circuit increases. A larger area means a higher chance for
a high energetic particle to impact the circuit and provoke a soft error, which is not de-
sirable at all. This issue can be solved by using the binate version of the target circuit
instead of the unate one in the ATMR implementation, although approximate circuits
still have to make use of the unate expansion. On the other hand, it is assumed that the
area increase in the approximate circuits will be compensated by performing fault ap-
proximations. But this is not necessarily true, specially when a low amount of faults is
approximated. Moreover, synthesis tools may not be able to undo the logic transforma-
tions due to the unate expansion. In order to compensate the overhead due to the unate
expansion, a new approach for approximation of faults in binate lines is proposed. Al-
though a binate fault cannot be directly approximated, it can be decomposed in two
complementary unidirectional faults, one belonging to the under-approximate circuit
and the other to the over-approximate circuit. Therefore, approximating a binate fault
reduces the logic in both approximate instances. Moreover, with this approach the
testability measures can be directly obtained from the target circuit itself, instead of its
unate version.

Finally, radiation experiments of an ATMR scheme have been performed for the
first time with this FPGA approach. These experiments have been complemented with
some fault injection tests for a better comprehension. Some of these tests have been
performed in collaboration with the group Concepcão de Circuitos Integrados from
Universidade Federal do Rio Grande do Sul.

This part of the chapter is structured as follows. Subsection 6.2.1 introduces some
existing solutions to implement fault mitigation on SRAM based FPGAs. Then, sub-
section 6.2.2 explains how the approximation generation method proposed in this thesis
is applied to circuits implemented on a FPGA, and 6.2.3 presents a new method for ap-
proximating binate faults. Finally, subsections 6.2.4 and 6.2.5 show, respectively, the
radiation and fault injection experiments performed with this approach, explaining both
the experimental setup and the results of such experiments.

6.2.1 Fault mitigation strategies in FPGAs
FPGAs are becoming increasingly attractive for space applications. In comparison with
ASICs, they provide higher flexibility and lower cost, particularly for the low volume
production which is characteristic of space applications. As technology progresses,
new devices with increased resources and performance are becoming available. Unfor-
tunately, FPGAs are susceptible to radiation effects. Thus, fault tolerance is generally
required for applications that operate in a radiation environment.

FPGAs programmed by antifuse topology are more like standard cell ASICs, as the
customization cells (antifuse) are not susceptible to radiation effects. For this reason,
techniques used in ASICs can be easily applied to the high-level description, such as
DWC, TMR or EDAC. At the architectural level, for instance, it is simple to replace
all the flip-flops with hardened memory cells [59]. These can be applied to flash-based
FPGAs too, due to the high energy required to modify the state of the configuration
bits.

With respect to SRAM-based FPGAs, they can be affected by SEEs in the pro-
grammed (functional) logic as well. But the main source of errors are the SEUs in the
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configuration memory, which can modify the functionality of programmed logic until
reconfiguration or power off. For that very reason, any high-level fault-tolerant tech-
niques applied to the target design (such as DWC or TMR) are not enough to ensure
reliability, as they do not prevent from error accumulation in the configuration memory,
eventually making the design to fail. Therefore, such techniques have to be combined
with a periodic refresh of the configuration memory in order to clean any possible bit
upsets, which is known as scrubbing [59]. The refreshing rate should be high enough to
prevent the failure of the design due to SEU accumulation. But on the other hand, one
reconfiguration cycle takes a significant amount of time. For that reason, alternative
approaches based in partial reconfiguration of the configuration memory, i.e. partial
scrubbing, have been proposed. In addition, scrubbing has significant error detection
latency and therefore it cannot prevent temporary erroneous behaviour. So, designs
hardened by TMR or any other fault-tolerant technique are still required to protect
against transient effects in the programmed logic.

Although TMR is a very effective mitigation technique, it is often expensive in
terms of FPGA resource utilization and power consumption [60]. For applications that
can tolerate some temporary misbehaviour, Partial TMR can be used to trade off the
reliability with the cost of mitigation. In [61] and [60] an automatic solution for Partial
TMR is proposed that is based on the concept of persistence. A persistent configuration
bit is a sensitive configuration bit that will cause an error when upset that cannot be re-
covered by scrubbing, so that even after repairing persistent configuration bits through
configuration scrubbing, the FPGA circuit does not return to normal operation. On the
contrary, non-persistent bits imply some data loss, but the design returns to normal op-
eration when the error is repaired through configuration scrubbing. Persistent bits can
be found by topological analysis, looking for feedback structures. If the feedback logic
is affected by a fault on the correspondent configuration bits, it may cause the design
flip-flops to store a wrong state, which cannot be repaired by just scrubbing. These
feedback structures are associated to persistent bits and thus must be triplicated first. If
resources allow, mitigation is applied to the non-persistent circuit structures to reduce
the remaining design sensitivity.

6.2.2 Fault approximation in FPGAs
The fault approximation techniques developed up to this point in this thesis and ex-
plained in chapters 3, 4 and 5 were intended for ASICs. In this context, a logic circuit
is typically represented in a logic gate structure. On the contrary, in an FPGA a logic
circuit is represented in the form of a group of LUTs, where a single LUT may be func-
tionally equivalent to several logic gates. The application of the fault approximation
technique on FPGAs has been performed by reusing the tools and techniques already
developed for a logic gate structure, with the minimal modifications required to adapt
to the new circuit structure.

While in a logic gate structure any approximated fault will produce resource sav-
ings, this may not be true for a LUT structure. In the latter case, approximating a fault
may cause the logic function of a LUT to be modified but not simplified, and therefore
it would deviate from the intended functionality without any real benefits. This requires
imposing some restrictions on the faults which can be approximated. In particular, the
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most interesting logic transformations are those that effectively reduce the number of
LUTs in the circuit, either by eliminating LUTs or merging contiguous LUTs. The
contrary will result in a degradation of the logic function of the circuit without achiev-
ing any benefits in terms of resource savings. Reducing the size of a LUT, by removing
some of its inputs, may also contribute to reduce the interconnection needs and the as-
sociated configuration bits, to a small extent. Eventually, when the input or the output
of a flip-flop is substituted by a constant, the flip-flop can be removed and the voting
logic can also be simplified, as explained in section 4.3.

With this idea, the classical logic gate structure used in this thesis for approximation
generation is complemented with a LUT superstructure. Here, a LUT is considered as
a logic block with a maximum of 6 inputs and just one output, and which may encap-
sulate any number of logic gates. When using this additional structure, the logic gate
structure of any given circuit is partitioned into LUTs. Thus, every logic gate within
the circuit has to be contained in a LUT, and LUTs cannot overlap. As a simplified
example consider the Figure 6.1, where the c17 benchmark circuit has been partitioned
into LUTs of 2 or 3 inputs. Due to the existing multiple fanouts, some of the LUTs
contain just one logic gate. After the circuit has been partitioned into LUTs, fault ap-
proximations can be performed as usual, with the additional restriction that they can
only be applied on the inputs and outputs of the LUTs. That means, for example, that
the connection between gates n7 and PO0 cannot be forced to a constant logic value,
because such connection is located inside of a LUT. On the contrary, fault n8→n11/1
could be approximated, allowing the LUTs number 2 and 3 to be merged, and at the
same time reducing the number of inputs of LUT4 from 3 to 2. Another fault which
could be approximated is PO0/0, thus suppressing LUT1 and merging LUTs number
2, 3 and 4 into just one LUT. It must be noted that, in modern FPGA technologies, the
LUTs typically have a size of 6 inputs, so the mapping proposed in Figure 6.1 would
probably be suboptimal. This has been generated directly from the logic gate structure,
avoiding any replication of logic gates.

When synthesizing a circuit to be implemented in an FPGA, it is transformed into
LUTs. Therefore, departing from the logic gate structure and partitioning it into LUTs
may be suboptimal, which is the case of the example in Figure 6.1. In practice, the
synthesized circuit, which is already mapped into LUTs, is taken as the starting point
for this new approach. And from there, the internal logic gate structure of every LUT
is regenerated based on its truth table by means of a custom made parser. This, applied
to the case of c17 benchmark, would produce a result more similar to the mapping of
Figure 6.2, where just two LUTs are required by replicating nodes n8 and n9. From
the point of view of an FPGA resource utilization, this would be a more efficient im-
plementation than the mapping of Figure 6.1 which requires 4 LUTs. On the other
side, the number of faults which can be approximated in the 2 LUT implementation is
smaller, restricted just to primary inputs and outputs.

As explained in chapter 3, in order to ensure that a given approximated fault gen-
erates a unidirectional approximation, this has to be applied on an unate line. For that
reason, faults on binate lines cannot be approximated unless an unate expansion is per-
formed (explained in section 3.4), which introduces some area penalties. In the classic
fault approximation approach, the original circuit was substituted by its unate version
in the final ATMR implementation, and the testability measures were obtained from
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that version. Now, in the FPGA implementation, this is intended to be avoided, thus
reducing the penalties due to approximating binate faults. Therefore, the testability
measures are now obtained from the original circuit itself, and the ATMR is built with
that same circuit. This change requires devising a method for approximating binate
faults, which is explained in the next section.

6.2.3 Bidirectional fault approximation
If a logic functionG is unate with respect to a certain signal x, thenG can be expressed
as either G = xG1 +G0 or G = xG1 +G0, depending on the parity of signal x, where
G0 and G1 are logic functions independent from x. In that case, the logic functions
Gx = G(x = 1) and Gx = G(x = 0) will serve as unidirectional approximations
of logic function G. The demonstration is explained in section 3.3. Gx and Gx are
denoted as the cofactors of G with respect to x.

On the contrary, this no longer holds in the case of a binate circuit. According
to Shannon’s expansion formula, a logic function G which is binate with respect to a
certain signal x can be expressed asG = xGx+xGx. In Boolean Algebra, the classical
way to reduce a logic function is to use the consensus (F = Gx · Gx) and smoothing
functions (H = Gx + Gx). Such functions can work in order to approximate binate
lines, although its generation is not straightforward. On the other hand, splitting the
effects of a binate fault into its unidirectional components is far simpler. Whenever a
binate fault is approximated, there is a set of input vectors whose result change from 0
to 1, and another set of input vectors which produce changes in the opposite direction.
This is obvious by taking into account the Shannon’s expansion formula. Therefore,
what can be done in order to approximate a binate fault is approximating the positive
and negative parts of the selected binate signal in the different approximate circuits. For
example, consider that a binate fault x/1 can be approximated. According to Shannon’s
expansion formula, approximating the negative part will generate the logic function
F = xGx, and approximating the positive part, H = Gx + xGx is obtained. From
here it is obvious that F = xGx ⇒ G = xGx+xGx, i.e., F is an under-approximation
of G. On the other hand,

H = Gx + xGx = Gx · xGx = Gx · (x+Gx)

G = xGx·xGx = (x+Gx)·(x+Gx) = x(x+Gx)+Gx(x+Gx) = xGx+Gx(x+Gx)

which means thatH ⇒ G, i.e.,H is an over-approximation with respect toG. The pro-
cedure is analogous in the case of fault x/0. In this situation, approximating the positive
part will generate the under-approximation F = xGx, while the over-approximation
H = xGx +Gx is obtained when the negative part is approximated.

In practice, approximation of binate faults can be done in the following way. The
unate expansion already allows splitting any binate line into two unate lines which
correspond to the positive and negative parts of the original line, respectively. The
approximation of a binate fault is then performed by approximating the fault for just
one of the two unate lines in each one of the approximate circuits, depending on the
fault value and the parity of each line. This is better explained with the aid of an
example. Consider an XNOR gate, an archetypical case of a binate circuit, represented
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in Figure 6.3 along with its unate expansion. Consider the fault stuck-at 1 located at
input b, as in Figure 6.4a. According to Figure 6.4b, it is clear that this is a binate fault,
because it produces differences in both the onset and offset of the logic function of the
gate. Approximating this fault requires then approximating one of the two lines in
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Figure 6.3: XNOR gate
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Figure 6.4: Binate fault b stuck-at 1

which input b is split during unate expansion (either b0 or b1) in one approximation,
and the other line in the opposite approximation. If the positive line is approximated
(b0), the circuit of Figure 6.5 is obtained, which turns out to be an over-approximation
with respect to the original XNOR gate. Conversely, approximating the negative part
of input b (b1) an under-approximation is generated, as shown in Figure 6.6. This
procedure requires a mechanism to identify the two lines resulting from the splitting of
the original binate line.

It may happen in some cases that approximating a binate fault by splitting it into
two complementary unidirectional faults leaves more input vectors unprotected than
the original fault. This phenomenon is related to the auto-cancellation effect, that is,
when a fault propagates simultaneously through several paths with reconvergent fanout,
in such a way that the fault propagation is eventually blocked. If the paths involved in
the auto-cancellation have opposite parities, then approximating that fault with the pro-
posed method cannot take advantage of the auto-cancellation effect. As an example,
consider the binate circuit of Figure 6.7a. In this circuit, inputs c and d are binate,
as well as the output of node n1. Any fault in any of these lines will affect both the
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circuit onset and offset, as shown in Figure 6.8 for the case of fault d stuck-at 1. In
order to approximate this fault, first the unate expansion has to be performed in the
target circuit, resulting in the unate circuit of Figure 6.7b where both inputs c and d
have been duplicated. Then each one of the two instances of input d is independently
approximated. By approximating the positive part, that is, the fault d→n1’/1, the re-
sulting circuit will implement the logic function shown in Figure 6.9a, which is clearly
an over-approximation with respect to the original circuit. On the other hand, approx-
imation of the negative part (fault d→n1/1) will generate the logic function of Figure
6.9b, which is an under-approximation. It can be checked that the under-approximate
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Figure 6.8: Effect of binate fault in logic function
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Figure 6.9: Approximation of binate fault d/1

logic function uncovers an additional discrepant input vector which was not consid-
ered for the binate fault d/1 (compare with Figure 6.8b). In fact, the input vector abcd
= 1110 allows the propagation of fault d/1 through both existing paths, causing to be
cancelled itself. This effect is suppressed when the two unidirectional components of
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the fault are split in different approximate instances, and so an additional input vector is
unprotected. The consequence of this phenomenon consist in a slight underestimation
of some binate fault sensitivities.

With this approach the unate expansion is just necessary as an intermediate step
to generate the approximate circuits. Therefore, the use of the unate version of target
circuit for either obtaining the testability measures or working as one of the ATMR
instances is no longer necessary. In addition, approximating a binate fault reduces area
in both approximate circuits, thus minimising the overheads due to the unate expansion.

6.2.4 Radiation experiments
The radiation experiments for the proposed approach were conducted with the b13
benchmark from the ITC’99 set. This sequential benchmark was selected for compli-
ance with current efforts towards a common set of benchmarks that can be used for
comparison among different experiments [62]. It also includes a set of pre-generated
input vectors that were designed by the ATPG community to fully cover the function-
ality of the circuit.

The criticality of the different faults within the circuit is estimated by fault simu-
lation, as explained in chapter 4. The estimations have been performed by means of
parallel fault simulator HOPE [45] against the set of pre-generated input vectors for
the selected benchmark. The testability of each fault is estimated by counting the num-
ber of clock cycles for which the faulty circuit response differs from the correct one.
Then, a fault is considered as critical if it produces a large amount of differences. The
rationale of this criticality metric is that a fault that produces a very different output re-
sponse implies a large data loss and most likely means the circuit functionality cannot
be recovered. Conversely, an error that produces an almost correct response involves
some data loss but the circuit can be considered as being operational.
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Figure 6.10: Fault testability analysis of b13 benchmark

Figure 6.10 shows the results of this testability analysis for b13 benchmark. Faults
are ordered according to their testabilities, in an increasing order. It can be seen that



6.2. EXTENSION TO FPGA-BASED CIRCUITS 119

there is an abrupt change around 25% of the faults. The faults on the left can be
considered as non-critical and the faults on the right as critical. In order to establish
a threshold, a fault is considered as critical if it produces an erroneous response for
more than 15% of the clock cycles in a representative testbench. This threshold can be
changed according to the reliability requirements of the application. For the particular
threshold used, it has been verified that the non-critical faults actually belong to feed-
forward logic. Therefore, this criterion coincides with the feedback criterion proposed
in [60] for the studied circuit.

Based on the testability analysis results, several ATMR schemes have been imple-
mented by using approximate logic circuits generated with different testability thresh-
olds. In total, 4 different ATMR schemes were used, from A1 to A4, where A1 has
the lowest proportion of approximated faults and A4 the highest. As a general target,
only approximations that produce less than 15% erroneous responses in the execution
of the full set of input stimuli were considered. Then, for each design, faults with a
percentage of errors below a selected threshold were forced. Namely, thresholds of
0.05%, 0.2%, 2% and 15% have been used for A1 to A4 designs, respectively. For the
sake of comparison, a full TMR version of b13 benchmark has been included, in which
the whole logic has been triplicated. All these deigns (A1 to A4 and TMR) have been
implemented with triple voters at the output of every flip-flop. The outputs of the cir-
cuit were also voted using single voters. Inputs and clock lines were not triplicated for
the sake of simplicity. The set of implemented designs is completed with a full TMR
design using just single voters (SV) and the original unmitigated benchmark (ORIG).
The synthesis results for all these designs, as given by Xilinx Vivado tool, are shown in
Table 6.1. The designs are ordered from the most protected (TMR) to the less protected
(ORIG). The last two columns show the relative use of resources with respect to the
full TMR version with triple voters.

Design #LUTs #FFs %LUTs %FFs
TMR 135 298 100% 100%
A1 127 287 94% 96%
A2 119 276 88% 93%
A3 117 265 87% 89%
A4 115 261 85% 88%
SV 135 213 100% 71%

ORIG 45 53 33% 18%

Table 6.1: Synthesis results for b13 benchmark

The experiments were run on an Artix7 XC7A100T FPGA from Xilinx. As the
b13 benchmark is rather small, 24 instances of each design were included in the same
FPGA. Synthesis options were used to ensure instances of each circuit version were
not optimized away. However, the placement was not constrained. All designs run
concurrently using the same input stimuli, which are the ITC99 proposed input stimuli.
Also a small checker circuit was included to detect if any of the design copies produces
an error or if the percentage of errors in a single execution of the full set of input stimuli
is greater than the selected target of 15%. The checkers and the interface to the host are
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tripled to reduce the impact of errors in these modules on the measures. The complete
circuit, including all copies of all designs, used 66% of the LUTs and 15% of the ip-ops
of the FPGA device.

Radiation ground testing has been carried out in CNA facilities (Centro Nacional
de Aceleradores, Sevilla, Spain). A cyclotron, capable of accelerating protons and
deuterons up to 18 MeV, has been used for the experiments. Although it was origi-
nally intended for radioisotope production in medical applications, an external beam
allows testing electronic circuits in either vacuum or open air. FPGA test has been
performed with protons in open air, with 18 MeV energy and flux range between 108

to 109p/cm2s. In total, three runs have been performed with different beam charac-
teristics, as shown in Table 6.2. A single device has been exposed, which was allowed
to run without scrubbing or reconfiguration it until it was observed most of the design
versions had a critical error. Then it was fully reconfigured and checked again. During
the run number 3, the one with the largest fluence, up to 120 reconfiguration cycles
were completed.

Run Energy Flux Fluence
(MeV) (p/cm2s) (p/cm2)

1 18 108 1.23 · 1011

2 18 2.5 · 108 11 · 1011

3 18 109 50.3 · 1011

Total 62.53 ·1011

Table 6.2: Beam characteristics

The results of the radiation test with the largest fluence are shown in Figure 6.11,
in terms of Mean Time To Failure (MTTF) for each one of the designs. The results for
lower fluences are similar, but they are not reported because the number of collected
errors is small and the confidence intervals are wide. Cross-section can be obtained as
the inverse of the product of MTTF times the flux (109p/cm2s). For each version, the
non-critical MTTF was measured as the mean time until the first error is detected in
any of the 24 design copies. The critical MTTF was measured as the mean time until
the first critical error is detected, i.e., until the percentage of erroneous responses in a
single execution of the full set of input stimuli is greater than the critical threshold of
15%. The condence intervals for 95% condence level are also displayed.

As expected, the original unmitigated design shows a low MTTF in comparison
with the mitigated versions. The critical and non-critical MTTF are very close, because
most errors produce a critical effect. The version using single voters improves MTTF
with respect to the original version by a factor of approximately 2.4. For the full TMR
and all the ATMR versions, the non-critical MTTF is similar and between 6 to 8 times
greater than that of the original design. Even though some degradation of the non-
critical MTTF can be expected for the approximate logic circuits, the differences in the
results are small and some ATMR versions can even be better than full TMR. On the
other hand, the results clearly show that the MTTF for critical errors is significantly
improved in the ATMR versions. There are two explanations for this behaviour:

• On the one hand, the reduction in size produced by the use of approximate logic
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Figure 6.11: Results of radiation experiments

circuits makes the ATMR scheme less sensitive. A smaller size implies a smaller
probability of receiving a particle strike, and therefore a smaller probability of
suffering from SEEs.

• On the other hand, the approximation of unidirectional faults may cause a shift
of the critical cross-section to the non-critical cross-section. To illustrate this,
consider a line within a circuit which is triplicated in a TMR fashion. For in-
stance, let us assume that the fault stuck-at 1 on that line is critical while the
opposite is not. In such a case, the fault stuck-at 0 can be approximated, so the
line can be replaced by a constant 0 in just one of the approximate circuits. The
overall effect is equivalent to having a non-critical unidirectional hardwired error
in one of the three subcircuits that are voted. The ATMR still works correctly in
the absence of SEUs because there are always two correct copies for voting. The
circuit is unprotected for errors in the same direction as the non-critical fault,
because it is enough to have such an error in any of the two correct instances
for the circuit to fail. However, the circuit is still protected for critical errors in
the opposite direction. As a matter of fact, for such errors to be unmasked it
is necessary that the two correct copies simultaneously have errors in the same
direction as the critical fault. Critical errors are less likely to happen than in the
TMR circuit, because in the TMR circuit an error is observed when two out of
the three copies fail. Thus, the overall effect is a shift of the critical cross-section
to the non-critical cross-section with respect to the TMR circuit.

For a better comprehension of these results, the radiation experiment has been com-
plemented with several fault injection tests in FPGA. These are addressed in the next
section.
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6.2.5 Fault injection experiments

To complement the analysis, several fault injection campaigns have also been per-
formed, using the same benchmark and the same designs than in the radiation experi-
ments. First, a pair of fault injection campaigns with exactly the same FPGA mapping
have been performed, using the Soft Error Mitigation (SEM) Core from Xilinx [63] for
random fault injection both with and without accumulation. Later, additional experi-
ments have been performed, using in this case the FPGA fault injection tool developed
at the group Concepcão de Circuitos Integrados from Universidade Federal do Rio
Grande do Sul [64]. This tool allowed performing an in-depth study of the sensitive
configuration bits in the design, i.e., the critical bits.

It must be noted that fault injection results may not accurately match radiation
results due to several reasons [65–67]. First of all, fault injection must rely on the
mechanisms provided by the manufacturer for the access to the configuration memory.
The documentation about such mechanisms is generally very limited, so that a fair
fault injection campaign cannot be guaranteed. In particular, fault injection cannot
emulate changes in the internal proprietary state of an FPGA (i.e., internal registers or
global logic for managing the device). On the other hand, only single bit errors in the
conguration memory have been injected and it is assumed that all conguration bits are
equally vulnerable, which may not be true in real devices. In spite of these limitations,
fault injection plays a very important part in evaluating and validating FPGA designs
for use in radiation environments [19]. It is shown here that fault injection results for
the proposed approach follow a pattern similar to the one of radiation test results.

To implement fault injection, the SEM Controller has been added to the same FPGA
design used for radiation testing. Fault injection was monitored through the serial in-
terface provided by the SEM Controller. This interface allowed to observe the internal
state of the SEM Controller and inject faults. The controller can also correct the inter-
nal configuration memory errors. This means that the SEM controller may be affected
by faults, as faults are injected randomly in the configuration memory of the FPGA.
However, this situation can be detected through the serial interface. When an error
cannot be corrected or abnormal operation of the SEM Controller is observed through
the serial interface, the FPGA is fully reconfigured and the fault injection process is
resumed.

In the first fault injection campaign, faults were injected in random addresses of the
configuration memory at regular time intervals. A sufficiently large time interval was
selected to allow for the complete execution of the full set of input stimuli. Following
the same approach as in the radiation testing experiment, the device was allowed to
run without scrubbing or reconfiguration until it was observed that most of the design
versions had a critical error, or the SEM Controller failed. Then the device was fully
reconfigured and checked again. In this campaign, 215 reconfiguration cycles were run
with a total of 389,764 injected faults.

Figure 6.12 summarizes the results obtained with this fault injection campaign. As
a similar metric to MTTF, the ratio of injected faults to failures has been used, called
here Mean Injected Faults To Failure (MIFTF). As in the radiation test results, the dif-
ference between the non-critical MIFTF and the critical MIFTF is small for the original
unprotected design and for the design using single voters, while the protected versions
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Figure 6.12: Fault injection results on b13 with accumulation

(TMR and A1 to A4) clearly improve the critical MIFTF. The Partial TMR versions
show similar non-critical MIFTF to the full TMR version but the critical MIFTF is
generally improved.

In a second fault injection campaign the error correction capabilities of the SEM
Controller have been used. In this case, faults were injected in random addresses of
the configuration memory one by one, waiting for sufficient time between injections
to make sure the full set of input stimuli has been executed and then letting the SEM
Controller attempt to correct the injected fault. This procedure is repeated until the
SEM Controller reports an uncorrectable error or the SEM Controller itself fails. Then,
the FPGA is fully reconfigured before continuing the fault injection campaign. Among
the three different error correction modes the SEM Controller provides [63], in these
experiments the Enhanced Repair mode has been used, which is based in both Error-
Correcting Code (ECC) and Cyclic Redundancy Check (CRC) algorithms, because it
provides higher error correction capabilities, namely correction of configuration mem-
ory frames with single-bit errors or double-bit adjacent errors. In this campaign 75,620
faults have been injected in a total of 86 reconfiguration cycles, allowing a time interval
of 37.4 ms between faults.

The results for the fault injection campaign using error correction are shown in
Figure 6.13. In this case it can be seen that the non-critical MIFTF decreases as the
protection for non-critical errors decreases from TMR to A4. On the other hand, the
critical MIFTF is similar in all these circuit versions. This is the expected behaviour,
because these versions differ in the protection for non-critical errors but keep a similar
protection for critical errors.

Comparing the results with and without error accumulation, shown in Figures 6.12
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and 6.13, respectively, it can be seen that the full TMR version produces the best
MIFTF when accumulation is prevented by error correction (Figure 6.13), while this
may not be true with accumulation (Figure 6.12). The full TMR version has higher
protection for non-critical errors at the expense of increasing the size of the circuit.
The additional size increases the chances of error accumulation, for which the circuit is
not protected, resulting in a smaller critical MIFTF. Thus, size plays a significant role
when error accumulation is possible. By reducing the protection for non-critical errors,
the approximate circuit versions can reduce the size and improve the critical MIFTF.

In order to explain these results, some other aspects must be considered. It is taken
for granted that TMR is the best choice when full protection against faults is required,
under the assumption that any individual fault will only affect just one of the circuit
instances. While this statement holds for ASICs, it is not necessarily true in the case
of FPGAs, specially for SRAM-based FPGAs. In fact, FPGAs are really complex
devices, and a single fault in a configuration element may cause multiple errors. For
example, a configuration bit may control the routing of a group of lines, or affecting a
common mode signal such as the system clock. Therefore, in an FPGA, a single fault
may potentially affect several instances of the TMR, a situation where TMR does not
work. In this case, ATMR could be more beneficial in avoiding these common-mode
errors, due to a lower resource utilization.

In order to prove this, additional tests have been performed by using a FPGA fault
injection tool developed by the group Concepcão de Circuitos Integrados from Univer-
sidade Federal do Rio Grande do Sul [64]. Similar to the Xilinx SEM Core, this is a
tool for fault injection in FPGA through reconfiguration, that is, by modifying bits in
the configuration memory. But unlike the SEM Core, this tool allows to define the area
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were faults are going to be injected, thus ensuring that faults are injected exclusively in
the design under test. In addition, this tool supports a mode for exhaustive evaluation
of critical bits, apart from random injection of faults with or without accumulation.
Critical bits are those configuration bits which can themselves cause an error when af-
fected by a fault, without the need of fault accumulation. In other words, a single fault
in any of these critical bits will cause a complete TMR to fail. The number and the
position of the critical bits may vary depending on the particular design implemented
in the FPGA.

A critical bit analysis for b13 benchmark has been performed with the tool men-
tioned above. For this purpose, the same designs tested in the radiation experiment as
well as in the fault injection tests with the SEM Core have been used, namely: a full
TMR with triple voters, four ATMR schemes built with different testability thresholds,
a full TMR with single voters, and the original unmitigated design. In this case, each
design has been independently tested and only one copy per design has been imple-
mented, as there is full control of the area where faults are injected. In addition, each
one of the components of the TMR-like schemes (i.e., each one of the three circuit
instances plus the voter) have been independently mapped in adjacent sections of the
FPGA, in order to distinguish the contribution of each module to the overall number of
critical bits. For each design under test, the fault injection tool has sequentially injected
faults in all bits in the configuration memory of the predefined area, repairing each fault
prior to injecting the next one. The area for fault injection has been always the same
independently of the size of the design under test. A configuration bit is identified as
critical if it causes an erroneous output of the circuit at any time during the execution
of a predefined testbench.
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Figure 6.14: Critical bit analysis for b13 benchmark

Figure 6.14 shows the results of the critical bit analysis. For each design, the total
number of identified critical bits is shown, but at the same time they are classified
according to the module where they were detected: the original circuit (G), its under-
approximation (F), its over-approximation (H) and the voters. In the case of the full
TMR versions (labelled as TMR and SV), the circuits F, G and H are identical. The
results show that the full TMR with triple voters presents much less critical bits than
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the original unmitigated design (124 versus 641), but surprisingly this is not the most
robust design. In fact, small approximations effectively reduce the overall number of
critical bits up to a minimum of 52 for design A2, resulting from a testability threshold
of 0.2%. In this case, the circuit approximations present almost no critical bits. But
if additional approximations are performed, it grows again up to levels higher than the
full TMR. It is worth to mention that the use of single voters instead of triple voters has
a significant negative effect on circuit reliability, as it was expected. The presence of
single points of failure in the design rises the number of critical bits, especially in the
voter module, which passes from 20 critical bits on average to 191.

In conclusion, ATMR in FPGAs maybe more tolerant to faults than full TMR for
two reasons. ATMR does not only occupy less area, thus reducing the probability
for a energetic particle to collide and provoke a fault, but also the reduced number of
configuration bits required may make the design more robust against common mode
errors.

6.3 Microprocessor hardened by approximate TMR
Since the beginning on the research for this thesis, there always was the intention of
applying the techniques developed on some real application circuits. The opportu-
nity came thanks to a collaboration project with CISCO (USA), IROC Technologies
(France) and the University of Saskatchewan (Canada) to fabricate a chip implement-
ing a microprocessor hardened by ATMR.

The ARM Cortex M0 core has been the microprocessor selected in this project.
This is a relatively small 32-bit microprocessor, optimized for small silicon die size,
which is commonly used for university research projects. The Register Transfer Level
(RTL) source code of the ARM Cortex M0 is made freely available, although in an
obfuscated form.

Due to the complexity of the target design, the approximation generation technique
based on static testability measures was preferred. In this case, the testbench used to
obtain the testability measures consist in up to three software benchmarks.

The generated ATMR versions of ARM Cortex M0 core have been evaluated by
means of AMUSE tool before fabricating the chip. Eventually, the objective of the
project consists in evaluating and validating the ATMR approach for a real application
circuit by means of laser and heavy-ion radiation.

This section is divided as follows. Subsection 6.3.1 describes the main objectives
and specifications of the collaboration project, as well as the contribution of this thesis
to the collaboration project. Then, section 6.3.2 describes the characteristics of the
ARM Cortex M0 microprocessor. Next, section 6.3.3 explains how the approximate
versions have been generated, including the software benchmark selection. Finally,
section 6.3.4 introduces the experiments performed and the results obtained.

6.3.1 Specifications
The main objective of the project is the study of techniques for protecting combina-
tional logic, considering a broad fault model. This fault model may include effects



6.3. MICROPROCESSOR HARDENED BY APPROXIMATE TMR 127

such as radiation induced transients (SEUs and SETs), and manufacturing and degra-
dation faults. This is also a good opportunity to demonstrate if experimental techniques
can scale to large real application circuits, such as a microprocessor.

In order to make a reasonable comparison, several versions of the core would be
implemented on the same chip. All versions would use DICE flip-flops to mitigate
SEUs, so that the remaining soft errors would come purely from SETs, except for the
reference version, which would have combinational logic produced using a standard
synthesis flow. The protected versions would take the reference design as a starting
point, and would then apply approximate logic techniques to protect the combinational
logic. The chip would contain a small (4 KB) on-chip memory implemented using
hardened memory cells to hold both code and data. The memory would be shared by
the processors, as only one processor would be active at a time. This is a very reduced
memory capacity, which requires a careful selection of software benchmarks and an
intensive code and memory usage optimization.

The chip will be designed such that the different cores can be powered indepen-
dently so that the power overhead of the approximate logic can be accurately quan-
tified. All circuits will be tested using a two-photon pulsed laser in order to identify
their relative sensitivities and to identify the most sensitive regions. The circuits would
also be tested under heavy-ion radiation. It is noted that this study can include running
multiple workloads on the processor, to investigate the effect of the workload.

The contribution of this thesis on such project consisted on the whole process of
generation of approximate versions of the ARM Cortex M0 microprocessor, including
the selection of software benchmarks and their optimization for the reduced memory
requirements, the sensitivity analysis of the microprocessor for the set of selected soft-
ware benchmarks, the generation of approximate versions according to the combined
sensitivity results, and the preliminary reliability study of the resulting ATMR schemes.

6.3.2 ARM Cortex M0 microprocessor
The Cortex-M0 processor is a very low gate-count, highly energy-efficient processor
that is intended for microcontroller and deeply embedded applications that require an
area optimized processor. It is built on a high-performance processor core, with a 3-
stage pipeline von Neumann architecture. The Cortex-M0 processor implements the
ARMv6-M architecture, which implements the ARMv6-M Thumb instruction set, in-
cluding Thumb-2 technology [1]. It includes a 32 bit multiplier, among two options:
either a high performance single-cycle multiplier, or a 32 cycle multiplier, optimized
for low area.

The Figure 6.15 shows the main components of the Cortex-M0 implementation.
Apart from the microprocessor itself, it contains an interface to the Advanced Micro-
controller Bus Architecture (AMBA) Advanced High-performance Bus (AHB) com-
munication bus and a configurable interrupt controller. In addition, debug hardware
can optionally be implemented.

In particular, the version of the microprocessor used in this project is the ARM
Cortex-M0 DesignStart processor at revision r0p0. This is a fixed configuration of the
Cortex M0 processor, enabling low cost access to Cortex-M0 processor technology
by offering a subset of the full product. This version is delivered as a pre-configured
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Figure 6.15: Cortex M0 architecture [1]

and obfuscated, but synthesizable, Verilog description of the full Cortex-M0 processor.
These are some of the features of this version, as they are described in [68]:

• Master interface to AMBA AHB communication bus. No slave interfaces in-
cluded.

• Small 32-cycle multiplier.

• Fixed number of interrupt inputs: 16.

• Absence of hardware debug support.

The latest revision of the ARM Cortex M0 DesignStart processor can be freely obtained
from [69].

The Cortex-M0 DesignStart processor is provided along with a lightweight simula-
tion test-bench, which includes: the Verilog test-bench itself, an example program and
corresponding memory image, and a simple Makefile.

The test-bench, shown in Figure 6.16, instantiates the microprocessor and connects
it in a minimal way to a memory model and clock and reset generators. It also provides
a means of outputting information from the processor to the console output of the Ver-
ilog simulator. It must be noted that the components within the test-bench are intended
for simulation purposes only, and should be replaced with synthesizable counterparts
before performing any synthesis [1].

An example memory image for the processor is provided by the ram.bin file. This
is loaded by the memory model in the Verilog test-bench at the beginning of every
simulation. The provided memory image is for a simple hello world program, which
uses the test-bench to write a message to the simulator console, and then to terminate
the simulation. The C source code of the program is provided too. In order to simulate
an alternative program, it is required to modify the source code of the program, and
later recompile it by means of an appropriate tool-chain, thus generating a new valid
memory image [1]. In this project, the Keil MDK tools have been used to compile the
different selected software benchmarks.
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Figure 6.16: Cortex M0 test-bench [1]

6.3.3 Generation of approximate microprocessor versions
The first step in the generation of approximate versions of the microprocessor consist
in selecting the software applications which will be used to obtain the testability mea-
sures. For this purpose, several programs from the MiBench benchmark suite [70] were
selected. MiBench is a freely available set of commercially representative software
benchmarks for embedded applications. It is divided in six categories, thus reflect-
ing the huge diversity of the embedded applications market: automotive and industrial
control, network, security, consumer devices, office automation, and telecommunica-
tions. Among all the 36 benchmarks which compound MiBench, a small group has
been selected to perform the sensitivity analysis. With the idea of covering a wide
enough set of microprocessor functionalities, one software benchmark per group was
initially chosen, except for the consumer devices group. None of the benchmarks in
this group has been selected because they are multimedia applications and therefore its
memory requirements are expected to exceed the tight memory constraints. The initial
benchmark selection was composed of the following applications:

• qsort (from the automotive and industrial control group), which implements the
quick sort algorithm for sorting an array of elements in ascending order.

• dijkstra (network), an algorithm for finding the shortest path between two nodes.

• sha (security), the security hash algorithm, which produces a 160-bit message
digest for a given input.

• stringsearch (office automation). This application searches for a chain of text
into another chain of text using a case insensitive comparison algorithm.
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• CRC32 (telecommunications), which performs a 32-bit Cyclic Redundancy Check
for a given input.

The initial selection of benchmarks were tested in the simulation test-bench provided
with the Cortex-M0 DesignStart processor. The test-bench was modified to implement
a reduced memory of just 4 KB (by default, the test-bench creates a memory model
with 256 KB capacity). Similarly, all selected software benchmarks were configured
with reduced program data, and re-compiled with the Keil MDK compiler. Among the
tested software benchmarks, djikstra and sha were not able to successfully run with the
limited memory size, and therefore they were excluded. In summary, the final selection
of benchmarks was reduced to qsort, stringsearch and CRC32 applications. Table 6.3
contains the memory sizes and execution times of each one of these benchmarks. The
size of the different memory regions were provided by the Keil MDK compiler, while
the execution time has been measured by simulating the microprocessor test-bench
with the appropriate memory image.

Benchmark
Memory size Execution

Code RO data RW data ZI data Total time (#clock
(Bytes) (Bytes) (Bytes) (Bytes) (KB) cycles)

qsort 1512 328 16 1120 2.91 8743
stringsearch 848 360 24 2144 3.30 21203

CRC32 580 380 1040 1120 3.05 4322

Table 6.3: Software benchmarks data

The memory image generated by the Keil MDK compiler is divided into sections.
After code compilation, the linker allocates memory for the different sections required
for program execution. There are different types of sections, depending on the type of
data contained within them. Each section type has a different behaviour in the memory
image [2]:

• Read-Only (RO) section, which contains the program code and read-only data.
The location of an RO section in the execution view is the same as in the load
view.

• Read/Write (RW) section, which contains pre-initialized variable program data.
Its location in load and execution views can be different.

• Zero-Initialized (ZI) section, which allocates non-initialized data used during
program execution, including stack and heap. This section is loaded with zeros
at the beginning of execution, and therefore only exists in the execution view.

A memory image has two different views. First, when the code program and input data
are initially loaded into memory (load view), and later, the set of memory addresses
which are expected to be accessed during program execution (execution view). There
are several ways in which the different sections can be allocated in the memory image.
In order to optimize the limited memory space, it has been adopted a memory image
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structure similar to which appears in Figure 6.17, where the different regions are con-
tiguous and the RW section in both load and execution views share the same range of
addresses [2]. The base address for the RO section has been set to 0X0000.

Figure 6.17: Implemented memory image [2]

The total memory size indicated in Table 6.3 is referred to the execution view, in
other words, the ZI section is already taken into account. Therefore, it is ensured that
these three software benchmarks are capable of being successfully executed with a
small memory of 4 KB.

The next step consists in obtaining the testability measures by means of fault sim-
ulation. This is performed with the aid of the fault simulator HOPE [45]. But this
software requires, on the one hand, the description of the simulated circuit in BENCH
format, and on the other hand, a set of input vectors which represent the software
benchmarks intended to be executed. The input vectors are obtained by simulating
again the DesignStart test-bench. For this task, the simulation test-bench has been mod-
ified to read the inputs of the microprocessor on every clock cycle, and writing them
in a text file. Three different sets of input vectors have been generated, corresponding
to each selected software benchmark. The description of the Cortex-M0 processor in
the appropriate format is obtained in two steps. First, the obfuscated description of the
microprocessor is synthesized by means of the Synopsys software against a Compli-
mentary Metal-Oxide-Semiconductor (CMOS) 28nm synthesis library, thus obtaining
a synthesized netlist. Later, the netlist is translated into BENCH format by means of a
custom made parser.

Once the preparations are complete, the fault simulations can be performed. Each
input vector set has been independently simulated, thus obtaining three different fault
sensitivity reports. The results of the fault simulation step are summarized in the Fig-
ure 6.18, with the faults ordered according to their testabilities in an increasing order.
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Each line represents the results of a particular software benchmark, while the ”Total”
line represents the combination of all of them. It must be noted that each software
benchmark has a different duration, and because of this the number of observed errors
is referred as a fraction of the whole input vector set rather than in absolute numbers. It
is interesting to note that around half of the faults within the processor produce a very
low number of errors. This is beneficial for the logic approximation approach, as great
savings can be obtained with very low impact in fault mitigation capabilities.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Er
ro

rs

Faults

Total

Qsort

CRC32

Stringsearch

Figure 6.18: Fault testability analysis of ARM Cortex-M0

After obtaining the fault testability measures, the unate version of the micropro-
cessor is generated, as well as its approximate versions. The full unate expansion
has been employed for generating the unate version, including replacing the XOR and
XNOR gates with their AND-OR equivalent (readers are referred to Section 3.4 for
details). The approximate versions have been generated from the unate version of the
microprocessor and the fault testability reports by means of the same custom-made
BENCH parser used through the whole thesis. This tool has been modified in order
to accept multiple testability reports as inputs, combining the results of all of them to
decide which faults become approximated for a given threshold, which is specified by
the user. According to the results obtained from the fault simulations (Figure 6.18),
thresholds with the values of 0.1%, 1%, 20% and 50% have been set, thus generat-
ing approximate circuits with different trade-offs between area savings and protection
against faults. All the resulting circuits (in BENCH format) were translated to Verilog
by means of the ABC synthesizer [47], and then synthesized with Synopsys against
the CMOS 28nm synthesis library. In this way, the logic constants introduced in the
approximate version of the target processor are simplified. Finally, voters for both the
flip-flops and primary outputs were properly placed in order to build an ATMR scheme
for each pair of generated approximate circuits.
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Th. Number of cells Combinational area
Under Over Total Ov.(%) Under Over Total Ov.(%)

50% 687 795 1482 23.00 471.5 531.5 1003.0 21.49
20% 1318 1179 2497 38.76 865.3 794.5 1659.7 35.55
1% 2076 1915 3991 61.94 1397.2 1309.8 2707.0 57.99

0.1% 2270 2305 4575 71.01 1549.4 1606.6 3155.5 67.59

Table 6.4: Synthesis results

Table 6.4 shows the synthesis results for the approximate circuit versions. It con-
tains the area of both approximations for each testability threshold in both the number
of cells and the combinational area, as well as the combined area of both circuits and
the total area overhead with respect to the synthesized ARM Cortex-M0. These results
do not take into account the area overhead due to the voters, which represent an addi-
tional 13.58% in terms of number of cells, or a 21.41% in terms of combinational area.
Due to the use of DICE flip-flops, which are immune to SEUs, it was decided not to
replicate the flip-flops in order to save some area. For the same reason, the ATMR has
been implemented with single voters. This solution presents the problem of making
the voters a single point of failure: any fault affecting the voters cannot be masked in
any case, thus generating an error.

Approximations of 0.1%, 20% and 50% have been chosen to be implemented in
the final design, as there was not enough place for allocating all the ATMR versions.
In addition, a full TMR version with DICE flip-flops and a plain unmitigated ARM
Cortex-M0 have been implemented, for the sake of comparison. All the microproces-
sor versions share a small RAM memory of 4 KB integrated in the design, which is
triplicated as a way of fault mitigation. Only one of the 5 ARM Cortex-M0 versions is
allowed to be active at any given time, thus ensuring a correct memory usage. There
is a control logic implemented to choose which microprocessor is active on each mo-
ment. The design is complemented with two flip-flop chains, one of them made of
DICE flip-flops, intended to eventually measure the cross-section due to SEUs. The
expected operation frequency for the whole design is about 550 MHz. The layout of
the design has been performed at the University of Saskatchewan. Finally, it has been
sent to fabrication.

6.3.4 Experiments

Once the ATMR versions of the ARM Cortex-M0 were generated, they were tested by
means of the AMUSE tool [46] as a way of evaluating their fault mitigation capabilities
in advance. Later, these results would be compared with those obtained from the final
radiation experiments.

The setup for the tests with AMUSE is similar to the procedure already explained
in section 4.4.1. Once the generated circuits have been synthesized into a netlist for-
mat, they are instrumented by means of VIOLIN software, a companion tool of the
AMUSE system. In that way, the components in the synthesized netlists are replaced
with alternative versions which support fault injection and evaluation. In this group of
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tests, faults are injected in all the elements of the ATMR scheme: the target circuit, its
approximate versions and the voters. Additionally, a synthesizable testbench has been
implemented, consisting in a memory which is loaded with the different sets of input
vectors corresponding to each software benchmark, the same sets which have already
been obtained for performing the testability analysis. Then, the CUT is implemented
by interconnecting all the instrumented circuits including the synthesizable testbench,
and integrated in the AMUSE tool.

To perform the tests, the AMUSE tool has been implemented in a Xilinx Virtex5
XC5VLX110T FPGA by means of Synplify and Xilinx ISE software tools. For each
one of the generated ATMR schemes, all the three software benchmarks have been
tested. Two fault emulation campaigns have been performed on each case: one inject-
ing transient pulses with the complete duration of the system clock cycle, and another
injecting pulses with a duration of a 10% of the full system clock cycle. An exhaustive
analysis has been performed on each test, injecting faults in every gate output for every
input vector applied.

Th. Benchmark Full clock cycle 10% clock cycle
Silent Failure Latent Silent Failure Latent

50%

qsort 68.25% 19.97% 11.78% 96.74% 2.12% 1.14%
CRC32 67.23% 21.15% 11.62% 96.67% 2.20% 1.13%

stringsearch 67.63% 20.60% 11.77% 96.72% 2.14% 1.14%
Total 67.74% 20.51% 11.75% 96.72% 2.14% 1.14%

20%

qsort 72.09% 17.36% 10.55% 97.13% 1.84% 1.02%
CRC32 71.33% 18.29% 10.38% 97.09% 1.90% 1.01%

stringsearch 71.54% 17.91% 10.55% 97.11% 1.86% 1.02%
Total 71.66% 17.82% 10.53% 97.12% 1.86% 1.02%

1%

qsort 77.05% 13.85% 9.10% 97.65% 1.47% 0.88%
CRC32 76.28% 14.76% 8.96% 97.60% 1.53% 0.87%

stringsearch 76.18% 14.68% 9.14% 97.59% 1.52% 0.89%
Total 76.42% 14.48% 9.11% 97.60% 1.51% 0.88%

0.1%

qsort 80.46% 11.67% 7.87% 98.00% 1.24% 0.76%
CRC32 80.14% 12.07% 7.78% 98.00% 1.24% 0.76%

stringsearch 80.19% 11.95% 7.86% 98.00% 1.24% 0.76%
Total 80.26% 11.89% 7.85% 98.00% 1.24% 0.76%

Table 6.5: Results of ATMR fault emulation with AMUSE

Table 6.5 contains the results of the fault emulation campaign. The table shows,
for each ATMR scheme, the fault classification for each pulse length and each software
benchmark, as well as the combination of the three. The AMUSE tool classifies the
faults in three categories: no effect (silent), fault propagated to circuit outputs (failure)
and faults which cause a long-lasting change in the internal state of the circuit, so it
might produce an error in the future even though the test execution is complete (la-
tent). It can be seen that the results are practically the same independently from the
executed software benchmark. On the other hand, it is clear that the lower the testabil-
ity threshold, the higher number of faults that are masked. This makes sense, because
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a lower testability threshold implies a higher degree of similarity between the target
circuit and its approximate versions. The percentage of masked errors for pulses with
the full duration of the clock cycle may seem not so good (around 80% in the best
case), but this has to be considered as a worst case scenario. Usually transient pulses
are much shorter than this, which are far easier to mask. This is reflected in the results
with transient pulses with a duration of 10% of the clock cycle, where the proportion
of faults masked is much better (between 96 % and 98%).

The final radiation experiments are still pending.

6.4 Comparison with evolutionary techniques
Evolutionary algorithms are used in many applications to solve hard optimization and
design problems. They take advantage on the high computation capacity of latest tech-
nologies in order to explore a wide range of solutions by trial and error. Because of
this, evolutionary algorithms are usually very time consuming, but, on the other hand,
capable of discovering solutions that are hard to reach by other methods. In the con-
text of this thesis, evolutionary algorithms have been applied as an alternative way of
generating approximate versions for a given target circuit, with the ultimate goal of
mitigating faults in an ATMR scheme. This has been done in collaboration with Brno
University of Technology (Czech Republic), where there is a research group expert in
evolvable hardware.

Among the different existing evolutionary algorithms, the chosen algorithm for
the generation of approximate logic circuits is known as Cartesian Genetic Program-
ming (CGP). Basically, it consist in a fixed-size array of reconfigurable logic where
circuits are generated. Taking the target circuit as the initial seed, random mutations
(i.e. modifications) are performed, thus obtaining a group of mutated circuits, typically
small, which is called a generation. Every circuit in the generation is evaluated with
respect to a predefined fitness function, and the best candidate is chosen as the seed for
the next generation. This process can be iteratively repeated as long as desired.

One of the major advantages of evolutionary algorithms in general, and CGP in
particular, is the ability to get out from local minima and increase the chances to reach
global minima, achieving better trade-offs between overheads and fault masking ca-
pabilities. Thus, CGP can provide radically different solutions from the circuit ap-
proximation approaches previously proposed in this thesis. A comparison with the ap-
proximation generation method based on dynamic testability measures (without node
substitution) is carried out in this work in order to contrast their respective capabili-
ties in terms of computational time and characteristics of generated solutions. Because
it is expected that approximations generated with CGP will be closer to the optimal
solution, this analysis is also a way to measure how well the deterministic dynamic
approach works.

The remaining of this section is structured as follows. Subsection 6.4.1 first briefly
introduces the state of the art related with evolutionary algorithms. Then, subsection
6.4.2 explains how works the Cartesian Genetic Programming algorithm used to gen-
erate approximate circuits. To conclude, subsection 6.4.3 summarizes the setup for the
experiments performed, and subsection 6.4.4 presents their results.
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6.4.1 Introduction to evolutionary logic

Since the very beginning of the research in evolutionary computation, evolutionary
algorithms have been applied for purposes of hardware optimization. Several mono-
graphs [35, 36] summarize the applications from the field of electronic circuits design,
diagnostics, and testing. Later, evolutionary algorithms were applied to generate com-
plete circuit structures (i.e., not only to optimize parameters of existing circuits) and
dynamically adapt circuit structures [37]. For example, in the area of dependability, an
evolutionary repair method was proposed for TMR implemented into FPGAs [71]. It
employs an evolutionary algorithm to repair one damaged module of TMR by using
the two healthy modules as sources of golden data. An analysis has shown a significant
improvement of reliability for small benchmark circuits.

The evolutionary design of combinational circuits has been well established in the
past. The majority of designs in this area is conducted by CGP or methods similar to
it. CGP is a branch of Genetic Programming (GP) introduced by Miller and Thomson
[72]. Unlike GP, which uses a tree representation of circuits, an individual in CGP is
represented by a directed acyclic graph of a fixed size. The candidate circuits can have
multiple outputs and intermediate results can be reused. CGP can be used to design
various types of circuits as surveyed in [73]. Basically, CGP is an iterative algorithm
where, on each iteration, several candidate circuits are generated by means of random
modifications of a given seed. Later, those generated circuits are evaluated with respect
to a predefined fitness function, and the best candidate with respect to that criteria is
taken as the seed for the next iteration (also called generation) of the algorithm. The
number of iterations can be as high as desired, although there are some recommended
parameters in the literature, depending on the characteristics of the input circuit [73].

One of the most important components of the evolutionary circuit design consist in
formulating the fitness function. It usually contains several objectives (functionality,
area, delay etc.) where the functionality is typically understood as the quality of the
candidate circuit measured as the number of correct output bits compared to a specified
truth table (i.e. the Hamming distance). In order to obtain a fully working circuit,
all combinations of input values have to be evaluated. For a circuit with ni inputs
and no outputs, 2ni test vectors need to be fetched to the primary inputs and no ·
2ni output bits have to be verified so as to compute the fitness value. The fitness
calculation is computationally very intensive, since the number of test vectors grows
exponentially with the number of primary inputs. Recently, it has been sped up by
applying parallelism at various levels (data, thread, process) [74] or by introducing
formal methods based on, for example, SAT solving [75].

When designing digital circuits with respect to multiple secondary objectives, such
as area, latency or power consumption, or with the goal to approximate circuit be-
haviour, one can make use of several approaches. The single-objective approach can
be extended to deal with multiple objectives either by combining the objectives in a
single fitness function just by summing the particular fitnesses weighted with a con-
stant or, in a more sophisticated way, by introducing a multi-stage fitness function
activating the particular objectives step by step. Thanks to the fixed size of the CGP
genotype, resources can be constrained in order to find circuits with smaller area or
power consumption [38]. Recently, a truly multi-objective approach applied to the de-
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sign of (approximate) digital circuits has been proposed [39]. None of these methods,
however, had been used before to approximate circuits in a TMR fashion.

6.4.2 Cartesian genetic programming

The proposed evolutionary method used to generate approximate circuits is based on
CGP, and therefore it is worth to mention how CGP works.

The CGP approach defines a reconfigurable cartesian grid of nodes with a fixed size
of nr rows and nc columns (shown in Figure 6.19), where all the candidate circuits are
going to be generated. Every node in the grid has a fixed number of na inputs (typically
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Figure 6.19: CGP reconfigurable grid

equal to 2) and can perform any of the combinational logic functions from a predefined
set Γ. Nodes are interconnected by a feed-forward network, where node inputs can
be connected to either one of the ni primary inputs or to an output of any node in the
preceding L columns. In that way, it is ensured that combinational loops are avoided.
Each one of the no primary outputs has to be connected to either a primary input or
to the output of any node in the grid. Thus, The area and delay of the circuit can be
constrained by changing the grid size and the L-back parameter.

Every circuit implemented in this grid can be represented as an array of integers
denoted as genotype. In the genotype, each two-input node in the reconfigurable grid
is encoded using three integers: an address for the first input, an address for the second
input, and an index representing the logic function of the node. Connection addresses
are encoded in the following way: first, primary inputs are numbered from 0 to ni − 1,
and then, output nodes are labelled from ni to ni+nc ·nr−1. Finally, for each primary
output, the genotype contains one integer specifying the connection address. Thus, the
genotype size is (na + 1) · nr · nc + no genes (integers). Nevertheless, a circuit does
not necessarily have to use all available nodes. Although the generation of candidate
circuits is conducted at the level of genotypes, the fitness function evaluates phenotypes
(actual circuits established according to the genotypes). While the genotype is of fixed
length, the size of the phenotype depends on the number of inactive nodes, i.e. nodes
whose output is not used by any other node or primary output. Since the inactive nodes
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have no influence on the phenotype, there may be individuals with different genotypes
but the same phenotypes.

An example of a CGP individual with its chromosome can be seen in Figure 6.20.
It has three inputs, one output and three active nodes. The cartesian reconfigurable grid
in this example has a size of 1x4 nodes, so this genotype presents one inactive node.

AND XOR NOT ORi0

i1

i2

o0 = (i1&i0)|(i2^(i1&i0))(1, 0, 2), (2, 3, 4), (4, 3, 1), (3, 4, 3), (6)

3 4 5 6

Figure 6.20: CGP individual example

The initial population, i.e. the circuit which serves as the seed for the first genera-
tion of circuits, can be constructed either randomly (in the case of evolutionary design)
or by mapping of a known solution to the CGP chromosome (in the case of evolution-
ary optimization). Because the application of CGP in this thesis consists in generating
approximate versions of a given target circuit, such target circuit is used as the initial
population.

CGP uses a simple mutation based (1 + λ) evolutionary strategy as a search mech-
anism. The population size on each generation, 1 + λ, is mostly very small, typically,
λ = 4. Each one of the individuals in the generation is obtained by means of ran-
dom modifications of the seed. The mutation rate m is usually set to modify up to
5% randomly selected genes. In each generation, the best individual is passed to the
next generation unmodified along with its λ offspring individuals created by means of
a point mutation operator. In case more individuals with the best fitness exist, a ran-
domly selected one is chosen. The maximum number of generations created in a single
run is Ng . The role of mutation is significant in CGP (detailed analysis can be found
in [76, 77]).

The fitness function is in charge of evaluating which is the best candidate on each
generation, which will be the seed for the next generation of circuits. Therefore, defin-
ing a proper fitness function constitutes a critical task, as it may favour some circuit
characteristics over others. According to the experience of the partners from Brno Uni-
versity, in order to generate approximate versions of a given circuit it has been decided
to use a multistage single-objective approach with constrained resources. The fitness
function funder used to find under-approximations has been defined as follows:

funder :=


fmax
hamm + (fmax

area − farea) if fhamm = 0,
fmax
hamm − fhamm if foff = 0,
fmax
off − foff otherwise,

where fhamm is the total Hamming distance between the outputs generated by the can-
didate solution and the original circuit for all possible input combinations, and fmax

hamm
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is the size of the whole set of input vectors, fmax
hamm = no2ni . farea is the actual area of

the circuit, i.e. the number of active nodes, while fmax
area is the maximum area according

to chosen number of rows nr and columns nc. foff is the number of 0→ 1 errors for
all possible input combinations, i.e. the number of input vectors which have changed
from 0 to 1 with respect to the original logic function. For any generated circuit to be
a valid under-approximation, foff shouuld be equal to 0. Finally, fmax

off is the number
of minterms (zeros) in the truth table of the original circuit.

How this fitness function works is summarized as follows. First, funder eval-
uates whether the candidate circuit fulfils the condition of an under-approximation
(foff = 0) or not. If true, the fitness function then attempts to minimize the ham-
ming distance between the candidate and target circuits, because the more functionally
similar the approximate and target circuits are, the higher protection against faults is
achieved. Finally, if both circuits are functionally equivalent, funder tends to mini-
mize the circuit area. All candidates with fitness funder ≥ fmax

off represent a valid
under-approximation.

Analogously, the fitness function fover used to find over-approximations has been
defined as follows:

fover :=


fmax
hamm + (fmax

area − farea) if fhamm = 0,
fmax
hamm − fhamm if fon = 0,
fmax
on − fon otherwise,

where fon represents the number of input vectors which produces a 1 in the original
circuit and 0 in the approximate circuit, and fmax

on is the number of maxterms (ones)
in the truth table of the original circuit. For a circuit to be considered a valid over-
approximation, fon = 0. In other words, all candidate circuits with fover ≥ fmax

on

represent a valid over-approximation.
One can observe that since all possible input vectors have to be generated in order

to evaluate the fitness function, the approach is not scalable. In order to speed up the
design, parallelism at various levels (data, thread, process) can be introduced [74]. In
practice, it is applicable for circuits containing less than approximately 20 inputs and
200 gates. More complex circuits can be optimized by introducing formal methods,
e.g., SAT solvers or binary decision diagrams (BDD), however, an initial fully working
solution is needed in this case [78].

6.4.3 Experimental set-up

The experiments have been conducted with a small selection of benchmarks from
LGSynth93 set. Due to the constraints from the evolutionary algorithm side, the se-
lection has been limited to circuits with a maximum of 20 primary inputs and 200
gates. Benchmarks b12, rd73 and t481 have been finally selected to perform the tests.
The original version of each benchmark was obtained by synthesizing the circuit with
Synopsys using the Nangate15nm synthesis library [79]. Table 6.6 shows the size of
each benchmark as provided by the synthesis tool both in the number of cells and the
area, as well as the number of PIs and POs.
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Benchmark #PIs #POs #cells area
b12 15 9 58 12.93
rd73 7 3 20 5.90
t481 16 1 32 6.98

Table 6.6: Synthesis results for selected benchmarks

The generation of approximate logic circuits for the experiments was done in the
following way. For the probabilistic approach based on dynamic testability measures,
the same procedure described in subsection 5.5.1 has been applied, with the particu-
larity of using the Nangate15nm synthesis library instead of the SAED90nm [48]. A
set of arbitrary error targets was set for each circuit, covering a significant range of
cases between the conventional TMR (full protection) and trivial approximation (no
redundant logic). Each error target generated a pair of approximate circuits (over- and
under-approximation), which were resynthesized in order to remove logic constants.
Each pair of approximate circuits was combined with the original circuit to build a
valid ATMR scheme.

With respect to the evolutionary approach, a large set of approximate circuits was
generated for each benchmark by means of CGP. The parameters introduced in sub-
section 6.4.2 were set up to the values recommended in the literature [73], which are
summarized in Table 6.7.

Parameter b12 rd73 t481
ni 15 7 16
no 9 3 1
nc 6 5 5
nr 1 . . . 10
L 6 5 5
Γ all 2-input gates
λ 4
m 5 %
Ng 2000000 2000000 1000000

Table 6.7: CGP parameters

For each configuration of the CGP grid (as nr varies from 1 to 10), a total of 100
over-approximations and 100 under-approximations were generated for each bench-
mark circuit. Figures 6.21, 6.22 and 6.23 show, in the form of box plots, a statistical
analysis of multiple CGP runs for the selected circuits evolved as the underapproxima-
tions and overapproximations. The box plots give the Hamming distances obtained for
increased amount of resources (i.e., the number of rows in the CGP configuration ma-
trix) available for the implementation. A clear tradeoff between the Hamming distance
(quality) and the area can be observed. In addition, it can be observed that, in general,
a bigger CGP configuration matrix allows generating approximate circuits closer to the
target logic function. The case of t481 benchmark in Figure 6.23 has the particularity
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of being a circuit with just one primary output with a high probability of onset. Under
such conditions, the evolutionary approach tends to generate onset circuits that behave
like logic constants due to the limited size of the configurable logic array.

Figure 6.21: Statistical results for b12 approximations evolved by CGP

Figure 6.22: Statistical results for rd73 approximations evolved by CGP

In total, 1000 approximate circuits of each type were generated for each bench-
mark. According to the fundamentals of fault masking with approximate logic circuits,
any over-approximation can be combined with any under-approximation to conform a
valid ATMR scheme. Therefore, there are 106 possible solutions to test for each bench-
mark. Testing the whole set of solutions would take too much time, and therefore, it
was studied if there was any representative data that allowed to select the best solutions
in terms of error masking capabilities. For the first benchmark, b12, an exhaustive
analysis was performed, i.e., all the 106 over- and under-approximation pairs were
tested. The whole process is very time consuming, therefore, data collected for b12
were studied in order to properly select the most promising candidates for the rest of
the benchmarks. The goal consists in building the ATMR scheme with the highest error
masking rate, given fixed CGP configuration grid sizes for the generation of over- and
under-approximate circuits. It is clear that the more functionally similar are the approx-
imate circuits with respect to the original circuit, the more protection against faults is
achieved. Therefore, approximate circuits with low Hamming distance compared with
the original circuit are good candidates, in principle. To validate this hypothesis, the
correlation between the sum of Hamming distances of both approximate circuits and
the experimental error probability was computed. The results are shown in Table 6.8,
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Figure 6.23: Statistical results for t481 approximations evolved by CGP

grouped according to the size of the configuration matrix for both under- and over-
approximate circuits. The results show that there is a significant correlation between
both metrics, with an average correlation index equal to 0.831. In conclusion, for the
remaining benchmarks only the circuits with a Hamming distance below the average
of each group were selected for experiments.

Over/Under 1 2 3 4 5 6 7 8 9 10

1 0.700 0.686 0.739 0.754 0.708 0.707 0.674 0.646 0.688 0.667
2 0.792 0.772 0.803 0.843 0.818 0.840 0.838 0.820 0.845 0.839
3 0.717 0.626 0.653 0.732 0.704 0.766 0.770 0.763 0.786 0.797
4 0.802 0.734 0.820 0.875 0.833 0.867 0.890 0.879 0.887 0.875
5 0.806 0.737 0.799 0.847 0.815 0.849 0.867 0.857 0.868 0.861
6 0.836 0.818 0.871 0.903 0.885 0.900 0.916 0.910 0.914 0.913
7 0.823 0.814 0.861 0.897 0.882 0.897 0.913 0.905 0.911 0.912
8 0.811 0.805 0.853 0.893 0.880 0.896 0.912 0.902 0.911 0.914
9 0.795 0.751 0.795 0.854 0.834 0.867 0.887 0.875 0.888 0.893
10 0.815 0.840 0.865 0.901 0.900 0.913 0.929 0.923 0.930 0.938

Table 6.8: Error masking rate versus Hamming distance correlation indexes

Once approximate circuits were generated, ATMR schemas were built for testing.
Voters were placed at the output of circuits, and the list of stuck-at faults was generated
for each circuit. This list included all faults on every input of each gate in the circuit,
plus the faults on the outputs of the circuit before the voter. This allowed to introduce
simple voters, as there is full control of fault injection points.

For each ATMR schema under test, a fault simulation with random input vectors
was performed by means of the parallel simulator HOPE [45]. A total of 50,000 ran-
domly generated input vectors were applied for each design under test, and all faults in
the list previously generated were tested for each input vector. The total error proba-
bility was computed as the average number of faults detected per input vector, divided
by the size of the fault list. For simplicity, all faults were considered equally likely.
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6.4.4 Experimental results
Figure 6.24 graphically represents the trade-off between error masking rate and area
overhead for several ATMR solutions found by using either the probabilistic or the
evolutionary approach for circuit b12. For the latter technique, only the cases with the
best error masking rate for each possible combination in the sizes of under-approximate
and over-approximate circuits are represented. The same applies for Figures 6.25 and
6.26 for rd73 and t481 benchmarks, respectively.
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Figure 6.24: b12 simulation results

Analysing the results in Figure 6.24, it can be seen that the evolutionary approach
achieves in general slightly better results than the probabilistic one for b12 benchmark.
This is reasonable, because evolutionary approach can explore a much larger range of
solutions, although at a much larger computational cost. However, the probabilistic ap-
proach can still obtain good solutions, close to the evolutionary approach. On average,
the error masking rate achieved by the probabilistic approach is less than 2% lower than
the best cases generated by the evolutionary algorithm for the same area overhead.

Results for rd73 benchmark are shown on Figure 6.25. This is an example of a
circuit with a high degree of binateness, which means that small expansions on either
the on-set or the off-set with respect to the original logic function have a high cost
in terms of resources. In the case of the probabilistic approach, this is due to the
necessity of performing the unate expansion, but the same tendency can be observed
in the evolutionary side. This leads to suboptimal solutions with overheads greater
than 200% in both approaches, which are uninteresting. As long as the combined area
overhead of both approximate circuits is greater or equal than 200%, a pure TMR is
preferred instead. On the other hand, under the 200% overhead limit the same tendency
as with b12 circuit is observed. The evolutionary approach produces slightly better
solutions than the probabilistic approach, but with much more computational effort.

With respect to t481 benchmark (see Figure 6.26), it can be observed that the prob-
abilistic approach presents more scalability than the evolutionary one. This is due to
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Figure 6.25: rd73 simulation results

the fact that, as already mentioned in subsection 6.4.3, t481 is a circuit with just one
output with high onset probability. Under such conditions, the evolutionary approach
tends to generate onset circuits that behave like logic constants due to the limited size
of the configurable logic array, thus limiting both area overhead and error masking rate.
On the other hand, the probabilistic approach is based on gradually degrading the logic
function of the circuit, which allows to reach more robust solutions in the region close
to the conventional TMR.
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Figure 6.26: t481 simulation results
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6.5 Conclusions
In this chapter, several applications of the Approximate TMR have been presented,
based on the approximate circuit generation techniques developed through this the-
sis. First, an extension to ATMR implemented in FPGA has been addressed. Then, a
collaboration project intended to design and test an ATMR version of a commercial mi-
croprocessor has been presented. Finally, a comparison with an alternative method for
approximate circuit generation based on evolutionary algorithms has been performed.

ATMR implementation in FPGAs can be done at a minimum cost by using the
FPGA resources that not used by the target design, with the ability of adapting to a
specific area overhead. However, in an FPGA the combinational logic is implemented
in the form of LUTs, in contrast to the logic gate structure in which the approximate
circuit generation approaches proposed in this thesis are based,which are better suited
for ASICs. Therefore, in order to adapt the techniques presented in chapters 3, 4 and 5
to the new LUT structure, some restrictions are imposed to the faults which can be ap-
proximated. In that way, only logic transformations that effectively reduce the number
or the size of LUTs of approximate circuits are allowed. This approach is combined
with a novel way of fault approximation for binate faults, where the both components
of the binate fault are simultaneously approximated, each one in its correspondent ap-
proximate circuit. This approach allows reducing the costs of the unate expansion for
binate circuits.

Thanks to the implementation on FPGAs, for the first time error injection exper-
iments by means of radiation have been performed. The results show that ATMR
schemes can be more robust than pure TMR, specially when faults are allowed to ac-
cumulate in the FPGA, due to a lower area overhead.

The design of ATMR versions of a commercial microprocessor has been done
within the scope of a collaboration between academia and industry, which proves that
the proposed techniques are interesting for real applications. In particular, the ARM
Cortex M0 microprocessor has been selected as the target design. A preliminary study
has been performed in order to obtain representative testability measures for the micro-
processor, consisting in the selection and simulation of several software benchmarks,
which had to be adapted to the limited memory availability inside the final design.
This final design containing a few ATMR design as well as a golden reference has been
manufactured in an Integrated Circuit (IC), with the goal of testing its performance in
a radiation experiment, still pending.

Finally, approximations generated with the method proposed in this thesis, based
on testability measures, have been compared with those generated by means of evo-
lutionary algorithms, CGP in particular. This kind of approaches are able to generate
approximations by means of random modifications of the target circuit. A user defined
fitness function selects the most promising modified circuits in an iterative process.
This process is time consuming, but it has the advantage of avoiding the local min-
ima problem associated with greedy algorithms. The results show that, although CGP
achieves better solutions in terms of area overhead and/or protection against faults,
the probabilistic approach developed in this thesis is good enough considering the re-
duced computational time required. In addition, the probabilistic approach presents no
restrictions on the size of the circuits that can be processed.





Chapter 7

Conclusions and future work

7.1 Conclusions

The technological advances in the digital electronics field allows manufacturing elec-
tronic circuits with smaller transistor sizes. This fact has several benefits, namely a
lower power consumption, a higher integration density and the possibility of operating
at higher clock frequencies. But as a consequence of these advances, in turn, electronic
circuits are becoming more and more susceptible to transient faults, because the en-
ergy required to perturb the internal logic has decreased as well. The main cause of
such faults is the existence of highly energetic particles which can strike the circuit.
This phenomenon is more intense in extreme radiation environments such as the outer
space, but it is present everywhere, including the Earth surface.

Among the different types of radiation induced errors, SEUs have traditionally been
more studied because they can directly modify the state of any given circuit. However,
in modern technologies, SETs are also becoming more relevant. Actually, the prob-
ability of SET occurrence is higher than for SEUs because they can be originated in
any combinational node, although due to the logical, electrical and temporal masking
effects there is a fraction of SETs which are filtered out. However, with the reduction
of transistor sizes and the increment of clock frequencies, both electrical and temporal
masking effects have less and less relevance. In conclusion, currently there is the need
of implementing fault tolerant solutions able to deal with both SEUs and SETs in an
efficient manner.

The most common solutions to protect against transient faults are Duplication With
Comparison and Triple Modular Redundancy. These approaches implement several
instances of the target circuit on parallel, along with additional logic which is in charge
of respectively detecting or correcting errors produced in any of the circuit instances.
The capability of DWC and TMR techniques to mitigate both transient and permanent
errors makes them good techniques to tackle the variety of potential failure mechanisms
that must be considered for advanced technologies. However, these techniques suffer
from high overhead in terms of area and power consumption (more than 100% and
200% respectively). To alleviate these overheads, alternative techniques have been

147
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proposed based on partial fault detection or masking.
A new paradigm for the design of efficient circuits is emerging, which is known

as approximate computing. The idea consist in slightly deviating from the intended
functionality in order to achieve some benefits in either the circuit size, the power
consumption or the critical path duration. There are several approaches based on this
idea, which in any case is intended for those applications which can tolerate a certain
degree of misbehaviour.

This thesis is focused on applying the approximate computing paradigm to the
fault tolerance field. The goal consists in generating simplified versions of a given
target circuit, not necessarily equivalent, in order to build a TMR-like scheme (also
known as ATMR) for partial error correction with reduced overheads. These alternative
versions of the target circuit are denoted as approximate circuits. A main advantage of
this approach is the great flexibility it provides. For a given target circuit, there are
multiple approximate circuits which can be chosen, potentially providing a continuous
trade-off between fault masking capabilities and overheads which is not possible with
conventional TMR. Nevertheless, finding approximate circuits with the optimal trade-
off for a given application is a challenging problem.

Because approximate circuits are not required to be functionally identical to the
target circuit, there may be some discrepancies between the outputs of the different
circuits involved in error correction. Then, in order to ensure a correct result in the
absence of faults, one of the approximations is built by just expanding the onset of the
target circuit, and the other one just reducing it. This kind of approximate circuits are
respectively denoted as over-approximation and under-approximation. Based on this
premise, this thesis presents several original methods for generating approximations,
departing from a gate level description of the target circuit.

All the approaches for generation of approximate logic circuits proposed in this
thesis are based on the same mechanism, denoted as fault approximation, which is the
first fundamental contribution of this thesis. Basically, approximations are generated
by assigning constant logic values to some circuit lines, which is equivalent to forcing
some stuck-at faults. If the logic assignment is performed on a unate line, then either
an under- or an over-approximation is generated depending on the parity of the line
and the forced logic value. In addition, multiple fault approximations of the same type
can be combined in a circuit for further savings. On the contrary, approximating a fault
on a binate line does not guarantee a correct behaviour of the masking scheme. There-
fore, binate faults cannot be directly approximated, being necessary at first making
the whole circuit unate. This is achieved by means of the unate expansion procedure,
which consists in performing a duplication of all the binate nodes of the circuit, and
grouping their connections to one replica or the other according to the parity of each
individual connection. This process is optional, but if it is not applied, then there will
be some areas of the circuit which could not be approximated. The application of the
unate expansion has the drawback of temporary increasing circuit area, although it is
expected to be compensated when fault approximations are performed. As a way of
reducing the negative effects associated to the unate expansion, an alternative adaptive
fault approximation approach has been proposed. In this approach, faults are approxi-
mated by inserting additional logic gates with don’t care side inputs, in such a way that
the approximations can be taken or discarded depending on the logic values assigned to
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the don’t-care inputs. An external synthesis tool would be in charge of deciding these
values for an optimal solution in terms of area.

The second major contribution of this thesis are the methods to select which faults
are approximated. Several fault selection heuristics have been developed, although all
of them are based on the same principle: the selection of approximations has to be
driven by testability measures, being the least testable faults the best candidates for ap-
proximation. The rationale of this statement lies in that approximating the least testable
faults provides resource savings while minimizing the impact on the error correction
capabilities of the final ATMR scheme. Moreover, the fault approximation approach
facilitates the estimations of testability. This is a distinctive key feature with respect
to most of the state-of-the-art approaches, which are typically synthesis-oriented and,
therefore, they pay much more attention to resource savings than to fault tolerance. A
drawback of the synthesis-oriented methods is that they cannot estimate the impact of
approximations on the fault-tolerance and as a result, they offer limited scalability.

The first developed version of the fault selection heuristic is based in static testa-
bility measures. In other words, fault testabilities are computed on the original circuit,
before any logic transformations are applied, and they remain unchanged during the
whole approximation process. Here it is proposed to perform a fault simulation in or-
der to estimate the testability of every fault. Then, a testability threshold is specified
by the final user, and every fault whose testability lies below that threshold becomes
approximated. This process generates a pair of complementary (over and under) ap-
proximate circuits. A variety of approximate circuits with different trade-offs in terms
of robustness versus overheads can be obtained simply by modifying the testability
threshold. This approach has been validated through experiments, showing a wide
scalability and reasonably good results, all with a low computational cost.

In addition, an extension for sequential circuits has been devised. Such an extension
has been performed in a very straightforward manner, by considering the sequential
elements as inputs and outputs of the combinational part of the circuit. With respect to
testability measures, they are obtained in the same way as for combinational circuits,
by means of an initial stuck-at fault simulation. However, sequential circuit testing is a
hard task, which is usually alleviated by transforming it into a combinational problem.
Both approaches have pros and cons. While combinational testing is much easier,
the testability measures obtained in this way may be inaccurate, which may lead to
suboptimal approximations.

The approximation generation method based in static testability measures is simple
and flexible, but it has some limitations. First, obtaining a specific area overhead or
fault masking rate with this method can only be achieved by trial and error because
the testability threshold, which is the parameter used to tune the trade-off of the gener-
ated approximate circuits, is not representative of any of these metrics. But even more
relevant is the fact that, whenever a fault is approximated, the testabilities of the re-
maining faults in the circuit may change. Therefore, the static testability measures are
less representative as more faults are approximated, which may result in suboptimal
logic transformations. In order to solve these limitations, an alternative fault selection
criteria based on dynamic testability measures has been developed.

The second fault selection heuristic developed in this thesis makes use of dynamic
testability measures. In this case, the fault testabilities are iteratively computed and
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updated after each new logic transformation. This way, the effect of every fault ap-
proximation can be accutately estimated and the most beneficial logic transformations
can be selected at each step. The iterative computation of fault testabilities is per-
formed by means of a fault probability analysis based in fault implications, intended
to overcome the reconvergent fanout problem and solve most of the signal interdepen-
dencies. Therefore, this approach is only suitable for combinational circuits, due to the
high difficulty of computing fault probabilities in sequential circuits. Once the proba-
bility of every fault in the circuit has been estimated, the best candidate according to
the criteria of (first) minimum fault probability and (second) maximum area savings
is selected and approximated. The fault probabilities of the remaining faults are then
dynamically updated and the next best candidate is selected according to the updated
probabilities in an iterative process. In addition, the total accumulated variation of fault
probabilities, denoted as total error probability, serves as an estimation of the average
error rate for the whole set of faults considered, which provides an ending condition
to the iterative algorithm. By using this approach it is possible to generate a pair of
complimentary approximate logic circuits that meet a required error target when im-
plemented in an ATMR scheme along with the original circuit. Here the error target
is what provides the required flexibility, because setting different error targets modi-
fies the characteristics of the generated circuits. The experimental results shows that
the proposed approach is able to stick to a given error target with reasonably good
precision and has wide scalability and flexibility.

The approximation generation approach based in dynamic testability measures over-
comes the main limitations of the static version, with the cost of an increased complex-
ity and computational effort. On the one hand, the total error probability target is more
comprehensive and useful for the final user than the former testability threshold, be-
cause it is an estimator of the global error masking rate. On the other hand, the iterative
computation of fault probabilities allows selecting the best candidate at each step, thus
avoiding suboptimal logic transformations. However, the proposed approach makes
use of a greedy heuristic for choosing the sequence of approximations, and therefore it
is susceptible to fall into local minima.

In addition, a new type of logic transformation has been proposed, which consists
in substituting functionally similar nodes within the circuit. This transformation re-
ceives the name of node substitution, and it can be combined with the classical fault
approximation approach in order to widen the range of feasible solutions for approx-
imate circuit generation. Node substitution candidates are found departing from the
implications made in order to compute the probability of each fault. For each identified
node substitution candidate, a representative probability of the logic transformation is
computed. In that way, the iterative search can be conducted jointly for node substi-
tutions and fault approximations. An alternative heuristic has been developed in order
to favour node substitutions over fault approximations, consisting in selecting the logic
transformation which maximizes the ratio probability with respect to estimated area
savings. Experimental results shows marginal benefits with respect to the dynamic ap-
proach with just fault approximations, and no clear winner among the proposed criteria
for the selection of logic transformations. However, this is a promising preliminary
concept which needs to be further developed to reach its true potential.

Finally, several applications of the approximation approaches proposed in this the-
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sis have been demonstrated. Namely, they are three: an extension to FPGA-based cir-
cuits, an implementation of a fault tolerant version of a real application circuit (specif-
ically an ARM Cortex M0) with approximate logic circuits, and finally a comparison
against logic optimization approaches based in evolutionary algorithms.

The extension of the approximation generation techniques to FPGAs has been per-
formed considering the particular features of these devices. In an FPGA, the com-
binational part of logic circuits is implemented as a group of interconnected LUTs.
A single LUT may be equivalent to several logic gates. Therefore, when departing
from the logic gate structure, it is necessary to impose some restrictions over the faults
which can be approximated to ensure that every logic transformation effectively saves
resources (by either suppressing LUTs or merging adjacent LUTs). In addition, a new
procedure for direct approximation of binate faults has been developed, consisting in
splitting the binate fault into two complimentary unidirectional faults, which are simul-
taneously approximated in the opposite approximate circuits. This approach is intended
to reduce the penalties due to the unate expansion for binate circuits. These techniques
have been validated by fault injection and radiation experiments, with surprising and
interesting results. In particular, the experiments reveal that an ATMR scheme can be
even more robust against SEUs in the configuration memory of an FPGA than a pure
TMR scheme, because a smaller area overhead implies a lower probability of SEEs
and it may compensate a partial degradation of the masking properties. This is spe-
cially relevant when faults are allowed to accumulate in the configuration memory of
the FPGA.

The development of ATMR versions of the ARM Cortex M0, a real application
microprocessor, has been accomplished in the context of a collaboration project be-
tween academia and industry, which illustrates the existing interest in this topic. Due
to the complexity of the target circuit, the approximation generation approach based in
static testability measures has been preferred. In order to obtain these measures, first
a preliminary analysis of software benchmarks has been performed, selecting a repre-
sentative group of programs which were able to run within a very reduced memory,
due to the limitations of the final design. A few ATMR designs with different approx-
imation levels and a golden reference were implemented. The final design has been
manufactured in a 28 nanometers ASIC with the aim of evaluating its performance in
a radiation experiment, still pending.

Finally, a comparison of the approximation generation method proposed in this
thesis (on its dynamic version) against evolutionary algorithms (based in CGP) has
been performed. Evolutionary algorithms use a random mutation mechanism to gen-
erate logic circuits departing from a seed. A fitness function evaluates the generated
circuits, selecting on each generation the circuit with the better fitness in an iterative
process. The fitness function can be designed to meet any desired criteria, in this case
the generation of optimal approximate circuits. Evolutionary algorithms are time con-
suming, but they can presumably generate solutions that cannot be reached by greedy
approaches, such as the dynamic approach proposed in this thesis. Therefore, it could
be expected that the evolutionary algorithm could generate more optimal approximate
circuits than the dynamic approach and the interest relies in knowing how far the re-
sults of the dynamic approach are from the CGP results. The experiments show that the
approach proposed in this thesis is able to generate approximate circuits that are close
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to the evolutionary approach, although a bit less optimal. In addition, the proposed
approach has the advantages of a reduced computational effort, and no restrictions in
the size of the circuits that it is able to process.

In summary, this thesis has proposed an original method for the generation of ap-
proximate logic circuits that has been studied in depth. It has given way to different
approaches and has been demonstrated for different application scenarios with rele-
vant results. As main advantages over the state of the art, the proposed method is very
flexible and scalable. Furthermore, it allows to estimate the impact of approximation
transformations on the error mitigation, which is essential in order to achieve a good
balance with the area overhead.

7.2 Future research work
Several topics are proposed which may be part of future research works, with the aim
of improving the error mitigation techniques presented in this thesis.

First of all, every approximation generation method proposed in this thesis departs
from an initial implementation of the target circuit. As this fact might influence the final
result, it would be interesting to study different optimizations of the initial circuit, with
the aim of discovering if there is any particular approach which favours the generation
of more optimal approximate circuits.

In relation with the fault approximation mechanism, it has been introduced the idea
of performing an adaptive fault approximation alternatively to simply forcing constant
logic values to some circuit lines. This mechanism would generate don’t-care inputs
in the approximated lines in such a way that, depending on the value that is later given
to such input, the approximation would be taken or not. This decision would be taken
by a synthesis software, although some synthesizers struggle when handling this kind
of instrumentation, and therefore choosing an adequate synthesis software would be
critical. This alternative approximation generation mechanism can be studied to be
implemented, with the idea of minimizing the costs associated to the unate expansion
in binate circuits.

With respect to the approximation generation method based on dynamic testabil-
ity measures, there are several possible improvements. First, alternative fault selec-
tion heuristics can be implemented in order to favour other kinds of solutions which
might be more beneficial for certain applications. In addition, recursive learning can
be implemented at different levels through the algorithm. On the one hand, applying
recursive learning during the fault implication process may allow resolving the signal
interdependencies that are not discovered by just direct implication, which results in
more precise fault probability estimations. On the other hand, recursive learning can
be additionally applied to the fault selection heuristic itself, which may help in avoid-
ing the local minima problem, increasing the chances of obtaining an optimal solution.
In any case, recursive learning imposes a great computational effort. Finally, there is
a set of possible improvements with respect to the computation of the total error prob-
ability. In the first place, the computation of the EP should be extended to the three
circuit instances for a better predictability of the approximation generation algorithm.
The mathematical reasoning to do so has been presented, although it has been proved
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that EP cannot be incrementally computed in that case, thus imposing an additional
complexity. Besides, additional terms can be introduced in the computation of the EP
in order to obtain more realistic estimations. For example, each fault probability could
be weighted by the probability that each particular fault was originated by external
factors, or the estimation of EP could be performed taking into account fault models
alternative to the stuck-at, such as bit flips (multiplying each fault probability by the
corresponding signal probability) or SETs (applying the corresponding electrical and
temporal de-rating factors).

Regarding the node substitution approach, in addition to the topics already dis-
cussed for the dynamic approach, its performance can be improved by considering
dynamic fault lists. That is, that the node substitutions performed introduce new con-
nections to the approximate circuits, which have associated new faults. These new
faults could be approximated in later steps, or be replaced by another node substitu-
tions. Currently, these transformations can never take place because these new faults
are not dynamically introduced in the fault list.

With respect to the approximation generation for circuits implemented in an FPGA,
more opportunities for the optimization of approximate circuits can be generated by im-
plementing a dynamic LUT superstructure, where LUTs can be merged and re-defined
as long as the approximation process progresses. In such a way, the set of possible
logic transformations can be enlarged, because the dynamic configuration of the LUT
frontiers may allow approximating some faults which initially were located inside a
LUT, and therefore forbidden. In addition, concerning the direct approximation of
binate faults, a small improvement can be achieved by detecting the autocancellation
cases, and subsequently performing the approximation of each complimentary unate
fault taking into account this fact.

Finally, regarding the ATMR version of the ARM Cortex M0, radiation results were
still pending at the moment of writing this document. Depending on the final results,
additional studies on ATMR applied at different scopes, from system level to individual
submodules, could be performed.





Bibliography

[1] ARM limited. ARM Cortex-M0 Technical Reference Manual, 2010. http:
//infocenter.arm.com.

[2] ARM limited. ARM Compiler v5.06 for Vision armlink User Guide. www.keil.
com/support/man/docs/armlink/.

[3] Robert C Baumann. Radiation-induced soft errors in advanced semiconductor
technologies. Device and Materials Reliability, IEEE Transactions on, 5(3):305–
316, 2005.

[4] Gustavo Neuberger, Gilson Wirth, and SpringerLink (Online service). Protecting
Chips Against Hold Time Violations Due to Variability. Springer Netherlands,
Dordrecht, 2014.

[5] R. Koga, S. H. Penzin, K. B. Crawford, and W. R. Crain. Single event functional
interrupt (sefi) sensitivity in microcircuits. In RADECS 97. Fourth European Con-
ference on Radiation and its Effects on Components and Systems, pages 311–318,
Sep 1997.

[6] A. Haran, J. Barak, D. David, E. Keren, N. Refaeli, and S. Rapaport. Single event
hard errors in sram under heavy ion irradiation. IEEE Transactions on Nuclear
Science, 61(5):2702–2710, Oct 2014.

[7] W. A. Kolasinski, J. B. Blake, J. K. Anthony, W. E. Price, and E. C. Smith. Simu-
lation of cosmic-ray induced soft errors and latchup in integrated-circuit computer
memories. IEEE Transactions on Nuclear Science, 26(6):5087–5091, Dec 1979.

[8] R. C. Martin, N. M. Ghoniem, Y. Song, and J. S. Cable. The size effect of ion
charge tracks on single event multiple-bit upset. IEEE Transactions on Nuclear
Science, 34(6):1305–1309, Dec 1987.

[9] M. Nicolaidis T.Calin and R. Velazco. Upset hardened memory design for sub-
micron cmos technology. Nuclear Science, IEEE Transactions on, 43(6):2874–
2878, Dec 1996.

[10] Veronique Ferlet-Cavrois, Lloyd W Massengill, and Pascale Gouker. Single
event transients in digital cmosa review. Nuclear Science, IEEE Transactions
on, 60(3):1767–1790, 2013.

155



156 BIBLIOGRAPHY

[11] Q. Zhou and K. Mohanram. Gate sizing to radiation harden combinational logic.
Computer-Aided Design, IEEE Transactions on, 25:155–166, Jan 2006.

[12] M. Nicolaidis. Time redundancy based soft-error tolerance to rescue nanometer
technologies. In Proc. VLSI Test Symposium, pages 86–94, 1999.

[13] Barry W Johnson. Design & analysis of fault tolerant digital systems. Addison-
Wesley Longman Publishing Co., Inc., 1988.

[14] Kartik Mohanram, Nur Touba, et al. Partial error masking to reduce soft er-
ror failure rate in logic circuits. In Defect and Fault Tolerance in VLSI Sys-
tems, 2003. Proceedings. 18th IEEE International Symposium on, pages 433–440.
IEEE, 2003.

[15] Aiman H El-Maleh and Feras Chikh Oughali. A generalized modular redundancy
scheme for enhancing fault tolerance of combinational circuits. Microelectronics
Reliability, 54(1):316–326, 2014.

[16] Kundan Nepal, Nuno Alves, Jennifer Dworak, and R Iris Bahar. Using impli-
cations for online error detection. In Test Conference, 2008. ITC 2008. IEEE
International, pages 1–10. IEEE, 2008.

[17] A.H. El-Maleh and K.A.K. Daud. Simulation-based method for synthesizing
soft error tolerant combinational circuits. Reliability, IEEE Transactions on,
PP(99):1–14, 2015.

[18] Smita Krishnaswamy, Stephen M Plaza, Igor L Markov, and John P Hayes. En-
hancing design robustness with reliability-aware resynthesis and logic simulation.
In Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International Con-
ference on, pages 149–154. IEEE, 2007.

[19] Sobeeh Almukhaizim and Yiorgos Makris. Soft error mitigation through selec-
tive addition of functionally redundant wires. Reliability, IEEE Transactions on,
57(1):23–31, 2008.

[20] M.R. Choudhury and K. Mohanram. Low cost concurrent error masking using
approximate logic circuits. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 32(8):1163–1176, Aug 2013.

[21] Brian D Sierawski, Bharat L Bhuva, and Lloyd W Massengill. Reducing soft
error rate in logic circuits through approximate logic functions. Nuclear Science,
IEEE Transactions on, 53(6):3417–3421, 2006.

[22] Mihir R Choudhury and Kartik Mohanram. Approximate logic circuits for low
overhead, non-intrusive concurrent error detection. In Design, Automation and
Test in Europe, 2008. DATE’08, pages 903–908. IEEE, 2008.

[23] I. A. C. Gomes, M. Martins, A. Reis, and F. L. Kastensmidt. Using only redundant
modules with approximate logic to reduce drastically area overhead in tmr. In
2015 16th Latin-American Test Symposium (LATS), pages 1–6, March 2015.



BIBLIOGRAPHY 157

[24] Hao Xie, Li Chen, Rui Liu, A. Evans, D. Alexandrescu, Shi-Jie Wen, and
R. Wong. New approaches for synthesis of redundant combinatorial logic for
selective fault tolerance. In On-Line Testing Symposium (IOLTS), 2014 IEEE
20th International, pages 62–68, July 2014.

[25] I.A.C. Gomes, M. Martins, F. Lima Kastensmidt, A. Reis, R. Ribas, and S.P.
Novales. Methodology for achieving best trade-off of area and fault masking
coverage in atmr. In Test Workshop - LATW, 2014 15th Latin American, pages
1–6, March 2014.

[26] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy. Impact. Impact:
Imprecise adders for low-power approximate computing. In Low Power Electron-
ics and Design (ISLPED) 2011 International Symposium on, pages 409–414, Aug
2011.

[27] A. Kahng and S. Kang. Accuracy-configurable adder for approximate arithmetic
designs. In Design Automation Conf., pages 820–825, June 2012.

[28] P. Kulkarni, P. Gupta, and M. Ercegovac. Trading accuracy for power with an
underdesigned multiplier architecture. In VLSI Design, 24th International Con-
ference on, pages 346–351, Jan 2011.

[29] D. Shin and S. Gupta. Approximate logic synthesis for error tolerant applica-
tions. In Design, Automation and Test in Europe, 2010. DATE’10, pages 957–960.
IEEE, March 2010.

[30] D. Shin and S. Gupta. A new circuit simplification method for error tolerant
applications. In Design, Automation and Test in Europe, 2011. DATE’11, pages
1–6. IEEE, 2011.

[31] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan. Salsa:
Systematic logic synthesis of approximate circuits. In Design Automation Conf.,
pages 796–801, June 2012.

[32] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan. Aslan:
Synthesis of approximate sequential circuits. In Design, Automation and Test in
Europe, 2014. DATE’14, pages 1–6. IEEE, March 2014.

[33] A. Bernasconi and V. Ciriani. 2-spp approximate synthesis for error tolerant appli-
cations. In EUROMICRO Symposium on Digital System Design, pages 411–418,
Aug 2014.

[34] Arun Chandrasekharan, Mathias Soeken, Daniel Groe, and Rolf Drechsler.
Approximation-aware rewriting of aigs for error tolerant applications. In
Computer-Aided Design, 2016. ICCAD 2016. IEEE/ACM International Confer-
ence on. IEEE, 2016.

[35] Rolf Drechsler. Evolutionary Algorithms for VLSI CAD. Kluwer Academic Pub-
lishers, Boston, 1998.



158 BIBLIOGRAPHY

[36] Erik Larsson. Introduction to Advanced System-on-Chip Test Design and Opti-
mization. Springer, 2005.

[37] Martin A. Trefzer and Andy M. Tyrrell. Evolvable Hardware: From Practice to
Application. Springer, 2015.

[38] Zdenek Vasicek and Lukas Sekanina. Evolutionary approach to approximate digi-
tal circuits design. IEEE Transactions on Evolutionary Computation, 19(3), 2015.

[39] Radek Hrbacek. Parallel multi-objective evolutionary design of approximate cir-
cuits. In GECCO ’15 Proceedings of the 2014 conference on Genetic and evo-
lutionary computation, pages 687–694. Association for Computing Machinery,
2015.

[40] Va. V. Saposhnikov, A. Morosov, Vl. V. Saposhnikov, and Michael Gössel. A new
design method for self-checking unidirectional combinational circuits. In On-line
testing for VLSI, pages 41–53. Springer, 1998.

[41] Z. Kohavi. Switching and Finite Automata Theory. Computer Science Series.
McGraw-Hill, 1978.

[42] L. Entrena, C. Lopez, E. Olias, E. San Millan, and J.A. Espejo. Logic opti-
mization of unidirectional circuits with structural methods. In On-Line Testing
Workshop, 2001. Proceedings. Seventh International, pages 43–47, 2001.

[43] A. Sanchez-Clemente, L. Entrena, M. Garcia-Valderas, and C. Lopez-Ongil.
Logic masking for set mitigation using approximate logic circuits. In On-Line
Testing Symposium (IOLTS), 2012 IEEE 18th International, pages 176–181, June
2012.

[44] Hyungwon Kim and J.P. Hayes. Realization-independent atpg for designs with
unimplemented blocks. Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, 20(2):290–306, Feb 2001.

[45] Hyung Ki Lee and Dong Sam Ha. Hope: an efficient parallel fault simulator for
synchronous sequential circuits. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 15(9):1048–1058, Sep 1996.

[46] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lindoso, M. Portela,
and C. Lopez-Ongil. Soft error sensitivity evaluation of microprocessors by
multilevel emulation-based fault injection. Computers, IEEE Transactions on,
61(3):313–322, Jan 2012.

[47] Berkeley Logic Synthesis and Verification Group. Abc: A system for sequential
synthesis and verification. Release 2013-01-08. http://www.eecs.berkeley.edu/
∼alanmi/abc/.

[48] Synopsys Armenia Educational Department. Saed 90nm generic library. http:
//www.synopsys.com/Community/UniversityProgram.



BIBLIOGRAPHY 159

[49] Kenneth P Parker and Edward J McCluskey. Probabilistic treatment of general
combinational networks. Computers, IEEE Transactions on, 100(6):668–670,
1975.

[50] F. Brglez. On testability of combinational networks. In IEEE International Sym-
posium on Circuits and Systems, 1984.

[51] S. C. Seth, L. Pan, and V. D. Agrawal. PREDICT-probabilistic estimation of
digital circuit testability. In Proceeding of International Symposium on Fault-
Tolerant Computing, pages 220–225, June 1985.

[52] L. Goldstein. Controllability/observability analysis of digital circuits. IEEE
Transactions on Circuits and Systems, 26(9):685–693, Sep 1979.

[53] Jacob Savir, Gary S Ditlow, and Paul H Bardell. Random pattern testability.
Computers, IEEE Transactions on, 100(1):79–90, 1984.

[54] Savir. Improved cutting algorithm. IBM Journal of Research and Development,
34(2.3):381–388, March 1990.

[55] Shih-Chieh Chang, Wen-Ben Jone, and Shi-Sen Chang. Tair: Testability analysis
by implication reasoning. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 19(1):152–160, 2000.

[56] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital systems testing and
testable design. Wiley-IEEE Press, 1994.

[57] Luis Entrena, Kwang-Ting Cheng, et al. Combinational and sequential logic op-
timization by redundancy addition and removal. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 14(7):909–916, 1995.

[58] W. Kunz and D. K. Pradhan. Recursive learning: a new implication tech-
nique for efficient solutions to cad problems-test, verification adn optimization.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 13(9):1143–1158, Aug 1994.

[59] Fernanda Lima Kastensmidt, Luigi Carro, and Ricardo Reis. Fault-tolerance
techniques for SRAM-based FPGAs. Springer International Publishing, 2006.

[60] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin. Improving fpga
design robustness with partial tmr. In 2006 IEEE International Reliability Physics
Symposium Proceedings, pages 226–232, March 2006.

[61] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M. Wirthlin. Seu-
induced persistent error propagation in fpgas. IEEE Transactions on Nuclear
Science, 52(6):2438–2445, Dec 2005.

[62] H. Quinn et al. Using benchmarks for radiation testing of microprocessors and
fpgas. Nuclear Science, IEEE Transactions on, 62(6):2547–2554, Dec 2015.



160 BIBLIOGRAPHY

[63] Xilinx corporation. Soft Error Mitigation Controller v4.1. LogiCORE IP Product
Guide, Sept 2015.
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Appendix A

Circuit approximation examples

A.1 Introduction

For a better comprehension of the techniques developed within this thesis, several ex-
amples are explained here in detail. Each example corresponds to one of the different
approaches proposed in this document. In addition, all examples depart from the same
initial circuit for the sake of comparison between techniques.

The rest of the appendix is organised as follows. Section A.2 introduces the circuit
in which all examples in this chapter are based. Section A.3 applies the approxima-
tion method based on static testability measures to our example circuit. Section A.4
makes use of dynamic testability measures. Example in section A.5 employs the node
substitution technique. Finally, section A.6 performs an approximation of the example
circuit intended for FPGA implementation.

A.2 Example circuit

C17 benchmark from LGSynth93 set has been the selected circuit to conduct the ex-
amples included here. Figure A.1 shows the gate level structure of the circuit. It can
be seen that c17 is already a fully unate circuit, with the only exception of PI2 primary
input, and therefore unate expansion is not required. This benchmark has been chosen
for being a multiple output circuit, complex enough to appreciate differences between
different approximation methods but at the same time small enough to be manageable.
This circuit is used as the starting point for all examples within this section, with the
aim of comparing between different approaches.

A.3 Approximation by static testability measures

The first example corresponds to approximation generation with static testability mea-
sures, which has already been explained in chapter 4. Although this method is quite
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Figure A.1: c17 benchmark

straightforward, it is shown here with the purpose of comparing results with the rest of
techniques addressed within this thesis.

In the first place, testability measures are obtained by means of stuck-at fault simu-
lation on c17 benchmark with the aid of parallel simulator HOPE. Up to 1000 randomly
generated input vectors have been applied on this example. Results of fault simulation
are processed, thus obtaining the data contained in Table A.1. The table shows the
collapsed list of faults for c17 benchmark along with the probability of each fault, in
descending order. Fault probabilities have been computed as the number of occurrences
of that fault, divided by the total number of applied input vectors -1000 in this case.
This means, as an example, that fault PO0/1 has been detected 410 times during the
simulation, while for fault n8→n9 there have been 135 input vectors which allowed its
propagation to the outputs.

Fault Prob. Fault Prob.
PO0 /0 0.590 PI2→n8 /1 0.200
n9 /0 0.572 n9→PO1 /1 0.198
n8 /0 0.566 n8 /1 0.198
PO1 /0 0.566 n7 /1 0.196
PO1 /1 0.434 PI3 /1 0.196
PO0 /1 0.410 PI0 /1 0.188
n9 /1 0.361 PI4 /1 0.180
n9→PO0 /1 0.318 n11 /1 0.172
PI1 /1 0.318 n8→n9 /1 0.135
PI2 /0 0.295 n8→n11 /1 0.134
PI2 /1 0.286 PI2→n7 /1 0.114

Table A.1: Results of fault testability analysis for c17
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Now, faults within the circuit are classified according whether they produce an
under- or an over-approximation. As explained in section 3.3, this depends only on the
fault value and the parity of the line where that fault is applied, provided that circuit is
unate. In the case of this example, faults are classified as follows:

• Under-approximation faults: PI2→n8/1, PI3/1, n7/1, n9→PO0/1, n9→PO1/1,
n11/1, PO0/0 and PO1/0.

• Over-approximation faults: PI0/1, PI1/1, PI2→n7/1, PI4/1, n8→n9/1, n8→n11/1,
PO0/1 and PO0/1.

Faults PI2/0, PI2/1, n8/0, n8/1, n9/0 and n9/1 correspond to stem lines, and therefore
they are not taken into account. This classification is useful when generating approxi-
mations. Faults of the same type can be approximated together, i.e., in the same circuit.
Faults of different types cannot, because the resulting circuit would be a bidirectional
approximation.

After all the preparations have been completed, approximation generation can be
performed. With this purpose, two replicas of the c17 benchmark are generated, an
arbitrary testability threshold is set and every fault whose testability lies under the
threshold becomes approximated. In this example a wide range of thresholds have
been used with the aim of covering the whole range of reachable solutions between
pure TMR and trivial approximation.

The less testable fault in the example is PI2→n7 stuck-at 1, whose probability is
0.114. Any testability threshold equal or lower than this value would produce a pure
TMR scheme, as no faults become approximated and therefore approximate circuits
are exact copies of c17 benchmark, as shown in Figure A.2.
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(a) Under-approximation
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(b) Over-approximation

Figure A.2: Approximate circuits for a 0 threshold - Pure TMR

Let us assume a threshold of 0.12. In this case, only the fault PI2→n7 stuck-at 1 is
approximated, because this is the only fault whose testability is lower than 0.12. The
fault is approximated by substituting the corresponding connection - from input PI2 to
node n7 - with a constant logic 1 - see Figure A.3a. This circuit can be simplified by
replacing node n7 -a two input NAND gate with a constant input- with an inverter, thus
obtaining the equivalent circuit of Figure A.3b, which is slightly smaller than original
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circuit. According to the previous classification, fault PI2→n7 stuck-at 1 produces
an over-approximation, and therefore the same applies for this circuit. On the other
hand, an exact replica of c17 is used as the under-approximation. Figure A.4 shows the
resulting approximate circuits in this case.
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Figure A.3: Approximation of fault PI2→n7 stuck-at 1

n7

n8

n9

n11
PO1

PO0

PI0

PI1

PI2

PI3

PI4

PO0_PO

PO1_PO

(a) Under-approximation

n8

n9

n11
PO1

PO0

PI0

PI1

PI2

PI3

PI4

PO0_PO

PO1_PO

n7

(b) Over-approximation

Figure A.4: Approximate circuits for a 0.12 threshold

The next selected threshold is 0.135. For this value, faults PI2→n7/1 and n8→n11/1
become approximated. It must be noted that faults whose testability equals the thresh-
old value are not approximated, and therefore fault n8→n9/1 is not taken into account
yet. Both faults are forced together as they are of the same type, and then the circuit is
simplified, removing logic constants - see Figure A.5b. The resulting circuit serves as
an over-approximation of the c17 benchmark, while the under-approximation is still a
replica of c17. Figure A.5 illustrates the resulting approximate circuits for the selected
testability threshold.

Consider now a threshold of 0.14. Three faults lie under this value: PI2→n7/1,
n8→n9/1 and n8→n11/1. All this faults produce over-approximations, and therefore
they are jointly forced in the same circuit, which is subsequently simplified as shown
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Figure A.5: Approximate circuits for a 0.135 threshold
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in Figure A.6b. Dangling node n8 is suppressed, and the remaining nodes can be
combined in just two OR gates. Here the potential benefits of approximate logic can
be appreciated, as the over-approximation area has been reduced to about 1/3 of c17
area. Meanwhile, the under-approximation is again a copy of the original benchmark,
as reflected in Figure A.6a.
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Figure A.6: Approximate circuits for a 0.14 threshold

The following value is 0.175. Below this threshold are over-approximation faults
PI2→n7/1, n8→n9/1 and n8→n11/1 and the under-approximation fault n11 stuck-at 1.
The three first faults are approximated in one of the c17 replicas, and the last fault in
the other one, as shown in Figure A.7. Later, both circuits are simplified, obtaining the
final solutions in order to build an error masking scheme. With respect to the under-
approximation - Figure A.7a -, approximation of fault n11/1 allows to remove node
n11, thus reducing the area overhead.

Let us stablish a threshold of 0.185. In addition to the previous faults, PI4 stuck-at 1
become approximated. According with the fault classification, this is done in conjunc-
tion with PI2→n7/1, n8→n9/1 and n8→n11/1 faults, generating an over-approximation
- see Figure A.8b. When simplifying this circuit, it can be appreciated that both inputs
of node n11 are tied to logic constant 1, and therefore that gate can be suppressed by
propagating the logic values forward. This eventually turns out that a constant logic 1
is assigned to primary output PO1. This contributes to reduce area overhead not only
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Figure A.7: Approximate circuits for a 0.175 threshold
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by removing one part of the logic function, but it also allows to simplify the voting
logic, because one of the three instances of primary output PO1 being voted is a logic
constant . On the other hand, the under-approximation presents no changes with re-
spect to the previous step. Resulting circuits for the considered testability threshold
can be seen in Figure A.8.
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Figure A.8: Approximate circuits for a 0.185 threshold

The next value in the list is 0.19. From the part of under-approximation, only the
fault n11 stuck-at 1 is approximated yet, while from the over-approximation side, faults
PI0/1, PI2→n7/1, PI4/1, n8→n9/1 and n8→n11/1 are forced, as illustrated in Figure
A.9. As usual, those circuits are simplified in order to remove logic constants. Due to
simplifications and constant propagations, in this case all primary outputs in the over-
approximate circuit receive a constant assignment - see Figure A.9b. In other words,
over-approximation has been reduced to the trivial approximation, which introduces
no area overhead. This holds for all the remaining cases. In addition, voting logic can
be simplified for both primary outputs as one of the signals voted is constant, further
reducing area overheads.

Following with a 0.197 threshold. Faults PI3/1 and n7/1 are included in the list
of approximated faults, along with all the previous ones. These new faults are forced
in the under-approximate version of the circuit, same as n11 stuck-at 1, and subse-
quently simplified. As result, both primary outputs implement the same logic function,
as shown in Figure A.10a. Besides, the over-approximate circuit is the trivial approxi-
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Figure A.9: Approximate circuits for a 0.19 threshold
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mation, illustrated in Figure A.10b.
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Figure A.10: Approximate circuits for a 0.197 threshold

Now let us assume a testability threshold of 0.2. In addition to the previous faults,
n9⇒PO1 stuck-at 1 becomes approximated, which belongs to the under-approximation
side. Fault n8 stuck-at 1 is not taken into account as it is applied on a stem line.
Resulting approximate circuits are shown in Figure A.11. It can be appreciated that
primary output PO1 is constant in both approximate circuits. This allows to completely
remove voter for that particular output, as both replicas will always provide opposite
values, thus leaving output PO1 unprotected.

Finally, consider a threshold of 0.25. Fault PI2⇒n8 stuck-at 1 is added to the
list of approximated faults. After performing proper simplifications, the full trivial
approximation is obtained, as it is illustrated in Figure A.12, where all the primary
outputs in both circuits are tied to logic constants. As a consequence, voters are not
required at all, leaving just the unprotected original circuit.

A.4 Approximation by dynamic testability measures
For a better comprehension of the approximation generation method by means of dy-
namic testability measures introduced in chapter 5, the whole process for c17 bench-
mark is detailed in this section, which is divided in several subsections. The first one
corresponds to the initialization of the algorithm, and then there is one subsection per
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Figure A.11: Approximate circuits for a 0.2 threshold
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Figure A.12: Approximate circuits for a 0.25 threshold - Trivial approximation
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iteration of the algorithm, that is, for each approximated fault. A total of 10 iterations
are performed, from the full TMR to the trivial approximation. In the end, a compar-
ison between estimated and real fault probabilities is presented, in order to show the
accuracy of proposed approach.

Initial probability computation
The first step in the initialization phase of approximation generation algorithm is a
unateness check of the target design by means of parity computation. As said in section
A.2, c17 is already a fully unate circuit, and therefore no logic transformations are
required. If the target design would be binate, then it should be transformed into a
unate circuit.

Next, the list of candidate stuck-at faults is generated. In this example only the
compact list of faults is considered, with the idea of having a small and manageable
fault list. And as usual, faults in stem lines are excluded, just individual lines are
considered. Faults within the list are classified according to whether they produce an
over- or under-approximation, which depends just in the fault value and the parity of
the line where the fault is applied, as explained in section 3.3. The candidate faults are
next listed, already split in two groups according to their classification:

• Under-approximation faults: PI2→n8/1, PI3/1, n7/1, n9→PO0/1, n9→PO1/1,
n11/1, PO0/0 and PO1/0.

• Over-approximation faults: PI0/1, PI1/1, PI2→n7/1, PI4/1, n8→n9/1, n8→n11/1,
PO0/1 and PO0/1.

Now, fault probabilities are initialized. This is performed by implying each fault,
that is, applying the corresponding controllability and observability conditions and de-
ducing its justification frontier, and finally computing the probability value according
to the J-SMA as explained in sections 5.3.1 and 5.3.2. Next this process is applied to
each fault in the list.
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Figure A.13: Implication of fault PI0/1

First fault is PI0/1, which can only propagate through output PO0. Controllability
condition of this fault corresponds to assignment PI0=0. In addition, nodes n7 and
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PO0 are dominators of this fault, and therefore assignments on its side inputs PI2=1
and n9=1 become observability conditions of the fault. This assignments are propa-
gated through the circuit by direct implication as shown in Figure A.13. Assignment
PI0=0 implies n7=1, and this along with n9=1 imply PO0=0. But the initial set of
mandatory assignments is not justified, and therefore it becomes the justification fron-
tier of fault PI0/1. In conclusion, probability of this fault is computed as the product
of probabilities of assignments PI0=0, PI2=1 and n9=1. But in order to resolve all
possible dependencies, each probability is computed conditioned to the set of deduced
assignments for the current J-SMA. This means that probability of assignment n9=1 is
conditioned to PI2=1. Assuming a probability of 0.5 for every input, then

P (n9|PI2) = 1− (P (PI1) · P (n8|PI2)) =

= 1− (P (PI1) · (1− P (PI3))) = 1− (0.5 · 0.5) = 0.75

And the probability of fault PI0/1 is then

P (PI0/1) = P (PI0) · P (PI2) · P (n9|PI2) = 0.5 · 0.5 · 0.75 = 0.1875
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Figure A.14: Implication of fault PI1/1 through PO0

Next fault in the list is PI1/1. This fault can propagate through both outputs, and
therefore one justification frontier is implied per output. Let us start with output PO0.
Assignment PI1=0 is identified as the fault’s controllability condition. Nodes n9 and
PO0 are the dominators of this fault with respect to output PO0, so the observability
conditions are the assignments that put the sensitizing value to this dominator nodes. In
other words, assignments n7=1 and n8=1 are the observability conditions. This assign-
ments are propagated through the circuit as in Figure A.14, implying the assignments
n9=1 and PO0=0. No more signal values can be deduced, so the initial SMA becomes
the justification frontier JPI1/10 = PI1 · n7 · n8. Then probability of this J-SMA is
computed as

P (PI1/10) = P (PI1) · P (n7) · P (n8) = 0.5 · 0.75 · 0.75 = 0.28125

It can be appreciated that both signals n7 and n8 depend on PI2, but this dependence
cannot be identified by the implication algorithm. As result there is a slight deviation
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from the real probability value. By using a more sophisticated implication method more
dependencies could be found and therefore probability estimations would be more pre-
cise, but at a cost of a higher computational cost.
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Figure A.15: Implication of fault PI1/1 through PO1

Later implication of the fault PI1/1 is performed with respect to output PO1. Here
assignments n8=1 and n11=1 are inferred as observability conditions, and along with
controllability condition PI1=0 they are all possible mandatory assignments deduced
from the topology of the circuit. But in order to easily compute fault probabilities,
input vectors already taken into account with output PO0 have to be excluded. In other
words, JPI1/10 = PI1 · n7 · n8 is included here as an additional restriction that must
not be fulfilled. Lines PI1 and n8 have already assignments which are compatible with
JPI1/10 , so line n7 must be assigned to 0. These four assignments form the initial
SMA for this step as depicted in Figure A.15a. Then they are propagated through
the circuit. n7=0 is justified by assigning 1 to both of its inputs and, because PI2=1,
assigning PI3 to 0 is the only way that n8=1, which becomes justified. Therefore, lines
n7 and n8 are removed from the SMA in favour of newly deduced assignments. Finally,
n11=1 is justified by PI4=0, because n8 already has a value 1, so this is removed from
the SMA as well, and replaced with PI4=0. Apart from this, these assignments are
propagated towards circuit outputs. All this process is summarized in Figure A.15b. In
the end, J-SMA is composed by assignments PI0=1, PI1=0, PI2=1, PI3=0 and PI4=0.
Assigning a probability of 0.5 to each input, then this J-SMA has a probability of
P (PI1/11) = 0.55 = 0.03125.

Finally, probability of the whole fault PI1/1 is computed as the sum of both partial
values, because they have been computed in such a way that intersection between both
J-SMAs is null. Therefore,

P (PI1/1) = P (PI1/10) + P (PI1/11) = 0.28125 + 0.03125 = 0.3125

Fault PI2→n7/1 comes next. Controllability condition PI2=0 and observability
conditions PI0=1 and n9=1 form the initial set of mandatory assignments for this fault,
as shown in Figure A.16a. Then these values are propagated through the circuit. PI2=0
implies n8=1, which in turn forces the assignment PI1=0 in order to justify n9=1. n7
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Figure A.16: Implication of fault PI2→n7/1

and PO0 receive assignments as well by propagation. All this implication process is
shown in Figure A.16b. No more assignments can be inferred, and the final J-SMA
is the set of conditions PI0=1, PI1=0, PI2=0. The probability of current fault is then
P (PI2→ n7/1) = 0.53 = 0.125, taking into account that each input has a probability
equal to 0.5.
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Figure A.17: Implication of fault PI2→n8/1 through PO0

The following fault is PI2→n8/1. This fault can propagate to both outputs, and
therefore one implication per output is performed as usual. With respect to PO0, the
initial SMA includes assignments PI2=0, PI3=1, PI1=1 and n7=1 as depicted in Figure
A.17a. During implication process, n7=1 is justified by PI2=0, and initial conditions
are propagated until primary outputs as shown in Figure A.17b. At the end of the im-
plication process, the SMA JPI2→n8/10 is formed by PI1=1, PI2=0 and PI3=1, which
become the J-SMA, with a probability of P (PI2→ n8/10 = 0.53 = 0.125)

In the case of output PO1, only PI2=0 and PI3=1 can be initially inferred as manda-
tory assignments. Only nodes n8 and PO1 are dominators of this fault, and PO1 does
not have side inputs because the fault has two different propagation paths. But by
adding the restriction JPI2→n8/10 intended to exclude those input vectors already con-
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Figure A.18: Implication of fault PI2→n8/1 through PO1

sidered for output PO0, additional MAs can be inferred. In particular, PI1 must be
assigned to 0 because PI2 and PI3 already have values compatible with JPI2→n8/10 .
This new MA causes that propagation path through node n9 to be blocked. As a con-
sequence, node n11 becomes a dynamic dominator of the fault and new observability
conditions can be inferred. Assignment PI4=1 is included in the SMA, and all these
values are propagated through the circuit as shown in Figure A.15. At the end of im-
plication process, justification frontier is formed by assignments PI1=0, PI2=0, PI3=1
and PI4=1. From this J-SMA a probability is computed as usual, being P (PI2 →
n8/11) = 0.54 = 0.0625.

Finally, as both partial J-SMAs are mutually exclusive, the whole probability of
fault PI2→n8/1 can be computed by simply adding probabilities, thus having

P (PI2→ n8/1) = 0.125 + 0.0625 = 0.1875
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Figure A.19: Implication of fault PI3/1 through PO0

Now it is the turn of fault PI3/1. This one propagates to both outputs, so it has to
be implied in an output by output basis. First propagation through PO0 is addressed.
Controllability and observability conditions are inferred first, thus generating the initial
SMA PI1=1, PI2=1, PI3=0 and n7=1, as shown in Figure A.19a. Assignment n7=1 is
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justified by PI0=0, because PI2 is already set to 1. Like this, other assignments are
implied from the initial SMA as shown in Figure A.19b. Implication ends, and J-SMA
JPI30 = PI0 · PI1 · PI2 · PI3 is extracted. This J-SMA has associated a probability
of P (PI3/10 = 0.54) = 0.0625.
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Figure A.20: Implication of fault PI3/1 through PO1

Then, propagation of fault PI3/1 through output PO1 is implied. The same problem
as with fault PI2→n8/1 arises here. As there are several propagation paths, just assign-
ments PI2=1 and PI3=0 can be initially inferred as in Figure A.20. But in this case,
applying the additional restriction JPI30 does not allow to deduce additional MAs.
So in this case the J-SMA remains as JPI3/11 = PI2 · PI3, which corresponds a
probability of 0.25. Notwithstanding, the unjustified restriction still serves to infer a
probability correlation coefficient which leads to a more realistic probability estima-
tion. This coefficient kJ is derived from the probability of JPI30 , conditioned to the
set of assignments in JPI31 as follows

kJ = 1− P (JPI30 |JPI31) = 1− P (PI0 · P (PI1)) = 1− 0.25 = 0.75

and partial probability of PI3/1 through PO1 is then

P (PI3/1) = P (JPI31) · kJ = 0.25 · 0.75 = 0.1875

which is a value closer to the real probability -0.125- than if correlation coefficient
were not applied.

Total probability of fault PI3/1 is finally computed by adding both partial probabil-
ities, assuming that they are independent between them. Therefore,

P (PI3/1) = P (PI3/10) + P (PI3/11) = 0.0625 + 0.1875 = 0.25

Next fault in the list is PI4/1. The initial SMA for this fault is formed by controlla-
bility condition PI4=0 and observability conditions n8=1 and n9=1, as shown in Figure
A.21a. Later these values are propagated through the circuit as it can be seen in Figure
A.21b. It is relevant to notice that assignment PI1=0 is required to justify n9=1, be-
cause the other input to node n9 is already set to 1. Finally, J-SMA of the fault contains
the assignments PI1=0, PI4=0 and n8=1, which corresponds a probability of

P (PI4/1) = P (PI1) · P (PI1) · P (n8) = 0.5 · 0.5 · 0.75 = 0.1875
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Figure A.21: Implication of fault PI4/1
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Figure A.22: Implication of fault n7/1
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Following with fault n7/1. The controllability and observability conditions of this
fault are n7=0 and n9=1 respectively, which are represented in Figure A.22a. This is
the initial set of mandatory assignments, which are then propagated as shown in Figure
A.22b. Assignment n7=0 implies PO0=1, and at the same time it is justified by PI0=1
and PI2=1. In the end, justification frontier is Jn7/1 = PI0 · PI2 · n9. Probability of
fault n7/1 is then derived from assignments belonging to J-SMA as usual, computing
the probability of each assignment conditioned to the whole set of deduced values. This
allows to resolve the dependence between signals PI2 and n9 present in this case by
operating with probability P (n9|PI2). This value has already been computed during
implication of fault PI0/1 with a result of 0.75. In conclusion, probability of fault n7/1
is

P (n7/1) = P (PI0) · P (PI2) · P (n9|PI2) = 0.5 · 0.5 · 0.75 = 0.1875
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Figure A.23: Implication of fault n8→n9/1 through PO0

Later fault n8→n9/1 follows. This fault may propagate through both outputs, so
it is implied with respect to each output independently as usual. Let us start with
output PO0, which has nodes n9 and PO0 as dominators. The initial SMA is formed by
controllability condition n8=0 and observability conditions PI1=1 and n7=1 as shown
in Figure A.23a. Then these values are implied through the circuit. Assignment n8=0
is justified by assigning PI2=1 and PI3=1, and because of this n7=1 has to be justified
by PI0=0. In addition, these values are propagated to circuit outputs -see Figure A.23b
for details. In the end, J-SMA Jn8→n9/10 = PI0 · PI1 · PI2 · PI3 is obtained. As
all assignments in the justification frontier correspond to primary inputs, probability of
this set of conditions is easily computed as P (n8→ n9/10) = 0.54 = 0.0625

With respect to output PO1, nodes n9 and PO1 are dominators of the fault. So
assignments n8=0, PI1=1 and n11=1 initially belong to the SMA as shown in Figure
A.24a. In addition, restriction Jn8→n9/10 is imposed in order to exclude those input
vectors already detected with previous implication. Then the initial conditions are
propagated through the circuit by direct implication. Again, n8=0 forces both inputs
PI2=1 and PI3=1, thus becoming justified. Being already PI1, PI2 and PI3 set to 1, it is
inferred that PI0 must hold value 1 as well to fulfill the restriction Jn8→n9/10 . Finally,
these values are propagated to n7, n9, n11 ad both outputs as represented in Figure
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Figure A.24: Implication of fault n8→n9/1 through PO1

A.24b. Finally, assignments PI0=1, PI1=1, PI2=1 and PI3=1 form the justification
frontier of the fault, which has associated a probability P (n8 → n9/11) = 0.54 =
0.0625.

Once both partial probabilities have been computed, probability of the complete
fault is obtained. This can be done by simply addition because both J-SMAs are mutu-
ally exclusive. Therefore

P (n8→ n9/1) = P (n8→ n9/10) + P (n8→ n9/11) = 0.0625 + 0.0.625 = 0.125
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Figure A.25: Implication of fault n8→n11/1

Next fault is n8→n11/1. Controllability and observability conditions are applied,
resulting in the initial MAs n8=0, PI4=1 and n9=1 as it can be seen in Figure A.25a.
During implication process, assignment n9=1 becomes justified by n8=0, which at the
same time is justified by PI2=1 and PI3=1 as shown in Figure A.25b. In addition, values
are inferred for nodes n11 and PO1 by propagation. After implication, justification
frontier contains the assignments PI2=1, PI3=1 and PI4=1. From here fault probability
is computed, thus having P (n8→ n11/1) = 0.53 = 0.125.
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Figure A.26: Implication of fault n9→PO0/1

Fault n9→PO0/1 comes next. Controllability condition n9=0 and observability
condition n7=1 form the initial SMA as shown in Figure A.26a. Then assignment
n9=0 propagates to PO0=1, and it becomes justified by PI1=1 and n8=1, which is
represented in Figure A.26b. No more assignments can be inferred, so implication
finishes and justification frontier PI1=1, n7=1 and n8=1 is extracted. Probability of
this fault is then computed as the product of probabilities of every assignment in the
J-SMA as follows

P (n9→ PO0/1) = P (PI1) · P (n7) · P (n8) = 0.5 · 0.75 · 0.75 = 0.28125

Again, there is a slight deviation from the real probability value because implication
method is not able to find the existing interdependence between n7 and n8.
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Figure A.27: Implication of fault n9→PO1/1

Following with fault n9→PO1/1. n9=0 and n11=1 are identified as controllability
and observability conditions respectively - see Figure A.27a. From here, assignment
n9=0 is justified by PI1=1 and n8=1, and it is propagated to PO1=1 as well. At the
same time, MA PI4=0 is inferred as the only way of justifying n11=1 once n8 has
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been set to 1. All these steps are depicted in Figure A.27b. Implication stops here,
and assignments PI1=1, PI4=0 and n8=1 are identified as belonging to J-SMA. Fault
probability is finally computed as follows

P (n9→ PO1/1) = P (PI1) · P (PI4) · P (n8) = 0.5 · 0.5 · 0.75 = 0.1875
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Figure A.28: Implication of fault n11/1

Now it is the turn of fault n11/1, which is pretty similar to the previous one. The ini-
tial set of mandatory assignments contains n9=1 and n11=0 as shown in Figure A.28a.
These assignments are subsequently implied. n11=0 propagates to output PO1, while
at the same time it is justified by assignments PI4=1 and n8=1. A consequence of this,
PI1 must be set to 0 in order to justify n9=1. All this can be seen in Figure A.28b. When
implication process finishes, J-SMA Jn11/1 = PI1 ·PI4 ·n8 is extracted. Probability
of fault n11/1 is inferred from justification frontier, resulting in

P (n11/1) = P (PI1) · P (PI4) · P (n8) = 0.5 · 0.5 · 0.75 = 0.1875
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Figure A.29: Implication of fault PO0/0

Next fault in the list is PO0/0, the first of the four faults located at primary outputs.
Only controllability condition PO0=1 can be inferred as initial MA, and no additional
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assignments are deduced during implication, as shown in Figure A.29. Therefore, jus-
tification frontier for this fault only contains assignment PO0=1, whose probability
is considered equal to that of current fault. Therefore, probability of fault PO0/0 is,
according with COP

P (PO0/0) = 1− P (n7) · P (n9) = 1− P (n7) · (1− P (PI1) · P (n8)) =

= 1− 0.75 · (1− 0.5 · 0.75) = 0.53125

It is clear that this is not the real probability value. There are implications that obviously
have not been properly inferred.

n7

n8

n9

n11
PO1

PO0

PI0

PI1

PI2

PI3

PI4

PO0_PO

PO1_PO

1

1
0

Figure A.30: Implication of fault PO0/1

Later fault PO0/1 comes. Here the initial SMA is the controllability condition
PO0=0, which is justified by assignments n7=1 and n9=1 as shown in Figure A.30.
No more implications can be inferred, and J-SMA is then JPO0/1 = n7 · n9. Fault
probability is finally computed as

P (PO0/1) =P (n7) · P (n9) = P (n7) · (1− P (PI1) · P (n8)) =

= 0.75 · (1− 0.5 · 0.75) = 0.46875

It can be appreciated that this value is the complimentary of the probability of previous
fault PO0/0. This makes sense, because both faults are opposites and they are located
at primary outputs, so there is no possibility of error masking.

Then fault PO1/0 follows. Similarly to PO0/0, PO1=1 is the only assignment that
can be inferred during implication, as shown in Figure A.31. Therefore fault probability
is computed by means of simple COP as

P (PO1/0) = 1− P (n9) · P (n11) = 1− (1− P (PI1) · P (n8))·
·(1−P (PI4) · P (n8)) = 1− (1− 0.5 · 0.75) · (1− 0.5 · 0.75) = 0.609375

Again, there is a deviation in probability estimations due to an incomplete justification.
Probability of assignment n8=1 is counted up to two times.

Finally, fault PO1/1 is implied. In this case controllability condition PO1=0 is
applied, which becomes justified by assignments n9=1 and n11=1, as it can be seen in
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Figure A.31: Implication of fault PO1/0
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Figure A.32: Implication of fault PO1/1
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Figure A.32. Implication stops here, and justification frontier JPO1/1 = n9 · n11 is
extracted, from which probability of fault PO1/1 is inferred, thus having

P (PO1/1) = P (n9) · P (n11) = (1− P (PI1) · P (n8)) · (1− P (PI4) · P (n8)) =

= (1− 0.5 · 0.75) · (1− 0.5 · 0.75) = 0.390625

Again, this result is the complimentary of previous fault, PO1/0.

Fault
Justification frontier Probability

PO0 PO1 PO0 PO1 Total
PI0/1 PI0PI2n9 - 0.1875 0 0.1875
PI1/1 PI1n7n8 PI0PI1PI2PI3PI4 0.2812 0.0313 0.3125

PI2→n7/1 PI0PI1PI2 - 0.125 0 0.125
PI2→n8/1 PI1PI2PI3 PI1PI2PI3PI4 0.125 0.0625 0.1875

PI3/1 PI0PI1PI2PI3 PI2PI3 0.0625 0.1875 0.25
PI4/1 - PI1PI4n8 0 0.1875 0.1875
n7/1 PI0PI2n9 - 0.1875 0 0.1875

n8→n9/1 PI0PI1PI2PI3 PI0PI1PI2PI3 0.0625 0.0625 0.125
n8→n11/1 - PI2PI3PI4 0 0.125 0.125
n9→PO0/1 PI1n7n8 - 0.2812 0 0.2812
n9→PO1/1 - PI1PI4n8 0 0.1875 0.1875

n11/1 - PI1PI4n8 0 0.1875 0.1875
PO0/0 PO0 - 0.5312 0 0.5312
PO0/1 n7n9 - 0.4688 0 0.4688
PO1/0 - PO1 0 0.6094 0.6094
PO1/1 - n9n11 0 0.3906 0.3906

Table A.2: Summary of initial probability computation

Table A.2 collects the results of this initial phase in the approximation generation
algorithm. It contains the justification frontiers obtained for each fault and its proba-
bilities, both per output and combined. These results determine the first candidate to
be approximated. According to the proposed criteria, it would be selected the fault
with the lowest probability value. It can be seen that there are several candidate faults:
PI2→n7/1, n8→n9/1 and n8→n11/1, all of them with a probability equal to 0.125.
In this case a second criteria is used to discriminate which fault is selected: the fault,
among those with minimum probability, which produces the highest area savings is
approximated. Real area savings can only be measured after performing logic synthe-
sis, but a quick estimation can be obtained by counting the number of lines backward
between fault injection site and multiple fanout points, which can be seen as the size of
the immediate transitive fanin. But in this case such criteria does not help in selecting
the best candidate. All three faults only remove one line if approximated, because both
PI2 and n8 are multiple fanout nodes. In conclusion, any of these faults can be the first
candidate, which has to be arbitrarily chosen. Let us assume that fault PI2→n7/1 is
first selected, which is an over-approximate fault.

In this point, two exact replicas of target circuit have already been generated, which
will serve as under- and over-approximations respectively. Because no faults have
been approximated, the sets of approximation conditions AF and AH are null and the
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estimated error probability is equal to 0. This EP is the finishing condition of the
algorithm: faults are iteratively selected and approximated as long as EP is under given
error target, or until all faults have been approximated.

1st approximation: PI2→n7/1
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Figure A.33: Approximation condition of fault PI2→n7/1

First fault selected to be approximated is PI2→n7/1. But before that, approxima-
tion conditions of the fault have to be obtained. This is performed by implying the
fault on its correspondent approximation, the over-approximate circuit in this case. Be-
cause there are no faults approximated yet, over-approximation is an exact replica of
the original circuit. Therefore, implication of fault PI2→n7/1 in order to obtain its
approximation condition is identical to that performed in the initial probability com-
putation step, as it can be seen in Figure A.33. Resulting J-SMA is identified as the
approximation condition of the fault, beingAPI2→n7/1 = PI0·PI1·PI2 with respect
to output PO0, and null for PO1.

With this approximation condition, the effect of PI2→n7/1 approximation over re-
maining faults can be estimated, which serves to update fault probabilities and global
EP. This is performed by re-implying each fault intersected with API2→n7/1. Because
this is the first approximated fault, the sets of approximation conditions AF and AH

are still null, and therefore no input vectors have to be excluded yet. Not all faults have
to be re-implied, only those of the same type than PI2→n7/1, i.e., over-approximate
faults. And among them, not every fault is affected. Justification frontiers of faults
PI0/1 and n8→n9/1 are not compatible with approximation condition API2→n7/1, and
faults PI4/1, n8→n11/1 and PO1/1 do not propagate through the same output as fault
PI2→n7/1. For all these faults, result of re-implication is the null set, and therefore
approximation has no impact on their probabilities.

Fault PI1/1 is one of those affected faults. Figure A.34a shows the set of assign-
ments deduced during initial fault implication. These are now intersected with the ap-
proximation condition API2→n7/1 and re-implied. The new MA PI2=0 automatically
justifies both n7=1 and n8=1 assignments, as it can be seen in Figure A.34b. Finally,
J-SMA for this set of conditions is J1

PI1/1 = PI0 · PI1 · PI2, which corresponds a
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(b) Intersection with approximation condition

Figure A.34: Effect of fault PI2→n7/1 over PI1/1

probability of 0.125. This value is discounted from the original fault probability, which
was equal to 0.3125, in order to reflect probability changes due to fault approximation,
resulting in a value 0.1875. In addition, the inferred justification frontier is stored in
order to exclude associated input vectors in future implications of fault PI1/1.
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Figure A.35: Effect of fault PI2→n7/1 over itself

Fault PI2→n7/1 itself also has to be re-implied, even if this example is completely
straightforward. Figure A.35 shows the result of initial implication for this fault. It can
be seen that J-SMA coincides with its own approximation condition, so justification
frontier suffers no changes and its probability is the same as that initially computed,
0.125. Therefore, fault probability drops to 0 when updated, reflecting that this fault
has been completely unmasked.

PO0/1 is the last fault being affected by approximation of PI2→n7/1. Assign-
ments deduced from implication of this fault are shown in Figure A.36a. Over this,
API2→n7/1 is applied. After introducing the MAs corresponding to the approximation
condition, assignments n7=1 and n9=1 become justified by PI2=0 and PI1=0 respec-
tively, as it can be seen in Figure A.36b. Finally, J-SMA J1

PO0/1 = PI0 · PI1 · PI2
is inferred. Assuming a probability of 0.5 at each primary input, this set of conditions
has a probability of 0.125. Therefore, after updating fault probability drops to 0.3438.
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Figure A.36: Effect of fault PI2→n7/1 over PO0/1

Fault Justification frontier Probability
(PO0) Former Unmasked Updated

PI0/0 - 0.1875 0 0.1875
PI1/1 PI0PI1PI2 0.3125 0.125 0.1875

PI2→n7/1 PI0PI1PI2 0.125 0.125 0
PI4/1 - 0.1875 0 0.1875

n8→n9/1 - 0.125 0 0.125
n8→n11/1 - 0.125 0 0.125

PO0/1 PI0PI1PI2 0.4688 0.125 0.3438
PO1/1 - 0.3906 0 0.3906

Table A.3: Summary of PI2→n7/1 approximation
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Table A.3 summarizes the results of probability computations in the first iteration
of the approximation generation algorithm. For each over-approximate fault, the ta-
ble shows the justification frontier resulting from the intersection of each fault with
API2→n7/1, along with three probability values. From left to right, first it comes the
probability initially computed, then the incremental one that corresponds to unmasked
input vectors due to approximation of fault PI2→n7/1 -i.e., the probability of inferred
justification frontier- and finally the updated fault probability, resulting from subtract-
ing previous two values. Updated values represent the remaining probability of pro-
tected input vectors for that fault, or in other words, how many input combinations will
become unmasked if such fault is next approximated.

Updating probabilities also serves to keep an estimation of global EP. Once all
probabilities have been recomputed, EP is increased by the incremental probability of
every fault, averaged with respect to the total number of faults. Thus,

EP1 =

∑
i P (fi ∩API2→n7/1)

n
=

3 · 0.125

16
= 2.3438%

In other words, after PI2→n7/1 approximation, there is a 2.3438% probability that any
fault in target circuit produces an error, considering all faults are equally probable. If a
target EP lower than 2.3438% had been set, approximation generation algorithm would
have stopped right after fault PI2→n7/1 would have been approximated.
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Figure A.37: Approximation of fault PI2→n7/1

Now approximation of candidate fault PI2→n7/1 can finally be performed by sub-
stituting the wire PI2→n7 with a logic 1, which is the correspondent faulty value.
Because one of the inputs of node n7 is tied to a logic constant, this can be simplified
with an inverter as shown in Figure A.37. This is now the over-approximation of c17
benchmark, while the under-approximation is still an exact replica. From now, fault
PI2→n7/1 is officially approximated, and therefore excluded from candidate selection
and implications.

After fault approximation, all remaining over-approximate faults are implied in
the correspondent approximation in order to detect whether additional faults become
accidentally approximated or not. In this iteration, none of the remaining faults is
considered redundant, and therefore there are no additional approximate faults.
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Under-approx Probability Over-approx Probabilityfault fault
PI2→n8/1 0.1875 PI0/0 0.1875

PI3/1 0.25 PI1/1 0.1875
n7/1 0.1875 PI2→n7/1 -

n9→PO0/1 0.2812 PI4/1 0.1875
n9→PO1/1 0.1875 n8→n9/1 0.125

n11/1 0.1875 n8→n11/1 0.125
PO0/0 0.5312 PO0/1 0.3438
PO1/0 0.6094 PO1/1 0.3906

Table A.4: Fault probabilities after PI2→n7/1 approximation

Finally, next candidate is selected. Table A.4 contains the current value of all fault
probabilities. The dash close to PI2→n7/1 fault indicates that it has already been ap-
proximated. Among the remaining faults, the best candidate is selected according to
the already known criteria of minimum probability and maximum area savings. At
this point there are two possible faults that can be selected according with this crite-
ria: n8→n9/1 and n8→n11/1, both of them over-approximate faults with a probability
of 0.125 and the same size of transitive fanin. Among them, n8→n9/1 is arbitrarily
chosen as the next approximation candidate, and so the next iteration begins.

2nd approximation: n8→n9/1
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Figure A.38: Approximation condition of n8→n9/1 with respect to PO0

Once the next candidate fault has been selected, its approximation conditions have
to be obtained. Fault n8→n9/1 may propagate through both outputs, and therefore one
approximation condition is implied for each output. These are obtained by implying the
fault in over-approximate circuit, which is no longer an exact replica of c17 benchmark.
First n8→n9/1 is implied with respect to output PO0. The initial set of mandatory
assignments is shown in Figure A.38a, which consist in the controllability condition
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n8=0 and the observability conditions PI1=1 and n7=1. Then these are propagated
through the circuit. n7=1 implies PI0=0, which replaces the previous assignment in the
SMA. At the same time, n8=0 is justified by PI2=1 and PI3=1. And nodes n9, n11,
PO0 and PO1 also receive values based on previous assignments. See Figure A.38b
for details. At he end of the implication process, J-SMA PI0 · PI1 · PI2 · PI3 is
extracted, which becomes the approximation condition of fault n8→n9/1 with respect
to output PO0, An8→n9/10 .
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Figure A.39: Approximation condition of n8→n9/1 with respect to PO1

Then the same procedure is performed for output PO1. Now the initial set of MAs
is formed by assignments n8=0, PI1=1 and n11=1, as shown in Figure A.39a, which
are subsequently propagated by direct implication. Assignment n11=1 is automatically
justified by n8=0, which at the same time infers PI2=1 and PI3=1, thus replacing the
previous assignments in the SMA. This is represented in Figure A.39b, along with the
propagation of n9=1 and n11=1 to PO1. Implication stops here, and approximation
condition with respect to output PO1 is obtained, being An8→n9/10 = PI1 · PI2 ·
PI3. It must be noted that in order to obtain approximation conditions every output
is independent from each other, J-SMA inferred with respect a certain output do not
affect in any way implication for other outputs, as opposed with computation of fault
probabilities.

Inferred approximation conditions are later applied to each over-approximate fault
in order to compute probability of unmasked input vectors, with the exception of
PI2→n7/1 which has already been approximated. Implication is performed in an output
by output basis as usual. In addition, input vectors which were unmasked with previous
approximation have to be properly discounted for each fault. But there are some over-
approximate faults which are not affected in this iteration. Both PI1/1 and PI4/1 are
not compatible with approximation conditions of fault n8→n9/1, so their implications
fail in finding a valid J-SMA and their probabilities remain unchanged.

PI0/1 is one of the faults affected by n8→n9/1 approximation. This fault only can
propagate to output PO0, and therefore its set of assignments -which can be seen in
Figure A.40a- has to be intersected just with An8→n9/10 , the approximation condition
of fault n8→n9/1 corresponding to output PO0. This generates the additional MAs
PI1=1 and PI3=1. The SMA is then further implied. PI2=1 and PI3=1 imply n8=0,
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(a) J-SMA of fault PI0/1
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(b) Intersection with approximation condition

Figure A.40: Effect of fault n8→n9/1 over PI0/1

which allows justifying assignment n9=1 and at the same time implies n11=1, as it
can be seen in Figure A.40b. In the end, J-SMA J2

PI0/1 = PI0 · PI1 · PI2 · PI3
is obtained, which corresponds a probability of 0.0625. This value is deducted from
the original probability of this fault, so it has a new value of 0.125. Intersection with
An8→n9/11 is null, because PI0/1 does not propagate to that output. Therefore, there is
no need of applying approximation condition corresponding to output PO1.
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(a) Implication through output PO0
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(b) Implication through output PO1

Figure A.41: Effect of fault n8→n9/1 over itself

Next fault n8→n9/1 comes, which is the approximation candidate itself. First it is
re-implied with respect to output PO0. Figure A.41a shows the assignments already
inferred for this fault during initial implication. It can be seen that J-SMA coincides
with approximation condition An8→n9/10 , and therefore its intersection does not alter
the set of assignments. As result, J-SMA J2

n8→n9/10
= PI0 · PI1 · PI2 · PI3 is

obtained, which corresponds a probability value of 0.0625. Input vectors included
in J2

n8→n9/10
have to be discounted when implying the same fault with respect to

output PO1. The result can be seen in Figure A.41b, where the additional condition
J2
n8→n9/10

implies the MA PI0=1, cause of PI1, PI2 and PI3 being already assigned
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to value 1. This set of assignments makes the intersection with An8→n9/11 redundant,
so no additional MA are inferred. The J-SMA with respect to output PO1 is then
J2
n8→n9/11

= PI0 · PI1 · PI2 · PI3. This justification frontier presents a probability
of 0.0625 too. The sum of both partial probabilities equals the original fault probability,
so it drops to 0, reflecting the fact that fault n8→n9/1 is going to be approximated.
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(a) J-SMA of fault n8→n11/1
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(b) Intersection with approximation condition

Figure A.42: Effect of fault n8→n9/1 over n8→n11/1

Then fault n8→n11/1 is re-implied. Figure A.42a shows the set of assignments
previously inferred during initial implication. This fault only can propagate through
output PO1, and because of that it has to be intersected just with approximation condi-
tion An8→n9/11 . As a result, new MA PI1=1 appears, although no additional assign-
ments can be inferred. J-SMA J2

n8→n11/1 = PI1 · PI2 · PI3 · PI4 is obtained. This
justification frontier has associated a probability equal to 0.0625, which is subtracted
from former value resulting in a probability of 0.0625 for fault n8→n11/1.
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(a) J-SMA of fault PO0/1
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(b) Intersection with approximation condition

Figure A.43: Effect of fault n8→n9/1 over PO0/1

Later effect of approximation over fault PO0/1 is analysed. Figure A.43a shows
again the set of assignments inferred for this fault, which are then intersected with
An8→n9/10 , the approximation condition with respect to output PO0, which is the only
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one that current fault can be propagated through. As a result, additional MAs PI0=0,
PI1=1, PI2=1 and PI3=1 are discovered, which are subsequently propagated. MA n7=1
is justified by PI0=0, while the combination of PI2=1 and PI3=1 implies n8=0, which
in turn makes n9=1 to become justified. The whole implication process is shown in
Figure A.43b. Finally, J-SMA J2

PO0/1 = PI0 · PI1 · PI2 · PI3 is obtained. This
justification frontier has a probability of 0.0625, which reduces probability of fault
PO0/1 to 0.2813. It must be noted that, although this fault was re-implied in the first
iteration as well, J-SMA obtained during that implication, J1

PO0/1 = PI0 ·PI1 ·PI2,
does not have to be explicitly excluded in this iteration. As both justification frontiers
are referred to the same output, they are mutually exclusive by construction.

n7

n8

n9

n11
PO1

PO0

PI0

PI1

PI2

PI3

PI4

PO0_PO

PO1_PO

1
0

1

(a) J-SMA of fault PO1/1
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(b) Intersection with approximation condition

Figure A.44: Effect of fault n8→n9/1 over PO1/1

Finally, fault PO1/1 is re-implied. The set of assignments deduced during initial
step of the algorithm is shown in Figure A.44a, over which approximation condition
An8→n9/11 is applied because fault PO1/1 only propagates through output PO1. This
causes the appearance of MAs PI1=1, PI2=1 and PI3=1, which are further propagated.
In particular, PI2=1 and PI3=1 imply n8=0, which justifies both mandatory assignments
n9=1 and n11=1 as shown in Figure A.44b. At the end of implication, justification
frontier J2

PO1/1 = PI1 · PI2 · PI3 is deduced, corresponding a probability of 0.125.
This value is deducted from original probability value of the fault, resulting in 0.2656.

Fault
Justification Probability

frontier Former Unmasked UpdatedPO0 PO1 PO0 PO1
PI0/1 PI0PI1PI2PI3 - 0.1875 0.0625 0 0.125
PI1/1 - - 0.1875 0 0 0.1875
PI4/1 - - 0.1875 0 0 0.1875

n8→n9/1 PI0PI1PI2PI3 PI0PI1PI2PI3 0.125 0.0625 0.0625 0
n8→n11/1 - PI1PI2PI3PI4 0.125 0 0.0625 0.0625

PO0/1 PI0PI1PI2PI3 - 0.3438 0.0625 0 0.2813
PO1/1 - PI1PI2PI3 0.3906 0 0.125 0.2656

Table A.5: Summary of n8→n9/1 approximation

Table A.5 collects the results of implication for all involved faults. It contains,
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from left to right, the justification frontiers resulting from re-implying each fault with
the approximation conditions of fault n8→n9/1 with respect to both outputs, the fault
probability at the beginning of the iteration, the probability of unmasked input vectors
for each fault with respect to each output, and finally the updated probability values.
Unmasked probability values are obtained from the J-SMAs inferred during current
iteration, which are in turn deducted from previous values in order to update fault
probabilities. At the same time, EP is updated by adding the probability of newly
unmasked input vectors corresponding to each fault, in the following way

EP2 = EP1 +

∑
i P (fi ∩An8→n9/1 ∩ fi ∩AH)

n
=

= 2.3438% +
(5 · 0.0625) + 0.125

16
= 5.0481%

where fi ∩ AH represents the input vectors already unmasked with previous approxi-
mated faults - PI2→n7/1 in this case. If a target EP lower than 5.0481% had been set,
n8→n9/1 would have been the last approximated fault, and the approximation algo-
rithm would have finished.
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Figure A.45: Approximation of fault n8→n9/1

After probability updating, fault n8→n9/1 can be finally approximated. This is
performed by replacing the correspondent line with a logic constant 1 in the over-
approximate circuit. As result, node n9 has one of its inputs tied to the sensitizing value,
and therefore this node can be replaced with a NOT gate as shown in Figure A.45. This
circuit is now the over-approximation of c17, while the under-approximation is still an
exact copy of it. Fault n8→n9/1 is excluded from implication process and candidate
selection from now.

Again, all the remaining over-approximate faults are implied in this new over-
approximation in order to detect additional faults which become redundant. In this
iteration no one is detected, and therefore not additional faults become approximated.

Next candidate is selected among the faults which have not been approximated
yet. Table A.6 shows the current probability of every fault. According with the pro-
posed criteria, over-approximate fault n8→n11/1 is the next approximation candidate
because it has the minimum probability value, 0.0625. With this, the next iteration of
the algorithm starts.
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Under-approx Probability Over-approx Probabilityfault fault
PI2→n8/1 0.1875 PI0/0 0.125

PI3/1 0.25 PI1/1 0.1875
n7/1 0.1875 PI2→n7/1 -

n9→PO0/1 0.2812 PI4/1 0.1875
n9→PO1/1 0.1875 n8→n9/1 -

n11/1 0.1875 n8→n11/1 0.0625
PO0/0 0.5312 PO0/1 0.2813
PO1/0 0.6094 PO1/1 0.2656

Table A.6: Fault probabilities after n8→n9/1 approximation

3rd approximation: n8→n11/1
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(b) Justification frontier

Figure A.46: Approximation condition of n8→n11/1

First step in the new iteration is to find the approximation condition of the new
candidate fault, n8→n11/1. This fault only propagates through output PO1, so with
respect to PO0 its approximation condition is directly null. An8→n11/1 is obtained
by implying the fault in the over-approximate circuit generated during previous iter-
ation of the algorithm. The initial SMA can be seen in Figure A.46a, which con-
sists in controllability condition n8=0 and observability conditions PI4=1 and n9=1.
These are propagated through the circuit, resulting in assignments n8=0 and n9=1
being justified by PI1=0, PI2=1 and PI3=1 as shown in Figure A.46b. When impli-
cation ends, current J-SMA becomes the approximation condition of candidate fault,
An8→n11/1 = PI1·PI2·PI3·PI4. This J-SMA is then intersected with every remain-
ing over-approximate fault in order to compute which input vectors are left unmasked
due to n8→n11/1 approximation. This procedure reveals that faults PI0/1, PI1/1, PI4/1
and PO0/1 either are not compatible with An8→n11/1 or they do not propagate through
the same output as n8→n11/1. For these faults, implication infers no valid J-SMA
and their probabilities remain without changes. Only faults n8→n11/1 and PO1/1 are
affected, which is following discussed.
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(a) J-SMA of fault n8→n11/1
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(b) Intersection with approximation condition

Figure A.47: Effect of fault n8→n11/1 over itself

At first, fault n8→n11/1 is implied, which corresponds with the fault selected for
approximation. The set of assignments resulting from implication of this fault can be
seen in Figure A.47a, and over it the approximation condition An8→n11/1 is applied.
This intersection generates the MA PI1=0 as shown in Figure A.47b, but it does not
allow deducing additional assignments. J-SMA J3

n8→n11/1 = PI1 ·PI2 ·PI3 ·PI4 is
extracted, which has associated a probability of 0.0625. When subtracted to previous
value of fault n8→n11/1, this drops to 0, indicating that the fault has been completely
unmasked.
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(b) Intersection with approximation condition

Figure A.48: Effect of fault n8→n11/1 over PO1/1

The other affected fault is PO1/1. Figure A.48a shows the set of assignments in-
ferred during implication of this fault, which approximation condition An8→n11/1 is
intersected with. As result, MAs PI1=0, PI2=1, PI3=1 and PI4=1 are applied and subse-
quently propagated. Assignment n9=1 is justified by PI1=0, while PI2=1 and PI3=1 im-
ply n8=0, which further justifies n11=1. All this process is represented in Figure A.48b.
At the end of implication process, justification frontier J3

PO1/1 = PI1·PI2·PI3·PI4
is inferred, which again implies a probability of 0.0625. This value is deducted from
probability of fault PO1/1, resulting in 0.2031.
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Fault Justification frontier Probability
(PO1) Former Unmasked Updated

PI0/1 - 0.125 0 0.125
PI1/1 - 0.1875 0 0.1875
PI4/1 - 0.1875 0 0.1875

n8→n11/1 PI1PI2PI3PI4 0.0625 0.0625 0
PO0/1 - 0.2813 0 0.2813
PO1/1 PI1PI2PI3PI4 0.2656 0.0625 0.2031

Table A.7: Summary of n8→n11/1 approximation

Although these faults were already implied in the second iteration of the algorithm
it is not required to explicitly exclude input vectors detected then and contained in
J2
n8→n11 and J2

PO1/1 respectively. Because these both faults can propagate just to
one output, justification frontiers corresponding to different approximated faults are
disjoint by construction.

Table A.7 summarizes updating of fault probabilities in the current iteration. From
left to right, it contains the J-SMA resulting from the intersection of each over-approximate
fault with An8→n11/1, fault probabilities at the end of previous iteration, probability of
justification frontiers lastly inferred, and finally the updated fault probabilities. Based
on these results EP is increased in the following way

EP3 =EP2 +

∑
i P (fi ∩An8→n11/1 ∩ fi ∩AH)

n
=

= 5.0481% +
2 · 0.0625

16
= 5.8594%

At this point, any EP target below the 5.8594% threshold would force the algorithm to
stop, being n8→n11/1 the last approximated fault. The term fi∩AH represents the un-
masked input vectors for previous approximated faults, both PI2→n7/1 and n8→n9/1.
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Figure A.49: Approximation of fault n8→n11/1

Now candidate fault n8→n11/1 can be finally approximated. In the over-approximate
circuit, line from node n8 to n11 is replaced with a connection with VCC as shown in
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Under-approx Probability Over-approx Probabilityfault fault
PI2→n8/1 0.1875 PI0/0 0.125

PI3/1 0.25 PI1/1 0.1875
n7/1 0.1875 PI2→n7/1 -

n9→PO0/1 0.2812 PI4/1 0.1875
n9→PO1/1 0.1875 n8→n9/1 -

n11/1 0.1875 n8→n11/1 -
PO0/0 0.5312 PO0/1 0.2813
PO1/0 0.6094 PO1/1 0.2031

Table A.8: Fault probabilities after n8→n11/1 approximation

Figure A.49a, which has two effects. On one hand, node n8 becomes a dangling node,
and therefore it can be removed without affecting circuit functionality. On the other
hand, one of the inputs of node n11 is tied to a logic constant, so it can be simplified,
replacing the NAND gate with an inverter. After performing proper simplifications, cir-
cuit of Figure A.49b is obtained, which is used at this point as the over-approximation
of c17 benchmark. No faults have been yet approximated in the other instance, so the
under-approximate circuit is still an exact copy of target design. Again, the remaining
over-approximate faults are implied in the new over-approximation in order to detect
redundant faults. And again, no additional faults become approximated.

After approximating fault n8→n11/1, the next candidate is selected. Current fault
probabilities are collected in Table A.8. Excluding already approximated faults, the one
with the lowest probability is fault PI0/1 with 0.125. Once again, an over-approximate
fault becomes the next approximation candidate. Then following iteration of the algo-
rithm begins.

4th approximation: PI0/1

A new iteration starts with the implication in the correspondent approximate circuit of
the selected fault PI0/1 in order to obtain its approximation condition. Assignments
PI0=0 and n9=1 are respectively the controllability and observability condition, and
they form the initial SMA as depicted in Figure A.50a. These assignments are then
propagated by direct implication as shown in Figure A.50b. J-SMAAPI0 = PI0 ·PI1
is finally inferred, which becomes the approximation condition of fault PI0/1. This has
been computed with respect to PO0, and therefore those faults which do not propagate
through that output are not affected by PI0/1 approximation, in particular PI4/1 and
PO1/1.

First fault re-implied is PI0/1, the approximation candidate. Figure A.51a shows the
assignments inferred from its implication, which are intersected with approximation
condition API0 = PI0 · PI1. Cause of this, additional MA PI1=0 appears, which
justifies assignment n9=1 as shown in Figure A.51b. At the end of implication process
J-SMA J4

PI0/1 = PI0 · PI1 · PI2 is inferred, which corresponds a probability of
0.125. This makes that PI0/1 probability drops to 0.
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Figure A.50: Approximation condition of PI0/1
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(a) J-SMA of fault PI0/1
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(b) Intersection with approximation condition

Figure A.51: Effect of fault PI0/1 over itself

n7

n8

n9

n11
PO1

PO0

PI0

PI1

PI2

PI3

PI4

PO0_PO

PO1_PO

1

0

1

1

0

(a) J-SMA of fault PI1/1
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(b) Intersection with approximation condition

Figure A.52: Effect of fault PI0/1 over PI1/1
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Fault Justification frontier Probability
(PO0) Former Unmasked Updated

PI0/1 PI0PI1PI2 0.125 0.125 0
PI1/1 PI0PI1n8 0.1875 0.1875 0
PI4/1 - 0.1875 0 0.1875
PO0/1 PI0PI1 0.2813 0.25 0.0313
PO1/1 - 0.2031 0 0.2031

Table A.9: Summary of PI0/1 approximation

Next fault PI1/1 comes. Although it can propagate through both outputs, just
PO0 is considered here because is the only output affected by the current candidate
fault. The set of assignments resulting from implication of PI1/1 with respect to
PO0 are represented in Figure A.52a. Approximation condition API0 is applied over
this, generating the additional mandatory assignment PI0=0. This new MA justifies
n7=1 as shown in Figure A.52b. No more assignments can be deduced, so J-SMA
J4
PI1/1 = PI0 · PI1 · n8 is extracted. By using simple COP, a probability equal to

0.1875 is inferred from this implication. Such value is deducted from current proba-
bility of fault PI1/1, which makes a total of 0. In this case, that not necessarily means
the fault has been completely approximated. Faults are still considered until they are
marked as approximated, even if they have a null or negative probability value.
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(b) Intersection with approximation condition

Figure A.53: Effect of fault PI0/1 over PO0/1

Finally, fault PO0/1 is updated. Departing from the set of assignments inferred dur-
ing implication of this fault - see Figure A.53a -, intersection with API0 is performed.
This generates the assignments PI0=0 and PI1=0, which allows justifying n7=1 and
n9=1 respectively as it is indicated in Figure A.53b. In the end, justification frontier
J4
PO0/1 = PI0 · PI1 is obtained, which corresponds a probability of 0.25. This result

is subtracted from PO0/1 probability, which diminishes to 0.0313.
Table A.9 collects the computed justification frontiers and probability changes dur-

ing this iteration, as usual. And once all fault probabilities have been updated, global
EP is increased in an amount proportional to the sum of all computed probability vari-
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ations as follows

EP4 = EP3 +

∑
i P (fi ∩API0/1 ∩ fi ∩AH)

n
=

= 5.8594% +
0.125 + 0.1875 + 0.25

16
= 9.3750%

Estimate EP is now equal to 9.3750%. If target EP had been set in a value lower than
this, current approximation candidate would have been the last approximate fault, and
the algorithm would have finished.
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Figure A.54: Approximation of fault PI0/1

Finally fault PO0/1 can be approximated and marked. This is an over-approximate
fault, and therefore it is approximated in the correspondent instance. Input PI0 is re-
placed with a logic constant 1 as shown in Figure A.54a. This can be propagated to
n7=0 due to the inverter n7, which in turn forces output PO0 to be tied to 1. Therefore
PO0 can be substituted by a logic constant, thus simplifying the over-approximation as
shown in Figure A.54b. Meanwhile, under-approximate circuit is still a replica of c17
benchmark. Later, the remaining over-approximate faults are re-implied in the over-
approximation in order to detect additional faults which has been approximated. For
the first time, this step becomes relevant because, as it can be seen in Figure A.54b,
fault PO0/1 cannot longer propagate in the over-approximate circuit. In fact, impli-
cation of this fault reveals that it is now redundant, and therefore it is marked as an
approximated fault in addition to PI0/1, even though current probability of fault PO0/1
is not zero. This fact only means that initial fault probability was overestimated.

Table A.10 contains the current value of all fault probabilities, both from under-
and over-approximate circuits. Among them the next approximated fault is selected,
excluding those faults which has already been identified as approximated, PO0/1 in-
cluded. According to the current values, over-approximate fault PI1/1 is selected be-
cause it is the one with the lowest probability. Another iteration is then performed as
usual, even though the selected fault has a probability equal to 0.
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Under-approx Probability Over-approx Probabilityfault fault
PI2→n8/1 0.1875 PI0/0 -

PI3/1 0.25 PI1/1 0
n7/1 0.1875 PI2→n7/1 -

n9→PO0/1 0.2812 PI4/1 0.1875
n9→PO1/1 0.1875 n8→n9/1 -

n11/1 0.1875 n8→n11/1 -
PO0/0 0.5312 PO0/1 -
PO1/0 0.6094 PO1/1 0.2031

Table A.10: Fault probabilities after PI0/1 approximation
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Figure A.55: Approximation condition of PI1/1
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5th approximation: PI1/1
Once a new approximation candidate has been selected, it is implied in the correspon-
dent approximate circuit with the goal of obtaining the approximation conditions of
that fault, as usual. In theory, one implication has to be performed with respect to each
output but, in the current state of the over-approximate circuit, output PO0 is tied to a
logic constant - see Figure A.54b. Therefore, there is no valid set of conditions that
allow propagation of fault PI1/1 thorough PO0. On the other hand, candidate fault
has to be implied with respect to output PO1. Controllability condition PI1=0 and
observability condition n11=1 form the initial SMA for this fault as shown in Figure
A.55a. PI1=0 is propagated to n9 and subsequently to PO1, while n11 is justified by
PI4=0. All this process is represented in Figure A.55b. Finally, approximation con-
dition API1/1 = PI1 · PI4 is obtained. It must be noted that this is referred just to
output PO1. Then all remaining over-approximate faults are re-implied with respect to
PO1, including API1/1 as an additional condition.
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(b) Intersection with approximation condition

Figure A.56: Effect of fault PI1/1 over itself

First fault is the approximation candidate, PI1/1. This is implied again with re-
spect to output PO1, generating the set of assignments which appear in Figure A.56a.
Then approximation condition API1/1 is applied, but this is compatible with the set
of assignments of fault PI1/1 and therefore it cannot infer additional MAs. But this
fault has been already implied in previous iterations, resulting in justification frontiers
J1
PI1/1 = PI0 ·PI1 ·PI2 and J4

PI1/1 = PI0 ·PI1 ·n8. These previous J-SMAs have
been computed with respect to PO0 and therefore they have to be explicitly excluded
now, because they correspond to a different output. Condition J4

PI1/1 implies the MA
PI0=1, because PI1 and n8 have been already set to 0 and 1 respectively. Thanks to
this new MA, PI2=1 can be deduced cause of J1

PI1/1 condition, which in turn causes
MA PI3=0 to appear as the only way of justifying assignment n8=1. In addition, PI0=1
and PI2=1 are propagated to n7 and PO0. All this process is shown in Figure A.56b,
resulting in the J-SMA J5

PI1/1 = PO0 ·PI1 ·PO2 ·PI3 ·PI4. Probability associated
to this justification frontier is approximately 0.0313, and therefore probability of fault
PI1/1 is updated to a value of -0.0313. This means that fault probability were initially
underestimated.
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Figure A.57: Effect of fault PI1/1 over PI4/1

Then fault PI4/1 is processed. Figure A.57 shows the result of the implication of
this fault, already computed during the initial probability computation step. Approxi-
mation condition API1/1 = PI1 ·PI4 is then intersected with this set of assignments.
But these two sets completely overlap, and therefore no additional assignments can be
inferred. Justification frontier J5

PI4/1 = PI1 · PI4 · n8 is obtained, with a probability
of 0.1875. This makes that PI4/1 probability drops to zero when updated.
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Figure A.58: Effect of fault PI1/1 over PO1/1

Finally, fault PO1/1 is re-implied. The set of assignments inferred by implicating
this fault can be seen in Figure A.58a. Over this, approximation condition API1/1 is
applied, generating the additional MAs PI1=0 and PI4=0. These new mandatory as-
signments justify both n9=1 and n11=1, which are removed from the SMA as shown in
Figure A.58b. In the end, justification frontier J5

PO1/1 = PI1 ·PI4 is deduced, which
has associated a probability of 0.25. This value is deducted from PO1/1 probability,
resulting in an updated value of -0.0469, which indicates that initial probability was
underestimated.

The results of probability updating step for PI1/1 approximation are summarized
in Table A.11, including the inferred J-SMAs. From here, total EP is increased by the
probability of intersections with API1/1 computed in the current iteration, weighted
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Fault Justification frontier Probability
(PO1) Former Unmasked Updated

PI1/1 PI0PI1PI2PI3PI4 0 0.0313 -0.0313
PI4/1 PI1PI4n8 0.1875 0.1875 0
PO1/1 PI1PI4 0.2031 0.25 -0.0469

Table A.11: Summary of PI1/1 approximation

with the size of the fault list as follows

EP5 = EP4 +

∑
i P (fi ∩API1/1 ∩ fi ∩AH)

n
=

= 9.3750% +
0.0313 + 0.1875 + 0.25

16
= 12.3047%

The new estimated EP is 12.3047%. Any target EP under this value would cause the
algorithm to finish right after approximation of fault PI1/1.
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Figure A.59: Approximation of fault PI1/1

After all relevant faults have been re-implied and their probabilities have been up-
dated, fault PI1/1 can be finally approximated. Input PI1 is substituted with a logic
constant 1 as it can be seen in Figure A.59a. This assignment can be propagated to
n9=0 due to the inverter n9, and finally to PO1=1 through node PO1. In other words,
this logic transformation is equivalent to tie PO1 to logic 1, resulting in the trivial over-
approximate circuit as shown in Figure A.59b. The under-approximation is still an ex-
act copy of target circuit. Now all primary outputs are tied to logic constants there is no
valid propagation path for any of the faults in the over-approximation. Implication of
remaining over-approximate faults PI4/1 and PO1/1 indicates that both are redundant,
which means that they have been approximated too. At this point, all over-approximate
faults have become approximated.

The next candidate is selected as usual. Now all over-approximate faults have been
approximated, only under-approximate ones can be chosen. Their probabilities are
listed in the Table A.12. According with these values, there are four possible can-
didates with the minimum probability value: PI2→n8/1, n7/1, n9→PO1/1 and n11.
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Under-approx Probability Over-approx Probabilityfault fault
PI2→n8/1 0.1875 PI0/0 -

PI3/1 0.25 PI1/1 -
n7/1 0.1875 PI2→n7/1 -

n9→PO0/1 0.2812 PI4/1 -
n9→PO1/1 0.1875 n8→n9/1 -

n11/1 0.1875 n8→n11/1 -
PO0/0 0.5312 PO0/1 -
PO1/0 0.6094 PO1/1 -

Table A.12: Fault probabilities after PI1/1 approximation

Among them, the fault which produces the largest area savings is selected. This is
measured as the number of lines removed if the correspondent fault would be approx-
imated. PI2→n8/1 only affects one line before reaching a primary input, n9→PO1/1
only removes one line too because node n9 is a multiple fanout point but approxima-
tion of both faults n7/1 and n11/1 affects up to 3 lines. Any of these two faults can be
arbitrarily chosen. Let us assume that n7/1 is the next approximated fault.

6th approximation: n7/1
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(b) Justification frontier

Figure A.60: Approximation condition of n7/1

First step in a new iteration consist in obtaining the approximation conditions of
selected fault as usual. Being n7/1 an under-approximate fault, it is implied in the
correspondent approximate circuit. There are no faults approximated in this instance
yet, so the under-approximation is an exact copy of c17 benchmark. The initial set
of mandatory assignments is formed with n7=0 and n9=1 as it can be seen in Figure
A.60a which are subsequently propagated through the circuit. Assignment n7=0 im-
plies PO0=1 while at the same time it is justified by PI0=1 and PI2=1 as shown in Fig-
ure A.60b. No more assignments can be deduced and J-SMAAn7/1 = PI0·PI2·n9 is
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extracted, which becomes the approximation condition of fault n7/1. It must be noted
that this fault propagates just to output PO0 and consequently An7/1 is referred to that
output, being the approximation condition with respect to PO1 null. Now all under-
approximate faults are re-implied with the additional condition An7/1. But not all
faults are affected by n7/1 approximation. n9→PO1/1, n11/1 and PO1/0 do not propa-
gate through the same output as n7/1, and faults PI2→n8/1, PI3/1 and n9→PO0/1 are
not compatible with An7/1. For all these faults the result of implication is the null set,
and therefore their probabilities remain unchanged.
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Figure A.61: Effect of fault n7/1 over itself

Among the faults affected by n7/1 approximation, the candidate fault itself is the
first one. Figure A.61 shows the set of assignments inferred when implicating this fault,
which is then intersected with An7/1. But the approximation condition of n7/1 com-
pletely overlaps with it, deducing no additional MAs. Justification frontier J6

n7/1 =
PI0 · PI2 · n9 is obtained. Probability of this J-SMA is then computed based on the
assignments it contains. Probability of each assignment is conditioned to the whole set
of inferred assignments, thus having

P (J6
n7/1) = P (PI0) · P (PI2) · P (n9|PI2) = 0.5 · 0.5 · 0.75 = 0.1875

This is the same value as the one computed in the algorithm initialization. Therefore,
updated value of fault n7/1 is 0.

PO0/0 is the other fault affected by n7/1 approximation. This is re-implied by
intersecting approximation condition An7/1 = PI0 ·PI2 ·n9 with PO0=1, the unique
assignment that can be inferred from implication of fault PO0/0. PO0=1 is justified
by n7=0, the only possibility because n9 is already set to 1. At the same time, n7=0
is justified by PI0=1 and PI2=1. This implication process is shown in Figure A.62.
Finally, J-SMA J6

PO0/0 = PI0·PI2·n9 is obtained. This is the same set of conditions
than in the case of fault n7/1, so the associated probability is the same, 0.1875. This
value is subtracted from the initial probability of fault PO0/0, resulting in 0.3437.

Table A.13 summarizes the effect over every under-approximate fault of n7/1 ap-
proximation. It contains, from left to right, the name of each fault, the justification
frontier resulting from the intersection with An7/1, the initial probability of each fault,
the probability of inferred J-SMA, and finally the updated probability of each fault.



A.4. APPROXIMATION BY DYNAMIC TESTABILITY MEASURES 211

n7

n8

n9

n11
PO1

PO0

PI0

PI1

PI2

PI3

PI4

PO0_PO

PO1_PO

1

0
1

1

1

Figure A.62: Effect of fault n7/1 over PO0/0

Fault Justification frontier Probability
(PO0) Former Unmasked Updated

PI2→n8/1 - 0.1875 0 0.1875
PI3/1 - 0.25 0 0.25
n7/1 PI0PI2n9 0.1875 0.1875 0

n9→PO0/1 - 0.2812 0 0.2812
n9→PO1/1 - 0.1875 0 0.1875

n11/1 - 0.1875 0 0.1875
PO0/0 PI0PI2n9 0.5312 0.1875 0.3437
PO1/0 - 0.6094 0 0.6094

Table A.13: Summary of n7/1 approximation
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Once all faults have been re-implied, total EP can be updated too by means of the usual
procedure:

EP6 = EP5 +

∑
i P (fi ∩An7/1)

n
= 12.3047% +

2 · 0.1875

16
= 14.6484%

Any target EP below this value would interrupt the approximation algorithm right after
n7/1 was approximated.
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Figure A.63: Approximation of fault n7/1

The selected fault can now be approximated, connecting the line from node n7 to
PO0 with VCC as shown in Figure A.63a. This transformation has two effects. On
one hand, node n7 becomes dangling and therefore it can be removed without affecting
circuit functionality. On the other hand, node PO0 can be simplified cause of having
one of its inputs tied to a logic constant, being replaced with an inverter. Figure A.63b
shows the final under-approximation after performing proper simplifications. On the
other side, the over-approximate circuit is the trivial approximation. Now the rest of
under-approximate faults are implied in this new circuit with the goal of detecting
additional approximated faults. But none of them becomes redundant, so there are no
additional excluded faults.

Finally the next approximated fault is selected among the remaining faults. Table
A.14 collects all fault probabilities. According to this values there are three possible
candidates: PI2→n8/1, n9→PO1/1 and n11, all of them with the lowest probability
value. Among them, n11/1 is finally chosen because is the fault which produces the
largest area savings.

7th approximation: n11/1
Once a new approximation candidate has been chosen, it is implied in the correspon-
dent approximate circuit in order to obtain its approximation condition. Controllability
condition of n11/1 generates the assignment n11=0, while n9=1 becomes its observ-
ability condition. These assignments form the initial SMA as it can be seen in Figure
A.64a. Then they are propagated through the circuit. Assignment n11=0 is propa-
gated to PO1=1 and at the same time is justified by PI4=1 and n8=1. Because of this



A.4. APPROXIMATION BY DYNAMIC TESTABILITY MEASURES 213

Under-approx Probability Over-approx Probabilityfault fault
PI2→n8/1 0.1875 PI0/0 -

PI3/1 0.25 PI1/1 -
n7/1 - PI2→n7/1 -

n9→PO0/1 0.2812 PI4/1 -
n9→PO1/1 0.1875 n8→n9/1 -

n11/1 0.1875 n8→n11/1 -
PO0/0 0.3437 PO0/1 -
PO1/0 0.6094 PO1/1 -

Table A.14: Fault probabilities after n7/1 approximation
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Figure A.64: Approximation condition of n11/1
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assignment PI1=0 is inferred as the only way of justifying n9=1, while this value is
propagated to PO0=0. All this process is shown in Figure A.64b. No more assign-
ments can be deduced, and approximation condition An11/1 = PI1 · PI4 · n8 is
obtained. It must be noted that fault n11/1 can only propagate through output PO1.
Therefore, under-approximate faults which only propagate through output PO0 are not
affected by approximation of n11/1, in particular n9→PO0/1 and PO0/0. In addition,
fault n9→PO1/1 is not compatible with the set of conditions fromAn11/1. For all these
faults there are no unmasked input vectors, so their probabilities do not change. The
rest of under-approximate faults are next re-implied.
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(b) Intersection with approximation condition

Figure A.65: Effect of fault n11/1 over PI2→n8/1

The effect over fault PI2→n8/1 is computed at first place. Although this fault can
propagate through both outputs, now it is re-implied just with respect to PO1. Due
to the existence of several propagation paths for this fault through PO1 there are few
assignments that can be inferred, as it can be seen in Figure A.65a. Then this set of
assignments is intersected with An11/1, generating the MAs PI1=0 and PI4=1 which
are then propagated through the circuit as in Figure A.65b. J-SMA J7

PI2→n8/1 = PI1·
PI2·PI3·PI4 is then extracted, which is stored for future implications. Probability of
this justification frontier is computed, which is equal to 0.0625. And finally this value
is deducted from the initial value of PI2→n8/1 probability, resulting in 0.125

Next fault PI3/1 is re-implied, which is very similar to the previous one. Fig-
ure A.66a contains the set of assignments deduced from implication of fault PI3/1
with respect to output PO1. Over this, approximation condition An11/1 is applied,
generating the additional MAs PI1=0 and PI4=1, which are subsequently propagated
as shown in Figure A.66b. At the end of implication process, justification frontier
J7
PI3/1 =

←−−
PI1 ·PI2 ·

←−−
PI3 ·PI4 is extracted and stored for future implications. Proba-

bility of this J-SMA is 0.0625, which subtracted from original probability of fault PI3/1
results in 0.1875.

Then fault n11/1 comes, the approximation candidate itself. This fault is implied
again, generating the set of assignments shown in Figure A.67, which is then inter-
sected with An11/1. But in this case the justification condition of fault n11/1 perfectly
overlaps with the current state of the circuit, and therefore no additional assignments
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(b) Intersection with approximation condition

Figure A.66: Effect of fault n11/1 over PI3/1
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Figure A.67: Effect of fault n11/1 over itself
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Fault Justification frontier Probability
(PO1) Former Unmasked Updated

PI2→n8/1 PI1PI2PI3PI4 0.1875 0.0625 0.125
PI3/1 PI1PI2PI3PI4 0.25 0.0625 0.1875

n9→PO0/1 - 0.2812 0 0.2812
n9→PO1/1 - 0.1875 0 0.1875

n11/1 PI1PI4n8 0.1875 0.1875 0
PO0/0 - 0.3437 0 0.3437
PO1/0 PI1PI4n8 0.6094 0.1875 0.4219

Table A.15: Summary of n11/1 approximation

can be inferred. J-SMA J7
n11/1 = PI1 ·PI4 ·n8 is obtained. This justification frontier

has a probability of 0.1875, which makes that probability of fault n11/1 drops to 0.
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Figure A.68: Effect of fault n11/1 over PO1/0

Finally, fault PO1/0 is re-implied. Approximation condition of fault n11/1 is inter-
sected with PO1=1, which is the only assignment inferred from implication of PO1/0.
This generates the MAs PI1=0, PI4=1 and n8=1, which are propagated to assignments
n9=1 and n11=0. As a result, PO1=1 becomes justified as it can be seen in Figure A.68.
The final J-SMA is J7

PO1/0 = PO1 · PI4 · n8, which has associated a probability of
0.1875. This value is then subtracted from initial probability of fault PO1/0, being
0.4219 the updated value.

Table A.15 summarizes the effects of n11/1 approximation, including the set of un-
masked input vectors and probability changes for each fault. Then total EP is increased
in an amount proportional to the sum of all variations in fault probabilities, that is,

EP7 = EP 6 +

∑
i P (fi ∩An11/1 ∩ fi ∩AF )

n
=

= 14.6484% +
2 · 0.0625 + 2 · 0.1875

16
= 17.7734%

If a target EP had been set with a value below 17.7734%, approximation algorithm
would have finished at this point.
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Figure A.69: Approximation of fault n11/1

Under-approx Probability Over-approx Probabilityfault fault
PI2→n8/1 0.125 PI0/0 -

PI3/1 0.1875 PI1/1 -
n7/1 - PI2→n7/1 -

n9→PO0/1 0.2812 PI4/1 -
n9→PO1/1 0.1875 n8→n9/1 -

n11/1 - n8→n11/1 -
PO0/0 0.3437 PO0/1 -
PO1/0 0.4219 PO1/1 -

Table A.16: Fault probabilities after n11/1 approximation

Now candidate fault n11/1 can finally be approximated by forcing the line from
n11 to PO1 with constant logic 1 as it can be seen in Figure A.69a. Cause of this,
node n11 is left dangling and therefore it can be removed from the circuit, saving area
without further degradation of functionality. On the other hand, this logic transforma-
tion causes node PO1 to be functionally equivalent to an inverter. After performing
proper simplifications, circuit of Figure A.69b is generated, which is the current under-
approximation. This is paired with the trivial approximation of the over-approximate
circuit to form the error masking scheme corresponding to current state. After fault
approximation, the remaining under-approximate faults are implied again in this new
circuit in order to detect additional redundancies. The result of this step is that there
are no more approximated faults as consequence of n11/1 approximation.

Next candidate fault to be approximated is selected among the remaining under-
approximate faults. Table A.16 collects the current probability values of all faults.
Among them, the fault with the lowest probability is selected, which corresponds with
PI2→n8/1. A new iteration of the approximation algorithm then begins.
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Figure A.70: Approximation condition of PI2→n8/1

8th approximation: PI2→n8/1
First step in a new iteration consist in obtaining the approximation conditions of se-
lected fault, as usual. This is achieved in this case by implying fault PI2→n8/1 in
the under-approximate circuit. Controllability condition PI2=0 and observability con-
ditions PI1=1 and PI3=1 form the initial set of mandatory assignments for this fault,
which are then propagated through the circuit by direct implication as shown in Figure
A.70. Justification frontier for this implication is then formed by assignments PI1=1,
PI2=0 and PI3=1. It must be noted that this fault can propagate through both outputs,
and the set of conditions that allow its propagation is the same with respect to both
outputs. Therefore, API2→n8/10 = API2→n8/11 = PI1 · PI2 · PI3 are inferred as
approximation conditions. All remaining under-approximate faults are then intersected
with these approximation conditions in order to determine which input vectors become
unmasked for each fault. Among them, PI3/1 is the only fault for which intersection
with either API2→n8/10 or API2→n8/11 is null, and therefore its probability does not
change during current iteration.

n7

n8

n9

n11
PO1

PO0

PI0

PI1

PI2

PI3

PI4

PO0_PO

PO1_PO

1

0

1

1

1

0

1

1

(a) J-SMA with respect to PO0
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(b) J-SMA with respect to PO1

Figure A.71: Effect of fault PI2→n8/1 over itself

First fault is the approximation candidate itself, PI2→n8/1. This is implied first
with respect to output PO0. The J-SMA of this fault -which can be seen in Figure
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A.71a- is identical to the approximation condition API2→n8/10 . Therefore no addi-
tional assignments are inferred and justification frontier J8

PI2→n8/10
= PI1·PI2·PI3

is obtained, with a probability of 0.125. Then the same fault is implied with respect to
PO1. Figure A.71b shows the assignments resulting from it. Over this, approximation
condition API2→n8/11 is applied and, at the same time, input vectors already included
in J8

PI2→n8/10
have to be excluded. It can be seen that both conditions are identical,

and therefore it is not possible to include one of them and exclude the other simulta-
neously. Because of this, the result of implication with respect to PO1 is the null set.
Finally, probability of fault PI2→n8/1 is updated by subtracting the value of inferred
J-SMAs. As a result, fault probability drops to 0.
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(a) J-SMA of fault n9→PO0/1
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(b) Intersection with approximation condition

Figure A.72: Effect of fault PI2→n8/1 over n9→PO0/1

Then fault n9→PO0/1 comes. The result of its implication is shown in Figure
A.72a. This fault only propagates through output PO0, so it is intersected with approx-
imation condition API2→n8/10 . This generates the additional MAs PI2=0 and PI3=1.
Assignments n7=1 and n8=1 become justified by PI2=0 as it can be seen in Figure
A.72b. At the end of implication process, J8

n9→PO0/1 = PI1 · PI2 · PI3 is ob-
tained as justification frontier, with a probability equal to 0.125. Based on this value,
probability of fault n9→PO0/1 is updated, resulting in 0.1562.

Next fault is n9→PO1/1. The set of assignments obtained during its initial implica-
tions is shown in Figure A.73a. Then approximation condition API2→n8/11 is applied,
because this faults only propagates through output PO1. This makes MAs PI2=0 and
PI3=1 to appear, justifying assignment n8=1 as it can be seen in Figure A.73b. Then
J-SMA J8

n9→PO1/1 = PI1 · PI2 · PI3 · PI4 is extracted, which has associated a
probability equal to 0.0625. Finally this value is deducted from initial probability of
fault n9→PO1/1, with a result of 0.125.

Later fault PO0/0 is addressed. The set of assignments for this fault is reduced to
PO0=1, which is intersected with the approximation condition corresponding to output
PO0, API2→n8/10 as it can be seen in Figure A.74. These new MAs allow justifying
the original J-SMA, so the new justification frontier is J8

PO0/0 = PI1·PI2·PI3. This
has associated a probability equal to 0.125, which in turn reduces the value of PO0/0
probability to 0.2187.
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(a) J-SMA of fault n9→PO1/1
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(b) Intersection with approximation condition

Figure A.73: Effect of fault PI2→n8/1 over n9→PO1/1
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Figure A.74: Effect of fault PI2→n8/1 over PO0/0
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Figure A.75: Effect of fault PI2→n8/1 over PO1/0
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In the last place, fault PO1/0 is re-implied. This fault obviously propagates through
output PO1, so the approximation condition applied is API2→n8/11 . This is inter-
sected with the unique assignment that can be inferred from that fault, PO1=1, which
is justified by MAs derived from the approximation condition as shown in Figure A.75.
Eventually J-SMA J8

PO1/0 = PI1 ·PI2 ·PI3 is inferred, with a probability of 0.125.
Then probability of fault PO1/0 is updated, which descends to 0.2969.

Fault
Justification Probability

frontier Former Unmasked UpdatedPO0 PO1 PO0 PO1
PI2→n8/1 PI1PI2PI3 - 0.125 0.125 0 0

PI3/1 - - 0.1875 0 0 0.1875
n9→PO0/1 PI1PI2PI3 - 0.2812 0.125 0 0.1562
n9→PO1/1 - PI1PI2PI3PI4 0.1875 0 0.0625 0.125

PO0/0 PI1PI2PI3 - 0.3437 0.125 0 0.2187
PO1/0 - PI1PI2PI3 0.4219 0 0.125 0.2969

Table A.17: Summary of PI2→n8/1 approximation

Table A.17 contains the results of re-implication and probability updating in the
usual format. With these results, total EP is then updated as follows

EP8 = EP7 +

∑
i P (fi ∩API2→n8/1 ∩ fi ∩AF )

n
=

=17.7734% +
0.0625 + 4 · 0.125

16
= 21.2891%

If this new value had surpassed the target EP, approximation algorithm would have
finished in the current iteration.
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Figure A.76: Approximation of fault PI2→n8/1

After probability updating has been performed, fault PI2→n8/1 can be approxi-
mated by forcing primary input PI2 to logic 1. As a result, node n8 can be simplified
with an inverter because one of its inputs is now tied to a logic constant. The resulting
under-approximated circuit appears in Figure A.76, which would be part of the error
masking scheme in conjunction with the trivial over-approximate circuit. Then all re-
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Under-approx Probability Over-approx Probabilityfault fault
PI2→n8/1 - PI0/0 -

PI3/1 0.1875 PI1/1 -
n7/1 - PI2→n7/1 -

n9→PO0/1 0.1562 PI4/1 -
n9→PO1/1 0.125 n8→n9/1 -

n11/1 - n8→n11/1 -
PO0/0 0.2187 PO0/1 -
PO1/0 0.2969 PO1/1 -

Table A.18: Fault probabilities after PI2→n8/1 approximation

maining under-approximate faults are implied in the resulting approximate circuit. In
this step there are no redundant faults, so there are no additional approximated faults.

Finally, the next fault which is going to be approximated is selected according to
their probabilities, which are collected in Table A.18. Among them, the fault with the
lowest probability value is n9→PO1/1, and therefore is the chosen fault.

9th approximation: n9→PO1/1
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(b) Justification frontier

Figure A.77: Approximation condition of n9→PO1/1

Once a new fault has been selected, it is implied in the under-approximate circuit
with the aim of obtaining its approximation condition. Figure A.77a shows the initial
SMA of the fault, which is just the controllability condition n9=0. This is propagated
to both primary outputs, and at the same time justified by PI1=1 and PI3=0, as shown
in Figure A.77b. After implication, J-SMA An9→PO1/1 = PI1 · PI3 is extracted.
It must be noted that fault n9→PO1/1 only propagates through output PO1. Then
all remaining under-approximate faults are re-implied with this new condition. But
those which do not propagate through the same output -n9→PO0/1 and PO0/0- are not
affected by approximation of n9→PO1/1, the result of implication for these faults is
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the null set and their probabilities are not modified. The rest of under-approximated
faults are following addressed.
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(a) J-SMA of fault PI3/1
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(b) Intersection with approximation condition

Figure A.78: Effect of fault n9→PO1/1 over PI3/1

First fault PI3/1 is analysed. Over the set of assignments inferred for this fault -
see Figure A.78a- approximation condition An9→PO1/1 is applied, thus generating the
additional MA PI1=1. These assignments are then propagated by direct implication
as shown in Figure A.78b. After all possible assignments have been inferred, J-SMA
J9
PI3/1 = PI1 · PI2 · PI3 is extracted. This condition occurs with a probability of

0.125, a value that is deducted from PI3/1 probability which goes down to 0.0625.
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(a) J-SMA of fault n9→PO1/1
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(b) Intersection with approximation condition

Figure A.79: Effect of fault n9→PO1/1 over itself

Next the approximation candidate itself is considered. The set of assignments re-
sulting from the implication of fault n9→PO1/1 is shown in Figure A.79a. Then ap-
proximation condition An9→PO1/1 is overlapped. This generates the additional MA
PI3=0, which justifies n8=1 as it can be seen in Figure A.79b. Justification frontier
J9
n9→PO1/1 = PI1 · PI3 · PI4 is obtained, which has associated a probability equal

to 0.125. In conclusion, probability of fault n9→PO1/1 drops to 0.
Finally fault PO1/0 is re-implied. An9→PO1/1 = PI1 · PI3 is the approximation

condition applied in conjunction with original assignment PO1=1, which eventually
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Figure A.80: Effect of fault n9→PO1/1 over PO1/0

Fault Justification frontier Probability
(PO1) Former Unmasked Updated

PI3/1 PI1PI2PI3 0.1875 0.125 0.0625
n9→PO0/1 - 0.1562 0 0.1562
n9→PO1/1 PI1PI3PI4 0.125 0.125 0

PO0/0 - 0.2187 0 0.2187
PO1/0 PI1PI3 0.2969 0.25 0.0469

Table A.19: Summary of n9→PO1/1 approximation

becomes justified as it can be seen in Figure A.80. After implication, it is obtained the
J-SMA J9

PO1/0 = PI1 ·PI3, with a probability of 0.25. This value is subtracted from
PO1/0 probability, resulting in 0.0469.

The results of intersection withAn9→PO1/1 with every remaining under-approximate
fault are collected in Table A.19, which includes the inferred J-SMAs and its associated
probability, and the changes in fault probabilities. From this data, total EP is increased
in an amount proportional to the accumulated probability of unmasked input vectors as
follows

EP 9 = EP8 +

∑
i P (fi ∩An9→PO1/1 ∩ fi ∩AF )

n
=

= 21.2891% +
2 · 0.125 + 0.25

16
= 24.4141%

This means that if any fault appears in the circuit within the masking system, it has
around 24.4% chance on average that it is propagated to outputs. If a target EP below
that value had been set, the algorithm would have stop in current iteration.

After probability updating phase, fault n9→PO1/1 can finally be approximated.
Input of node PO1 is tied to logic constant 1, which is equivalent to set primary out-
put PO1 to 0. Figure A.81 shows the simplified under-approximate circuit, which is
paired with the trivial over-approximation to form an error masking scheme. Later, the
remaining under-approximate faults are implied in this new circuit. Because output
PO1 is now tied to a logic constant, all faults which only propagate through it are left
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Figure A.81: Approximation of fault n9→PO1/1

Under-approx Probability Over-approx Probabilityfault fault
PI2→n8/1 - PI0/0 -

PI3/1 0.0625 PI1/1 -
n7/1 - PI2→n7/1 -

n9→PO0/1 0.1562 PI4/1 -
n9→PO1/1 - n8→n9/1 -

n11/1 - n8→n11/1 -
PO0/0 0.2187 PO0/1 -
PO1/0 - PO1/1 -

Table A.20: Fault probabilities after n11/1 approximation

without a valid propagation path. This is the case of PO1/0 fault, whose implication
determines that it becomes redundant and therefore it is marked as approximated as
well. It must be noted that its probability is still 0.0469, but that only means the initial
probability value for this fault was overestimated.

Only three under-approximate faults remain that have not been approximated yet,
and among them the next approximation candidate is selected according to their prob-
abilities. Based on data from Table A.20, PI3/1 is the fault with the lowest probability,
and therefore it is selected for the next iteration.

10th approximation: PI3/1

After selecting a new fault to be approximated, it is implied in the under-approximate
circuit in order to obtain its approximation condition. Controllability and observabil-
ity conditions are applied, resulting in MA PI1=1 and PI3=0, which are subsequently
propagated as shown in Figure A.82. Justification frontier API3 = PI1 · PI3 is ob-
tained, which becomes the approximation condition of fault PI3/1. This is identical to
that obtained in previous iteration with fault n9→PO1/1, but in this case it is computed
with respect to output PO0 instead of PO1. Then all remaining faults are re-implied
with this new condition.
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Figure A.82: Approximation condition of PI3/1
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Figure A.83: J-SMA of fault PI3/1 with respect to PO0
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First fault PI3/1 is analysed, the approximation candidate. This time it is implied
with respect to output PO0, generating the set of assignments in Figure A.83. This is
intersected withAPI3, and at the same time the sets of assignments inferred in previous
implications of fault PI3/1 with respect to output PO1 have to be excluded, in particular
J7
PI3 = PI1·PI2·PI3·PI4 and J9

PI3/1 = PI1·PI2·PI3. It can be appreciated that

condition J9
PI3/1 is not compatible with assignments of Figure A.83. Therefore, the

result of current implication is the null set and probability of fault PI3/1 is not altered.
This fault has a remaining probability of 0.0625, but it is going to be approximated in
current iteration. Therefore, it can be concluded that initial probability of this fault was
overestimated.
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(a) J-SMA of fault n9→PO0/1
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(b) Intersection with approximation condition

Figure A.84: Effect of fault PI3/1 over n9→PO0/1

Next fault is n9→PO0/1. Figure A.84a shows the assignments inferred from impli-
cation of this fault, which are then intersected withAPI3. This generates the additional
MA PI3=0, which justifies n8=1 as it can be seen in Figure A.84b. Implication ends
and justification frontier J10

n9→PO0/1 = PI1 · PI3 · n7 is obtained. This J-SMA has a
probability equal to 0.1875. After deducting this value, probability of fault n9→PO0/1
descends to -0.0313, indicating that the initial probability value of this fault was under-
estimated.
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Figure A.85: Effect of fault PI3/1 over PO0/0
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Fault Justification frontier Probability
(PO0) Former Unmasked Updated

PI3/1 - 0.0625 0 0.0625
n9→PO0/1 PI1PI3n7 0.1562 0.1875 -0.0313

PO0/0 PI1PI3 0.2187 0.25 -0.0313

Table A.21: Summary of PI3/1 approximation

PO0/0 is the last fault in the list. Approximation condition API3 = PI1 · PI3 is
implied along with assignment PO0=1, which eventually becomes justified as shown
in Figure A.85. J-SMA J10

PO0/0 = PI1 · PI3 is obtained with a probability of 0.25.
As a result, probability of fault PO0/0 drops to -0.0313. It can be concluded that this
value was initially underestimated too.

Table A.21 summarizes the results of implication with respect to PI3/1 approxima-
tion, including inferred justification frontiers and all probability adjustments. Accord-
ing with these results, total EP is updated in the following way

EP10 = EP9+

∑
i P (fi ∩API3/1 ∩ fi ∩AF )

n
=

= 24.4141% +
0.1875 + 0.25

16
= 27.1484%
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Figure A.86: Approximation of fault PI3/1

Then the fault PI3/1 can be approximated by assigning a logic 1 to input PI3, as
shown in Figure A.86a. This logic constant can be propagated through the circuit,
eventually resulting in output PO0 tied to logic 0. Therefore, the result of this logic
transformation is the trivial approximation (see Figure A.86b). As a result all the
propagation paths become blocked, so all the remaining faults are automatically ap-
proximated. The complete trivial approximation is obtained, where both approximate
circuits are reduced to logic constants. In this situation there is no additional logic, and
the target circuit is completely unprotected. There are no faults left, so the approxima-
tion algorithm finishes here anyway.
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Fault
Probabilities

1st 2nd 3rd 4th 5th

approx. approx. approx. approx. approx.
PI0/1 0 0.0625 0.0625 0.1875 0.1875
PI1/1 0.125 0.125 0.125 0.3125 0.3438

PI2→n7/1 0.125 0.125 0.125 0.125 0.125
PI2→n8/1 0 0 0 0 0

PI3/1 0 0 0 0 0
PI4/1 0 0 0 0 0.1875
n7/1 0 0 0 0 0

n8→n9/1 0 0.125 0.125 0.125 0.125
n8→n11/1 0 0.0625 0.125 0.125 0.125
n9→PO0/1 0 0 0 0 0
n9→PO1/1 0 0 0 0 0

n11/1 0 0 0 0 0
PO0/0 0 0 0 0 0
PO0/1 0.125 0.1875 0.1875 0.4375 0.4375
PO1/0 0 0 0 0 0
PO1/1 0 0.125 0.1875 0.4375 0.4375

EP 2.3438% 5.0781% 5.8594% 9.3750% 12.3047%

Fault
Probabilities

6th 7th 8th 9th 10th

approx. approx. approx. approx. approx.
PI0/1 0.1875 0.1875 0.1875 0.1875 0.1875
PI1/1 0.3438 0.3438 0.3438 0.3438 0.3438

PI2→n7/1 0.125 0.125 0.125 0.125 0.125
PI2→n8/1 0 0.0625 0.1875 0.1875 0.1875

PI3/1 0 0.0625 0.0625 0.1875 0.1875
PI4/1 0.1875 0.1875 0.1875 0.1875 0.1875
n7/1 0.1875 0.1875 0.1875 0.1875 0.1875

n8→n9/1 0.125 0.125 0.125 0.125 0.125
n8→n11/1 0.125 0.125 0.125 0.125 0.125
n9→PO0/1 0 0 0.125 0.125 0.3125
n9→PO1/1 0 0 0.0625 0.1875 0.1875

n11/1 0 0.1875 0.1875 0.1875 0.1875
PO0/0 0.1875 0.1875 0.3125 0.3125 0.5625
PO0/1 0.4375 0.4375 0.4375 0.4375 0.4375
PO1/0 0 0.1875 0.3125 0.5625 0.5625
PO1/1 0.4375 0.4375 0.4375 0.4375 0.4375

EP 14.6484% 17.7734% 21.2891% 24.4141% 27.1484%

Table A.22: Real contribution of each fault to EP
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Finally, in order to show the accuracy of probability estimations performed through-
out the whole algorithm, the real fault probabilities have been computed for each one of
the error masking schemes resulting from each iteration in the algorithm. These results
have been obtained by performing an exhaustive simulation of the faults within the
target circuit for each pair of approximations generated. Table A.22 contains the real
fault probabilities with respect to each iteration. In addition, total EP has been com-
puted according to these real values. By comparing these results with those obtained
throughout the approximation generation algorithm, it can be seen that estimated EP
coincides with the real value in every iteration. Furthermore, the accumulated proba-
bility of unmasked input vectors computed for each fault is identical to real fault prob-
ability on each iteration. In conclusion, although initial computation of probabilities
can be a little imprecise, the estimation of effects of successive approximated faults are
much more accurate.

A.5 Approximation with node substitution
This section shows an application example of the approximation method by node sub-
stitution over the c17 benchmark. This approach is an extension of the method based in
dynamic testability measures, which takes advantage on the fault implications required
to compute fault probabilities in order to deduce and apply a new kind of logic transfor-
mations. The approach is detailed in section 5.4. Therefore, most of the computations
performed in the example with dynamic testability measures are reused here. For the
sake of brevity, the reader is then referred to the section A.4 for all those computations
which are omitted in this example.

The same fault classification as in the example with dynamic testability measures is
applied here. However, for some faults in that list substitution candidates can never be
found, due to the constraints imposed to the substitution candidates. Such is the case of
the faults located at the primary inputs. By substituting a primary input with any other
node within the circuit the critical path can never improve, and only a substitution with
another primary input preserves the critical path duration. But this transformation is
uninteresting, because there is no benefit in terms of area. Therefore, when looking for
candidates for node substitution, the search is conducted just for the following faults
(as the replaced node. This restriction does not apply to the replacing nodes)

• Under-approximation faults with substitution candidates: n9→PO0/1, n9→PO1/1,
n7/1, n11/1, PO0/0 and PO1/0.

• Over-approximation faults with substitution candidates: n8→n9/1, n8→n11/1,
PO0/1 and PO0/1.

This example is structured in several subsections for a better understanding. The
first subsection corresponds to the initial search of substitution candidates, which is
performed right after computing fault probabilities for the first time, before applying
any approximation. Then there is one subsection per iteration of the approximation
algorithm. Each iteration corresponds to one logic transformation, either a fault ap-
proximation or a node substitution. In this example there is a total of 9 iterations, from
the full TMR to the trivial solution.
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Initial substitution candidate search

The approximation generation algorithm initiates with a parity check of every line in
the circuit. The c17 benchmark is already a fully unate circuit, and therefore applying
the unate expansion is not required.

Then, fault probabilities are computed for the first time. This step is exactly the
same than the initial probability computation step from the example with dynamic
testability measures of section A.4, and the results obtained (both the inferred assign-
ments and the probability value of each fault) are identical.

Once the probability of any fault is computed, the set of inferred assignments for
that particular fault is analysed in order to identify substitution candidates. In principle,
any line which has received an assignment during the fault implication is a potential
candidate in order to replace the line where the fault is located. However, there are
some constraints which must be met, thus reducing the set of potential candidates.
Namely they are 5: the logic transformation must be coherent with the computed line
parities, avoid asynchronous combinational feedback loops, the critical path must no
increase, exclude substitutions which are equivalent to a fault approximation, and en-
sure that the logic transformation effectively reduces the circuit area (by removing at
least one node).

Because of these constraints, it is not possible to find substitution candidates for
the faults located at the primary inputs, which are automatically excluded from the
search. The same applies to the faults located at multiple fanout points, although in
this case those faults are still taken into account because the multiple fanout point
could disappear in subsequent stages of the approximation process.

Taking into account the previous constraints, the set of substitution candidates is
very limited in this example. Faults n8→n9/1, n8→n11/1, n9→PO0/1 and n9→PO1/1
correspond to multiple fanout points, and therefore they have no valid candidates as
long as the multiple fanout points persist. With respect to the fault n7/1, all of its
inferred assignments (which can be seen in the Figure A.22b) correspond to either
the fanout cone of the fault (assignments n7=0 and PO0=1), which would produce a
combinational feedback loop, or to an immediate input to any of the nodes in the fanout
cone of the fault (assignments PI0=1, PI2=1 and n9=1), which would be equivalent to
a fault approximation. Therefore, there are no candidates for the fault n7/1 either. The
same applies to faults PO0/0, PO1/0, PO0/1 and PO1/1: just the fault location and at
most its immediate inputs (in the cases of PO0/1 and PO1/1) receive an assignment.

The only fault from which substitution candidates are identified is n11/1. Figure
A.28b summarizes the set of inferred assignments for this fault. Among them, nodes
n11 and PO1 belong to the fanout cone of the fault, and nodes PI4, n8 and n9 are
immediate inputs of either n11 or PO1. Therefore, all these nodes are excluded. Only
the assignment PI1=0 remains as a valid substitution candidate, and because the value
of this assignment is the same than the assignment on the fault location (n11=0), it is
identified as a potential direct substitution from PI1 to PO1. In this case, because the
replacing node is a primary input, the logic transformation would preserve the circuit
parities independently from the parity of the node n11. It must be noted that the fault
n11/1 propagates just to output PO1, and therefore the implication with respect to PO0
is not considered. If a fault may propagate through several outputs, it has to be at first
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implied independently for each output, thus obtaining a particular set of assignments
per output, and then all of those sets of assignments have to be properly combined.
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Figure A.87: Implication of substitution candidate PI1→PO1/1

The identified substitution candidate has associated the virtual fault PI1→PO1/1.
This fault represents the set of input vectors which will be unmasked if this node sub-
stitution is finally performed. In order to decide whether it is worth performing this
logic transformation or not, the probability of the associated fault is computed. The
fault PI1→PO1/1 has the controllability condition PI1=0 and the observability con-
ditions n9=1 and n11=1, as shown in the Figure A.87a. Then these assignments are
propagated by direct implication as usual. PI1=0 justifies n9=1, and the value of PO1
is derived from n9 and n11 (it must be noted that the discontinuous connection from
PI1 to PO1 does not really exists), as shown in the Figure A.87b. Finally, the J-SMA
PI1=0, n11=1 is obtained, and the probability of the fault PI1→PO1/1 is inferred from
the J-SMA as P (PI1→ PO1/1) = P (PI1) · P (n11) = 0.5 · 0.625 = 0.3125.

Once the probability of the fault associated to the candidate node substitution has
been computed, it is included in the set of approximation candidates along with all the
fault approximations (whose probabilities are detailed in the Table A.2), and the best
logic transformation is selected. In this example, the selection criteria is the classical
heuristic of the dynamic approach: the fault with the lowest probability is selected and,
in the case of a draw, the one which produces the highest area savings. The probability
of the substitution candidate (0.3125) is worse than the probability of the best fault
approximation (PI2→n7/1, n8→n9/1 or n8→n11/1, all of them with a probability of
0.125). Therefore, the candidate node substitution is discarded in favour of one of these
fault approximations. Because all of them produces the same area savings (estimated
as the size of the transitive fanin), the over-approximate fault PI2→n7/1 is arbitrarily
chosen as the first approximated fault.

1st approximation: PI2→n7/1

After selecting the first fault to be approximated (PI2→n7/1), but before approximating
it, the approximation condition of the fault has to be inferred, the probability of all the
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over-approximate faults has to be updated (including PI2→n7/1 itself) and finally the
global EP has to be updated as well. All these steps are identical to the first iteration
of the example with dynamic testability measures, and they provide exactly the same
results.

Next, the selected fault is approximated in the correspondent over-approximate cir-
cuit, which up to this point was an exact replica of the c17 benchmark. The approx-
imation of the fault PI2→n7/1 generates the logic circuit of Figure A.37, where the
node n7 has been replaced by an inverter. From now, the fault PI2→n7/1 is marked as
approximated, and therefore it is not taken into account in future iterations.

Now, all the remaining faults are implied in the new over-approximate circuit. For
the over-approximate faults, the goal is discovering additional faults which may have
become approximated due to the approximation of the fault PI2→n7/1 (with negative
result in the current iteration). While for the under-approximate faults, the goal con-
sists in discovering node new substitution candidates. It must be noted that the node
substitutions inferred from under-approximate faults during the initial stage of the ex-
ample (particularly PI1→PO1/1) are discarded because the over-approximate circuit
has changed.
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Figure A.88: Implication of fault n7/1 in the over-approximate circuit - first approxi-
mation

Let us start with the fault n7/1. The initial SMA of this fault is constituted by
the assignments n7=0 and n9=1, as shown in the Figure A.88a. These assignments
are then propagated by direct implication, as shown in the Figure A.88b. None of
these assignments points to a valid substitution candidate. Nodes n7 and PO0 belong
to the output cone of the fault n7/1, while nodes PI0 and n9 are immediate inputs of
respectively n7 and PO0. Therefore, no substitution candidates are inferred for this
fault.

The remaining under-approximate faults do not suffer changes with respect to the
initial stage. Faults n9→PO0/1 and n9→PO1/1 are still located at a multiple fanout
point, and faults PO0/0 and PO1/0 only receive one single assignment at the fault lo-
cation. For all these faults, no substitution candidates are found. With respect to the
fault n11/1, replacing the node n7 with an inverter does not modify the set of deduced
assignments (shown in the Figure A.28). Therefore, the direct substitution from PI1 to



234 APPENDIX A. CIRCUIT APPROXIMATION EXAMPLES

PO0 is again identified as a candidate substitution. The probability of the associated
fault, PI1→PO1/1, is again computed with identical result (a probability of 0.3125).

In summary, only the substitution fault PI1→PO1/1 is added to the list of candidate
approximations along with all the remaining circuit faults, which are listed in the Table
A.4. Among them, the fault with the lowest probability is selected as the next fault
to be approximated. In this case, there are two possible candidates: n8→n9/1 and
n8→n11/1, both of them with a probability of 0.125 and the same transitive fanin size.
Among them, the over-approximate fault n8→n9/1 is arbitrarily chosen, and the next
iteration of the algorithm begins.

2nd approximation: n8→n9/1
Once the fault n8→n9/1 has been selected, its approximation condition is inferred on
the over-approximate circuit. Then, the probability of every over-approximate fault in
the circuit is updated by subtracting the probability of the intersection with the approx-
imation condition of the fault n8→n9/1. And finally, the global EP is updated as the
average variation of all fault probabilities. All these steps coincide with the second
iteration of the example with dynamic testability measures, and they provide exactly
the same results.

Then, the fault n8→n9/1 is approximated in the over-approximation, resulting in
the circuit of the Figure A.45. As a result of the fault approximation, the node n9 has
been replaced with an inverter. The fault n8→n9/1 is now marked as approximated.

The remaining faults are implied again in this new approximate circuit. On the
one hand, the over-approximate faults are implied to detect if any of them becomes
redundant with the last approximation, which turns out to be false. On the other hand,
the under-approximate faults are implied to identify substitution candidates in the new
approximate circuit. The substitution candidates discovered in the previous step of the
example are discarded.

Among all the considered under-approximate faults, n9→PO0/1, n9→PO1/1, PO0/0
and PO1/0 do not generate substitution candidates for different reasons. Faults n9→PO0/1
and n9→PO1/1 are located at a multiple fanout point, while PO0/0 and PO1/0 do not
infer assignments further from the fault location itself.

With respect to the fault n7/1, it is implied with the initial SMA n7=0 and n9=1, as
shown in the Figure A.89a. Then these assignments are propagated by direct implica-
tion, resulting in the final set of assignments from the Figure A.89b. Among them, the
nodes PI0, n7, n9 and PO0 are no valid candidates due to the constraints imposed to the
substitution candidates. But the assignment PI1=0 is identified as a valid substitution
candidate. The assignment at the fault location is n7=0, and therefore the identified
candidate is a direct substitution from PI1 to PO0.

This substitution candidate has associated the virtual fault PI1→PO0/1, which is
now computed as follows. First, the initial SMA is deduced, which is formed by the
assignments PI1=0, n7=1 and n9=1, as shown in the Figure A.90a. Then these assign-
ments are propagated by direct implication, as shown in the Figure A.90b. n7=1 and
n9=1 are justified by PI0=0 and PI1=0 respectively, while the value of PO0 is derived
from the nodes n7 and n9 (the discontinuous connection between PI1 and PO0 does not
really exist). Finally, the J-SMA PI0=0, PI1=0 is inferred, from which the probability
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Figure A.89: Implication of fault n7/1 in the over-approximate circuit - second approx-
imation
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Figure A.90: Implication of substitution candidate PI1→PO0/1 - second approximation
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of the substitution fault is derived as P (PI1 → PO0/1) = P (PI0) · P (PI1) =
0.52 = 0.25.
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Figure A.91: Implication of fault n11/1 in the over-approximate circuit - second ap-
proximation

Finally, the fault n11/1 is implied. Departing from the initial SMA n9=1 and n11=0
(as shown in the Figure A.91a), the final set of assignments of the Figure A.91b is
obtained by direct implication. Among them, only the node PI1 is identified as a valid
substitution candidate. By comparing the assignment at this node with the assignment
at the fault location (n11=0), the candidate is identified as a direct substitution from
PI1 to PO1. The fault associated with this approximation is PI1→PO1/1.
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Figure A.92: Implication of substitution candidate PI1→PO1/1 - second approximation

Although this is the same node substitution already discovered in the previous steps
of the algorithm, the probability of its associated fault has to be computed once more.
The initial SMA for this fault is compound by the assignments PI1=0, n9=1 and n11=1,
as shown in the Figure A.92a. Then, the assignment n9=1 becomes justified by PI1=0,
while PO1 is assigned to 0 because of the values of n9 and n11. All the implication
process is summarized in the Figure A.92b. Finally, the J-SMA PI1=0 and n11=1 is ob-
tained, which has associated a probability P (PI1→ PO1/1) = P (PI1) · P (n11) =



A.5. APPROXIMATION WITH NODE SUBSTITUTION 237

0.5 · 0.625 = 0.3125.
Both identified substitution faults, PI1→PO0/1 and PI1→PO1/1, are included along

with all the remaining circuit faults, whose current probability values are listed in the
Table A.6. Among all these faults, the one with the lowest probability is selected as the
next fault to approximate, which turns out to be the over-approximate fault n8→n11/1,
with a probability of 0.0625.

3rd approximation: n8→n11/1

After selecting the fault n8→n11/1, its approximation condition is obtained in the ap-
proximate circuit. Then, the probability of each over-approximate fault is updated, and
the EP is adjusted according to the new fault probabilities. These steps coincide with
the third iteration in the example with dynamic testability measures, and the results
obtained are exactly the same.

Later, the fault n8→n11/1 is approximated in the over-approximate circuit, and
marked as approximated. In this new approximation the node n11 is transformed into
an inverter and the node n8 is removed as it is left dangling. The new over-approximate
circuit is the same of the Figure A.49b.

Once the approximation of the new fault has been performed, all the remaining
faults are re-implied in this new approximate circuit. With respect to the remaining
over-approximate faults, none of them is identified as redundant. While for the under-
approximate faults, a new search for substitution candidates is conducted.

Once more, no substitution candidates are deduced from the faults n9→PO0/1,
n9→PO1/1, PO0/0 and PO1/0 due to the constraints imposed to the substitution candi-
dates. With respect to the fault n7/1, the new approximation does not modify the set of
assignments inferred for this fault, which are the same than in the previous iteration of
the algorithm (see Figure A.89b). As a consequence, the same substitution candidate
from PI1 to PO0 is identified, which corresponds to the substitution fault PI1→PO0/1.
The probability associated to this fault is computed exactly as in the previous iteration,
resulting in a probability P (PI1→ PO0/1) = 0.25.

The fault n11/1 is implied in the last place. The initial SMA n9=1, n11=0 of Figure
A.93a is first applied, and then it is propagated through the circuit, finishing in the
set of assignments of the Figure A.93b. Nodes n11 and PO1 belong to the output
cone of the fault n11/1, and nodes PI4 and n9 are immediate inputs of n11 and Po1
respectively, and therefore all of them are excluded. Only the node PI1 is identified
as a valid substitution candidate, and due to the assigned values to PI1 and n11, the
substitution is a direct one.

This substitution candidate has associated the virtual fault PI1→PO1/1, whose
probability is now computed. The initial SMA of the fault is formed by the assign-
ments PI1=0, n9=1 and n11=1, as shown in the Figure A.94a, which are then prop-
agated through the circuit. n9=1 and n11=1 are respectively justified by Pi1=0 and
PI4=0, while at the same time they set PO1=0. All this process is summarized in the
Figure A.94b. In the end, the J-SMA PI1=0, PI4=0 is inferred. The probability of this
J-SMA is computed as the product of the probabilities of the assignments belonging to
it, thus having P (PI1→ PO1/1) = P (PI1) · P (PI4) = 0.52 = 0.25.
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Figure A.93: Implication of fault n11/1 in the over-approximate circuit - third approx-
imation
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Figure A.94: Implication of substitution candidate PI1→PO1/1 - third approximation
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Finally, both substitution faults PI1→PO0/1 and PI1→PO1/1 are considered along
with all the remaining circuit faults (whose updated probabilities are included in the
Table A.8) to select the next fault to approximate. Among them, the fault with the low-
est probability is PI0/1, with a value of 0.125, which becomes the next approximated
fault. With this, a new iteration of the algorithm begins.

4th approximation: PI0/1
The approximation condition of the new selected fault, PI0/1, have to be computed
in the first place. This is an over-approximate fault, so the probabilities of all the
remaining over-approximate faults (including PI0/1 itself) have to be updated with the
aid of the approximation condition just computed. Then, the global EP is updated too
based in the accumulation of all probability variations. These steps correspond with
the fourth iteration of the example of section A.4, and the results obtained are exactly
the same.

In this point, the selected fault can be finally approximated and removed from the
candidate fault list. The approximation is performed over the over-approximate circuit.
As a result of the approximation of the fault PI0/1 the circuit of the Figure A.54b is
generated, where the output PO0 has been tied to a logic constant.

After performing the fault approximation, all the remaining faults are implied in
this new approximate circuit. This time, an over-approximate fault (PO0/1) is detected
to be redundant, which is removed from the candidate fault list along with PI0/1. On
the other hand, the under-approximate faults are implied to identify new substitution
candidates. Because the over-approximate circuit has been modified, the substitution
candidates found in the previous iteration are no longer valid.

Some of the under-approximate faults do not present substitution candidates in the
current iteration. This time, faults n7/1, n9→PO0/1 and PO0/0 do not have a valid
propagation path, and therefore they do not generate a valid set of assignments which
allow identifying any substitution candidate. For its part, the fault PO1/0 only generates
an assignment at the node PO1, which is not sufficient to infer any valid substitution
candidate.

With the last approximated fault, the multiple fanout point at the output of the
node n9 has been finally resolved, and therefore the remaining fault n9→PO1/1 can
be implied in the search for substitution candidates. The assignments n9=0 and n11=1
form the SMA of this fault, as shown in the Figure A.95a. These assignments are then
propagated by direct implication, as shown in the Figure A.95b. From the inferred set
of assignments, PI1=1, n9=0, n11=1 and PO1=1 are excluded due to the constraints
which conform a valid substitution candidate. However, the assignment PI4=0 fulfils
all those constraints, and has the same value than the assignment at the fault location.
As result, the direct substitution from PI4 to PO1 is identified as a valid candidate.

This new substitution has associated the virtual fault PI4→PO1/1. The probability
of this fault is now computed. First, the initial SMA is inferred, which in this case
is formed by the assignments PI4=0, n9=1 and n11=1, as shown in the Figure A.96a.
These assignments are propagated through the circuit as indicated in the Figure A.96b.
The final J-SMA of the fault contains the assignments PI1=0 and PI4=0. The probabil-
ity of this set of conditions, which is equal to the probability of the substitution fault,
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Figure A.95: Implication of fault n9→PO1/1 in the over-approximate circuit - fourth
approximation
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Figure A.96: Implication of substitution candidate PI4→PO1/1 - fourth approximation
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is P (PI4→ PO1/1) = P (PI1) · P (PI4) = 0.52 = 0.25.
Finally, the fault n11/1 is implied again in the over approximate circuit. The

last logic transformation of the over-approximation does not alter the set of assign-
ments inferred for the fault n11/1 with respect to the previous iteration of the algo-
rithm. Therefore, the set of assignments which appear in the Figure A.93b still apply
here. As a consequence, the direct substitution from PI1 to PO1 is again identified
as a valid candidate. This logic transformation has associated the substitution fault
PI1→PO1/1, whose probability has to be computed. The implication of this fault in
the new over-approximate circuit is analogous to the implication performed in the pre-
vious iteration (see Figure A.94 for details), with the same set of inferred assignments
and the same J-SMA. In conclusion, the probability of this substitution fault is still
P (PI1→ PO1/1) = 0.25.

Both identified substitution candidates, PI1→PO1/1 and PI4→PO1/1, are included
in the list of candidate faults along with all the remaining circuit faults, whose updated
probabilities appear in the Table A.10. Among all these faults, the one with the lowest
probability value is selected for the next iteration of the algorithm. In this case, the
over-approximate fault PI1/1, with a probability equal to 0, is selected.

5th approximation: PI1/1
The new chosen approximation candidate, PI1/1, is implied in the over-approximate
circuit in order to obtain its approximation condition. Then, the probability of all the
remaining over-approximate faults is updated, including PI1/1 itself. And finally, the
global EP is updated. These steps are analogous to the fifth iteration in the example
with dynamic testability measures, and the results obtained perfectly match, so there is
no need of replicating the computations here.

After all the fault probabilities have been updated, the fault Pi1/1 can be finally
approximated in the over-approximate circuit. As a result, the trivial approximation
of Figure A.59b is generated, where the whole circuit logic has been removed, and
both outputs are tied to logic constants. In this situation, there are no valid propagation
paths for any of the faults in the circuit. Therefore, all the remaining over-approximate
faults are considered as already approximated, and no substitution candidates can be
identified. On the other hand, the under-approximate circuit is still an exact copy of the
original c17 benchmark.

In this point, only the under-approximate faults remain as eligible candidates. The
table A.12 collects the updated probability values of all these faults. Among them, the
fault with the lowest probability is chosen to be approximated. But in this case, there
are four possible candidates: PI2→n8/1, n7/1, n9→PO1/1 and n11/1, all of them with a
probability equal to 0.1875. Among them, the logic transformation which produces the
largest area savings is chosen, which limits the candidates to n7/1 and n11/1. Among
them, finally n7/1 is arbitrarily chosen for the next iteration.

6th approximation: n7/1
The fault n7/1 is the first under-approximate fault to be approximated. In this case,
the approximation condition of this fault is computed in the under-approximate circuit,
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which is still an exact replica of the original circuit. Then, the probabilities of all the
under-approximate faults are updated, including n7/1 itself. An finally, the EP is up-
dated according to the accumulated probability changes. All these steps are identical to
the sixth iteration on the example with dynamic testability measures, and they provide
exactly the same results.

Now the selected fault can be approximated. As a result, the under-approximation is
transformed into the circuit of Figure A.63b, where the node n7 has been left dangling
and is removed, and the node PO0 is changed into an inverter. From now, the fault n7/1
is removed from the candidate fault list.

After the fault n7/1 has been approximated, every remaining fault is implied in this
new under-approximate circuit. This time, the over-approximate faults are implied in
order to identify substitution candidates, while the under-approximate faults are im-
plied to detect additional faults which may have become redundant. In this iteration,
no additional faults are detected as approximated.
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Figure A.97: Implication of fault PO0/1 in the under-approximate circuit - sixth ap-
proximation

For most of the under-approximate faults, no substitution candidates can be found.
Faults n8→n9/1 and n8→n11/1 are located at a multiple fanout point, and therefore any
node substitution performed over them would produce no area savings. For its part, the
implication of the fault PO0/1 generates the set of assignments of Figure A.97. PO0=1
corresponds to the fault location, and n9=1 is its immediate input, so none of them
meet the necessary constraints.

With respect to the fault PO1/1, it is implied in the under-approximate circuit with
the only assignment PO1=0 as the initial SMA. Such assignment is justified by n9=1
(which is propagated to PO0) and n11=1, as shown in the Figure A.98. From this set
of assignments, PO1 corresponds to the fault location, while n9 and n11 are immediate
inputs of PO1, and therefore all of them are excluded. However, the assignment PO0=0
remains as a valid candidate. Both PO0 and PO1 are assigned to the same logic value
and have the same parity (because the primary outputs are always assigned an even
parity. See section 3.2 for details). Therefore, the direct substitution from PO0 to the
primary output PO1 constitutes a valid candidate.

This new substitution candidate has associated the virtual fault PO0→PO1 PO/1,
whose probability has to be computed. First, the initial SMA of Figure A.99a is in-
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Figure A.98: Implication of fault PO1/1 in the under-approximate circuit - sixth ap-
proximation
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Figure A.99: Implication of substitution candidate PO0→PO1 PO/1 - sixth approxi-
mation
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ferred, which contains the assignments PO0=0 and PO1=1. Then this SMA is propa-
gated by direct implication, as shown in the Figure A.99b. The assignment PO0=0 is
justified by n9=1, which at the same time forces n11=0 in order to justify PO1=1. Then,
n11=0 becomes justified by PI4=1 and n8=1, and consequently n9=1 must be justified
by imposing PI1=0. In the end, the J-SMA is formed by the MAs PI1=0, PI4=1 and
n8=1. The probability of this J-SMA, and the substitution fault by extension, is com-
puted as P (PO0→ PO1 PO) = P (PI1) ·P (PI4) ·P (n8) = 0.52 · 0.75 = 0.1875.

The identified substitution fault is included in the list of eligible candidates along
with all the remaining under-approximate faults, whose updated probabilities are col-
lected in the Table A.14. The fault with the lowest probability among all these can-
didates is selected next. In this case, there are up to four possible faults: PI2→n8/1,
n9→PO1/1, n11/1 and the substitution fault PO0→PO1 PO, all of them with a prob-
ability of 0.1875. Among them, the fault which produces the largest area savings is
finally selected, which turns out to be the substitution fault, PO0→PO1 PO.

7th approximation: substitution fault PO0→PO1 PO/1
Whenever a new fault is selected to be approximated, first it has to be implied in the
correspondent approximate circuit in order to obtain its approximation condition. In the
case of the selected fault in the current iteration (the substitution fault PO0→PO1 PO/1),
such implication has already been performed in the previous iteration in order to com-
pute the probability of the fault (see Figure A.99). The J-SMA of this fault contains
the MAs PI1=0, PI4=1 and n8=1. Therefore, the approximation condition associated
to this fault is APO0→PO1 PO = PI1 · PI4 · n8 with respect to the output PO1. This
fault cannot propagate through PO0, and therefore the approximation condition with
respect to that output is null.

Next, the intersection of this approximation condition with each remaining under-
approximate fault is computed in the original circuit, with the idea of updating the
probability of every fault. It must be noted that the approximation condition inferred
for the substitution fault PO0→PO1 PO/1 is identical to the one computed during the
seventh iteration of the example with dynamic testability measures for the fault n11/1.
Therefore, the fault probabilities are updated exactly with the same results than in the
correspondent iteration of the example of section A.4, summarized in the Table A.15.
And in consequence, the global EP is updated to the same value as well.

After updating the fault probabilities, the approximation can be finally performed.
This time the logic transformation is a node substitution, and therefore a new con-
nection is created from the node PO0 to the primary output PO1. At the same time,
the former connection from the node PO1 is removed as shown in the Figure A.100a.
This logic transformation lefts dangling the nodes PO1 and n11, which can be safely
removed, thus obtaining the equivalent circuit of Figure A.100b. By comparing this ap-
proximation with the corresponding one generated in the example with dynamic testa-
bility measures (Figure A.69b), finally the benefits of the node substitution approach
can be observed, as here one additional logic gate has been saved with respect to the
classic approach.

Then, all the remaining faults are implied in this new under-approximate circuit.
Among the under-approximate faults, n11/1, n9→PO1/1 and PO1/0 have become re-
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Figure A.100: Approximation of substitution fault PO0→PO1 PO/1

dundant, and therefore they are removed from the list of candidate faults. This means
that the probabilities of these faults are not updated any more and therefore they no
longer contribute to the EP, even if their current probabilities are greater than 0 (such
is the case of the faults n9→PO1/1 and PO1/0). As a consequence, an underestimation
of the EP may be produced in subsequent iterations.

Therefore, how the EP should be computed from now on to compute the correct
result? In truth, what is happening is that the redundant circuit faults has been trans-
formed into others. The fault n9→PO1/1 is now represented by the fault n9→PO0/1
itself. Therefore, when updating the EP in future iterations, the probability of the
fault n9→PO0/1 should be counted twice for a realistic EP estimation: once with the
full probability update (representing the contribution of n9→PO0/1 itself), and another
time with just the probability of the input combinations which allow propagation to
both outputs (representing the contribution of the fault n9→PO1/1). With respect to
the fault PO1/0, it has been transformed into the fault stuck-at 0 in the new connection
(i.e., into the fault PO0→PO1 PO/0). Therefore, the fault PO0→PO1 PO/0 should be
included in the list of circuit faults. However, this mechanism of replacing the redun-
dant faults with their equivalents in the new approximate circuit has not been imple-
mented in the proposed node substitution approach, and therefore some imprecisions
in the estimation of the EP may be performed from now on.

On the other hand, the over-approximate faults are implied in the new over- approx-
imate circuit in order to find new substitution candidates. However, faults n8→n11/1
and PO1/1 have become redundant and therefore they do not generate a valid set of
assignments. With respect to the fault PO0/1, exactly the same assignments inferred
in the previous iteration are obtained here (see Figure A.97), which do not meet the
constraints for a valid substitution candidate.

Finally, the fault n8→n9/1 is implied in the search for substitution candidates, be-
cause with the last approximation the multiple fanout point at the output of the node n8
has been removed. The initial SMA for this fault is formed by the assignments PI1=1
and n8=0, as shown in the Figure A.101a. These assignments are then propagated by
direct implication. The assignment n8=0 is justified by PI2=1 and PI3=1. At the same
time, n8=0 propagates to n9=1, and subsequently to both primary outputs, as shown in
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Figure A.101: Implication of fault n8→n9/1 in the under-approximate circuit - seventh
approximation

Under-approx Probability Over-approx Probabilityfault fault
PI2→n8/1 0.125 PI0/0 -

PI3/1 0.1875 PI1/1 -
n7/1 - PI2→n7/1 -

n9→PO0/1 0.2812 PI4/1 -
n9→PO1/1 - n8→n9/1 -

n11/1 - n8→n11/1 -
PO0/0 0.3437 PO0/1 -
PO1/0 - PO1/1 -

Table A.23: Fault probabilities after PO0→PO1 PO/1 approximation

the Figure A.101b. But none of these assignments point to a valid substitution candi-
date, because each one of them either belong to the output cone of the fault n8→n9/1,
or is an immediate input of some of the nodes in the output cone of the fault.

In conclusion, there are no substitution candidates found. The selection of the
next fault is performed then among the remaining under-approximate faults. The Table
A.23 shows the current probability of all the circuit faults, without including the new
fault appeared due to the node substitution just performed. The dashes denote those
faults which have become redundant, and therefore they are not eligible. Among the
candidate faults, PI2→n8/1 is next selected as the fault with the lowest probability.

8th approximation: PI2→n8/1

A new iteration of the approximation generation algorithm begins. The first step con-
sists in obtaining the approximation conditions of the last selected fault, PI2→n8/1.
This step is analogous to the computation of approximation conditions for the same
fault in the eighth iteration of the example with dynamic testability measures. To sum
up, the approximation conditionAPI2→n8/1 = PI1·PI2·PI3 is obtained with respect
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to both outputs.
Then, the probabilities of all the remaining under-approximate faults are updated

with the usual method. It must be noted that the faults n9→PO1/1 and PO1/0 are now
considered as approximated and therefore they are not updated. For the rest of the
remaining under-approximate faults, their probabilities are updated exactly as in the
eighth iteration of the example of section A.4, because the approximation conditions
of the last approximated fault are identical in both examples.

Fault
Justification Probability

frontier Former Unmasked UpdatedPO0 PO1 PO0 PO1
PI2→n8/1 PI1PI2PI3 - 0.125 0.125 0 0

PI3/1 - - 0.1875 0 0 0.1875
n9→PO0/1 PI1PI2PI3 - 0.2812 0.125 0 0.1562

PO0/0 PI1PI2PI3 - 0.3437 0.125 0 0.2187

Table A.24: Summary of PI2→n8/1 approximation

The Table A.24 shows the results of the probability updating step. It contains, from
left to right, the J-SMAs resulting from re-implying each fault with the approximation
conditions of the fault PI2→n8/1 with respect to both outputs, the fault probability at
the beginning of the iteration, the probability of the unmasked input vectors for each
fault with respect to each output, and finally the updated probability values. Because
the faults n9→PO1/1 and PO1/0 have not been considered in this example, the accumu-
lated EP is updated with a different value than in the example with dynamic testability
measures

EP8 =EP7 +

∑
i P (fi ∩API2→n8/1 ∩ fi ∩AF )

n
=

= 17.7734% +
3 · 0.125

16
= 20.1172%

However, an underestimation of the EP has been produced here. The result does not
coincide with the EP estimation obtained in the corresponding iteration of the example
with dynamic testability measures (which is equal to 21.2891%), despite that in this
point, the approximate circuits generated are functionally equivalent (it can be seen by
comparing the circuits of Figures A.76 and A.102). In addition, the EP estimated in
the example of section A.4 coincides with the real EP value which appears in the Table
A.22. This is due to not considering the new faults which appear as a consequence of
the node substitution previously performed.

Now, the fault PI2→n8/1 can be finally approximated and removed from the list
of candidate faults. As a result, the under-approximate circuit of the Figure A.102 is
generated, where the node n8 has been transformed into an inverter. Compared with the
corresponding approximate circuit in the example with dynamic testability measures
(in the Figure A.76), it can be seen that the circuit generated in this example is more
optimized, using one logic gate less than with the classic approach.
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Figure A.102: Approximation of fault PI2→n8/1
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Figure A.103: Implication of fault PO0/1 in the under-approximate circuit - eighth
approximation
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Once the new under-approximate circuit has been generated, all the remaining
faults are implied in this new circuit. On the one hand, none of the remaining under-
approximate faults is identified as redundant. On the other hand, the remaining over-
approximate faults (n8→n9/1 and PO0/1) are implied to detect potential substitution
candidates. The set of assignments obtained from the implication of the fault n8→n9/1
are shown in the Figure A.103. With respect of the fault PO0/1, the same assignments
inferred in the previous iterations of the example are obtained (n9=1 and PO0=0, as in
the Figure A.97). None of these assignments meets the constraints that define a valid
substitution candidate.

Under-approx Probability Over-approx Probabilityfault fault
PI2→n8/1 - PI0/0 -

PI3/1 0.1875 PI1/1 -
n7/1 - PI2→n7/1 -

n9→PO0/1 0.1562 PI4/1 -
n9→PO1/1 - n8→n9/1 -

n11/1 - n8→n11/1 -
PO0/0 0.2187 PO0/1 -
PO1/0 - PO1/1 -

Table A.25: Fault probabilities after PI2→n8/1 approximation

Because no substitution candidates have been found, the selection of the next ap-
proximated fault is limited to the remaining under-approximate faults, which are col-
lected in the Table A.25. Among them, the fault with the lowest probability is selected,
which turns out to be n9→PO0/1.

9th approximation: n9→PO0/1
With the new fault n9→PO0/1 selected, its approximation conditions are computed
as usual. With this goal, the fault n9→PO0/1 is implied in the under-approximate
circuit. The implication process is analogous to the one performed in the ninth iter-
ation of the example with dynamic testability measures for the fault n9→PO1/1 (in
the Figure A.77b). The approximation condition has therefore the same assignments,
An9→PO0/1 = PI1 · PI3, although in this example the approximation condition ap-
plies to both outputs instead of just one of them.

Fault
Justification Probability

frontier Former Unmasked UpdatedPO0 PO1 PO0 PO1
PI3/1 PI1PI2PI3 - 0.1875 0.125 0 0.0625

n9→PO0/1 PI1PI3n7 - 0.1562 0.1875 0 -0.0313
PO0/0 PI1PI3 - 0.2187 0.25 0 -0.0313

Table A.26: Summary of n9→PO0/1 approximation
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Next, the probabilities of the remaining under-approximate faults are updated. In
this case, the approximation condition of the fault n9→PO0/1 combines the approxi-
mation conditions of the faults approximated in the two last iterations of the example
with dynamic testability measures. Therefore, the fault implications and probability
computations performed in the iterations 9 and 10 of section A.4 are repeated here,
with the exception of the faults n9→PO1/1 and PO1/0 which have been already ap-
proximated. In summary, the set of inferred assignments and the updated probability
values are collected in the Table A.26.

Once all the fault probabilities have been updated, it is time to update the global EP
by accumulating the average variation of fault probabilities. Thus,

EP9 = EP8 +

∑
i P (fi ∩An9→PO0/1 ∩ fi ∩AF )

n
=

= 20.1172% +
0.125 + 0.1875 + 0.25

16
= 23.6328%

Again, a discrepancy with the estimated EP in the example with dynamic testability
measures can be observed, which is again due to an incomplete fault list from the
moment when the node substitution was applied.

Finally, the fault n9→PO0/1 can be approximated in the under-approximate circuit,
generating the full trivial approximation as a result, where there is no additional logic,
and the original circuit is completely unprotected. In this situation, all the propagations
paths become blocked, so all the remaining faults are automatically approximated. Be-
cause there are no faults left, the approximation generation algorithm finishes here if
not had stopped previously as a consequence of reaching a given EP target, specified
in advance.

A.6 Approximation for FPGA implementation

The last example in this appendix corresponds to the case of approximation genera-
tion for FPGA, which is addressed in the section 6.2 of the thesis. In summary, this
approach applies the approximation generation method based in static testability mea-
sures to a circuit structure based in LUTs, which is the most typical structure in FPGA
technologies. This imposes some constraints in the set of faults which can be approxi-
mated, because now some logic transformations may cause a degradation of the target
logic function without obtaining any benefits in terms of area overhead, i.e., not reduc-
ing either the number or size of LUTs, which is not desirable at all. These constraints
are complemented with a procedure for direct approximation of binate faults, which is
achieved by means of approximating two complimentary unate faults simultaneously.
Unfortunately, this characteristic cannot be seen in this example, because c17 is a fully
unate circuit. Readers are referred to the examples in section 6.2.3 about this topic.

Figure A.104 shows the representation of the c17 benchmark as a LUT structure.
This is overlapped with the already known logic gate structure in order to see the corre-
spondence between them. In the FPGA extension to circuit approximation, only faults
located in the inputs or outputs of LUTs can be approximated. This means that faults
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Figure A.104: LUT partitioning of c17 benchmark

in the outputs of nodes n7 and n11, which are internal to a LUT, are not eligible for ap-
proximation. In this example, the LUT structure has been obtained from the logic gate
structure, and not in the contrary. This, as discussed in section 6.2.2, is usually subop-
timal in terms of FPGA resource utilization, but it is applied here in order to reuse the
testability measures from the example in section A.3, with the idea of facilitating the
comparison among both examples. Therefore, the testability measures appeared in the
Table A.1 for the approximation example in section A.3 are exactly the same in which
this example is based.

The faults in the fault list are classified depending on if they produce an under- or
an over-approximation, or if they are not eligible for approximation, as follows. This
classification is almost identical to the example in section A.3 with the only exception
of faults n7/1 and n11/1, which become not eligible because they are located inside of
a LUT in the new circuit structure:

• Under-approximation faults: PI2→n8/1, PI3/1, n9→PO0/1, n9→PO1/1, PO0/0
and PO1/0.

• Over-approximation faults: PI0/1, PI1/1, PI2→n7/1, PI4/1, n8→n9/1, n8→n11/1,
PO0/1 and PO0/1.

• Not eligible faults: PI2/0, PI2/1, n8/0, n8/1, n9/0 and n9/1 correspond to stem
lines. In addition, faults n7/1 and n11/1 fall inside a LUT.

Although it is true in this case that by approximating internal faults n7/1 or n11/1 their
respective LUTs would reduce the number of inputs, allowing some resource savings,
this fact cannot be guaranteed in the general case, and because of that the proposed
approach forbids approximating any fault internal to a LUT.
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From now on, the successive phases of the approximation generation process are
presented, starting with the full TMR solution, and progressively increasing the testa-
bility threshold up to obtaining the trivial approximation.
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Figure A.105: Approximate circuits for a 0 threshold - Pure TMR

Setting any testability threshold equal or lower than the sensitivity of the less
testable fault in the target circuit will generate a pure TMR scheme, because no faults
are approximated. In the current example, this limit value corresponds to the fault
PI2→n7/1, which has a testability of 0.114. The Figure A.105 shows the approximate
circuits resulting from a testability threshold under 0.114, which are obviously exact
replicas of the original c17 benchmark.
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Figure A.106: Approximate circuits for a 0.12 threshold

With a testability threshold above 0.114, at least one fault is approximated and
some deviations from the pure TMR scheme start appearing. The first selected value is
0.12, which makes just fault PI2→n7/1 to be approximated. The approximation of fault
PI2→n7/1 affects the over-approximate circuit, according to the previous classification
of faults. On the other hand, the under-approximate circuit presents no changes. The
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resulting approximate circuits, shown in the Figure A.106, are the same than in the
basic example with static testability measures from section A.3 for the same testability
threshold. The approximation of the fault PI2→n7/1 allows simplifying the logic gate
n7 from a NAND gate to an inverter, thus reducing the number of inputs of LUT number
1. Although the total number of LUTs has not been reduced yet, this transformation
may achieve some marginal benefits in terms of the number of interconnections and
configuration bits required.
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Figure A.107: Approximate circuits for a 0.135 threshold

The next selected value is 0.135, resulting in faults PI2→n7/1 and n8→n11/1 being
approximated. It must be noted that faults whose testability equals the threshold value
are not approximated, which is the case of the fault n8→n9/1. The parallelism with
the original example of section A.3 is clear, and therefore it is not surprising that the
resulting circuits from both approaches (see Figures A.107 and A.5) are identical for
this testability threshold. In this case, the approximation of the fault n8→n11/1 allows
not only reducing the size of LUT4, but also eliminating the multiple fanout point at
the output of node n8, which in turn allows merging LUTs number 2 and 3 into a single
LUT. This is the most interesting kind of logic transformations, those which effectively
reduce the number of LUTs in the circuit.

The next step corresponds to a testability threshold of value 0.14. Similarly to
the example of section A.3, the fault n8→n9/1 is now included in the group of ap-
proximated faults. The resulting approximate circuits are shown in the Figure A.108.
The joint approximation of faults n8→n9/1 and n8→n11/1 results in LUT2 becoming
dangling, and therefore it can be removed. In addition, LUT3 is simplified to just an
inverting function. But the resulting over-approximate circuit can be further simplified
by merging the LUT3 into the logic functions of the two other LUTs, resulting in the
circuit of Figure A.108b with just two LUTs, one for each primary output.

Up to this point, the approximation example for FPGA coincided exactly with the
example of the original approach with static testability measures. But from now on,
both approaches diverge. The next approximated fault, according to the original ap-
proach, is n11/1. But this fault is now not eligible, because it is located inside of a
LUT. Therefore, the testability threshold grows up to including the next valid fault,
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Figure A.108: Approximate circuits for a 0.14 threshold
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Figure A.109: Approximate circuits for a 0.185 threshold
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which is PI4/1. Let us stablish a testability threshold equal to 0.185. This fault, com-
bined with the effects of the previous approximated faults, makes that primary output
PO1 will be tied to a logic constant in the over-approximate circuit, reducing it to just
one LUT, as it can be seen in the Figure A.109b. This, in turn, allows simplifying the
logic in charge of voting, as discussed in section 4.2. On the other hand, the under-
approximate circuit is still a exact replica of the target c17 benchmark, as no faults
of that type have been approximated yet, contrary to what happens in the example of
section A.3 for the same testability threshold.
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Figure A.110: Approximate circuits for a 0.19 threshold

The next selected testability threshold is 0.19, which results in the fault PI0/1 to be
included in the list of approximated faults. By simplifying all the logic constants in the
over-approximate circuit it is obtained the trivial over-approximation, and this holds for
all the subsequent phases of the approximation process. While, the under-approximate
circuit is still a copy of the original c17, as shown in Figure A.110

A testability threshold of 0.197 comes next, which makes the fault PI3/1 to be
approximated along with all the previous faults. In the original example, the fault
n7/1 became approximated as well, but in this example it is not taken into account
because it is internal to a LUT. The fault PI3/1 is the first under-approximate fault
being approximated in this example, and as a result the logic function of LUT3 is
transformed into a simple inverter. Moreover, this LUT can be then merged into both
of the subsequent LUTs (numbers 3 and 4), thus reducing the number of LUTs in the
under-approximate circuit, as shown in the Figure A.111a.

Following with a testability threshold of 0.2, where the fault n9→PO1/1 passes to
be included in the list of approximated faults. Note that the fault PI2→n8/1 is not ap-
proximated yet, because its probability is not lower than the selected testability thresh-
old. With this new approximated fault, the multiple fanout point right after the node n9
is removed, allowing LUT3 to be merged with LUT1. And in the same way as in the
previous step, LUT2 is reduced to just one input, and therefore it can be easily merged
in both remaining LUTs. As result, the generated under-approximate circuit presents
just 2 LUTs, as it can be seen in the Figure A.112.

Next a threshold of value 0.25 is selected. The fault PI2→n8/1 is added to the
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Figure A.111: Approximate circuits for a 0.197 threshold



A.6. APPROXIMATION FOR FPGA IMPLEMENTATION 257

n7

n8

n9

n11
PO1

PO0

PI0

PI1

PI2

PI3

PI4

PO0_PO

PO1_PO

LUT1

LUT3

LUT2

LUT4

⇓

n7

n9

n11

PO0

PI0

PI1

PI2

PI3

PI4

PO0_PO

PO1_PO

LUT1

LUT4

(a) Under-approximation

PI0

PI1

PI2

PI3

PI4
PO1_PO

PO0_PO

(b) Over-approximation

Figure A.112: Approximate circuits for a 0.2 threshold
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approximated fault list. By simplifying all the logic constants, the approximate circuits
of the Figure A.113 are obtained. In the case of the under-approximation, the result is
that the primary output PO1 now receives a constant assignment, while the other output
is determined by just a two input LUT. It must be noted the difference with respect to
the original example (in section A.3), where at this point the trivial approximation was
obtained already.
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Figure A.113: Approximate circuits for a 0.25 threshold

Finally, in order to obtain the trivial approximation of Figure A.114, the testability
threshold has to be raised up to 0.6. Although there are other valid faults with lower
probabilities, namely PI1/1, n9→PO0/1, PO0/1, PO1/1 and PO1/0, all of them are
redundant with respect to the set of previous approximated faults, and therefore they
do not modify the resulting circuits from the previous step. Until fault PO0/0 is not
included in the list of approximated faults, the trivial approximation is not generated.



A.6. APPROXIMATION FOR FPGA IMPLEMENTATION 259

PI0

PI1

PI2

PI3

PI4

PO1_PO

PO0_PO

(a) Under-approximation

PI0

PI1

PI2

PI3

PI4
PO1_PO

PO0_PO

(b) Over-approximation

Figure A.114: Approximate circuits for a 0.6 threshold




