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“A person with a new idea is a crank until the idea succeeds.”

Mark Twain

“自分を信じる力、それが運命を変える力となる。”

不知火ゲンマ
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Abstract

Making sense out of data is one of the biggest challenges of our time. With the emergence of

technologies such as the Internet, sensor networks or deep genome sequencing, a true data explosion

has been unleashed that affects all fields of science and our everyday life. Recent breakthroughs, such

as self-driven cars or champion-level Go player programs, have demonstrated the potential benefits

from exploiting data, mostly in well-defined supervised tasks. However, we have barely started to

actually explore and truly understand data.

In fact, data holds valuable information for answering most important questions for humanity:

How does aging impact our physical capabilities? What are the underlying mechanisms of cancer?

Which factors make countries wealthier than others? Most of these questions cannot be stated as

well-defined supervised problems, and might benefit enormously from multidisciplinary research

efforts involving easy-to-interpret models and rigorous data exploratory analyses. Efficient data ex-

ploration might lead to life-changing scientific discoveries, which can later be turned into a more im-

pactful exploitation phase, to put forward more informed policy recommendations, decision-making

systems, medical protocols or improved models for highly accurate predictions.

This thesis proposes tailored Bayesian nonparametric (BNP) models to solve specific data ex-

ploratory tasks across different scientific areas including sport sciences, cancer research, and eco-

nomics. We resort to BNP approaches to facilitate the discovery of unexpected hidden patterns

within data. BNP models place a prior distribution over an infinite-dimensional parameter space,

which makes them particularly useful in probabilistic models where the number of hidden param-

eters is unknown a priori. Under this prior distribution, the posterior distribution of the hidden pa-

rameters given the data will assign high probability mass to those configurations that best explain the

observations. Hence, inference over the hidden variables can be performed using standard Bayesian

inference techniques, therefore avoiding expensive model selection steps.

This thesis is application-focused and highly multidisciplinary. More precisely, we propose an

automatic grading system for sportive competitions to compare athletic performance regardless of

age, gender and environmental aspects; we develop BNP models to perform genetic association

and biomarker discovery in cancer research, either using genetic information and Electronic Health

Records or clinical trial data; finally, we present a flexible infinite latent factor model of international

trade data to understand the underlying economic structure of countries and their evolution over time.
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Resumen

Uno de los principales desafı́os de nuestro tiempo es encontrar sentido dentro de los datos. Con

la aparición de tecnologı́as como Internet, redes de sensores, o métodos de secuenciación profunda

del genoma, una verdadera explosión digital se ha visto desencadenada, afectando todos los campos

cientı́ficos, ası́ como nuestra vida diaria. Logros recientes como pueden ser los coches auto-dirigidos

o programas que ganan a los seres humanes al milenario juego del Go, han demostrado con creces

los posibles beneficios que podemos obtener de la explotación de datos, mayoritariamente en tareas

supervisadas bien definidas. No obstante, apenas hemos empezado con la exploración de datos y su

verdadero entendimiento.

En verdad, los datos encierran información muy valiosa para responder a muchas de las pregun-

tas más importantes para la humanidad: ¿Cómo afecta el envejecimiento a nuestras aptitudes fı́sicas?

¿Cuáles son los mecanismos subyacientes del cancer? ¿Qué factores explican la riqueza de ciertos

paı́ses frente a otros? Si bien la mayorı́a de estas preguntas no pueden formularse como proble-

mas supervisados bien definidos, éstas pueden ser abordadas mediante esfuerzos de investigación

multidisciplinar que involucren modelos fáciles de interpretar y análisis exploratorios rigurosos. Ex-

plorar los datos de manera eficiente abre potencialmente la puerta a un sinnúmero de descubrimientos

cientı́ficos en diversas áreas con impacto real en nuestras vidas, descubrimientos que a su vez pueden

llevarnos a una mejor explotación de los datos, resultando en recomendaciones polı́ticas adecuadas,

sistemas precisos de toma de decisión, protocolos médicos optimizados o modelos con mejores ca-

pacidades predictivas.

Esta tesis propone modelos Bayesianos no-paramétricos (BNP) adecuados para la resolución es-

pecı́fica de tareas explorativas de los datos en diversos ámbitos cientı́ficos incluyendo ciencias del

deporte, investigación contra el cáncer, o economı́a. Recurrimos a un planteamiento BNP para fa-

cilitar el descubrimiento de patrones ocultos inesperados subyacentes en los datos. Los modelos

BNP definen una distribución a priori sobre un espacio de parámetros de dimensión infinita, lo cual

los hace especialmente atractivos para enfoques probabilı́sticos donde el número de parámetros la-

tentes es en principio desconocido. Bajo dicha distribución a priori, la distribución a posteriori de

los parámetros ocultos dados los datos asignará mayor probabilidad a aquellas configuraciones que

mejor explican las observaciones. De esta manera, la inferencia sobre el espacio de variables ocultas

puede realizarse mediante técnicas estándar de inferencia Bayesiana, evitando el proceso de selección

de modelos.
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Esta tesis se centra en el ámbito de las aplicaciones, y es de naturaleza multidisciplinar. En

concreto, proponemos un sistema de gradación automática para comparar el rendimiento deportivo

de atletas independientemente de su edad o género, ası́ como de otros factores del entorno. Desar-

rollamos modelos BNP para descubrir asociaciones genéticas y biomarcadores dentro de la investi-

gación contra el cáncer, ya sea contrastando información genética con la historia clı́nica electrónica

de los pacientes, o utilizando datos de ensayos clı́nicos; finalmente, presentamos un modelo flexi-

ble de factores latentes infinito para datos de comercio internacional, con el objetivo de entender la

estructura económica de los distintos paı́ses y su correspondiente evolución a lo largo del tiempo.
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1
Introduction

1.1 Motivation

We are living an exciting new era of science characterized by massive amounts of data. Every second,

2.9M emails are sent, 73 products are ordered on Amazon, and 20 minutes of video are uploaded

to Youtube.1 According to IBM, healthcare data double every 24 hours, from which around 80% is

unstructured, waiting to be analyzed [166]. Recent advances in the field of deep learning have proved

efficient in exploiting such huge amounts of data, bringing solutions to well-defined supervised tasks.

Nonetheless, we are still far from getting the utmost out of data, specially in unsupervised scenarios,

by exploring it and extracting valuable insights from reality so far unknown.

This is specially manifest in the field of medicine: although tons of data are available for each

patient, most diagnoses and treatments still remain untailored to the needs of each individual. A much

bigger gain might be expected if we manage to turn data into meaningful, interpretable knowledge

first. This thesis contributes to this endeavor by focusing on probabilistic methods and inference

algorithms for data exploration.

1Source: http://www.globaldots.com/big-data-promise-hype-challenges/
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CHAPTER 1. INTRODUCTION

Three important obstacles need to be addressed in order to extract valuable information from

data. First of all, relationships between observations are typically highly complex. Take for instance

biological mechanisms causing a certain disease or sociological factors affecting in a presidential

election. To analyze such data, we need flexible and easy-to-interpret models able to extract the es-

sential information. Here, we focus on probabilistic graphical models, i.e., generative models which

represent the input distribution of the data using latent variables. The use of latent variables allow

us to abstract from reality and to understand statistical dependencies in an easy manner.2 Graphical

models are thus particularly suitable for collaboration across fields, as they allow for a bi-directional

communication between domain experts and machine learning researchers, e.g., for model design

and validation. These models have additionally the potential of delivering previously known infor-

mation together with novel aspects of the data that were so far unknown. If a model is interpretable,

that is, if a model can provide explanations or easy-to-understand information concerning its behav-

ior, researchers will trust more its predictions [104, 175].

The second problem refers to having small data within big data. Observations never have the ex-

act same contextual properties. In healthcare applications, disease evolution or drug effects strongly

depend on individual characteristics, to the point that most major drugs are known to be effective

in only 25 to 60 percent of patients, and more than 2 million cases of adverse drug reactions occur

annually in the United States, including 100,000 deaths [218]. Small data also appear in the shape

of outliers (e.g., patients suffering from rare diseases), or just due to missing observations. Fur-

thermore, privacy and ethical concerns might difficult gathering huge amounts of data, e.g., we will

never be able to run clinical trials of arbitrary sizes. Bayesian approaches address this issue through

integration to compute posterior estimates, eliminate nuisance variables or missing data, and average

models for prediction [11]. Within this framework, dependency structures can be incorporated to

efficiently share information across varying observations.

The last challenge is that the number and complexity of statistical hypotheses grow with data,

due to the so-called “curse of dimensionality” [18]. As a consequence, most exploratory studies in

empirical sciences are not easy to replicate, once simulation conditions are slightly different. The

growing number of statistical hypotheses might lead to a rising amount of false positives, e.g., artifact

discoveries due to either chance or undesirable confounding factors. To address this problem, ma-

chine learning approaches should be able to generalize to unseen observations, without over-fitting.

We may address this problem by incorporating tools from classical statistical methods, including

assessment of statistical significance, multiple hypothesis testing or confounder correction [216].

2Synthetic samples can also be generated to validate the model and analyze its properties.
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1.2 Scientific Aims and Perspective

This doctoral thesis deals with Bayesian nonparametric (BNP) models for data exploration. The

Bayesian framework is particularly appealing in its ability to capture uncertainty of inferred parame-

ters and avoid overfitting. Moreover, the nonparametric property refers to the ability of such models

to automatically adapt their complexity depending on the amount of available data [61]. The number

of latent variables is potentially unbounded, a priori unknown, and is also learned from the data.

Another interesting aspect concerns the discrete nature of the random measures underlying BNP

models, which make them sparse, and thus, naturally easy to interpret.

Ultimately, our objective is to develop BNP models and their corresponding inference algorithms

to help experts in other fields get valuable insights from their data, in applications that have a strong

impact on society. This research is application-driven, in the sense that we first understand the

needs and challenges in a certain field and then try to give solutions through model abstractions. To

reach that goal, we might need to improve existing models or design new ones, together with their

respective inference algorithms. These resulting models might then generalize to other interesting

applications which we did not consider in a first place. In short, we find inspiration for new models

and inference approaches in real important problems for society.

Data exploratory purposes. Data exploration comes in different forms in the machine learning

community: Principal component analysis and factor analysis are linear methods that provide non-

sparse solutions with strong Gaussianity assumptions. Local-linear embedding [181], Isomap [205]

and Gaussian process latent variable models [111] learn non-linear manifolds in high dimensional

spaces with non-sparse features; non-negative matrix factorization [91] provides a low dimensional

sparse representation of the data. Also, BNP models can be used for clustering [50] and sparse feature

analysis [72], in which the underlying latent dimension is unknown. There are many applications

that have benefited from data exploratory analyses, including market basket analysis [38], computer

vision [220], genomics [27, 107, 28], social sciences [132], and psychiatry [182].

Although the flexibility of BNP models makes them particularly attractive for experts in other

fields, obtaining interpretable results might be an even stronger requirement. In this thesis, we refer

to interpretability as the “ability to explain or to present novel information in understandable terms

to a human” [41]. Most BNP models are described as general priors [188, 125, 72] that might not

give easy-to-interpret solutions if applied blindly, even if they provide accurate predictions. In order

to additionally obtain interpretable results, e.g., meaningful structures for data exploration, we need

to specify the priors and likelihood in a way that points towards the sought explanation by including
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our prior knowledge and generative assumptions of the data in an adequate manner.

In this way, the first insights of the obtained results should not be foreign to us. This makes

models trustworthy for experts in other fields that do not know about machine learning or statistics,

so other conclusions that were not common knowledge can be taken as plausible. At this stage we are

able to formulate hypotheses that can be tested with future data and can provide previously unknown

insights about the given problem. Such procedure avoids the frequent black-box flavor found in

other methods, facilitating collaboration across fields. Examples of such interdisciplinary efforts

using BNP models can be found in psychiatry [182], genetics [222], biostatistics [46], computer

vision [64], econometry [144] or musicology [174]. In this thesis, we are interested in practical data

exploration applications of BNP models that specially benefit from their flexibility. This thesis puts

special focus on model design and encoding of appropriate assumptions, which are crucial to bring

an interpretable solution for each problem at hand.

1.3 Contributions

This thesis is multidisciplinary, bringing novel solutions to deal with real-world problems in the fields

of sport sciences, cancer research and economics. Throughout this thesis, we address the following

points:

(A) improve model interpretability via prior and likelihood design, e.g., imposing structure or spar-

sity in the solution space.

(B) increase model flexibility and ability to share information across samples through the imple-

mentation of dependent models.

(C) get replicable results by combining Bayesian approaches with classical statistical methods.

The contributions of this thesis have also been or will be partially published in [159, 157, 160,

154, 158, 210, 208, 161]. These correspond to extensions of existing BNP models across diverse

research areas, with application to the problems of fairness in athletic competitions, biomarker and

genetic association discovery in cancer research, and analysis of the economic structure of countries

via their export portfolios.3 We summarize our contributions below.

Fairness in Athletic Competitions

In order to study the impact of age, gender and environment on runner performance, we present

a dependent infinite mixture model for density estimation of stratified data [159]. The novelty of

3Our contribution in [156] is out of scope of this thesis.
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this work relies not only on the application, but also on the technical steps (non-trivial structural as-

sumptions) to obtain interpretable results and share information across athletes. Our analysis delivers

valuable information for sport science experts, as well as a fair system to compare runners, regardless

of their age and gender, that could be directly incorporated in regular sport events. The presented

methodology is general to compare group densities in applications having a certain evolutionary or

competitive trait, such as in pediatrics (e.g., comparison of children population according to weight

and height), social sciences (e.g., analysis of gender impact on actual salary income across coun-

tries), or epistemology (e.g., assessment of environment effect on scientific output). This work has

additionally led to the development of computational structures using Hadoop and Spark to speed

up inference [155],4 and opened a new research line on non-linear regression problems [157], as

described in Section 3.6.

Meaningful Discoveries in Cancer Research

Drug effect assessment through biomarker discovery in clinical trials. We propose a general

BNP approach for biomarker discovery and subpopulation characterization in clinical trials. Our

model has been used to help expert oncologists understand conditions for drug effectiveness. It

also incorporates statistical techniques to account for false positives, and it separates drug effects

from natural prognostic factors by sharing information among patients in a structured manner. We

demonstrate the usefulness of our novel approach on a randomized phase II case-control study of a

cutting-edge immunotherapy treatment against liver cancer, in collaboration with Roche Diagnostics.

Not only did our method find already well-known statistically significant biomarkers, but it also

discovered new ones that could not be found with previous approaches, opening the door to the

development of a new drug for a subgroup of liver cancer patients [158]. The proposed model is

an extension of the general latent feature model [210], for which we have also contributed with

further empirical validation analyses [208] and a user-friendly C++ software release with wrappers

for Matlab and Python (an R package is currently under development) on Github.5

Finding genetic associations with clinical features for enhanced diagnosis. In order to under-

stand cancer mechanisms and their interactions with patients’ phenotypes and environment, we an-

alyze cancer-patients data from the Memorial Sloan-Kettering Cancer Center in New York. The

database contains information from electronic health records and detailed genetic data obtained

through deep genome sequencing. We look for associations between gene mutations and clinical
4This research line is out of scope of this thesis.
5Available at https://github.com/ivaleraM/GLFM.
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features in cancer by first finding an appropriate nonparametric representation of the patient popu-

lation via latent features, and then performing classical statistical tests on subsequent partitions of

patients. The proposed BNP model allows for a joint analysis of multiple cancer types, and is able

to deal with phenotype heterogeneity, small cohort size, epistatic and pleiotropic effects6, as inspired

by [154]. The proposed model is compared against classical alternatives, including linear mixed

models where clinical features were tested for associations against the mutated genes [160].

Analysis of World Trade

Finally, we propose a BNP approach to analyze international trade. Our objective is to understand

economic growth of countries, i.e., which factors make countries wealthier than others, and how

these countries acquire such capabilities over time, with the ultimate goal of issuing economic policy

recommendations. We first propose a flexible scheme for the static scenario, that incorporates relaxed

prior assumptions on the activation of features in the latent space, in agreement with reality [161].

The relaxed prior allows each country to exhibit wider variations in the number of active features (re-

flecting rich vs poor countries), as well as more flexible a priori distributions in the global activation

of features (accounting for simple vs specific capabilities). Second, we propose a dynamic extension

to analyze the temporal evolution of countries’ economies over time. We incorporate a Markovian

structure over the features to account for time-varying feature activations for each country.

1.4 Organization

The remainder of this thesis is organized as follows. In Chapter 2 reviews the basics behind BNP

models. In particular, we introduce the stochastic processes that will be used as building blocks along

this thesis: the Dirichlet process (DP), and the Beta process (BP). The rest of the chapters are devoted

to our contributions. Chapter 3 describes a dependent BNP model for marathon modeling. Chapter 4

and 5 develop BNP approaches for data exploratory analyses in the context of personalized medicine

for cancer research. In Chapter 4, we focus on the clinical trials scenario, and bring a powerful

tool to characterize subpopulations and identify valuable biomarkers to help expert oncologists in

their research. In Chapter 5, we propose a joint hierarchical model for both clinical records and

genetic data, in order to identify novel genetic associations with clinical features across different

types of cancer. Chapter 6 develops static and dynamic Poisson factor analysis (PFA) schemes to

understand the economic structure of countries via international trade. Finally, Chapter 7 is devoted

to the conclusions and future lines of research.

6This work received a Spotlight Talk Award at the 9th Annual Machine Learning Symposium in New York, 2015.
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2
Overview of Bayesian Nonparametrics

2.1 Introduction

Data in the real world typically involves some source of uncertainty. This uncertainty may come

from noisy measurements, incomplete information, or from the finite size of datasets [62]. Proba-

bility theory has proven to be effective for understanding such data in terms of degrees of belief 1,

establishing a consistent framework for quantification and manipulation of uncertainty. Models that

incorporate random variables and probability distributions to quantify degrees of certainty are called

probabilistic Bayesian models, and are at the foundation of pattern recognition. Such models con-

stitute an important tool in all areas of science as a way to develop statistical algorithms for making

predictions and learning hidden structures from data [18].

Bayesian approaches consider model parameters as unobserved random variables instead of de-

terministic values. The Bayesian paradigm allows to incorporate a priori knowledge of the world and

desirable constraints over the solution space through the prior, as well as to account for uncertainty

in the estimation of model parameters [11]. Within Bayesian models, latent variable models consist

1An alternative interpretation of probability is the frequentist point of view, where the probability of an event corre-
sponds to the limit of its relative frequency in a large number of trials.
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of hidden and observed variables, where the hidden variables encode underlying patterns in our data

(typical applications include clustering, feature modeling, and topic modeling). Such models have

had a major impact on numerous applied fields, including computational biology, economics, natural

language processing, social network analysis, and computer vision [20].

Latent variable models rely on the Bayes theorem. Let X design the observed data, and Θ be

the set of unobserved variables. The Bayes theorem provides an elegant way to relate data-based

evidence, encoded in the likelihood p(X|Θ) with prior assumptions on the latent variables via the

prior p(Θ). The Bayes theorem can be stated as:2

p(Θ|X) =
p(X|Θ)p(Θ)

p(X)
, (2.1)

where p(Θ|X) is the posterior distribution, i.e., the conditional distribution of the latent variables

given the observed data, and p(X) is the evidence or marginal distribution of the data under this

model [18]. The posterior distribution can be used to explore, summarize, and form predictions

about the data [20]. When the number of observations tends to infinity, the likelihood term p(X|Θ)

dominates over the prior.3 In that respect, a prior can be understood as a “constraint” over the solution

space whose influence might become weaker the more data we see.

This thesis focuses on latent variable models developed according to the “Box’s loop” probabilis-

tic pipeline [20], illustrated in Figure 2.1. This is an iterative loop process for data analysis, which

consists of three fundamental stages: model formulation, inference, and model criticism. According

to this scheme, we should first formalize our assumptions into a simple model to fit knowledge do-

main of the problem at hand, including hidden structure which we believe exists in the data. Second,

we can use an inference algorithm to approximate4 the posterior distribution and analyze the data

under the assumptions encoded through the priors and likelihood. Finally, we should assess whether

the analysis succeeds or fails, i.e., revise whether the model gives accurate predictions or insights

that are consistent with current expert knowledge, and repeat the cycle if required.

Why nonparametrics? Most machine learning problems consist in learning an appropriate fixed

set of parameters within a model class given the training data. Typically, practitioners fit several

models with a different number of parameters, and use a separate validation set to determine the

most adequate number of parameters. Determining appropriate model classes is referred to as model

2Note that the Bayes theorem is a general expression for any two random variables. We here further incorporate an
asymmetric interpretation of the theorem, which lies at the foundation of Bayesian statistics.

3This does not mean that the posterior distribution will be consistent, i.e., that its mean will tend to the true values.
Additional conditions would be necessary for this to hold.

4Computing the posterior analytically turns out to be intractable most of the time, so we need an approximation.
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Modeling Inference Criticism

Application

Data
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Knowledge

Objectives, 
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Validation

Figure 2.1: Box’s loop probabilistic pipeline for research. First, we formalize the problem, and include
appropriate assumptions based on expert knowledge. Second, we perform inference to learn the posterior
distribution of the hidden variables. We can then use the posterior, i.e., apply the model, to make predictions
and explore the data. Third and last, we revise the model using expert knowledge, accounting for weaknesses
and strengths, eventually repeating the Box’s loop if necessary.

selection in the literature [18]. Model selection is of fundamental concern for machine learning

practitioners, not only for avoidance of over-fitting and under-fitting, but also for discovery of the

appropriate causes and structures underlying data. Some examples of model selection and adaptation

include: selecting the number of clusters in a clustering problem, the number of latent features

in a matrix factorization problem, or the complexity (degrees of freedom) of a certain function in

nonlinear regression.

Addressing model selection by fitting multiple models of varying complexity is computationally

expensive. Nonparametric models constitute an alternative approach where model complexity is also

learned from data. While parametric models are fully characterized by a fixed number of parameters,

the number of parameters in nonparametric models grows with the amount of training data [135].

Nonparametric approaches are memory-based, in the sense that the amount of stored information

into the model is proportional to the number of observations. For instance, the k-nearest neighbors

method is nonparametric in the sense that it classifies the unseen instance based on the k points in

the training set which are nearest to it (we need to store the whole training set for classification).5

Also, fitting a Gaussian mixture model (GMM) with a fixed number of Gaussians is a parametric

approach for density estimation. A nonparametric version would be the Parzen window estimator,

which centers a Gaussian at each observation, and hence uses one mean parameter per observa-

5Note that nonparametric refers to the nature of the method, it does not mean that the method has no parameters, e.g.,
the k-nearest neighbors has one parameter k.
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tion [18]. Nonparametric methods have become popular in classical (non-Bayesian) statistics [215].

Another well-known example is the support vector machine [33], which has been widely applied to

handle classification and regression problems. In model design, there is often a trade-off between

flexibility and computational/storage costs. An example of such is the use of inducing points in

the inference of Gaussian processes (GPs). Although a GP is a nonparametric prior over the space

of functions, inducing points play the role of “local summaries” of the function and help limit the

memory of the model, making it possible to scale inference to higher datasets [165].

2.2 Intuition behind Bayesian Nonparametric Models

Bayesian nonparametric (BNP) models made their debut in the 70s, with the seminal papers of Fer-

guson [53] and Antoniak [12] among others,6. Although mathematically elegant, inference was too

problematic at that time, so BNP models did not pick up much attention in the community until the

90s, thanks to the introduction of Markov chain Monte Carlo (MCMC) methods [59]. Around ten

years later, variational inference made its appearance in the field [102], and allowed BNP models

to further scale to higher amounts of data, making them even more popular in the 2010s [21, 42].

Recent advances in the field of deep learning have taken the main interest of the machine learning

community, putting BNP models in the background. Although powerful, the spread of BNP models

is still moderate, for computational complexity still remains an important drawback. Several lines of

research address this issue, both from the perspective of MCMC approaches (by including adaptive

subsampling or stochastic gradient dynamics) [11] or scaling up variational inference techniques via

noisy stochastic gradients [90].

BNP models combine the benefits of Bayesian methods with the flexibility of nonparametric

approaches [61]. Instead of specifying a closed-form model, BNP techniques place probability mass

on an infinite range of models and let the inference procedure select those configurations that best

fit the data, in order to provide competitive predictions or density estimations [143]. Thus, BNP

models provide a useful tool for problems in which the number of unknown hidden variables is itself

unknown and can be learned using standard Bayesian inference techniques. Given our prior beliefs,

the posterior in a parametric model is constrained to a closed family, whereas BNP models allow

for more flexible shapes in the posterior distribution. Although a BNP model is characterized by an

infinite-dimensional parameter space, only a finite subset of the available parameters is used for any

given finite dataset. This subset will generally grow with the dataset size.

6De Finetti’s theorem (which will be described later) dates from the 30s [35] but this was not fully exploited in the
context of BNP approaches until decades later.
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An illustrative example. In order to get a better intuition for BNP models, let us consider a finite

GMM and its non-parametric Bayesian counterpart. For simplicity, we will assume unknown mixture

means and known covariance matrix, e.g., Σ = σxI where I refers to the identity matrix. Let X =

[x1,x2, . . . ,xN ]> be the input matrix for N input observations xn ∈ RD×1, where n = 1, . . . , N .

A finite GMM of K clusters assumes the following likelihood distribution:

p(x1,x2, . . . ,xN |Φ) =
K∑

k=1

πkN (µk, σxI), Φ = {(πk,µk)Kk=1}, (2.2)

where Φ refers to the set of hidden variables, µk is the k-th cluster parameter (mean vector), and

πk is the mixture weight for cluster k. Given X, our aim is to learn the distribution of Φ. Inferring

the joint posterior distribution p(Φ|X) directly is an intractable problem which cannot be solved

analytically. To address such issue, a common practice is to introduce an auxiliary cluster assignment

variable zn for each observation xn that indicates the mixture to which xn belongs, e.g., p(xn|zn) =

N (µzn , σxI). Equation 2.2 can then be rewritten as:

p(x1,x2, . . . ,xN |Φ) =

N∏

n=1

p(xn|zn,µ1:K), Φ = {(πk,µk)Kk=1, (zn)Nn=1}, (2.3)

If we now assume a prior distribution over Φ, we can write the complete joint probability as

p(x1,x2, . . . ,xN ,Φ) =
( N∏

n=1

p(xn|zn,µ1:K)p(zn|πk)
)( K∏

k=1

p(µk)
)
p(π), (2.4)

and formulate a sequential generative process for X such that p(X|Φ) is given by (2.2) or (2.3),

π ∼ Dirichlet(a1, . . . , aK) (2.5)

∀k = 1, . . . ,K

µk ∼ N (µ0,Σ0) (2.6)

∀n = 1, . . . , N

zn ∼ Categorical(π) (2.7)

xn|zn ∼ N (µzn , σxI). (2.8)

π refers to the vector of mixture weights [π1, . . . , πK ], µ0, Σ0 and a = {a1, . . . , aK} are the model

hyperparameters, e.g. prior parameters for the distribution of latent variables, and the Categorical
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Figure 2.2: Graphical representation for a finite GMM. Nodes in a circle are random variables, grey nodes

are observed ones, and white nodes are unobserved variables. Model (hyper)parameters are not circled. An

infinite GMM has the same graphical representation but replacing k = 1 . . .∞.

distribution is equivalent to a Multinomial distribution with number of draws equal to one. In this

example, we have two types of latent variables: global variables (πk and μk for each k-th clus-

ter) and local variables (one cluster assignment zn for each observation xn). Figure 2.2 shows the

corresponding graphical representation for a finite GMM with K clusters.

In contrast, a non-parametric GMM allows for a potentially unbounded number of clusters K,

and can be obtained by using an infinite-dimensional distribution over the parameter space, i.e.,

by replacing (2.5) and (2.6) jointly by a stochastic process called the Dirichlet process (DP). The

generative formulation in this case is given by:7

G =
∞∑
k=1

πkδμk
∼ DP(α,H) (2.9)

∀n = 1, . . . , N

θn ∼ G (2.10)

xn|θn ∼ N (θn, σxI), (2.11)

where θn is the observation-specific cluster mean vector corresponding to observation n (using the

previous cluster assignment variables, θn = μzn), and G is a random measure corresponding to a

realization of the DP which can be written as an infinite sum of sticks or atoms of weights πk at

locations μk , where k = 1, . . . ,∞ and
∑∞

k=1 πk = 1. A DP is a stochastic process parameterized

by a concentration parameter α and base measure H (further details can be found in Section 2.3.1).

Figure 2.3 shows a draw example G ∼ DP(α,H), where H defines a distribution for the atom

locations, e.g., in our particular example H
.
= N (μ0,Σ0), and α plays the role of an “inverse

variance” parameter, such that small values of α result in fewer sticks with high weights, whereas

bigger values of α “spread” the probability mass all over, resulting in a bigger number of sticks with

7Formal definitions will be provided in Section 2.3, we here provide an intuition for introducing BNP models.
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Figure 2.3: A draw example G from a Dirichlet process. We only depict the sticks with highest weights,

although the number of sticks in infinite. Drawing G is equivalent to independently drawing each μk ∼ H ,

and π from a certain stick-breaking process, which will be introduced in 2.3.1.

smaller weights. Given G, the generative process consists of sampling one local variable θn for each

data point xn. Since G is discrete with probability one, θn will take repeated values in proportion

to π, resulting in different clusters of observations. Even if the number of atoms in G is infinite, a

dataset is ultimately finite, and thus, the number of non-empty clusters (locations μk for which ∃j
s.t. θj = μk) will be bounded. In a streaming application, sampling an observation-specific variable

θ∗ for a new observation x∗ could either return a cluster mean from which we have already sampled

before, or a completely new cluster with some probability πnew that is proportional to α.

Generally speaking, the central idea behind BNPs is the replacement of classical finite-dimensional

prior distributions with general stochastic processes, allowing for a potentially infinite number of pa-

rameters, i.e., an open-ended number of degrees of freedom in the model [203]. Thus, BNP models

rely on random measures to induce an infinite-dimensional distribution over the parameter space,

which we will define more rigorously in the next section.

2.3 Random Measures

A random measure M can be understood as a stochastic process indexed by a sigma algebra. Let

(Φ,FΦ) be a measurable space, where Φ is a set, and FΦ is a σ-algebra over Φ, for instance Φ is

the real line and FΦ refer to the Borel sets. A random measure defines a distribution over measures

on that measurable space; it corresponds to a collection of random variables M(A) ∈ [0,∞), one

for each set A ∈ FΦ. The expectation of a random measure is called the mean measure, which we

denote by ν(A)
.
= E[M(A)].

Completely random measures. A completely random measure (CRM) refers to a random measure

such that the masses G(A1), G(A2), . . . assigned to disjoint subsets A1, A2, . . . ∈ FΦ by a draw

G from the CRM are independent random variables [105]. The class of CRM includes important

stochastic processes such as the Beta process (BP), Gamma Process, Poisson Process, and the stable
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subordinator, which are often used as priors on a wide range of applications. A recent review of

CRMs and their applications can be found in [117]. A CRM on some space (Φ,FΦ) is characterized

by a positive Lévy measure8 ν(dφ, dπ) on the product space Φ × R+, with associated product σ-

algebra FΦ⊗FR+ . CRMs have a useful representation in terms of Poisson processes on this product

space. Let Π = {(φk, πk) ∈ Φ × R+}∞k=1 be a Poisson process on Φ × R+ whose rate measure

is given by the Lévy measure ν(dφ, dπ). We denote this as Π ∼ PP(ν). A CRM can then be

represented as an infinite sum of weighted atoms or sticks,

G =

∞∑

k=1

πkδφk ∼ CRM(ν), (2.12)

where (φk)
∞
k=1 is the set of atom locations, and (πk)

∞
k=1 is the set of atom weights, which do not

necessarily sum to one. If
∑∞

k=1 πk = 1 holds, this CRM is then referred to as normalized random

measure. Further details on CRMs can be found in [105].

Normalized random measures. Given a completely random measure G ∼ CRM(ν), we can

construct a normalized random measure P based on an underlying probability measure on Φ as

follows

P =
∞∑

k=1

πk∑∞
j=1 πj

δφk ∼ NRM(ν). (2.13)

The most common example of normalized random measure is the DP, which can be obtained by

normalization of the Gamma Process. Distributions over probability measures are of great impor-

tance in Bayesian statistics and machine learning, and normalized random measures have been used

in many applications including topic modeling, image segmentation, or monitoring of genetic popu-

lations [200, 204].

Exchangeability and De Finetti’s theorem Random measures are at the heart of BNP models via

the De Finetti’s theorem. Indeed, the theorem establishes a link between random measures and the

so-called exchangeability property of the data. An infinitely exchangeable sequence of observations

x1,x2, . . . ,xN is a sequence whose probability is invariant under finite permutations ρ of the first N

elements, for all N ∈ N [54], i.e.,

p(x1,x2, . . . ,xN ) = p(xρ(1),xρ(2), . . . ,xρ(n)), ∀N ∈ N. (2.14)

8In probability theory, a Lévy process is a stochastic process with independent, stationary increments, which can be
viewed as the continuous-time analog of a random walk [105].
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According to De Finetti’s theorem, any infinitely exchangeable sequence x1,x2, . . . ,xN can be writ-

ten as a mixture of i.i.d. samples as follows:

p(x1,x2, . . . ,xN ) =

∫

φ

N∏

n=1

Q(xn|φ)P (dφ), ∀N ∈ N, (2.15)

where Q(·|φ) is a family of conditional distributions and P is a random measure over Φ called the

De Finetti mixing measure (or directing measure).

For instance, if P is a discrete random measure drawn from a DP, and Q(·|φ)
.
= N (φ, σxI), we

recover the example of the Gaussian mixture model described in Section 2.2. Also, if P is a DP,

and Q(·|φ) is the discrete probability distribution described by the probability measure φ, we obtain

a distribution over exchangeable partitions known as the Chinese restaurant process (CRP) [6]. As

another example, if P is a BP and Q(·|φ) is a Bernoulli process, we obtain a distribution over ex-

changeable binary vectors; such construction defines the so-called Indian buffet process (IBP) [206].

In the following, we describe the two basic random measures that will be used along this thesis, to-

gether with their corresponding collapsed processes: the DP and the BP, giving rise to the CRP and

IBP respectively.

2.3.1 Dirichlet Process

The Dirichlet process (DP) is a stochastic process whose realizations are random infinite discrete

probability distributions [53]. Let G0 be a probability random measure on the measurable space

(Φ,FΦ). A random probability measure G over (Φ,FΦ) is said to be a DP if, for any finite measur-

able partition (A1, A2, . . . , Ar) of Φ, the random vector
(
G(A1), G(A2), . . . , G(Ar)

)
is distributed

as a finite-dimensional Dirichlet distribution of the form

(
G(A1), G(A2), . . . , G(Ar)

)

∼ Dirichlet
(
αG0(A1), αG0(A2), . . . , αG0(Ar)

)
.

(2.16)

We then write G ∼ DP(α,G0), where G0 is referred to as the base measure (which is the expected
value of the process) and α ∈ R+ is the concentration parameter, which plays the role of an inverse

variance. Thus, the weak distribution of a DP, i.e., the set of all its finite-dimensional marginals

follow a Dirichlet distribution. The first two cumulants of the DP are given by

E[G(A)] = G0(A), and Var[G(A)] =
G0(A)(1−G0(A))

α+ 1
. (2.17)
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An explicit representation of a draw G ∼ DP(α,G0) from a DP can be written as

G =
∞∑

k=1

πkδφk , (2.18)

where πk are the atom weights, and φk ∈ Φ are atom locations defined in the parameter space [188].
The representation in (2.18) shows that draws from a DP are atomic (discrete) with probability one.

As illustrated in Section 2.2, Eq. 2.18 defines an infinite mixture model, i.e., a mixture model

with a countably infinite number of clusters. However, since the weights πk decrease exponentially

quickly, only a small number of clusters will be used to describe the data a priori. In fact, the

expected number of mixtures grows logarithmically with the number of observations. In the DP

mixture model, the actual number of clusters describing the data is not fixed, and can be automatically

inferred from the data using the usual Bayesian posterior inference framework. The DP mixture

model has been widely studied in the literature [12, 50, 124].

In the following, we describe other closely-related processes and explicit representations of the

DP, including the stick-breaking process and culinary metaphor of the CRP. Explicit representations

of stochastic processes directly describe a random draw from the stochastic process, rather than

describing its distribution.

Stick-Breaking Representation

The discrete random measureG in (2.18) is uniquely determined by two infinite sequences, {πk}k∈N
and {φk}k∈N. As stated in [188], the stick-breaking representation of the DP generates these two

sequences by drawing φk ∼ G0 independently, and by drawing a set of auxiliary variables (vk)
∞
k=1

such that

vk ∼ Beta(α, 1), and πk = vk

k−1∏

`=1

(1− v`). (2.19)

Note that the sequence of atom weights {πk}k∈N constructed by (2.19) satisfies
∑∞

k=1 πk = 1 with

probability one. We write π ∼ GEM(α) if π is a random probability measure over the positive

integers defined by 2.19 (GEM stands for the authors Griffiths, Engen and McCloskey) [153].

Figure 2.4 illustrates a sequential construction of the sequence {πk}k∈N. Starting with a stick of

unit length, at each iteration k = 1, 2, . . . ,∞, a piece of relative length vk is “broken off” (relative

to the current length of the stick).
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1

. . .

k = 1

k = 2

k = 3

π1

π2

π3

Figure 2.4: Illustration of the stick-breaking construction for the DP. Drawing G ∼ DP(α,G0) is equiva-

lent to drawing π ∼ GEM(α) and φk ∼ G0, ∀k = 1, . . . ,∞ independently.

Chinese Restaurant Process

The CRP is typically found in the literature of DPs. This process defines a distribution on infinite

partitions of the data [6], and takes the name from a standard culinary metaphor that vividly illustrates

how the DP operates [204]. In this metaphor, the atom locations φk are referred to as “dishes” in a

restaurant, and observations that are clustered together are viewed as customers sitting on the same

table, therefore eating from the same dish. In this generative process, customers enter the restaurant

one at a time, and they can either sit on an existing table, with probability proportional to the number

of previous customers that are already sitting on that table, or open a new table, with probability

proportional to α. In the latter case, they also sample a new dish from the prior, i.e., φknew ∼ H .

The implicit representation of the DP, which is closely-related to the CRP, is the Pólya urn

scheme [19]. Let θ1, . . . , θN be a sequence of i.i.d. random variables distributed according to G. That

is, all variables θn are conditionally independent given G, and hence exchangeable. The successive

conditional distribution of θn given θ1, . . . , θn−1 takes the form

θn|θ1, . . . , θn−1, α,G0 ∼
i−1∑
�=1

1

i− 1 + α
δθ� +

α

i− 1 + α
G0. (2.20)

This expressions shows that θn has non-zero probability of being equal to one of the previous draws.

This leads to a “rich gets richer” effect, in which the more often a point is drawn, the more likely it is

to be drawn in the future. Let {φ�
k}Kk=1 denote a sequence containing the unique values of variables

θn. By defining mk as the number of values θn which are equal to φ�
k, we can rewrite (2.20) as

θn|θ1, . . . , θn−1, α,G0 ∼
K∑
k=1

mk

i− 1 + α
δφ�

k
+

α

i− 1 + α
G0. (2.21)

Note that, despite this “richer gets richer” effect, the probability of θn being drawn from G0 (and

hence being different to all previous values) is always positive, and proportional to α.

25



CHAPTER 2. OVERVIEW OF BNP

Eqs. 2.20 and 2.21 can be interpreted as a Pólya urn model, in which a ball θn is associated with

a color φ�
k. The balls are drawn from the urn equiprobably. When a ball is drawn, it is placed back

in the urn together with a new ball of the same color. In addition, with probability proportional to α,

a new atom (color) is created by drawing from G0, and a ball of that new color is added to the urn.

Alternatively, this process can also be illustrated using the same culinary metaphor as for the CRP.

According to this metaphor, we consider a Chinese restaurant with an infinite number of tables. Each

θn corresponds to a customer who enters the restaurant, while the distinct values φ�
k correspond to the

tables at which the customers sit. The n-th customer sits at the table φ�
k with probability proportional

to the number of customers mk already seated there (in which case we set θn = φ�
k), or sits at a new

table with probability proportional to α (therefore increasing K by one, drawing then φ�
K ∼ G0, and

setting θn = φ�
K).

Finally, let us explicitly relate the Pólya urn scheme to the CRP. For that, let us now introduce

auxiliary random variables z1, z2, . . . ,∞ to indicate the assigned atom index of each random draw,

e.g., θn = φzn = φ�
k. Compared to the Pólya urn scheme in which we considered the conditional

distribution of the actual color of each new drawn ball, we now consider the color index indicating

that color. In other words, the CRP describes the sequential probability of each cluster assignment

variable,

zn|z1, . . . , zn−1, α,G0 ∼
K∑
k=1

mk

i− 1 + α
δk +

α

i− 1 + α
δknew . (2.22)

where k = 1, . . . ,K correspond to the atom indexes of the already observed clusters (colors that have

already appeared in the Pólya urn model or non-empty tables in the CRP), and knew corresponds to a

completely new index. The iterative process in Eq. 2.22 defines a distribution over infinite partitions.

See Figure 2.5 for a sketch of the CRP.
INDIAN BUFFET PROCESS

...

2

10

6 7

93

1 4

8 5

Figure 2: A partition induced by the Chinese restaurant process. Numbers indicate customers (ob-
jects), circles indicate tables (classes).

it is identical to the extended Polya urn scheme introduced by Blackwell and MacQueen 1973).
Imagine a restaurant with an infinite number of tables, each with an infinite number of seats.2 The
customers enter the restaurant one after another, and each choose a table at random. In the CRP
with parameter α, each customer chooses an occupied table with probability proportional to the
number of occupants, and chooses the next vacant table with probability proportional to α. For
example, Figure 2 shows the state of a restaurant after 10 customers have chosen tables using this
procedure. The first customer chooses the first table with probability α

α = 1. The second customer
chooses the first table with probability 1

1+α , and the second table with probability
α
1+α . After the

second customer chooses the second table, the third customer chooses the first table with probability
1
2+α , the second table with probability

1
2+α , and the third table with probability

α
2+α . This process

continues until all customers have seats, defining a distribution over allocations of people to tables,
and, more generally, objects to classes. Extensions of the CRP and connections to other stochastic
processes are pursued in depth by Pitman (2002).

The distribution over partitions induced by the CRP is the same as that given in Equation 5. If
we assume an ordering on our N objects, then we can assign them to classes sequentially using the
method specified by the CRP, letting objects play the role of customers and classes play the role of
tables. The ith object would be assigned to the kth class with probability

P(ci = k|c1,c2, . . . ,ci−1) =
{ mk

i−1+α k ≤ K+
α

i−1+α k = K+1

where mk is the number of objects currently assigned to class k, and K+ is the number of classes for
which mk > 0. If all N objects are assigned to classes via this process, the probability of a partition
of objects c is that given in Equation 5. The CRP thus provides an intuitive means of specifying a
prior for infinite mixture models, as well as revealing that there is a simple sequential process by
which exchangeable class assignments can be generated.

2.4 Inference by Gibbs Sampling

Inference in an infinite mixture model is only slightly more complicated than inference in a mixture
model with a finite fixed number of classes The standard algorithm used for inference in infinite

Figure 2.5: Illustration of the Chinese restaurant process. Circles correspond to tables in the restaurant,

while numbers correspond to customers sitting on tables.

Hierarchical Dirichlet Process

The hierarchical Dirichlet process (HDP) is a well-known BNP prior which is useful for modeling

grouped data [204]. The HDP is a distribution over a set of random probability measures. The

process defines a set of random probability measures Gj (one for each group of data), and a global
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random probability measure G. The global measure G is distributed as a DP with concentration

parameter γ and base probability measure G0, i.e., G ∼ DP(γ,G0). Hence, it can be written as

G =

∞∑

k=1

ρkδφk . (2.23)

The random measures Gj are conditionally independent given G, and they are distributed as DPs

with concentration parameter α and base probability measure G, i.e., Gj ∼ DP(α,G). Since G is

a discrete probability measure with support at the points {φk}k∈N, each probability measure Gj has

support on the same set of points and, therefore, we can write

Gj =
∞∑

k=1

πjkδφk . (2.24)

In other words, the atom weights9 πjk are different for each group j, but the atom locations are shared

across groups j.

Let (A1, A2, . . . , Ar) be a measurable partition of Φ. Since Gj ∼ DP(α,G) for each j, we have

by definition that the random vector
(
Gj(A1), Gj(A2), . . . , Gj(Ar)

)
is distributed as

(
Gj(A1), Gj(A2), . . . , Gj(Ar)

)

∼ Dirichlet
(
αG(A1), αG(A2), . . . , αG(Ar)

)
.

(2.25)

This will be useful to establish the connection between the weights πjk and the weights of the global

measure, ρk. Note that Eq. 2.24 defines an infinite mixture model for each group of observations j.

Furthermore, all groups share the atom locations φk (which do not depend on j), and they also share

statistical strength on the weights πjk.

2.3.2 Beta Process

A BP is a CRM which is often used as a Bayesian nonparametric prior for sparse collections of binary

features [206]. BPs are defined on an abstract measurable space (Φ,FΦ) and have the property that

the mass of any particular atom lies in the interval [0, 1]. The BP can be constructed based on a

random measure Π ∼ PP(ν) of a Poisson Process defined on (Φ × [0, 1],FΦ × F[0,1]), where ν

refers to its mean measure ν(dφ, dπ) = απ−1(1 − π)(α−1)dπP (dφ) [145]. The first dimension of

9We use the notation π = [π1, π2, . . .] to refer to the atom weights of the global probability measure G, and πj =
[πj1, πj2, . . .] to refer to the atom weights of each group-level probability measure Gj .
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the Poisson Process corresponds to atom location, and the second dimension to atom weight.

A draw G from a BP is a countably infinite collection of weighted atoms in a space Φ with

probability one, whose weights lie in the interval [0, 1] [117]. The distribution on these weights

is governed by two parameters (similarly to the DP): a concentration parameter α > 0 and a base

measure H , and we write G ∼ BP(α,H). But in contrast to the DP which provides a probability

measure, the total measure G(Φ) 6= 1 with probability one. Beta processes are often used in a

hierarchical prior as parameters for a Bernoulli process (BeP), which we will denote as X|G ∼
BeP(G) . When the BP is marginalized out, we obtain the IBP [206].

Stick-Breaking Construction

The stick-breaking construction of the BP in [202] is an useful representation for some inference al-

gorithms. In this construction, a sequence of independent Beta-distributed random variables {vk}k∈N
are used to obtain the atom weights {πk}k∈N. These are generated according to

vk ∼ Beta(α, 1), πk =
k∏

`=1

v`, (2.26)

resulting in a decreasing sequence of probabilities πk. This construction can be understood with the
stick-breaking process illustrated in Figure 2.6. Starting with a stick of length 1, at each iteration

k = 1, 2, . . ., a piece is broken off at a point vk relative to the current length of the stick. The

variable πk corresponds to the length of the stick just “broken off”, and the other piece of the stick is

discarded.
1

. . .

k = 1

k = 2

k = 3

⇡1 = v1

⇡2 = ⇡1v2

⇡3 = ⇡2v3

Figure 2.6: Illustration of the stick-breaking construction for the BP.

Indian Buffet Process

The IBP is a stochastic process defining a probability distribution over equivalence classes of sparse

binary matrices with a finite number of rows and an unbounded number of columns [72]. Although

the number of columns is potentially infinite, only a finite number of those will contain non-zero

entries due to the finite nature of the observed data. Another important property of IBP-generated
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matrices is that they are exchangeable both in rows and columns. The IBP can be derived taking

the limit as K → ∞ of a finite binary matrix Z ∈ {0, 1}N×K , whose elements znk are distributed

according to:

πk ∼ Beta(α/K, 1), znk ∼ Bernoulli(πk), (2.27)

where πk is the probability of observing a non-zero value in column k, zn• is the n-th row for

sample n and z•k is the k-th column of matrix Z. We say that a feature k is active for sample n if

znk = 1. When K →∞, the above process is equivalent to the IBP. We denote:

Z ∼ IBP(α), (2.28)

where α is the concentration parameter controling the a priori activation probability of new features.

The expected number of active features per row is distributed according to Poisson(α) and the actual

number K of features with non-zero elements is distributed as Poisson
(
α ·∑N

i=1

(
1
i

) )
. The param-

eter α has thus an effect on both, the a priori number of columns in Z and degree of sparseness of

the matrix, e.g., a bigger value for α results in a higher number of expected latent features and more

active features per row a priori.

As discussed previously, the underlying De Finetti’s representation of the IBP is a mixture of

BePs directed by a BP as follows:10

G ∼ BP(1, α,H) (2.29)

Zn· ∼ BeP(G), (2.30)

where G is the directing measure, and H is the probability base measure for the BP [206]. The IBP

can also be directly obtained by combining the previously described stick-breaking construction with

an infinite collection of Bernoulli-distributed random variables (one for each atom) as:

vk ∼ Beta(α, 1), πk =

k∏

i=1

vi,

znk ∼ Bernoulli(πk). (2.31)

Similarly to the culinary metaphor for the CRP, there exists a sequential stochastic process

that defines a conditional distribution p(znk|Z−nk) which can be illustrated using a new culinary

metaphor that gives the name to this stochastic process. Imagine an Indian restaurant whose buffet

10Eq. 2.29 and 2.30 employ a common slight misuse of notation by ignoring the features’ position of the beta and
Bernoulli processes.
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consists of infinitely many dishes arranged in a line. N customers enter the restaurant sequentially.

The first customer starts at the left of the buffet and takes a serving from each dish, stopping after a

Poisson(α) number of dishes, as his plate becomes overburdened. The n-th customer moves along

the buffet and samples dishes in proportion to their popularity, serving himself with probability mk
n ,

where mk is the number of previous customers who have sampled dish k. Having reached the end

of all previously sampled dishes, the n-th customer then tries a Poisson(αn ) number of new dishes.

This construction give us Z matrices whose features are ordered decreasingly according to their fea-

ture activation probability, although any feature permutation will have the same probability given

the exchangeability property over columns. The actual distribution over the equivalence matrix Z is

independent of the arrival order of customers entering the restaurant [202].

2.4 Inference Methods

The main computational problem in BNP modeling (as in most of Bayesian statistics) is computing

the posterior distribution. For most interesting models, the posterior is computationally not tractable

(not available in closed form), thus requiring inference algorithms to compute an approximation. The

two most popular inference approaches are MCMC and variational inference techniques.

MCMC methods refer to iterative algorithms in which groups of latent variables are sampled

given all the rest (such distributions are called the conditional distributions). This approach has

asymptotic theoretical guarantees: it consists in defining a Markov chain on the different states of

the hidden variables whose asymptotic distribution (equilibrium distribution) is known to converge

to the posterior distribution. Samples obtained from this Markov chain will eventually correspond

to samples from the posterior as the number of iterations tends to infinity [177]. A simple form of

MCMC sampling is Gibbs sampling, where the Markov chain is constructed by considering the con-

ditional distribution of each hidden variable given the rest of hidden variables and the observations.

The CRP construction is particularly amenable to Gibbs sampling inference, as obtaining these con-

ditional distributions is straightforward. A detailed survey of Gibbs sampling for inference in DP

mixture models can be found in [140]. Gibbs sampling for the IBP is described in [72].

In contrast, variational inference resorts to transforming the inference problem into an optimiza-

tion task [102]. The idea here is to approximate the posterior distribution by a simpler family of dis-

tributions and searching for the member of that family that is closest to it (according to the Kullback-

Leibler divergence). This is also equivalent to maximizing a certain lower bound on the marginal

distribution of the data, called the “Evidence Lower Bound” (ELBO). Unlike MCMC methods, vari-
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ational inference algorithms are not guaranteed to recover the posterior, but they are typically faster

than MCMC, and convergence assessment is straightforward. These methods have been applied to

DP mixture models [21] and IBP latent feature models [42].

2.5 Summary

In this chapter, we have given a gentle introduction to Bayesian nonparametric and intuition, in-

cluding concepts such as exchangeability, De Finetti’s theorem, completely random measures and

normalized random measures. We have presented the basic building blocks (stochastic processes)

which will be used within this thesis, i.e., the Dirichlet process, and the Beta process, as well as the

additional processes resulting from integrating the De Finetti’s mixing random measure in a Dirichlet

process and a hierarchical Beta process–Bernoulli process construction: the Chinese restaurant pro-

cess and the Indian buffet process. Finally, we have given an overview of the most common inference

approaches to fit BNP models, i.e, to approximate the posterior distribution. The remaining chapters

are devoted to our contributions.
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3
Atom-Dependent Dirichlet Process

for Marathon Modeling

This chapter presents a novel application of Bayesian nonparametrics (BNPs) for density estimation

of stratified data, with application to data from marathon runners. In particular, we make use of the

dependent Dirichlet process (DDP) [125], which is a powerful tool that encompasses the Dirichlet

process (DP) and the hierarchical Dirichlet process (HDP). However, the DDP is very general and

it cannot be directly applied to data without additional constraints. Here, we specify a way to tie

the parameters across groups using a Gaussian process (GP) [172], thus making the DDP a practical

prior for our problem at hand. Additionally, we rely on the HDP to model intermediate running

times for each runner, uncovering different running patterns within athletes. This model is also used

to predict the finishing time in the race. Finally, we relate the proposed model to the literature of

infinite mixture of experts (IMoE) in the context of non-linear regression [171].
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3.1 Introduction

Fairness is becoming an important requirement for certain machine learning (ML) systems to have,

some examples include non-gender-biased recommendation systems or unbiased decision-systems

regarding racial discrimination. Our objective in this chapter is to compare in a fair manner the

finishing time of runners having different age and gender. Currently, most popular marathons award

entry to participants by their best marathon in the previous 12 months. For example, in Boston it is

the only way that a participant can gain entry to the race, while other paths are available in New York,

Chicago or London.1 Our objective is to propose a methodology that can be used to equalize entry

requirements for different marathons, which vary considerably for one event to the next, as there

is no widely accepted standard method to specify them. Furthermore, the world master of athletics

(WMA) has an age-grading system for equalizing the finishing time according to the age and gender

of athletes.2 They lobby for this measure to be taken into consideration for selecting the winners

of each race, even though that procedure is based on world records, i.e., outliers that may not be

very representative, or even realistic, for most races. Our method also provides an alternative way to

reward runners fairly regardless of their age and gender.

Our approach consists in adapting a single-p dependent Dirichlet process (sp-DDP) to cluster

the finishing time for each runner according to his/her age and sex [125]. We propose a Gaussian

process to control how the clusters (representing marathon finishing time) change from one group to

the next (different ages or gender). We find that the means of these clusters are directly comparable

to the marathon entry requirements and the age-graded tables from the WMA. Additionally, direct

comparisons for any finishing time are straightforward, since we find a full distribution for all ages

and both genders. The sp-DDP can simultaneously deal with different races and/or the same race

on different years, providing a unified ranking for all the races that may differ on elevation profile,

temperature or humidity.

3.2 Dependent Dirichlet Processes

The DDP is a generalization of the DP that can be applied for clustering of groups of data [124]. For

each group j, we have an infinite mixture model of the form

Gj =

∞∑

k=1

πjkδφjk , (3.1)

1Complete information for each marathon event can be found in their respective web pages.
2World Master of Athletics webpage: http://www.mastersathletics.net/.
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where Gj is a group-specific random measure, and the atom weights πjk and atom locations φjk
follow stochastic processes on the covariate space j. In the following, we will describe two particu-

larizations of the DDP that we use throughout this chapter: the HDP and the sp-DDP.

Hierarchical Dirichlet process. The HDP, which was already introduced in Section 2.3.1, is a

particular DDP to cluster groups of data that share the exact same mixture components [204]. It

is equivalent to a set of DPs, one for each group of data, in which all DPs share the same base

distribution which is itself drawn from a DP. Mathematically, we first draw a base distribution from

a DP as G0 ∼ DP(γ,H), where G0 =
∑∞

k=1 vkδφk , and for each group j we draw a distribution

from a DP using G0 as the base distribution, i.e., Gj ∼ DP(α,G0). This construction ensures that

all the random measures Gj share the same atom locations given by G0, since G0 is itself a discrete

probability distribution. Since each atom corresponds to a cluster, cluster parameters φk are shared

across all groups. Each Gj admits a representation as

Gj =

∞∑

k=1

πjkδφk , (3.2)

where the atom locations φk do not depend on the group j. Furthermore, this method allows groups

to share statistical strength via the atom weights vk of the base distribution G0. Indeed, the vector of

weights for each group j can be obtained as πj ∼ DP(α,v).

In the corresponding culinary metaphor, the HDP can be explained with a Chinese restaurant

franchise (CRF), in which there is a collection of restaurants, and dishes are shared across restaurants.

However, the popularity of each dish, i.e., the corresponding atom weight, is different in each of the

restaurants [204].

Single-p dependent Dirichlet process. The sp-DDP is another DDP, which works in a comple-

mentary fashion to the HDP. In this case, atom weights are shared across groups while atom locations

are allowed to vary. In terms of the often used culinary metaphor for DPs [61], while the HDP shares

the dishes across restaurants but allows a different dish popularity in each of the restaurants, the

sp-DDP shares the dish popularity across restaurants but allows the dishes to vary slightly, in order

to better fit each group of customers (see Figure 3.1 for a comparative sketch). The latter would be

a peculiar CRF in which the popularity of tables is matched one-to-one across restaurants, with the

served dish in each linked table slightly customized in each restaurant (e.g., different ingredients,

cooking time or local taste).

In the sp-DDP, the latent measure for each group j can be expressed as
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Figure 3.1: Comparison of two Dependent Dirichlet processes. The HDP is at the left, sp-DDP is at the
right. The first one shares atom locations, while the second one shares mixture weights.

Gj =
∞∑

k=1

πkδφjk , (3.3)

where the vector π ∼ GEM(α) contains the mixture weights and φjk are the atom locations. The
sp-DDP does not specify how to tie the atom locations φjk across groups for each k. This step

is critical, as it conditions the performance of the model. We put forward in Section 3.3 another

stochastic process for this purpose.

3.3 Our Approach

3.3.1 Atom-Dependent Dirichlet Process Mixture Model

Our model is based on the sp-DDP prior, as it allows comparing the shape of different distributions

while keeping the corresponding quantiles fixed. In the context of the marathon, we use it to obtain

a fair comparison between groups of runners regardless of their age or gender. Runners are grouped

together according to their age and gender, yielding J different groups. In our infinite mixture

model, we cluster the runners of all groups with a potentially unbounded number of clusters. Each

cluster k presents a fixed percentage of runners given by πk, with a stochastic process linking the

atom locations, i.e., the mean finishing time. This construction has the potential to provide a direct

comparison for the finishing time in each group j. However, as the sp-DDP is a very general prior,

we need to define the likelihood and the stochastic process in a way that is insightful about the

marathoner’s finishing time.

We denote each marathoner finishing time as xji, where j = 1, . . . , J indexes the group and i

runs over marathoners, and we assume a Gaussian likelihood for the finishing time xji:
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xji|cji = k, µk, θj , σ
2
x ∼ N

(
xji|µk + θj , σ

2
x

)
. (3.4)

Here, µk denotes the global mean for cluster k, θj is the shift associated to group j, cji represents the
cluster assignment associated to observation xji, and σ2

x is the variance of the Gaussian distributions.

Hence, we use a cluster-specific parameter µk to describe cluster k, but we allow deviations from

this value due to age or gender: this effect is modeled by θj .

The key aspect that makes the sp-DDP useful for comparing different age-gender groups is the

stochastic process that governs θj . We would like this value to vary smoothly across ages, and

therefore we choose a zero-mean Gaussian process prior for it:

θ ∼ N (0,Σθ) , (3.5)

where θ = [θ1, . . . , θJ ]>, and for the covariance function we use the standard choice, i.e., the squared

exponential kernel given by

(Σθ)`j = σ2
θ · exp

(
−(`− j)2

2ν2

)
+ κδ(`− j), (3.6)

where ` and j represent two different age groups, σ2
θ accounts for the variance, ν controls the degree

of correlation between age groups ` and j, and κ is a jitter factor to avoid numerical instabilities.

We use an independent Gaussian process for each gender. There are other alternatives, see [172] for

a comprehensive introduction for valid covariance functions. In our case, the squared exponential

kernel is a smooth kernel (infinitely differentiable) that captures the correlation between the different

age groups. We place a Gaussian prior over the cluster means µk and an inverse gamma prior over

the variance σ2
x, i.e.,

µk ∼ N
(
µ0, σ

2
0

)
, σ2

x ∼ IG (a, b) , (3.7)

where µ0, σ2
0 , a and b are hyperparameters of the model. The value of σ2

0 is assumed to be much
larger than σ2

θ , so that the first one controls the overall finishing time for the clusters (hours), whilst

σ2
θ controls the differences between groups due to different ages (minutes).

Finally, we place the following priors over the assignment variables cji and cluster weights π:

cji|π ∼ π, π|α ∼ GEM(α), (3.8)

which completes the specification of the generative model and GEM stands for the stick-breaking
prior by Griffiths, Engen and McCloskey, as defined in [152]. We refer to this sp-DDP prior, together
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Figure 3.2: Graphical representation of the basic ADDP mixture model. Grey circles represent observed
variables, white circles are hidden random variables. Plates refer to duplicated random variables.

with the likelihood model in Eq. 3.4 and the GP for θj , as the Atom-dependent Dirichlet process

(ADDP) mixture model. A graphical representation for the ADDP is depicted in Figure 3.2. This

model is similar to the ANOVA-DDP prior in [37]: in our case, we rely on a GP to control the de-

pendency between the shift variables θj , while the ANOVA-DDP prior relies on independent priors.

This allows for smooth variations of the cluster means with the age.

We assume a common variance σ2
x for all the clusters, because it provides an ordering of the

clusters, which is necessary for comparing the finishing times. Allowing for different variances for

each component should provide a more accurate (in the sense of better density estimation) description

of the finishing times, but a less interpretable and less actionable representation, as runners assigned

to Gaussian components with different variances are not directly comparable. We have not placed a

joint prior for the cluster means and variances through the normal-inverse gamma distribution, since

separate priors might have better properties for density estimation [76] and allow for faster Gibbs

sampling inference.

3.3.2 Further Model Extensions

Age-gender interaction. The basic ADDP mixture model considers male and female runners in-

dependently, assuming independent shift delays θj between both genders j (i.e., we use a block-

diagonal covariance matrix). A natural extension of the model consists in introducing an additional

gender factor δ and some age-gender interaction factors ωj in order to capture the correlation be-

tween male and female athletes. In such model, the shift delays θj are shared for both men and

women, and j indexes different age groups instead of age-gender groups. We refer to this model as

the age-gender interaction ADDP model. The generative model can be written as follows:

xji|cji = k, gji, µk, θj , σ
2
x, δ, ωj ∼ N

(
xji|µk + θj + 1[gji = 1](δ + ωj), σ

2
x

)
, (3.9)
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cji|π ∼ π π|α ∼ GEM(α) σ2
x ∼ IG (a, b) (3.10)

µk ∼ N
(
µ0, σ

2
0

)

δ ∼ N
(
0, σ2

g

)
θ ∼ N (0,Σθ)

ω ∼ N (0,Σω)
(3.11)

where the indicator variables gji differentiate male (gji = 0) and female (gji = 1) runners, δ is the

gender effect, and ω = [ω1, . . . , ωJ ]> contains the age-gender interaction factors influencing the

likelihood of female runners. Additionally, σ2
g and Σω are hyperparameters of the model.

Multiple races. We could apply the previous models to finishing times from different races or

years, but we might obtain unexpected results since different races can present unalike conditions

due to temperature, elevation profile, humidity, pull of runners, etc. In this section, we present an

useful extension that deals with different races all together and allows drawing comparisons between

these races. In order to deal with this, we extend the basic ADDP model using varying weights across

races. This leads to a hierarchical atom-dependent Dirichlet process (H-ADDP) model, in which

cluster weights are allowed to change across races, and cluster parameters are allowed to change

across age-gender groups. We refer to this model as the hierarchical H-ADDP model. Figure 3.3

shows a graphical representation of this extended model, with the following likelihood and priors:

xrji|crji = k, µk, θj , σ
2
x ∼ N

(
xrji|µk + θj , σ

2
x

)
, (3.12)

µk ∼ N
(
µ0, σ

2
0

)
,

θ ∼ N (0,Σθ) ,

σ2
x ∼ IG (a, b) ,

crji|πr• ∼ πr•,

πr•|v, α ∼ DP(α,v),

v|γ ∼ GEM(γ),

(3.13)

where r indexes the different races, γ is the upper level concentration parameter, πr• = (πrk)
∞
k=1

are the mixture weights for race r, v = (vk)
∞
k=1 are the global weights for all races.

One simple way to interpret this model is by conditioning on a particular race or an age-gender

group. If we only have data from a single race, we recover our original ADDP model. If we only have

data from a single age-gender group, we recover an HDP, i.e., the cluster components are shared, but

the mixing proportions are different.

Cluster-dependent shifts. We now present another extension of the model concerning the shifts

θ. In the model described above, the delay θj only depends on the age and gender, which implies

that the shift is the same for all clusters k, no matter whether they are fast or slow runners. However,
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Figure 3.3: Graphical representation of the H-ADDP mixture model. Cluster weights change across races,
whereas cluster means change across age-gender groups.

we can also consider cluster-dependent shifts. This allows us to capture different shift evolutions

across age/gender depending on the speed of runners. That is, instead of having a single delay θj

for each group, we consider a different delay θjk for each cluster and group. Each vector θ•k =

[θ1k, . . . , θJk]
> follows its own Gaussian process with mean µθ and covariance matrix Σθ:

θ•k ∼ N (µθ,Σθ) . (3.14)

3.4 Results

In the following experiments, we apply the described models to the New York City marathon3 for

6 different years, between 2006 and 2011. This database consists of 249, 899 runners in total. We

additionally compare the NYC marathon data to the marathons of Boston4 and London5 for 2010

and 2011, including 117, 255 additional runners. In order to test the resulting models, we set aside

a test set with 20% of the participants for each race and age/gender group, ensuring that the age and

gender proportions are the same in both train and test sets.

Concerning the hyperparameters for the basic ADDP mixture model in Section 3.3, we have set:

σ2
θ = 0.05, ν = 10, κ = 10−6, a = 1, b = 1, µ0 = 5 and σ2

0 = 1. The value of µ0 and σ0 are set

so that 2-hour marathoners are within 3 standard deviations and 9-hour marathoners (typical cut-off

time) are not unheard of. The ratio between σθ and σ0 is approximately 1 to 4, so the former is of the

order of 15 minutes, while the latter is of the order of one hour. Therefore, σ0 controls the overall

finishing time, while σθ controls the differences among age groups. The values of a and b control the

variance of each Gaussian component and are set so that values of less than an hour, but not too small,
3NYC marathon data at http://www.tcsnycmarathon.org/about-the-race/results
4Boston marathon data at http://www.stat.unc.edu/faculty/rs/Bostonwebpage/readme.html
5London marathon data at http://www.virginmoneylondonmarathon.com/
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are more likely. ν was defined in Eq. 3.6 and controls the correlation between the mean finishing

time of runners having same gender and different ages, so that they do not deviate significantly. The

value of κ measures the error in the recorded time and in this case it prevents numerical instabilities.

In the age-gender interaction ADDP model, we choose the same hyperparameters as in the basic

ADDP model, and the additional hyperparameters are set as σ2
g = 0.05 (which corresponds to the

same prior variance as for θj) and Σω = 1
2Σθ.

For the HDP model in Section 3.5.1, we set ε = 0.2 km−1 and τ = 5000, because the differences

between the relative time spent at each 5-km interval are typically small. Finally, we place a Gamma

prior with shape 1 and scale 10 over the concentration parameters α and γ, and sample their values

following [50]. These hyperpriors are chosen in order to avoid the creation of too many spurious

clusters. Due to the huge amount of data, results are not very sensitive to hyperparameter values, as

long as they are not set to completely misleading and unrealistic values. In our application at hand,

we can actually set (and be able to explain) the values of the hyperparameters using all our prior

knowledge, as detailed above, which is important in order to incorporate the known information and

allow for the expected variances.

Posterior inference for all simulations is based on Gibbs sampling. Following Algorithm 8 in

[140], we do not integrate out the hidden variables, and we propose 10 new clusters at each iteration.

In our results in Section 3.4.1, we report the values of the hidden variables (means and shift delays)

averaged for the last 10, 000 iterations after running the sampler for 50, 000 iterations. For the per-

cluster variables, we carry out the averaging procedure to account for potential label switching.

3.4.1 Density Estimation

To model the finishing time of runners in the six considered NYC marathons, we compare our basic

ADDP mixture model described in Section 3.3 to a standard HDP mixture model with Gaussian

likelihood. For both models, we report 11 clusters, with σx = 5.8 minutes for the basic ADDP

model, and σx = 8.2 minutes for the HDP model. Figure 3.4 compares the overall density estimate

given by both models with the empirical histogram for a particular group of runners (we choose all

forty year-old male finishers for the plot). Both the ADDP and HDP models perform similarly in

terms of density estimation, and both provide comparable test log-likelihood values, in particular,

−0.0618/sample for the ADDP and −0.1053/sample for the HDP.

Note also that the empirical histogram in Figure 3.4 presents one narrow peak that is not fully

captured by the HDP nor the ADDP model. This peak, just under 4 hours, and the valley right

afterwards are due to some runners trying to finish (and succeeding) a sub-4-hour marathon, roughly
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Figure 3.4: Density estimation capacities for the basic ADDP and HDP model. The histogram corresponds
to the population of forty-year-old male runners, which is the largest age-gender group. The red curves are the
probability density functions inferred by the basic ADDP and HDP models. The blue dotted lines represent
the individual clusters inferred by the ADDP model.

9-minute-mile pace. This is a psychological effect that has limited interest for us, since it is not

indicative of runners’ inherent performance. Using cluster-specific values for the variance σ2
x would

yield better density estimation, even capturing this peak, but it would fail to provide any comparison

between distributions. Here, we are interested in ordering runners into clusters for comparison, which

is achieved by having a shared value of σ2
x for all clusters.

3.4.2 Impact of Age, Gender and Race

We now use the age-gender interaction ADDP model described in Subsection 3.3.2. In addition to

its density estimation capacity, the ADDP has an additional descriptive strength, since it can show

the impact of age and gender on runners performance straightforwardly through inference of the

age delays θj , gender factor δ and age-gender interaction factors ωj . Figure 3.5 shows the average

proportion of runners in each cluster, as well as the inferred cluster means µk, for both the HDP and

the ADDP. Runners aged above 69 are not reported because there are too few of them.

The HDP results are not easy to interpret, except for the first three clusters that show the time

degradation with age, because we do not know the cumulative percentage as the finishing time is

increased. In contrast, the ADDP model is easier to interpret. The first cluster contains the “Olympic”

quality runners for all ages, if Olympics were held for each age group (less than 1% of the runners).

The second cluster has the competitive runners (about 13% of the runners), the third cluster has the
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Figure 3.5: Age proportions per cluster. The HDP is at the top and the age-gender interaction ADDP is
at the bottom. Male and female runners are shown together. The colors design the age of the runners, from
18-year-old in blue to 69-year-old in dark red. For the ADDP model, the cluster labels correspond to µk + θj ,
with the value of θj corresponding to the 28-year-old male runners, the shifts for other age or gender can be
found in Table 3.1.

age 18 19
men 8.00 6.34
women 33.60 31.89

age 20 21 22 23 24 25 26 27 28 29
men 4.88 3.62 2.53 1.66 0.98 0.49 0.18 0.04 0.00 0.10
women 30.43 29.21 28.19 27.42 26.87 26.53 26.38 26.41 26.53 26.79

age 30 31 32 33 34 35 36 37 38 39
men 0.28 0.51 0.79 1.09 1.39 1.71 2.03 2.34 2.65 2.98
women 27.13 27.50 27.87 28.27 28.65 29.03 29.39 29.74 30.08 30.46

age 40 41 42 43 44 45 46 47 48 49
men 3.30 3.66 4.11 4.61 5.25 5.99 6.85 7.90 9.09 10.47
women 30.82 31.23 31.78 32.41 33.21 34.13 35.24 36.58 38.07 39.81

age 50 51 52 53 54 55 56 57 58 59
men 12.01 13.74 15.66 17.74 20.00 22.38 24.91 27.51 30.21 32.95
women 41.73 43.88 46.23 48.75 51.47 54.29 57.26 60.27 63.36 66.44

age 60 61 62 63 64 65 66 67 68 69
men 35.70 38.44 41.16 43.80 46.35 48.77 51.06 53.17 55.09 56.81
women 69.50 72.51 75.46 78.26 80.93 83.42 85.73 87.83 89.69 91.31

Table 3.1: Averaged values of θj for men (or θj + δ + ωj for women) for all age groups in minutes.
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standard marathoners (about 33% of all runners), and so on. The x-axis in Figure 3.5 provides the

value of µk + θj for 28 year-old male runners and the degradation for other ages and sex is shown

in Table 3.1. Using the plot and the table, we can know the proportion of runners in each group and

how much extra time they need compare to the fastest group.

Figure 3.6 shows the value of the inferred cluster means µk plus and minus one standard devi-

ation, shifted according to θj , δ, and ωj for both men and women. We only depict the two fastest

clusters, and compare the corresponding values of the finishing time with the entry requirements of

different marathons and the WMA records. Best performance for females and males is predicted, re-

spectively, at 26 and 28 years old, which is consistent with [186]. The plateau afterwards illustrates

a stable period of performance between the 30’s and 40’s for both genders.

All plots behave in a similar way. This is what we meant in the introduction by that the first

insights should not be foreign to us, so experts in marathon modeling can take other conclusions as

plausible. Now, we focus on what is different. The most striking difference is how the entry levels

penalize younger male runners, specially runners under 25. To be fairer to the youngest runners, their

entry time should be raised (in about 7 minutes compared to the 30 years-old). The Boston marathon

entry level is perfectly aligned with our second cluster for 40+ years old men and almost perfectly

match the female second cluster, except for the runners under 23. There is a penalty of about 4-7

minutes for runners aged 25-39 and between 7-14 minutes for 18-24 year-old runners. The entry

times slightly favor the 45-50 year-old runners.

The London marathon also penalizes excessively runners in their fifties compared to those in

their forties and sixties, which seems odd.6 It is also clear that over 50 (or even 45), the degradation

of the finishing times per year is significant enough to merit a finer scale to guarantee entry times

(this may also apply for 18-23 years-old). For example, a runner of 60 years old is doing almost 15

minutes less than a runner of 64 (which is a very long time in any marathon). Finally, the WMA

curve for men penalizes the older male runners, while for older female runners it seems to have a

similar trend than the first cluster of the ADDP model. For younger runners, the difference between

the typical women in the olympic cluster and the WMA is larger than the difference between the

typical men in the olympic cluster and the WMA.

Figure 3.7 shows the finishing time gap between women and men. The gap seems to be of about

30 minutes and slightly increasing with age. There are very few runners over 65 for the final decay to

be statistically significant. We can come up with two different plausible explanations, but we do not

have data to confirm whether this empirical effect is due to any of them or to some other unknown
6the entry time in London is only for UK residents and it is not a common way to get in the race, which might explain

the weird pattern.
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Figure 3.6: Inferred cluster means and entry requirements. Comparison of the inferred cluster means, i.e.,

μk+θj with k ∈ {1, 2}, with the entry requirements (runners below the curve can qualify) for New York City,

Boston and London marathons. (Top) Men. (Bottom) Women.

factor. The degradation with age between women and men might be due to physiological factors, i.e.,

women age differently than men for long distance running, or it might be due to socio-economical

factors, i.e., women above 30 cannot train as much as men do.

Comparison across Multiple Races

We compare the NYC marathons to the ones in Boston and London, using the H-ADDP model

described in Section 3.3.2. We consider both the 2010 and 2011 marathons, and we split the runners

into age groups instead of using their actual age because we do not have this data available for

London marathon. Figure 3.8 shows the inferred values of the per-race weights πrk. The values

for μk + θj in the x-axis are those of the 45-49 male runners and the value of σx = 19 minutes.
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Figure 3.7: Gender effect on the final performance. Averaged inferred value for the gender coefficients.

First, we notice that the values of πrk are quite different for each place, but they show little variation

between different years. We can argue that this pattern is mainly due to the race difficulty, assuming

a stationary selection of the runners.

Boston has the most striking pattern, which can easily be explained by the strict entry requirement

time. For 45-49 years old the entry time is 3h25m and the cluster with 70% of the runners has a mean

of 3h19m20s. There is a group of almost 15% of the runners that finish just under 4 hours and about

15% of the runners that do much worse than their qualifying time. This might be due to poor training

or having some issue during the race. For the Boston marathons, there are no runners in the 3h

cluster and around 1% runners in the fastest cluster. The void in the 3h group is due to the massive

proportion of runners in the 3h19m group, which makes any runner in that group to be represented

by the 3h19m cluster. The runners under 3h are the runners that do much better than the needed

qualifying time and cannot be represented by the massive 3h19m group.

The proportions in NYC and London are more similar to each other, as both marathons allow

runners to enter the race in more ways than just by entry requirement.7 The 3h group is more

populous in London than NYC, but the 3h19m and 3h53m clusters contain a larger proportion of

NYC runners. The 4h30m group is equally probable in both races. London seems to attract a higher

proportion of slower runners (over 5 hours). This difference might be due to the difficulty of the

marathons (profile and weather conditions) or the pull of runners. NYC race is more hilly than

London, which can explain the difference in the first cluster, but the runners in NYC are more diverse

(coming from different parts of the country and world), while London attracts more local runners.

7Being these two races more accessible or democratic, we can consider the proportions in the different clusters closer
to the general population of marathon runners.
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Figure 3.8: Mixture weights for the H-ADDP mixture model. The figure shows the mixture weights πrk
for each race r and cluster k. The legend shows the different races, and the x-axis corresponds to different
clusters.

This might also explain the pattern of the slowest athletes.

3.4.3 Accounting for the Speed of Runners

We now apply the model extension in Section 3.3.2 with cluster-dependent shift delays θjk. Fig-

ure 3.9 and Figure 3.10 show the inferred cluster means for men and women respectively. Although

the overall shape of the curves is quite similar across clusters, which validates our previous conclu-

sions, there are some noticeable differences for the fastest runners and we concentrate on those.

The most interesting difference is the behavior of the fastest cluster for under 50 years-old run-

ners, as to the naked eye it seems to suggest that women are faster than men. The fastest cluster

for women captures the Olympic runners that are doing under 2h45m, and its proportion is very low

(less than 1%). The second fastest cluster for women covers those runners doing under 3h45m and

it represents 13% of the female runners. There is a significant difference between Olympic female

runners and competitive female runners, so two clusters are needed. For men under 50, the first clus-

ter represents 13% of the runners and it captures those doing under 3h30. The model considers that

the Olympic runners can be modeled by the tail of the distribution of competitive runners, without

requiring a new cluster as the Olympic women need. Male runners over 50 behave as women do, and

two clusters are needed to separate the Olympic and the competitive groups.
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Figure 3.9: Inferred cluster means μk+θjk for men. We have used the extended model with speed-dependent

clusters. The legend shows the inferred value of the proportions πk for each cluster.

For men under 50, the small cluster that represents the fastest women sits in between the two

populous clusters, becoming irrelevant in terms of density estimation. The reason why it appears is

because the model forces the same proportion for all clusters across age and gender groups. In order

to support this conclusion we have depicted the histogram of the 28-year-old runners together with

the inferred density in logarithm scale in Figure 3.11a and Figure 3.11b. In this figure, the blue solid

line represents the inferred distribution, the green dash-doted line is the histogram with 6-minute

bins, and the red dashed lines represent each one of the clusters multiplied by their averaged weight.

In this plot, we can see that the Olympic male runners just doing over 2 hours can be modeled by

the same cluster as the competitive male runners, while the finishing time for the Olympic female

runners could not be explained by the competitive female ones, and hence a specific cluster is needed.

In the previous section, when θj was not allowed to vary with k, the cluster for the Olympic males

was visible, but this is an effect of forcing the same value of θj for all clusters, as women and older

male runners need it. This is the only significant difference when we replace θj with θjk.

There may be several explanations for this effect. In the NYC marathon the Olympic women run

by themselves in an early wave, while the Olympic men start at the same time as everyone else, so

competitive men can try to follow them. However, this does not explain the need for a cluster for fast

male runners over 50. We can also hypothesize that female Olympic runners have a training that is

significantly different from competitive female runners, while for male runners there is a continuum

in the training between Olympic and competitive runners. This could also apply for male over 50,
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Figure 3.10: Inferred cluster means μk + θjk for women. We have used the extended model with speed-

dependent clusters. The legend shows the inferred value of the proportions πk for each cluster.

in which there are not that many doing Olympic finishing times and competitive runners are not

as strong. Finally, we can also argue that younger male runners are more risky than female and

older male runners. Those that succeed do a better time and close the gap between the Olympic

and competitive runners. Older males and female competitive runners do not follow such a risky

approach and therefore they do not close the gap with the Olympic runners. There is some evidence

on this risky hypothesis in Section 3.5.2, in which we see that the reckless running pattern cluster is

mainly populated by younger males.

3.5 Analysis of Running Patterns

In our analysis of the marathon dataset, we also led a temporal analysis of the different running

patterns. Our objective here is twofold. First, we are interested in a tool that can capture latent

running profiles that reflect the marathon difficulties along the 26.2 miles (42.195 km). This can

be useful for athletes’ training purposes. Second, we aim at predicting the arrival time of runners

using intermediate records. This problem has already been addressed in [78], where finishing times

are imputed for the 2013 Boston marathon. One of the best approaches rely on the 100 nearest

neighbors, which has the limitation of clustering runners that are doing the same absolute times.

We propose to use an HDP [204], a tool that complements the analysis of the previously in-

troduced ADDP, in order to model the fraction of time each runner has spent at each intermediate
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Figure 3.11: Density estimation for 28-year-old runners. We have used the extended model with speed-
dependent clusters. The solid line shows the inferred distribution and the green dash-dotted line is the normal-
ized histogram with 6 minutes bins. Red dashed lines correspond to the individual Gaussian components that
define the inferred density, weighted by their proportions. The black dashed line corresponds to Cluster 1.

interval (typically, measures are taken every 5 km and at half-marathon). In this way, we cluster the

time ratio instead of the absolute times. Participants that run at different but constant speed will be

in the same cluster, no matter if they run each mile in five, eight or eleven minutes. Thus, this model

allows estimating finishing times for slower runners that have the same time-ratio profile than fast

ones. We use an HDP model in which the likelihood function is a Dirichlet distribution, and each DP

clusters the runners by age group and sex. When modeling the full race, it helps to understand the

different trade-offs and which parts of the race are harder.

We address the analysis of temporal evolution of runners during the race to understand how the

marathoners pace themselves to complete the marathon. We aim at discovering running patterns,
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i.e., distinguishing those overly optimistic runners, with decreasing speed along the race, from well-

trained runners who tend to keep a constant speed. It also helps to understand where the marathons

are harder, so that runners can know beforehand. The hidden running patterns can be used for training

purposes, as they can find out the typical shortcomings of athletes with respect to their age, which

may help runners train and run more intelligently. In addition, we also show that discovering running

patterns provides a new tool for prediction of finishing times, with results comparable to the best

reported method in [78].

3.5.1 Modeling

The idea is to cluster the data according to the relative time spent in each interval regardless of

each runner’s total time. In this sense, we are no longer interested in the absolute times, but in

the time proportions invested for each interval. Marathons tend to record the elapsed time every 5

kilometers, in addition to half and full-marathon times. Our input data in this case consists of an

N ×D dimensional matrix X with the time spent for each interval, together with the age and gender.

Here, N is the number of runners and D denotes the number of available time records.

We normalize our input data so that each runner is represented as a vector containing the fraction

of time spent for each intermediate interval. As in Section 3.3, we split the data X into J groups of

runners having the same age and gender. We use the HDP [204] to cluster the running patterns for

the different groups. In the HDP, clusters are allowed to show different probabilities for each group,

but the per-cluster parameters are shared across groups. As explained in Section 3.2, we first draw

a global base distribution from a DP as G0 ∼ DP(γ,H), where G0 =
∑∞

k=1 vkδφk , and for each

group j we draw a distribution from a DP using G0 as base distribution, i.e., Gj ∼ DP(α,G0). In

our model, the likelihood function is a Dirichlet distribution and can be written as

xji|cji = k,pk ∼ Dirichlet (τpk1, . . . , τpkD) , (3.15)

where xji is the normalized D-dimensional vector for runner i in group j, cji represents its cluster

assignment, pk = [pk1, . . . , pkD] is the vector of patterns representing cluster k, and τ is the con-

centration hyperparameter of the model. We place a Dirichlet prior over the per-cluster vectors pk,

pk ∼ Dirichlet (ε`1, . . . , ε`D) , (3.16)

where `d is the length of interval d, and ε is its concentration hyperparameter.
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3.5.2 Experiments

Here, we consider temporal sequences of time measurements every 5 km, and at half and full

marathon, as explained in Section 3.5.1. We run 10, 000 iterations of the sampler and average the

results for the last 2, 000 iterations.

Running patterns. In this section, we use the data from 2007-2011 NYC marathons, with 194, 778

runners. We discarded data from the 2006 marathon because we observed that intermediate measure-

ments were not fully synchronized with the half and full marathon times. After applying our HDP

model, we found a modal value of 46 clusters. In Fig. 3.12 we show the twelve most populated

clusters, which account for around 90% of the population on average. The removed cluster do not

behave significantly different than the ones we show in this section. For clarity, we do not directly

plot the time proportion spent at each interval, but instead show the speed at each 5-km leg, assuming

a value of 11 km/h for the speed during the first 5 kilometers. We have removed the half-marathon

mark for clarity. The total net time, assuming this value for the initial speed, is shown in the legend

for each cluster. We also plot the approximate elevation profile of the marathon with a thin grey line.

Before the half marathon mark, we can roughly see three different types of clusters: those cor-

responding to athletes running at approximately constant speed (clusters 0, 1, 1− and 1−−), those

5 10 15 20 25 30 35 40 42.2
6

7

8

9

10

11

12

km

S
p
e
e
d
 (

k
m

/h
)

5 10 15 20 25 30 35 40 42.2

20

40

60

80

100

E
le

v
a
ti
o
n
 (

m
)

Cluster 0 (7.2%, T=3.80h)

Cluster 1 (24.4%, T=3.93h)

Cluster 1
−

(14.9%, T=4.03h)

Cluster 1
− −

(3.6%, T=4.16h)

Cluster 2A (13.4%, T=4.17h)

Cluster 2A
−

(11.3%, T=4.27h)

Cluster 2A
− −

(3.2%, T=4.43h)

Cluster 2B (1.1%, T=4.32h)

Cluster 2B
−

(1.6%, T=4.47h)

Cluster 3 (3.4%, T=4.56h)

Cluster 3
−

(4.4%, T=4.59h)

Cluster 3
−−

(1.4%, T=4.88h)

Figure 3.12: Inferred running patterns by the HDP. (Thick lines) Inferred running patterns or speed for
the twelve most populated clusters, assuming an initial speed of 11 km/h. The legend additionally shows the
average proportion of runners in each cluster, as well as the net time for that value of the initial speed. (Thin
grey line) Elevation profile of the race.
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that are already showing a decreased pace (clusters 2A, 2A−, 2A−−, 2B, and 2B−), and those for

which the decreased pace is significantly more relevant (clusters 3, 3−, and 3−−). Just before the

25-km mark, there is an overall drop in performance that can be explained by the Queensborough

bridge and, after that, the twelve clusters become clearly different one another, giving their labels an

obvious meaning.

People in Cluster 1 (the most populated cluster, one in every four runner) are well trained runners

that run at almost constant speed and the changes can be explained by the hills in each 5-Km interval

and they speed up to finish a strong race in the last kilometer, while Clusters 1− and 1−− suffered the

effect of the Manhattan hills and bridges in and out of the Bronx, besides the natural weariness after

running for 35 km. Cluster 1−− correspond to the runners that outpaced themselves and finished the

marathon at a very low speed, compared with what they could have done. Cluster 0 corresponds to

runners who could have done a better race if they had run faster from the beginning and not only

after half the race. The rest of the clusters correspond to those overly optimistic runners who could

not run as fast as they thought at the beginning. These are the runners who suffered the most. For

all the clusters, we can observe an increased speed in the last 2 km, which can be explained by the

proximity to the finishing line and the effect of trying to finish under some target time.

Fig. 3.13 shows the averaged inferred proportion of runners πjk in each of the twelve most pop-

ulated clusters for both men and women, broken down by age groups (blue represents the youngest

runners). Clusters 1−, 1−−, 2A−, 2A−− and 2B− are mostly populated by men (e.g., 19.4% of men

and only 6.7% of women are in Cluster 1−, and 5% of men and 0.9% of women are in cluster 1−−).

In other words, the clusters of overconfident runners are mostly populated by men. Clusters 2A−

and 2A−− present a constant proportion across ages for both genders. The proportion of women in

Clusters 0 and 2A is higher than for men (e.g., 7.5% of men and 24.1% of women are in Cluster

2A). These clusters represent the conservative runners that have some doubts about how fast they

can finish a 42.2-km race. In Cluster 0 there is a larger proportion of 18-19 year-old runners for

both genders. These are probably first timers, which is consistent with the inexperienced behavior of

runners in that cluster. In contrast, Cluster 1 (well-trained athletes) is mostly populated by runners in

their thirties, forties and fifties. Custer 2A becomes more popular for older runners. In this cluster,

the runner speed slightly decreases in the first part of the race, but it remains constant in the second

half-marathon, which might indicate that after the initial 10 km, the runners slow down to make sure

that they can continue at a somewhat constant pace.

In Fig. 3.14, we show the averaged proportion of runners in each of the twelve most populated

clusters, broken down by their net time, up to 7 hours. As expected, Clusters 0, 1 and 1− comprise
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Figure 3.13: Age proportions for each running pattern. (Top) Men. (Bottom) Women. The legend shows
the different age groups considered.

a high proportion of the fastest runners, i.e., those that can complete the marathon below 4 hours.

In contrast, Clusters 3, 3− and 3−− are mostly populated by the slowest runners, with a net time

above 5.5 hours. Clusters 2A, 2A−, 2A−−, 2B and 2B− have the highest proportion of runners with

net time between 4.5 and 5.5 hours. These results are consistent with the description of the clusters

provided above.

Prediction of final performance. We can also apply our model to predict the arrival time of ath-

letes. In this case, observations correspond to time proportions at each interval, up to the last available

record. We train our model with the subjects in both the test and the training set, assuming that ob-

servations up to interval D are known for all of them. Regarding the prediction task, we apply a

Bayesian approach in which we take into account the weights from the posterior probabilities of

being in each cluster. At each iteration of the sampler and for each runner in the test set, we first

compute the posterior probability of being in each of the clusters found using the training set. Sec-

ond, we project forward his last available time record to obtain the predicted finishing time for each
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Figure 3.14: Proportion of runners for each running pattern broken down by net time. The x-axis indexes
the clusters found by the HDP model. The legend shows time intervals for the marathon finishing time.

cluster. Third, our prediction is computed as the weighted average of the predictions for each cluster

(weighted by the posterior probabilities of belonging to each cluster). In order to project forward the

last available time record for each cluster, we multiply by a factor the time up to interval D of the

considered runner. This factor is computed as the median of the quotient of the finishing time and the

time up to interval D for those runners in the training set and in the corresponding cluster. Finally,

we average our predictions for the last iterations of the sampler.

In Fig. 3.15, we show the empirical density of the prediction error for all subjects in the test set of

the 2011 NYC marathon. As the number of available records D increases, the curves tend to shrink

around zero.

Table 3.2 reports the average prediction errors, as well as the root of the mean square error,

compared with the results obtained following the 100-NN method with forward projection described

in [78], for 2010 and 2011 NYC marathons. We do not outperform the discriminative method, but

our proposal has the advantage of dealing with time proportions instead of absolute times, which

allows predictions for slower runners based on the arrival time of faster ones. Although our model

only uses relative times (it has one less degree of freedom) it does equally well, the differences being

negligible. Both methods are basically unbiased, as the bias only explains less than 2% of the root

of the mean square error, but this bias seems to be always positive, which means that the estimations

are optimistic on average.
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Figure 3.15: Prediction error. Density of the prediction error for different values of D (number of available
intermediate records).

100-NN HDP
avg rmse avg rmse

D = 1 2.819 19.033 3.778 19.533
D = 2 2.554 16.586 3.226 17.224
D = 3 1.842 13.408 2.207 14.290
D = 4 1.717 12.620 2.000 13.436
D = 5 1.264 9.748 1.255 10.536
D = 6 0.733 6.913 0.705 7.448
D = 7 0.221 3.921 0.212 4.195
D = 8 0.031 1.355 0.037 1.434

(a) Predictions for year 2010.

100-NN HDP
avg rmse avg rmse

D = 1 3.384 20.419 4.247 20.104
D = 2 2.777 17.124 3.368 17.610
D = 3 2.121 13.833 2.428 14.746
D = 4 1.942 13.019 2.219 13.788
D = 5 1.624 10.202 1.625 10.962
D = 6 0.863 7.279 0.821 7.837
D = 7 0.283 4.117 0.269 4.440
D = 8 0.035 1.394 0.046 1.471

(b) Predictions for year 2011.

Table 3.2: Test prediction errors for year 2010. We show the average error for both 100-NN and HDP
methods (“avg”), as well as the square root of the mean square error (“rmse”). Results are all expressed in
minutes. Rows represent number of available time records.

3.6 Connexion to Infinite Mixture of Experts

The presented ADDP model described in Section 3.3 has been applied so far in this chapter to conduct

a data exploratory analysis of marathon races. However, this model can also been used as a general

non-linear regression approach, able to handle heteroscedastic noise and arbitrary output likelihoods.

Instead of using a single GP that tracks the mean underlying function, we have several GPs that model

the underlying distribution for each input vector as an infinite mixture of Gaussians. These GPs cover

the whole input space, i.e., globally, allowing the predicted posterior probability to be non-Gaussian,

multimodal, heteroscedastic and/or non-stationary, without the need of explicitly indicating or even

knowing that those effects might be into play. Our approach is also able to provide accurate percentile

information, and can easily be used for Bayesian integral computation. An infinite mixture of global

Gaussian processes (IMoGGP) can potentially capture any complex functional behavior, in a similar
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fashion that an infinite mixture of Gaussians can approximate any arbitrary density function.

For test input vector, our model provides an estimate of the output that is a linear combination of

GPs. The proposed method is a discriminative regression algorithm, in the same way standard GPs

are. Hence, we make no probabilistic assumptions over the input space. If we are strictly interested

in making a probabilistic statement over the output space given the input, adding a probabilistic

model over the input might be detrimental, both in terms of computational complexity and accuracy

of our predictions. The mixing proportions are held constant throughout the input space, so that

all GPs are active in the whole input domain. Hence, we avoid the need of relying on a gating

function, which is typically used to select a particular local functions. The mixing proportions, as

well as the hyper-parameters of the Gaussian processes, are inferred given the data. In this inference

phase, as we change the mixing proportions and the inputs are shuffled between the different global

GPs, we are able to capture any of the effects previously described (e.g. non-Gaussian likelihoods,

heteroscedasticity, colored noise or multimodality) without needing to know if they are present.

Our algorithm is universal for solving any regression problem, but it is more effective for moderate-

sized input spaces and a larger number of samples per input dimension, because if the input dimen-

sion is large the fitting with one Gaussian process will prevail (i.e., we get the standard GP fitting) and

if the input dimension were low (or nonexistent), the solution would be that of a DP for a Gaussian

mixture. In short, our algorithm transitions seamlessly between the two limiting processes.

In Figure 3.16 a), we show a one-dimensional cartoon solution that our discriminative regression

algorithm would be able to provide. Our algorithm is an infinite mixture of experts (IMoE), but not

a typical one in which the input space is chopped locally, using a gating function that decides who is

the expert for each input (see cartoon in Figure 3.16 b). The proposed approach divides the available

data in independent GPs, so it presents the same computational savings as the standard mixture of

expert algorithms based on GPs. The data division is not based on local proximity rules, but on

improving the prediction accuracy of the output.

Our algorithm is a direct application of the DDP [125]. But our interpretation as a nonparametric

universal regression discriminative procedure is novel, as the standard interpretation of DDPs is that

of an indexed collection of distributions.8 Moreover, the DDP should be understood as a general

framework instead of a specific algorithm, as many existing models can be explained as such. In

Section 3.6.1, we review the literature thoroughly, because our work is related to several well-known

algorithms. But we want to emphasize that although our algorithm is similar to others, those have

been presented in the past under narrow conditions or specific applications, which do not show the
8Actually, the author in [125] proposed a simple 1-D linear regression application in which the strength of the DDP for

nonparametric regression and its many desirable properties are not exploited nor hinted.
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Figure 3.16: Conceptual comparison of different approaches. Sketch comparing a) IMoGGP (proposed
approach), b) IMoE, c) Overlapping GPs for multi-tracking, d) Spatial DP, and e) time series clustering. Each
color represents a different GP.

potential of such algorithm for general regression with the properties described earlier.

For example, in [123], the authors infer trajectories, i.e., time series, in which each trajectory is

represented by a GP, as shown in Figure 3.16 c), but there is no regression interpretation nor future

predictions, and the number of time series has to be known beforehand. In [58], the authors want

to estimate the 10-day aggregated rainfall in 39 locations in southern France and 6 test locations.

They assume that the input space has a low cardinality of potential locations, and each sample had

an observation in all input locations. As sketched in Figure 3.16 d), the output is a collection of

vectors, each one with same dimension as the cardinality of the input space; this is far from a typical

regression scenario and can be seen as a particular case of our method. Our algorithm is also similar

to the clustering of time series using DPs [86], as illustrated in Figure 3.16 e), but in that case samples

are treated as whole sequences a priori, and the goal is to identify clusters. Our algorithm would be

able to solve these applications directly or with minor modifications, while the solution in those

papers cannot be applied to solve the general regression problem.

3.6.1 Related Works

In this subsection, we review the literature that is related to our approach and indicate the main

differences with our proposal. We have carried out a thorough literature search and, for brevity, we

only reference those that are directly related to our approach, so many papers that are not directly

comparable have been left out. We know this is a widely-research field and if any relevant body of

work has not been referenced, it has been unintentional.
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Modeling with Mixture of GP Experts

Mixture of expert models in which each expert is a GP has been proposed in the literature in several

occasions. One of the most popular methods in Bayesian regression is the IMoE to capture local

properties of the signal in different areas of the input space [63]. A gating function is used to de-

termine which GP is active in each area, making it useful locally. Extensions of the IMoE include

modeling the input and output jointly, i.e., modeling p(x, y) [128], or allowing the use of the same

experts in different input areas through hierarchical DPs [199]. Our work addresses GP components

at a global scale, which is a more natural way to capture heteroscedastic noise and other gradual

behaviors. Global GP priors were previously proposed in [113], but only considering a fixed number

of mixtures. Also the work in [195] proposes a mixture of global Gaussian Processes for traffic flow

prediction, but their approach is generative and models the input space too.

Multiresolution GPs [55] relies on a hierarchy of GPs to partition the whole space in order to

capture long-range, non-Markovian dependencies while allowing for abrupt changes. Our method

does not partition the input space and allows for multiple functions at a same input location instead.

Additive GPs in [48, 162] divide the output function into low-dimensional components of varying

degrees. Our method is different as we allow for multiple output functions instead of a partitioning

of the output dimensions, i.e.

g(yi) =

∞∑

k=1

fk(xi1, . . . , xiD) (IMoGGP)

g(yi) = f(xi1) + f(xi2) + f(xi3, xi4) + . . . (aGP)

The additive GPs approach seems more suitable for high-dimensional input spaces, it fails to capture

heteroscedasticity or multimodality, as our proposal does.

Density Regression with Dependent Dirichlet Processes

DDPs are useful to model collections of distributions that vary in time, space or experimental settings.

In the literature, it is often the case to use a semiparametric model, i.e., a parametric function for

the signal, and a nonparametric prior for the noise, in order to capture heteroscedasticity or non-

Gaussianity [47, 178, 58, 44, 71]. Our model considers a more general formulation by assuming a

completely nonparametric model for both signal and noise.

In [178], a DDP prior is used to model the joint distribution p(x, y), given different experimental

conditions. With such a generative approach, modeling x might dominate over y, resulting in an

under-fitting of y. Our approach directly focus on the conditional distribution p(y|x), and applies
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the DDPs in a different way, directly over the input space x. Such discriminative perspective typi-

cally gives better accuracy and has the advantage of estimating less parameters than in the generative

approach. The work in [37] uses sp-DDPs, i.e., DDPs with constant weights over x, to cluster the

behavior of multiple ANOVA models under different experimental conditions. Here again, their ap-

proach is generative, whereas we use the DDP to directly model the conditional distribution p(y|x).

In [47], DDPs are used for Bayesian density regression with kernel-varying weights, assuming a

linear relationship between y and x. Our approach generalizes this work by replacing the linear basis

functions by arbitrary non-linear functions with a GP prior each. The authors in [58, 44] introduce a

DDP-based model for spatial modeling applications called the spatial DP prior, which is a probability

weighted collection of random surfaces. They use a linear process for the signal and a mixture of

GPs to capture the noise. Because each atom in the DP corresponds to a realization of a random field

over the input space, their algorithm needs the assumption that multiple points are available at each

location x and in particular, that the number of points assigned to each GP is always uniform. Our

approach removes those restrictions and assumes no particular functional form of the signal.

Clustering of Time Series

Finally, hierarchical mixtures of GPs have often been used in the literature to cluster time series, as

in [190], [86] and [180]. All these works assume prior knowledge of which points belong together

to the same temporal sequence, and assign the points of a temporal sequence jointly to the same GP.

All these models are generative and seek interpretable results. In our case, cluster assignments are

purely auxiliary variables, we only care about predictive accuracy. Slightly different and also closely

related to our approach is the work in [123], which uses a parametric mixture of GPs for the data

association problem. The objective there is to find the appropriate cluster assignments for each point

and recover multiple trajectories, which is useful in multi-tracking scenarios. In our case, mixture

assignments are just auxiliary variables, and we assume a potentially infinite number of mixtures to

represent the data.

3.6.2 Infinite Mixture of Global Gaussian Processes

The aim in a regression problem is to estimate y ∈ R given an input x ∈ RD and a database

Dn = {xi, yi}ni=1. From the available data it induces a general relation between the input x and the

output y. In probabilistic modeling this relation is expressed by a conditional model:

p(y|x,Dn). (3.17)
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To introduce our IMoGGP we are going to start from the standard stick-breaking construction of

DPs for countably infinite mixture models [200]. Observations are then generated as follows:

π|α ∼ GEM(α) (3.18)

zi|π ∼ Multinomial(π) (3.19)

θm|H ∼ H (3.20)

yi|zi, {θm} ∼ F (θzi), (3.21)

where GEM stands for the stick-breaking prior by Griffiths, Engen and McCloskey [152], α is the

concentration parameter of the DP, and the mixing proportions π are sampled using a stick breaking

procedure [99]. zi indicates the cluster assignment of observation i, and θm designates the cluster

parameters for cluster m, which are sampled from the base measure H . Finally, observations are

sampled from F (·) given the cluster assignments and parameters. One standard selection for F (·) is

a Gaussian distribution in which θm represents its mean and variance.

In the regression setting, each yi is associated with an input xi, so (3.21) can be modified as

yi|zi, {θm},xi ∼ F
(
θzi(xi)

)
, (3.22)

θm|H,φm ∼ Hφm , (3.23)

where we assume that F
(
θzi(xi)

)
is Gaussian-distributed with mean µzi(xi) and variance σ2

zi(xi),

and Hφm is a Gaussian process prior with hyperparameters φm. Now each cluster parameter θm

corresponds to a latent function over the input space. This construction with a general F (·) is exactly

a sp-DDP where the mixture weights are constant over the input space [125], and the parameters of

each component of the infinite mixture model is indexed by the input variable x.

The inference in this model is straightforward, because given {θm}, sampling zi andπ is identical

to the inference of cluster assignments in DPs. Given the number and proportions of clusters and

cluster assignments for all pairs (xi, yi), {θm} can be inferred by sampling from the posterior GP

distribution, and φm can be obtained by sampling (or maximizing) the evidence for each individual

GP in parallel [172]. Specifically, we perform inference by a simple Markov chain Monte Carlo

(MCMC) procedure. We first use the auxiliary variable approach from Algorithm 8 in [140], i.e., we

do not integrate out the hidden variables, and we propose T new clusters at each iteration, which then

allows to sample zi in parallel. Hyperparameters for potential new GPs are sampled from the prior

at each iteration. The procedure for each iteration is detailed in Algorithm 1, in which we have used

the standard vector notation, i.e. y = [y1, . . . , yn]>, X = [x1, . . . ,xn]> and z = [z1, . . . , zn]>. To
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evaluate the GP posterior, i.e., p(y|X, z, {θm}), we only need to consider the subset of points that

are related to each GP, providing huge computational gains.

Algorithm 1 Inference for the IMoGGP
I - Initialize all hidden structures.
II - For each iteration of the Gibbs sampling procedure:
1: Sample extended vector of mixture proportions:

π|z, α ∼ Dirichlet
(
n1, . . . nK , α/T . . . α/T︸ ︷︷ ︸

T times

)
(3.24)

2: Sample latent functions, i.e., cluster parameters θm, m = 1, . . . ,M+:

p(θm|π,y,X, z) ∝ p(θm|Hφm)p(y|X, z, θm) (3.25)

3: Sample cluster assignments:

p(zi|π, yi,xi, z−i, {θm}) ∝ p(zi|π) p(yi|xi, z, {θm}) (3.26)

4: Sample hyperparameters φm, m = 1, . . . ,M+:

p(φm|π,y,X, z) ∝ p(φm|H)p(y|X, z, φm) (3.27)

5: Sample concentration parameter α for the mixture model

The prior probability of assigning a data point to a new GP is proportional to the concentration

parameter α. This hyperparameter directly influences the total number of GPs used to model the

data. We sample α using an auxiliary variable η as in [50]. Allowing α to vary makes the model

more flexible and ready to be used for different datasets.

Finally the predicted distribution for a new input x∗ is given by:

p(y∗|x∗,Dn) =
M+∑

m=1

πmp(y
∗|x∗,Dn, z, {θm}), (3.28)

where
p(y∗|x∗,Dn, z, {θm}) = N (µm(x∗), σ2

m(x∗)), (3.29)

µm(x∗) = k>mC−1
m ym, (3.30)

σ2
m(x∗) = km(x,x)− k>mC−1

m km, (3.31)
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and km = [km(xm
1 ,x∗), km(xm

2 ,x∗), . . . , km(xm
nm

,x∗)]�, Cm = Km + σ2
mI. The set {xm

j }nm
j=1

are the xi for which zi is equal to m and (Km)rs = km(xm
r ,xm

s ). Finally km(x,x′) is the kernel or

covariance function for each GP. This covariance function influences the behavior of each individual

GP, and popular choices are a squared exponential or Mattern kernels, a positive linear mixture of

kernels or their products, see [172] for further details about valid covariance functions.
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Figure 3.17: Properties that can be captured by the IMoGGP model: (a) non-stationary, heteroscedastic

noise; (b) non-Gaussian likelihoods, specifically a Student’s t with Gamma distributed noise; and, (c) multi-

modal predictive distributions. Point assignments to different GPs are represented with different colors and

shapes. The legend lists number of points associated to each GP.

In Figure 3.17, we illustrate with synthetic data the complex behaviors and interesting properties

that our IMoGGP is able to capture. Figure 3.17a shows a quadratic function y = x2 − 0.5 + ε with

added input-dependent Gaussian noise ε ∼ N (
0, (0.01+sin(2πx/10)2)2

)
. In Figure 3.17b, we show

a cubic function y = 4x3−1+ 1
2ε+3γ with added Student’s t and gamma noise, ε ∼ Students′ t(10)
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and γ ∼ Gamma(2, 0.5).9 In Figure 3.17c, we have generated 3 GPs with a Mattern covariance

functions plus Gaussian noise. In all these examples the underlying GP covariance function was a

squared exponential and the likelihood model was Gaussian. It can be seen that our IMoGGP model

is able to deal with heteroscedastic data, heavy tailed and asymmetric noise, and parallel Gaussian

processes with the same regression model, by adding global GPs over the whole input space to

capture these behaviors.

3.6.3 Simulations

This Section compares the performance of the proposed model IMoGGP against a single GP and

the IMoE from [171]. The three algorithms are compared in exactly the same conditions, with the

same hyperparameters and input splits into training and test data. Each simulation is run for 1000

iterations, and averaging is done for the last 500 iterations. Because data points are clustered in

multiple GPs, our algorithm benefits from the same computational gains than in the IMoE case, and

both algorithms are much faster to train than a single GP. All results are computed on an independent

test set corresponding to 20% of the total input data, and we perform 10 different splits at each time.

For all our experiments, we use the popular Noisy Squared Exponential (NSE) kernel, given by

K(x,x′) = v exp

(
− ‖x− x

′‖2
2w2

d

)
+ v0δ(x,x

′) (3.32)

where v is the signal variance affecting the output range, v0 is the noise variance and wd is the length

scale per dimension d of x, which controls how quickly the function can vary, e.g. bigger values

for wd result in a smoother function for dimension d. This kernel has been proved to be universal,

i.e., a single GP with a noisy squared exponential kernel can approximate arbitrary smooth functions

if given enough data [130]. For both the IMoGGP and IMoE models, the overall computation is

decreased by separating data points in different GPs. For scalability reasons and fairness, we compare

our algorithm against an uncollapsed version of the IMoE algorithm presented in [171].

Database descriptions. The synthetic databases correspond to the examples in Section 3.6.2, and

include n = 2000 observations for each case. We also consider three different real databases, all

of them publicly available. The concrete database from [223] consists of 1030 observations and the

input dimension is 8. The objective is to predict the compressive strength (MPa) of concrete, which

is one of the most important materials in civil engineering. This is a highly nonlinear function of

age and ingredients that include cement, blast furnace slag, fly ash, water, superplasticizer, coarse
9We define the Gamma distribution in terms of shape and rate parameters.
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Heteroscedastic Non-Gaussian Multimodal Concrete Marathon RSSI

GP -0.0217 -3.4920 -3.3030 -0.5855 -1.6373 0.2033
IMoE 0.7017 -2.1248 -2.1604 1.9452 -1.6308 0.9943

L
L

H

IMoGGP 0.9008 -2.1237 -1.2575 2.3587 -1.5723 0.9846

GP 0.0288 4.8115 4.2815 93.4640 0.7877 86.6815
IMoE 0.0331 4.8394 5.2263 93.4640 0.7780 82.8929

M
SE

IMoGGP 0.0287 4.8500 4.2703 43.6710 0.7754 82.4264

Table 3.3: Comparison of Accuracy. Average test LLH and MSE for the single GP, the IMoE and the
proposed IMoGGP. The three first databases correspond to the toy examples plotted in Section 3.6.2. The last
three columns correspond to real databases described in this section and publicly available online.

aggregate, and fine aggregate. The actual concrete compressive strength (MPa) for a given mixture

under a specific age (days) was determined from laboratory.

For the New York City marathon data, the objective is to predict the arrival time of a runner given

his gender and age. The output y designates the arrival time, and x is a two dimensional vector with

the age and gender for each runner. We take a subset of 4, 800 runners in total, keeping the same

age/gender relative distribution.

Finally, the RSSI database consists of 4799 measurements of the Received Signal Strength Indi-

cator (RSSI), which captures the power of different wireless networks at different locations along a

large corridor.10 Modeling RSSI correctly is very important, as different signal strengths can have a

strong impact on functionality in wireless planning and localization [15].

Results. Table 3.6.3 shows quantitative results for both synthetic and real databases. We report

the mean predictive log likelihood (LLH) and mean square error (MSE) for each method and input

database. Bold values designate the best method in each case. In this experiments the PLLH is more

telling of the quality of the achieved results, because it captures the full output density estimate, while

the mean only measures the quality of the mean prediction. Nonetheless, we also report the mean for

completeness. For the same experimental conditions, our method gives the highest LLH in five out

of six databases.

The highest gains are achieved for the Multimodal and Concrete datasets. Indeed, the IMoGGP

is the only method able to use multiple functions at a single input location. On the other hand, the

Concrete database is the example with highest dimension (D = 8), and the curse of dimensionality

makes it harder for the IMoE to learn local functions. The IMoGGP is less affected as it uses global

GPs over the input space and is able to share more information across all dimensions.

The presented approach is simple, yet powerful to solve regression problems by using a IMoGGP
10This database is available in my personal webpage.
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that cover the whole input space. This method can deal with arbitrary output distributions, non-

stationary signals, heteroscedastic noise and multimodal predictive distributions straightforwardly. It

is suitable for very large databases of moderate dimension. The computational cost is not enormous

as the data points are partitioned in several GPs, and the sampling step of cluster assignments can be

run in parallel. As future work, we would like to extend this work to deal with high input dimensions.

In such scenario, it might be desirable to have varying mixture weights across the input space like

in [30] and a selection of relevant input dimensions and orders, such as in [48].

3.7 Summary

In this chapter, we have presented a novel application of BNP to model marathon runners. By

including constraints over a sp-DDP prior, we have provided insightful solutions to the problem

of age-grading in marathon races. The ADDP model informs us of the impact of age and gender

on runners’ performance. Statistical age-grading curves have been inferred, which allow us to rank

and reward athletes in a fair manner in official events. A model extension lets us capture the impact

of meteorological conditions or even topology on runners. We infer the latent difficulty for each

competition at different years, allowing robust comparison across different marathon events.

Regarding the applicability of our approach, we remark that the idea of comparing group den-

sity distributions fairly within a single model is an attractive research path, that could result in a

huge and broad number of applications. It can be applied to many problems involving stratified data

and a certain control variable (e.g., age, gender, nationality). In problems concerning group data

or any competitive human activity, sharing the mixture weights across groups is a sensible assump-

tion. Some application examples can be found in pediatrics (e.g., comparison of children population

according to weight and height), social sciences (e.g., analysis of gender impact on actual salary in-

come across countries), or pharmaceutics (e.g., monitoring certain drug responses according to some

patient covariates).

The novelty of the proposed approach relies not only on the application, but also on the necessary

steps to transform a prior that provides accurate estimates into a prior that also gives interpretable

results. Non-trivial structural assumptions and design solutions are made to find hidden properties of

the athletes while providing accurate predictions. We believe that BNP models will be more useful

for non-machine-learning experts in the future if we can tailor the priors to provide accurate and

understandable solutions.
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4
Case-control Indian Buffet Process for

Analysis of Clinical Trials

Biomarker discovery in clinical trials is of the utmost interest to understand both disease mecha-

nisms and drug effects on patients [136]. Traditional approaches for screening potentially interesting

biomarkers suffer from at least one of the following: population heterogeneity, i.e., the fact that each

individual has unique characteristics at all levels (demographics, environment or biological aspects)

resulting in different disease progressions and drug responses; strong correlations among biomark-

ers that might difficult their detection if screened individually; difficulty to isolate drug effects from

natural patient response, specially in small sample-size scenarios.

This chapter presents a novel Bayesian nonparametric (BNP) method for subpopulation charac-

terization and biomarker discovery in clinical trials which overcomes the aforementioned problems.

The case-control Indian buffet process (C-IBP) allows for the identification of prognostic and predic-

tive variables globally and specifically to each subgroup. It extends the general latent feature model

(GLFM) [210] by additionally sharing information across case-control patients in a structured way.

Empirical results on a phase II clinical trial for liver cancer demonstrate that the C-IBP can find

already well-known relevant biomarkers and discover statistically significant new ones.
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4.1 Introduction

Clinical trials constitute a key research tool for advancing medical knowledge and patient care [103,

179]. They are crucial not only in the assessment of drug efficiency and undesired side-effects, but

also in the understanding of complex biological mechanisms, and discovery of interesting biomarkers

for personalized diagnosis and precise treatment [85, 100]. In this chapter, we refer to biomarker as

any variable that can be used as an indicator of a particular disease state. Biomarker discovery

is central in the study of disease mechanisms, and is particularly useful for prediction of disease

progression, prescription of appropriated drugs based on patient characteristics, or even as potential

targets in the development of new drugs, tailored to specific subpopulations [32].

Ultimately, we seek to identify two types of biomarkers: prognostic and predictive variables.

A prognostic factor is a clinical or biological characteristic that provides information on the likely

outcome of a patient disease without considering any treatment. In contrast, a predictive factor

provides information on the likely benefit from treatment, e.g., in terms of tumor shrinkage or sur-

vival [136, 92]. Such predictive factors can be used to identify subpopulations of patients who are

most likely to benefit from a given therapy. Some good examples of predictive biomarkers being used

in the daily clinical oncology practice are estrogen and progesterone receptors to predict sensitivity

to endocrine therapy in breast cancer, HER2 to predict sensitivity to Herceptin treatment, and KRAS

mutation to predict resistance to EGFr antibody therapy [85]. Both types of biomarkers are typically

used in precision oncology for molecular diagnosis of chronic myeloid leukemia, colon, breast, and

lung cancer, as well as in melanoma [139].

Looking for interesting biomarkers has proved so far to be a very challenging task given the high

number of potential candidates, inherent complexity of biological mechanisms, and patient hetero-

geneity [108]. Indeed, clinicians might have a certain amount of information about their patients,

including genetic data, clinical observations, lab measurements, or environmental factors. Data are

typically quite heterogeneous, noisy (might contain missing data), high-dimensional, and highly

correlated, which makes it difficult to handle. Moreover, underlying biological mechanisms are ex-

tremely complex and patient populations are largely diverse. As a consequence, disease progression

or drug response end up being practically unique for each patient, which makes it challenging to

optimize treatment or develop effective drugs. For instance, most major drugs are known to be ef-

fective in only 25 to 60 percent of patients, and more than 2 million cases of adverse drug reactions

occur annually in the United States, including 100,000 deaths [218]. Such problem is aggravated in

small sample-size settings, i.e., when the number of patients is smaller than the number of available

observations per patient, which is often the case in clinical trials. Thus, improved statistical methods
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are imperatively needed to analyze data from clinical trials, which can account for heterogeneous,

noisy, and missing data. Such methods should also be able to:

(i) model population heterogeneity by sharing information across patients.

(ii) deal with correlations in high-dimensional data.

(iii) differentiate between natural response of patients and effects due to the treatment.

This chapter proposes a BNP method to discover both prognostic and predictive biomarkers,

while identifying relevant subpopulations in clinical trials. Our methodology allows us to isolate drug

effects, i.e., we are able to automatically differentiate between effects due to the natural response

of patients and those caused by the treatment itself. At the same time, we are able to discover

different subpopulations that might be characterized by different sets of biomarkers. We identify

global biomarkers that are relevant for the whole patient population, as well as local biomarkers that

only affect specific subpopulations. By performing differential analysis between subpopulations, we

can give information on the direction of change and effect size1 of each variable. Our method is

nonparametric, which means that the number of subpopulations and sets of relevant biomarkers are

automatically learned from data.

We follow a Bayesian approach to better account for missing data and uncertainty [75, 191].

Our method extends the GLFM, an approach based on the Indian buffet process (IBP) that is able

to deal with mixed continuous and discrete data [72, 210]; we extend and adapt such model to deal

with the case-control clinical trial scenario. The IBP has already been used in biological applications

such as analysis of gene expression data [107], biological interaction networks [77], multi-platform

genomics [173], genetic tumor variation [28, 112], or comorbidity analysis of psyquiatric disor-

ders [211]. To the extent of our knowledge, this is the first time that the IBP has been applied to ana-

lyze data from clinical trials. We demonstrate the usefulness of our novel approach on a real dataset,

i.e., a randomized phase II case-control study for the assessment of a cutting-edge immunotherapy

treatment for liver cancer [2]. Not only our method finds already well-known relevant biomarkers, it

also discovers new biomarkers that could not be found with previous methods, both at a global and

subpopulation specific level [158].

4.2 General Latent Feature Model

Latent feature models are unsupervised approaches to analyze complex datasets. They model the

joint probability of the data p(X) using a set of latent features [135]. Each latent feature captures

1In statistics, an effect size is a quantitative measure of the strength of a phenomenon. See Section 4.3.3 for further
details.

69



CHAPTER 4. CASE-CONTROL IBP FOR ANALYSIS OF CLINICAL TRIALS

common correlation patterns among the dimensions, and the objective is to learn the most probable

set of such latent features.2 Figure 4.1 illustrates the idea underlying a latent feature model. X can be

decomposed into the product of two matrices that should be learned from data: a feature-activation

matrix (also called weight matrix) Z and a dictionary matrix B. Each element xnd of matrix X

results from a linear combination of K feature elements Bkd, i.e., xnd corresponds to the realization

of a random variable following the probability distribution f(Zn•B•d), where Zn• is the n-th row of

Z and B•d is the d-th column of B. The simplest latent factor model assumes Gaussian priors over

both the weight and dictionary matrices.

The GLFM, which was first introduced in [209], improves upon classical latent factor models

in three aspects. First, it is a Bayesian nonparametric model where the number of latent features is

also learned from data [61, 72]. In other words, the model assumes an a priori unbounded number

K of latent features, usually denoted by K → ∞. This is a useful property, given that the number

of correlation patterns (corresponding to each latent feature) to be discovered is generally not known

beforehand.

Second, the GLFM can handle heterogeneous datasets and missing observations straightfor-

wardly. This comes handy to deal with clinical trial data, where observations for each patient are

typically diverse in nature, and missing values occur frequently (e.g., not all patients might get the

same tests run, others might drop out from the study at some point, etc.).

Figure 4.1: Illustration of the matrix factorization scheme. Z is the feature-activation matrix, B is the dic-

tionary matrix, and f is the model likelihood which depends on the type of data of each dimension. Although

we depict a single function f in the diagram, this is a slight abuse of notation, since the transformation might

be different for each dimension d. We will see later that f actually corresponds to multiple link functions

Td(· ;φd) that will vary column-wise depending on the type of data and be applied element-wise.

The third advantage of the GLFM is that it allows for a partition of the patients in different sub-

populations. The model assumes a binary feature-activation matrix Z ∈ {0, 1}N×K , which admits

an easy interpretation in which each latent feature can be either active or inactive for each patient.

Patient subpopulations can then be identified by gathering all patients that have the same set of active

features. Within the Bayesian framework, the GLFM resorts to the IBP as a prior for the feature-

2More precisely, the objective is to learn a posterior distribution for each latent feature.
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activation matrix Z [209].

To deal with mixed continuous and discrete observations together [210], the GLFM assumes that

each observation xnd comes from the transformation of an auxiliary Gaussian-distributed random

variable ynd, resulting in the following generative model:

xnd = Td(ynd;φd) (4.1)

ynd|Z,B ∼ N (Zn•B•d, σ
2
y), Z ∼ IBP(α). (4.2)

Gaussian priors are assumed over each elementBkd ∼ N (0, σ2
B). The function Td(· ;φd) is the like-

lihood transformation for dimension d, a link function which will depend on the type of data at hand,

and φd are eventual parameters for the chosen transformation Td(· ;φd). The inference proposed for

such model follows a Markov chain Monte Carlo (MCMC) approach, namely, an accelerated Gibbs

sampling (AGS). The idea of AGS is that, instead of completely collapsing B, we instantiate it at

each iteration using a subset of the data, randomly chosen and different at each iteration. Algorithm 2

shows the inference procedure for a single iteration of the GLFM.

Algorithm 2 Single iteration in the MCMC procedure for the GLFM (see [210] for further details).
Input: feature activation matrix Z, pseudo-observations Y, observations X

1: update Z given Y using AGS
2: for d = 1, . . . , D do
3: sample Bd given Z, Yd

4: sample Yd given X, Z, and Bd

5: end for
Output: activation matrix Z, pseudo-observations Y, and dictionary B

4.3 Our Approach

Let us consider a clinical trial for the assessment of a certain treatment. N is the total number of

patients involved in the clinical trial, and D is the number of available observations for each patient

– those might include demographics, genetic data, clinical or environmental information. Let X

be the N × D input matrix of the observations for all patients. Such matrix might be incomplete,

noisy and heterogeneous (it might contain very diverse data such as continuous, positive real-valued,

categorical, ordinal, or count data). Among the N patients, N0 patients have taken a placebo (we

refer to this group as the placebo arm), and N1 others have received the actual drug, thus belonging

to the treatment arm. Let R ∈ {0, 1}N×1 be the drug indicator vector, which takes non-zero values

for patients belonging to the treatment arm.
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Among the D available dimensions for each patient, we have a variable d∗ (or several) that

captures how well patients are doing, e.g., the elapsed time until tumor size increases.3 In such

scenario, our objective is to discover prognostic and predictive biomarkers with respect to d∗, i.e.,

prognostic variables that help us predict the natural evolution of patients regardless of treatment, and

predictive variables to anticipate patient drug responses.

Here, we resort to an unsupervised approach4 based on the GLFM where we model the joint

probability distribution p (X). The gist of our method for biomarker screening is to first, find an

useful projection of the patients population into a latent space, and second, conduct a set of hypothesis

tests based on such partition of the patients, i.e., a multiple hypothesis testing procedure to quantify

the statistical significance of each biomarker. Finding an adequate basis for the latent space is crucial

to reveal an useful set of subpopulations (patients with similar biomarker profiles) where drug effects

are isolated from natural disease responses, thus revealing potential targets for improvement of the

efficiency of the drug.

4.3.1 Modeling

In order to deal with the small sample-size scenario typical from clinical trials, we adapt the GLFM to

share information between patients in the placebo and treatment arm. In particular, we allow for two

types of latent features: global features and treatment-specific features. Global features are learned

from patients in the placebo arm, and can be active for any patient, capturing general patterns in the

patient population regardless of any treatment. In contrast, drug-specific features are learned from

treated patients solely, and can only be active for patients in the treatment arm, capturing correlations

linked to the effect of the drug. We call this extension the case-control Indian buffet process (C-IBP)

feature model.

Let Z and W be the feature activation matrices for global and drug-specific features respectively.

Note that the model will learn the necessary number of global features K and treatment-specific

features K ′. The complete generative model is given by

3The definition of variable d∗ is important for the post-processing statistical analysis of the model output.
4Note that dimension d∗ is included in matrix X, we treat such variable in the same way as any other observation, in

contrast to any supervised approach such as linear mixed models or hazard modeling. A standard supervised approach was
already conducted for our application at hand at [2].
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Figure 4.2: Graphical model for the C-IBP. Nodes represent random variables: grey ones are observed,
whereas white ones are hidden. X is the observation matrix for all patients, and R is the drug indicator vector
to distinguish patients in the placebo and treatment arms. Z and W are the feature activation binary matrices
for global and treatment-specific features, whereas B and C are the respective dictionary matrices.

xnd = Td(ynd;φd) (4.3)

ynd|Z,W,B,C,R ∼ N (Zn•B•d + 1[Rn = 1]Wn•C•d, σ
2
y) (4.4)

Bkd ∼ N (0, σ2
B), Ckd ∼ N (0, σ2

C) (4.5)

Z ∼ IBP(α), W ∼ IBP(α), (4.6)

where B and C are the dictionary matrices for global and treatment-specific features, respectively.

Figure 4.2 shows a graphical representation of the C-IBP. Concerning the link functions Td(· ;φd),

we use the default transformations described in [210].

4.3.2 Inference

Following [210], we use an MCMC method, which has been broadly applied in other IBP-based

models [72, 131, 219]. An important remark is that conditioned on Y, the feature activation matrices

Z, W, and the dictionary matrices B, C, are all independent from the observation matrix X. In order

to infer matrices Z and W, we resort to a collapsed Gibbs sampler, which presents better mixing

properties than the uncollapsed one. Gibbs sampling is often chosen in the context of the standard

linear-Gaussian IBP because of its simplicity, but its computational cost is relatively high [72]. To

make the algorithm more efficient, we resort to the AGS which is fully described in [39]. Some of

the sampling steps for the feature activation matrices can then be done independently and in parallel,

as in the uncollapsed case.

A simple sub-optimal inference procedure for the C-IBP can be directly derived based on the
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inference for the GLFM. We first learn the global features by training the GLFM with patients be-

longing to the placebo arm exclusively. We thus learn a set of global features to describe general

placebo patients. Next, we learn the drug-specific features for patients in the treatment arm. This is

performed by training the GLFM model with the whole patient population and imposing the follow-

ing constraints:

(i) global features (corresponding to matrix B) are kept fixed to the values learned previously.

(ii) feature activations for patients in the placebo arm are initialized to their previous value.

(iii) drug-specific features are forced to be inactive for all patients in the placebo arm, i.e., these

features are learned solely based on patients belonging to the treatment arm. These allow us to

completely isolate the effect of the drug.

More precisely, let Z0 ∈ {0, 1}N0×K and Z1 ∈ {0, 1}N1×K be the global feature activation

matrices for patients in the placebo and treatment arm respectively, whereK is the number of inferred

global features, N0 is the number of patients in the placebo arm, and N1 is the number of patients

belonging to the treatment arm. Also, let us define Y0 and Y1 as the auxiliary variables for placebo

and drug patients respectively. Patients in the placebo arm are only affected by matrices Z0, Y0, and

B. For these latent variables, we can directly apply the inference procedure described in Algorithm 2.

Once Z0, Y0, and B have been sampled, global feature activations for drug patients Z1 can be

sampled as

p(Z1
nk = 1|Z−nk,B) ∝ mk

N

D∏

d=1

N (ynd|
∑

j

Z1
njBjd, σ

2
y), (4.7)

where mk is the number of patients for which feature k is active. Note that at this stage, we do not

allow for the creation of new global features: we only want to know the assignment of global features

for the drug population. Given all feature activation matrices Z and W, C and Y1 can be sampled

in the same way as B and Y0 before. The whole inference procedure is summarized in Algorithm 3.

4.3.3 Statistical Methodology

Once the model has been trained (samples from an approximate posterior distribution can be drawn),

we proceed with a classical frequentist approach5 to identify statistically significant prognostic and

predictive biomarkers. The whole procedure is summarized in Algorithm 4. First, we take M pos-

terior samples from the posterior distribution of Z. For each sample, patients that have the same
5Although Bayesian approaches to quantify statistical significance exist, such as posterior predictive checks or Bayesian

factors, classical statistics predominate in the bio-medical field.
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Algorithm 3 Sub-optimal inference procedure for the C-IBP model.
Input: observation matrix X

1: Initialize: feature activation matrices Z and W, and pseudo-observations matrix Y
2: for each iteration do
3: sample Z0, Y0, and B given X, according to Algorithm 2
4: for d = 1, . . . , D do
5: sample Z1 given Y1 and B according to (4.7)
6: end for
7: sample W given Z1 and Y1 using AGS
8: for d = 1, . . . , D do
9: sample Cd given Z, W, and Y•d

10: sample Y1
d given X, Z, W, B•d and C•d

11: sample φd if needed
12: end for
13: end for
Output: feature activation matrices Z and W

activation pattern of features can be grouped together in the same subpopulation. For instance, sub-

population (1001) refers to all patients having the first and forth feature active. Let P refer to the

total number of inferred subpopulations across the M posterior samples. By considering multiple

posterior samples, we obtain slightly different partitions of patients in subpopulations. This can be

seen as performing soft-clustering of patients, i.e., patients that are in-between subgroups might be

assigned to different subpopulations in different posterior samples. Thus, the method is more robust

against model inaccuracies at clustering patients. This is an important benefit of Bayesian modeling

in general.

Next, in order to also make our method robust against outliers (patients with extreme biomarker

values), we perform bootstrapping L times, for each subpopulation and posterior sample. Boot-

strapping relies on random sampling with replacement. It is a technique used for computing robust

estimators against outliers by sampling from an approximating distribution, which is particularly use-

ful for hypothesis testing when the model assumptions are in doubt or unknown [216]. The standard

bootstrapping approach relies on the construction of an estimator for hypothesis testing based on a

number L of resamples with replacement of the observed dataset (and of equal size to the observed

dataset), i.e., sampling with replacement from the empirical distribution of the observed data.

Given M posterior samples and L bootstrapping instances for each sample, we end up with ML

different subpopulation instances. Measures of effect size (quantitative measure of the difference

between two subpopulations) and statistical significance can be computed for each instance and then

averaged across them, so that partition inaccuracies and outlier effects are mitigated. In the described
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algorithm, we suggest to compare each possible pair of subpopulations,6 but we might want to focus

only on the biggest communities or specific subpopulations of interest to reduce computational cost.

LetQ be the total number of considered comparisons between subpopulations. In our particular case,

Q = P · (P − 1)/2 as we consider each pairwise comparison among the P subpopulations. Let i(q)

and j(q) refer to the set of subpopulation indexes corresponding to comparison q, e.g., i(q) = 4 and

j(q) = {1, 2, 3} corresponds to the comparison of subpopulation 4 against subpopulations 1, 2, and

3 aggregated. In the following, we will describe how to compute the Q×D effect size and statistical

significance matrices.

Algorithm 4 Statistical approach for biomarker discovery (post-processing procedure).
Input: M posterior samples from Z and W, list of P subpopulations, and Q comparisons

1: for m = 1, . . . ,M do
2: bootstrap for each subpopulation L times
3: end for
4: for q = 1, . . . , Q do
5: choose subpopulations Gi(q) and Gj(q)

6: compute effect size according to Eq. 4.8, 4.9, and 4.10.
7: compute statistical significance (p-value) according to the Mann-Whitney test for continuous

variables and Fisher test for discrete variables, adjusting for multiple hypothesis testing [17]
8: end for

Output: effect size matrix ∆ and significance matrix Υ, both of dimensions Q×D

Effect size. For each comparison q and dimension d, we compute the effect size ∆qd as:

∆qd = Em,l [δqd(m, l)] , (4.8)

where δqd is an M × L matrix of relative effect sizes for each posterior sample m and bootstrap

iteration l. The expectation is done across all posterior samples and bootstrapping iterations, which

are equally probable. In the case of continuous variables, we define

δqd(m, l) = log2



µd

(
Gi(q)ml

)

µd

(
Gj(q)ml

)


 , (4.9)

where Gi(q)ml and Gj(q)ml refer to subpopulations i(q) and j(q) in the posterior sample m and bootstrap

iteration l, and µd(G) is the mean value of variable d within a given subpopulation G. Taking the

logarithm facilitates interpretation, such that an increase or decrease ratio has the same scale: for

6Other comparison schemes are possible, such as a leave-one-out strategy consisting in the comparison of each individ-
ual subpopulation against the rest. Note that as the number of comparisons increase, the correction for multiple hypothesis
testing shall be stronger.
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instance, δqd(m, l) = 0 means that variable d has exactly the same averaged value in both subpopu-

lations, δqd(m, l) = +1 means that variable d is twice higher in subpopulation i, and δqd(m, l) = −2

means that variable d is four times smaller in subpopulation Gi(q)ml with respect to subpopulation Gj(q)ml .

In the case of a discrete variable d, we check for mean differences, i.e.,

δqd(m, l) = µd(Gi(q)ml )− µd(Gj(q)ml ). (4.10)

Note that we define different measures for continuous and discrete variables as the dynamic range of

continuous variables is generally much higher, making the logarithmic scale more appropriate.

Statistical significance. To measure how significant an effect size δqd(m, l) is, for each poste-

rior sample m and bootstrap instance l, we compute a statistical significance value υqd(m, l) as the

p-value resulting from a certain two-sample test. In general, selecting the most appropriate statis-

tical test in hypothesis testing is a challenging task [94, 127]. Here, we opt for one statistical test

for all continuous variables and another one for discrete variables for simplicity, although more so-

phisticated strategies could certainly be investigated. We use the Mann-Whitney test for continuous

variables and the Fisher test for discrete variables. The Mann-Whitney test is a general nonparametric

statistical test to check whether the distribution of both populations are equal without requiring any

normality assumption. The Fisher test is a standard test for categorical variables [216]. We define

the Q×D matrix of statistical significance Υ, for each comparison q and biomarker d as the median

p-value across the M samples and L bootstrapping instances:

Υqd = medianm,l [υqd(m, l)] , (4.11)

where υqd denote the M × L matrix of statistical significance values υqd(m, l) for each posterior

sample m and bootstrapping instance l. Finally, we follow the Benjamini Hochberg procedure for

multiple hypothesis testing to adjust the statistical significance threshold αs such that a certain false

discovery rate (FDR) is guaranteed [17]. A biomarker d is said to be statistically significant for com-

parison q if its significance value Υqd (the median p-value across posterior samples and bootstrapping

instances) is smaller than the adjusted threshold, i.e., Υqd < αs.

4.4 Results

To evaluate the performance of our method, we consider a randomized phase II trial regarding an im-

munotherapy treatment against liver cancer [2]. This clinical trial studies the effect of Codrituzumab,
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a manufactured antibody treatment against a liver cancer protein called Glypican-3 (GPC3) that is

expressed in hepatocellular carcinoma (HCC). GPC3 is a member of the glypican family, a group

of heparan sulfate proteoglycans linked to the cell surface and which plays an important role in cell

growth, differentiation, and migration [116, 52]. GPC3 is highly expressed in HCC and has become

a useful diagnostic marker for HCC by immunohistochemical (IHC) studies, since the adjacent non-

tumoral tissue does not express GPC3 [221]. GPC3 may promote HCC growth by stimulating the

canonical Wnt pathway, and/or interacting with the IGFII-IGF1R pathway, or it may play a role in

FGF signaling [26]. Therefore, GPC3 may represent a specific tumor marker and a potential target

for therapy in HCC [138].

4.4.1 Antibody Treatment for Hepatocellular Carcinoma

Codrituzumab is a recombinant, humanized monoclonal antibody that binds to human GPC3 with

high affinity [98, 197]. Codrituzumab interacts with CD16/FcγRIIIa and triggers antibody-dependent

cytotoxicity (ADCC), as shown by [137]. Non-clinical characterization of Codrituzumab demon-

strates that it elicits ADCC against GPC3-positive human hepatoma cell lines, using human periph-

eral blood mononuclear cells as effector cells [198]. Phase I studies in US and Japan showed that

Codrituzumab was well tolerated up to 20 mg/kg/wk without dose limiting toxicity [227, 93].

Here, the considered phase II clinical trial aims at comparing Codrituzumab versus placebo in

advanced HCC patients who had failed prior systemic therapy (whole body treatment). The database

consists of 180 patients, 60 patients in the placebo arm and 120 patients in the treatment arm. For

each patient n, we consider 71 observations which include demographic information, characteristics

of the tumor and diverse clinical measurements. We used progression free survival (PFS) as a clinical

endpoint in our analysis. This variable measures the elapsed time in months until the tumor grows in

size, which is correlated to the survival of HCC patients.

According to a first analysis of this database published in [2], Codrituzumab was not found

to be effective against liver cancer, although it was suggested that a higher dose of Codrituzumab

or selecting patients with high level of GPC3 could improve the outcome. This directly relates to

the patient heterogeneity problem explained in Section 4.1. By directly addressing this issue, our

approach gives us additional information that could not be extracted in that first study.

4.4.2 Identified Subpopulations

As shown in Table 4.1, the C-IBP model identified twelve subpopulations from the set of 180 patients,

and three latent features (F1, F2, and F3) which capture correlation patterns of biomarker values.
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Sub-
population

Drug
Identifier

F1 F2 F3 Average num.
of patients

Mean PFS
(months)

Median PFS
(months)

1. 0 0 0 0 33.37 3.06 1.65
2. 0 0 1 0 4.07 2.29 2.24
3. 0 1 0 0 17.84 2.72 1.81
4. 0 1 1 0 4.72 7.05 7.18
5. 1 0 0 0 51.52 3.22 2.55
6. 1 0 0 1 16.77 4.17 3.65
7. 1 0 1 0 8.38 1.74 1.33
8. 1 0 1 1 2.07 2.69 2.65
9. 1 1 0 0 29.88 3.36 2.03

10. 1 1 0 1 4.90 4.44 4.34
11. 1 1 1 0 4.53 6.31 5.31
12. 1 1 1 1 1.94 10.04 10.01

Total 120.0 63.82 25.72 25.69 180 3.44 2.04

Table 4.1: List of subpopulations identified by the C-IBP. Each subpopulation (row) is represented by a
feature activation pattern, e.g., (1100). Last row respectively corresponds to the average number of patients
having each feature active, as well as the total size of the database, global mean and median PFS values.

These features can be either active (= 1) or inactive (= 0) for each patient individually. A feature

is active when the corresponding pattern contributes to the total biomarker values of that patient.

A subpopulation is defined as a group of patients having similar biomarker values, encoded by the

same set of active features. Among the three inferred features, F1 and F2 are global, and F3 is a drug-

specific feature. The later captures variations exclusively due to the drug, as it can only be active for

patients in the placebo arm, corresponding to subpopulations 1 to 4. The last three columns in the

table tell us how many patients are present on average in each subpopulation,7 as well as the mean

and median values of the PFS.

In the placebo arm, the C-IBP model inferred four subpopulations from data (groups 1 to 4

in Table 4.1). Subpopulation 4 has a significantly higher PFS, indicating better prognosis. In the

treatment arm (groups 5 to 12 in Table 4.1), subpopulations with feature F3 active (6, 8, 10 and 12)

have higher PFS values. The effect of F3 on prolonged survival was found across all subpopulations,

as seen by pairwise comparisons between subpopulations in the treatment arm with F3 active vs. the

ones with F3 inactive (e.g., 5 vs 6, 7 vs 8, etc).

Table 4.3 shows a boxplot illustration for PFS values within each of the twelve inferred subpop-

ulations. Within the placebo arm, subpopulation 4 is the only sub-group that has much longer PFS

values or survival, whenever both F1 and F2 are active. Concerning the treatment arm, the last three

7Note that the size of each subpopulation is not an integer number of patients because we are averaging over different
posterior samples and bootstrapping iterations at each time, as discussed in Section 4.3.3

79



CHAPTER 4. CASE-CONTROL IBP FOR ANALYSIS OF CLINICAL TRIALS

communities (subpopulations 10, 11, and 12) have PFS values that are more than twice higher with

respect to the global average. Yet, it is not clear a priori whether such communities have longer PFS

because of the drug, or because they had a good natural predisposition from the beginning. Latent

features can help us answer this question. In particular, by looking at the global features F1 and F2,

we can see that communities 11 and 12 share the same activation pattern than subpopulation 4; this

means that they share the same biomarker values/good conditions for a positive natural response, in-

dependently of the drug. In contrast, community 10 has the same activation pattern than community

3 for the global features, which indicates that there is no a priori reason to expect a positive natural

response from these patients: the survival increase in that case would be exclusively due to the drug,

and captured by feature F3. In general, note that whenever feature F3 is active, there is a systematic

increase in PFS values for each community with respect to their equivalent subpopulation with F3

equal to zero. Thus, we can say that F3 captures a positive effect of the drug on patients, which is

stronger whenever feature F2 is also active. Figure 4.3 shows the survival or PFS values as box plots

for each inferred subpopulation.
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Figure 4.3: Survival boxplots for each subpopulation. We represent the distribution of PFS (in months) for
each subpopulation. The patterns in the x-axis correspond to those listed in Table 4.1.

4.4.3 Discovered Biomarkers

Next, we analyze the effect of each latent feature activation on the biomarker values. Figure 4.4 depict

the relative mean effect size of each biomarkers in relation to each of the three latent features (F1-F3).

The black vertical lines correspond to two standard deviations of the relative effect size matrix δqd.

Biomarkers which are statistically significant at significance level αs = 0.001 are marked with a red
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circle. Table 4.2 corresponds to the same information in numerical values, as well as p-values for

each biomarker. More precisely, these figures and tables result from the comparison of aggregated

subpopulations in which one particular feature is active against all the other subpopulations (where

that particular feature is inactive). For instance, Figure 4.4a results from the statistical procedure

described in 4.3.3 applied to subpopulations (3,4,9,10,11,12) against (1,2,5,6,7,8). The sign (+ or -)

is important for the biological interpretation of the data, and indicates the direction of the biomarker

effect on the case group versus the control group, such that positive effect means that the biomarker

has a higher value in the case group versus the control group.

Variable
description

Effect
size Mw-test

AFP 3.65 1.31e-07
H score Mem 1.30 1.53e-21
H score Cyt 0.69 2.08e-16
sGPC3 11/96 0.47 1.34e-04
sGPC3 30/57 0.40 1.53e-05
sGPC3 30/607 0.34 6.21e-10
sGPC3 114/165 0.32 2.48e-10
CD56-CD16+ 0.34 1.42e-03
CD56dimCD16- 0.22 7.69e-04
NK 0.42 4.40e-03
CD56dimCD16
bright 0.42 6.23e-03

CD16 0.10 3.88e-03
NKP46 0.09 3.08e-03
CD8 0.07 1.41e-02
CD3 0.05 5.38e-03
CD45 0.05 6.88e-03

Variable
description

Effect
size F-test

IHC 3+ 0.84 1.96e-31
IHC 1+ -0.42 9.97e-11
IHC 2+ -0.23 3.67e-06
IHC 0 -0.19 4.42e-05
FCGRIIIA-158-
C/A -0.25 7.16e-04

FCGRIIIA-158-
A/A 0.20 9.21e-03

(a) Feature F1

Variable
description

Effect
size Mw-test

CD3/CD16
necrotic / stroma 3.94 1.29e-17

P Necrotic /
stroma 3.91 9.39e-18

CD3/CD16
tumor viable -1.27 1.29e-17

P Tumor Viable -1.24 9.39e-18
sGPC3 30/607 -0.25 4.02e-04
AAT -0.58 1.54e-03
sGPC3 114/165 -0.21 2.43e-03

Variable
description

Effect
size F-test

- - -

(b) Feature F2

Variable
description

Effect
size Mw-test

CD56dimCD16
bright 1.27 2.18e-09

NK 1.24 2.13e-10
CD56-CD16+ 0.61 2.19e-06
CD56dimCD16- 0.42 1.04e-05
CD8 NK 0.37 7.13e-08
DN 0.27 3.73e-05
CD16 0.24 6.06e-10
NKP46 0.22 1.14e-09
CD8 0.20 3.44e-09
CD45 0.14 5.09e-11
CD3 0.13 1.49e-08
CD4 0.12 5.06e-06
H score Mem -0.89 1.73e-03
DP 0.54 3.55e-04
B 0.19 8.55e-04
CD56 0.18 3.05e-03
AFP -3.34 1.86e-02
P Stroma -1.26 6.70e-03
CD4/CD8 -0.75 9.05e-03
Ctrough 0.59 4.24e-03
P Tumor 0.35 1.10e-02
sGPC3 30/607 -0.19 1.59e-02

Variable
description

Effect
size F-test

- - -

(c) Feature F3

Table 4.2: Significant biomarkers associated to the activation of each inferred latent feature. F1 and
F2 are global features, whereas F3 is a treatment-specific feature. Colors code for the different statistical
significance levels: αs = 0.001 (black), αs = 0.005 (blue), and αs = 0.01 (green). Continuous variables on
the top, discrete variables on the bottom.

Feature F1 in Figure 4.4a is associated with high levels of alpha-fetoprotein and GPC3 expression

both in tumor (GPC3 cytoplasmic and membrane IHC staining), and as soluble protein sGPC3 (as

detected by four serum assays). Feature F2 is associated with higher levels of inflammatory T and NK

cells (positively stained for CD3/CD16) in tumor necrotic tissue and adjacent peri-tumoral stroma,
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Figure 4.4: Relative effect size of biomarkers associated to each latent feature inferred by the C-IBP
model. Significant biomarkers according to the Mann-Whitney test are marked with red circles (αs = 0.001).
F1 identifies two types of patients with similar prognosis but different characteristics, F2 and F3 are asso-
ciated with higher Progression Free Survival: F2 capture prognostic biomarkers while F3 capture predictive
biomarkers.
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and low levels of CD3/CD16 in viable tumor cells, as shown in Figure 4.4b. Feature F3 is associated

with higher levels of T (CD3, CD45) and NK (CD16, NKp46) cell markers, and low levels of alpha-

fetoprotein (see Figure 4.4c).

4.4.4 Discussion

The identification of biomarkers in complex datasets affected by multiple confounding factors can

be challenging. In drug development, clinical trials are powered to deal with situations of con-

stant drug exposure, and traditional statistical methods have difficulties extracting signals from data

confounded by factors like differential drug exposure. Therefore, sensitive analytical methods are

needed to deconvolute real signals from biological and technical noise. We applied the C-IBP to a

phase II clinical study of Codrituzumab in HCC which had failed to meet the primary endpoint due

to insufficient drug exposure in the treatment arm. Traditional statistical approaches did not render

useful insights into potential biomarkers of response; in contrast, the IBP-based analysis identified

several biomarkers that stratified patient subgroups with statistical significance.

The C-IBP model identified two kinds of features: global features, which were active for pa-

tients regardless of treatment and indicated prognostic markers, and drug-specific features, which

were active for patients only in the treatment arm. Global prognostic features included known

prognostic markers in HCC, like alpha-fetoprotein and GPC3 expression in the tumor. In addi-

tion, global features included levels of inflammatory T and NK cells in tumor necrotic tissue and

adjacent peri-tumoral stroma. Patients with higher levels of CD3/CD16 staining in peri-tumoral tis-

sue and lower levels in viable tumor cells had better prognosis, which is consistent with the role of

inflammatory cells in anti-tumor response [57]. Drug-specific features included different NK cell

subtypes. This is consistent with the mode of action of Codrituzumab, which requires engagement

of the CD16/FcγRIIIa receptor in NK cells to recruit NK cells to the tumor and subsequent tumor

lysis [137]. The C-IBP method allows for flexible interrogation of the data, for example, the effect

of F3 on prolonged survival was found across all subpopulations, as seen by pairwise comparisons

between subpopulations in the treatment arm with F3 active vs. the ones with F3 inactive (e.g., 5 vs

6, 7 vs 8, etc. . . in Table4.1).

4.5 Summary

In this chapter, we have presented a BNP method for subpopulation characterisation and biomarker

discovery in clinical trials. The BNP is very flexible, as it automatically infers the required number
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of latent features that better explain the observations. We were able to identify both prognostic and

predictive variables, and quantify the direction of action, effect size and statistical significance for

each biomarker. Our model handles noise and missing information naturally, as well as heterogeneity

in the types of data (continuous versus discrete).

Through the use of global and drug-specific features, the C-IBP model clearly separates between

drug effects and natural prognostic factors. Also, our methodology of combining a Bayesian model

with classical statistical tools is robust in several aspects: first, instead of doing hard-clustering, we

compute a soft-partition by using the average of all feature activations in the posterior. Second, we

combine bootstrapping techniques with posterior samples of the model, and statistical significance

is assessed using classical well-known statistical tests. In summary, the C-IBP applied to a complex

phase II clinical study in HCC confounded by several factors was able to identify prognostic and

predictive biomarkers of response to Codrituzumab. Given the large heterogeneity in response to

cancer therapeutics, novel methods of identifying mechanisms and biology of variable drug response

and ultimately treatment individualization will be indispensable [148].
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4.A Appendix: General Latent Feature Modeling Toolbox

GLFM is a software library to perform latent feature modeling in heterogeneous datasets, where

the attributes describing each object can be either discrete, continuous or mixed variables. Up to

our knowledge, this library provides the first available software for latent feature modeling in het-

erogeneous data, and includes functions for the two main applications of the GLFM, i.e., missing

data estimation (a.k.a. table completion) and data exploratory analysis [210]. The core algorithm is

developed in C++ and includes user interfaces in both Python and Matlab.8

4.A.1 Implementation

The main function of the package, hidden = GLFM.infer(data),9 runs the inference algo-

rithm given the input structure data and returns the learned latent variables in the output structure

hidden. This function receives as input an observation matrix Xd and a vector indicating the type

of data for each dimension (optionally, model hyperparameters and simulation settings can be cus-

tomized by the user). The latent variables are learned by making use of the mapping transformations

listed in Table 4.3 to account for both continuous and discrete data types. Here, the parameters µ and

w are used to shift and scale the raw input data, and are respectively set to the empirical mean and the

standard deviation for real-valued attributes, and to the minimum value and the standard deviation

for positive real-valued and count attributes. This guarantees that the prior distributions on the latent

variables are equally good for all the attributes in the dataset, regardless their support. The output

structure hidden contains the latent feature vectors Zn• for n = 1, . . . , N , the weighting vectors

B•d, as well as auxiliary variables for both the likelihood and link function. Our implementation of

the GLFM makes use of the GNU Scientific Library (GSL),10 to efficiently perform a large variety

of mathematical routines such as random number generation, and matrix or vector operations.

4.A.2 Usage

Data preprocessing and initialization. A convenient property of the GLFM package is that it can

be used blindly on raw data without requiring any preprocessing step on the dataset, nor special

tunning of hyperparameters. The only requirement for the user to use the package is to format the

data as a numerical matrix of size N × D and indicate in an additional vector the type of data for

each of the D attributes. As mentioned above, the parameters of the transformations in Table 4.3 are

8GLFM code is publicly available in https://github.com/ivaleraM/GLFM
9This call corresponds to a python call. The equivalent call in Matlab is hidden = GLFM infer(data).

10https://www.gnu.org/software/gsl/
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Type of Variable Domain Transformation x = fd(y)

Real-valued x ∈ < x = w(y + u) + µ

Positive real-valued x ∈ <+ x = log(exp(w(y + u) + µ) + 1)

Categorical x ∈ {1, 2, . . . , R} (unordered set) x = arg maxr∈{1,...,R} yr

Ordinal x ∈ {1, 2, . . . , R} (ordered set) x =





1 if y ≤ θ1
2 if θ1 < y ≤ θ2

...
R if θR−1 < y

Count x ∈ {1, 2, 3, . . .} x = blog(exp(w(y + u) + µ) + 1)c

Table 4.3: Mapping functions implemented in the toolbox.

internally fixed to ensure that the pseudo-observation for all attributes fall in a similar interval of the

real line, so that the prior distribution on the latent variables is equally good for all attributes.

However, we incorporate an additional functionality that allows the user to specify external pre-

processing functions to further improve the performance of the algorithm. For instance, in cases in

which the distribution of an attribute presents a clearly non-Gaussian behavior, e.g., it is concentrated

around a single value or heavy-tailed, it might be suitable to pre-process this variable by applying a

logarithmic transformation, as shown Figure 4.5.

Missing data estimation. GLFM can be used for estimation and imputation of missing data in

heterogeneous datasets, where the missing values can be encoded with any (numerical) value that

the user specifies. The Bayesian nature of the GLFM allows to efficiently infer the latent fea-

ture representation of the data using the available information (i.e., the non-missing values), and

using it to compute the posterior distribution of each missing value in the data. Note that given

the posterior distribution of each missing value, one might opt for different approaches to impute

missing values, e.g., one might opt for imputing a sample of the posterior distribution or sim-

ply the maximum a posteriori (MAP) value. The GLFM package provides the function [Xmap,

hidden]=GLFM.complete(data) which infers the latent feature representation, given the (in-

complete) observation matrix, and returns a complete matrix where the missing values have been

imputed to their MAP value. This function therefore runs the inference function GLFM.infer(),

as well as the function GLFM.computeMAP(), which computes the MAP of a single missing ele-

ment xdn given zn and Bd.
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Figure 4.5: Illustration of optional data pre-processing. Panel (a) shows the histogram a heavy-tailed

attribute and panel (b) the attribute after a logarithmic transformation, as well the distribution of the inferred

latent feature patterns. Here we observe that the distribution of the attribute is better captured by the latent

model when a pre-processing step is performed to correct/minimize the non-Gaussian behavior of the attribute.

Data exploration analysis. GLFM can also be used as a tool for data exploratory analysis, since

it is able to find the latent structure in the data and capture the statistical dependencies among the

objects and their attributes in the data. GLFM provides (weighted) binary latent features, easing their

interpretation and making it possible to cluster the objects according to their activation patterns of

latent features. Moreover, it also allows to activate a latent feature that is active for all the objects

(a.k.a. bias term), which might be useful to capture the mode of the distribution of each attribute in the

dataset. In order to ease data exploration, GLFM provides the function GLFM.plotPatterns(),

which plots the posterior distribution for of each attribute under the given latent feature patterns,

and therefore, allows us to find patterns and dependencies across both objects and attributes. This

function, in turn, makes use of the function GLFM.computePDF(), which evaluates the posterior

distribution of an attribute under a given latent feature vector.

4.A.3 Showcase Example: Voters Profile in Presidential Election

In this subsection, we illustrate the usefulness of the GLFM for data exploration in the context of

politics, to identify meaningful demographic profiles, together with their geographic location, and

voting tendencies in the United States. This showcase example shows how to include the specific

domain knowledge into the proposed GLFM to ease the data exploration process. We apply the

GLFM library to understand the correlations between demographic profiles and political vote ten-

dencies. In particular, we focus on the United States presidential election of 1992, in which three

major candidates ran for the race: the incumbent republican president George H. W. Bush, the demo-

cratic Arkansas governor Bill Clinton, and the independent Texas businessman Ross Perot. In 1992,

the public’s concern about the federal budget deficit and fears of professional politicians allowed the

independent candidacy of billionaire Texan Ross Perot to appear on the scene dramatically [9], to the
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point of even leading against the major party candidates in the polls during the electoral race.11 The

race ended up with the victory of Bill Clinton by a wide margin in the Electoral College, receiving

43% of the popular vote against Bush’s 37.5% and Perot’s 18.9% [109]. These results are noted for

being the highest vote share of a third-party candidate since 1912, even if Perot did not obtain any

electoral votes [109].

Our primary objective in this section is to find and analyze the different types of voters’ profiles,

as well as which candidate each profile tends to favor. To this aim, we used the publicly available

counties dataset gathering diverse information about voting results, demographics and sociological

factors per counties.12 This dataset contains information for 3141 counties. Table 4.4 lists the per-

county attributes that we used as input for our model.

Attribute description Type of data
State in which the county is located Categorical with 51 categories
Population density in 1992 per squared miles Positive real data
% of white population in 1990 Positive real data
% of people with age above 65 in 1990 Positive real data
% of people above 25 years old with bachelor’s degree or higher Positive real data
Median family income in 1989 (in dollars) Count data
% of farm population in 1990 Positive real data
% of votes cast for democratic president Positive real data
% of votes cast for republican president Positive real data
% of votes cast for Ross Perot Positive real data

Table 4.4: List of considered attributes regarding the United States presidential election of 1992. At-
tributes 1 to 7 include demographic information and sociological factors, while the last three attributes sum-
marize the percentage voting outcome in each county.

Active Feature F1 F2 F3 F4 F5
Empirical Prob. 0.4874 0.2703 0.2700 0.0411 0.0372

Table 4.5: Empirical feature activation probabilities for the counties dataset. We show the empirical
probability of having at least one latent feature. These are directly computed from the inferred IBP matrix Z.

Patterns (000) (100) (101) (010) (110)
Empirical Prob. 0.2636 0.2407 0.1063 0.1060 0.0748

Table 4.6: Empirical probability of pattern activation for the top-five most popular patterns. These are
computed directly from the inferred IBP matrix Z. Features F4 and F5 are always switched off, and are thus
omitted from the labels.

11New York Times: http://www.nytimes.com/1992/06/11/us/
the-1992-campaign-on-the-trail-poll-gives-perot-a-clear-lead.html

12Database available at: http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/
counties.html
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Experimental setup. We run our inference algorithm with α = 5, σ2
B = 1, σ2

θ = 1 and the

mapping transformation from the real numbers to the real positive numbers: f(x) = log(w · (x −
µ) + 1), with µ = E[xd] and w = 2/max(xd). In this experiment, we activate the bias term

and sample the variance of the pseudo-observations for each dimension/attribute. A challenging

aspect of this database is that the distributions of some of its attributes are heavy-tailed, leading to a

large number of latent features as output of the GLFM, whose purpose is to capture the tails of the

distributions. This is not an issue for estimation and imputation of missing data, but it renders data

exploration more tedious. To solve this limitation, we here perform an additional data preprocessing

step by applying a logarithmic transformation to heavy-tailed attributes. In more detail, we apply the

function g1(x) = log(x + 1) for population density, median family income, and percentage of farm

population. For the percentage of white population, we used the function g2(x) = log((100−x)+1)

since the distribution has most of its density close to 100%.

Results. Running the GLFM on this data results in 5 latent features, whose empirical activation

probabilities are shown in Table 4.5. Here, we observe that while the first three features are active

for at least 27% of the counties, the last two features are active only for around 4% of the counties.

Moreover, we find that the different combinations of the three first latent features represent more

than 92% of the counties in USA. In the following, we will thus focus on the analysis of the three

first features and, in particular, of the top-five most popular feature patterns. We show in shown in

Table 4.6 the empirical probabilities of these five patterns, which represent around 80% of the U.S.

counties. Figure 4.6 shows the distribution of vote percentage per candidate associated to each of

these top-five patterns, while Figure 4.8 shows the corresponding geographic distribution (i.e., the

empirical activation probability) across states for each of these patterns. In these figures, we observe

that:

(i) pattern (000), corresponding to the bias term, tends to model middle values for the percent-

age of votes for the three candidates (with an average percentage of votes of ∼ 50% for the

democrat candidate, ∼ 48% for the republican candidate and ∼ 27% for Perot), and activates

mainly in the east and west coasts of the country, as well as Florida;

(ii) pattern (100) provides similar percentage of votes for the democrat and republican candidates

as in pattern (000), but it favors the independent candidate Perot (with an average percentage

of votes above 30%), and activates mostly in the north central-east region of the country and

Maine (state where Perot’s party managed to beat the Republican party);

(iii) pattern (101) activates in the north central-west region of the USA (not including the coast)
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and represents a profile inclined towards the republican party (with an average percentage of

votes of ∼ 55%) while also favoring in a lower extent the independent candidate; and

(iv) patterns (010) and (001) clearly capture democrat-oriented profiles, and activate mainly in

the south east region of the USA, including the state from which Bill Clinton comes from,

Arkansas.

Note that the demographic results above are in agreement with the outcome of the election per

counties,13 as shown in Figure 4.9. Next, we analyze the demographic information associated to

each of the feature patterns above. To this end, we show in Figure 4.7 the distribution of each at-

tribute/dimension of the data for each of the considered patterns.
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Figure 4.6: Inferred probability distribution for the five most popular patterns. The patterns are sorted in
the legend according to their degree of popularity, as described in Table 4.6.

13https://en.wikipedia.org/wiki/United_States_presidential_election,_1992
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Figure 4.7: Inferred probability distribution for the most occuring patterns.

First, we observe that pattern (000), which activates mostly in the coasts and Florida, corresponds

to the highest population density, average income, and percentage of college degrees, as well as an

important race diversity and low farming activity. These observations align with the typical profile

characterizing “big-cities”. As stated before, this pattern is the most balanced in terms of voting

tendency, with an equilibrated support for both democrat and republican, as well as intermediate
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(a) Pattern (000) (b) Pattern (100) (c) Pattern (101)

(d) Pattern (010) (e) Pattern (110)

Figure 4.8: Empirical probability of pattern activation per state. We focus on the top-five most popular
combinations of features. The label for each pattern indicates whether F1, F2, and F3 are active (value ‘1’) or
not (value ‘0’). Features F4 are F5 are always inactive in the five most common patterns, and thus are omitted
in the labels.

values for the percentage of votes cast for Perot.

Second, patterns (100) and (101) represent the largest share of Perot’s votes, both with an average

percentage of votes above 30% for Perot. Figure 4.7 shows that Perot’s main supporters, character-

ized mainly by pattern (101), also correspond to republican main supporters, who tend to live in low

populated areas in the north central part of the country where farming activity is considerable, and

the percentages of white population and over-65 years old population are also high. The second vot-

ing force backing Perot, captured by pattern (100) and located in the north east-central part of USA,

corresponds mostly to white population with an intermediate-high average income and an average

percentage of college degrees around 18% (the red curve in Figure 4.7e overlaps the green line).

These results back the analysis in [115], which showed that the majority of Perot’s voters (57%)

were middle class, earning between $15,000 and $49,000 annually, with the bulk of the remainder

drawing from the upper middle class (29% earning more than $50,000 annually). Perot’s campaign

ended up taking 18.9% of the votes, finishing second in Maine and Utah, as captured by pattern (100)

and (101) respectively.
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Figure 4.9: Outcome of the 1992 presidential election per counties. Blue color corresponds to a majority

of votes for the democrat party, red corresponds to a victory for the republican party, green corresponds to a

victory of the independent party of Ross Perot.

Finally, Democrat’s patterns (010) and (110) are mainly active in the Southeastern United States,

and capture a diverse range of voters in terms of their demographic properties. On the one hand,

pattern (010) captures highly populated counties, with low values of family income, percentage of

college degrees, percentage of white population and percentage of farming population. On the other

hand, pattern (110) captures low populated counties with a large percentage of population above

65 year old, as well as a larger presence of farming activity and lower average income. These re-

sult might be explained by the broad appeal across all socio-ethno-economic demographics that the

Democratic party has historically targeted.
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4.B Appendix: Details on the phase II Clinical Trial for Codrituzumab

4.B.1 List of Biomarkers

Biomarker Description Type of Biomarker

Age Age Clinical data and demographics

F Sex Female Clinical data and demographics

AS Race Asian Clinical data and demographics

AA Race African American Clinical data and demographics

OT Race Other Clinical data and demographics

WH Race White Clinical data and demographics

Weight Baseline Weight Clinical data and demographics

Height Baseline Height Clinical data and demographics

BMI Baseline Body Mass Index (kg/m2) Clinical data and demographics

D Duration of Exposure (days) Clinical data and demographics

ECOG ECOG Performance Status at Baseline Clinical data and demographics

Sorafenib Prior Sorafenib Treatment Clinical data and demographics

CP score Child Pugh Score Clinical data and demographics

SDTL Sum diameter (measurable) target lesions Clinical data and demographics

IHC 0 GPC3 IHC Tumor Histology

IHC 1+ GPC3 IHC 1+ Tumor Histology

IHC 2+ GPC3 IHC 2+ Tumor Histology

IHC 3+ GPC3 IHC 3+ Tumor Histology

Vascular Invasion Macrovascual Invasion or Extrahepatic Tumor Histology

CD16 CD16 cell density Tumor Histology

CD3 CD3 cell density Tumor Histology

%CD16 % OF CD16 in stroma Tumor Histology

%CD3 % OF CD3 in stroma Tumor Histology

%Stroma % of stroma Tumor Histology

CD3/CD16 necrotic CD3/CD16 count in necrotic tissue Tumor Histology

CD3/CD16 tumor CD3/CD16 count in tumor Tumor Histology

CD3/CD16 viable CD3/CD16 count in viable cells Tumor Histology

%Necrotic % necrotic cells in tissue Tumor Histology

%Tumor % tumor in tissue Tumor Histology

%Viable % viable cells in tissue Tumor Histology

H score Cyt GPC3 H score cytoplasmic Tumor Histology

H score Mem GPC3 H score membrane Tumor Histology

Ctrough Ctrough at Cycle3 Day1 Exposure

AFP Alpha Fetoprotein Circulating protein

AAT Alanine Aminotransferase Circulating protein

CRP C Reactive Protein Circulating protein

sGPC3 114/165 Soluble GPC3 GT114-GT165 Circulating protein

sGPC3 30/57 Soluble GPC3 GT30-GT57 Circulating protein

sGPC3 30/607 Soluble GPC3 GT30-GT607 Circulating protein

sGPC3 11/96 Soluble GPC3 M3C11-GT96 Circulating protein
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ADCC CD107
Antibody-dependent cell cytotoxicity

CD107A activity
Blood cell activity

ADCC CD16
Antibody-dependent cell cytotoxicity CD16

activity
Blood cell activity

CD45 CD45+ cell count Blood cell subset

B B cell count Blood cell subset

CD3 CD3+ cell count Blood cell subset

CD4 CD4+ cell count Blood cell subset

CD8 CD8+ cell count Blood cell subset

CD4/CD8 CD4/CD8 ratio Blood cell subset

CD8 NK CD8+ NK cells Blood cell subset

CD16 CD16+ cell count Blood cell subset

CD56-CD16+ CD56-CD16+ NK cells Blood cell subset

CD56bright CD56bright NK cells Blood cell subset

CD56dimCD16- CD56dimCD16- NK cells Blood cell subset

CD56dimCD16bright CD56dimCD16bright NK cells Blood cell subset

NK NK cell count Blood cell subset

CD56 CD56+ cell count Blood cell subset

NKP46 NKP46+ NK cell count Blood cell subset

DN Double negative cells Blood cell subset

DP Double positive cells Blood cell subset

CD16MESF CD16 MESF Blood cell subset

NKP46MESF NKP46 MESF Blood cell subset

FCGRIIIA-158 A/A FCGRIIIA-158 A/A DNA polymorphism

FCGRIIIA-158 C/A FCGRIIIA-158 C/A DNA polymorphism

FCGRIIIA-158 C/C FCGRIIIA-158 C/C DNA polymorphism

FCGRIIIA-158 NA FCGRIIIA-158 NA DNA polymorphism

FCGRIIA-131 A/A FCGRIIA-131 A/A DNA polymorphism

FCGRIIA-131 A/G FCGRIIA-131 A/G DNA polymorphism

FCGRIIA-131 G/G FCGRIIA-131 G/G DNA polymorphism

FCGRIIA-131 NA FCGRIIA-131 NA DNA polymorphism

PFS Progression Free Survival (Months) Clinical endpoint

4.B.2 Study Design and Patients

Adult patients with unresectable advanced or metastatic HCC who were previously treated with

at least one line of systemic agent and with progressive disease were enrolled in a randomized,

placebo-controlled, double-blind, multicenter phase II trial (NCT01507168). Patients received either

intravenous Codrituzumab at 1600 mg every two weeks or placebo (with a patient ratio of treat-

ment:placebo of 2:1) until disease progression, and were followed for overall survival. Details of

study design have been previously described [2].
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4.B.3 GPC3 Expression in Tumor

All patients enrolled in the study provided a tumor tissue sample to determine the level of GPC3

expression by immunohistochemistry (IHC) under central review prior to study entry[2]. Specifically,

IHC was performed based on a formalin-fixed, paraffin-embedded (FFPE) block of the primary tumor

or the metastatic site collected within approximately 12 months prior to informed consent or four

4µm thick unstained slides (freshly cut from a FFPE block of the primary tumor or the metastatic

site obtained within approximately 12 months prior to informed consent). If no archival material

was available, a pre-treatment core needle biopsy with minimally 18-gauge needle was obtained.

The IHC staining was done on BenchMark XT (Ventana Medical Systems, Inc. or VMSI, catalog

number 750-700) or ULTRA (VSMI, catalog number 750-600) platforms. Each patient was assigned

a GPC3 IHC score with ordered categorical values 0, 1+, 2+, and 3+, corresponding to increasing

levels of GPC3 expression, with scores 0 and 3+ indicating the lowest and highest levels of GPC3

expression, respectively.

4.B.4 Flow Cytometry

Surface cell markers from circulating blood cells were measured by flow cytometry. Lymphocyte

subsets were assayed using Trucount tubes (Becton, Dickinson and Company or BD, catalog num-

ber 340334). The expression level of CD16 on NK cells was measured by flow cytometry analysis

of the pre-treatment peripheral blood mononuclear cells using CD16-specific antibody. Measure-

ment was done on FACSCantoTM II (BD, catalog number 657338). The quantification of CD16

expression level, or fluorescence intensity in units of Molecules of Equivalent Soluble Fluorochrome

(MESF), denoted by CD16 MESF, was calculated by converting fluorescence measurements of the

NK cell population to an MESF value based on an MESF calibration curve prepared according to flu-

orescence intensity of calibration beads (QuantumTM MESF bead standard, manufactured by Bang

Laboratories, IN, USA) [116].

4.B.5 Soluble Protein Measurements

Monoclonal antibodies against soluble GPC3 protein were generated as previously described12. Five

anti-N-terminal fragment mAbs (designated GT30, GT95, GT114, GT165 and GT607), and two

anti-C-terminal fragment mAbs (designated GT57 and M3C11), were used in combination in four

different assays (sGPC3 114/165, sGPC3 30/57, sGPC3 30/607, sGPC3 11/96) to detect full length

GPC3 protein, or any possible cleavage fragments containing N- or C-terminus. The protocol for
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sandwich ELISA assay has been described [81].

4.B.6 DNA Polymorphisms

Genomic deoxyribonucleic acid (DNA) was extracted from blood samples by using a QiAmp Blood

Mini Kit (Qiagen, Germany). DNA concentrations were measured by using NanoDrop ND-1000

(Thermo Fisher Scientific, Wilmington, DE, USA), and DNA samples were diluted in nuclease free

water to get a final concentration of 1 ng/µl. Patients were genotyped for two different Fc gamma

receptor polymorphisms, FcgRIIa-H131R and FcgRIIIa-V158F using TaqMan technology on Ap-

plied Biosystems (AB) 7500 Fast Real-Time PCR system (Applied Biosystems Inc., CA, USA).

Probes and primers (TaqMan SNP Assays for rs1801274 and rs396991) were ordered from Applied

Biosystems. Genotyping was performed following the manufacturer’s instructions.

4.B.7 Further Results

The mentioned subpopulations in the following table correspond to those listed in Table 4.1.

Continuous variables Effect size Mw-test

AFP 3.90 4.71e-06
H score Mem 1.34 9.64e-15
H score Cyt 0.75 4.66e-11
sGPC3 30/607 0.31 1.62e-06
sGPC3 114/165 0.29 1.26e-06
CD4 0.10 7.74e-05
CD3 0.09 9.16e-06
CD45 0.07 4.04e-05
sGPC3 11/96 0.48 9.40e-04
CD56-CD16+ 0.40 1.09e-03
sGPC3 30/57 0.39 5.42e-04
CD56dimCD16- 0.22 1.81e-03
CD8 0.11 8.52e-04
CD56dimCD16bright 0.47 6.50e-03
NK 0.46 4.13e-03
CD56 0.17 6.95e-03
DN 0.17 1.78e-02
NKP46 0.11 3.13e-03
CD16 0.11 4.19e-03

Discrete variables Effect size F-test

IHC 3+ 0.82 1.13e-20
IHC 1+ -0.37 2.29e-06
IHC 2+ -0.24 1.03e-04
IHC 0 -0.21 3.49e-04

(a) both F1 and F2 inactive

Continuous variables Effect size Mw-test

P Necrotic / stroma 1.92 4.38e-03
NK 1.10 3.85e-03
CD56dimCD16bright 1.02 7.74e-03
CD56-CD16+ 0.60 7.88e-03
CD56dimCD16- 0.56 6.37e-03
CD16 0.19 5.18e-03
P Tumor Viable -0.06 4.38e-03

Discrete variables Effect size F-test

- - -

(b) F1 active and F2 inactive

Table 4.8: Significant biomarkers associated with better prognosis in the treatment arm for different
subpopulations. (a) Comparison of subpopulation 6 vs 5, (b) comparison of subpopulation 10 vs 9. Continu-
ous variables on the top, discrete variables on the bottom. Colors code for the different statistical significance
levels: αs = 0.001 (black), αs = 0.005 (blue), and αs = 0.01 (green).
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5
Hierarchical Indian Buffet Process for

Discovery of Genetic Associations

Personalized medicine aims at combining genetic, clinical, and environmental data to improve med-

ical diagnosis and disease treatment, tailored to each individual [32]. Within this framework, this

chapter presents a Bayesian nonparametric (BNP) approach to identify genetic associations with clin-

ical features in cancer, in order to enhance clinical diagnosis and further understanding of the disease.

We propose a hierarchical approach, the hierarchical Poisson factor analysis (H-PFA) model, to share

information across patients having different types of cancer. To discover statistically significant asso-

ciations, we follow a similar statistical procedure to the one presented in Chapter 4, which combines

Bayesian modeling with bootstrapping techniques, and corrects for multiple hypothesis testing. We

compare the results of H-PFA with two other classical methods in the field: case-control (CC) setups,

and linear mixed models (LMMs).
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5.1 Introduction

Cancer encompasses not one, but a vast group of genetic diseases involving abnormal cell growth

with the potential to invade or spread to other parts of the body. Although a small set of common

underlying principles have been identified (the so-called “hallmarks” of cancer [79, 80]), each type of

cancer presents very unique properties, making this disease very hard to handle [151, 85, 194]. In the

last decade, high-throughput genotyping technologies have led to the discovery of cancer-correlated

gene mutations, most of which were not previously suspected to be related to carcinogenesis [49].

However, only the gene mutations with very strong effects have been discovered and many other

genes with weaker effects still remain to be found [10]. Genetic-association studies have been widely

used in the search for such genes, but success has been limited so far [151].

A first difficulty in cancer association studies is the immense phenotypic heterogeneity, which

reduces statistical power in the discovery method and causes some associations to remain hid-

den [164, 110, 176]. Second, cohort sizes tend to be small, especially in rare cancers, which makes

the discovery of small effect size associations difficult [10]. Third and last, cancers are driven by

the accumulation of mutations that may act epistatically or pleiotropically during the course of the

disease [213, 36, 183]. Epistasis refers to complex interactions between genetic variants that have

an effect on the same phenotype, while pleiotropy means that multiple phenotypes are influenced by

the same single mutation. Indeed, cancer is known to be polygenic and present complex pleiotropic

phenotypes [49]. New approaches need to be found in order to overcome these difficulties.

In recent years, efforts to mine electronic health records (EHRs) show promise to impact nearly

every aspect of healthcare [101]. The adoption of EHRs in hospitals has increased dramatically, and

has become an interesting resource for phenotyping [4, 129], with the potential for establishing new

patient-stratification principles and for revealing unknown disease correlations. Integrating EHRs

data with genetic data will also give a finer understanding of genotype-phenotype relationships [214].

EHRs consist of both structured and unstructured information. Structured data is a valuable source

of information that includes billing codes, laboratory reports, physiological measurements, and de-

mographic information, among others. Yet, most of the clinical data comes as unstructured notes,

e.g., around 98% of the EHRs [101]. These include a broad spectrum of clinically-relevant infor-

mation which might be useful to identify novel phenotypic relationships so far unknown by the

clinicians [129, 101].

This chapter presents a joint generative model to discover associations between genetic mutations

and clinical features in cancer that deals with phenotype heterogeneity, small cohort size, epistasis

and pleiotropy in a straightforward way. Our method is a generative model that infers latent topics
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from the clinical text, associated to hidden genetic factors that directly capture complex interactions

between the genes. It is directly inspired on the Poisson factorization model for recommendation sys-

tems in [69], with three important differences. First, we introduce confounding effects as conditional

variables, i.e., variables that might cause spurious associations to appear. In particular, our model

considers multiple types of cancer together (the type of cancer is treated as a confounder), and shares

information among all patients in a hierarchical fashion. Indeed, most cancers are known to share

a common pathogenesis despite specificities of the cell type and tissue origin [194]. By doing so,

specific effects for each type of cancer can be isolated, and novel (less well-known) associations with

gene mutations of smaller effect size can be obtained. Second, we force sparsity on the textual and

genetic topics by using shape parameters in the Gamma distribution priors smaller than one. Third,

we present a nonparametric alternative model to the work in [69] by replacing the continuous patient

weights with a binary matrix whose probability distribution is induced by a hierarchical extension of

the Indian buffet process (IBP). Also in the literature, the authors in [70] propose a nonparametric

Poisson factorization model, but they rely on a stick-breaking construction different from the IBP,

and the weights are continuous, which renders interpretability of the latent variables more tedious.

The discrete nature of the IBP helps in terms of interpretability, and allows combining the proposed

Bayesian model with classical frequentist approaches for statistical testing between the inferred pa-

tient partitions. An efficient Markov chain Monte Carlo (MCMC) procedure based on a slice sampler

for the hierarchical IBP is presented.

Bayesian modeling has already been proven useful for epistasis [225], pleiotropy [225, 224] or

sub-phenotyping aplications [147, 107]. Up to our knowledge, the proposed model is the first one

to deal with clinical text data and genetic information jointly, capturing phenotypic heterogeneity,

epistasis and pleiotropy in a straightforward way while correcting for the cancer type as confounder.

We consider multiple cancers jointly in order to increase statistical power, allow for the analysis of

rare cancers, and identify fundamental mechanisms shared across different types of cancer.

5.2 Genetic Association Studies

Any two human genomes differ in millions of different ways. Variations include individual nu-

cleotides of the genomes as well as larger variations, such as deletions, insertions and copy number

variations. Any of these variations may cause alterations in an individual’s traits, or phenotype, which

can be anything from disease risk to physical properties such as eye color or height [193]. We distin-

guish between two types of variations: somatic mutations and germline mutations. A somatic (also
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called “acquired”) mutation is a change in the genetic structure that is not inherited from a parent,

nor passed to offsprings: these are not inherited because they do not affect the reproductive cells

(sperm and egg) but any other type of cell. In contrast, germline mutations affect the reproductive

cells, and can thus be inherited. In this thesis, we solely focus on somatic mutations, which usually

appear by environmental causes, such as ultraviolet radiation or any exposure to certain chemicals.

Genetic association studies arise as a way to examinate a genome-wide set of genetic variants in

different individuals to see whether any variant is associated with a phenotypic trait. Such studies

have become popular in the last decades in order to study the relationship between the genotype and

phenotype of individuals [89, 114] and, in particular, in cancer research [49, 148].

Earlier genetic studies were focused on the effect of individual single-nucleotide polymorphisms

(SNPs), and are referred to as genome-wide association study (GWAS). We call SNP to a variation in

a single nucleotide that occurs at a specific position in the genome: these are the most common type

of variation among individuals [122]. For example, at a specific base position in the human genome,

the base C may appear in most individuals, but in a minority of subjects, the position is occupied by

base A. We then say that there is a SNP at this specific base position, and the two possible nucleotide

variations – C or A – are said to be alleles for this base position. A GWAS is a statistical analysis

which aims at finding individual correlations between any SNP and a particular phenotype [114].

Since the beginning of genetic association studies, there have been two general trends in the

literature. On the one hand, a wide range of different phenotypes have been considered, including

protein-protein network, gene expression, biomarkers, or intermediate clinical phenotypes at the or-

ganism level [151]. On the other hand, bigger sample size scenarios have been analyzed, with studies

of up to 200,000 individuals. Despite the efforts to gather information for many individuals, privacy

and ethical issues remain an important drawback for this task, such that most genetic association

studies still work in the order of thousands of individuals.

In addition to the screening of genetic associations, it is also common to take into account any

variables that could potentially confound the results. A confounder or confounding factor is a vari-

able that, if not observed, causes two other variables to appear correlated, while in fact these two are

independent given the confounder. A typical confounder example would be smoking to “drinking

coffee” and “having lung cancer”. Gender and age are other common examples of confounding vari-

ables. Moreover, it is also known that many genetic variations are associated with the geographical

and historical populations in which the mutations first arose.

Lack of well defined case and control groups, insufficient sample size, control for multiple

testing, and control for population stratification are common problems in genetic association stud-
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ies [114, 10]. Particularly the statistical issue of multiple testing is problematic as “the massive num-

ber of statistical tests performed presents an unprecedented potential for false-positive results” [150].

In our analysis, we resort to either the Bonferroni correction or the Benjamini-Hochberg proce-

dure [17] to control for multiple hypothesis testing, the former controls for the family-wise error

rate (FWER) (probability to reject at least one true hypothesis) while the latter estimates the false

discovery rate (FDR) and thus controls for the number of false positives.

5.2.1 Standard Approach: Case-Control Setup

The most common approach of GWAS is the case-control (CC) setup, which compares two large

groups of individuals, one healthy control group and one case group affected by a disease [31, 122].

All individuals in each group are genotyped for the majority of common known SNPs. For each of

these SNPs, it is then investigated if the allele1 frequency is significantly altered between the case and

the control group. In such setups, the fundamental unit for reporting effect sizes is the odds ratio. In

the context of GWAS, the odds ratio refer to the odds of disease for individuals having a specific allele

and the odds of disease for individuals who do not have that same allele. When the allele frequency

in the case group is much higher than in the control group, the odds ratio is higher than one, and vice

versa for lower allele frequency. A p-value for the significance of the odds ratio is typically computed

using a simple χ-squared test or Fisher test. Finding odds ratios that are significantly different from

one is the objective of the GWAS because this shows that a SNP is associated with the disease.

5.2.2 Confounder Correcting Approach: Linear Mixed Model

linear mixed models (LMMs) have proved particularly useful for GWAS due to its capacity to ac-

count for confounding effects and limit the number of false associations [121, 120]. Let xng

be the indicator variable for a somatic mutation in gene g ∈ {1, . . . , G} for a particular patient

n ∈ {1, . . . , N}. The variable xnd is binary and indicates whether any somatic mutation occurred in

the corresponding gene. Let ynq be the binary indicator variable of the presence of a certain clinical

feature q ∈ {1, . . . , Q} for a given patient n. Finally, let us define cnl as the binary assignment

variable of patient n to the cancer type ` ∈ {1, . . . , L}, where
∑

` cn` = 1 (we only consider patients

having one single type of cancer). For each pair of gene g and clinical feature q, a LMM can be

defined as follows:
y•q = x•gβqg + u•qg + ε•qg, (5.1)

1An allele refers to each of two or more alternative forms of a gene that arise by mutation and are found at the same
place on a chromosome.
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where βqg ∈ R refer to the fixed effect, and u•qg, ε•qg ∈ RN×1 are the random effects (structured

noise and observational noise, respectively). The prior assumptions for the structured and uniform

noises are u•qg ∼ N (0, σ2
uK) and ε•qg ∼ N (0, σ2

eI), where K refers to a similarity matrix between

the patients, for instance, the cosine similarity of the cancer type assignment vectors ci• and cj•,

K = CCT . The LMM assumes that the output y•q is Gaussian-distributed:

y•q ∼ N (x•gβqg, σ
2
uK + σ2

eI). (5.2)

When the data is binary or count data, a common practice is to apply a standard rank-based inverse

normal transformation beforehand as a preprocessing step [96].

5.3 Our Approach

Let X ∈ NN×D be the observation matrix of count data for N patients and D dimensions, where D

includes both clinical and genetic information, i.e., D = G + Q, where G is the number of genes

and Q is the number of clinical terms. In the following, we propose two Poisson factor analysis

(PFA) approaches to model the joint observation matrix X of genetic information and clinical data.

In these models, patients will be represented by binary feature activation vectors, and each of these

features will capture common correlation patterns among the somatic mutations and clinical term

occurrences.

5.3.1 Bernoulli Process Poisson Factor Analysis

We first consider a simple nonparametric non-negative matrix factorization model with Poisson like-

lihood and Gamma-distributed factors:

xnd ∼ Poisson
(
Zn•B•d

)
, (5.3)

Bkd ∼ Gamma
(
αB,

µB
αB

)
, (5.4)

Z ∼ IBP(α), (5.5)

where α is the concentration parameter of the IBP controlling the a priori number of ones in matrix

Z (i.e., the a priori expected number of latent features), and µB, αB are the prior mean and shape

parameter for each element of matrix B. Sparsity can be induced easily in the factors by choosing

αB � 1. From now on, we will refer to this basic model as the Bernoulli process Poisson factor

analysis (BeP-PFA). The “Bernoulli process (BeP)” designation in the naming emphasizes that each
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feature activation vector Zn• is a draw from a BeP.2 Inference is performed using a MCMC approach

based on a semi-ordered stick-breaking representation of the IBP prior [202]. A complete description

of the inference algorithm can be found in Section 8.2.2 of the final appendix.

5.3.2 Hierarchical Bernoulli Process Poisson Factor Analysis

Although different types of cancer are known to share similar phenotypes and underlying mecha-

nisms (shared activation of certain pathways), the mutation rate and phenotype occurrence might

vary in different proportions, according to each type of cancer. Given this premise, we propose a

hierarchical Bernoulli process Poisson factor analysis model to allow for different feature activation

levels depending on each type of cancer. In the following, we will shorten the name of this model to

hierarchical Poisson factor analysis (H-PFA).

Let rn ∈ [1, . . . , L] be a categorical variable indicating the type of cancer of patient n among

the total number of cancer types L (in the previous notation from Section 5.2, rn corresponds to the

index of the non-zero value in vector cn•). A hierarchical construction can be formulated based on

the finite representation of the IBP and lettingK →∞, such that different levels of feature activation

are allowed for each type of cancer. Let ρk be the global activation probability of feature k, and π`k
be the specific activation probability of feature k for the cancer type ` ∈ [1, . . . , L]. We can then

assume that each specific activation probability is Beta-distributed such that E`[π`k] = ρk:

ρk ∼ Beta
( α
K
, 1
)

π`k|ρk ∼ Beta
( ρk

1− ρk
, 1
)

znk ∼ Bernoulli(πrnk )

Bkd ∼ Gamma
(
αB,

µB
αB

) (5.6)

xnd ∼ Poisson
(
Zn•B•d

)
, (5.7)

where the feature activation variables in vector Zn• are drawn from different activation probability

vectors {π1, . . . ,πL} depending on the type of cancer cn of patient n. When K → ∞, this prior

over Z is equivalent to a hierarchical Beta process (BP) construction [206] on top of BePs in the

De Finetti representation introduced in Section 2.3.2. In the same way that a hierarchical Dirichlet

process (HDP) allows for atom sharing with varying weights across different groups of data (see

Section 2.3.1), the H-PFA allows for feature sharing with different activation weights across different

types of cancer.

2Traditionally, PFA refers to both continuous weights and dictionary components [226].
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5.4 Results

5.4.1 Database Description

So far, genomic testing of tumors has been done routinely only for certain solid cancer tumors, such

as melanoma, lung, or colon cancer. For most cancers, the available tests have been limited to analyz-

ing one or a handful of genes at a time, and within each gene, only the most common mutations could

be detected.3 A new targeted tumor sequencing test called MSK-IMPACTTM (Integrated Mutation

Profiling of Actionable Cancer Targets) is able to detect gene mutations and other critical genetic

aberrations in both rare and common cancers [29].

Using the MSK-IMPACT technique, somatic mutations regarding specific screened genes can

be obtained as follows. For each patient, tumor cells are compared with healthy cells of that same

patient, extracted from the blood stream. In this chapter, a gene is said to be mutated when there exists

at least one difference in the sequence between the tumor cells and healthy cells for that particular

gene.4 We finally obtain a binary matrix for N = 1946 patients and G = 410 genes where “1”

encodes a mutated gene and “0” otherwise. The screened genes have been shown to play a role in

the development or behavior of tumors,5 although their individual relation to specific phenotypes

remains obscure [29].

Concerning the clinical information, based on all EHRs, we build a bag-of-word representation of

unified medical language system (UMLS) terms, extracted using the Metamap6 processing tool [14].

The UMLS refers to a standardized, comprehensive thesaurus and ontology for biomedical concepts,

whose objective is to provide facilities for natural signal processing tasks [22]. Since each patient can

have a varying number of EHRs, we group all clinical history into a single EHR, and only consider

the appearance or absence of each UMLS term. We compute the tf-idf score for each UMLS term,

and only keep the 300 clinical terms with highest score.

The final database includes clinical and genetic information forN = 1946 patients and 5 different

cancer types: bladder cancer, breast carcinoma, colorectal cancer, non-small cell lung cancer, and

prostate cancer. We consider genes and UMLS terms that are present in at least 1% of the patient

population, resulting in D = 249 dimensions, including 72 genes and 177 clinical terms. Even if the

dataset is binary, we can use a Poisson likelihood because of the high sparsity degree of such matrix

(7.28% of non-zero values). In such scenario, the Poisson distribution is a good approximation of a

3https://www.mskcc.org/msk-impact
4The considered sequencing technology is able to remove most of the technical noise, in contrast to other technologies.
5https://www.mskcc.org/blog/new-tumor-sequencing-test-will-bring-personalized

-treatment-options-more-patients
6Source code available at: https://metamap.nlm.nih.gov/
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Bernoulli, and we adopt it by mathematical convenience in the inference process.

5.4.2 Experimental Setup

We compare the proposed H-PFA approach with a LMM and a standard case-control set-up for

each potential clinico-genetic association. The model parameters for each LMM are found by max-

imizing the log likelihood using standard optimization techniques within a python platform called

LIMIX [120]. In the final step, we obtain p-values for each pair (y•q, x•g) using likelihood ratio

tests. Regarding the case-control analysis, for each clinical term we consider a case and control

group corresponding to the patients having that clinical term active or inactive respectively. Given

such partition, we perform an individual Fisher test for each gene. For all methods, we correct for

multiple hypothesis testing based on the Benjamini-Hochberg approach [17]. Finally, concerning the

H-PFA model, we follow the statistical procedure described in Section 4.3.3. As already described in

the last chapter, we want to make our results more robust against outliers and reduce the number of

false associations, so that we take multiple posterior samples and perform bootstrapping one hundred

times of the whole process. For each statistical test, we obtain one hundred p-values, one for each

bootstrapping instance, which are summarized via the median p-value.7 An association is said to be

significant when this median p-value is higher than the adjusted significance level αs after correction

for multiple hypothesis testing. For all simulations, we adopt a significance threshold value 0.001

and only consider associations with a positive effect size, for simplicity. In order to increase model

interpretability, we also introduce one bias term to capture mean effects corresponding to cancer in

general. This bias term is forced to be active for all patients. Finally, we have set the hyperparameters

of the proposed H-PFA as αB = 0.01 and µB = 1, while we infer the values for the concentration

parameter α as described in Appendix 8.

5.4.3 Identification of Clinico-Genetic Associations

Figure 5.1 represents the number of associations found by each method, and how many overlap

across techniques. LMM found 14 clinico-genetic associations, CC found 178, and H-PFA found

95.8 As expected, LMM is the method that finds the least number of associations, since it corrects

for the cancer type as a confounder effect, in order to get rid of cancer-specific associations and only

get less well-known associations that are present across all types of cancer. CC is the method that

7Note that statistical significance could also be accounted for using Bayesian factors or posterior predictive checks [60].
We here adopt the most established approach for statistical significance assessment within this field.

8The H-PFA model is very flexible, as it can also find correlations between the genes, or between the clinical terms. 95
is the number of clinico-genetic associations only.
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Figure 5.1: Venn Diagram of number of associations.
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Stage IV Lung Adenocarcinoma EGFR
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Figure 5.2: Shared associations across methods.

discovered the highest number of associations, from which only 30% are shared with H-PFA. Out of

the 95 associations discovered by the H-PFA approach, 63% were also present in any of the other

methods. Figure 5.2 lists the associations that are shared across methods. Tables 5.1 and 5.2 present

the list of clinico-genetic associations found by LMM and CC methods (for CC, we only report a

random selection of associations, but the complete list can be found in Appendix 5.A).

Phenotype Gene βqg p-value

pump (device) APC 0.61 2.78e-53

S3 (sacral segmental innervation) TP53 0.29 1.02e-09

Stage IV Lung Adenocarcinoma EGFR 0.32 2.07e-29

Folinic Acid-Fluorouracil-Irinotecan Regimen APC 0.59 1.08e-60

Folinic Acid-Fluorouracil-Irinotecan Regimen KRAS 0.30 1.16e-18

Hepatectomy APC 0.65 1.21e-52

Hepatectomy KRAS 0.27 7.27e-12

FOLFOX Regimen APC 0.66 5.12e-113

Tract ARID1A 0.21 5.61e-12

Malignant neoplasm of urinary bladder TERT 0.55 1.07e-61

Renal function TERT 0.28 8.40e-12

Flushing APC 0.30 1.54e-11

Non-Small Cell Lung Carcinoma EGFR 0.18 4.11e-11

Colorectal Carcinoma APC 0.61 2.34e-63

Adenocarcinoma of lung (disorder) EGFR 0.26 1.49e-22

Simple mastectomy PIK3CA 0.16 3.40e-08

Immunotherapy TERT 0.23 2.76e-12

Imodium APC 0.30 6.51e-15

capecitabine APC 0.30 1.94e-15

Pulmonary function tests STK11 0.16 2.19e-09

Table 5.1: Subset of clinico-genetic associations found using the CC setup. A complete list can be found in

Appendix 5.A.

Next, Table 5.3 shows the list of inferred latent features by the H-PFA model. The bias term
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Phenotype Gene βqg p-value

Stage IV Lung Adenocarcinoma EGFR 0.14 9.90e-14
Pulmonary function tests STK11 0.11 5.67e-06
Esophagogastroduodenoscopy ERBB3 0.10 4.62e-06
Adenocarcinoma of lung (disorder) EGFR 0.09 3.20e-06
Rash and Dermatitis Adverse Event Associated with Chemoradiation TCF7L2 0.09 1.57e-04
Atrophic PTEN 0.09 2.06e-05
Esophagogastroduodenoscopy ALK 0.09 1.43e-05
Stage level 2 ERBB4 0.08 3.34e-05
Positive Surgical Margin EP300 0.08 1.43e-04
Esophagogastroduodenoscopy CDH1 0.08 1.33e-04
Esophagogastroduodenoscopy FLT4 0.08 4.15e-05
Malignant neoplasm of urinary bladder TERT 0.08 7.91e-05
Potassium Ion KRAS 0.08 6.72e-06
KRAS gene KRAS 0.07 9.76e-05

Table 5.2: Clinico-genetic associations found using the LMM approach. The associations have been sorted
according to the effect size βqg which refers to the linear weight of the regression, as described in Section 5.2.2.

F0 reflects the high rate mutation of the TP53 gene which occur across all types of cancer. The

TP53 gene is essential for the production of a protein called tumor protein p53. This protein acts

as a tumor suppressor, which means that it regulates cell division by keeping cells from growing

and dividing too fast or in an uncontrolled way. Because p53 is essential for regulating cell division

and preventing tumor formation, it has been nicknamed the “guardian of the genome” [142]. On

top of the bias term F0, H-PFA inferred 19 other latent features. Features F3, F5, and F17 capture

complex phenotypes (no somatic mutations involved), whereas F4 and F18 mostly capture somatic

mutations. Interestingly, F18 relates Esophagogastroduodenoscopy (a test to examine the lining of

the esophagus, stomach, and the beginning of the small intestine) to multiple somatic mutations,

which was already revealed by LMM in Table 5.2. The remaining 14 features capture co-ocurrence

of somatic mutations and clinical UMLS terms. Some latent features reflect well known relationships

in oncology research. To name a few, mutations of gene PIK3CA (captured by F1 and F16) are

present in over one-third of breast cancers; such mutations are nowadays known to be oncogenic

and also implicated in cervical cancers [74]. Somatic mutations in the triad APC-KRAS-TP53 genes

(captured by F0 and F6 together) are prominent in colon cancer [1]. Finally, previous studies have

found direct physiological and molecular evidence for a role of gene FOXA1 in controlling cell

proliferation in prostate cancer [95], which is accounted for in factor F12.

Figure 5.3 depicts the cancer-specific activation weights π`l for each type of cancer `, as de-

scribed in previous section.The activation of features present strong variations across cancer types.

Some features are clearly cancer-specific (F1 and F3 typically activate for breast carcinoma patients;

F6, F11 and F15 are typically active for colorectal cancer; F7, F8 and F10 are almost exclusively

active for non-small cell lung cancer, etc.), whereas other factors occur in similar proportions across
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Feat. mk Phenotypes Genes

F0. 1946 - TP53 (0.40)

F1. 460
Simple mastectomy (0.17), Xeloda (0.15), Lumpectomy of breast (0.12),

capecitabine (0.09) PIK3CA (0.31)

F2. 402
Renal function (0.29), Coronary Artery Disease (0.28), Stent, device (0.22),

cardiologist (0.21), Urology (0.20), Hydronephrosis (0.16) MTOR (0.04)

F3. 400
Invasive Ductal Breast Carcinoma (0.57), axillary lymph node dissection (0.38),

Simple mastectomy (0.37), Noninfiltrating Intraductal Carcinoma (0.36),
Lumpectomy of breast (0.33), Adriamycin (0.29)

-

F4. 392 -

ETV6 (0.22), PTPRD
(0.19), ATR (0.19),

PTPRT (0.17), BRAF
(0.17), ATM (0.17), . . .

F5. 361
Entire intercostal space (0.22), Midclavicular line (0.21), Per Minute (0.20),

Prednisone (0.19), Upper Extremity (0.19), Entire head (0.18), Dizziness (0.17),
Redness (0.17), Serum (0.17), Bedtime (qualifier value) (0.16), . . .

-

F6. 352 Colorectal (0.39), FOLFOX Regimen (0.29) APC (0.71), KRAS
(0.47)

F7. 350
Lobectomy (0.48), Pulmonary function tests (0.29), Thoracotomy (0.27),

Non-Small Cell Lung Carcinoma (0.27) EGFR (0.09)

F8. 326
Non-Small Cell Lung Carcinoma (0.13), Stage IV Lung Adenocarcinoma

(0.10), natural daughter - RoleCode (0.09), pemetrexed (0.08)
KRAS (0.36), STK11
(0.26), KEAP1 (0.20)

F9. 326
Lytic lesion (0.29), Zometa (0.27), Fracture (0.25), Sclerosis (0.25), Bone

Lesion (0.23), Bone structure of sacrum (0.23), Hip arthralgia (0.23), Bone
structure of ilium (0.19), Palliative Care (0.17)

ATRX (0.04)

F10. 266
Stage IV Lung Adenocarcinoma (0.62), pemetrexed (0.61), Adenocarcinoma of

lung (disorder) (0.60), mediastinal lymphadenopathy (0.35)
EGFR (0.30), TP53

(0.18)

F11. 265

FOLFOX Regimen (0.54), KRAS gene (0.45), Folinic
Acid-Fluorouracil-Irinotecan Regimen (0.43), Leucovorin (0.43), irinotecan

(0.39), Colorectal Carcinoma (0.39), Cold intolerance (0.37), Midclavicular line
(0.27), Sigmoid colon (0.27), Colorectal (0.27)

PTPRT (0.05),
CARD11 (0.04)

F12. 262
Prostate carcinoma (0.74), adenocarcinoma of the prostate (0.69), Biopsy of

prostate (0.62), Extracapsular (0.55), Lupron (0.46), Personal Attribute (0.40)
FOXA1 (0.11), APC

(0.06)

F13. 261
Tract (0.52), Malignant neoplasm of urinary bladder (0.51), Gross hematuria

(0.44), Incontinence (0.29), Immunotherapy (0.28)
TERT (0.66), KDM6A

(0.36)

F14. 169
Lovenox (0.28), Pulmonary Embolism (0.27), Deep Vein Thrombosis (0.23),

swollen feet/legs (0.19) -

F15. 159
Rectum (0.45), Rash and Dermatitis Adverse Event Associated with
Chemoradiation (0.28), capecitabine (0.26), Node stage N0 (0.23)

APC (0.14), TCF7L2
(0.14), TSC2 (0.09)

F16. 149

Consistency (0.55), Vagina (0.50), Clinic / Center - Mobile (0.43), Bilateral
Salpingectomy with Oophorectomy (0.39), Atrophic (0.39), New medications
(0.35), Personal Attribute (0.32), Uterus (0.31), Ovarian (0.30), Bone Mineral

Density Test (0.30), Ovary (0.29)

PIK3CA (0.12), PTEN
(0.07)

F17. 107

Depression motion (0.95), Structure of long bone (0.82), S3 (sacral segmental
innervation) (0.82), pump (device) (0.79), intrahepatic (0.78), Pulse taking

(0.74), Midclavicular line (0.73), Entire intercostal space (0.70), Hepatectomy
(0.62), Flowcharts (Computer) (0.57)

-

F18. 95 Esophagogastroduodenoscopy (0.12)

POLE (0.65), ROS1
(0.61), DNMT1 (0.59),

ATR (0.58), ATM
(0.57), FAT1 (0.54), . . .

F19. 41 Optic Nerve (0.90), Gross hematuria (0.90), Dyspepsia (0.57), Lupron (0.45) AR (0.22)

Table 5.3: Latent features inferred by H-PFA. We depict the UMLS terms and genes with highest weights,
up until the weight decays more than 50% separately. mk is the number of patients with each feature active.
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cancers, e.g., feature F5 which capture typical adverse effects that manifest for all types of cancer

(Prednisone is a synthetic corticosteroid drug which is regularly used to treat certain types of cancer,

but has significant adverse effects).

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9
Inferred latent features

0

0.2

0.4

0.6

0.8

1

l k

F10 F11 F12 F13 F14 F15 F16 F17 F18 F19
Inferred latent features

0

0.2

0.4

0.6

0.8

1

l k

Bladder Cancer
Breast Carcinoma
Colorectal Cancer
Non-Small Cell Lung Cancer
Prostate Cancer

Figure 5.3: Activation weights π`
k for each cancer type ` inferred by H-PFA.

Table 5.4 presents a list of the biggest subpopulations found by H-PFA in decreasing size. A

subpopulation in this context refers to patients that have the exactly same set of latent features active.

Given these subpopulations, we follow the statistical methodology presented in Chapter 4 of running

two-sample test comparisons between different sets of subpopulations. In this case, we adopt a one-

leave-out comparison strategy, which consists in running two-sample individual tests between each

subpopulation against all the rest. We thus obtain different sets of statistically significant components

(one set for each comparison), which are listed in Tables 5.5, 5.6, 5.8,5.9, and 5.10.

For each clinical and genetic term, we give both the effect size and significance. Our method

is able to provide concise grouping of both clinical terms and somatic mutations. Among the clin-

ical terms, we find both phenotypical terms, as well as names of chemotherapy medications (Adri-

amycin, Irinotecan, or Leucovorin). Table 5.5 shows cancer-specific clinico-genetic associations. We

recover well-known associations (such as APC gene mutation being prominant in colorectal cancer,
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Id Activation pattern Nr. patients

1. 11010 00000 00000 00000 106
2. 10000 00000 00100 00000 91
3. 11000 00000 00000 00000 69
4. 10000 00000 00000 00000 68
5. 10000 00110 00000 00000 46
6. 10000 01000 01000 00000 40
7. 11010 00001 00000 00000 40
8. 10000 01000 00000 00000 30
9. 10100 00000 00100 00000 30
10. 10000 00000 00010 00000 29
11. 10100 00000 00010 00000 28
12. 10000 00000 10000 00000 27
13. 10000 01000 01000 10000 27
14. 10001 00110 00000 00000 27
15. 10001 00000 00010 00000 26

Table 5.4: Subpopulations found by H-PFA.

or STK11 to lung carcinoma), but other associations are more surprising, such as GATA3 gene with

bone mineral density.

Finally, H-PFA found several statistically significant sets of associations involving somatic mu-

tations in gene TERT, as shown in Table 5.6. Somatic mutations in the gene promoter of telomerase

reverse transcriptase (TERT) have been found in 70–79% of bladder tumors in a multi-institutional

study published in European Urology [149]. Table 5.6 shows that TERT mutations are associated to

not only malignant neoplasm of urinary bladder (which is not surprising), but also hematuria and hy-

dronephrosis. Hematuria refers to the presence of red blood cells in the urine. Also, hydronephrosis

is a condition that typically occurs when the kidney swells due to the failure of normal drainage of

urine from the kidney to the bladder. Hydronephrosis is not a primary disease, but results from some

other underlying disease (cancer in this case) as the result of a blockage or obstruction in the urinary

tract. H-PFA points out to interesting gene relationships (KDM6A, CREBBP, and ARID1A genes)

with TERT, which have been partially studied in the literature [141, 167, 97].

5.5 Summary

This chapter proposes a novel BNP procedure for genetic association studies that identifies poten-

tially interesting associations between gene-level mutations and clinical features encoded via UMLS

terms from EHRs. We propose a hierarchical Bernoulli process Poisson factor analysis model based

on a hierarchical construction of BPs and BePs. The delivered associations are statistically signifi-
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cant after correction for multiple hypothesis testing combined with a bootstrapping procedure, which

makes the approach particularly robust against false positives. These associations give potentially

interesting insights for future research in oncology. Studies like this one can provide us with accu-

rate diagnosis, and ultimately inform us about actionable pathways when considering cancer therapy,

where interventions through drug administration can be designed.

Clinical record Genetic information

Invasive Ductal Breast Carcinoma 0.64 3.54e-49 PIK3CA 0.22 4.38e-07
Simple mastectomy 0.39 4.26e-22 GATA3 0.12 3.08e-05
Noninfiltrating Intraductal Carcinoma 0.34 2.02e-20
Lumpectomy of breast 0.32 3.94e-17
axillary lymph node dissection 0.28 3.43e-16
Fishes 0.22 1.01e-10
Adriamycin 0.21 4.09e-11
Bone Mineral Density Test 0.15 2.19e-06

(a) 100% breast carcinoma

Clinical record Genetic information

FOLFOX Regimen 0.80 1.52e-29 APC 0.63 3.50e-17
Colorectal 0.37 4.04e-09 TP53 0.42 3.50e-08
Sigmoid colon 0.35 1.88e-09
Colorectal Carcinoma 0.33 8.49e-08
Cold intolerance 0.32 2.03e-08
irinotecan 0.29 8.72e-08
Leucovorin 0.29 4.90e-07
Folinic Acid-Fluorouracil-Irinotecan Regimen 0.25 1.19e-05
Hepatectomy 0.23 3.35e-06

(b) 100% non-small cell lung cancer

Clinical record Genetic information

Lobectomy 0.37 4.98e-11 KRAS 0.36 2.73e-08
Non-Small Cell Lung Carcinoma 0.31 5.69e-08 STK11 0.26 1.74e-07

(c) 97% breast carcinoma, 3% non-small cell lung cancer

Clinical record Genetic information

Lobectomy 0.37 3.60e-07 STK11 0.38 8.62e-08
KEAP1 0.35 1.17e-07

(d) 100% bladder cancer

Table 5.5: Clinico-genetic associations found by the H-PFA (1/2).
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Clinical record Genetic information

Tract 0.37 3.39e-08 TERT 0.57 4.56e-12
Malignant neoplasm of urinary bladder 0.36 3.92e-07 FGFR3 0.50 4.15e-13
Gross hematuria 0.33 2.67e-06

(a) 100% colorectal cancer

Clinical record Genetic information

Gross hematuria 0.74 1.81e-20 TERT 0.58 5.59e-12
Malignant neoplasm of urinary bladder 0.41 2.80e-08 KDM6A 0.31 6.48e-06
Tract 0.39 2.08e-08
chain of objects 0.32 1.92e-06
Hydronephrosis 0.26 2.52e-05

(b) 100% prostate cancer

Clinical record Genetic information

Gross hematuria 0.39 1.72e-07 TERT 0.64 4.86e-13
Malignant neoplasm of urinary bladder 0.37 9.85e-07 FGFR3 0.50 1.97e-11
Tract 0.30 2.19e-05 KDM6A 0.36 1.20e-06

CREBBP 0.32 3.19e-06

(c) 100% non-small cell lung cancer

Clinical record Genetic information

Malignant neoplasm of urinary bladder 0.56 4.24e-12 TERT 0.67 1.79e-14
Tract 0.46 2.00e-10 ARID1A 0.45 2.32e-08
Renal function 0.45 5.51e-11
Gross hematuria 0.36 8.69e-07

(d) 100% bladder cancer

Table 5.6: Clinico-genetic associations found by the H-PFA (2/2). All these associations involve gene TERT.
One same set (depicted in bold) appears in all associations.
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5.A Appendix: Complete List of Associations

5.A.1 Case-control setup (CC)

Clinical term Gene βqg p-value

FOLFOX Regimen APC 0.66 5.12e-113

Leucovorin APC 0.65 6.61e-65

Hepatectomy APC 0.65 1.21e-52

irinotecan APC 0.62 4.39e-47

pump (device) APC 0.61 2.78e-53

Colorectal Carcinoma APC 0.61 2.34e-63

Colorectal APC 0.60 2.31e-73

Folinic Acid-Fluorouracil-Irinotecan Regimen APC 0.59 1.08e-60

Malignant neoplasm of urinary bladder TERT 0.55 1.07e-61

S3 (sacral segmental innervation) APC 0.54 3.58e-35

intrahepatic APC 0.53 1.03e-30

Tract TERT 0.50 1.62e-42

Sigmoid colon APC 0.48 6.82e-38

Gross hematuria TERT 0.47 1.23e-47

Flowcharts (Computer) APC 0.47 4.29e-32

Entire intercostal space APC 0.42 1.33e-41

Unresectable APC 0.42 1.78e-20

Structure of long bone APC 0.42 5.86e-29

Midclavicular line APC 0.41 1.46e-41

KRAS gene APC 0.39 6.40e-29

Cold intolerance APC 0.39 1.70e-22

Rectum APC 0.38 3.88e-26

Data Port APC 0.37 1.35e-19

pump (device) TP53 0.35 8.51e-17

Depression motion APC 0.35 5.62e-22

Avastin APC 0.35 1.58e-22

KRAS gene KRAS 0.33 2.44e-23

FOLFOX Regimen KRAS 0.32 1.96e-32

Stage IV Lung Adenocarcinoma EGFR 0.32 2.07e-29

Tract KDM6A 0.31 1.66e-24

Unresectable TP53 0.31 3.62e-10

capecitabine APC 0.30 1.94e-15

Imodium APC 0.30 6.51e-15

Ulcer APC 0.30 3.96e-12

Flushing APC 0.30 1.54e-11

Folinic Acid-Fluorouracil-Irinotecan Regimen KRAS 0.30 1.16e-18

irinotecan KRAS 0.30 5.60e-14

FOLFOX Regimen TP53 0.29 4.61e-19

Hepatectomy TP53 0.29 1.19e-10

S3 (sacral segmental innervation) TP53 0.29 1.02e-09

Colorectal KRAS 0.29 2.18e-21
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Leucovorin KRAS 0.29 8.95e-16

Ablation APC 0.29 5.61e-15

Rash and Dermatitis Adverse Event Associated with Chemoradiation APC 0.29 5.40e-13

Pulse taking APC 0.29 2.28e-15

Malignant neoplasm of urinary bladder KDM6A 0.29 5.14e-27

Potassium Ion KRAS 0.28 4.17e-14

Renal function TERT 0.28 8.40e-12

Structure of long bone TP53 0.27 5.79e-11

Hydronephrosis TERT 0.27 3.21e-12

Hepatectomy KRAS 0.27 7.27e-12

Xeloda APC 0.26 1.53e-11

Midclavicular line TP53 0.26 6.98e-15

Adenocarcinoma of lung (disorder) EGFR 0.26 1.49e-22

Leucovorin TP53 0.26 1.57e-09

Entire intercostal space TP53 0.26 1.47e-13

Data Port KRAS 0.26 4.25e-11

Gross hematuria KDM6A 0.26 4.71e-22

Folinic Acid-Fluorouracil-Irinotecan Regimen TP53 0.26 8.08e-11

Colorectal Carcinoma TP53 0.24 1.39e-09

pump (device) KRAS 0.24 2.59e-11

Sigmoid colon TP53 0.24 3.38e-09

Potassium Ion APC 0.24 4.02e-10

Colorectal Carcinoma KRAS 0.23 3.18e-12

Immunotherapy TERT 0.23 2.76e-12

intrahepatic TP53 0.23 1.37e-05

Rectum TP53 0.22 5.43e-08

Neutrophil count decreased APC 0.22 8.18e-07

Response process APC 0.22 9.43e-07

Tract FGFR3 0.22 1.16e-15

Colorectal TP53 0.21 5.78e-09

Flowcharts (Computer) TP53 0.21 1.46e-06

Tract ARID1A 0.21 5.61e-12

Sigmoid colon KRAS 0.21 6.84e-10

Flowcharts (Computer) KRAS 0.21 1.20e-08

Rectal hemorrhage APC 0.21 1.88e-09

Avastin TP53 0.21 4.41e-07

Bilateral Salpingectomy with Oophorectomy PIK3CA 0.20 1.65e-06

Unresectable KRAS 0.20 6.65e-07

Urology TERT 0.20 8.42e-09

Depression motion TP53 0.20 1.43e-06

irinotecan TP53 0.20 3.11e-05

Combined Modality Therapy APC 0.20 4.41e-06

hearing impairment TERT 0.19 1.41e-06

Malignant neoplasm of urinary bladder FGFR3 0.19 4.27e-15

Gross hematuria FGFR3 0.18 3.11e-14

Adriamycin PIK3CA 0.18 4.47e-06

pemetrexed EGFR 0.18 2.06e-12
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Entire intercostal space KRAS 0.18 2.80e-10

S3 (sacral segmental innervation) KRAS 0.18 1.25e-05

Non-Small Cell Lung Carcinoma EGFR 0.18 4.11e-11

Rash and Dermatitis Adverse Event Associated with Chemoradiation KRAS 0.18 6.24e-06

Creatinine TERT 0.17 1.24e-05

Bone Mineral Density Test PIK3CA 0.17 1.65e-06

Hydronephrosis KDM6A 0.17 1.01e-07

Cold intolerance KRAS 0.17 2.64e-06

intrahepatic KRAS 0.17 3.49e-05

Avastin KRAS 0.17 3.87e-07

KRAS gene TP53 0.17 1.28e-05

Lobectomy EGFR 0.16 1.72e-08

Malignant neoplasm of urinary bladder ARID1A 0.16 3.25e-09

lung lesion APC 0.16 8.22e-06

Attribution EGFR 0.16 8.10e-06

Simple mastectomy PIK3CA 0.16 3.40e-08

Renal function ARID1A 0.16 8.41e-06

Pleura EGFR 0.16 4.16e-07

Gross hematuria ARID1A 0.16 1.34e-08

Pulmonary function tests STK11 0.16 2.19e-09

Tract CREBBP 0.16 8.83e-10

Invasive Ductal Breast Carcinoma PIK3CA 0.15 8.87e-09

Midclavicular line KRAS 0.15 5.38e-08

capecitabine KRAS 0.15 1.89e-05

Lumpectomy of breast PIK3CA 0.15 7.20e-07

Malignant neoplasm of urinary bladder ERBB2 0.15 1.40e-10

Incontinence TERT 0.15 1.07e-06

chain of objects TERT 0.15 1.08e-05

Renal function KDM6A 0.15 6.54e-06

Stent, device TERT 0.14 4.23e-06

Superficial TERT 0.14 1.68e-05

Tibialis anterior muscle structure EGFR 0.14 1.34e-06

Thoracotomy STK11 0.14 9.65e-07

Tract ERBB2 0.14 1.87e-07

Urology KDM6A 0.13 2.55e-06

Lobectomy STK11 0.13 1.25e-07

Malignant neoplasm of urinary bladder RB1 0.13 5.74e-08

Lobectomy KEAP1 0.13 1.22e-08

Tract STAG2 0.13 4.54e-07

Malignant neoplasm of urinary bladder CREBBP 0.12 8.84e-08

Leucovorin SMAD4 0.12 5.31e-08

Tract PBRM1 0.12 2.11e-07

Tract ROS1 0.12 1.89e-05

Bilateral Salpingectomy with Oophorectomy GATA3 0.12 1.93e-05

Non-Small Cell Lung Carcinoma STK11 0.12 1.09e-07

Non-Small Cell Lung Carcinoma KRAS 0.12 8.61e-05

Folinic Acid-Fluorouracil-Irinotecan Regimen SMAD4 0.11 8.21e-08

117



CHAPTER 5. HIERARCHICAL IBP FOR DISCOVERY OF GENETIC ASSOCIATIONS

Malignant neoplasm of urinary bladder EP300 0.11 2.57e-07

Pulmonary function tests KEAP1 0.11 8.29e-07

Colorectal Carcinoma SMAD4 0.11 4.47e-07

FOLFOX Regimen SMAD4 0.11 2.03e-10

Tract FAT1 0.11 3.77e-05

Urology ERBB2 0.11 1.95e-05

KRAS gene SMAD4 0.11 4.34e-07

irinotecan SMAD4 0.11 1.45e-05

Immunotherapy RBM10 0.11 9.55e-06

Rash and Dermatitis Adverse Event Associated with Chemoradiation TCF7L2 0.11 2.14e-05

Tract EP300 0.10 1.24e-05

Superficial FGFR3 0.10 2.29e-05

Immunotherapy FGFR3 0.10 4.13e-05

Colorectal PTPRS 0.10 9.11e-07

Malignant neoplasm of urinary bladder ATM 0.10 8.03e-05

Non-Small Cell Lung Carcinoma PTPRD 0.10 9.64e-06

Adenocarcinoma of lung (disorder) KEAP1 0.10 1.46e-07

Tract SPEN 0.10 3.32e-05

Gross hematuria CREBBP 0.10 1.43e-05

Gross hematuria NSD1 0.10 7.95e-07

Tract FANCA 0.10 3.20e-05

Gross hematuria ERBB2 0.10 1.81e-05

Sigmoid colon TCF7L2 0.10 6.46e-06

Tract ERBB3 0.10 2.09e-05

Non-Small Cell Lung Carcinoma KEAP1 0.10 1.02e-06

Invasive Ductal Breast Carcinoma GATA3 0.10 3.71e-08

Malignant neoplasm of urinary bladder ERBB3 0.09 6.40e-06

Sigmoid colon SMAD4 0.09 3.46e-05

Colorectal ERBB4 0.09 3.22e-05

Adenocarcinoma of lung (disorder) STK11 0.09 1.91e-05

Simple mastectomy GATA3 0.09 2.59e-06

pemetrexed STK11 0.09 1.23e-05

Extracapsular FOXA1 0.08 3.92e-05

Malignant neoplasm of urinary bladder PBRM1 0.08 7.37e-05

Malignant neoplasm of urinary bladder NSD1 0.08 4.75e-05

pemetrexed KEAP1 0.08 1.31e-05

Colorectal SMAD4 0.08 1.87e-05

Malignant neoplasm of urinary bladder BRCA1 0.08 1.80e-04

Colorectal TCF7L2 0.08 2.29e-05

Stage IV Lung Adenocarcinoma RBM10 0.08 5.16e-05

FOLFOX Regimen PTPRS 0.08 1.31e-05

Non-Small Cell Lung Carcinoma EPHA3 0.08 7.61e-05

Prostate carcinoma FOXA1 0.07 3.61e-05

Table 5.7: Complete list of clinico-genetic associations found using the Case-Control Set-up. βqg refers to
the linear weight as described in Section 5.2.2. Associations in bold have also been discovered by the H-PFA.
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5.A.2 Hierarchical Poisson Factor Analysis

Clinical record Genetic information

Prostate carcinoma 0.63 4.06e-43
Biopsy of prostate 0.52 1.63e-34
Extracapsular 0.48 3.54e-32
adenocarcinoma of the prostate 0.43 3.98e-26
Personal Attribute 0.33 2.23e-16
Robotics 0.25 5.86e-13
Pelvic lymph node group 0.20 2.34e-09
Lupron 0.20 2.37e-07
Incontinence 0.17 7.87e-07
External Beam Radiation Therapy 0.17 1.04e-06
Positive Surgical Margin 0.14 7.71e-06

(a) 100% prostate cancer

Clinical record Genetic information

Invasive Ductal Breast Carcinoma 0.47 1.86e-11
Adriamycin 0.37 6.54e-11
Lytic lesion 0.33 2.45e-09
Lumpectomy of breast 0.33 4.86e-08
Zometa 0.32 2.47e-08
Palliative Care 0.22 8.32e-06

(b) 32.3% breast carcinoma, 41.2% non-small cell lung cancer, 26.5% prostate cancer
Table 5.8: Additional clinical associations (complex phenotypes) found by the H-PFA.

Clinical record Genetic information

FOLFOX Regimen 0.77 3.47e-19 APC 0.59 5.34e-11
Rectum 0.59 1.56e-14
Sigmoid colon 0.43 8.36e-09
Rash and Dermatitis Adverse Event Associated with
Chemoradiation

0.42 1.24e-09

capecitabine 0.42 5.37e-09
Colorectal 0.42 1.19e-07
Folinic Acid-Fluorouracil-Irinotecan Regimen 0.40 1.11e-07
KRAS gene 0.38 2.12e-07
Ulcer 0.36 3.64e-08
irinotecan 0.35 3.10e-07
Rectal hemorrhage 0.34 3.31e-06
Avastin 0.32 1.13e-05
Leucovorin 0.29 2.95e-05
Combined Modality Therapy 0.26 5.02e-05
Response to treatment 0.25 4.10e-05

Table 5.9: Additional clinico-genetic association found by the H-PFA involving APC gene. This group of
associations was found in a subgroup of 100% bladder cancer patients.

Clinical record Genetic information

Stage IV Lung Adenocarcinoma 0.64 3.47e-15 EGFR 0.35 8.65e-06
Adenocarcinoma of lung (disorder) 0.56 3.92e-11
pemetrexed 0.51 7.89e-10
Tibialis anterior muscle structure 0.32 3.40e-06

Table 5.10: Additional clinico-genetic associations found by the H-PFA involving EGFR gene. This group
of associations was found in a subgroup of 100% non-small cell lung cancer patients.
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6
Flexible Indian Buffet Process Priors for

Understanding International Trade

This chapter presents Bayesian nonparametric (BNP) latent factor models specially suitable for ex-

ploratory analysis of high-dimensional count data. First, we perform a non-negative doubly sparse

matrix factorization that has two main advantages: on the one hand, we are able to better approximate

the row marginal input distribution of the observation matrix; on the other hand, the inferred topics

are also sparse, and thus, easier to interpret. By combining the stable-Beta process [201] with the

restricted Indian buffet process [43], we increase the model flexibility, allowing for a full spectrum

of sparse solutions in the latent space. Second, we propose a dynamic Poisson factorization model

based on the Markov Indian buffet process [56] with varying activation of the latent features over

time. We demonstrate the usefulness of our approaches in the analysis of countries’ economic struc-

ture based on two different databases of export portfolios, ranging from 1964 to 2010. Compared

to other approaches, empirical results show our model’s ability to give easy-to-interpret information

and better capture the sparsity structure underlying data.
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CHAPTER 6. FLEXIBLE IBP-BASED MODELS FOR INTERNATIONAL TRADE

6.1 Introduction

In this chapter, we focus on finding an interpretable representation for international trade, a topic of

central interest to the theory of economic growth and, in particular, to the recently introduced concept

of economic complexity [88, 83, 192]. Our objective is to help explain the productive structure

and competitiveness of world economies based on the thresholded revealed comparative advantage

(RCA) matrix [16]. This is a well-established normalized metric correcting for size of economies,

defined as:

RCAnd =
End/

∑
pEnd∑

nEnd/
∑

n,dEnd
, (6.1)

xnd =





1, if RCAnd ≥ 1

0, otherwise
. (6.2)

where End is the raw export of product d by country n in dollars. RCAcp > 1 indicates that country

c’s share of product p is larger than the product’s share of the entire world market, thus “revealing”

a comparative advantage of the country in the corresponding product. Let X be the resulting N ×D
sparse high-dimensional matrix reflecting the relative export advantages of N countries at exporting

each of the D products.
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Figure 6.1: Country-product matrix constructed from real trade data in 2010. A non-zero entry reflects
a relative advantage of a country at exporting a given product. Columns and rows have been arranged in
decreasing order according to the number of ones per row and column.

An interesting property of such data is its approximately triangular sparse structure after re-

ordering of rows and columns, as shown in Figure 6.1. Rather than a niche economic paradigm where

countries focus in the production of a few specialized products (this would result in a block-diagonal

matrix), data suggests that countries have different diversity degrees in their export portfolios, and

thus different trade strategies and skills. Our objective herein is twofolds: first, we want to find an

underlying representation that is easy to understand and able to capture this triangular structure in
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the input data for a single year; second, we want to study the evolution of such matrix over time.

This chapter proposes Poisson sparse non-negative matrix factorization models which place In-

dian buffet process (IBP)-based priors over the country-feature matrix to learn the appropriate num-

ber of hidden features from the data to deal with a static and dynamic scenario. To enforce sparsity

in the feature-product matrix, we use a component-wise gamma prior with a shape parameter smaller

than one. This prior has a similar effect to the spike and slab prior, but is more amenable for inference.

In the static scenario (single year), we additionally modify the IBP prior according to two recent

advances [201, 43]. First, we use the tree-parameter Indian buffet process (3P-IBP) formulation

from [201] that allows for a different degree of sharing between features, and an eventual power-

law distribution over the feature weights. Such flexible prior allows to capture different kinds of

realities, from a world in which countries with few skills focus on different types of products, to

a world in which poor countries have a strong overlap in export portfolios. Second, we also rely

on the restricted Indian buffet process (R-IBP) formulation from [43], which allows for a general

marginal distribution over the number of active features per row. Indeed, a priori we expect countries

to exhibit different degrees of diversification in the exports, which translates in different amounts of

active latent features per row. Poor countries might have very little features active, whereas other

diversified countries might have almost all features active.

In the dynamic scenario (multiple years), we extend the basic Bernoulli process Poisson factor

analysis (BeP-PFA) model in order to analyze the evolution of countries’ capabilities (latent features)

over time. Based on the Markov Indian buffet process (mIBP), we design a BNP model in which

countries are allowed to acquire or loose capabilities along the years according to a Markovian struc-

ture. This temporal perspective is particularly useful in terms of policy recommendation or future

export predictions, and allows us to build a finite state machine of latent binary patterns.

The inference for both the static and dynamic models, which we denote as Three-parameter

restricted Bernoulli process Poisson factor analysis (3RBeP-PFA) model and Dynamic Bernoulli

process Poisson factor analysis (dBeP-PFA) model respectively, is based on Markov chain Monte

Carlo (MCMC) approaches. We use auxiliary variables to make our models conditionally conjugate,

together with Metropolis-Hasting within Gibbs and Adaptive Rejection Metropolis sampling [126]

in the static case, and forward-filtering backward-sampling (FFBS) [56] in the time-varying case.

In the experimental section we use the proposed models to analyze multiple international trade

databases. Our models exhibit similar predictive accuracy than other approaches, while it outper-

forms them in terms of interpretability strength. In the static scenario, the proposed model is the best

one at capturing the input triangular structure of the data. Both a quantitative and qualitative analysis
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are provided for export data from 2010. We further demonstrate the usefulness of our models to

analyze the temporal dynamics of countries’ exports between 1964 and 2010.

6.2 Flexible IBP Extensions

6.2.1 Three-Parameter Indian Buffet Process

In the 3P-IBP, the feature weights follow a more flexible distribution that covers power-law behav-

iors [201]. This can be achieved by replacing the beta process directing measure in the IBP by a

stable-beta process:

µ ∼ stable-BP(1, α,H), Zn• ∼ BeP(µ, f) (6.3)

As its name indicates, this process can be fully specified by three parameters: α is the same mass

parameter from the IBP that controls the a priori expected total number of non-zero entries in matrix

Z. Additionally, the stability exponent σ ∈ [0, 1) controls the power-law behavior of the model

(weight decay), and c > −σ is the concentration parameter that affects the a priori number of ones

per column (sharing degree per column). When c = 1 and σ = 0, we recover the standard IBP.

Using the usual culinary metaphor of customers entering an Indian buffet restaurant and sequen-

tially choosing dishes from an infinite buffet, the 3P-IBP generalizes as follows:

• Customer 1 tries Poisson(α) number of dishes.

• Customer n+ 1 tries:

– each dish with probability mk−σ
n+c for each one that has been previously tried; mk is the

number of customers who previously sampled from dish k.

– Poisson
(
αΓ(1+c)Γ(n+c+σ)

Γ(n+1+c)Γ(c+σ)

)
new dishes.

In such process, the number of hidden features is expected to grow as O(Nσ) where N is the

number of samples. By introducing parameters c and σ, Z can have a more flexible structure, re-

gardless of the sparsity density which is controlled by α. Compared to the IBP, the 3P-IBP gives

more flexibility on the feature weights, but has the disadvantage that the number of ones per-row is

still a priori Poisson distributed, which might not always be desirable, particularly in our analysis of

international trade.

6.2.2 Restricted Indian Buffet Process

The R-IBP is a recently developed model that allows an arbitrary prior distribution to be placed over

the number of active features underlying each observation [43]. A natural way to build such process
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is to replace the underlying Bernoulli processes in the IBP by restricted Bernoulli processes defined

as:

R-BeP(Zn•;µ, f) = f (Jn) ·
∏∞
k=1 π

znk
k (1− π1−znk

k )1(
∑

K znk = Jn)
∑
z′∈Z

∏
k π

z
′
k
k (1− πk)(1−z′k)

1(
∑

K z
′
k = Jn)

(6.4)

where the directing measure µ =
∑

k πkδθk , πk and θk are the feature weight and location cor-

responding to each latent feature k, α is the same mass parameter of the IBP, Jn is the number of

ones per row n, Z is the set of all possible binary vectors, and f is the a priori distribution over the

number of active features per row. The R-IBP can thus be formulated as:

µ ∼ BP(1, α,H), Zn• ∼ R-BeP(µ, f) (6.5)

We then have two degrees of freedom α and f to control for sparsity degree and sparsity structure of

Z. Note that columns are not exchangeable anymore, i.e., the parameter f creates correlation among

the features, which has to be handled during inference.

The intuition behind the R-IBP can be explained using the previously stated culinary metaphor.

Customers in the R-IBP have varying degrees of hunger: some of them sample from many dishes in

the buffet, while others only taste a reduced set of dishes. This interpretation makes specially sense

in our international trade application, where developed countries are known to have more assets,

and thus are expected to exhibit a higher number of latent features (capabilities) compared to poor

countries.

6.3 Static Scenario

6.3.1 Three-Parameter Restricted Bernoulli Process Poisson Factor Analysis

To decouple sparsity density and sparsity structure in the latent matrix, we combine the advantages

of both the R-IBP and 3P-IBP into a single prior,

Z ∼ 3R-IBP(α, c, σ, f) (6.6)

where the mass parameter α controls the sparsity degree of matrix Z, c is the concentration parameter

that accounts for the degree of sharing between features, σ is the stability exponent responsible for

the power-law behavior of the feature weights, and f is the a priori distribution over the number

of ones per row. By doing so, we expect our model to be able to find highly-specific and easy-to-
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interpret hidden features. In our application, we should be able to find ”high-tech” features which

involve only a few products and are active for a small number of countries, which would be consistent

with the economic literature [82].

Let X ∈ NN×D be our input matrix of N samples and D dimensions. Using the three-parameter

restricted IBP prior, we build an infinite latent feature model for count data with Poisson likelihood

and Gamma-distributed factors as follows

xnd ∼ Poisson
(
Zn•B•d

)
, (6.7)

Bkd ∼ Gamma
(
αB,

µB
αB

)
, (6.8)

where αB and µB are the shape and mean parameters of the prior Gamma distribution for each

element of matrix B. In this model, both matrices Z and B are non-negative and sparse, which

makes the inferred latent variables very easy to interpret. In particular, sparsity in matrix B can be

induced simply by choosing αB � 1.

In our particular application of international trade, we have N countries, D products and K+

non-empty latent features to be inferred. A given row Zn• captures which latent features are active

for country n. B represents the effect of each latent feature on every product. For instance, if a latent

feature k is active for a certain country, all products having high values in vector Bk• will be more

likely to be exported by that country1.

We further restrict the model in two ways. First, we use a bias term, labeled as feature F0 that is

active for all the countries. This bias term is not sparse, and will capture the general ad-hoc trading

that might exist in a country punctually but not as a trend, and thus does not constitute a feature.

A bias term allows for the active features to be sparser and more interpretable, as well as reducing

the number of features that are necessary to explain the whole database. Such approach has already

been followed in [182, 159] to alleviate identifiability problems in the inferred solution. Second,

we rely on a negative binomial distribution for f in (6.6). The negative binomial distribution is best

understood as an overdispersed Poisson [226]. Hence it will naturally allow for countries to exhibit

a much variable range of active features, from not having any additional feature on top of the bias, to

having all the latent features active. These two extremes are less likely to happen in the standard IBP

model.

We call the whole model three-parameter restricted Bernoulli process Poisson factor analysis

(3RBeP-PFA). This model can be seen as a probabilistic extension of non-negative matrix factor-

1The vector Bk• corresponds to the k-th row of matrix B.
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ization where the number of latent features is not fixed a priori, both matrices are sparse, and soft-

constraints on the latent sparsity structure are imposed through the prior.

6.3.2 Inference

Since exact computation of the posterior distribution for the latent variables is intractable, we resort

to a Markov Chain Monte Carlo (MCMC) approach. In particular, our algorithm uses Gibbs sampling

together with Metropolis-Hasting (MH) and Adaptive Rejection Metropolis Sampling (ARMS) [126].

We use a finite-dimensional approximation for the latent measure π by allowing at most K features.

For each observation xnd, we introduce the auxiliary variables x
′
nd,1, . . . , x

′
nd,K such that xnd =

∑K
k=1 x

′
nd,k, and x

′
nd,k ∼ Poisson(ZnkBkd) for k = 1, . . . ,K. Given such auxiliary variables,

the model is conditionally conjugate, and a Gibbs sampler can be derived straightforwardly. The

complete sampling algorithm is described in Algorithm 5. Further details regarding the slice sampler

for the BeP-PFA based on the one-parameter IBP can be found in Section 8.

Algorithm 5 A single iteration of the MCMC inference procedure for the 3RBeP-PFA model.
1: Sample each element of matrix Z using inclusion probabilities [5, 43].
2: Sample latent measure π using MH steps [43]. The ARMS is needed to sample the feature

weights of completely new features.
3: Sample each element of B and X

′
from their conditional distributions.

4: Sample hyperparameter α according to [50].

In the case of the 3RBeP-PFA model, the inference algorithm proceeds as follows:

1. Sample Z element-wise from each conditional probability distribution, according to [43]. In-

clusion probabilities are combined with f and the data likelihood p(X|Z,B).

2. Sample the latent measure π. Since the beta process is not conjugate to the restricted Bernoulli

process, we cannot directly Gibbs sample π. Instead, we use a Metropolis-Hastings within

Gibbs sampling step. We use the posterior distribution from the standard IBP as a proposal

distributionQ. The posterior distribution of weights in the case of non-empty features is given

by

Q(πk|Z•k) ∝ Beta(
αc

K
+

N∑

n=1

znk − σ, N −
N∑

n=1

znk + c+ σ) (6.9)

In the case of new (empty) features, the posterior distribution is not conjugate anymore, so

we need to use additional sampling techniques such as Adaptive Rejection Metropolis Sam-
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pling [126]. Note that the posterior of the latent measure is not a stable-beta process anymore.

The posterior distribution from which we should sample is given by

Q(πknew |Z•k) ∝ α
Γ(1 + c)

Γ(1− σ)Γ(c+ σ)
π−σ−1
knew

(1− πknew)c+N+σ−1 (6.10)

The acceptance probability is given by

a =
p(π

′
,Z)

p(π,Z)

Q(π|Z)

Q(π
′ |Z)

(6.11)

=

∏N R-BeP(Zn·;π
′
, f)

∏N R-BeP(Zn•;π, f)

p(π
′
)

p(π)

Q(π|Z)

Q(π
′ |Z)

(6.12)

where

R-BeP(Zn•;π, f) = f (Jn)

∏∞
k=1 π

znk
k (1− π1−znk

k )1(
∑

K znk = Jn)
∑

z′∈Z
∏
k π

z
′
k
k (1− πk)(1−z′k)

1(
∑

K z
′
k = Jn)

(6.13)

Let us call DK
Jn

the denominator in (6.13). This value can be computed easily using a dynamic

programming approach. Indeed, we can exploit the recursive form DK
Jn

= (1− πK)DK−1
Jn

+

πKD
K−1
Jn−1.

3. Gibbs sample B, the auxiliary variables X′, and hyperparameter α in the same way as in the

standard IBP model.

6.4 Time-varying Scenario

6.4.1 Dynamic Bernoulli Process Poisson Factor Analysis

In the following, we focus on the temporal dynamics of the hidden features. Our objective is to

monitor which capabilities each country acquires or loses over time, in order to further understand

the development paths of an economy. We extend the basic BeP-PFA based on the infinite factorial

hidden Markov model [56]. Note that we take the BeP-PFA as a starting point instead of the improved

3RBeP-PFA model for simplicity reasons in the modeling and for inference speed; an extension

based on the 3RBeP-PFA is in the agenda for future work. Let X(t) be our country-product matrix at

timestamp t = 1, . . . , T . The new likelihood function for each element in this matrix can be written

as:

x
(t)
nd ∼ Poisson

(
Z

(t)
n•B•d

)
(6.14)
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where Z ∈ {0, 1}N×K×T is a three-dimensional matrix for N countries, K → ∞ inferred latent

features, and T timestamps. Our model assumes that each latent feature k has independent and

constant Markov dynamics over time, shared for all countries. Let Qk be the transition matrix for

feature k, defined as:

Qk =


 1− ak ak

1− bk bk


 (6.15)

where ak is the activation probability of feature k, and bk is the probability of staying active, some-

times called the persistence parameter.

The feature activation matrix Z is generated via a collection of mIBPs with shared transition

matrices and hyperparameters across countries. In particular, for each country n, we have Z
(•)
n• ∼

mIBP(α), which is equivalent to the following generative process when K →∞:

ak ∼ Beta
( α
K
, 1
)
, (6.16)

bk ∼ Beta(γ, δ), (6.17)

z
(t)
nk |ak, bk ∼ Bernoulli

(
a

1−z(t−1)
nk

k b
z

(t−1)
nk
k

)
(6.18)

z
(0)
nk = 1 (6.19)

The prior for each element Bkd is the same as in the BeP-PFA model, i.e., a Gamma distribution

with shape parameter smaller than one in order to enforce sparsity in the latent features. We call the

complete model dynamic Bernoulli process Poisson factor analysis (dBeP-PFA).

Since it is not possible to directly extent the 3RBeP-PFA to the dynamic scenario, we resort to a

one-parameter IBP prior,

6.4.2 Inference

To make inference tractable, we make the same assumption as in the static scenario, namely, that

each observation x(t)
nd is equal to the sum of K Poisson-distributed auxiliary random variables, i.e.,

x
(t)
nd =

∑K
k=1 r

(t)
nd,k where r(t)

nd,k ∼ Poisson(z
(t)
nkBkd) for k = 1, . . . ,K. We adopt the convention that

a zero-rate Poisson is equivalent to a delta at zero2. Notice that vector Z
(t)
n• works as a mask on the

multinomial auxiliary variables, and therefore there exists a very strong correlation between Z
(t)
n• and

r
(t)
n•,• for each country n and timestep t. For interpretability purposes, we force the first feature to be

active for all samples. Such feature works as a bias term, it captures the a priori count rates (average

2This corresponds to the assumption that 0 · log(0) = 0.
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values) for each dimension d, and avoids numerical problems.

As explained in [187], a naı̈ve Gibbs sampling in a time series model is typically very slow due

to potentially strong coupling between successive time steps. Thus, we resort to a blocked Gibbs

sampler which fixes all but one column of Z, and runs a forward-filtering backward-sampling sweep

on the remaining column [56]. Matrix B can be sampled exactly conditioned on all other variables.

We start with an initial Z matrix and sample ak, bk ∀k. Next, conditional on our initial Z

and our observations X, we sample the feature effect matrix B. We then start an iterative sampling

scheme described in Algorithm 6. Further details concerning the complete conditionals and the FFBS

procedure can be found in the Appendix 8.

Algorithm 6 Slice sampler for the dBeP-PFA
1: Sample the auxiliary slice variable µ. This might involve extending the representation of the

other latent variables, e.g., r and B.
2: For all the represented features, sample Z, r and B,
3: Sample the model hyperparameters α, γ, δ,
4: Remove all unused features.

6.5 Results

Data description. To illustrate the usefulness of our model, we consider two publicly available

trade datasets, both involving N countries and D products. The first considered database is the UN

COMTRADE Standard international trade classification (SITC) rev.2 dataset, which disaggregates

products to the four digit level, provided by the team of the Observatory of Economic Complexity. In

order to clean unreliable or inadequately classified data, we restrict the dataset to the same countries

that were used in the Atlas of Economic Complexity [83]. This leaves us with data on 126 countries

and 744 products.

The second database that we use is the Harmonized system (HS) rev. 1992 classification disag-

gregated to six digit level (4890 products). The original data was collected by UN COMTRADE,

and was further cleaned by the team of the Observatory of Economic Complexity (the HS data were

also cleaned by the BACI team). Both databases are available at http://atlas.media.mit.

edu/en/resources/data/.

The biggest difference between both datasets is the number of considered products and sparsity

density, as stated in Table 6.1. Note that D � N , which is not the common scenario for latent

feature models. The data matrix is binary and represents the RCA of countries, which is a normalized

common measure in economics [16]. Basically, an entry xnd in the country-product matrix X equals
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N D Nr. entries (2010) Nr. entries (all years) Sparsity

SITC 126 744 16k 1.1M 0.17%
HS 123 4890 77k 1.5M 0.13%

Table 6.1: Databases on International Trade considered in this chapter. The available time windows for
both databases are (1964-2014) for the SITC data and (1995-2014) for the HS database.

one when country n has a relative advantage at exporting product d, and zero otherwise. Even if

the matrix is binary, we may use a Poisson likelihood because of the high degree of sparseness in

data. Such approximation has already been adopted successfully in the case of recommendation

systems [67].

Experimental setup. Regarding the models’ hyperparameters, we choose a Gamma prior over the

concentration parameter α with shape and scale parameters equal to one. The concentration param-

eter α is sampled as described in Section 6.3.2. We set αB to 0.01 to induce sparsity, and µB equal

to one. In the static setting, we choose a flexible marginal prior f as Negative-Binomial(r, p), with

r = [1, 2], and p = [0.1, 0.3, 0.5]. The results are equivalent using any of these priors. Specifically,

we report the results for r = 1 and p = 0.1. Additionally, we run experiments for each combination

of c = [1, 10, 20, 50] and σ = [0, 0.25, 0.5, 0.75, 1]. Even if the results did not vary considerably

when changing those hyperparameters, setting c > 1 and σ > 0 allows for a higher a priori sparse-

ness in the latent features and potential power-law behaviors in the feature weights respectively. All

figures and tables in the static case correspond to c = 50, and σ = 1. Finally, for the dynamic

scenario, we assume a Beta prior for bk, with both γ and δ equal to one (which is equivalent to the

uniform distribution).

6.5.1 Static Scenario

Quantitative Evaluation

We first perform a quantitative evaluation of our model in terms of predictive accuracy, interpretabil-

ity strength and ability to capture the row marginal distribution of the input, using data from 2010.

Simulations are run for 10 different train-test splits with a proportion of 90-10% entries. The burn-in

period for the MCMC inference algorithm is 30,000 iterations, and results are averaged using the

last 1,000 posterior samples. Table 6.2 compares our model against probabilistic matrix factoriza-

tion (PMF) [134], non-negative matrix factorization (NNMF) [185], the standard BeP-PFA, and the

sparse sparse Bernoulli process Poisson factor analysis (sBeP-PFA) which uses αB � 1.
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Metric PMF NNMF BeP-PFA SBeP-PFA 3RBeP-PFA

Log Perplexity 1.68± 0.01 1.61± 0.01 1.59± 0.04 3.26± 0.17 1.62± 0.01
Coherence −264.60± 4.74 −263.27± 7.45 −149.36± 7.56 −178.44± 4.50 −140.51± 2.73

(a) 2010 SITC database (N = 126, D = 744)

Metric PMF NNMF BeP-PFA SBeP-PFA 3RBeP-PFA

Log Perplexity 1.48± 0.01 1.47± 0.01 1.58± 0.01 2.56± 0.12 1.57± 0.02
Coherence −264.73± 3.11 −264.67± 6.22 −148.91± 10.57 −168.39± 13.16 −134.51± 4.43

(b) 2010 HS database (N = 123, D = 4890)

Table 6.2: Quantitative Evaluation of Accuracy and Interpretability for 3RBeP-PFA. We compare PMF,
NNMF, BeP-PFA, sBeP-PFA and 3RBeP-PFA in terms of mean and standard error of the test log-perplexities,
and topic coherence.

Accuracy. We use perplexity to measure predictive accuracy, i.e. the harmonic mean of the inverse

test log likelihood (the lower, the better), defined as:

Perplexity(Xtest) = exp

(
− ln p(Xtest|Xtrain)

Ntest

)
(6.20)

ln p(Xtest|Xtrain) ≈ Poisson
(

E [p(Z|Xtrain] E [p(B|Xtrain)]
)

(6.21)

All models present similar perplexity, except the sBeP-PFA model, in which the sparseness restriction

degrades its performance significantly. Our 3RBeP-PFA has the same sparse restriction, but it has

a more flexible prior that it is able to compensate the penalty in perplexity and perform close to

the non-sparse models, i.e. PMF, NNMF and BeP-PFA. The combination of the negative binomial

and the stable-Beta process allows to match the perplexity performance of non sparse methods, but

keeping the results interpretable, as we illustrate in the next paragraphs.

Interpretability. In order to assess semantic quality, we rely on the coherence [51], which is an

often-used metric in topic modeling literature. The coherence Ck of a feature is defined as:

Ck =
M∑

m=2

m−1∑

l=1

log
R(vkm, v

k
l ) + 1

R(vkl )
(6.22)

where vki is the i-th product with highest weight in factor k, andM represents how many top products

should be evaluated, here we take M = 20 products. Also R(x) refers to the number of countries

exporting product x, and R(x, y) is the number of countries exporting both products x and y. The

closer coherence is to zero, the better. The 3RBeP-PFA outperforms the BeP-PFA and sBeP-PFA

by far, making it specially suitable for data exploration in high-dimensional count scenarios. The
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Figure 6.2: Capturing Sparsity Structure. Comparison of the empirical and inferred distribution of the
number of ones per row in the input matrix, using qq-plots.

non-sparse methods present low coherence, as expected.

Sparsity structure. Next, we evaluate the ability of our model to fit the input distribution of coun-

tries’ diversity, i.e., the number of ones per-row in Z. Figure 6.2 presents a comparison of our

3RBeP-PFA model with the standard BeP-PFA, the sBeP-PFA model, and a simple binomial model

described in [82]. The latest one assumes binary matrices Z and B, a finite number of capabilities

K, and uniform activation probabilities pcc and pcp for all country-capability and capability-product

combinations3. We measure the “proximity” of the empirical and predicted distribution of the num-

ber of ones per row for all models through a qq-plot. The sBeP-PFA underfits the distribution for

higher values, e.g., it predicts a lower number of countries with high number of exports, in contrast

to the 3RBeP-PFA model4.

3Parameters in this baseline model are chosen to best fit the diversity input histogram.
4The horizontal line for the 3RBeP-PFA corresponds to countries only having the bias term F0.
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Qualitative Evaluation

Interpretability Table 6.3 compares two similar latent features (capabilities) inferred by our 3RBeP-

PFA model and using a standard singular value decomposition (SVD). In each case, we report a sorted

list of products and their corresponding factor weights. We only include those products whose weight

is large enough (at most 30% lower than the maximum weight). Compared to SVD, our model is able

to give much shorter and concise descriptions, as weights decrease at a faster pace and the largest

weights are larger. Moreover, products in the SVD list come from a mixture of farming and techno-

logical elements, whereas the 3RBeP-PFA list is more homogeneous. We conclude that our approach

enhances interpretability of the latent factors in terms of both conciseness and precision.

Top Products with weights > 30% Bkd

Bovine 0.49
Misc. Refrigeration Equipment 0.43
Radioactive Chemicals 0.41
Blocks of Iron and Steel 0.41
Rape Seeds 0.40
Animal meat, misc 0.39
Refined Sugars 0.38
Misc. Tire Parts 0.38
Leather Accessories 0.38
Liquor 0.38
Bovine meat 0.38
Embroidery 0.37
Unmilled Barley 0.37
Dried Vegetables 0.36
Textile Fabrics Clothing Accessories 0.36
Horse Meat 0.35
Iron Bars and Rods 0.35
Analog Navigation Devices 0.35

(a) SVD

Top Products with weights > 30% Bkd

Misc. Animal Oils 0.78
Bovine and Equine Entrails 0.72
Bovine meat 0.68
Preserved Milk 0.63
Equine 0.62
Butter 0.58
Misc. Animal Origin Materials 0.57
Glues 0.56

(b) 3RBeP-PFA

Table 6.3: Qualitative comparison for a similar latent feature for SVD and 3RBeP-PFA.

Table 6.4 presents a complete list of all capabilities inferred by our model. For each capabil-

ity k, we report the averaged number of countries m̄k that have it, the top-5 products with highest

weights Bkd and a representative country, which we define as the country that has the least number

of capabilities among those that possess capability k. We also report the average number of active

capabilities J̄n for each representative country n. Clearly, our model is highly interpretable in the

sense that it is able to differentiate capabilities according to the elements required in the production

of products. For instance, we can clearly associate capability F2 to the presence of animals and farm-

ing, or capability F7 to the elements required in the production of automotive parts. Furthermore,

capabilities for which the corresponding representative countries have a high number of active capa-
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Id m̄k Top-5 products with sorted highest weights (Bkd) associated Repr. countries (J̄n)

F1 18.27 Misc. Animal Oils (0.78), Bovine and Equine Entrails (0.72), Bovine meat (0.68), Preserved Milk (0.63), Equine (0.62) Paraguay (2.00)

F2 21.39
Synthetic Woven Fabrics (0.74), Non-retail Synthetic Yarn (0.60), Woven Fabric of less than 85% Discontinuous Synthetic Fibres
(0.60), Woven Fabrics of More Than 85% Discontinuous Synthetic Fiber (0.58), Yarn of Less Than 85% Synthetic Fibers (0.53)

United Arab Emirates
(2.82)

F3 14.87
Parts of Metalworking Machine Tools (0.74), Interchangeable Tool Parts (0.72), Polishing Stones (0.69), Tool Holders (0.66),

Misc. Metalworking Machine-Tools (0.54) Israel (5.97)

F4 18.67
Aldehyde, Ketone and Quinone-Function Compounds (0.68), Glycosides and Vaccines (0.67), Medicaments (0.65), Inorganic

Esters (0.64), Cyclic Alcohols (0.62) Ireland (4.34)

F5 11.04 Synthetic Rubber (0.87), Acrylic Polymers (0.85), Silicones (0.76), Misc. Polymerization Products (0.71), Tinned Sheets (0.65) North Korea (3.99)

F6 21.95
Measuring Controlling Instruments (0.61), Mathematical Calculation Instruments (0.59), Misc. Electrical Instruments (0.57),

Misc. Heating and Cooling Equipment (0.51), Parts of Office Machines (0.49) Malaysia (3.00)

F7 31.14 Vehicles Parts and Accessories (0.59), Cars (0.58), Iron Wire (0.53), Trucks and Vans (0.53), Air Pumps and Compressors (0.50) Belarus (4.20)

F8 33.00
Improved Wood (0.71), Mineral Wool (0.62), Central Heating Equipment (0.62), Aluminium Structures (0.62), Harvesting

Machines (0.60) Belarus (4.20)

F9 16.53
Misc. Electrical Machinery (0.76), Vehicles Stereos (0.72), Misc. Data Processing Equipment (0.64), Video and Sound Recorders

(0.57), Calculating Machines (0.55) Malaysia (3.00)

F10 45.93
Baked Goods (0.67), Metal Containers (0.62), Misc. Edibles (0.59), Misc. Articles of Paper (0.59), Misc. Organic Surfactants

(0.58) Costa Rica (2.06)

F11 33.23
Misc. Articles of Iron (0.65), Carpentry Wood (0.61), Misc. Manufactured Wood Articles (0.60), Sawn Wood Less Than 5mm

Thick (0.56), Electric Current (0.51) Russia (2.93)

F12 38.67 Vegetables (0.60), Fruit or Vegetable Juices (0.54), Misc. Fruit (0.50), Frozen Vegetables (0.48), Apples (0.47) Peru (2.00)

F13 23.29
Misc. Pumps (0.51), Ash and Residues (0.45), Chemical Wood Pulp of sulphite (0.44), Rolls of Paper (0.43), Worked Nickel

(0.43) Russia (2.93)

F14 46.11
Synthetic Knitted Undergarments (0.76), Misc. Feminine Outerwear (0.74), Misc. Knitted Outerwear (0.73), Men’s Shirts (0.70),

Blouses (0.67) Sri Lanka (2.00)

F15 32.12
Misc. Rotating Electric Plant Parts (0.66), Control Instruments of Gas or Liquid (0.58), Valves (0.57), Misc. Rubber (0.56), Misc.

Articles of Plastic (0.55) Philippines (4.01)

Table 6.4: Complete list of latent features found by the 3RBeP-PFA model. From left to right, m̄k is the
averaged number of countries having latent feature k active, we list the top-5 products with highest weights
Bkd; a representative country is the country that has the least number of active features among those possessing
feature k. J̄n is the averaged number of active features for each representative country n.

bilities J̄n, are also present in less countries, i.e. m̄k is low. This observation is in line with methods

proposed in [87, 196], as it suggests that capabilities have different degrees of complexity, which

plays an important role in the production of goods and services.

Table 6.6 provides a qualitative comparison of our 3RBeP-PFA model against the BeP-PFA and

sBeP-PFA models in terms of interpretability strength. For each method to be compared against, we

chose the most similar feature across the 10-folds in terms of the Jaccard index. We report the top-25

products and their corresponding factor weights. Compared to all other methods, our model is able

to give much shorter and concise descriptions, as weights decrease at a faster pace and the largest

weights are significantly larger. Moreover, products in the BeP-PFA list are very heterogeneous. The

list for the sBeP-PFA model includes items from a mixture of farming and technological elements,

whereas the 3RBeP-PFA list is more homogeneous. All these remarks apply for all the other latent

features that are listed in Table 6.4, other comparative tables can be found in the appendix of this

chapter. We conclude that our approach enhances interpretability of the latent factors in terms of

both conciseness and precision.

135



CHAPTER 6. FLEXIBLE IBP-BASED MODELS FOR INTERNATIONAL TRADE

Id Top-5 products with sorted highest weights (Bkd) associated

F1 Misc. Non-Ferrous Ores (0.40), Petroleum Gases (0.40), Misc. Textile Articles (0.37), Zinc Ore (0.32), Misc. Bituminous Mixtures (0.31)

F2 Sound Recording Media (0.38), Asbestos Products (0.38), Potatoes (0.37), Silver (0.35), Pig Meat (0.32)

F3 Thin Iron Sheets (0.42), Misc. Food-Processing Machinery (0.41), Baked Goods (0.41), Misc. Animal Entrails (0.34), Basketwork (0.34)

F4 Perfumery and Cosmetics (0.45), Misc. Gas Turbines (0.38), Cut Paper (0.35), Misc. Cereal Grains (0.33), Herbicides (0.32)

F5 Bovine (0.49), Misc. Refrigeration Equipment (0.43), Radioactive Chemicals (0.41), Blocks of Iron and Steel (0.41), Rape Seeds (0.40)

F6 Wheat Flour (0.34), Iron and Steel Forging (0.29), Printing Ink (0.29), Waste Paper (0.28), Aluminum (0.26)

F7 Misc. Oil Seeds and Fruits (0.47), Bones, Ivory and Horns (0.44), Temporarily Preserved Fruit (0.43), Cotton Seed Oil (0.42), Inorganic Bases (0.39)

F8 Prepared Explosives (0.48), Confectionary Sugar (0.39), Cigarretes (0.38), Coke (0.37), Misc. Hides and Skins (0.34)

F9 Fish, preserved (0.44), Fresh Fish (0.43), Misc. Animal Origin Materials (0.40), Oranges (0.37), Sheep and Goat Meat (0.37)

F10 Wood and Animal Hair Waste (0.46), Misc. Carpets (0.42), Wool Carpets (0.41), Wool Yarn (0.40), Degreased Sheep Wool (0.38)

F11 Tin (0.41), Vehicles Stereos (0.40), Copper (0.36), Misc. Articles of Paper (0.36), Petroleum Gases (0.36)

F12 Gypsum and Other Calcareous Stone (0.42), Sausage (0.34), Special Products of Textile (0.32), Movie Cameras and Equipment (0.30), Iron Shapes (0.29)

F13 Cigarretes (0.50), Worked Tin and Alloys (0.43), Aluminum (0.38), Bicycles (0.38), Raw Sheep Skin without Wool (0.38)

F14 Precious Metal Ores (0.50), Gold (0.48), Diamonds (0.47), Unmounted Precious Stones (0.43), Electrical Transformers (0.38)

F15 Sulphur (0.40), Fuel Wood and Charcoal (0.34), Misc. Unmilled Cereals (0.33), Household Refrigeration (0.33), Decorative Wood (0.33)

Table 6.5: Top-15 latent features inferred using the SVD.

BeP-PFA SBeP-PFA 3RBeP-PFA

Confectionary Sugar (0.45) Bovine (0.53) Miscellaneous Animal Oils (0.78)
Plastic Storage Containers (0.43) Improved Wood (0.51) Bovine and Equine Entrails (0.72)

Baked Goods (0.41) Miscellaneous Vegetable Oils (0.50) Bovine meat (0.68)
Tissue Paper (0.40) Butter (0.50) Preserved Milk (0.63)

Metal Containers (0.39) Rape Seeds (0.47) Equine (0.62)
Soaps (0.39) Miscellaneous Wheat (0.45) Butter (0.58)

Waste of Man-Made Fibres (0.38) Pulpwood (0.45) Misc. Animal Origin Mate. (0.57)
Misc. Organic Surfactants (0.35) Harvesting Machines (0.45) Glues (0.56)

Misc. Non-Iron Waste (0.35) Soil Preparation Machinery (0.44) Pig Meat (0.53)
Notebooks (0.34) Misc. Prepared Meats (0.43) Horse Meat (0.52)

Hydrogenated Oils (0.34) Bovine meat (0.43) Malt Extract (0.44)
Iron Structures (0.34) Coniferous Wood (0.42) Hay (0.43)

Household Refrigeration (0.34) Preserved Milk (0.42) Meat and fish extract (0.35)
Synthetic Knitted Undergarments (0.34) Misc. Animal Oils (0.41) Misc. Wheat (0.34)

Chocolate (0.33) Malt (0.41) Tractor Units (0.31)

Table 6.6: Qualitative Evaluation of Topic Interpretability. We compare the BeP-PFA, sBeP-PFA, and
3RBeP-PFA model. Comparison for any other feature can be found in the Supplementary.

Features correlation. In order to analyze the existing correlations between the inferred factors,

we apply our 3RBeP-PFA on the inferred matrix Z as input data. Such a deep structure, i.e. using

two-layer IBP, has already been explored in [40]. As before, we use a bias term, denoted by M-

F0, which is active for all countries. In addition to M-F0, our approach extracts another meta-

feature, M-F1, which is active for 46.19 countries on average (the list of countries can be found

in Table 6.9). The countries with an active M-F1 are those that have more active features in the

original model and a larger gross domestic product (GDP). Table 6.8 shows both meta-features, M-

F0 and M-F1, which assign different weights to each latent feature from the first layer. For the

reader’s convenience, we reproduce a compressed version of Table 6.4 in Table 6.7. M-F1 can be
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interpreted as the meta-feature that distinguishes between developed countries and developing ones

(see Figure 6.3), resulting in a sharp division of the world in terms of capabilities. More importantly

these two meta-features divide the features from the original model into three disjoint sets.

The first set contains the latent features whose weight is either zero or insignificant in M-F1: F0,

F1, F2, F9, F12 and F14 (highlighted in red). These are the features that define countries with least

capabilities, dealing with less complex products like farming or textile (see Table 6.4). It makes sense

that more developed countries do not have stronger weights than developing ones for these features.

Developed countries might have a non-zero RCA, but they are not exploiting such capabilities better

than developing ones.

The second set is composed by F10 (in green), which has a high value in both meta-features.

This feature is traded by both developing and developed countries. But the developed countries do

trade them more efficiently than developing ones. We can understand these products as those in the

capability frontier. We should expect that, as developing countries improve in the future, the weight

for F10 would drop towards zero in M-F1.

The last set includes the remaining features (in black). In this case, their weights in M-F0 are

negligible compared to their weights in M-F1. These features contain products like chemicals and

complex machinery, which are only traded by developed countries. Developing countries have not

acquired such capabilities to trade them yet, or they are in the process to do so but are still far behind.

Such sharp division among features suggests the existence of a “poverty” or “quiescence trap” in the

spirit of [82], a trap of development stasis in which some countries get stuck due to the inability to

“acquire” capabilities associated with the production of more complex products.

6.5.2 Time-varying Scenario

To give a further intuition of the interpretability of our time-varying approach, here we apply the

dBeP-PFA model to the aggregated SITC database between 1964 and 2010. We consider 92 coun-

tries, 501 products, and 47 timestamps. To speed up mixing, we initialize the latent features to the

values obtained from a preliminary training with the 2010 data, listed in Table 6.4, and learn the

feature activation values for all years.

Quantitative Evaluation

We first evaluate the predictive performance and topic interpretability of dBeP-PFA compared to

three alternative methods: Poisson Gamma dynamical system (PGDS), thinned Gamma process

Poisson factor analysis (tGaP-PFA), and BeP-PFA. The recently introduced PGDS model puts a
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Id Top-3 products with highest weights

F0 non-coniferous wood, cereal residues, non-iron waste
F1 misc. animal oils, bovine Entails, bovine meat
F2 synthetic woven, synth. yarn, woven < 85% synth.
F3 parts metalworking, tool parts, polishing stones
F4 Aldehyde–Ketone, glycosides–vaccines, medicaments
F5 synthetic rubber, acrylic polymers, silicones
F6 measuring instruments, math inst., electrical inst.
F7 vehicles parts, cars, iron wire
F8 improved wood, mineral wool, heating equipment
F9 elect. machinery, vehicles stereos, data processing eq.

F10 baked goods, metal containers, misc. edibles
F11 misc. articles of iron, carpentry wood, wood articles
F12 vegetables, fruit–vegetable juices, misc. fruit
F13 misc. pumps, ash–residues, chemical wood pulp
F14 synth. undergarments, feminine outerwear, men’s shirts
F15 misc. rotating, electric plant parts, control inst. of gas

Table 6.7: Averaged features learned by the 3RBeP-PFA
model. We list the top-3 products with higher weights for
each averaged feature.

Id B′1k

F0 1.00
F14 0.37
F12 0.32
F10 0.17
F2 0.16
F1 0.14
F9 0.13
F13 0.05
F6 0.04
F5 0.04
F4 0.04
F15 0.04
F7 0.03
F8 0.03
F11 0.02
F3 0.02

(a) M-F0

Id B′1k

F8 0.69
F11 0.68
F15 0.60
F10 0.59
F7 0.52
F6 0.34
F13 0.32
F4 0.31
F3 0.31
F5 0.14
F1 0.05
F9 0.02
F2 0.01
F14 0.00
F0 0.00
F12 0.00

(b) M-F1

Table 6.8: Averaged meta-features. These
are inferred by applying our S3R-IBP model
to Z as input.

MF-0 MF-1 List of Countries for each activation pattern of the meta-features

1 0

Pakistan, Syria, Chile, Kyrgyzstan, Zimbabwe, Albania, Tanzania, Bahrain, Laos, Botswana, Bolivia,
Bangladesh, Kazakhstan, Senegal, Cuba, Zambia, Namibia, Oman, Turkmenistan, Mongolia, Ethiopia,

Mozambique, Iran, Ghana, Cote d”Ivoire, Papua New Guinea, Saudi Arabia, Yemen, Sudan, Trinidad and
Tobago, Cameroon, Mauritania, Venezuela, Guinea, Azerbaijan, Algeria, Republic of the Congo, Kuwait,

Nigeria, Qatar, Gabon, Libya, Iraq, Angola

1 1

Germany, Italy, United States, Japan, France, China, Austria, Czech Republic, Spain, United Kingdom, Belgium,
Sweden, Netherlands, Switzerland, Poland, Denmark, Portugal, Hong Kong, India, Slovenia, Finland, Hungary,

Thailand, Israel, Turkey, South Korea, Slovakia, Bulgaria, Romania, Croatia, Estonia, Serbia, Canada, Lithuania,
Singapore, Mexico, Panama, Ukraine, Latvia, Malaysia, Brazil, Indonesia, Greece, Bosnia and Herzegovina,
Tunisia, Lebanon, Ireland, Vietnam, Philippines, Argentina, Belarus, Egypt, South Africa, North Korea, New

Zealand, Russia, Uruguay, El Salvador, United Arab Emirates, Norway, Morocco, Sri Lanka, Moldova,
Macedonia, Jordan, Colombia, Australia, Kenya, Mauritius, Peru, Guatemala, Uzbekistan, Dominican Republic,

Paraguay, Madagascar, Costa Rica, Honduras, Georgia, Ecuador, Nicaragua, Cambodia, Burma

Table 6.9: Clustering of countries based on our two-layer 3RBeP-PFA model. We observe a sharp division
of the world in two groups, which aligns with the “quiescence trap” hypothesis [82].

Markovian structure over the dictionary instead of the activation of the features [184]. To run PGDS

on our data, we flatten our X ∈ N ×D × T matrix X into a ND × T matrix. tGaP-PFA is another

Bayesian nonparametric model that learns a smooth underlying parametric function for the activation

probability of the features: for certain timestamps t, some features are “thinned” (de-activated) from

the underlying random measure. This model follows the same spirit as the dependent IBP in [219],

where a Gaussian process (GP) is used to tie the activation of each latent feature over time5. BeP-

PFA refers to the static model described in Section 6.3 using an IBP prior. In this case, we need to

5Inference for the dependent IBP is computationally expensive, and has only been proposed for a Gaussian likelihood.
The tGaP-PFA works for Poisson likelihood.
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Figure 6.3: World heat map according to the presence of features associated with meta feature M-F1.
Darker shade indicates presence of more capabilities that are associated with M-F1. Countries with the lightest
blue shade only have M-F0 capabilities, whereas there is no data for the countries in white shade.

flatten our input data X into a NT × D matrix. The static BeP-PFA model assumes a shared set

of latent features over the years, and independent feature activation vectors for each year, e.g., USA

in 1965 would be counted as a different country from USA in 1986. Both BeP-PFA and dBeP-PFA

assume a bias term (one feature that is active for all countries) to capture global mean effects. For

each model, we ran the MCMC inference procedure during 10.000 iterations for ten different splits

of the data with 90-10% of the observations in the train and test sets.

Metric PGDS tGaP-PFA BeP-PFA dBeP-PFA

Log Perplexity 1.912± 0.002 1.428± 0.001 1.382± 0.003 1.419± 0.005

Coherence - −469.11± 9.562 −506.29± 13.470 −403.70± 31.725

Table 6.10: Quantitative Evaluation of Accuracy and Interpretability for dBeP-PFA. We compare the
following models: PGDS, tGaP-PFA, BeP-PFA and dBeP-PFA in terms of mean and standard error of the test
log-perplexities, and topic coherence.

Table 6.10 shows the averaged test log perplexity for each model. Although BeP-PFA is the best

model in terms of predictive accuracy, both dBeP-PFA and tGaP-PFA present very close predictive

strength. dBeP-PFA is better than BeP-PFA since it imposes more constraints in the solution space
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through the Markovian structure. In terms of topic coherence, dBeP-PFA clearly outperforms all the

other models, which makes it the best choice to perform a data exploratory analysis of this dataset.

Qualitative Evaluation

Table 6.11 shows the list of inferred latent features using the dBeP-PFA. Compared to the static case,

we get less features related to machinery, and more specialized features regarding types of plantations

(coffee and sugar are captured by F12 whereas cotton is accounted for by F15). Similar to the static

scenario, the induced sparsity in matrix B makes each latent feature easy to interpret (for instance,

F1: objects from a hardware store, F2: chemical products, F3: iron processing, etc...).

Id m̄k Top-5 products with highest weights

F0 92 (bias) crude petroleum (0.23), crustaceans (0.18), cereals (0.15), cement (0.14), bones–ivory–horns (0.13)

F1 16.85
light fixtures (0.53), locksmith hardw. (0.46), misc. ceramic ornaments (0.45), bicycles (0.44), misc.

manufactured wood articles (0.42)

F2 15.19
inorganic esters (0.54), transmission belts (0.47), chemical products (0.45), nitrogen compounds (0.42), aldehyde

compounds (0.42), hormones (0.41)
F3 18.36 iron sheets (0.55), iron wire (0.51), thin iron sheets (0.50), metal cables (0.50), uninsulated steel wire (0.49)

F4 16.89
misc. elect. machinery (0.53), typewriters (0.37), misc. office equipment (0.36), cameras (0.36), calculating

machines (0.35)
F5 23.19 soaps (0.53), confectionary sugar (0.44), baked goods (0.42), margarine (0.40), floor polishes (0.35)

F6 18.91
bovine – equine entrails (0.57), bovine meat (0.56), misc. prepared meats (0.51), misc. animal oils (0.48), poultry

meat (0.47)

F7 28.89
knit clothing accessories (0.44), linens (0.41), leather accessor (0.40), textile bags (0.39), unbleached cotton

woven fabrics (0.36)

F8 15.87
glazes (0.57), textiles fabrics for machinery (0.54), mineral wool (0.53), paper office containers (0.51), misc.

mineral materials (0.51)
F9 24.94 misc. vegetables (0.52), grapes and raisins (0.49), misc. fruit (0.48), oranges (0.44), misc. citrus (0.43)

F10 24.77
inorganic bases (0.50), nitrogenous fertilizers (0.44), lubricating petrol. oils (0.40), aluminium (0.34), chemical

elements (0.29)

F11 16.09
imitation jewellery (0.53), embroidery (0.46), synth. precious stones (0.44), textile fabrics clothing accessories

(0.44), eyewear (0.43)
F12 33.64 coffee (0.71), non-coniferous worked wood (0.42), cane sugar (0.41), cocoa beans (0.37), molasses (0.35)
F13 19.40 copper ores (0.43), chemical wood pulp (0.41), misc. non-ferrous ores (0.40), copper (0.37), zinc ore (0.35)

F14 7.00
pepper (0.69), vegetable plaiting materials (0.68), natural rubber (0.66), unwrought tin and allows (0.58), misc.

veg. textile fibres (0.53)

F15 29.94
raw cotton (0.45), cotton linters (0.37), green groundnuts (0.36), misc. animal origin materials (0.34), legumes

(0.34)

Table 6.11: Complete list of latent features found by the dBeP-PFA model. m̄k is the averaged number
of countries having feature k active across timestamps, we list the top-5 products with highest weights Bkd.
Orange color corresponds to the latent features represented in Figure 6.5a.

Temporal dynamics. Figure 6.4 shows the feature activation dynamics for four particular exam-

ples: Chile, Indonesia, Egypt, and United Kingdom. The three first countries were all able to increase

their number of active features over the years, although their dynamics can be attributed to differ-

ent economic factors. The latent features uncover the internal situation of the countries’ economic

system at different timestamps. In particular, Chile’s main strengths rely on natural resources (F9:
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Figure 6.4: Probability of features activation over time using the dynamic dBeP-PFA model. We have
selected four random examples among all countries. We only depict features that are active at some point in
time.

vegetables and fruits, F13: ores, ...) and more recently farming industry (acquisition of F6 in the

90s), whereas the growth of Indonesia is mainly due to acquisition of features related to clothing and

electronic products. Interestingly, Chile is a well known natural resource producer [83], while the

start of Indonesia’s growth coincides with the period when the country opened its economy and got

an influx of foreign direct investments[133].

Egypt is a country that has very unique dynamics, as shown in Figure 6.4c. There is a sudden

fall in the activity of feature F7 (associated to clothing) at the end of the 1970s, after which the

number of active features remained steady at its minimum, until 1985 and the beginning of the

1990s. The 80s correspond to years of political and economic unstability [24]. In that period, the

country lost most of its export RCA. At the beginning of the second growth, which corresponds

to a period of political reforms that made Egypt a more open economy, the country regained the

activity in F7, and gradually incorporated F10 (simple chemicals), F5 (basic manufacturing) and F3

(iron processing). The diffusion after the recovery is in accordance with the conclusions from [88]

where it was discovered that a country’s export basket diffuses over time from only comprising basic

products, such as natural resources and clothing products, to also including technology-driven items.

Finally, United Kingdom (UK) is a developed country which has a diversified export portfolio,

including chemicals (F2, F10), machinery (F4), and manufacturing (F5, F8) among others. Starting

in the 80s, UK loses feature F11 (imitation jewellery, make-up and accessories) and F1 (hardware

store items) as a consequence of the de-industrialisation process and structural unemployment during
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(a) Subset of the transition model

Transitions Country Years

1→ 2 Congo 1996-1997
2→ 1 Angola 1976-1977
2→ 3 Colombia 1977-1978
2→ 4 Cote D’Ivoire 1998-1999
2→ 4 Cameroon 1970-1971
2→ 4 Ecuador 1992-1993
2→ 4 Honduras 1998-1999
2→ 5 El Salvador 1985-1986
3→ 2 Cambodia 1996-1997
3→ 5 Costa Rica 1998-1999
4→ 2 Cote D’Ivoire 1983-1984
4→ 2 Cameroon 1975-1976
4→ 2 Honduras 1997-1998
4→ 2 Nicaragua 1982-1983
4→ 5 Honduras 1999-2000
5→ 3 Guatemala 1983-1984
5→ 4 Costa Rica 1999-2000

(b) Transition examples

Figure 6.5: Transition Model induced by dBeP-PFA. (a) Subset of the transition model; the label of each
node corresponds to the set of active features at this state; edges are weighted by the corresponding number of
inferred transition in Z. (b) Transition examples between the nodes depicted in (a).

the Thatcher era [7]. Later in the 2000s, UK also loses F3, corresponding to the delocalization of

iron processing industries.

In addition to monitoring the temporal dynamics of each individual country, it is also interesting

to study the feature transitions globally, as a simple transition model. This is possible given the

discrete nature of the feature weights, as features can be either active or inactive. In fact, Z
(t)
n• can be

interpreted as the latent state of country n at timestamp t, which indicates the set of features that are

active for country n at time t.

Let G = {M, E} be a hidden network, whereM denotes all possible latent states (all possible

values for vector Z
(t)
n•) and E refers to all directed edges connecting any two elements belonging to

M (full network). For each country n, the sequence [Z
(1)
n• ,Z

(2)
n• , . . . ,Z

(T )
n• ] corresponds to a certain

path within such network. By monitoring which are the most common nodes and most visited edges

in the network, we can gain new insights on the developing mechanisms of countries.

Figure 6.5a shows a subset of the transition model induced by the dBeP-PFA model, correspond-

ing to the first steps in countries’ development. Node 1 corresponds to the state in which only the bias

term is active (no other capabilities), where 16% of the countries are placed each year on average.
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From that state, the easiest path is to acquire F12 (coffee, sugar and wood plantations), after which

countries might get F7 (basic manufacturing), F5 (clothing) or both. Table 6.5b lists some transition

examples corresponding to that particular sub-network. For instance, Honduras is a country with a

traditional focus on coffee exports. Based on our model, Honduras manages to diversify its export

portfolio by the acquisition of feature F5 and F7 in the 1998-1999 period [25].

6.6 Summary

This chapter presents two extensions of BeP-PFA in order to deal with more flexible structures in

the latent space, including structure sparsity and time-dependency. In the static scenario, we have

combined the beta-stable process with the R-IBP framework for creating a flexible sparse latent

variable prior. We have used this prior together with an additional sparse prior for the weights of

the latent features, giving rise to our 3RBeP-PFA model. Our model is a non-negative sparse latent

variable model particularly suitable for data exploratory analysis of high-dimensional count data,

given its flexibility and interpretability properties. In the time-dependent scenario, we use an mIBP to

extend the BeP-PFA. The resulting dBeP-PFA model assumes Markovian structures in the activation

of the latent features, which can be interpreted as capabilities required for producing products that a

country might acquire or loose over time.

We used these models to explain trade data in a static and time-varying scenarios, e.g., consid-

ering the 1964-2010 temporal span. The obtained factors are compact, easy to interpret and show

that the number of active capabilities is highly correlated with the diversification and the level of

development of an economy. Based on the dynamic approach, we are able to extract a finite state

machine of latent patterns that allow us to understand the typical evolution paths of developing coun-

tries. The presented approaches are general enough to be directly applicable to any other count-data

scenario where data exploration takes precedence over exclusive accuracy, including analysis of gene

expression data, topic modeling, or recommendation systems.
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7
Conclusions

7.1 Summary

In this thesis, we have constructed tailored Bayesian nonparametric (BNP) models specially suitable

for data exploration tasks. We have addressed each new problem from a multidisciplinary point of

view, which has been crucial for an appropriate design of the models and their subsequent validation.

Globally speaking, the contributions of this thesis can be classified in three key aspects:

1. We have improved model interpretability via prior and likelihood design, by including ad-

equate assumptions into the model to better fit reality, using age-gender additive factors in

Chapter 3, treatment-specific latent features in Chapter 4, cancer-specific activation weights in

Chapter 5, or structured sparsity within the solutions in Chapter 6.

2. We have increased model flexibility regarding information sharing across observations by in-

corporating dependency via Gaussian processes (GPs) in Chapter 3, hierarchical model con-

structions of Dirichlet processes (DPs), Bernoulli processes (BePs), or Beta processes (BPs) in

Chapters 3, 4, and 5, as well as Markovian structures in Chapter 6.
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3. We have addressed the issue of result replicability by combining Bayesian models with statis-

tical methods, even in small sample size scenarios. We have incorporated significance assess-

ment and multiple hypothesis testing to our approaches, as described in Chapters 4 and 5. The

idea of running an unsupervised approach to learn an appropriate latent space for the observa-

tions, and then performing statistically significant variable selection for each basis or partition

of this latent space is a powerful and novel approach that could bring new insights in a vast

amount of applications in medicine, pharmacology, biology or sociology.

More precisely, this doctoral thesis brings actual BNP solutions to non-standard applications

in three different scientific fields. Within sport sciences, we have developed the atom-dependent

Dirichlet process (ADDP) model, a dependent infinite mixture model for density estimation that was

applied on marathon running time data, as explained in Chapter 3. By combining a DP with multiple

GPs, we were able to study the impact of age, gender and environment on runner performance [159].

A further analysis based on the hierarchical Dirichlet process (HDP) revealed the most common run-

ning patterns along time for the New York City marathon. A direct application of this work results

in a fair grading system that is able to compare all runners regardless of their gender or age; such

system could be adopted right away in any athletic competition to standardize entry requirements or

to grant appropriate rewards among athletes. We also highlighted the existing link of the proposed

model with the literature of infinite mixture of experts (IMoE), and thus, we reformulated it as a flex-

ible approach to non-linear regression in general settings with heteroscedastic noise, non-Gaussian

likelihoods, or multi-modal distributions.

In the context of cancer research, we have developed BNP approaches with shared and specific

components for biomarker discovery and clinico-genetic association in Chapters 4 and 5 respectively.

These works have brought novel insights on cancer, and shed light on the mechanisms of action of

Codrituzumab, a promising immunotherapy treatment for patients with hepatocellular carcinoma

(HCC). An attractive property of the proposed models refers to their capacity to deal with patient

heterogeneity, which makes it possible to uncover novel information that previous studies were not

able to deliver. The case-control Indian buffet process (C-IBP) or hierarchical Poisson factor analysis

(H-PFA) models can be directly applied to any other clinical trial data or genetic association study,

respectively. Also, in order to facilitate data exploratory analyses of such kind, we have released

open source software, namely the general latent feature model (GLFM) software package that is able

to deal with different types of data jointly, together with noise and missing observations. The code

is user-friendly, fast, and well documented, such that it can be used straightforwardly by researchers
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from other disciplines.

Finally, in the context of international trade, we have proposed two novel doubly-sparse Poisson

factor analysis (PFA) models specially suitable for high-dimensional count data. We have investi-

gated the empirical gain of incorporating enhanced prior distributions over the latent observations. In

the static scenario, by incorporating the stable-BP within the restricted Indian buffet process (R-IBP),

we have allowed for a broader spectrum of sparse solutions that reflect different types of reality. In

the dynamic scenario, we have introduced Markovian dynamics in the activation of the latent features

based on multiple Markov Indian buffet processes (mIBPs). The obtained time-varying features can

be directly interpreted as capabilities necessary for the production of certain products, which coun-

tries might acquire or lose over time. The inclusion of mIBP priors results in much smoother and

robust transitions, opening the door to a better understanding of the available development paths

of countries’ economies over time. The proposed models have allowed us to unfold the productive

structure of countries via the analysis of their export portfolios, and can be directly used for policy

recommendation or future predictions.

Along this thesis, we have developed Markov chain Monte Carlo (MCMC) algorithms based

on Gibbs sampling, Metropolis-Hasting steps, slice sampling, forward-filtering backward-sampling

(FFBS) procedures, and the help of auxiliary variables to handle non-conjugacies arising into the

models. We strongly believe in reproducible research, and thus, code related to most projects has

been made publicly available online,1 including the GLFM toolbox which can be downloaded from

Github.2

7.2 Future Work

Despite their appealing properties, the impact of BNP models has remained limited so far mostly

due to inadequate model assumptions that do not fit reality, or due to unfeasible inference scenarios

(e.g., non-conjugate models, slow mixing, multi-modal settings with prohibitive computational cost).

Replicability guarantees for Bayesian models are lacking to some extent, particularly in more chal-

lenging situations such as very high-dimensional settings and/or small sample size scenarios. Also,

understanding the requirements of a particular application and being able to translate them into ap-

propriate model assumptions remains more of an art than a science, but it is nonetheless unavoidable

in order to get the utmost out of data. If we manage to alleviate such limitations, there is an incredible

1See www.melaniefpradier.work
2https://github.com/ivaleraM/GLFM
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opportunity to boost mankind’s knowledge in most scientific disciplines, by squeezing huge amounts

of available data into more substantial information.

This thesis begets more questions than answers. Our work suggests several paths for further

research, both in the technical and application sides. The future lines of research considered herein

can be classified in the following categories:

• increasing the flexibility of BNP models to handle more general assumptions or types of data

(time-varying streams of data, non-exchangeable observations, complex structures like trees

or graphs, etc). In this regard, deep models are promising to address limited likelihood expres-

sivity [170].

• improving inference methods to either better explore the posterior distribution, or scale infer-

ence in terms of memory and speed, to allow learning in very high-dimensional or large sample

size datasets [11].

• investigating model validation strategies for data exploration tasks and defining appropriate

proxies or metrics to better assess model utility in addition to predictive accuracy [41]. On top

of empirical evidence, further theoretical analyses are imperatively required in the future.

We provide below a concrete list of ideas for future lines of research.

Generalized ADDP model. The ADDP model of Chapter 3 could be generalized in several ways:

• multi-dimensional covariates: we could incorporate an arbitrary number of covariates (na-

tionality, weight, occupation, city, etc), together with an automatic way to select the most

promising characteristics. This could be done by using an automatic relevant discrimination

(ARD) kernel in the GP.

• multi-output scenarios: More output variables could be considered (e.g., intermediate running

times, triathlon metrics, etc.). This extension is challenging due to the curse of dimensional-

ity. Some starting points would be the linear model of coregionalization (LMC) or intrinsic

coregionalization model [23, 8].

• other density estimation applications requiring fairness constraints: the ADDP model could

be directly applied to many other comparative studies, such as salary distribution in male

and female populations across working sectors, or evolution of height and weight in infants

to derive well-calibrated curves for pediatrics. Other applications arise in epidemiological

studies, such as monitoring the distribution of scientific output (e.g., number of citations) with

respect to age, gender, field of research, etc.
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Atom-dependent latent feature model. A promising line of research would be to extend the

ADDP model of Chapter 3 to a latent factor scenario, leading to an atom-dependent Indian buffet

process model. Dependency could be introduced by assuming a GP prior over each time-varying

latent feature. This would allow us to capture elements in a video record that move along time, in the

same spirit as in [189]. Inference might suffer from slow mixing, so we might want to consider split

and merge moves or gradient-based strategies, such as Hamiltonian Monte Carlo [45, 217].

Another motivating example arises from the clinical trial for Codrituzumab described in Chap-

ter 4: in that study, patients reached different degrees of drug exposurewn (i.e., this can be interpreted

as how much the drug was “absorbed” by each patient n). It would thus be interesting to incorporate

dependencies in the features based on the reached level of drug exposure, as follows:

xnd ∼ N (Zn•B•d(wn), σ2
x), where Bkd(wn) = akdwn + ckd, (7.1)

where the coefficient akd would encode the direction of change for biomarker d and feature k de-

pending on the drug exposure wn. Such model would potentially output stronger statistical findings,

and could be understood as “correcting” for drug exposure as a confounder effect.

Atom-dependency could also be combined with Markovian structures. For instance, the dynamic

Bernoulli process Poisson factor analysis (dBeP-PFA) from Chapter 6 could be improved by addi-

tionally allowing a small variation of the latent features over time. Such time-varying drift of the

capabilities could be interpreted as historical evolution of export strategies or technologies. For in-

stance, a high-tech capability would present increasing weights for laptops and cellphones in the 90s.

In this particular case, we could use the recently introduced Gamma-Poisson auto-regressive chains,

which allow for tractable inference in Gamma-distributed Markov chains [3].

Supervised latent feature model. Concerning the C-IBP or the GLFM described in Chapter 4,

it would be interesting to include some supervised component to guide the data exploration task in

the same spirit as in [163]. Specially in high-dimensional scenarios, there might be multiple local

minima with similar predictive performance, but not all the solutions might be as informative with

respect to some patient metric. As an example, the latent features could be forced to both explain the

observed attributes of patients while being discriminant for progression free survival (PFS).

Efficient approximate inference methods for scalable BNP models. Current BNP models are

limited to a moderate number of observations. Recent advances in both MCMC and variational

inference methods work with subsets of data in each iteration, which allows scaling up the algorithms
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at the expense of a certain accuracy loss in the posterior approximation [11]. A clear promising

research path concerns the implementation of efficient Bayesian nonparametric models for big data

scenarios. Smart data-driven proposals and efficient moves to speed-up mixing will certainly be

needed. BNP models will be much more useful in the future if we manage to develop new inference

methods to explore the posterior distribution more efficiently. This research would benefit healthcare

applications enormously, since it would render the exploration of vast amounts of electronic health

records (EHRs) possible. For example, the considered models in Chapter 5 for genetic association

studies would be most useful if these could scale to the hundreds of thousands of dimensions. We

could envisage a hybrid variational-MCMC inference scheme, or formulate a black-box variational

inference algorithm where non-conjugacy is not problematic anymore [169]. The discrete nature

of all the latent variables renders such task particularly challenging in that application, prone to

be stuck in local minima. Also, in Chapter 6, the proposed FFBS to infer each Markov chain is

relatively slow. Mixing of the MCMC chain could be improved by incorporating a particle Gibbs

with ancestor sampling (PGAS) scheme [119]. A starting point could be the work in [212], where

the authors propose a dynamic latent feature model using PGAS with Gaussian-distributed latent

features. Adapting such model to the Poisson-gamma likelihood-prior case would be useful for data

exploratory analyses in count data (because of the non-negativity of the latent features).

Non-linear BNP models for high-dimensional data. Let us imagine a scenario in which the num-

ber of dimensions D is orders of magnitude bigger than the number of observations N . To analyze

such data, it is a common practice to either select a subset of dimensions, or eventually apply a simple

dimensionality reduction scheme as a pre-processing step. A motivating application lies in the field

of population genetics where we seek to identify main populations of individuals (centro-european,

african, caucasian, etc.) based on vast amounts of genetic variants. A typical scenario would in-

volve thousand of individuals, each of them defined by half a million of genetic variants. Population

structure is a serious problem in genome-wide association study (GWAS) that can lead to high false

discovery rate (FDR) if not modeled properly. In the future, we plan to extend BNP models to an-

alyze data in scenarios where D � N . This could be achieved by combining a standard Chinese

restaurant process (CRP) or Indian buffet process (IBP) with a non-linear Bayesian dimensionality

reduction method such as Gaussian process latent variable model [34]. Such a model would jointly

learn the best dimensionality for the reduced space together with the potentially unbounded number

of clusters or features in such transformed space.
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Nonparametric processes via flexible random measures. Another promising area concerns non-

exchangeable priors for dependent Bayesian nonparametric models [54]. So far in this thesis, de-

pendency has been included in the models via smooth variation of the atom locations in the stick-

breaking representation in Chapter 3, convex combinations of multiple random measures 4, or hi-

erarchical structures (e.g., Chapter 6), but incorporating dependency at the random measure level is

a promising recent area of interest. In fact, novel non-exchangeable BNP models can be obtained

by understanding the fundamental properties of the underlying random measures [106, 105]. New

completely random measure representations and connections might bring light into improved infer-

ence algorithms [146, 118]. Models such as correlated random measures [168] or dependent beta

processes [189] illustrate the potential of this line of research. In particular, it would be interesting

to introduce dependency over the atom weights in the stick breaking representation, leading to a

powerful infinite mixture of GP experts whose weights are input-dependent.

7.3 Discussion

In the last decade, machine learning (ML) systems have become more ubiquitous in complex appli-

cations that directly impacts our everyday life. So far, most of these systems have been evaluated

in terms of accuracy (e.g., maximization of the log likelihood, minimization of a risk or loss func-

tion, etc), but depending on the application at hand, accuracy exclusively might not reflect the actual

needs or desired performance of the system. Given the current predominance of accuracy metrics

for evaluation in the ML community, the risk exists that we might be “optimizing too much for the

wrong things3”.

Nowadays, ML systems are expected not only to have high predictive accuracy, but also to match

important criteria such as safety, fairness, or scientific understanding. However, in contrast to mea-

sures of performance accuracy, these criteria often cannot be completely quantified, and thus rely on

the so-called criterion of interpretability: if the system can explain its reasoning, we then can verify

whether that reasoning is sound with respect to these auxiliary criteria [41]. “Interpret” means to

explain or to present in understandable terms. In the context of ML systems, interpretability refers

to the ability to explain or to present in understandable terms to a human (this can be a patient or

an expert in the field). Actually, the need for interpretable models is urgent: recent European Union

regulation will require algorithms that make decisions based on user-level predictors which “signif-

icantly affect” users to provide explanations by 2018, which is commonly refer to as the “right to

3F. Doshi-Velez in Talks at Google (April 25th, 2017): “Roadmap for the Rigorous Science of Interpretability”.
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explanation” [66].

The following question arises: can interpretability be somehow automatized in ML systems?

Despite the huge need for interpretable models, data exploration remains quicksand land for the ML

community due to a lack of rigorous definitions, evaluation metrics and benchmarks for comparisons.

An effort to formalize model assumptions behind each study is needed if we want to speed up data

exploratory analyses. Also, translating the requirements from the domain knowledge experts into

actual model elements needs special care. Multidisciplinary research efforts will certainly remain

crucial, but if we are able to build an encyclopedia of interpretability requirements and model as-

sumptions, we might be able to identify similar aspects across applications that might help accelerate

and automatize certain types of data exploration.

Current evaluation of interpretability falls in two categories, either application-driven or via a

quantifiable-proxy such as sparsity. In either way, we need to put more attention on which assump-

tions are the most sensitive for each problem at hand, since applications might have different inter-

pretability needs. As stated in [41], the “need for interpretability stems from an incompleteness in the

problem formalization, creating a fundamental barrier to optimization and evaluation.” For exam-

ple, there might be different kinds of sparsity, each of them suitable for a specific kind of application.

Thus, many open questions remain:

• Should a model be sparse in feature weights or sparse in dictionary elements? Should we have

sparsity in input or output dimensions?

• Do all applications have the same interpretability needs?

• Where is the fundamental incompleteness in each particular application?

• How can we incorporate human domain-expert knowledge into the model?

• Is there a trade-off between interpretability and accuracy?

In order to enhance model interpretability, we should encode appropriately our assumptions con-

cerning three aspects: the prior, the generative process (likelihood), and the desired output or sys-

tems’ utility, i.e., in which sense the obtained information will be useful. The assumptions should be

as simple as possible (following Occam’s Razor principle), and be aligned with reality, e.g., predic-

tions should be consistent with data. Given two modelsA andB with similar predictive accuracy, we

should pick up that one with lower entropy (or minimum description length [73]), or that one which

better aligns with expert knowledge. In general, a model will be more interpretable if it contains sim-

ple functional components (for instance, additive effects), a clear dependency graph of the involved

latent variables which might be identified with specific elements from reality, and a meaningful out-

put design, i.e., clear encoding of the type of information that we seek.
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Marathon
(Chapter 3)

Clinical Trial
(Chapter 4)

Genetic Associa-
tions (Chapter 5)

International Trade
(Chapter 6)

How to set up the
input (priors)

expert knowledge
(humans cannot run a

marathon in less than 2h)

normalization +
standardized priors

sample hyperparameters + appropriate support
(Poisson for count data)

Assumption
underlying the

generative
process

(likelihood)

assume shared mixture
weights at shifting

locations

learn patient subspace
and additional latent
dimensions linked to

treatment

shared and specific
associations across

cancer types
(hierarchical or

partitioned basis)

flexible sparsity
assumptions on the

latent features
(power-law, restricted,

time-varying)
Output format
(predictive or

marginals)

offsets associated to age,
gender; race-dependent

multiplicative factor

statistical significance, effect size and direction
for each clinico-genetic association or biomarker

sparse latent features,
i.e., list of countries

capabilities

Usability knowledge + athletic fair
grading system

knowledge useful for oncologists and clinicians
to improve diagnosis and personalize treatment

knowledge + policy
recommendations,

future export predictions

Table 7.1: Model design for interpretability. Overview of models’ elements within this thesis having an
impact on interpretability.

Based on these general elements, Table 7.1 gives a final overview of the different mechanisms

that we have used to improve interpretability in each model presented within this thesis. To conclude,

this doctoral thesis is an attempt to advance the research of BNP models for data exploratory tasks. In

the same way that computers have accelerated scientific progress, it is our belief that models for data

exploration which are flexible, interpretable, and robust, might lead to an explosion of life-changing

scientific discoveries.
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8
Inference Details for Poisson Factor

Analysis Models and Extensions

8.1 Poisson Factor Analysis

Poisson factorization models have been successfully applied for recommendation systems [68], topic

modeling [67], and analysis of Electronic Health Records among others [84]. Let X ∈ NN×D be a

sparse matrix of count-data observations with N samples and D dimensions. The generative process

for each single observation xnd in the standard parametric Poisson factor analysis (PFA) is as follows

xnd|θn•,B•d ∼ Poisson(θn•B•d) (8.1)

θnk ∼ Gamma(a, b), Bkd ∼ Gamma(c, d), (8.2)

where θ is an N × K matrix of weights, and B is a K × D matrix of hidden factors (sometimes

called dictionary). A direct non-parametric extension can be obtained by putting a Gamma process

prior over θ [207].
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Inference Algorithm

Direct inference in such models is intractable, but we can easily solve the problem using Markov

chain Monte Carlo (MCMC) techniques. For each observation xnd, we introduce the auxiliary

variables x
′
nd,1, . . . , x

′
nd,K such that xnd =

∑K
k=1 x

′
nd,k, and x

′
nd,k ∼ Poisson(θnkBkd) for k =

1, . . . ,K. Each Poisson count is separated in a sum of Poisson contributions corresponding to each

latent factor. Given such auxiliary variables, the model is conditionally conjugate, and a Gibbs sam-

pler can be derived straightforwardly. In particular, we use the following theorem:

Theorem 1 Let Y1, . . . , Yn be Poisson distributed random variables with rates λ1, . . . , λn respec-

tively. Let us define S =
∑N

n=1 Yn. Then,

{Y1, . . . , Yn}|S ∼ Multinomial

({
λi∑N
n=1 λn

}

i

, S

)
. (8.3)

Using Theorem 1, x
′
nd,• can be sampled from a Multinomial given xnd, θn• and B•d. The

equations for the complete conditional distributions are as follows:

p(θnk|x
′
n•,k,Bk•) ∝ Gamma

(
a+

D∑

d=1

x
′
nd,k, b+

D∑

d=1

Bkd

)
(8.4)

p(Bkd|x
′
•d,k,θ•k) ∝ Gamma

(
c+

N∑

n=1

x
′
nd,k, d+

N∑

n=1

θnk

)
(8.5)

p(x
′
nd,•|xnd,θn•,B•d) ∝ Multinomial

({
θniBid∑K
k=1 θnkBkd

}

i

, xnd

)
. (8.6)

Based on the conditional distributions, a variational inference scheme can also be derived, since exact

expectations can be computed in closed-form due to the Poisson-Gamma conjugacy [67].

8.2 Bernoulli Process Poisson Factor Analysis

The generative model for the Bernoulli process Poisson factor analysis (BeP-PFA) is given by:

xnd ∼ Poisson(Zn•B•d) (8.7)

Z ∼ IBP(α) (8.8)

Bkd ∼ Gamma
(
αB,

µB
αB

)
, (8.9)
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where Z is aN×K matrix of binary weights, and B is aK×Dmatrix of non-negative hidden factors.

In the following, we propose two MCMC algorithms: a collapsed Gibbs sampler where matrix B is

marginalized out using a Laplace approximation, and an uncollapsed slice sampler version which

allows for parallel sampling of both the elements in Z and B given the auxiliary variables described

in Section 8.1.

8.2.1 Collapsed Gibbs Sampler

We first propose a collapsed Gibbs sampler where matrix B is marginalized out, and we only need

to sample the elements of matrix Z. We need to compute its posterior distribution:

p(znk|X,Z¬nk) ∝ p(znk|Z¬nk)p(X|Z)

∝ p(znk|Z¬nk)
∫
p(X|Z,B)p(B)dB (8.10)

∝ p(znk|Z¬nk)
D∏

d=1

∫ ( N∏

n=1

p(xnd|Zn•,B•d)
)
p(B•d)dB•d (8.11)

In order to approximate the integral in (8.11), we resort to a Laplace approximation, which

assumes that: ∫
eψ(B•d)dB•d (8.12)

has a peak at a certain value of BMAP
•d . The idea is to Taylor-expand the un-normalized log-posterior

of B•d and approximate eψ(B•d) by an unnormalized Gaussian. The integral thus corresponds to the

normalizing constant of this Gaussian, in our case:

∫ ( N∏

n=1

p(xnd|Zn•,B•d)
)
p(B•d)dB•d = eψ(BMAP

•d )

√
(2π)K

| − ∇∇ψ(BMAP
•d )| (8.13)

Equations to find maximum a posteriori BMAP
•d . Let us define ψ(B•d) as the un-normalized

log-posterior of B•d, i.e,

ψ(B•d) =
N∑

n=1

log p(xnd|Zn•,B•d) + log p(B•d) (8.14)
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ψ(B•d) =

N∑

n=1

xnd log(Zn•B•d)−
N∑

n=1

Zn•B•d +

K∑

k=1

(αB − 1) log Bkd −
αB
µB

K∑

k=1

Bkd +R

(8.15)

where R = −
N∑

n=1

log xnd!−K
(
αB log

µB
αB

+ log Γ(αB)
)

(8.16)

∇ψ(B•d) =
N∑

n=1

xnd
Zn•

Zn•B•d
−

N∑
Zn• + (αB − 1)

1

B•d
− αB
µB

(8.17)

∇∇ψ(B•d) = −
N∑

n=1

xnd
Zn•Z

T
n•

(Zn•B•d)2
− (

αB − 1

B2
•d

)T I (8.18)

In order to find the maximum value BMAP
•d , we can use either Newton’s method or gradient

descent. Where applicable, Newton’s method might converge faster towards a local maximum or

minimum than gradient descent. Newton’s method is an iterative method for optimization where

each value B
(t)
•d at iteration t is computed as:

B
(t)
•d = B

(t−1)
•d + γ[∇∇ψ(B

(t−1)
•d )]−1∇ψ(B

(t−1)
•d ) (8.19)

where γ ∈ (0, 1] is the step-size of the algorithm. Note that for the Laplace approximation to work

properly,−∇∇ψ(B•d) should be a positive semi-definite matrix. This is guaranteed only if αB > 1,

so the collapsed Gibbs sampler will only work for shape parameters bigger than one, resulting in

non-sparse B matrices.

8.2.2 Uncollapsed Gibbs Sampler

Inference for the BeP-PFA model can be performed using an uncollapsed Gibbs sampler together

with a slice sampler for semi-ordered stick-breaking representation of the Indian buffet process

(IBP) [202]. For the sake of completeness, the slice sampling procedure for matrix Z is described in

Algorithm 7. Using the auxiliary random variables described in Section 8.1, the complete condition-

als can be easily derived as follows:

p(Bkd|Z•k,x
′
•d,k) ∝ Gamma

(
c+

N∑

n=1

x
′
nd,k, d+

N∑

n=1

znk

)
(8.20)

p(x
′
nd,•|xnd,B•d) ∝ Multinomial

({
zniBid∑K
k=1 znkBkd

}K

i=1

, xnd

)
(8.21)
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Algorithm 7 Slice sampler for the semi-ordered stick-breaking representation of the IBP [202].
1: Sample auxiliary slice variable s for the creation of new sticks, if s < µ(K?), create new sticks

using adaptive rejection sampling [65], and sample corresponding feature parameters from prior.

2: Sample Z matrix. Given the stick weights, each row can be sampled independently and in
parallel:

p(znk|rest) ∝ µ(k) ·
D∏
p(x

′
nd,k|znk, θnk, Bkd). (8.22)

3: Remove inactive features.
4: Sample sticks

p(µ(k)|rest) ∼ Beta(m•,k, 1 +N −m•,k), (8.23)

where m•,k =
∑N

i=1 znk.

log p(znk = 1|Z¬nk,Bk•, πk) =
1

1 + e−unk
, (8.24)

where unk =

D∑

d=1

xndlog

(∑
j 6=k znjBjd +Bkd∑

j 6=k znjBjd

)
−

D∑

d=1

Bkd + log
πk

1− πk
. (8.25)

8.2.3 Variational Inference

Variational inference is a good option to deal with big and high dimensional scenarios, since it can be

scaled up with stochastic extensions, and it has shown good mixing properties in the literature, that

allows for a better exploration of the latent space [42]. For the sake of simplicity, we here consider a

variational approach that uses a finite Beta-Bernoulli approximation to the IBP.

Let X be our observations, and Φ be the set of hidden variables in the model. The idea behind

variational inference is to turn approximate posterior computation into an optimization problem. For

that, we choose an easy to handle variational distribution q(Φ|λ) over the set of latent variables

Φ and optimize its variational free parameters λ to approximate the posterior distribution p(Φ|X).

The objective is to find a variational distribution q∗(·) that minimizes the KL divergence between

both distributions, which is equivalent to maximizing the Evidence Lower Bound (ELBO) over the

marginal likelihood,

q∗(·) = argmaxq∈QE[log p(X,Φ)− log q(Φ|λ)] (8.26)

In our case, we have Φ = {Z,β,θ,π}. Based on the complete conditional distributions derived

in Section 8.4.1, exact update equations can be derived for π, θ, and β. In particular,
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Latent Var Type Complete Cond.
Variational

Param

πk Beta
g +

∑N znk;

h+N −
∑N znk

τ̃k1; τ̃k2

znk Bernoulli 1/
(
1− exp−unk

)
ν̃nk

θnk Gamma
a+ znk

∑D x
′
nd,k;

b+ znk
∑D βkd

θ̃shpnk ;

θ̃rtenk

βkd Gamma
c+

∑N znkx
′
nd,k;

d+
∑N znkθnk

β̃shpkd ;

β̃rtekd

x
′
nd,· Multinomial

log (znkθnkβkd),

0 < k < K
φ̃nd,·

Table 8.1: Summary and notation for the variational inference procedure in the BeP-PFA.

τ̃k1 = g +

N∑
ν̃nk (8.27)

τ̃k2 = h+N −
N∑
ν̃nk (8.28)

θ̃shpnk = a+ ν̃nk

D∑
xndφ̃nd,k (8.29)

θ̃rtenk = b+ ν̃nk

D∑ β̃shpnd

β̃rtend
(8.30)

β̃shpkd = c+
N∑
ν̃nkxndφ̃nd,k (8.31)

β̃rtekd = d+
N∑
ν̃nk

θ̃shpnk

θ̃rtenk
(8.32)

Update equations for Z and x
′
nd,· cannot be derived analytically. Instead, we compute a noisy

gradient step based on a black-box procedure [169].

Black-box Variational Inference

Our objective is find the parameters λ that maximize the ELBO L (λ):

L (λ) = Eq[log p (X,Φ)− log q (Φ|λ)] (8.33)
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The general form for the ELBO derivative with respect to the free parameters λ is given as:

∇λL = Eq[∇λ log q(Φ|λ)
(

log p(X,Φ)− log q(Φ|λ)
)
] (8.34)

Let Φ = {Z,β,θ,π} be the set of all latent variables in our model, and λ all the free parameters

to characterize the variational distribution q (Φ|λ). The joint distribution is given as:

log p (X,Φ) =

N∑ D∑
log Poisson

(
xnd;

K∑
znkθnkβkd

)

+

K∑ D∑
log Gamma (βkd; aβ, bβ)

+

N∑ K∑
log Bernoulli (znk;πk)

+
N∑ K∑

log Gamma (θnk; aθ, bθ)

+

K∑
log Beta (πk; aπ, bπ) (8.35)

Using a mean-field approximation, the whole variational distribution q(Φ|λ) factorizes as

log q (Φ|λ) =

N∑ D∑
log Multinomial(x

′
nd,·|xnd, φ̃nd)

+
K∑ D∑

log Gamma(βkd; β̃
shp
kd , β̃

rte
kd )

+
N∑ K∑(

log Gamma(θnk; θ̃
shp
nk , θ̃

rte
nk )

+ log Bernoulli (znk; ν̃nk)
)

+

K∑
log Beta (πk; τ̃k1, τ̃k2) (8.36)

The idea of Black-box Variational Inference is to update each variational free parameter λi fol-

lowing a step in the direction of the noisy gradient of the ELBO,

λ
(t)
i = λ

(t−1)
i + ρt∇λiL(λ) (8.37)

To reduce the variance of the gradient estimator, we perform rao-blackwellization for each vari-

able, as explained in [169]. Each component of the gradient can then be written as
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∇λiL(λ) = Eq
[
∇λi log q(Φi|λi)

(
log p(X,Φi)− log q(Φi|λi)

)]
(8.38)

where Φi is the set of latent variables in the Markov blanket of φi, and φi is the latent variable

whose variational distribution includes λi.

Derivation of noisy gradients

• Equations for φ̃nd,·

log q(x′nd,·|φ̃nd, xnd) =
K∑
x′nd,k log φ̃nd,k + log(xnd!)−

K∑
log(x′nd,k!) (8.39)

∇
φ̃nd,k

log q(x′nd,·|φ̃nd, xnd) =
x
′
nd,k

φ̃nd,k
(8.40)

Technical note: Since φ̃nd,· are the variational parameters of a multinomial distribution, we

need to satisfy
∑K

k=1 φ̃nd,k = 1. For this purpose, we use the softmax function P(x)j =

exj∑K exk
to transform the original unconstrained variational parameters. The equations should

be properly modified using the chain rule, as follows:

log q(x′nd,·|φ̃nd, xnd) =

K∑
x′nd,k logP(φ̃nd,k)

+ log(xnd!)−
K∑

log(x′nd,k!) (8.41)

∇
φ̃nd,k

log q(x′nd,·|φ̃nd, xnd) =

−
∑

j 6=k

x
′
nd,j

P(φ̃nd,·)j

eφ̃nd,jeφ̃nd,k

(
∑K

r=1 e
φ̃nd,r)2

+
x
′
nd,k

P(φ̃nd,·)k

eφ̃nd,k
∑K

r=1 e
φ̃nd,r − e2φ̃nd,k

(
∑K

r=1 e
φ̃nd,r)2

(8.42)

Finally, the Markov blanket of each variable x
′
nd,k isM[x

′
nd,k] = {x′nd,k,x

′
nd,¬k, zn·,θn·,β·d}

and their corresponding probability distribution is given by
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log p
(
M[x

′
nd,k]

)
=

log Mult
(
x
′
nd,·|xnd, (zn· � θn·)β·d

)

+
K∑(

log Bernoulli
(
znk|πk

)
+ log Gamma

(
θnk|αθ,

µθ
αθ

)

+ log Gamma
(
βkd|αβ,

µβ
αβ

))
(8.43)

The gradient coordinates for each free parameter φ̃nd,k is computed by plugging in eq. (8.41), (8.42),

and (8.43) into (8.38).

• Equations for Z:

log q(znk|ν̃nk) = znk log ν̃nk + (1− znk) log(1− ν̃nk) (8.44)

∇ν̃nk log q(znk|ν̃nk) =
znk
ν̃nk
− 1− znk

1− ν̃nk
(8.45)

Technical note: ν̃nk is the variational parameter of a Bernoulli distribution, so it should belong

to the interval [0, 1]. We use the sigmoid transformation function F(x) = 1
1+e−x . The new

equations are the following:

log q(znk|ν̃nk) = znk logF(ν̃nk)

+ (1− znk) log
(
1−F(ν̃nk)

)
(8.46)

∇ν̃nk log q(znk|ν̃nk) = F ′(ν̃nk)
(

znk
F(ν̃nk)

− 1− znk
1−F(ν̃nk)

)
(8.47)

where F ′(ν̃nk) = e−x

(1+e−x)2 .

The markov blanket for each variable znk is M[znk] = {znk, πk, x
′
nd,k, θnk, βkd} and their

corresponding probability distribution is given by
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log p
(
M[znk]

)
= log Beta

(
πk|aπ, bπ

)
+ log Bernoulli

(
znk|πk

)

+ log Gamma
(
θnk|αθ,

µθ
αθ

)
+

D∑
log Gamma

(
βkd|αβ,

µβ
αβ

)

+
D∑

log Poisson
(
x
′
nd,k|znkθnkβkd

)
(8.48)

The gradient estimator is computed by plugging in eqs. (8.46), (8.47), and (8.48) into (8.38).

If we run the algorithm with these equations, all variational parameters for Z might tend to

zero. One explanation for this might be the strong correlation between Z and X
′
. To solve it,

we use the probability of the Markov blanketM[znk] after collapsing the auxiliary variables

X
′
. The new joint probability is

log p
(
M[znk]

)
= log Beta

(
πk|aπ, bπ

)

+
K∑(

log Bernoulli
(
znk|πk

)
+ log Gamma

(
θnk|αθ,

µθ
αθ

))

+
K∑ D∑

log Gamma
(
βkd|αβ,

µβ
αβ

)

+

D∑
log Poisson

(
xnd|(zn· � θn·)β·d

)
(8.49)

8.3 Spike and Slab Bernoulli Process Poisson Factor Analysis

To get even sparser topics, we may use a spike and slab prior on each element of B by incorporating

a binary matrix Θd that works as a selection mask on the feature matrix B•d. The generative model

in this case is given by:

xnd ∼ Poisson
(
Zn•

(
Θd �B•d

) )
(8.50)

Z ∼ IBP (α) (8.51)

Bkd ∼ Gamma

(
αB,

µB
αB

)
(8.52)

Θ ∼ IBP(αβ, cβ, σβ). (8.53)
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An equivalent formulation can be written as:

xnd ∼ Poisson(Zn•B•d) (8.54)

Z ∼ IBP(α) (8.55)

Bkd|θkd ∼ Gamma
(
αB,

µB
αB

)θkd
+ δ

(1−θkd)
0 (8.56)

Θ ∼ IBP(αβ, cβ, σβ), (8.57)

where Bkd = Bkd · θkd, and Bkd follows a spike and slab distribution where θkd selects between

the Gamma distribution (slab) or a delta probability mass at zero. A third way to write down the

generative model would be as follows:

xnd ∼ Poisson(Zn•B•d) (8.58)

Z ∼ IBP(α) (8.59)

BT
•d|Θd ∼ SGP(αB, µB,Θd) (8.60)

Θ ∼ IBP(αβ, cβ, σβ), (8.61)

where each column of matrix B is a draw from a spike and slab Gamma process. Such process is

defined as the multiplication of a Gamma process together with a Bernoulli process. We call such

process IBP compound Gamma process. This approach is very similar in spirit to [13], where they use

a tree-parameter Indian buffet process (3P-IBP) over the feature matrix in a Dirichlet-Multinomial

topic model. We present here its counterpart with a Poisson-Gamma formulation. Regarding infer-

ence, the model is not conjugate anymore because of the spike component in the features, e.g., the

binary matrix Θd. We thus derive a collapsed Gibbs sampler where matrix B is marginalized out1.

8.3.1 Collapsed Gibbs Sampler

Since the spike and slab BeP-PFA is not conjugate anymore, we propose a collapsed Gibbs sampler

where we integrate matrix B and only need to sample the two binary matrices Z and Θ. For that, we

will need to compute the conditional probabilities p(znk|X,Z¬nk,Θ) and p(θkd|X,Θ¬k,d,Z).

1Variational inference in this setting becomes tedious due to the discrete nature of the latent space, resulting in multiple
local minima.
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Sampling elements of Z given Θ

p(znk|X,Z¬nk,Θ) ∝ p(znk|Z¬nk)p(X|Z,Θ)

∝ p(znk|Z¬nk)
∫
p(X|Z,B,Θ)p(B)dB (8.62)

∝ p(znk|Z¬nk)
∫
p(X|Z,β)p(β)dβ (8.63)

∝ p(znk|Z¬nk)
D∏

d=1

∫ ( N∏

n=1

p(xnd|Zn•,βd)

)
p(βd)dβd, (8.64)

where p(znk = 1|Z¬nk) = mk
N , mk = |{n | znk = 1}|, and the marginal likelihood p(X|Z,Θ) can

be computed using Laplace approximation, since the function to optimize is always log-concave for

αB > 1. Sparsity in the features is obtained through the binary mask Θ.

In order to sample new features, we follow the approach described in [72]. In particular, there

are an infinite number of remaining columns which contain all zeros. For any particular feature

k > K, the probability of activation of any element is zero. Nonetheless, we can sample the number

of columns that become nonzero, knew, according to

p(knew) ∝ Poisson
(
knew;

α

N

)
p(X|Znew), (8.65)

where Znew is the feature assignment matrix with knew additional columns set to one for observation

n, and zero otherwise. We compute these probabilities for knew = 0, . . . ,Kmax for some Kmax,

normalize and sample from the resulting multinomial.

Sampling elements of Θ given Z

p(θkd|X,Θ¬k,d,Z) ∝ p(θkd|Θ¬kd)p(Xd|Z,Θd)

∝ p(θkd|Θ¬k,d)
∫
p(Xd|Z,βd)p(βd)dβd (8.66)

∝ p(θkd|Θ¬k,d)
∫ ( N∏

n=1

p(xnd|Zn•,βd)

)
p(βd)dβd, (8.67)

where p(θkd = 1|Θ¬kd) =
rk−σβ
D−1+cβ

and rk = |{d | θkd = 1}|. Here again, in order to approximate

the marginal likelihood p(Xd|Z,Θd), we resort to Laplace approximation.

Similar as before, we can sample the number of new features knew that should be activated for

observation n as:
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p(knew) ∝ Poisson(knew; ε) · p(X|Znew), (8.68)

where ε = αβ
Γ(1 + cβ)Γ(D − 1 + cβ + σβ)

Γ(D + cβ)Γ(cβ + σβ)
. (8.69)

8.4 Dynamic Bernoulli Process Poisson Factor Analysis

For the sake of completeness, we state here again the equations describing the dynamic Bernoulli

process Poisson factor analysis (dBeP-PFA) model:

x
(t)
nd ∼ Poisson

(
Z

(t)
n•B•d

)
(8.70)

Z
(•)
n• ∼ mIBP(α) (8.71)

Bkd ∼ Gamma

(
αB,

µB
αB

)
, (8.72)

where the Markov Indian buffet process (mIBP) prior is equivalent to the following parametric con-

struction as K →∞:

ak ∼ Beta(
α

K
, 1), (8.73)

bk ∼ Beta(γ, δ), (8.74)

z
(t)
nk |ak, bk ∼ Bernoulli

(
a

1−z(t−1)
nk

k b
z

(t−1)
nk
k

)
. (8.75)

The variables αB , hypmuB, α, γ, and δ are the model hyperparameters.

8.4.1 MCMC Inference

The complete conditionals in this case are:

p(Bkd|Z(•)
•k , r

(•)
•d,k) ∝ Gamma

(
αB +

N∑

n=1

T∑

t=1

r
(t)
nd,k,

µB
αB

+

N∑

n=1

T∑

t=1

z
(t)
nk

)
(8.76)

p(r
(t)
nd,.|x

(t)
nd,Z

(t)
n•,B•d) ∝ Multinomial

({
z

(t)
ni Bid∑K

k=1 z
(t)
nkBkd

}

i=1,...,K+

, x
(t)
nd

)
(8.77)
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The most challenging part is how to sample p(Z|X,B). For each country n and latent feature k, we

can write:

p(X
(1:t)
n• , z

(t)
nk |−) = p(X

(t)
n•|z(t)

nk ,−) p(X
(1:t−1)
n• , z

(t)
nk |−) (8.78)

= p(X
(t)
n•|z(t)

nk ,−)
∑

z
(t−1)
nk

p(X
(1:t−1)
n• , z

(t)
nk , z

(t−1)
nk |−) (8.79)

= p(X
(t)
n•|z(t)

nk ,−)
∑

z
(t−1)
nk

p(X
(1:t−1)
n• , z

(t−1)
nk |−)p(z

(t)
nk |z

(t−1)
nk ). (8.80)

We perform a forward-filtering backward-sampling (FFBS) procedure in order to get samples from

the posterior of the time-dependent matrix Z.

Forward step. First, we compute the forward factors f [z
(t)
nk ] = p(z

(t)
nk = 1|X(1:t)

n• ,Z
(t)
n,¬k,B) and

(1− f [z
(t)
nk ]) = p(z

(t)
nk = 0|X(1:t)

n• ,Z
(t)
n,¬k,B) for each country n and timestep t:

p(z
(t)
nk |X

(1:t)
n• ,Z

(t)
n,¬k,B) ∝ p(X(t)

n•|Z(t)
n•,B)·

∑

z
(t−1)
nk

p(z
(t−1)
nk |X(1:t−1)

n• ,Z
(t)
n,¬k)p(z

(t)
nk |z

(t−1)
nk ), (8.81)

f [z
(t)
nk ] = p(z

(t)
nk = 1|X(1:t)

n• ,Z
(t)
n,¬k,B) =

1

1 + e−u
(t)
nk

, (8.82)

where u
(t)
nk =

D∑

d=1

x
(t)
nd log

(∑
j 6=k z

(t)
njBjd +Bkd

∑
j 6=k z

(t)
njBjd

)
−

D∑

d=1

Bkd

+ log
ak(1− f [z

(t−1)
nk ]) + bkf [z

(t−1)
nk ]

(1− ak)(1− f [z
(t−1)
nk ]) + (1− bk)f [z

(t−1)
nk ]

, (8.83)

Backward step. Next, we iteratively sample from:

p(z
(t)
nk |z

(t+1)
nk ,X

(1:t)
n• ,Z

(t)
n,¬k,B) ∝ p(z(t)

nk |X
(1:t)
n• ,Z

(t)
n,¬k,B)p(z

(t+1)
nk |z(t)

nk) (8.84)
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p(z
(t)
nk = 1|z(t+1)

nk ,X
(1:t)
n• ,Z

(t)
n,¬k,B) =

1

1 + e−g
(t)
nk

, (8.85)

where g
(t)
nk = log

f [z
(t)
nk ]

1− f [z
(t)
nk ]

+ z
(t+1)
nk log

bk
ak

+ (1− z(t+1)
nk ) log

1− bk
1− ak

, (8.86)

Finally, we sample the activation probability ak using a slice sampler, and persistence parameter

bk of each transition matrix:

p(ak|−) ∝ p(Z(•)
•k |X, µ,a, b) p(ak)

∝
N∏ T∏

∀n,t|z(t−1)
nk =0

p(z
(t)
nk |ak) p(ak)

∝ Beta




N∑ T∑

∀n,t|z(t−1)
nk =0

z
(t)
nk , 1 +m0

k −
N∑ T∑

∀n,t|z(t−1)
nk =0

z
(t)
nk


 (8.87)

p(bk|−) ∝ p(Z(•)
•k |X, µ,a, b) p(bk)

∝
N∏ T∏

∀n,t|z(t−1)
nk =1

p(z
(t)
nk |bk) p(bk)

∝ Beta


γ +

N∑ T∑

∀n,t|z(t−1)
nk =1

z
(t)
nk , δ +m1

k −
N∑ T∑

∀n,t|z(t−1)
nk =1

z
(t)
nk


 (8.88)

where m0
k =

∑N∑T 1{z(t−1)
nk = 0} and m1

k = 1{∑N∑T z
(t−1)
nk = 1}.

The stick-breaking representation for the mIBP of [56] turns out to be very useful for inference

purposes, as it allows us to use a combination of slice sampling and dynamic programming. The

corresponding equations are the following:

a1 ∝ Beta(α, 1) (8.89)

p(ak|ak−1) = αa−αk−1a
α−1
k 1(0 ≤ ak ≤ ak−1) (8.90)

On the other hand, variables bk are all independent of the number of latent features K, and are

obtained as draws from a Beta(γ, δ) distribution. The central idea behind the slice sampler lies on
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introducing an auxiliary slice variable µ with the following distribution:

µ ∼ Uniform(0, min
k:∃t,Z(t)

•k=1

ak) (8.91)

If we marginalize out the distribution p(µ,a, b,Z) = p(µ|a,Z)p(a, b,Z) with respect to µ, it is

clear that we recover the original joint distribution p(a, b,Z). However, if we condition on µ, we

get:

p(Z|X, µ,a, b) ∝ p(Z|X,a, b)
1(0 ≤ µ ≤ min

k:∃t,Z(t)
•k=1

ak)

min
k:∃t,Z(t)

•k=1
ak

(8.92)

which forces all columns of X for which ak < µ to be all zero. Note that there can only be a finite

number of weights ak > µ, such that we only need to sample a finite (bounded) number of columns

of Z.
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scale sentence clustering from electronic health records for genetic associations in cancer,” in
Machine Learning for Computational Biology Workshop in Neural Information Processing
Systems, 2015.

[161] Melanie F. Pradier, Viktor Stojkoski, Zoran Utkovski, Lujupco Kocarev, and Fernando Perez-
Cruz, “Sparse three-parameter restricted Indian buffet process for understanding international
trade,” in Submitted to Advances in Neural Information Processing Systems, 2017.

183

http://dx.doi.org/10.1038/nrc1476
http://dx.doi.org/10.1017/S0963548302005163
http://dx.doi.org/10.3390/e18120449
http://dx.doi.org/10.1371/journal.pone.0147402


[162] Shaan Qamar and Surya T. Tokdar, “Additive Gaussian process regression,” Nov. 2014,
arXiv:1411.7009.

[163] Novi Quadrianto, Viktoriia Sharmanska, David A. Knowles, and Zoubin Ghahramani, “The
supervised IBP: Neighbourhood preserving infinite latent feature models,” Sept. 2013,
arXiv:1309.6858.

[164] Elsa Quintana, Mark Shackleton, Hannah R. Foster, Douglas R. Fullen, Michael S. Sabel,
Timothy M. Johnson, and Sean J. Morrison, “Phenotypic heterogeneity among tumorigenic
melanoma cells from patients that is reversible and not hierarchically organized,” Cancer Cell,
vol. 18, no. 5, pp. 510–523, Nov. 2010, doi:10.1016/j.ccr.2010.10.012.
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