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ABSTRACT 
 

Arterial spin labeling is becoming an increasingly popular method for evaluating the 

cerebral blood flow. However, one of the major limitations of arterial spin labeling 

(and other perfusion assessment methods like PET) is the partial volume effect, by 

which each voxel of the image contains a mixture of tissues due to the low spatial 

resolution of ASL. Partial volume correction is required to retrieve the perfusion 

contribution of each of these tissues, which is important in the study of 

neurodegenerative diseases such as Alzheimer’s disease.  

A new partial volume correction method (3D weighted least squares) based on an 

existing state-of-the-art method (Asllani’s algorithm) is presented in this work.  The 

new algorithm improves the previous algorithm by operating in a 3D way instead of a 

2D way and including a weighting to the regression problem as a function of the 

distance between the voxels.The new method was tested over simulated cerebral 

perfusion images, giving better results than the Asllani’s algorithm.  

The algorithm was also implemented as a graphical user interface extension for the 

open source platform 3DSlicer. This extension automates all the correction process 

and allows the researchers processing the ASL images rapidly and easily. 

Using this extension, a real perfusion study was conducted to compare the cerebral 

perfusion between Alzheimer and control groups in resting state. Alzheimer group 

showed a significantly lower perfusion in the thalamus, caudate nucleus, hippocampus 

and cuneus. These regions have been reported in the literature to present atrophies in 

Alzheimer subjects and are involved in cognitive functions that are negatively affected 

by the disease. These results provide further validation for the 3DWLS as a suitable 

correction method and for the extension as a useful research tool. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

ACRONYMS 

 

 

 

 

 

 

 

 

 

 

2D – two dimensional 

3D – three dimensional 

3DWLS – 3D weighted least squares 

AD – Alzheimer’s disease 

ASL – arterial spin labeling 

ATP – adenosine triphosphate 

BOLD – blood oxygen level dependent 

BW – bandwidth 

CASL – continuous arterial spin labeling 

CFB – cerebral blood flow 

CSF – cerebrospinal fluid 

CT – computed tomography 

dHb – deoxyhemoglobin 

EPI – echo planar imaging 

EPISTAR – echo planar imaging and signal targeting with 
alternating radiofrequency 

FA – fractional aniso-probability  

FAIR – flow-sensitive alternating inversion recovery 

FID – free induction decay 

fMRI – functional magnetic resonance imaging 

FT – Fourier transform 

FWHM – full width at half maximum 

GM – grey matter 

GRE – gradient echo 

 

GUI – graphical user interface 

Hb – hemoglobin 

IR – inversion recovery 

LUT – look up table 

MCR – matlab compiler runtime 

MNR – magnetic nuclear resonance 

MRI –  magnetic resonance imaging 

PASL – pulsed arterial spin labeling 

pCASL – pseudo continuous arterial spin labeling 

PET – positron emission tomography 

PULSAR - pulsed star labeling of arterial regions 

PVC – partial volume correction 

PVE – partial volume effect 

RF – radiofrequency 

RMSE – root mean square error 

SE – spin echo 

SNR – signal to noise ratio 

SPECT – single photon emission computed 
tomography 

SPM – statistical parametric mapping 

TE – echo time 

TI – inversion time 

TR – repetition time 

WM – white matter 
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CHAPTER 1: Introduction 

1.1 Motivation 

Arterial spin labeling (ASL) is a magnetic resonance imaging (MRI) technique that 

allows obtaining quantitative 3D maps of the blood flow -also known as perfusion- 

irrigating the tissues, non-invasively and without requiring any exogenous contrast. 

The intensity values of those maps or images represent a measurement (commonly 

expressed as ml/100g/min) of the microvasculature in those tissues. This technique is 

extensively used for obtaining cerebral perfusion maps, and it is applied in a wide 

variety of pathologies such as ictus, cancer, epilepsy and neurodegenerative diseases 

such as the Alzheimer’s disease (AD). 

Some studies relative to AD have reported a decrease in perfusion at key regions of the 

brain. The hypothesis suggests that this localized hypoperfusion appears prior to the 

manifestation of the first signs of tissue atrophy [1]. Therefore, it is paramount to 

obtain quantitative perfusion maps for each of the brain tissue types, i.e. grey matter 

(GM), white matter (WM) and cerebrospinal fluid (CSF), in order to validate such 

hypothesis. 

However, one of the main disadvantages of ASL is the partial volume effect (PVE) at 

voxel level. In order to have a suitable signal-to-noise ratio and reliable quantitative 

perfusion maps, the imaging process trades off spatial resolution, with a resulting 

voxel size around 3x3x6 mm3. This makes the voxels of the image often to contain a 

mixture of GM, WM and CSF, which have different average perfusion values [2]. Partial 

volume correction (PVC) is therefore necessary to retrieve the individual perfusion 

information relative to each of the tissues. Currently, some algorithms exist for PVC 

but they operate at slice (2D) level without incorporating the additional information 

present in the upper and lower slices and in the neighbor voxels. 

The assessment of hypoperfused areas through partial volume corrected ASL images 

could become a useful clinical tool to provide an early diagnosis of some 

neurodegenerative diseases. While the clinical evaluation of dementia or cognitive 

impairment is relatively easy, the causes beneath those symptoms could be diverse 

and are not that easy to determine. Often, AD is diagnosed at advanced stages of the 

disease, at which the brain damage is clearly noticeable and irreversible. An early 

diagnosis will be very positive in terms of prevention and treatment of such 

neurodegenerative diseases, which translates into a better quality of life for the 

patient and their relatives. 
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1.2 Objectives 

This bachelor thesis comprises five objectives: 

 

1. Gather a deep understanding about MRI, the ASL technique and the existing 

state-of-the-art methods for PVC of ASL images through bibliographic 

revision.(CHAPTER 1) 

 

 

2. Implementation of a new algorithm (3DWLS) for PVC, based on one of the 

mentioned state-of-the-art methods (Asllani’s algorithm).(CHAPTER 2) 

 

 

3. Evaluation of the 3DWLS algorithm over simulated cerebral perfusion images. 

(CHAPTER 2) 

 

 

4. Development of a GUI extension for the platform 3DSlicer that integrates the 

3DWLS algorithm, together with the standard pipeline for functional brain 

image processing.(CHAPTER 3) 

 

 

5. Carry out a brain perfusion study between Alzheimer and control groups, 

using the created extension and algorithm implementation.(CHAPTER 4) 

 

 

 

 

 

 

 

 

 

 



 

1.3 Background on MRI

Magnetic resonance imaging (MRI) is

modality because it allows obtaining

volumetric images of the body.

Physical principles 

Image acquisition is based on the physical principle of magnetic nuclear resonance 

(MNR) by which the nuclei of certain atoms are able to absorb and re

electromagnetic radiation in the presence of a 

Elementary particles experiment a permanent angular momentum around some axis, 

also known as spin. Spin can be of + or 

sign can couple to cancel out the net observable spin. The net spin of a nucleus is 

determined by the spin of its particles. 

of particles, only nuclei having an odd number of protons and neutrons possess an 

associated net spin or angular momentum. Any rotating charge produces a magnetic 

moment so these nuclei have also an associated magnetic moment 

spin. The relationship between the magnetic moment and the angular momentum

defined by the gyromagnetic constant 

In natural conditions, the magnetic moment of the nuclei point in random orientation. 

However, in the presence of a strong magnetic field, the 

experiments a precession around the field direction. 

known as Larmor frequency

field ��, as described by the Larmo

 

 

 

 

 

 

 

on MRI 

Magnetic resonance imaging (MRI) is currently an extensively used 

allows obtaining both high quality anatomical and functional 

volumetric images of the body. 

Image acquisition is based on the physical principle of magnetic nuclear resonance 

by which the nuclei of certain atoms are able to absorb and re

ctromagnetic radiation in the presence of a strong magnetic field.  

Elementary particles experiment a permanent angular momentum around some axis, 

also known as spin. Spin can be of + or – orientation and particles with opposite spin 

cel out the net observable spin. The net spin of a nucleus is 

pin of its particles. Because spin cancellation occurs 

of particles, only nuclei having an odd number of protons and neutrons possess an 

ngular momentum. Any rotating charge produces a magnetic 

moment so these nuclei have also an associated magnetic moment μ�⃗

. The relationship between the magnetic moment and the angular momentum

defined by the gyromagnetic constant γ, which is specific for each element

γ =
|μ�⃗ |

�L�⃗ �
 

 

In natural conditions, the magnetic moment of the nuclei point in random orientation. 

However, in the presence of a strong magnetic field, the magnetic moment 

a precession around the field direction. The precession frequency, also 

frequency ω�, depends on γ and the intensity of the magnetic 

described by the Larmor equation [3]: 

ω� = γ ∙ ��  

 
Fig.  1.1 nucleus magnetic moment precession[36] 
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used medical image 

both high quality anatomical and functional 

Image acquisition is based on the physical principle of magnetic nuclear resonance 

by which the nuclei of certain atoms are able to absorb and re-emit 

Elementary particles experiment a permanent angular momentum around some axis, 

orientation and particles with opposite spin 

cel out the net observable spin. The net spin of a nucleus is 

occurs between pairs 

of particles, only nuclei having an odd number of protons and neutrons possess an 

ngular momentum. Any rotating charge produces a magnetic 

μ⃗ related to their 

. The relationship between the magnetic moment and the angular momentum L�⃗  is 

element: 

( 1) 

In natural conditions, the magnetic moment of the nuclei point in random orientation. 

magnetic moment 

The precession frequency, also 

and the intensity of the magnetic 

( 2) 



 

As stated by the Larmor equation, the precession frequency increases proportionally 

to the intensity of the external magnetic field.

In the presence of an external magnetic field, the 

different associated energies. In the case of the hydrogen atom, spin orientation can 

be parallel (up) or anti-parallel

respectively. The energy difference between those stat

equation: 

At room temperature, the number of parallel spin nuclei is slightly higher than the 

number of anti-parallel spin nuclei. Although 

continuously, the up/down ratio remains constant 

external influence is introduced. This ratio is governed by the statistical law of 

Maxwell-Boltzmann [4]:  

 

Due to the spin alignment 

net magnetization vector M�

magnetization vector is low in magnitude and has only a longitudinal component 

that points in the direction of the field. Transversal component 

cancel out. 

 

Fig.  1.2 nuclei spin alignment in the presence of a magnetic field

 

As stated by the Larmor equation, the precession frequency increases proportionally 

of the external magnetic field. 

In the presence of an external magnetic field, the different spin orientations have 

different associated energies. In the case of the hydrogen atom, spin orientation can 

parallel (down), being the lower and higher energy levels 

respectively. The energy difference between those states is defined by the following 

∆� = ℎ ∙ γ ∙ �� 

h: reduced Plank’s constant

At room temperature, the number of parallel spin nuclei is slightly higher than the 

parallel spin nuclei. Although the nuclei flip the spin states 

continuously, the up/down ratio remains constant (dynamic equilibrium) if no other 

external influence is introduced. This ratio is governed by the statistical law of 

���

�����
= �

∆�
���  

k: Boltzmann’s

   T: temperature (in 

Due to the spin alignment towards the field direction and the up/down difference

M���⃗  arises from the summation of all individual spins. 

magnetization vector is low in magnitude and has only a longitudinal component 

that points in the direction of the field. Transversal component M

 
nuclei spin alignment in the presence of a magnetic field[37][42] 

M���⃗ = � μ��⃗
�

��

���
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As stated by the Larmor equation, the precession frequency increases proportionally 

different spin orientations have 

different associated energies. In the case of the hydrogen atom, spin orientation can 

, being the lower and higher energy levels 

es is defined by the following 

( 3) 

: reduced Plank’s constant 

At room temperature, the number of parallel spin nuclei is slightly higher than the 

nuclei flip the spin states 

(dynamic equilibrium) if no other 

external influence is introduced. This ratio is governed by the statistical law of 

( 4) 

Boltzmann’s constant 

T: temperature (in Kelvin) 

and the up/down difference, a 

arises from the summation of all individual spins. The net 

magnetization vector is low in magnitude and has only a longitudinal component Mz 

Mxy contributions 

( 5) 
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Signal generation 

In the presence of a static magnetic field, the magnetization vector remains at 

equilibrium pointing towards the direction of the field (z axis). In order to produce a 

measurable signal, this equilibrium is disturbed by applying a radiofrequency (RF) pulse 

orthogonally to the main magnetic field and exploiting the magnetic resonance 

phenomenon.  

During the application of the RF pulse, the nuclei of the sample absorb energy if the 

resonance condition is met. The resonance condition states that this absorption occurs 

if the energy supplied is the same that the energy difference between the spin states 

i.e., if the frequency of the RF pulse matches the Larmor frequency of the nuclear spin 

system. If a suitable pulse is applied, the magnetization vector will experiment a 

precession around the main field direction at a frequency equal to the Larmor 

frequency, following a spiral-like trajectory (a) and losing longitudinal component in 

favor of transversal component. If we depict this process using a rotating frame of 

reference (b) the magnetization follows a tilt-down movement towards the horizontal 

(xy) axis [5]. 

 

 

The tilt-down angle with respect the field axis is called the flip angle and depends on 

the duration of the RF pulse: 

α =  γ ∙ �� ∙ �� ( 6) 

B1:RF pulse intensity 

   tp: pulse duration 

 

When the RF pulse finishes, the magnetization vector returns the previous equilibrium 

state, progressively realigning with the main magnetic field. This realignment is the 

result of two independent relaxation processes [5]: 

Fig.1.3 magnetization vector precession after applying the RF pulse[39] 
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 -Longitudinal (T1) relaxation consists in an energy transfer between the excited 

nuclei and the surrounding molecular lattice. This distribution of energy returns the 

longitudinal magnetization component Mz back to the equilibrium state. Mz recovers 

its equilibrium following an exponential fashion: 

��(t) = ��(1 − �
��

��
� ) ( 7) 

M0: Mz magnitude at equilibrium 

   t: time 

T1: time at which Mz (t) =63% of Mo 

  

-Transverse (T2) relaxation consists in an energy transfer between nuclei. When 

the RF pulse is removed, phase incoherence in the precession of the nuclei gradually 

increases. During this process, the transversal magnetization component Mxy is 

progressively disappears. Mxy decays from its initial value following an inverse 

exponential factor: 

���(t) = ���(0) ∙ �
��

��
�  ( 8) 

Mxy(0): Mxy initial value 

   t: time 

T2: time at which Mxy(t) = 37% of Mxy(0) 

 

 
Fig.  1.4 T1 & T2 relaxation processes (fat) 

 
 

Each tissue has a characteristic T1 and T2 relaxation times. This difference in relaxation 

times can be exploited to produce T1 or T2 weighted images that increase the contrast 

between target tissues in the image. This contrast arises from the difference in signal 
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amplitude contribution coming for each of those tissues at a suitable measurement 

time. 

 
Fig.  1.5 T1 difference between tissues and contrast 

 

The spin coherence is also affected by the inhomogeneities present in the main 

magnetic field. T2* relaxation time accounts for both dephasing effects (T2 relaxation 

phase incoherence + magnetic field inhomogeneities) 

1

��
∗ =

1

��
+

1

�������

 ( 9) 

 

The change in the magnetization vector direction during the relaxation processes back 

to the initial equilibrium direction induces an electric current in a coil, which 

represents the measured signal. This free induction decay (FID) signal consists in a 

short-lived sinusoidal wave that oscillates at the Larmor frequency and whose initial 

amplitude, that is proportional to the density of the observed excited nuclei, decays 

exponentially with a time constant of T2*[7]. 

The signal strength is also influenced by the flip angle: 

α = 90o-> maximum signal intensity 

α< 90o-> weaker signal, faster acquisition (shorter excitation and relaxation) 

 α> 90o->weaker signal, slower acquisition, longer relaxation processes 
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When the RF pulse is stopped, dephasing starts. If we apply a 180o pulse after the 

dephasing, we will reverse the effect of the field inhomogeneities. The relaxation after 

the 180o pulse has not a dephasing but a rephasing effect: spins rejoin together in the 

opposite horizontal direction and start separating again after the rephasing. This 

generates an echo, which is measured in the coil from the moment the phases are 

rejoining (relaxation after the 180o pulse) to the moment they are totally dephased 

again. 

The maximum amplitude between the initial FID signal and the echo shows a T2 decay 

 
 

 

 

 

 

 

 

 

 

Spatial encoding 

Because the main magnetic field is static, all nuclei of the same specie will precess at 

the same Larmor frequency. Therefore, if an RF pulse of that Larmor frequency is 

applied only under these conditions, the measured signal would arise from all excited 

nuclei in the body and it will be impossible to discriminate the signal contributions of 

local nuclei densities at each region of the space 

To retrieve the spatial information, three additional weak magnetic fields (z,x,y 

gradients) are added to the main magnetic field to distribute the Larmor frequencies 

attained by such nuclei in a linear predictable pattern, depending on the position. 

These gradients are generated by three orthogonal gradient coils.[8] 

 Slice selection 

If a gradient is applied along one direction���⃗ � at the same time of emitting the RF 

excitation pulse, only the perpendicular slice to ���⃗ � having a Larmor frequency equal to 

the pulse frequency will be excited, while the other regions remain unaffected due to 

 
Fig.  1.6 FID signal and echo decay along time 
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frequency mismatch. Slice selection can be made in any direction, including oblique 

directions by turning two gradient coils at the same time. 

The slice thickness is determined by the bandwidth (BW) of the RF pulse and the slope 

of the gradient. By emitting an RF pulse with a certain frequency BW, all locations with 

Larmor frequency within that range will be excited by the RF pulse. Thus, the wider the 

BW, the thicker the slice. 

If the slope of the gradient is increased, the range of Larmor frequencies matching the 

BW of the pulse will be located at a narrower region of the body. Thus, the stronger 

the gradient, the thinner the slice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  1.7 effect of the gradient slope and RF pulse BW in the slice thickness 

 

 Phase encoding 
 

After the selection of the slice, another gradient is applied along a perpendicular 

direction ���⃗ �, making the spins to precess at different Larmor frequencies depending 

on the location in the selected slice along ���⃗ �.As a result, magnetic moment vectors 

dephase as they are precessing at different speeds. When the gradient is shut down, 

all the spins return to precess at the same frequency but keeping the phase shift.  

 

As the location of a spin is further from the slice center along ���⃗ �, this phase shift is 

higherbecause the precessing frequency difference with respect the initial Larmor 

frequency is progressively larger. In turn, at the central location,� = ��, so there is no 

phase shift at that location.  

By increasing or decreasing the strength of the gradient, the induced phase differences 

will be higher or lower respectively. If different (slope) gradients are applied each time 

a new echo is measured, each signal sample will correspond to the same whole column 

(along  ���⃗ �)of the selected slice in all echoes but the amplitudes at those points will be 

different depending on the effect of the different phase shifting. By comparing these 

differences in amplitude between equivalent points in the measured echoes, the 

individual contributions along  ���⃗ � can be obtained.  
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 Frequency encoding 
 

The frequency encoding gradient is applied along the remaining orthogonal direction 

���⃗ � during the sampling of the echo, after the slice selection and phase encoding 

gradients. By means of this last gradient, all spins within the slice will precess at 

different predictable Larmor frequencies depending on their location along���⃗ �. The 

signal measured in the coil is the summation of the contributions of individual spins, 

thus being composed of varying amplitude and frequency components. 

Because the addition of the multiple sinusoidal signals of different frequencies and 

amplitudes is equivalent to an inverse Fourier transform, the individual components 

can be obtained by applying a Fourier transform (FT). 

Image reconstruction 

The grid of raw data obtained directly from the MR signal echoes is called the K-space. 

During acquisition, the phase encoding gradient slope is decreasingly changed from a 

maximum positive slope to a maximum negative slope. The classical method for 

constructing the k-space matrix is by placing each of the obtained echoes as the 

corresponding line following the previous order of acquisition. There are other more 

modern methods that fill the k-space radially or in spiral. 

 
Fig.  1.8 k-space of a slice(left). Ordered k-space matrix rows around the central echo (right). 

 

If the FT is applied to each echo (i.e. along each row of the k-space) the frequency-

encoded spatial information is obtained. If we apply the FT along the columns, the 

phase-encoded spatial information is obtained. Therefore, the k-space is equivalent to 

the 2D inverse Fourier transform of the slice image which can be reconstructed by 

applying a 2D FT. 

The spatial resolution over ���⃗ �depends on the bandwidth of the RF pulse and the slope 

of the slice selection gradient. 

The spatial resolution over ���⃗ �depends on the number of echoes recorded at different 

phase encoding gradient slopes. 
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The spatial resolution over ���⃗ �depends on the number of samples measured for each 

echo, i.e. it depends on the sampling rate of the analog-to-digital converter.  

Pulse sequences 

A pulse sequence is an ordered combination of RF pulses and magnetic field gradients 

designed to acquire the data to form the image. The number, type, order and duration 

of the RF pulses and field gradients determine each pulse sequence and image 

application. [9] 

The basic acquisition scheme is depicted in the following figure: 

 
Fig.  1.9 basic spin echo acquisition scheme[40] 

 
1) Slice selection (Z gradient) 
 
2) Phase encoding (Y gradient) 
 
3) Frequency encoding (X gradient) 
 
4) Repeat the process to measure 
additional echoes with a different y 
gradient strength 
 
5) Select another slice and repeat. 
 

 

TE (echo time) is the time between two consecutive echoes and it is determined by the 

time interval between the end of the excitation pulse and the emission of the 

rephasing pulse. This interval is equal to TE/2. 

The maximum intensity of the echoes decays as T2, and this T2 value is different 

between tissues. If the TE is extended out over a very long time, only tissues with a 

very long T2 relaxation time will retain a significant amount of signal at the moment of 

measurement. Then: 

Short TEeffect of T2 will be lower 

Long TEeffect of T2 will be more evident 

TR (repetition time) is the time between two consecutive excitation pulses. If TR is left 

excessively long, all tissues will have time to recover equilibrium state, regardless of 

their respective T1. As a result, we will not account for differences in the tissue based 

on T1 times. On the contrary, if TR is kept short, there will be substantial differences in 

the recovery of each tissue during that time. Then: 

Short TRgreat T1 effect 

Long TRlow T1 effect 



 

Fig.  1.10 TR and TE effect in MRI contrast

 

There are three main types

1) Spin-echo (SE)sequences

SE sequences are generated by two successive RF

(excitation-refocusing) pair

180-180-180…; 90-180-180

amplitude, providing a higher image quality. 

quality but a faster acquisition

2) Inversion recovery (IR

IR sequences are generated by

echo sequence. The inversion time 

and the excitation pulse. The initial inversion is used to create a T

be further increased by modifying TR and TE values of the SE sequences posterior to 

the inverting pulses. If the excitation pulse is applied when the magnetization vector of 

a tissue is parallel to the transversal plane, the tissue will not be affected by the pulse 

and will not produce any signal contribution. Therefore, IR can also be used for tissue 

suppression. Despite these advantages, the IR sequences have some disadvantages like 

lower SNR and increased acquisition times.

 

 

 

TR and TE effect in MRI contrast[41] 

types of pulse sequences:  

sequences: 

sequences are generated by two successive RF-pulses, typically a 90

refocusing) pair. Can be single echo (90-180-90-180…) or multiple echo (90

180-180…).Single echo type produces echoes of higher 

amplitude, providing a higher image quality. Multiple echo type provides lower image 

quality but a faster acquisition 

nversion recovery (IR) sequences: 

ated by applying an inverting 180º pulse before a normal spin 

inversion time (TI) is the time between the initial 

The initial inversion is used to create a T1 contrast which can 

by modifying TR and TE values of the SE sequences posterior to 

If the excitation pulse is applied when the magnetization vector of 

lel to the transversal plane, the tissue will not be affected by the pulse 

and will not produce any signal contribution. Therefore, IR can also be used for tissue 

Despite these advantages, the IR sequences have some disadvantages like 

and increased acquisition times. 
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pulses, typically a 90o-180o 

180…) or multiple echo (90-

Single echo type produces echoes of higher 

provides lower image 

applying an inverting 180º pulse before a normal spin 

initial inverting pulse 

contrast which can 

by modifying TR and TE values of the SE sequences posterior to 

If the excitation pulse is applied when the magnetization vector of 

lel to the transversal plane, the tissue will not be affected by the pulse 

and will not produce any signal contribution. Therefore, IR can also be used for tissue 

Despite these advantages, the IR sequences have some disadvantages like 
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3) Gradient echo (GRE) sequences: 

GRE sequences use a magnetic field gradient to induce the formation of an echo after 

the excitation pulse, instead of the 180o pulses characteristic of spin echo sequences. 

After the excitation pulse, a first negative gradient is applied to accelerate the 

dephasing and therefore the decay of the FID signal. Then a second positive gradient 

with the same strength is applied to rephrase the spins and generate the echo. 

Maximum amplitude decay between consecutive echoes follows a T2* decay instead of 

a T2 decay. Therefore, the signal will be weaker but the acquisition will be much faster.  

Another pulse sequence of interest is echo planar imaging (EPI) sequence [10]. EPI is a 

fast imaging sequence that consists in applying the initial 90º-180º pulses like in SE 

sequence but, after the 180º pulse, the frequency encoding gradient is rapidly changed 

from positive to negative amplitude to generate multiple gradient echoes. This highly 

reduces the acquisition time, at expense of a lower spatial resolution. This fast 

acquisition is required when imaging rapidly changing physiological processes such as 

for cerebral perfusion assessment in fMRI. 

Advantages and disadvantages of MRI 

 

 MRI modality provides high resolution anatomical volumetric images, with excellent 

soft tissue contrast. In addition, 2D slices can be taken in any desired orientation by 

applying a suitable combination of gradients. 

 

 MRI can also be used to obtain functional images of different physiological processes, 

like neural activation by capturing changes in the local blood flow. 

 

 MRI includes a large variety of acquisition techniques, which allow generating different 

MRI contrasts for studying many anatomical regions or physiological processes. 

 

 MRI does not involve the use of ionizing radiation like other image modalities such as 

X-ray/computed tomography, PET or SPECT, thus avoiding the side effects of using this 

kind of radiation for imaging living organisms. This is especially important for 

vulnerable people like pregnant women and children. Ionizing radiation has harmful 

effects on living organisms such as radiation-induced cancer, genetic damage or 

infertility.  

 

X MRI scanning is a significantly long (~30-60 min vs. < 5 min for CT) procedure, making it 

prone to motion artifacts arising for movement of the patient during the scanning. 
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X The narrow scanning region of the typical MRI scans, in addition to the loud noises 

produced during the scan and the long scanning time, can be troublesome for the 

patient, especially if the patient suffers from claustrophobia. 

 

X X-ray/CT are usually better for bone imaging, providing higher detail than MRI. 

 

X Patients wearing a pacemaker or a metallic implant could be rejected for undergoing 

an MRI scan due to possible injuries derived from malfunction of the device or 

movement or heating of the implant.  

 

X MRI scanner is more expensive than the scanners for other medical image modalities. 

A mid-market MRI scanner costs around 500.000 US$ while a mid-market CT scanner 

costs around 120.000 US$. A mid-market PET/CT hybrid scanner costs around 300.000 

US$. [11]. The MRI scanning procedure cost, although it depends on the MRI type, is 

on average more expensive too, with the exception of PET mainly due to radiotracer 

generation. 
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1.4 Cerebral perfusion imaging 

One major interest for biomedical researchers in the field of neurology is the 

assessment of the neural activity either in resting conditions or in active conditions, 

that is, to study which areas of the brain become activated and the intensity of this 

activation when performing certain tasks.  

Nowadays, there is no way to asses this activity directly, that is, to measure exact ATP 

production and consumption at specific areas of the brain, but there are indeed 

methods that allow measuring some physiological processes that can be related to ATP 

consumption (energy consumption). 

One of these physiological processes is cerebral blood flow (CBF). Cerebral blood flow 

implies a glucose and oxygen delivery, which is paramount for ATP production and 

thus, energy gathering for increased neural activity. An increase in neural activity in a 

brain region translates into an increase of blood flow coming to that region, and this 

relationship is used to study brain activity though CBF measurement. 

Currently, the main imaging modalities for studying CBF are positron emission 

tomography (PET) and functional MRI (BOLD fMRI and ASL). 

PET 

CBF assessment through PET image modality involves the injection of a radiotracer 

like15O labeled water [12].The radiotracer, which travels along with the blood, 

experiments a radioactive decay that can be detected and located by the PET device. A 

higher recruitment of blood in some cerebral region implies an increased presence of 

radiotracer and radioactivity coming from that region. As a result, the detected signal 

intensity will be larger. 

BOLD fMRI 

BOLD (Blood-oxygen-level dependent) fMRI like PET, uses a contrast agent for 

obtaining the functional image but the difference resides in the contrast agent being 

endogenous (from the own body) and not exogenous. Therefore, BOLD fMRI is a non-

invasive method for CBF assessment. The contrast agent used in BOLD fMRI is a 

constituent of the blood, the deoxyhemoglobin (dHb). Hemoglobin is a protein present 

in the red blood cells that serves as the blood oxygen carrier. Depending on oxygen 

saturation of hemoglobin, we can distinguish two forms of hemoglobin: 

oxyhemoglobin -when oxygen is bonded to Hb-, and deoxyhemoglobin -Hb without 

bonded oxygen-[13].These two molecules differ in their magnetic properties: 

oxyhemoglobin is diamagnetic and deoxyhemoglobin is paramagnetic. When a 

diamagnetic substance is inside a magnetic field, it creates an internal induced 

magnetic field that opposes the external field. On the contrary, a paramagnetic 

substance creates an internal induced magnetic field in the direction of the external 

field [14].Due to its paramagnetic nature, an increased concentration of 
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deoxyhemoglobin reduces the T2* relaxation time of the surrounding blood water 

protons by increasing the local dephasing of the magnetic moments. Oxyhemoglobin, 

does not produce this effect. Cerebral regions of higher activity require more oxygen, 

which is compensated by an increase in blood flow and oxyhemoglobin concentration 

and, in last term, a stronger signal received. The difference in signal intensity (1-5%) 

can be detected by T2* weighted images. 

ASL 

ASL is an fMRI technique that uses an endogenous contrast agent, arterial blood water 

for perfusion assessment. However, ASL does not exploit the spontaneous magnetic 

behavior of its contrast agent like BOLD fMRI but actively labels the arterial water in 

order to use it as a tracer. [15] 

 Acquisition principles 

The magnetic labeling consists in an inversion of the arterial blood water 

magnetization via an RF pulse. This labeling, which makes the labeled water to have a 

paramagnetic behavior, is applied prior to signal acquisition. A short time is left 

between the labeling and the signal acquisition to give time to the labeled arterial 

blood water to flow into brain tissue. The inverted spins of the labeled water will 

reduce the magnetization of the region, with the acquired signal joining the 

contributions of both labeled water and static tissue water.  

Following this acquisition, a control image is taken without applying any specific 

labeling, so spins of arterial blood water and static tissue water have the same 

magnetic state.  

The difference between the tag and control images gives a quantitative measurement 

of the arterial blood perfusion, that is, the amount of arterial blood delivered to the 

brain tissue. The ASL signal is expressed as the ratio: 

��������� =  
�� − ��

��
 ( 10) 

Mc: control image 

Ml: label image 

The final CBF image is obtained by applying some physiological and MR parameters 

(relaxation and transit times, blood-tissue water partition coefficient) to the ASL 

image. 
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 ASL sequences 

While the labeling of arterial water before acquiring the tag image is a common 

procedure for all ASL modalities, there are two main types of ASL sequences 

depending on how this labeling is done: continuous (CASL) and pulsed (PASL). The 

fundamental differences between these two sequences reside in the size of the 

labeled region and duration of the labeling pulses. 

1) CASL 

CASL is characterized by a long-time continuous inversion pulse (1-3seconds) over a 

single thin planar region, generally located at carotid level. Arterial blood water is 

continuously labeled as it traverses the labeling plane. This process, known as “flow 

driven adiabatic inversion”, requires the labeling process to be shorter than the 

relaxation times and the labeling pulse to be long enough to achieve a steady state. 

This last condition is one of the major disadvantages of CASL. Long labeling RF pulses 

saturate the cerebral tissue producing a signal loss in the tag image, due to the so-

called magnetization transfer effects. This leads to subtraction errors when calculating 

the ASL image. Practical implementation of long continuous RF pulses is usually not 

straightforward. Most commercial scanners do not include CASL sequences in their 

software because the long continuous RF pulses apply a heavy workload to the 

hardware components and a large RF energy deposition to the patient. Special safety 

measures must be taken to avoid exceeding the specific absorption rate (SAR) limits 

legally established for MRI [16]. 

To overcome the limitations of pure CASL sequence, an alternative sequence known as 

pseudo-continuous ASL (pCASL) is used. In pCASL, a long train of shaped RF pulses 

(1000 or more) are fired in very fast succession. The disadvantage of pCASL with 

respect to CASL is that the SNR is about 30 to 50% lower. Still, it avoids the distortion 

of the ASL signal and the excessive load to the hardware.  

There are other CASL implementations that try to solve the limitations apart from 

pCASL like dual-coil ASL (DC-ASL), that requires using two separate coils for labeling 

and imaging, and almost continuous ASL (ACASL), in which the continuous pulse is 

rapidly interrupted from time to time to reduce workload on the hardware. 

Nevertheless, the requirement of additional hardware (DC-ASL) or magnetization 

transfer effects correction (ACASL) made the pCASL to arise as the main standard for 

CASL imaging. 

2) PASL 

PASL is characterized by short-time inversion pulses (typically 10-15 milliseconds) over 

a whole block of tissue, which is referred to as the inversion slab.  



 

There are many PASL sequences and, although they operate on a similar basis, they 

present some differences in the way the inflowing spins are labeled. Three of the most 

popular PASL methods are: FAIR (flow

EPISTAR (echo planar imaging and signal targeting with alternating radiofrequency) 

and PULSAR (Pulsed star labeling of arterial regions)

In FAIR, the tag image acquisition step consists in an inversion of a narrow slab of 

tissue which contains the imaged slice. T

inversion uniformly. After the inversion pulse, a delay is introduced so non

spins from arterial water have time to reach the slice to be imaged and replace some 

of the inverted spins there by the moment 

acquisition step, an inverting pulse is applied to a selected slab of tissue but into a 

large area (“non-slice-selective inversion”).

been inverted whether they a

again introduced between the non

during this time, spins from the 

time the image is acquired, the magnetizations arising from both remaining stationary 

inverted spins belonging to the slice and the inflow spins are approximately the same. 

By subtracting the control and tag image, the stationary spins contribution in the slice 

is removed, and a flow sensitive image is obtained. Although there are many variations 

of the original FAIR sequence, the most commonly used is still this original sequence.

Fig.  1.11 inversion areas (red) in FAIR

 

In EPISTAR, the tag image acquisition step consists in an inversion of a thick slab of 

tissue extending from the carotid level to

be imaged. The control image acquisition step consists in an inversion of a symmetrical 

slab of tissue to the tag step but now above the slice to be imaged, plus a small 

additional region below it. By doing thi

steps will have equivalent magnetization transfer effects. Like in FAIR, a time delay is 

introduced between the inversion pulses and image acquisitions for allowing the 

arterial water spins to reach

the stationary spins contributions in the slice are canceled out together with the 

magnetization transfer effects, and a suitable perfusion sensitive image is obtained. 

 

There are many PASL sequences and, although they operate on a similar basis, they 

present some differences in the way the inflowing spins are labeled. Three of the most 

popular PASL methods are: FAIR (flow-sensitive alternating inversion recovery), 

(echo planar imaging and signal targeting with alternating radiofrequency) 

and PULSAR (Pulsed star labeling of arterial regions) 

In FAIR, the tag image acquisition step consists in an inversion of a narrow slab of 

tissue which contains the imaged slice. The slab is slightly wider for applying the 

inversion uniformly. After the inversion pulse, a delay is introduced so non

spins from arterial water have time to reach the slice to be imaged and replace some 

of the inverted spins there by the moment the image is acquired. At control image 

acquisition step, an inverting pulse is applied to a selected slab of tissue but into a 

selective inversion”). During control inversion, all spins have 

been inverted whether they are in the image slice or at carotid level. A time delay is 

again introduced between the non-selective inversion pulse and image acquisition, so 

during this time, spins from the arterial water flow into the slice to be imaged. At the 

red, the magnetizations arising from both remaining stationary 

inverted spins belonging to the slice and the inflow spins are approximately the same. 

By subtracting the control and tag image, the stationary spins contribution in the slice 

flow sensitive image is obtained. Although there are many variations 

of the original FAIR sequence, the most commonly used is still this original sequence.

inversion areas (red) in FAIR-MRI during slice (green) acquisition[42]

In EPISTAR, the tag image acquisition step consists in an inversion of a thick slab of 

from the carotid level to a small additional region above the slice to 

be imaged. The control image acquisition step consists in an inversion of a symmetrical 

slab of tissue to the tag step but now above the slice to be imaged, plus a small 

additional region below it. By doing this, both image slices from the tag and control 

steps will have equivalent magnetization transfer effects. Like in FAIR, a time delay is 

introduced between the inversion pulses and image acquisitions for allowing the 

to reach the slice. Again, by subtracting the control and tag image, 

the stationary spins contributions in the slice are canceled out together with the 

magnetization transfer effects, and a suitable perfusion sensitive image is obtained. 
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There are many PASL sequences and, although they operate on a similar basis, they 

present some differences in the way the inflowing spins are labeled. Three of the most 
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red, the magnetizations arising from both remaining stationary 

inverted spins belonging to the slice and the inflow spins are approximately the same. 

By subtracting the control and tag image, the stationary spins contribution in the slice 

flow sensitive image is obtained. Although there are many variations 

of the original FAIR sequence, the most commonly used is still this original sequence. 

 
[42] 

In EPISTAR, the tag image acquisition step consists in an inversion of a thick slab of 

a small additional region above the slice to 

be imaged. The control image acquisition step consists in an inversion of a symmetrical 

slab of tissue to the tag step but now above the slice to be imaged, plus a small 

s, both image slices from the tag and control 

steps will have equivalent magnetization transfer effects. Like in FAIR, a time delay is 

introduced between the inversion pulses and image acquisitions for allowing the 

y subtracting the control and tag image, 

the stationary spins contributions in the slice are canceled out together with the 

magnetization transfer effects, and a suitable perfusion sensitive image is obtained.  



 

Fig.  1.12 EPISTAR slice acquisition
 

PULSAR is a variant of EPISTAR sequence in which

included prior to the labeling ste

stationary spins of the water belonging to 

with increased flow sensitivity. Although PULSAR is more difficult to implement than 

the plain EPISTAR sequence, it has the 

efficiency as well as being less af

 Comparison between CASL and PAS

Whether to use CASL or PASL depends 

conditions.  

On one hand, CASL provides a higher SNR than PASL

imaging but at the expense of a more difficult implementation of the sequence, a 

heavier workload on the hardware and increased magnetization transfer effects. 

On the other hand, PASL,

performing ASL imaging, is easier to implement and is less affected by magnetization 

transfer effects, but provides a lower SNR. 

Currently, pCASL is becoming the preferred option as it includes 

of both CASL and PASL. 

Comparison between imaging methods

PET has three main disadvantages with respect the MRI methods: it is

(injection of the tracer), 

resolution achieved is poorer.

BOLD fMRI is easier to implement that ASL and achieves a higher SNR and temporal 

resolution, making it a better option than ASL for 

certain short events.  

ASL, in turn, achieves better spatial resolution than BOLD and provides a quantitative 

measurement (BOLD is only qualitative/ relative percent changes).

shows a strong low frequency noise component, making it inadequate for long event 

 

EPISTAR slice acquisition[42] 

is a variant of EPISTAR sequence in which a water suppression pulse is 

luded prior to the labeling step. The water suppression pulse pre

stationary spins of the water belonging to the imaging region, thus obtaining an image 

with increased flow sensitivity. Although PULSAR is more difficult to implement than 

plain EPISTAR sequence, it has the advantages of having a larger SNR and tagging 

efficiency as well as being less affected by field inhomogeneities [17]. 

Comparison between CASL and PASL 

use CASL or PASL depends both on the application and the application 

On one hand, CASL provides a higher SNR than PASL, especially for whole brain 

expense of a more difficult implementation of the sequence, a 

the hardware and increased magnetization transfer effects. 

On the other hand, PASL, which currently stands as the choice of preference for 

performing ASL imaging, is easier to implement and is less affected by magnetization 

cts, but provides a lower SNR.  

is becoming the preferred option as it includes the main advantages 

between imaging methods 

three main disadvantages with respect the MRI methods: it is

, implies working with ionizing radiation and the spatial 

resolution achieved is poorer. 

is easier to implement that ASL and achieves a higher SNR and temporal 

resolution, making it a better option than ASL for studying brain activity in response to 

, in turn, achieves better spatial resolution than BOLD and provides a quantitative 

measurement (BOLD is only qualitative/ relative percent changes). Furthermore, BOLD 

rong low frequency noise component, making it inadequate for long event 
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response experiments. This low

frequency independent as the time interval between tag and control images is very 

short [18]. 

1.4 The partial volume effect problem in ASL imaging

For obtaining a suitable CBF volumetric image that reflects brain activity at a given 

time, the time interval between consecutive ASL signal acquisitions, (acquisition of 

consecutive tag/control image pairs) must be as short as possible. For that reason, f

imaging techniques such as EPI are employed, accomplishing the required fast 

acquisition times at the expense of spatial resolution. 

The MRI image is composed by a 3D

are analogous to the pixels in the 2D

determined by the voxel size, which defines the smallest detail we are able to 

distinguish in the image. A small voxel size allows differentiation of small details, thus 

translating into a good spatial re

spatial resolution. 

As a result of the fast imaging methods, ASL (and BOLD) images have poor spatial 

resolutions (voxel size ~2x2x4mm) with respect to a typical anatomical MRI images 

(~0.5x0.5x1mm). Spatial resolution is usually around 4 times lower for ASL than for 

anatomical MRI.  

Fig.  1.13 ASL and anatomical MRI resolution comparison

 

Three different tissue collections can be distinguished along the brain: 

 1) Gray matter (GM), which consists mainly of neuronal cell bodies and is 

located at the cerebral surface 

 2) White matter (WM), which consists mainly in 

located beneath the cortex

 3) Cerebrospinal fluid (CSF), which provides mechanical protection as well as 

chemical regulation of the brain.

 

This low frequency noise is not present in ASL, which is 

frequency independent as the time interval between tag and control images is very 

1.4 The partial volume effect problem in ASL imaging 

For obtaining a suitable CBF volumetric image that reflects brain activity at a given 

time, the time interval between consecutive ASL signal acquisitions, (acquisition of 

consecutive tag/control image pairs) must be as short as possible. For that reason, f

imaging techniques such as EPI are employed, accomplishing the required fast 

acquisition times at the expense of spatial resolution.  

The MRI image is composed by a 3D array of cubic elements known as voxels, which 

are analogous to the pixels in the 2D images. The spatial resolution of the MRI image is 

determined by the voxel size, which defines the smallest detail we are able to 

distinguish in the image. A small voxel size allows differentiation of small details, thus 

translating into a good spatial resolution, whereas large voxels translate into a poor 

As a result of the fast imaging methods, ASL (and BOLD) images have poor spatial 

resolutions (voxel size ~2x2x4mm) with respect to a typical anatomical MRI images 

Spatial resolution is usually around 4 times lower for ASL than for 

 
ASL and anatomical MRI resolution comparison 

Three different tissue collections can be distinguished along the brain:  

(GM), which consists mainly of neuronal cell bodies and is 

cerebral surface composing the cerebral cortex 

(WM), which consists mainly in myelinated

located beneath the cortex 

fluid (CSF), which provides mechanical protection as well as 

chemical regulation of the brain. 
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frequency noise is not present in ASL, which is 

frequency independent as the time interval between tag and control images is very 

 

For obtaining a suitable CBF volumetric image that reflects brain activity at a given 

time, the time interval between consecutive ASL signal acquisitions, (acquisition of 

consecutive tag/control image pairs) must be as short as possible. For that reason, fast 

imaging techniques such as EPI are employed, accomplishing the required fast 
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images. The spatial resolution of the MRI image is 

determined by the voxel size, which defines the smallest detail we are able to 

distinguish in the image. A small voxel size allows differentiation of small details, thus 

solution, whereas large voxels translate into a poor 

As a result of the fast imaging methods, ASL (and BOLD) images have poor spatial 

resolutions (voxel size ~2x2x4mm) with respect to a typical anatomical MRI images 

Spatial resolution is usually around 4 times lower for ASL than for 
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myelinated axons and is 

fluid (CSF), which provides mechanical protection as well as 
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Because of the limited spatial resolution, many voxels in the ASL image are 

heterogeneous, meaning that the cubic element does not contain a single tissue type 

but more that one of those tissues inside it. This fact, which is referred to as partial 

volume effect (PVE), causes a signal cross-contamination as the measured ASL signal in 

each of those voxels results from the summation of all individual contributions of the 

tissues contained in the voxel. 

∆�

��
=

��� ∙ ∆��� + ��� ∙ ∆��� + ���� ∙ ∆����

��� ∙ ��� + ��� ∙ ��� + ���� ∙ ����
 

 

( 11) 

ΔM: difference between control and label images (�� − ��) 

ΔMi: signal contribution of tissue i 

 Pi: partial tissue fraction of tissue i 

The motivation of applying methods for correcting the PVE is to determine the 

individual contributions of GM and WM and CSF to the ASL image. As mentioned in the 

beginning of this document, some studies relative to neurodegenerative diseases such 

as Alzheimer and dementia [1]suggest the prior emergence of hypoperfusion in 

specific cerebral regions before developing the characteristic tissue atrophies of the 

advanced stages of the disease. An early diagnosis of these diseases is very important 

firstly, in terms of treatment planning and patient's life quality and secondly, for carry 

on scientific research that would allow a deeper understanding on the degenerative 

process.  

In the majority of the cases, the research interest is focused over the GM perfusion. 

Thin cortical regions and regions close to the interface between two tissue types are 

specially affected by PVE due to the large pixel sizes. Due to this fact, it is fundamental 

to relay on effective partial volume correction (PVC) methods to discriminate the 

individual perfusion of GM from that of WM and CSF (which is normally assumed to be 

zero). 
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1.5 State of the art 

Currently, the most used methods for PVC of ASL images are the PET legacy algorithm 

and the Asllani’s regression algorithm. 

PET legacy algorithm 

A common method for PVC of PET CBF images that has been extended to ASL images is 

based on the overall observed brain GM/WM perfusion ratio [19].The approach often 

consists in two steps:  

The first step consists in estimating the fractional tissue volumes for GM, WM and CSF 

corresponding to each voxel in the ASL image. These values (Pgm, Pwm and Pcsf) are 

estimated by the segmentation of a high resolution anatomical MRI from the same 

subject. The segmentation procedure gives three tissue probability maps each of which 

containing the respective tissue fractions for each voxel. The summation of the 

fractional tissue volumes is always equal to 1. Then, the probability maps masks are 

preprocessed so that tissue fractions lower that a given threshold value (commonly 

20%) are discarded from the corresponding tissue mask. This is usually done over the 

GM mask, as it is the tissue of interest in most of the studies. The GM mask is then 

overlaid to the ASL image to obtain a GM perfusion image. 

The seconds step consists in the correction of the GM perfusion voxels having 

Pgm<Pwm+Pcsf. Commonly, CSF fluid contributions are assumed to be zero. GM 

perfusion value for those voxels are corrected by assuming that GM perfusion is equal 

to WM perfusion multiplied by a fixed chosen factor (typically 2.5). The final corrected 

value for a voxel located at position (i, j, k) is calculated as: 

�����(�, �, �) =
����(�, �, �)

�

�
+ ���(�, �, �)

 ( 12) 

Vcorr: GM corrected perfusion value 

Vobs: perfusion value observed in the ASL image 

f: GM/WM mean perfusion factor 

Pwm: WM tissue fraction 

Although this approach is simple and straightforward, it leads to errors in the 

individual perfusion due to underestimation or overestimation of this value. The mean 

perfusion values for each type of tissue are not equal and so are not the mean signal 

intensities that are obtained from each of them. Signal intensity for GM is on average, 

higher than the corresponding to WM and this later is in turn higher than that for CSF. 

As a result, voxels having Pgm>Pwm+Pcsf would be classified as GM only, no correction 

would be applied and the GM perfusion values would be underestimated.  
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Conversely, the correction applied to voxels having Pgm<Pwm+Pcsf, although taking into 

account the mean perfusion differences between GM and WM, may not be very 

accurate, as the same fixed factor is arbitrarily imposed over all these voxels.  

To avoid these estimation errors, it is necessary to use other alternative and more 

complex methods that attempt discriminating the individual perfusion values more 

accurately. 

Asllani regression algorithm 

Asllani algorithm [20] models the voxel intensity as a summation of all individual 

contributions of the tissues contained in the voxel. The signal contribution of each type 

of tissue in a voxel will be thus described by the following equations: 

� = ��� + ��� + ���� ( 13) 

��� = ��� ∙  ��� ( 14) 

��� = ��� ∙  ��� ( 15) 

���� = ���� ∙  ���� ( 16) 

M: net voxel intensity in the original CBF image 

Mj: intensity contribution of tissue j  

Pj: tissue fraction of tissue j 

mj: CBF corresponding to tissue j  

If we develop the net voxel intensity equation (13): 

� = ��� ∙  ��� + ��� ∙  ��� + ���� ∙  ���� ( 17) 

 

The tissue fractions are obtained, like for the previous method, from a high resolution 

MRI by co-registering it to the ASL image and then segmenting the co-registered image 

to get the corresponding GM, WM and CSF tissue probability maps. 

The next figure shows a diagram of this process together with the central slices in axial 

direction of images that result from each step: 



 

Fig.  1.14 spatial preprocessing step before PVC (coregistration

 

For each voxel in the image 

mcsf. Therefore, it is not possible to solve the unknowns by using 

given by a single voxel intensity. By taking the assumption that the perfusion values 

mgm, mwm and mcsf are equal for the neighbor voxels (m

mcsf(i) = mcsf) a system of equations

�
�(�) = ��� (�)

where i denotes the neighbor pixel 

Considering a regression kernel 

above system of equations in matrix form:

[�]: n²x3 matrix containing the tissue fractions for GM,WM and 

�⃗: 3 x 1 column vector with the unknown local CBF values for GM,

[�]: n²x1 column vector containing the observed 

�⃗ can be solved by linear least square regression, being the solution:

�⃗ =

Therefore, for each voxel of the image, a system of linear 

original CBF values of th

 

 
spatial preprocessing step before PVC (coregistration & segmentation)

For each voxel in the image there is one equation and three unknowns: m

. Therefore, it is not possible to solve the unknowns by using only 

voxel intensity. By taking the assumption that the perfusion values 

are equal for the neighbor voxels (mgm(i) = mgm; m

equations can be build and solved by linear regression 

) ∙  ��� + ��� (�) ∙  ��� + ���� (�) ∙  ����

…
� 

where i denotes the neighbor pixel i to the central pixel to be solved

a regression kernel of size nxn centered at a voxel j, we can express the 

equations in matrix form: 

[�]�⃗ = [�] 

3 matrix containing the tissue fractions for GM,WM and CSF in each column

1 column vector with the unknown local CBF values for GM, WM and CSF respectively 

1 column vector containing the observed intensity values of the voxels

can be solved by linear least square regression, being the solution: 

= ([�]� ∗ [�])
−1

∗ [�]� ∗ [�] 

Therefore, for each voxel of the image, a system of linear equations is defined from the 

original CBF values of this voxel and the neighboring voxels, together with their 
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segmentation) 

one equation and three unknowns: mgm, mwm and 

only the information 

voxel intensity. By taking the assumption that the perfusion values 

; mwm(i) = mwm; 

by linear regression : 

( 18) 

to the central pixel to be solved  

, we can express the 

( 19) 

CSF in each column 

WM and CSF respectively  

intensity values of the voxels 

( 20) 

equations is defined from the 

voxel and the neighboring voxels, together with their 



 

respective tissue probabilities. By solving the respective system, we can obtain the 

estimated GM, WM and CSF perfusion values for the central v

three new CBF maps for GM,WM and CSF 

and the segmented image volumes

usually assumed to be zero and discarded.

The Asllani’s algorithm includes a

Asllani condition. The Asllani condition states that a voxel will be considered for the 

regression analysis if at least 3 voxels over the neighborhood contain some P

i; i.e. if at least three voxels have some amount of all tissue types; otherwise the 

perfusion values for that voxel are set to zero. This condition 

first, it excludes the voxels belonging to background 

ensures that [�]� ∗ [�] is non

calculated. 

The assumption of perfusion 

voxel causes the regression kernel to introduce blurring over the 

the work done by Asllani et al

by calculating the root mean

5x5x1, 7x7x1, 9x9x1, 11x11x1 and 15x15x1. RMSE was calculated separately for GM 

and WM perfusion by computing the error over voxels having P

respectively. They obtained the following average RMSE errors after applying the PVC 

over seven subjects: 

 

respective tissue probabilities. By solving the respective system, we can obtain the 

estimated GM, WM and CSF perfusion values for the central voxel. I

three new CBF maps for GM,WM and CSF are estimated form the original CBF image 

and the segmented image volumes after the correction process. CSF perfusion is 

usually assumed to be zero and discarded. 

algorithm includes an additional condition, which will be referred as the 

. The Asllani condition states that a voxel will be considered for the 

regression analysis if at least 3 voxels over the neighborhood contain some P

at least three voxels have some amount of all tissue types; otherwise the 

perfusion values for that voxel are set to zero. This condition has a double purpose

voxels belonging to background from the analysis 

] is non-singular and the pseudo-inverse([�]�

perfusion uniformity over the neighborhood around the central 

causes the regression kernel to introduce blurring over the output

Asllani et al., the regression algorithm performance 

by calculating the root mean-square error (RMSE) for different kernel sizes: 3x3x1, 

5x5x1, 7x7x1, 9x9x1, 11x11x1 and 15x15x1. RMSE was calculated separately for GM 

sion by computing the error over voxels having Pgm>0.8 and P

respectively. They obtained the following average RMSE errors after applying the PVC 

∆ RMSE values for 

GM  

•RMSE values for 

WM  
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respective tissue probabilities. By solving the respective system, we can obtain the 

oxel. In other words, 

form the original CBF image 

. CSF perfusion is 

n additional condition, which will be referred as the 

. The Asllani condition states that a voxel will be considered for the 

regression analysis if at least 3 voxels over the neighborhood contain some Pi>0 for all 

at least three voxels have some amount of all tissue types; otherwise the 

has a double purpose: 

from the analysis and second, it 

] ∗ [�])�� can be 

orhood around the central 

output CBF maps. In 

performance was evaluated 

for different kernel sizes: 3x3x1, 

5x5x1, 7x7x1, 9x9x1, 11x11x1 and 15x15x1. RMSE was calculated separately for GM 

>0.8 and Pwm>0.8 

respectively. They obtained the following average RMSE errors after applying the PVC 

 

RMSE values for 

 

RMSE values for 

 

 Fig..  1.15 RMSE value vs regression kernel size[20]

The conducted evaluation  proved that the larger the kernel size, the hhigher the RMSE 

error  M  cases  because  of  the  increased  blurring  ein  both  GM  and  WM effect  and  worse 

holding  of  the  local  perfussion  uniformity  assumption.  The  results  for   3x3x1  were  not 

reported  in  the  study  becaause  the  Asllani  condition  failed  at  many  vooxels  due  to  the 

reduced kernel size, leadinng to an erroneous output in which many voxxels belonging to 

brain tissue were set directly to zero.
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CHAPTER 2: 3DWLS algorithm for PVC 

The 3D weighted least squares (3DWLS) algorithm for PVC of ASL images was 

presented in the International Society for Magnetic Resonance in Medicine (ISMRM) 

congress of 2015 [21]. The contribution of this bachelor thesis was: 

1) Implement this algorithm as a program (Python) 

2) Propose two new weighting methods (inverse exponential, Gaussian) for the 

least squares regression 

3) Evaluate the correction performance depending on the parameters chosen 

(kernel size and weighting type applied) 

4) Compare the results with the Asllani’s correction algorithm 

2.1 Algorithm description 

The 3DWLS algorithm is based on the algorithm developed by Asllani et Al. The 3DWLS 

shares the voxel intensity model of the Asllani's algorithm, in which such intensity 

value corresponds to the summation of the GM, WM and CSF partial contributions. 

Those contributions are estimated, equally, by a least square linear regression from 

the voxel intensities of the original image and the partial tissue fractions of each voxel. 

Likewise, the tissue fractions are obtained through co-registering and posterior 

segmentation of a high resolution anatomical image. 

The 3DWLS introduces two improvements with respect the Asllani's algorithm: 

 Use of a 3D kernel instead of a 2D kernel 

Asllani's algorithm uses a 2D kernel, that is, if we consider the volumetric CBF image as 

a stack of image slices, it uses the information provided by the neighbors of the central 

voxel along the same slice for solving the regression problem. Therefore, it does not 

take into account the information contained in the neighboring voxels of superior and 

inferior slices. 

The 3DWLS, in turn, uses a 3D kernel using the information of the closest voxels to the 

central voxel in all directions of the space, and not only in the slice plane. In advance, 

this supposes an advantage over the 2D kernel for two reasons: 

 -Firstly, depending on the voxel size and the kernel size, it is possible that the 

closest neighborhood around the central voxel is the one including the voxels 

belonging to superior and inferior slices instead of in-plane voxels that are more 

distant to the central voxel. To illustrate this, we can take as an example an ASL image 

having a typical voxel size of 2x2x4 mm along �⃗,�⃗ and �⃗ axis respectively, being ������⃗  the 

direction that defines the slice planes and �⃗ the direction perpendicular to those 

planes. If we select a kernel size of 5x5x1, the most distant voxels of the kernel (those 



 

corresponding to the corners of the square kernel) would be 

5.56 ��from the center of the kernel. On the other hand, if we select a 3D kernel of 

size 3x3x3, the most distant voxels of the kernel (those corresponding to the corners of 

the cuboid kernel) would be situated at 4.9 mm. 

The following figures illustrate the distance matrixes for two kernels

and 3x3x3 for correcting a hypothetical ASL image with a voxel size of 2x2x4 mm. Each 

element corresponds to a voxel, bein

the kernel. The values of each element represent the Euclidean distance of this 

element to the central voxel in mm.

 

 

Fig.  2.2 5x5x1 distance matrix [D] 

 

 

Thus, in terms of satisfying the assumption of perfusion uniformity over the 

proximities of the central voxel, the 3x3x3 kernel

kernel.  

-Secondly, by using a 3D kernel, blood flow changes along 

continuous and anatomically consistent as regression is not solved simply slice by slice

but including the information of the superior and inferior slices

 Weighting of the neighbor 

central voxel 

Perfusion uniformity is assumed along the immediate proximities to the central voxel. 

As we get further from the center of the kernel

of this assumption is weaker. Due to this fact, the 3DWLS introduces a weighting as a 

function of the voxel distance to the center of the kernel so that data of closer voxels 

are given more importance than the distant voxels in the regression analysis.

Three different distance-weighting kernels (

been explored in this work: inverse of the distance, inverse exponential of the distance 

and Gaussian of the distance. Prior to the weighting type 

 

corresponding to the corners of the square kernel) would be located

from the center of the kernel. On the other hand, if we select a 3D kernel of 

size 3x3x3, the most distant voxels of the kernel (those corresponding to the corners of 

cuboid kernel) would be situated at 4.9 mm.  

The following figures illustrate the distance matrixes for two kernels 

and 3x3x3 for correcting a hypothetical ASL image with a voxel size of 2x2x4 mm. Each 

element corresponds to a voxel, being the one highlighted in blue the central voxel of 

the kernel. The values of each element represent the Euclidean distance of this 

element to the central voxel in mm. 

 

Thus, in terms of satisfying the assumption of perfusion uniformity over the 

proximities of the central voxel, the 3x3x3 kernel would be better than the 5x5x1 

Secondly, by using a 3D kernel, blood flow changes along 

and anatomically consistent as regression is not solved simply slice by slice

but including the information of the superior and inferior slices. 

eighbor voxels influence depending on their distance to the 

Perfusion uniformity is assumed along the immediate proximities to the central voxel. 

r from the center of the kernel towards its boundaries, the steadiness 

n is weaker. Due to this fact, the 3DWLS introduces a weighting as a 

function of the voxel distance to the center of the kernel so that data of closer voxels 

are given more importance than the distant voxels in the regression analysis.

weighting kernels ([��]) as a function of the distance have 

been explored in this work: inverse of the distance, inverse exponential of the distance 

and Gaussian of the distance. Prior to the weighting type selection, a distance matrix 

Fig.  2.1 3x3x3 distance matrix [D]
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located at �4² + 4² ≈

from the center of the kernel. On the other hand, if we select a 3D kernel of 

size 3x3x3, the most distant voxels of the kernel (those corresponding to the corners of 

 with size 5x5x1 

and 3x3x3 for correcting a hypothetical ASL image with a voxel size of 2x2x4 mm. Each 

g the one highlighted in blue the central voxel of 

the kernel. The values of each element represent the Euclidean distance of this 

Thus, in terms of satisfying the assumption of perfusion uniformity over the 

better than the 5x5x1 

Secondly, by using a 3D kernel, blood flow changes along �⃗ result more 

and anatomically consistent as regression is not solved simply slice by slice, 

voxels influence depending on their distance to the 

Perfusion uniformity is assumed along the immediate proximities to the central voxel. 

towards its boundaries, the steadiness 

n is weaker. Due to this fact, the 3DWLS introduces a weighting as a 

function of the voxel distance to the center of the kernel so that data of closer voxels 

are given more importance than the distant voxels in the regression analysis. 

) as a function of the distance have 

been explored in this work: inverse of the distance, inverse exponential of the distance 

selection, a distance matrix 

 
3x3x3 distance matrix [D] 



 

[�] of the same size that the regression kernel is calculated

dimensions are generally different for each spatial axis: x and y dimensions (in the slice 

plane) are usually equal and smaller than z dimension (the direction perpendicul

the slices). Because of this,

and not simply from the distance in voxels from the center. If 

the previous voxel size example 

�⃗ and �⃗ would receive the same weighting than the adjacent pixels along the 

fact, the last are further away from the center according to the actual voxel size of the 

image. 

The distance matrix [�] is constructed by setting 

of the remaining elements 

element and the central element depending on the image voxel size. This step is 

common to all three weighting matrix types. Depending of the 

calculated from [�] as follows:

 1) Inverse of the distance

The central element is set to 1 and then, the values of the remaining elements are 

inverted, that is: 

�

 ijk denotes element position being (

The following figure illustrate

voxels: 

 

 

Fig.  2.3 3D plot of 5x5x3 distance weighting kernel

 

size that the regression kernel is calculated (see fig. 

dimensions are generally different for each spatial axis: x and y dimensions (in the slice 

equal and smaller than z dimension (the direction perpendicul

Because of this,[�] must be constructed from the real voxel size (in mm) 

and not simply from the distance in voxels from the center. If the latter is done

voxel size example (2x2x4mm), adjacent voxels to the central voxel along 

would receive the same weighting than the adjacent pixels along the 

are further away from the center according to the actual voxel size of the 

] constructed by setting central element to zero and each one 

of the remaining elements to the value of the real Euclidean distance 

element and the central element depending on the image voxel size. This step is 

common to all three weighting matrix types. Depending of the weighting 

as follows: 

Inverse of the distance 

is set to 1 and then, the values of the remaining elements are 

�����(�, �, �) =
1

�(�, �, �)
 

ijk denotes element position being (i,j,k)=(0,0,0) the central position

illustrates the shape and values of �����for a kernel size of 5x5x3 

 

  
3D plot of 5x5x3 distance weighting kernel(interpolated) 

Fig.  2.4 5x5x3 distance weighting kernel values

- 29 - 
  

(see fig. 15 & 16). Voxel 

dimensions are generally different for each spatial axis: x and y dimensions (in the slice 

equal and smaller than z dimension (the direction perpendicular to 

must be constructed from the real voxel size (in mm) 

the latter is done, taking 

(2x2x4mm), adjacent voxels to the central voxel along 

would receive the same weighting than the adjacent pixels along the �⃗ but in 

are further away from the center according to the actual voxel size of the 

central element to zero and each one 

distance between that 

element and the central element depending on the image voxel size. This step is 

weighting type [��] is 

is set to 1 and then, the values of the remaining elements are 

( 21) 

,j,k)=(0,0,0) the central position 

for a kernel size of 5x5x3 

 
5x5x3 distance weighting kernel values 



 

2) Inverse exponential of the distance

�

The following figure illustrate

voxels: 

Fig.  2.5 3D plot of 5x5x3 exponential weighting kernel(interp.)

 

3) Gaussian of the distance

The weighting kernel in this case will be the Gaussian of the distance values according 

to the Gaussian equation:  

������

 

The mean value � is set to zero for the Gaussian maximum to be centered at zero 

distance i.e. to start the decay at the central position of the kernel. 

Coefficient A determines the value of the maximum of the Gaussian function; being 

the value attained at the center equa

With the mean and A coefficient values chosen the above expression reduces to

������

 

� coefficient determines the width of the Gaussian function, 

decay from the central initial value A

value of 0.67 at the closest distance (

 

Inverse exponential of the distance 

����(�, �, �) = ���(�,�,�) 

illustrates the shape and values of ����for a kernel size of 5x5x3 

 
exponential weighting kernel(interp.) 

Gaussian of the distance 

weighting kernel in this case will be the Gaussian of the distance values according 

 

�����(�, �, �) = � ∙ �
�[�(�,�,�)��]²

��²  

is set to zero for the Gaussian maximum to be centered at zero 

distance i.e. to start the decay at the central position of the kernel.  

Coefficient A determines the value of the maximum of the Gaussian function; being 

the value attained at the center equal to A , which was chosen to be equal to 1. 

With the mean and A coefficient values chosen the above expression reduces to

������(�, �, �) = �
��(�,�,�)²

��²  

determines the width of the Gaussian function, i.e. the steepness of its 

decay from the central initial value A=1. It was decided for������  to have a weighting 

value of 0.67 at the closest distance (�������) from the center of the kernel. 

Fig.  2.6 5x5x3 exponential weighting kernel values

- 30 - 
  

( 22) 

for a kernel size of 5x5x3 

weighting kernel in this case will be the Gaussian of the distance values according 

( 23) 

is set to zero for the Gaussian maximum to be centered at zero 

Coefficient A determines the value of the maximum of the Gaussian function; being 

chosen to be equal to 1.  

With the mean and A coefficient values chosen the above expression reduces to: 

( 24) 

i.e. the steepness of its 

to have a weighting 

) from the center of the kernel.  

 
5x5x3 exponential weighting kernel values 



 

This value is the result of choosing a proper 

is dependent in turn, to the voxel size).

following equation: 

As dimensions are consistent over the whole CBF image, the weighting kernel only 

needs to be calculated once and it is moved and centered over each voxel of the image 

like the regression kernel, during the iteration over the image elements.

The following figure illustrate

5x5x3 voxels: 

Fig.  2.7 3D plot of 5x5x3 Gaussian weighting kernel(interp.)

 

In addition to the weighting matrix as a function of the distance, another weighting 

matrix as a function of tis

which was called fractional aniso

tissue probability maps resulting after segmentation of the co

image. As previously explained

probabilities from these maps

1. For example, a voxel having

by gray and white matter in equal proportion, with no cerebrospinal fluid present.

FA weighting coefficients

following equation: 

���(�, �, �)

= �
[���(�, �, �) − ���(�, �, �)]² 

2 ∙  [���

 

This value is the result of choosing a proper �depending on the closest distance (which 

is dependent in turn, to the voxel size). The suitable sigma value results from the 

� =
mindist

√−2 ln (�)
 

V: desired closest weighting value (

As dimensions are consistent over the whole CBF image, the weighting kernel only 

needs to be calculated once and it is moved and centered over each voxel of the image 

like the regression kernel, during the iteration over the image elements.

illustrates the shape and values of ������for a kernel size of 

 
3D plot of 5x5x3 Gaussian weighting kernel(interp.) 

In addition to the weighting matrix as a function of the distance, another weighting 

matrix as a function of tissue heterogeneity of the voxels was explored. This matrix, 

was called fractional aniso-probability matrix ([���]) is calculated from the 

tissue probability maps resulting after segmentation of the co-registered anatomical 

As previously explained, each voxel of the ASL image is assigned three tissue 

from these maps (Pgm, Pwm and Pcsf) whose summation is always equal to

1. For example, a voxel having��� = 0.5, ��� = 0.5 and ���� = 0 would be composed 

by gray and white matter in equal proportion, with no cerebrospinal fluid present.

s are calculated from the tissue probabilities using the 

) +  [���(�, �, �) − ����(�, �, �)]² +  [����(�, �,

�(�, �, �) + ���(�, �, �)� + ����(�, �, �)²]

   

xyz denotes voxel position 

Fig.  2.8 5x5x3 Gaussian weighting 
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pending on the closest distance (which 

The suitable sigma value results from the 

( 25) 

V: desired closest weighting value (in our case, 0.67) 

As dimensions are consistent over the whole CBF image, the weighting kernel only 

needs to be calculated once and it is moved and centered over each voxel of the image 

like the regression kernel, during the iteration over the image elements. 

for a kernel size of 

In addition to the weighting matrix as a function of the distance, another weighting 

was explored. This matrix, 

) is calculated from the 

registered anatomical 

assigned three tissue 

tion is always equal to 

would be composed 

by gray and white matter in equal proportion, with no cerebrospinal fluid present. The 

tissue probabilities using the 

�) − ���(�, �, �)]²
 

( 26) 

    

position in the ASL image 

 
5x5x3 Gaussian weighting kernel values 
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Voxels having a higher degree of heterogeneity are penalized while voxels composed 

mainly of one tissue type have a higher weighting coefficient.  

[���] matrix is calculated in one go before starting the iteration over the voxels of the 

ASL image, yielding a matrix of the same size as the image. At each iteration step, the 

elements of [���] overlapping with the regression kernel ([���(�)]) are used for the 

weighting. 

Both [��] and [���(�)] can be combined by multiplying both matrixes elementwise, 

yielding a final weighting matrix [�]whose elements are calculated by: 

�(�, �, �) = ��(�, �, �) ∙  ���(�)(�, �, �) ( 27) 

 

Recalling the system of linear equations resulting from the application of the 

regression kernel, the least-square solution to the system [�]�⃗ = [�]in the presence 

of a weighting matrix [�(�)] is: 

�⃗ = ([�]� ∗ [�(�)]−1 ∗ [�] )
−1

∗ [�]� ∗ [�(�)]−1 ∗ [�] ( 28) 

Before starting the iteration process, the CBF image is preprocessed by multiplying this 

image to the brain mask obtained from the summation of the three tissue probability 

maps. Voxels belonging to brain tissue have a value of 1 in this mask while voxels not 

belonging to brain tissue have a value of zero. By multiplying the original CBF image 

and the mask elementwise, the intensity values of the voxels belonging to brain tissue 

are kept, while all non-zero background intensity values (due to noise) are set to zero. 

During the iteration process, if a kernel centered at a given voxel does not contain any 

voxel with intensity higher than zero, the computation moves onto the next voxel. 

Thus, by this preprocessing, all background voxels are easily excluded from the analysis 

and the computation is faster.  

Regarding the Asllani condition, a modified version of this condition was introduced. 

The new condition also states that the kernel must include at least three voxels with 

some amount of tissue, but not necessarily all three types of tissue like Asllani 

condition. By introducing this change, we avoid discarding valid voxels belonging to 

brain regions that have only one or two types of tissue. This wrong discarding of valid 

pixels, as previously said, is notorious in the case of small regression kernels 

(3x3x1,5x5x1) because in some brain regions there are not three voxels present having 

all three types of tissue around the reduced neighborhood of the central voxel.  

However, by being less restrictive with the condition, singularity problems are re-

introduced. In neighborhoods lacking one or two tissues, the columns corresponding 

to those tissues in the matrix [�] have all their elements equal to zero, thus being [�]a 
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rank deficient matrix. This fact causes [�]� ∗ [�] to be singular so it does not have an 

inverse and the regression solution �⃗ cannot be calculated.  

Nevertheless, it is fair to say that if a region does not contain a certain tissue, the 

individual perfusion contribution of that tissue is null. So, by dropping the zero 

columns from the analysis and modeling the voxel perfusion as the sum of the 

individual contributions of the remaining tissues, the rank deficiency of [�] is avoided, 

together with the singularity problems. 

2.2 Algorithm evaluation 

Materials 

The algorithm was tested over 15 artificial perfusion maps generated from the MNI-

152 anatomical template, created by the Montreal Neurological Institute and available 

at http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009.((C) 
1993–2004 Louis 

Collins, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University).This 

template consists on a T1-weighted image resulting from averaging the T1 anatomical 

images of 152 subjects.  The tissue probability maps of this template image are also 

provided in the MNI webpage. 

The artificial perfusion maps were generated in MATLAB® (The MathWorks, Inc).Following 

the voxel intensity model described before, the maps were created from a sum of 

simulated individual contributions of GM, WM and CSF. These individual contributions 

were set to adequate average perfusion values for GM, WM and CSF inside the real 

expected range of values. Furthermore, in order to include some variability in the 

simulated perfusion values, a noise was introduced with a standard deviation 

approximately equal to the standard deviation observed among real subjects.  

Both the simulated perfusion ranges and the standard deviations chosen are based in 

the work by Parkes et Al.[21], in which they investigate the average GM and WM 

perfusion as well as the standard deviation of these measurements between 34 

subjects (15 males and 19 females). 

The obtained GM and WM average values (in ������� ∗ 100 ��������
�� ∗ �����) in 

this work were: 

Males�
����� = 58 ± 13

����� = 23 ± 3
� 

Females�
����� = 68 ± 10

����� = 25 ± 5
� 

The average perfusion values for the artificial maps were randomly chosen within 

those ranges. For CSF perfusion, the chosen range was [2 - 5]. 

http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
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The next table illustrates the chosen average perfusion values for each of the 15 

artificial CBF maps created for testing the algorithm:  

Map nº ����� ����� ������ 

1 63 26 4 

2 72 28 4 

3 68 26 4 

4 62 26 3 

5 53 24 3 

6 53 25 3 

7 52 23 2 

8 75 30 5 

9 50 22 2 

10 49 22 2 

11 73 29 5 

12 53 23 2 

13 70 28 4 

14 53 23 2 

15 77 30 5 

 

Three different types of artificial perfusion maps were generated in terms of the kind 

of noise introduced. The noise standard deviations selected were: 

����� = 12 

����� = 5 

������ = 1 

 TYPE 1:  Normally distributed random noise (Maps 1-5) 

The high resolution simulated perfusion maps(���������)are obtained as follow: 

�����(�, �, �) = ���(�, �, �) ∙ �������(�, �, �) ( 29) 

�����(�, �, �) = ���(�, �, �) ∙ �������(�, �, �) ( 30) 

������(�, �, �) = ����(�, �, �) ∙ ��������(�, �, �) ( 31) 

Nnorm: matrix of equal size as P, whose values follow a normal distribution centered at 

AVGtissue and with a standard deviation of Stdtissue 



 

Fig.  2

 

After the generation of the above simulated maps, their spatial resolution is reduced 

to match that of a typical ASL imaging resolution, approximately 2x2x4 mm. This was 

done by downsampling the above maps using trilinear interpolation. 

The following figures show the central slices in axial direction of one set of 

downsampled artificial perfusion

 
Fig.  2.10 Artf. GM perfusion (Type 1) 

The final simulated perfusion map results from adding up 

contributions: 

������

 

 

 
Fig.  2.9 normal random noise for simulated CBF maps 

After the generation of the above simulated maps, their spatial resolution is reduced 

to match that of a typical ASL imaging resolution, approximately 2x2x4 mm. This was 

done by downsampling the above maps using trilinear interpolation.  

res show the central slices in axial direction of one set of 

perfusion maps (type 1): 

 
 

perfusion map results from adding up all these partial 

= ��� ′�� + ��� ′�� + ��� ′��� 

CBF’: downsampled version of CBF

 
Fig.  2.13 Artf. ASL image (Type 1) 

Fig. 2.11 Artf. WM perfusion (Type 1) Fig. 2.12 Artf. CSF perfusion (Type 1)
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After the generation of the above simulated maps, their spatial resolution is reduced 

to match that of a typical ASL imaging resolution, approximately 2x2x4 mm. This was 

res show the central slices in axial direction of one set of 

all these partial 

( 32) 

downsampled version of CBF 

Artf. CSF perfusion (Type 1) 



 

 TYPE 2: sinusoidal &

The sinusoidal noise results from the summation of two 2D sinusoidal signals of equal 

amplitude and offset, which 

coronal. Regarding the number of oscillations along the image dimensions, 10 

oscillations along sagittal direction and 15 oscillations along coronal direction were 

chosen, leading to the following nois

Fig.  2.14 sinusoidal noise for type 2 artificial CBF map generation

 

The amplitude and offset of the sinusoidal noise is defined by the standard deviation 

and average perfusion value of each tissue. 

perfusion of a map �, the 

would be equal to�����(

sinusoidals are defined analogously form 

values. 

Furthermore, a random noise has been 

noise takes random values inside the range 85%

of each tissue in each map.

The high resolution simulated perfusion maps 

�����(�, �, �) = ���(�

�����(�, �, �) = ���(�

������(�, �, �) = ����(�

   

Nsin: matrix of equal size as P, containing the described cross

Nrand: matrix of equal size as P,

 

As in the previous case, these maps are downsampled by trilinear interpolation to 

match the ASL spatial resolution.

 

& random noise (Maps 6-10) 

The sinusoidal noise results from the summation of two 2D sinusoidal signals of equal 

amplitude and offset, which oscillate along perpendicular directions: sagittal and 

coronal. Regarding the number of oscillations along the image dimensions, 10 

oscillations along sagittal direction and 15 oscillations along coronal direction were 

, leading to the following noise images: 

noise for type 2 artificial CBF map generation 

The amplitude and offset of the sinusoidal noise is defined by the standard deviation 

and average perfusion value of each tissue. For the case of the sinusoidal signal for GM

 amplitude value would be equal to 
�����(

�

(�). The amplitude and offset values for the WM and CSF 

sinusoidals are defined analogously form their own standard deviation and average 

Furthermore, a random noise has been added to the sinusoidal signals.

noise takes random values inside the range 85%-100% of the average perfusion 

. 

lution simulated perfusion maps (���������) are obtained as follow:

(�, �, �) ∙ ������(�, �, �) + �������(�, �,

(�, �, �) ∙ ������(�, �, �) + �������(�, �

(�, �, �) ∙ �������(�, �, �) + ��������(�, �,

matrix of equal size as P, containing the described cross-sinusoidal signals in each slice

matrix of equal size as P, which contains the random noise described above

As in the previous case, these maps are downsampled by trilinear interpolation to 

ASL spatial resolution. 
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The sinusoidal noise results from the summation of two 2D sinusoidal signals of equal 

oscillate along perpendicular directions: sagittal and 

coronal. Regarding the number of oscillations along the image dimensions, 10 

oscillations along sagittal direction and 15 oscillations along coronal direction were 

 

The amplitude and offset of the sinusoidal noise is defined by the standard deviation 

the sinusoidal signal for GM 
(�)

 and its offset 

The amplitude and offset values for the WM and CSF 

standard deviation and average 

added to the sinusoidal signals. This additional 

100% of the average perfusion value 

are obtained as follow: 

�) ( 33) 

�, �) ( 34) 

, �) ( 35) 

sinusoidal signals in each slice 

ise described above 

As in the previous case, these maps are downsampled by trilinear interpolation to 
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The following figures show the central slices in axial direction of one set of 

downsampled artificial perfusion maps (type 2): 

 
Fig.  2.15 Artf. GM perfusion (Type 2) 

 
Fig.  2.16 Artf. WM perfusion (Type 2) 

 
Fig.  2.17 Artf. CSF perfusion (Type 2) 

 

The final simulated perfusion map results, like in the previous case, from the addition 

of all these partial contributions. 

 
Fig.  2.18Artf. ASL image (Type 2) 

 

 TYPE 3: simulated atrophies (maps 11-15) 

The last type of artificial perfusion maps is generated as the type 1 maps, but including 

5 different simulated perfusion atrophies (hypoperfusion and/or hyperperfusion 

regions). The hypoperfusion and hyperperfusion atrophies consist in including a 

decrease (to 30%) and an increase (to 170%) in the perfusion values respectively, along 

a spherical region in the simulated image. The chosen radius for the spherical regions 

was 15 mm. The atrophy masks generated are filtered by a Gaussian blurring filter 

before applying them to the perfusion maps. This application is done by elementwise 

multiplication of the mask and the perfusion map. 

The following figures show the simulated ASL images with atrophies that were 

generated (maps 11-15) 
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Fig.  2.19 Atrophy 1. two overlapping hypoperfusion 
regions in GM 

 
Fig.  2.20 Atrophy 2. two overlapping hypoperfusion 
and hyperperfusion regions in GM 

 

 
Fig.  2.21 Atrophy 3. two non-overlapping hypoperfusion 
and hyperperfusion regions in GM 

 
Fig.  2.22 Atrophy 4:  GM hypoperfusion atrophy 
overlapping a WM hyperperfusion atrophy 

 

 
Fig.  2.23 Atrophy 5: two non-overlapping hypoperfusion and hypererfusion regions in WM 

Methods 

The algorithm was tested by performing a PVC of the final simulated perfusion maps using the 

3DWLS algorithm with different regression kernel sizes and weighting types. PVC was also done 

using an implementation of Asllani's algorithm with different regression kernel sizes to compare 

both algorithms. For the algorithms to operate under the same conditions, the Asllani condition 

was substituted by the modified condition in the implementation. 
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The evaluation was carried out by comparing the root mean square error (RMSE) between the 

original partial perfusion maps used to generate the final simulated perfusion maps and the 

partial maps obtained from the PVC of the latter. 

����� =
1

��
� �[��� ′� − ����]² ( 36) 

 

t: denotes tissue (GM,WM or CSF) or total image (sum of partial perfusions)  

∑: denotes summation of all matrix elements 

nt: total number of t voxels ∑( [Pt] ) 

Outt: corrected perfusion image for tissue t 

Four different analyses were run over each of the 15 simulated images. The regression kernel 

sizes chosen for the case of 3DWLS were:  3x3x3, 5x5x3, 5x5x5, 7x7x3, 7x7x5 y 9x9x5; and for 

the Asllani's case: 3x3x1; 5x5x1, 7x7x1, 9x9x1, 11x11x1.  

The resulting RMSE values were averaged over the image group to yield a single RMSE value for 

each parameter combination in each analysis. 

Results 

PVC by 3DWLS with � = �� ∙ ���(�) 

 
Fig.  2.24 RMSE values using distance weighting and FA 

 
Fig.  2.25 RMSE values using exponential weighting and FA 

 
Fig.  2.26 RMSE values using Gaussian weighting and FA 
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PVC by 3DWLS with � = �� 

 
Fig.  2.27 RMSE values using distance weighting 

 
Fig.  2.28 RMSE values using exponential weighting 

 
Fig.  2.29 RMSE values using Gaussian weighting 

 

 

 

PVC by 3DWLS with � = ���  PVC by Asllani's algorithm 

 
Fig.  2.30 RMSE values using FA 

 
Fig.  2.31 RMSE values using Asllani’s algorithm 
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To test the performance of the algorithm over the atrophy regions, an additional evaluation 

was carried out, calculating the RMSE values over those regions alone.  

The resulting RMSE values were averaged like before, yielding the following results: 

 

PVC onatrophy regions by 3DWLS with � = �� ∙  ���(�) 

 
Fig.  2.32 RMSE values on atrophies using distance weighting 
and FA 

 
Fig.  2.33 RMSE values on atrophies using exponential weighting 
and FA 

 
Fig.  2.34 RMSE values on atrophies using Gaussian weighting 
and FA 
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PVC of atrophy regions by 3DWLS with W=WD 

 
Fig.  2.35 RMSE values on atrophies using distance weighting 

 
Fig.  2.36 RMSE values on atrophies using exponential weighting 

 
Fig.  2.37 RMSE values on atrophies using Gaussian weighting 

 

 

 

PVC of atrophy regions by 3DWLS with W=WFA          PVC of atrophy regions by Asllani's algorithm 

 
Fig.  2.38 RMSE values on atrophies using FA 

 
Fig.  2.39 RMSE values on atrophies using Asllani’s algorithm 
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In all the conducted evaluations, it is appreciable that increasing the kernel size does not 

have a significant effect for the cases of the Gaussian and inverse exponential weighting.  

This happens due to the exponential behavior of both kernels (see equations 22 & 24), 

which makes the distant voxels of the weighting kernel to rapidly take almost negligible 

values. The low coefficients resulting for the voxels present in the upper and lower slices 

of this weighting kernels make them to approximate to 2D kernels. Because of this, an 

additional evaluation (with maps 1-10) was carried out to asses if using a small 3D kernel 

size (3x3x3) supposed any advantage to just applying the weighting kernels in a 2D way 

(3x3x1): 

 
Fig.  2.40 RMSE values 2D vs. 3D using distance weighting 

 
Fig.  2.41 RMSE values 2D vs. 3D using exponential weighting 

 
Fig.  2.42 RMSE values 2D vs. 3D using Gaussian weighting 
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Discussion 

According to the presented results, we can extract the following conclusions: 

 The larger the regression kernel size, the higher the blurring effect introduced and 

the higher the RMSE for the general CBF image and for the GM individual 

perfusion. This happens both in the evaluation using the complete images and in 

the evaluation over the atrophy regions. For WM and CSF, a higher kernel size 

reduces the error. However, the increment of the error for GM resulting from a 

larger kernel size is more accused than the decrement of the error for WM or CSF. 

Thus, the best option is to choose the smallest kernel size as possible. 

 

 Among the used weighting matrices, the inverse exponential distance weighting 

matrix gives substantially better results for the general and GM cases, thus being 

the preferred option. 

 

 The fractional aniso-probability weighting matrix is not effective for reducing the 

error of the PVC. Regardless of being used in combination with the distance 

weighting matrices or alone, the error values obtained are equal or higher than 

when using distance weighting alone. 

 

 A 2D application of the 3DWLS kernels gives a slightly lower RMSE error for the 

total image comparison than a 3D application. However, the latter gives quite 

better results for GM, WM and CSF for all weighting types. Thus, it is concluded 

that 3D application supposes an advantage over 2D application. 

 

 The selection of a 3D kernel in combination with a weighting matrix represents an 

improvement with respect the 2D kernel used by Asllani. Regardless of the type of 

distance weighting, better error values are obtained with respect Asllani's 

algorithm. When applying the inverse exponential of the distance weighting, the 

total RMSE error is ≈52.2% lower; the GM RMSE error is ≈29.7% lower and the 

WM RMSE is ≈5.5% lower. 

 

 

 

 

 

 



 

2.3 3DWLS flowchart

 

 

2.3 3DWLS flowchart 
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CHAPTER 3: 3D Slicer extension 

As a complementary work to the development and evaluation of the 3DWLS, a GUI 

extension that implements the algorithm has been created for 3DSlicer [22]. The 

extension communicates with another software package, the statistical parametric 

mapping (SPM) (FIL, Wellcome Trust Centre for NeuroImaging, UCLhttp://www.fil.ion.ucl.ac.uk/spm/ ), to 

carry out the functionalities required -but not exclusive- to the image correction 

process i.e. coregistration, segmentation and normalization.  

Both 3DSlicer and SPM software suites will be briefly described in the following 

section. All extension functionalities are described in the ‘extension features’ section. 

3.1 Extension dependencies 

 3DSlicer 

3DSlicer is an open source software platform for the analysis, processing and 

visualization of medical images widely used in the research field. The 3DSlicer 

framework facilitates developers the integration of new features and algorithms to the 

platform in an easy way, as well as creating user interfaces that implements those 

features for their practical use.  

This framework provides native features for importing and exporting data and medical 

images in multiple formats and for image visualization in 2D and 3D. As a whole, the 

included features allow visualizing the results obtained from the implemented 

algorithms, evaluating their performance and introduce any required modifications 

easily.  

The implemented extension makes use of the importation, exportation and 

visualization features (built on VTK and MRML libraries) as well as on the GUI widgets 

(built on Qt and CTK libraries) included in the 3DSlicer core. 3DSlicer provides Python 

wrappers for this features and the extension has been programmed in Python as a 

scripted loadable module.  

 SPM 

The SPM software is an open source MATLAB collection of functions for the spatial 

processing and statistical analysis of brain neuroimaging data (PET, fMRI). 

The extension makes use of the spatial pre-processing (coregistration, segmentation 

and normalization) functions provided by SPM v.12. It was decided to use the SPM12 

functions instead of the ones available in 3DSlicer because they are currently one of 

the gold standards for performing the spatial processing over brain images and are 

extensively used by the research community. 

http://www.fil.ion.ucl.ac.uk/spm/


 

The extension implements an interface for communicating with the SPM 

routines. This communication

loadable by SPM and the execution of the batch

(available for download upon request) via a system terminal command. 

standalone version is a version of the SPM toolbox that has been compiled by th

MATLAB compiler runtime 

webpage. Therefore, the extension does

work.  

3.2 Features description

The developed extension includes the following functionalities:

 Importation and visualization of the ASL and anatomical images

 Interaction with SPM software package for 

 Optional importation of an alternative image for

transformation 

 Optional importation of a label image for 

each of the labeled regions.

 Regression kernel size selection

 Normalization and s

group comparisons.

 Exportation and visualization

Fig.  3

Importation and visualization of ASL and anatomical images.

The minimum input required for computing the PVC is the ASL image to be corrected 

and a T1-weighted anatomical high resolution image of the same 

the only supported image format is .nii format. 

 

The extension implements an interface for communicating with the SPM 

his communication is based on the generation of batch script text files 

SPM and the execution of the batch scripts by a standalone version of SPM 

(available for download upon request) via a system terminal command. 

standalone version is a version of the SPM toolbox that has been compiled by th

MATLAB compiler runtime (MCR), which is freely downloadable from the MATLAB 

Therefore, the extension does not require a full MATLAB

3.2 Features description 

The developed extension includes the following functionalities: 

visualization of the ASL and anatomical images

Interaction with SPM software package for image spatial processing

importation of an alternative image for obtaining the 

importation of a label image for computing PVC independently

each of the labeled regions. 

Regression kernel size selection as well as weighting type selection

Normalization and smoothing (by VTK library) of the PVC results

group comparisons. 

Exportation and visualization of the PVC results. 

Fig.  3.1 complete view of the 3DSlicer extension GUI 

Importation and visualization of ASL and anatomical images. 

The minimum input required for computing the PVC is the ASL image to be corrected 

weighted anatomical high resolution image of the same subject. Currently, 

the only supported image format is .nii format.  
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The extension implements an interface for communicating with the SPM MATLAB 

is based on the generation of batch script text files 

by a standalone version of SPM 

(available for download upon request) via a system terminal command. The SPM 

standalone version is a version of the SPM toolbox that has been compiled by the 

(MCR), which is freely downloadable from the MATLAB 

MATLAB installation to 

visualization of the ASL and anatomical images 

spatial processing 

obtaining the coregistration 

computing PVC independently for 

weighting type selection 

of the PVC results for future 

 

The minimum input required for computing the PVC is the ASL image to be corrected 

subject. Currently, 



 

The images are loaded by introducing their file paths in their corresponding file path 

selectors. The introduction can be done bot

through the keyboard or by exploring and opening the path in the file explorer window 

that pops up when clicking in the (…) button. Once a proper file path has been 

introduced, the corresponding 

3DSlicer visualization area.

 

Image spatial processing

The 3DWLS algorithm requires having the tissue probability maps to estimate the 

partial GM, WM and CSF intensity contributions to the CBF image. These tissue 

probability maps are obtained through the coregistration and later segmentation of 

the anatomical image. 

As previously said, both processing steps are conducted through SPM.

execution, the extension builds a 

(contained in the extension folder) 

the current ASL and anatomical images previously imported. 

executed by sending a system terminal command that calls SPM and MCR over the file.

The user must introduce the paths to the SPM standalone and MCR directories in the 

system. This introduction 

modifies a text file contained in the extension folder

paths each time the extension is loaded

 Coregistration 

Image coregistration stands for the spatial alignment of two or more images belonging 

to the same or different 

image modality (intra and inter modality).

a suitable image transformation (rotation, scaling, translation..

cost function (sum of squared differences, correlation, mutual information..

to the difference between the images after applying the transformation. Depending on 

whether the coregistration is intra or 

chosen. Through coregistration, the anatomical image is aligned and downsampled (to 

Fig.3.2 image importation widget and example

 

The images are loaded by introducing their file paths in their corresponding file path 

selectors. The introduction can be done both manually by typing the complete path 

through the keyboard or by exploring and opening the path in the file explorer window 

that pops up when clicking in the (…) button. Once a proper file path has been 

introduced, the corresponding .nii image is automatically loaded and displayed in the 

 

Image spatial processing 

WLS algorithm requires having the tissue probability maps to estimate the 

GM, WM and CSF intensity contributions to the CBF image. These tissue 

probability maps are obtained through the coregistration and later segmentation of 

As previously said, both processing steps are conducted through SPM.

execution, the extension builds a new batch file from a template 

(contained in the extension folder) including the proper code lines with the paths to 

the current ASL and anatomical images previously imported. This final batch file is 

ecuted by sending a system terminal command that calls SPM and MCR over the file.

The user must introduce the paths to the SPM standalone and MCR directories in the 

introduction only needs to be done once. The extension generates 

contained in the extension folder that stores and imports these 

paths each time the extension is loaded in 3DSlicer.  

Image coregistration stands for the spatial alignment of two or more images belonging 

subjects (intra-inter subject) and to the same or different 

image modality (intra and inter modality). The coregistration process consists in finding 

a suitable image transformation (rotation, scaling, translation...) which minimizes a 

cost function (sum of squared differences, correlation, mutual information..

to the difference between the images after applying the transformation. Depending on 

whether the coregistration is intra or inter modality a proper cost function must be 

chosen. Through coregistration, the anatomical image is aligned and downsampled (to 

image importation widget and example 
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The images are loaded by introducing their file paths in their corresponding file path 

h manually by typing the complete path 

through the keyboard or by exploring and opening the path in the file explorer window 

that pops up when clicking in the (…) button. Once a proper file path has been 

loaded and displayed in the 

WLS algorithm requires having the tissue probability maps to estimate the 

GM, WM and CSF intensity contributions to the CBF image. These tissue 

probability maps are obtained through the coregistration and later segmentation of 

As previously said, both processing steps are conducted through SPM. During 

batch file from a template batch text file 

including the proper code lines with the paths to 

final batch file is 

ecuted by sending a system terminal command that calls SPM and MCR over the file. 

The user must introduce the paths to the SPM standalone and MCR directories in the 

he extension generates or 

that stores and imports these 

Image coregistration stands for the spatial alignment of two or more images belonging 

inter subject) and to the same or different 

The coregistration process consists in finding 

which minimizes a 

cost function (sum of squared differences, correlation, mutual information...) related 

to the difference between the images after applying the transformation. Depending on 

inter modality a proper cost function must be 

chosen. Through coregistration, the anatomical image is aligned and downsampled (to 



 

the same size as the ASL image) to obtain a new anatomical image that overlaps to the 

ASL image.  

 Segmentation 

Image tissue segmentation refers to the classification and separation of the tissue 

captured in an anatomical image. In the case of brain images, segmentation refers to 

the classification of brain tissue into GM, WM, CSF and other tissues like bone. 

Although there are many segmentation approaches, the method implemented in SPM 

is based on the alignment of the anatomical image to an already classified template 

image for obtaining the prior probability of the voxel to contain GM,

tissues. These prior probabilities

the tissue classification. By segmenting the coregistered anatomical image, the 

required tissue probability maps

The results from the coregistration and segmentation, that 

anatomical volume and the three segmentation volumes for GM,

are saved in .nii format inside the output folder specified.

Alternative coregistration

The extension allows the user importing an additional image volume

density image) for calculating the coregistration transformation to

anatomical image.  

This coregistration transformation is later applied over 

alternative image volume must be already in alignment to the imported ASL image and 

have the same matrix size. 

To apply this functionality, the option must be checked and a p

introduced. 

This feature is sometimes useful for improving the 

image is very noisy and provide

Fig.  3.3 alternative image importation widget

Fig.  3.4 T1 image (sagittal slice) 

 

the same size as the ASL image) to obtain a new anatomical image that overlaps to the 

gmentation refers to the classification and separation of the tissue 

captured in an anatomical image. In the case of brain images, segmentation refers to 

the classification of brain tissue into GM, WM, CSF and other tissues like bone. 

ny segmentation approaches, the method implemented in SPM 

is based on the alignment of the anatomical image to an already classified template 

image for obtaining the prior probability of the voxel to contain GM,

tissues. These prior probabilities are combined with the voxel information to obtain 

the tissue classification. By segmenting the coregistered anatomical image, the 

required tissue probability maps Pgm, Pwm and Pcsf, are obtained. 

The results from the coregistration and segmentation, that is, the coregistered 

anatomical volume and the three segmentation volumes for GM, WM and CSF tissues, 

nii format inside the output folder specified. 

Alternative coregistration 

The extension allows the user importing an additional image volume

calculating the coregistration transformation to the T1 weighted 

This coregistration transformation is later applied over the ASL image so t

alternative image volume must be already in alignment to the imported ASL image and 

 

To apply this functionality, the option must be checked and a proper image must be 

This feature is sometimes useful for improving the coregistration result, as the ASL 

image is very noisy and provides a poor anatomical detail. 

alternative image importation widget 

  
Fig.  3.5 ASL image (sagittal slice) Fig.  3.6 PD image (sagittal slice)
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the same size as the ASL image) to obtain a new anatomical image that overlaps to the 

gmentation refers to the classification and separation of the tissue 

captured in an anatomical image. In the case of brain images, segmentation refers to 

the classification of brain tissue into GM, WM, CSF and other tissues like bone. 

ny segmentation approaches, the method implemented in SPM 

is based on the alignment of the anatomical image to an already classified template 

image for obtaining the prior probability of the voxel to contain GM, WM or CSF 

are combined with the voxel information to obtain 

the tissue classification. By segmenting the coregistered anatomical image, the 

is, the coregistered 

WM and CSF tissues, 

The extension allows the user importing an additional image volume (like a proton 

the T1 weighted 

the ASL image so the 

alternative image volume must be already in alignment to the imported ASL image and 

roper image must be 

coregistration result, as the ASL 

 

 
PD image (sagittal slice) 



 

Independent PVC per brain regions

The extension allows the user importing a label image volume containing a parcellation 

of specific brain regions. In a label imag

classification, i.e all voxels belonging to the same region will share the same intensity 

value. The regions are interpreted from the intensity values using a look

(LUT). As a default, the extension 

LUT characteristic to Freesurfer, which is one of the most used software packages to 

estimate brain parcellation. 

imported, provided it is given in a text file with a proper format readable by 3DSlicer. 

Fig.  3.7 label image and LUT importation widget

 

Once loaded, the label image volume is displayed in the 3DSlicer visualization area 

with the colors and labels defined by the selected LUT file.

Fig.  3.

 

If a label image is imported, it will also be

coregistered label image will be 

option is checked and a proper label image is introduced, t

independently for each of the labeled regions. 

For each region, a mask is applied to the ASL image to preserve only the voxels 

corresponding to that region and then the PVC is run. The final GM,

corrected volumes result from the integration of the analogous individual

the regions into single image volume

In addition, by applying this functionality

WM and CSF perfusion and total mean perfusion

the output data file (described later)

 

Independent PVC per brain regions 

The extension allows the user importing a label image volume containing a parcellation 

of specific brain regions. In a label image, voxel intensities re

.e all voxels belonging to the same region will share the same intensity 

value. The regions are interpreted from the intensity values using a look

As a default, the extension loads (from a text file in the extension folder)

LUT characteristic to Freesurfer, which is one of the most used software packages to 

estimate brain parcellation. Nevertheless any custom LUT defined by the user

, provided it is given in a text file with a proper format readable by 3DSlicer. 

label image and LUT importation widget 

Once loaded, the label image volume is displayed in the 3DSlicer visualization area 

the colors and labels defined by the selected LUT file. 

 
.8 label image displayed over a T1 anatomical image 

If a label image is imported, it will also be coregistered to the ASL image so the 

coregistered label image will be also in alignment to the tissue probability maps. If this 

option is checked and a proper label image is introduced, the PVC will be done 

independently for each of the labeled regions.  

or each region, a mask is applied to the ASL image to preserve only the voxels 

corresponding to that region and then the PVC is run. The final GM,

corrected volumes result from the integration of the analogous individual

single image volumes.  

In addition, by applying this functionality, the extension dumps specific 

and total mean perfusion)relative to each of these regions

the output data file (described later). 
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The extension allows the user importing a label image volume containing a parcellation 

e, voxel intensities represent region 

.e all voxels belonging to the same region will share the same intensity 

value. The regions are interpreted from the intensity values using a look-up table 

loads (from a text file in the extension folder) the 

LUT characteristic to Freesurfer, which is one of the most used software packages to 

any custom LUT defined by the user can be 

, provided it is given in a text file with a proper format readable by 3DSlicer.  

 

Once loaded, the label image volume is displayed in the 3DSlicer visualization area 

coregistered to the ASL image so the 

to the tissue probability maps. If this 

he PVC will be done 

or each region, a mask is applied to the ASL image to preserve only the voxels 

corresponding to that region and then the PVC is run. The final GM, WM and CSF 

corrected volumes result from the integration of the analogous individual maps for all 

specific data(mean GM, 

relative to each of these regions in 



 

This feature was included taking into account an hypothesis by which the perfusion 

uniformity assumption will hold more likely along voxels of the same region rather 

than for voxels close in distance but belonging to different cerebral regions. 

One drawback of this feature 

computing time is longer tha

shot. 

Regression kernel size and weighting type selection

The user can select the regression kernel

directions respectively) in pixels in increments of 

(3x3x1). The real size in mm of the selected kernel is displayed below the kernel size 

selector and it is calculated 

.nii file. 

The user can also select between the distance weighting types discussed before: 

inverse of the distance, inverse exponential of the distance and Gaussian of the 

distance. 

Normalization and smoothing of

Normalization consists in 

commonly to match the shape of a certain image template. Normalization is done via 

SPM through a batch file executed through a terminal command, like coregistration 

and segmentation steps. The 

the coregistered anatomical image to a template

stored and used for the normalization of the PVC output maps

and the original ASL image,

can also select the voxel size of the images resulting after normalization. 

Image normalization is necessary when

have significant differences in

fact, the functional images of each of these subjects must be deformed to match a 

common image template if a physiological feature (in our case, blood flow) over a 

region is to be compared between the subjects.

Image smoothing can also be useful in group comparisons by reducing the effect of 

both structural differences 

spatial resolution. Smoothing is provided in the extension by making use of the 

Gaussian blurring function already implemented inside the VTK library, an open source 

Fig.  3.9 kernel size and weighting type selection widgets

 

This feature was included taking into account an hypothesis by which the perfusion 

uniformity assumption will hold more likely along voxels of the same region rather 

than for voxels close in distance but belonging to different cerebral regions. 

of this feature is that, as PVC runs over it region at a time, the 

than when applying the PVC to the whole image

Regression kernel size and weighting type selection 

an select the regression kernel�⃗,�⃗ and �⃗ size (row, column and slice 

in pixels in increments of two, starting from the lowest size 

The real size in mm of the selected kernel is displayed below the kernel size 

selector and it is calculated from the voxel size information contained in the ASL image 

The user can also select between the distance weighting types discussed before: 

inverse of the distance, inverse exponential of the distance and Gaussian of the 

rmalization and smoothing of PVC results 

Normalization consists in anon-rigid transformation by which an image is deformed 

commonly to match the shape of a certain image template. Normalization is done via 

SPM through a batch file executed through a terminal command, like coregistration 

The segmentation step requires a previous normalization of 

the coregistered anatomical image to a template. This normalization transformation is 

stored and used for the normalization of the PVC output maps, the anatomical map 

and the original ASL image, if the user has checked the normalization option.

can also select the voxel size of the images resulting after normalization. 

necessary when making a group comparison. Human brains 

significant differences in shape and size between different subjects

fact, the functional images of each of these subjects must be deformed to match a 

common image template if a physiological feature (in our case, blood flow) over a 

compared between the subjects. 

Image smoothing can also be useful in group comparisons by reducing the effect of 

structural differences and random noise, although it also reduces the image 

. Smoothing is provided in the extension by making use of the 

ring function already implemented inside the VTK library, an open source 

kernel size and weighting type selection widgets 

- 52 - 
  

This feature was included taking into account an hypothesis by which the perfusion 

uniformity assumption will hold more likely along voxels of the same region rather 

than for voxels close in distance but belonging to different cerebral regions.  

, as PVC runs over it region at a time, the 

when applying the PVC to the whole image with a single 

(row, column and slice 

, starting from the lowest size 

The real size in mm of the selected kernel is displayed below the kernel size 

from the voxel size information contained in the ASL image 

The user can also select between the distance weighting types discussed before: 

inverse of the distance, inverse exponential of the distance and Gaussian of the 

which an image is deformed 

commonly to match the shape of a certain image template. Normalization is done via 

SPM through a batch file executed through a terminal command, like coregistration 

us normalization of 

his normalization transformation is 

, the anatomical map 

option. The user 

can also select the voxel size of the images resulting after normalization.  

making a group comparison. Human brains 

size between different subjects. Due to this 

fact, the functional images of each of these subjects must be deformed to match a 

common image template if a physiological feature (in our case, blood flow) over a 

Image smoothing can also be useful in group comparisons by reducing the effect of 

although it also reduces the image 

. Smoothing is provided in the extension by making use of the 

ring function already implemented inside the VTK library, an open source 

 



 

software package for image processing and visualization. The user can select the 

desired parameters of the VTK Gaussian smoothing, namely, the radius factor and the 

standard deviation of the Gaussian filter.

Fig.  3.10 normalization and smoothing widgets

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  3.11 example of normalized output. Each row is a different subject. The columns from left to 
anatomical image, subject GM perfusion after correction and norm. GM perfusion

 
 
 

Together with the normalization template, the extension folder contains 

corresponding label and tissue segmentation volumes

feature, both are coregistered to the corrected perfusion images and then stored in 

the output folder. 

As normalization step is posterior to the correction, th

not influence the correction step, but is used for obtain

of each of the brain regions defined in the label map. These v

text data file for their comparison between different subjects.

Exportation and visualization of

By default, the extension creates the output folder inside the ASL image directory but 

the user can select any alternative directory. 

 

software package for image processing and visualization. The user can select the 

desired parameters of the VTK Gaussian smoothing, namely, the radius factor and the 

of the Gaussian filter. 

normalization and smoothing widgets 

example of normalized output. Each row is a different subject. The columns from left to 
anatomical image, subject GM perfusion after correction and norm. GM perfusion 

Together with the normalization template, the extension folder contains 

corresponding label and tissue segmentation volumes. By selecting the nor

feature, both are coregistered to the corrected perfusion images and then stored in 

As normalization step is posterior to the correction, the template label volume does 

not influence the correction step, but is used for obtaining the mean perfusion values 

of each of the brain regions defined in the label map. These values are exported to the 

file for their comparison between different subjects. 

rtation and visualization of PVC results 

By default, the extension creates the output folder inside the ASL image directory but 

the user can select any alternative directory.  

- 53 - 
  

software package for image processing and visualization. The user can select the 

desired parameters of the VTK Gaussian smoothing, namely, the radius factor and the 

 

example of normalized output. Each row is a different subject. The columns from left to right represent subject 

Together with the normalization template, the extension folder contains its 

By selecting the normalization 

feature, both are coregistered to the corrected perfusion images and then stored in 

label volume does 

ing the mean perfusion values 

alues are exported to the 

By default, the extension creates the output folder inside the ASL image directory but 



 

Fig.  3.12 output folder selector widget

 

The images of interest resulting

3DSlicer scene for their visualization.

The extension exports the following data to the ou

 The individual perfusion maps for GM, WM and CSF resulting from PVC.

 The coregistered anatomical T1 im

 The  tissue probability maps

 The coregistered label volume

 The normalized anatomical, segmentation and 

normalization option is checked 

 A text data file containing

-The paths to the importe

-The options and parameters selected by the user

-Mean GM, WM and CSF intensity values for the whole image

the regions if label option was checked 

-The date and time at which the job 

In the text file, the values are separated by 

information contained in the 

Microsoft Excel or LibreOffice Calc. 

 

 

 

 

 

output folder selector widget 

The images of interest resulting from the computation pipeline are loaded into the 

scene for their visualization. 

The extension exports the following data to the output folder: 

individual perfusion maps for GM, WM and CSF resulting from PVC.

The coregistered anatomical T1 image. 

probability maps resulting from segmentation 

The coregistered label volume, if label option is checked 

normalized anatomical, segmentation and  perfusion maps if the 

normalization option is checked  

A text data file containing the following information:  

aths to the imported files 

he options and parameters selected by the user 

GM, WM and CSF intensity values for the whole image;

the regions if label option was checked  

date and time at which the job execution was started and finished. 

text file, the values are separated by  single blank spaces and lines so that 

information contained in the file is easily importable in calculus sheet software like 

cel or LibreOffice Calc.  
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are loaded into the 

individual perfusion maps for GM, WM and CSF resulting from PVC. 

perfusion maps if the 

; and for each of 

execution was started and finished.  

and lines so that the 

sheet software like 



 

3.3 Extension workflow diagram

 

3.3 Extension workflow diagram 
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CHAPTER 4: Comparison of cerebral perfusion in 

Alzheimer’s disease 

The objective of this study is to determine and localize possible cerebral perfusion 

alterations in Alzheimer’s disease compared to normal perfusion patterns, by using ASL 

MRI.  

4.1 Brief overview of Alzheimer’s disease 

Alzheimer’s disease (AD) is a degenerative neurological disorder that produces a 

progressive decay on the brain function and structure.  

While a certain decline in cognition occurs as a natural effect of aging, the dementia 

associated with the AD is much faster and pronounced. The evolution of the AD is 

quite well characterized. At early stages of the disease, there is a noticeable decay in 

short-term memory and learning capacity. As AD progresses, this memory decay 

becomes more general and acute, and additional gradual cognition deficits appear, 

including: language problems, mood changes (irritability, aggressiveness) visual 

recognition and orientation, reasoning and voluntary movements. At the last stage of 

the disease, there is a general loss in body function which causes the death of the 

patient. The average life expectancy is 3-10 years [23] depending on the patient’s age 

and the promptness of diagnosis. Nowadays, there is no cure for AD and the therapies 

are at an early stage of development. 

The causes of AD are diverse and currently not well known. At a cellular level, AD 

shows a progressive loss of cortical neurons in brain areas related to cognitive 

functions and the synaptic connections within these areas. Recent studies suggest that 

these neuronal and synaptic losses are caused by accumulation of insoluble beta 

amyloid proteins. The accumulation is thought to cause an inflammatory response that 

induces the cellular and synaptic destruction. There are several risk factors that favor 

the development of the AD: age, genetic predisposition, diabetes, hypertension, 

obesity, smoking or recurrent head injuries. Among those factors, the most important 

is age, being the 95% of AD patient 65 years old or more [24]. 

4.2 Subjects and methods 

Subjects 

The perfusion study was conducted over the ASL images of 38 subjects in resting 

conditions: 19 diagnosed AD subjects (mean age = 77, standard deviation = 8) and 19 

healthy subjects (mean age = 70, standard deviation = 5). 



 

Image acquisition 

The T1 and ASL images were taken 

(DEMCAM) between 2008 and 2011. Images were acquired using a 3T 

resonance scanner (SignaHDx 3.0T MR system

parameters were: TR = 1322 ms, TE= 4.906 ms, flip angle= 155

parameters were:  TR = 9.24 ms, TE= 4.152 ms, flip angle= 12

Image processing 

The perfusion analysis was condu

each subject during acquisition, thus having a mean ASL image for each subject for the 

perfusion analysis.  

Fig.  4.1 slices from 

 

The images were PVE corrected (3DWLS) and spatially processed using the 3DSlicer 

extension described in the previous chapter. The parameters chosen for PVC were an 

inverse exponential weighting kernel wit

optimal selection of weighting kernel parameters for PVC (as described in chapter 2. 

Regarding the spatial post

correction output were enabled to 

selected a normalization output voxel size of 2x2x4 mm and a smoothing kernel of full 

width at half maximum (FWHM) equal to 3 times the normalization voxel size, being 

this kernel width a common standard used in fMRI

 

images were taken by the Group of Dementia of Comunidad de Madrid 

(DEMCAM) between 2008 and 2011. Images were acquired using a 3T 

SignaHDx 3.0T MR system, GE Healthcare). The 

parameters were: TR = 1322 ms, TE= 4.906 ms, flip angle= 155o. The T1 acquisition 

parameters were:  TR = 9.24 ms, TE= 4.152 ms, flip angle= 12o. 

The perfusion analysis was conducted over the average of all ASL images taken for 

each subject during acquisition, thus having a mean ASL image for each subject for the 

 
slices from the average ASL image of one subject of the study 

The images were PVE corrected (3DWLS) and spatially processed using the 3DSlicer 

extension described in the previous chapter. The parameters chosen for PVC were an 

inverse exponential weighting kernel with size 3x3x3 voxels, which was proven the 

optimal selection of weighting kernel parameters for PVC (as described in chapter 2. 

Regarding the spatial post-processing, normalization and smoothing over the 

correction output were enabled to later undergo the group statistical analysis. It was 

selected a normalization output voxel size of 2x2x4 mm and a smoothing kernel of full 

width at half maximum (FWHM) equal to 3 times the normalization voxel size, being 

this kernel width a common standard used in fMRI [25]. 
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by the Group of Dementia of Comunidad de Madrid 

(DEMCAM) between 2008 and 2011. Images were acquired using a 3T magnetic 

The ASL acquisition 

. The T1 acquisition 

cted over the average of all ASL images taken for 

each subject during acquisition, thus having a mean ASL image for each subject for the 

The images were PVE corrected (3DWLS) and spatially processed using the 3DSlicer 

extension described in the previous chapter. The parameters chosen for PVC were an 

h size 3x3x3 voxels, which was proven the 

optimal selection of weighting kernel parameters for PVC (as described in chapter 2. 

processing, normalization and smoothing over the 

roup statistical analysis. It was 

selected a normalization output voxel size of 2x2x4 mm and a smoothing kernel of full 

width at half maximum (FWHM) equal to 3 times the normalization voxel size, being 



 

Fig.  4.2 slices from the corrected GM perfusion of one subject of the study

 

Fig.  4.3 slices from the corrected WM perfusion of one subject of the study

 

Statistical analysis 

A one way analysis of variance (

perfusion images independently

the AD and control groups

WM for each subject was included as a covariate variable to account for the perfusion 

variation among different individ

software suite. 

 

 
slices from the corrected GM perfusion of one subject of the study

 
slices from the corrected WM perfusion of one subject of the study

analysis of variance (ANOVA) was conducted over the output 

perfusion images independently, to identify significant perfusion differences between 

the AD and control groups for both brain tissues. The average perfusion in GM and 

WM for each subject was included as a covariate variable to account for the perfusion 

variation among different individuals. The statistical analysis was done using the SPM 

- 59 - 
  

slices from the corrected GM perfusion of one subject of the study 

slices from the corrected WM perfusion of one subject of the study 

output GM and WM 

to identify significant perfusion differences between 

. The average perfusion in GM and 

WM for each subject was included as a covariate variable to account for the perfusion 

The statistical analysis was done using the SPM 
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4.3 Results and discussion 

The next figures show the statistically significant perfusion differences (t values) 

between AD and control groups, at a P value < 0.005 and with a cluster size > 125 

voxels. 

 
Fig.  4.6 statistic results (Alzheimer > Control), WM perfusion 

 

 
Fig.  4.4 statistic results (Control > Alzheimer), GM 
perfusion 

 
Fig.  4.5 statistic results (Control > Alzheimer), WM 
perfusion 
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 Significant  AD  hypoperfusion  was  found  in  left  and  right  caudate  nucleus and 
thalamus.  Smaller  hypoperfusion  clusters  were  also  found  at  the  right  hippocampus, 

left and right cuneus and right anterior insula. Additional scattered GM hypoperfusion 

is present along the middle temporal gyrus and right and left exterior cerebellum. On 

the other hand, significant AD hyperperfusion was found in the left and right putamen, 

brain  stem  and  cerebellum  white  matter.  No  significant  AD  hyperperfusion clusters 

were found in GM. 

Several previous studies about AD have reported the presence of anatomical atrophies 

in  the  caudate  nucleus,  thalamus,  hippocampus,  regions  of  the  temporal  lobe,  and 

cuneus [26]. These  cerebral  regions  are  closely  related  with  the  cognitive  impairment 

associated with the AD:

 

 

The AD hypoperfusion observed in those cerebral regions can be a consequence of the 

AD-characteristic volume reduction. Regarding the observed AD hyperperfusion, some 

studies suggest that hyperperfusion in AD serves as a compensatory mechanism. The 

hypoperfusion found in the cuneus, precuneus, hippocampus and temporal cortex and 

the hyperperfusion found in the putamen are in agreement with the results reported 

in other previous studies [27]. 

REGION T VALUE FUNCTIONS RELATED TO AD 

Caudate nucleus Left ->4.91 
Right ->4.93 

Memory, learning, language 

Thalamus Left ->4.58 
Right ->4.64 

Supports language and motor systems 

Hippocampus Right ->4.2 Memory, spatial orientation 

Anterior insula Right ->3.45 Limbic related functions (basic emotions) 

Cuneus Left ->4.14 
Right ->3.05 

Self-consciousness, memory, 
visio-spatial processing 

Middletemporal 
gyrus 

Left ->3.85 
Right ->4.27 

Known faces recognition, written word 
comprehension 

Cerebellum 
(exterior) 

Left ->3.13 
Right ->3.86 

 
Motor coordination and precision, motor 
learning Cerebellum 

(white matter) 
Left ->-4.61 
Right ->-4.00 

Brain stem -4.03 Nerve impulse conduction, cardiovascular 
and respiratory system control, awareness 
and consciousness 

Putamen Left ->-3.80 
Right ->-5.27 
 

Motor performance, motor learning 

 Positive T values stand for increased perfusion in control group. Negative values stand for increased perfusion in AD. 
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Although it is not yet known whether the cerebral hypoperfusion causes the AD or is a 

consequence of it, the results obtained in the present and other previous studies 

demonstrate that the perfusion pattern can be a promising biomarker for evaluating 

AD. ASL has also been demonstrated as a very suitable imaging technique for AD 

characterization. 

Perfusion comparison without PVC 

The same perfusion study was also conducted using the normalized original ASL 

images of the subjects without applying PVC. This was done to check the effects of the 

correction over analysis. 

The results obtained were the following (same P value and cluster size): 

 

Control hyperperfusion is still clear at the caudate nucleus, the thalamus and the 

cuneus. A small hyperperfusion cluster is also found at the left hippocampus, which 

was not the case for the corrected images, and in the right anterior insula. For the 

other regions though, control hyperperfusion pattern disappears with respect the 

corrected images. AD hyperperfusion is still present at the brain stem, putamen and 

the exterior cerebellum. Unlike the corrected case, no AD hyperperfusion was present 

in the cerebellar white matter.  

 
Fig.  4.7 statistic results (Control > Alzheimer), original ASL 

 
Fig.  4.8 statistic results (Alzheimer > Control), original ASL 



- 63 - 
  

In general, the statistical significance values (T values) in the clusters are lower and less 

uniform for the uncorrected case. The following table contains the T values for the 

uncorrected case taken at the exact same previous locations: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REGION T VALUE 

Caudate nucleus Left ->4.41 
Right ->3.65 

Thalamus Left ->4.38 
Right ->3.59 

Hippocampus Left ->4.25 
Right ->1.66 

Anterior insula Right ->3.49 

Cuneus Left  ->0  (some scattered low hyperperfusion) 
Right ->0 (some scattered low hyperperfusion) 

Middletemporal 
gyrus 

NO HYPERPERFUSION 

Cerebellum 
(exterior) 

Left ->3.79 
Right ->1.99 

Cerebellum 
(white matter) 

Left ->-2.90 
Right ->-5.33 

Brain stem 0 (some scattered AD hyperperfusion) 

Putamen Left ->-1.39 
Right ->-2.22 

 Positive T values stand for increased perfusion in control group. Negative values stand for increased perfusion in AD. 
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CONCLUSION AND FUTURE WORK 

The main objectives of this bachelor thesis were: (1) develop and evaluate a new 

algorithm for PVC of ASL images, (2) integrate this algorithm into a 3DSlicer GUI 

extension that automates the standard image processing workflow and (3)validate the 

algorithm and extension by conducting a real comparative perfusion study between 

AD and control. 

Based on the previous state-of-the-art method for PVC developed by Asllani et Al, the 

proposed 3DWLS algorithm enhances the mentioned method by substituting the 2D 

correction by a 3D correction and introducing a weighting to the least squares 

problem as a function of the distance, which better satisfies the perfusion uniformity 

assumption around the central voxel.  

The 3DWLS algorithm was evaluated using artificial general CBF images constructed 

from the addition of simulated GM, WM and CSF perfusion images. The evaluation 

consisted in applying the PVC to the general CBF images and then measuring the RMSE 

between the correction results and the original simulated individual perfusion maps. 

Different combinations of parameters (regression kernel size and weighting type) were 

tested to find the optimal one giving the lowest error. The optimal combination of 

parameters was found to be an inverse exponential of the distance weighting with a 

regression kernel size of 3x3x3 voxels. Another weighting as a function of the voxel 

tissue heterogeneity was explored but it had no improvement in terms of RMSE value. 

A correction by the Asllani’s algorithm was also included in the evaluation process for 

comparison against the 3DWLS. Regardless of the 3DWLS weighting type selected, the 

3DWLS gave significantly lower RMSE values than the Asllani’s algorithm. When 

choosing the mentioned optimal parameters for the 3DWLS, the total RMSE error 

was≈52.2% lower; the GM RMSE error was≈29.7% lower and the WM RMSE was ≈5.5% 

lower compared to Asllani’s algorithm. 

The 3DSlicer extension is a useful tool for researchers needing to perform PVC of ASL 

images in their studies. The user interface is simple and clear, allowing the user to 

easily select the desired parameters and carry out the complete image correction 

process, following the usual standards of functional neuroimaging processing. The 

extension automates the spatial preprocessing of the input images (coregistration, 

segmentation), the 3DWLS execution and the spatial postprocessing (normalization, 

smoothing) of the PVC output. 

Both the 3DWLS and the extension were used successfully to correct perfusion images 

from AD and control subjects, in order to carry out a real comparative perfusion 

study. AD hypoperfusion regions were found, among others, in the thalamus, caudate 

nucleus, hippocampus and cuneus. These findings are in agreement with previous 

reported perfusion studies and are consistent with the expected affected regions in 
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AD as they are related with memory, spatial orientation, learning and language 

cognitive functions. Besides from the scientific interest of the results, this provides 

further validation of both the 3DWLS and the extension for conducting neuroimaging 

studies. 

Some future work lines to be explored are: 

 Further evaluation of the 3DWLS algorithm over real MRI images. Computer-

generated CBF maps provide a straightforward but simplistic approach for 

testing the algorithm. A more trusty evaluation approach could be through ASL 

images taken from an MR phantom, in which individual tissue perfusion could 

be precisely simulated and controlled. 

 

 The 3DSlicer extension, although fully functional, is still at development stage 

and should be debugged for improving computing efficiency. Currently, the 

extension is only compatible with Linux-based systems and requires manual 

compilation from the python source code and manual installation of the 

dependencies to work. Adaptation to other system platforms and automatic 

installation of the extension and dependencies is still pending. Additional 

functionalities are also being considered, like importation and correction of 

multiple image files (at the moment, PVC must be done for one ASL image at a 

time) and including the statistical group analysis in the extension workflow. 
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SOCIO-ECONOMIC FRAMEWORK 

By year 2015, it was estimated that 46.8 million people were suffering from dementia, 

being the AD the most common cause of irreversible dementia (~70%). The number of 

affected people is expected to double every 20 years, due to the progressive aging of 

the global population. The worldwide prevalence of dementia supposed a global 

healthcare cost of US$ 818 billion in 2015. This cost, as the dementia prevalence, has 

also a growing trend [28]. 

This high economic burden, together with the notorious impact that AD (and dementia 

in general) has over the patients and their relatives, has raised a great research 

interest and effort to clarify the causes of AD and discover new diagnostic and 

treatment methods. 

The algorithm for PVC presented in this work provides a more accurate correction of 

ASL imaging that the previous existing methods. This could be useful for obtaining 

better characterization and diagnostic methods for AD through ASL in the future. This, 

in turn, will have a positive impact in treatment planning and cost reduction. 

The GUI extension developed in this work automates and speeds up the image 

processing step, which allows the researchers saving the work time that would be 

otherwise expended in this routine process. This indirectly has a positive cost impact in 

their research projects. 

 Project budget 

The time invested in this project was 5 months (20 hours/week), excluding the project 

document writing period.  

HUMAN COST Cost (€/hour) Dedicated hours Total cost (€) 
Tutorship 15 40 600 
Student - 400 - 

    
MATERIAL COST Cost (€) Total cost (€) 
Image acquisition 500 (per subject) 19,000 

MATLAB 500 (academic license)* 
200 (image processing toolbox)* 

58.33 

Personal computer 600* 50 
    

TOTAL PROJECT COST (€) 19708.33 

*Assuming an amortization of 100% at 5 years for the software and the computer 
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 Software licensing 

3DSlicer platform is an open source software distributed under a BSD-style license 

[29][30]which grants “no restrictions on use of the software”, allowing the free 

download, copy, modification and redistribution of the software under agreement of 

its license terms.  

CTK library is open source and licensed under Apache v2.0 [31], allowing users to use 

the code for any purpose freely and without distribution restrictions [32].   

Qt library is open source and relies on a triple licensing system [33]: GNU LGPL (free, 

intended for commercial applications), GNU GPL (free, intended for open source and 

free software development) and a QPL proprietary license. The license applying to this 

project is the GPL license [34]which grants the copy, modification and redistribution of 

the software and forces the new software and source code to be freely distributed 

under the same license. 

SPM suite is free and open source software licensed [35]under the terms of the GNU 

GPL v.2.  

The 3DSlicer extension developed during this project is also licensed under the terms 

of the GNU GPL license, being the code currently available upon request. The use, 

copy, modification and distribution of the software are allowed, under the copyleft 

requirements. The software has been developed for research purposes only, and has 

not been revised or approved by any competent agency. The developer and 

contributors disclaim all warranties of any kind, assuming the user all possible liability 

derived from its use. 

 Study subjects 

All the subjects of the study were properly informed about the imaging procedure via 

an exhaustive written form. Through this form, past clinical procedures were assessed 

together with the presence of possible implants or objects that could imply a potential 

safety threat for the subjects during the scanning process.  

The subjects were also given a proper informed consent form, in which they stated to 

have read and understand the safety instructions and voluntarily agreed to the MRI 

examination and the use of this images for scientific publications or investigation 

projects. 
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