

This is a postprint version of the following published document:

Mariluz Congosto, Pablo Basanta-Val, Luis Sánchez-Fernández, T-
Hoarder: A framework to process Twitter data streams, In Journal of
Network and Computer Applications (2017), vol. 83, pp. 28-39
https://doi.org/10.1016/j.jnca.2017.01.029

© 2017 Elsevier Ltd. All rights reserved.

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

https://doi.org/10.1016/j.jnca.2017.01.029
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

T-Hoarder: A framework to process Twitter data streams

Mariluz Congosto, Pablo Basanta-Val, Luis Sánchez-Fernández

With the eruption of online social networks, like Twitter and Facebook, a series of new APIs have appeared to
allow access to the data that these new sources of information accumulate. One of most popular online social
networks is the micro blogging site Twitter. Its APIs allow many machines to access the torrent simultaneously
to Twitter data, listening to tweets and accessing other useful information such as user profiles. A number of
tools have appeared for processing Twitter data with different algorithms and for different purposes. In this
paper T Hoarder is described: a framework that enables tweet crawling, data filtering, and which is also able to
display summarized and analytical information about the Twitter activity with respect to a certain topic or event
in a web page. This information is updated on a daily basis. The tool has been validated with real use cases that
allow making a series of analysis on the performance one may expect from this type of infrastructure.

1. Introduction

Recently, the generalization of micro blogging (Java et al., 2007;
Honey and Herring, 2009) by a wide sector of society has contributed to
transform the way in which people consume information, spread it, and
interact with others. The availability of mechanisms to publish short
messages, pictures, and videos, together with their use from mobile
phones, allows that information to flow in real time through a network
of users. This change also transforms the way data is processed and
integrated in different business models which take into account the
information stored in micro blogging records to determine the next set
of decisions to be taken in a business infrastructure (Gudivada et al.,
2015; Manyika et al., 2011; Zikopoulos and Eaton, 2011).

Twitter is the most popular micro blogging network.2 It is char
acterized by the limit in the length of its messages, called tweets (140
characters) and by the asymmetric relations between their users. At the
moment, 500 million tweets are published daily, which means a huge
source of social data that has caught attention from researchers. From
2008, it is also a source of study by academic researchers (Huberman et
al., 2008) and it has been applied in a number of social fields such as
elections (Conover et al., 2010; Gayo Avello, 2011; Barberá and Rivero,

2012), social movements (Peña lópez et al., 2014), predictions (Bollen
et al., 2011a; Asur and Huberman, 2010), user's influence (Cha et al.,
2010), behavior (Bollen et al., 2011b; Dodds et al., 2011), and message
propagation analytics (De Domenico et al., 2013).

Currently, it is possible to accede to the complete volume of
information on Twitter by means of payment through GNIP.3 Also,
researchers may access a partial set of tweets and collect the data by
means of specific Twitter APIs. Since its inception, Twitter APIs can be
used without any specific restrictions. This favored the creation of
services that collected data like tweetbackup.com or Twapper Keeper.4

However this initial configuration changed a few years ago
(September of 2012), with a new rule of use for the APIs that prevented
users sharing tweets.5 Currently, the rules of Twitter's API6 only allow
sharing datasets of a limited size. In this context, some tools emerged
to process tweets directly from Twitter. Currently, the set of tools that
can be used to access tweets includes TwapperKeeper (OBrien, 2011),
Twitter Tap (Kranjc, 2014) and Twitterstream to Mongodb (Del Fresno,
2012). However, their specific constraints bring in new concerns and as
a result more processing capacity is required. In addition, the specific
implementation decisions hamper the type of analysis one may carry
out with this type of tools.

In a reaction to produce a more open, cost effective, and flexible

2 〈https://about.twitter.com/company〉.
3 〈https://gnip.com/〉.
4 〈https://twapperkeeper.wordpress.com/2011/02/22/removal-of-export-and-download-api-capabilities/〉.
5 〈https://dev.twitter.com/archive/terms/api-terms/diff-20130702〉.
6 〈https://dev.twitter.com/overview/terms/policy〉.

1

• Twitter API V0.0: from 2006 to June of 2010.
• Twitter API V1.0: from June of 2010 to June of 2013. The basic

authentication, based on user/password, in REST API, disappeared
and it is replaced by OAuth (Leiba, 2012).

• Twitter API V1.1: from June of 2013 to date. It integrates the search
API in the Rest API, extending the authentication by OAuth to the
Streaming API and modifying the speed limits. At the moment of
writing this article, Twitter provides two APIs to retrieve data: the
REST API and the Streaming API.
1. REST API: it allows all type of queries to the data of Twitter in a

synchronous form.
2. Streaming API: it establishes a socket between Twitter and a

server by which information is asynchronously received.

T Hoarder uses the Tweepy library (tweepy.org) that resolves low
level access to the API. This library is widely used and updated to the
latest API version. However, the source code is available in the Github
repository. On the other hand, so far Twitter has announced new

versions with almost a year in advance allowing to face the changes. In
the last three years the APIs changes have been limited to the JSON
structure of the tweets.

In both APIs it is necessary to consider the restrictions that Twitter
imposes in its use:

1. Speed limit: It restricts the number of queries to the REST API for
fifteen minutes. The limit depends on the type of query. In the case
of the Streaming API, the tweets per second (TPS) are limited to 50.

2. Time recover limit: It is possible to recover tweets from previous
seven days with /search/tweets GET method of the REST API.
The last 3200 tweets of a user with method GET /statuses/
user timeline of REST API and no previous tweets are available
with Streaming API.

3. Tweets sample: Only the /statuses/ user timeline GET
method of the REST API provides a complete sample of the last
3200 messages of a user. In the /search/tweets method GET of
the REST API and the API streaming it is provided only a reduced
percentage of tweets (85 95%), even when the frequency is less than
50 tweets per second.

2.2. Secure access

In order to access an API of Twitter, it is necessary to authenticate
via the OAuth protocol. In practical terms, it is required to create an
application in Twitter to obtain the keys of access for that application
(Consumer Key and Consumer Secret). Also, it is necessary to have a
user in Twitter to generate the access key, called Access token, for that
application. This way, Twitter knows what user accesses and from
which application.

Within the options of the Streaming API, it is possible to obtain
tweets by means of random filtering, and also to the total stream of
tweets. This option is only available for resellers of data; however, since
its inception, it has been available for some researchers.

Currently, it is possible to select a set of tweets by one of these three
forms:

1. Keywords: it allows obtaining the tweets that adjust to a pattern
search providing a list of words, and comma separated expressions.
The expressions are words separated by spaces that are in a message,
with independence of the order in which they appear, but fulfilling
the condition. The commas that separate the words or expressions
act like OR logic operators and in an expression the spaces that
separate the words behave like AND logical connectors. For instance,
the search “#metromadrid, Madrid metro”would provide tweets
that contain #metromadrid OR(metroAND Madrid)

2. By users: it allows retrieving tweets of the users provided by means
of a list with its separated identifiers by commas. Also, all the
reactions to these messages are obtained including automatic or
manual broadcastings (RTs), mentions, appointments, and answers.

3. By geo localization: In this case, application receives tweets pub
lished from one or several rectangular geographic zones, each of
them delimited by a superior east coordinate and another inferior
west coordinate.

Table 1
Comparison among the main methods to access Tweets.

API Recover Search type Delivered
Tweets

Streaming None Keywords, users, or locations If speed < 50 tweets per second, it recovers 80 90% of tweets
REST GET search 1 week back Keywords, users, or locations Unknown, because it only delivers the most relevant tweets. It is always less information than

Streaming API.
REST GET statuses 3200 Last tweets Tweets that belong to one user All

approach to Twitter data stream processing, T Hoarder has been
proposed. It is a minimal framework that stores data into folders,
providing a lightweight approach to process tweets. Additionally, T
Hoarder includes an engine that carries out data analytic processing
and displays them in three axes: time, space, and relevance. T Hoarder
is designed to deal with a medium to large number and size of datasets,
to gather data for long periods of time (years), to be able to analyze
propagations, and to identify the origin of data. Its architecture is also
of interest because its underlying ideas can be used in other available
engines for stream processing. It also provides solutions to common
problems in the way data is processed and/or graphically displayed.

The rest of this article introduces T Hoarder infrastructure in
detail. It starts by an introduction to the necessary aspects that discuss
the quality of the information available in Twitter (Section 2), which
establish the computational limitations related to access tweets. It
continues with an analysis of the most related work initiatives (Section
3), which are compared with T Hoarder. Then, T Hoarder is properly
described (in Section 4) to be later evaluated in Section 5 with real
traces taken from Twitter and processed with T Hoarder. Lastly,
Section 6 draws conclusion and also describes our ongoing work.

2. Tweets as source of information

Twitter was a pioneer in opening its data by means of APIs from
2006. This resulted in the emergence of multiple applications that
access and process Twitter data and has made it easier for researchers
to obtain datasets for their experiments. In 2009, Twitter allowed
access to the stream of tweets by means of the Streaming API, a
restricted version of a more complete approach called “Firehose”.

2.1. Accessing Twitter APIs

The versions of their APIs have changed the form of access, the
amount of information by time unit offered to the user (see Table 1).
Currently, the access to tweets is allowed using the following mechan
isms:

2

These three options are mutually excluding; it is not possible to look
for more than one option simultaneously. When it is necessary to
monitor users and keywords, the developer has to resort to solutions
that process in parallel, fusing, and eliminating duplicated messages
later. For instance, this case is relatively frequent in the tracking of
electoral campaigns in which it is interesting to know the conversation
around the candidates (users) and the mottos for the campaign
(represented as a set of keywords).

3. State-of-the-art

Since its inception in 2006, the amount of data available on Twitter
has grown exponentially, producing 500 million tweets daily. There is
also an increasing number of tools available to process data coming
from Twitter in order to obtain valuable information.

Our comparison starts by analyzing different approaches for data
collection. The main approaches that can be compared with T Hoarder
include TwapperKeeper (OBrien, 2011) TwitterTap (Kranjc, 2014), and
TwitterStrean to MongoDB (Del Fresno, 2012). The main difference
among these basic crawlers and T Hoarder is that T Hoarder is neutral,
referred to the type of storage required (see Table 2). Most approaches
store tweets in large data bases that can be processed later. In contrast,
T Hoarder stores this information in a plain file system that can be
accessed later for offline analysis.

In the state of the art (Goonetilleke et al., 2014), there are a
number of platforms that compare with T Hoarder:

• Twitter Echo. (Bošnjak et al., 2012) . Twitter Echo is a Twitter
crawler with a fault tolerant architecture, with support for reliable
data storage, and a modular crawling infrastructure.

• Twitter Zombie (Black et al., 2012). Twitter Zombie is a meth
odological approach and technical tool for Twitter data collection. It
has been used in the US Republican Party Presidential debate for
South Carolina elections to analyze their data.

• Twitter Analytics (Stavrakas and Plachouras, 2012). It pro
vides the application with a 3 Layer infrastructure: a crawling, an
integration modeling and a data analysis layers. Its architecture is
intended for campaign analytics and opinion mining.

• Trendminer (Preotiuc Pietro et al., 2012). The last approach is
trend miner: an open source framework for efficient text processing.
It is based on the map reduce processing model and has a complex
processing engine. Proposed T Hoarder shares with Twitter Miner
the idea of having an infrastructure which is able to process a huge
number of data in a proper way.

Comparing T Hoarder with the other related frameworks for Twitter
(see Table 3), it may concluded that its main novelty is its flexible and
lightweight internal architecture, which allows for efficient management
of big and long lasting Twitter experiments. This storage architecture
allows users to explore data offline, before it is going to be processed to
produce an analytic result. None of the previous frame works have this
type of support, because they were designed as simple collection
infrastructures or as specific analytic tools. Previous efforts

are more focused on the requirements of specific analytics, while T
Hoarder is more neutral on the type of analysis carried out.

4. T-Hoarder in a nutshell

This section describes the architecture of T Hoarder, departing
from the high level architectonic perspective to the different aspects
related to its interfaces.

4.1. Overview

T Hoarder was conceived to store tweets about certain hot topics in
which the different types of propagation patterns may be analyzed in
large datasets. At the moment, T Hoarder is able to show the evolution
in time of a set of subjects of social interest like citizen mobilizations,
political opinions on crisis, scandals, and corruption (Congosto and
Aragón, 2012; Peña lópez et al., 2014; Congosto, 2014, 2015). The T
Hoarder platform stores tweets by thematic lines and it automatically
processes them in three axis: time, space, and relevance. The time axis
allows considering the temporal evolution of a set of indicators like the
most mentioned tweets and more active proportion of retweeted
messages, popular users, popular hashtags, and the most frequent
words. The space axis locates tweets geographically and the relevance
shows the most wide spread messages. Also, T Hoarder has an
interactive graphical interface that easies navigation in these three
axes. The platform was designed with a minimalist architecture that
avoids the dependency on other software packages.

T Hoarder opted for UNIX as a reference operating system and
Python as a main programming language for the environment. The use
of databases was discarded and T Hoarder decided to rely directly on
the UNIX file system because:

1. It can run with minimum execution environments such as a
Raspberry PI.7

2. It is able to facilitate the transfer of the data from one server to
another. When the data bases are large, the backup/restore activities
are problematic.

3. It has not defined (a priori) any data modeling, not knowing the type
of different information that is going to be processed.

4. It enables easy integration of different datasets.
5. It does not require access to random information since the proces

sing of the data is sequentially defined.

A three layer disconnected architecture was defined to avoid that
the execution of a layer interferes in other elements of the architecture.
The communication between these layers is always done using files.

Table 2
Comparison among the main methods to access Tweets.

Data Dependency Open
Collection from
Twitter

on DB software Source

TwapperKeeper Yes Yes Yes
Twitter-Tap Yes Yes Yes
twitterstream-to-

mongodb
Yes Yes Yes

T-Hoarder(our
approach)

Yes No Yes

Table 3
Comparison among the different management frameworks.

Type of Integrated Complexity
analytics visualization

Twitter-Echo (Bošnjak
et al., 2012)

Tweets collection No Med

Twitter- Zombie (Black
et al., 2012)

Tweets collection Yes Med

Twitter Analytics
(Stavrakas and
Plachouras, 2012)

Opinion mining No Med

Trendminer (Preotiuc-
Pietro et al., 2012)

Tweet Analysis No High

T-Hoarder Tweets collection,
location and
spread

Yes Low
(our approach)

7 〈http://www.raspberrypi.org/〉

3

The functional division in T Hoarder is the following:

1. Layer 1: Data collection and storage
2. Layer 2: Data processing
3. Layer 3: Visualization

Fig. 1shows the functional layers and how they exchange informa
tion. Layer 1 collects data from the Twitter API and stores it in
compressed packets when the size reaches 100 MB. Layer 2 processes
the compressed packets separately. It is only necessary to process them
once. Additionally it processes the latest information not yet com
pressed by having a size of less than 100 MB and integrates the results
of all the information processed. Layer 3 displays the results on the
web.

The source code of T Hoarder is publically available in a GitHub
repository (Congosto, 2015).

4.2. Layer 1: data collection and storage

Following the mechanism imposed by Twitter APIs, T Hoarder
registers an application and a set of users of such application on
Twitter. In order to be able to access the Twitter APIs by means of
OAuth, it is necessary to create the access keys for the application and
the users. These keys are generated in the component tweet auth,
available on Congosto (2015), and stored in files so that the compo
nents of T Hoarder can use them to access to the APIs.

T Hoarder uses the Streaming API instead of the REST API for the
following reasons:

1. It is the method most adapted to obtain data in real time with the
only limitation of the maximum rate of 50 tweets per second. The
alternative would be the use of the method GET /search/tweets
of the REST API that force periodic requests to obtain the messages
with the consequent difficulty in determining the sampling fre
quency.

2. T Hoarder is designed to cope with long lasting Twitter experiments.
In another type of short duration experiments (days) and in which it
is necessary to go back to a previous date, such as the Trending Topic
(TT) it is not necessary the use of T Hoarder. It is more reasonable

to obtain tweets with method GET /search/tweets of the REST
API with which they will be possible to be recovered up to seven
previous days and to obtain a complete dataset.

In the options of the Streaming API, T Hoarder preferably uses
keywords and users. Geolocation is information that lacks thematic
context and represents a small sample of tweets (e.g. 1.5% in Spain).

Tweets are stored with instances of the tweet streamingcompo
nent (available on Congosto (2015)), executed in parallel. The API
provides tweets in JSON format (Crockford, 2016). Then, the data are
transformed to flat text in which the information for each tweet is
stored in a line with tabulator separated fields. This allows to read the
messages that are taken with this facility and to introduce them in a
spreadsheet.

Of all the received information, the selected data that is stored and
used in the analysis layer are:

1. id tweet: Identifier of a tweet. It is an increasing number that is
sequentially assigned to each message.

2. timestamp: date and GMT hour of a tweet.
3. @author: the screen name of the author of tweet.
4. text: text of a tweet.
5. app: Application from which a tweet has been published.
6. id author: Author identifier. It is an increasing number assigned

by Twitter to each user when they log in the system.
7. followers author: Number of followers at the moment of the

publication.
8. following author: Number of users followed at the moment of

a publication.
9. statuses author: Number of tweets previously published.

10. location: location declared in the profile of the user.
11. url: if a tweet contains a URL, it is this data. On the contrary it

stores a null value.
12. geolocation: the coordinates that identify the location of the

user if the tweet is geo located.
13. names: Name provided by the user
14. bio: description of the user.
15. url media: It contains a url whether the tweet has multimedia

information; on the contrary stores to a null value.

Fig. 1. Three levels of T-Hoarder architecture: data collection, processing and visualization.

4

16. type media: type of information multimedia (e.g. photo or
video). In case of a non existing media its value is null.

17. lang: language of the tweet.

Data storage
The platform has been organized in a structure of predefined

folders. Folder and file names use predefined prefixes and suffixes to
easy the location of the stored information. Fig. 2 shows how code,
data, access keys, and the web zone are organized. Code is located in
the scripts directory, data is placed in the store directory and in each
experiment's folder, the access keys for the Oauth protocol are stored in
the keys directory and finally the web prepared data is located in the
templates and web directories.

Streams of each experiment are stored in the store directory in
packages of files. The files are generated with the following pattern:
streaming experiment x.txt name, (x: 0, n).The first file is
numbered with zero and when it reaches the size of 100 MB is
compressed and a new file with an increasing numbering is created.
For text files, the compression is very efficient and the size of the data
typically reduces to the third part.

The context of each experiment is stored in a folder under the store
directory. The context includes either a file with the list of keywords,
users or locations to be monitored as processed data.

4.3. Level 2: data processing

The data processing is made of independent form to the capture
and storage to avoid premature tweet losses. Therefore, the elaboration
of the data is made of periodic form by means of scheduled activities
(running on UNIX's cron).

Large experiments could generate datasets that would turn out very
expensive to process. Nevertheless, the method of storage of streams in
packages of files delimited by size makes viable to process them by
parts, and to integrate results later. This approach has the following
advantages:

1. It is feasible to process compressed data directly without having to
uncompress it.

2. It is possible to process the different packages from files in parallel.
3. It is not necessary to process again a package already processed; only

the new data from the last iteration has to be processed at each step.

In the resources folder, different resources are stored to process the
data, for example: tables of names, geo located localities, and diction
aries to classify tweets.

In the web directory, there is a directory for each experiment in
which the processed data will be stored to be presented/displayed in
the graphical web interface.

Processing a package
For each package, the following operations are made:

1. To filter false positives
2. To extract indicators
3. To extract relevance
4. To extract location
5. To generate the package

4.3.1. False positives filtering
Occasionally, false positives happen because the terms used in the

queries contain ambiguous words or the words appear in a tweet in a
different order than expected. For instance, a query “metro Madrid”
(Madrid underground) can return false positives because Metro is a TV
channel that broadcasts Real Madrid and Atlético de Madrid football
matches. False positives are detected using filter patterns stored in a
file called filter.txt. This filecontains a set of words or expres
sions that do not correspond to the expected context. The filter is
carried out in a script called tweets select filter.py,available on
Congosto (2015).

4.3.2. Extracting indicator
To observe the evolution of an experiment a series of indicators are

computed. Such indicators are exposed later in the time axis. These
indicators provide clues on the participation and publication way of the
messages:

1. Number of tweets: amount of tweets gathered.
2. Number of RTs: amount of tweets spread by means of the broad

casting mechanisms.
3. Number of replies: amount of tweets answering to another tweet.
4. Number of mentions: amount of tweets that contain mentions.
5. Number of unique users: amount of different users have tweeted.
6. Number of new users: amount of users who tweeted for the first

time.
7. Top hashtags: for each one of the most mentioned hashtags, the

amount of times that appears in the tweets.
8. Top words: for each one of the most frequent words (they do not

consider ending words), the amount of times they appear in the
tweets

9. Top mentioned users: for each user, the amount of times that
appears in the tweets.

10. Top active user: for each one of the most active users, the amount
of tweets that the user has published.

These indicators are extracted with the tweets counter.py
script,available on Congosto (2015).

4.3.3. Dealing with relevance
In T Hoarder, relevance is measured by the diffusion of the

messages. The messages spread because they catch the attention of
other users who choose to give visibility. On Twitter, the propagation of
messages is made by means of the retweeting (RT). The RT is a
convention created in the beginnings of Twitter by users who want to
share tweets with their followers. Since 2009 Twitter included a RT
button that did the same but automatically, which facilitated the
propagation of messages a lot. People generally spread tweets when
they agree. In some sense, it could be interpreted as a positive vote for
the message.

T Hoarder discarded using the data of the number of RTs that
provides the Streaming API for being dynamic characteristics that vary
with time. T Hoarder detects tweets diffusion comparing the similarity

Fig. 2. T-hoarder predefined filesystem structure for code, data, access keys, resources
and web.

5

1. Identifier of tweets
2. Date and hour of a tweet
3. Author of a tweet
4. Text of a tweet
5. RT count

This is how T Hoarder obtains the relevance.

for each tweet
get hour, day
if first tweet
then
last hour hour, last day day
if tweet in RT global:
then
increase RT global[tweet].count
else
RT global[tweet].count 1
if tweet in RT day:
then:
increase RT day[tweet].count
else:
RT day[tweet].count 1
if hour > last hour or len(RT day) > 15000
then
RT global 2000 tweets with more RTs
RT day 2000 tweets with more RTs
last hour hour
if day > last day
then
Order descending RT day by count and write file
empty RT day
last day day
Order descending RT global by count and write file

In T Hoarder, the most widespread tweets are obtained with the
tweets talk.py script,available on Congosto (2015).

4.3.4. Extracting location
The location of tweets can be obtained into two ways. First, it is the

declared location in the profile of the user. This data could be
incomplete or it may contain the name of a fictitious location. For this
reason, it is not possible to locate all the messages geographically.
However, it is possible to locate a high percentage of tweets (between
70% and 60%). The second option is to provide geo localized tweets. In
this case the percentage is much smaller (in Spain, 1.5%). T Hoarder
has a resource in which all the municipalities of Spain are classified by
state, provinces and geographical coordinates (longitude and latitude).
With these data, tweets can be geo located on a map according to its
declared location and also it is possible to aggregate them by province
or state. Support for locations from other countries using the same
approach. For the geo localization, simply the coordinates of each
tweet are extracted.

Every day, tweets located by user profile and geo located tweets are
stored. In both cases the records stored are:

1. Tweet identifier
2. Date and hour of the tweet
3. Author of the tweet

4. Text of the tweet
5. Tweet coordinates

The locations are obtained with the tweets location.py
script,available on Congosto (2015).

4.3.5. Generating the state of a package
When a package is being processed, it stores in a file denominated

experiment x status.txt,its state information, containing:

1. Initial date: date of the older tweet
2. Last date: date of the most recent tweet
3. State: state of the process of the package. It takes the values: semi

processed or processed.
4. Last processed tweet: identifier of last processed tweet. Length of

the package: packet size when it was processed
5. Number of tweets: amount of tweets inside the package
6. Running time: total time running in the system

4.3.6. Results integration
Results are calculated on a per day basis, reason why integration is

something as simple as the concatenation of results. Also, it is
necessary to consider a possible edge effect: as the partition of dataset
in packages is made by size (100 K) it can be left a day divided in two
different packages.

In the case of tops (words, hashtags, mentioned, and active users),
although the top 1000 items are stored, only the top 10 are displayed.
The top 10 results are stored in the interchange web directory,so that
the web server can access them.

This is the process for join results.

For each data packet
Store in memory entity counters by day (one day can be
in two different packages)
Store in memory top 1000 of entities (one day can be
in two different packages)
Store in memory global RTs
Store in memory RTs per day (one day can be in two
different packages)
Store in memory locations

Generate file of entity counters by day
Generate file of top entities, reducing the top 1000 to

10
Generate file of global RTs
Generate file of RTs per day
Generate file Locations

The data integration is done with the join results.pyscript,
available on Congosto (2015).

4.4. Level 3: visualization

To analyze the evolution of the recovered information, web panels
were designed to visualize the different types of formats. The technol
ogies used for these panels are:

1. Framework bootstrap of HTML, CSS stylesheets and JavaScript.
They allow giving structure, style, and interactivity with the different
elements of a panel.

2. The Digraphs Library is used for the temporary graphs. It has
options to favor interactivity, including facilities to make zoom lens
and to invoke functions from a point of the graph to contextualize
information.

3. Google Maps for the visualization of maps.

of messages and considering the structure of the RT. Therefore, it
detects both manual RTs and automatic RTs. The diffusion of messages
is calculated per day and for all the period of tweets capture. In this way
it is known the most relevant in each day and the most outstanding of
the complete dataset. The data stored for the most spread tweets are:

6

The T Hoarder panels are built as a puzzle, using the feature <
iframe > that embeds different small pieces of HTML generated from a
set of templates customized. The panel is created automatically with
the shell script: make panel.py, available on Congosto (2015).

4.4.1. Template of the main page
It is a generic template with the structure of a web panel in which it

is distinguished the description of the experiment and the access to the
different time graphs or maps. This template is customized for each
experiment by replacing the token @experimento with its specific
name.

Fig. 3 shows how information is presented on the web. Four zones
have been highlighted: navigation bar, experiment description, menu
options and interactive graphs.

1. A navigation bar from which it is possible to access to the main
menu of T Hoarder. This bar is common to all panels.

2. Description of the dataset and the entities that are being monitored.
This is a frame with textual information.

3. Menu options to select different views from the information: users,
type of tweets, more frequent terms and hashtags, more mentioned
and more active users, location of messages, and help.

4. Interactive graphical representation of the information selected in
the menu. There are two types of graphs: the time graphs which
show the evolution of the different indicators, and the geographic
ones plotted with a map.

4.4.2. Template for time graphs
This generic template for time graphs is used for several types of

entities, for this reason it is instantiated for each of them replacing the
tokens @experimento and @data file by their specific values. The
scheme of this template is available on Congosto (2015).

The time graphs contain two parts:

1. The interactive graphic area shows the evolution of values of a
selected entity. Moving the mouse through the graph the numerical
values of the elements of the legend are shown. In order to make
zoom lens, left button of the mouse has to be pressed and it crawls.
The interface also allows eliminating the zoom lens with a double
click. An example of interactive graphs is shown in Fig. 4

2. Most relevant tweets for an entity. Default, display the most recently

spread. It is possible to show the most propagated for the experi
ment pressing in the button “spread”. In order to discover the most
popular tweets in a day, it is only necessary to click on the date of the
graph on the left. In all cases, the messages are paged in groups of
four and it is possible to show a maximum of forty. Fig. 5 shows an
example of tweets related with an interactive graph.

4.4.3. Time Panel Template for the location of tweets
There is a HTML template that allows visualizing a map (with

Google Maps) in which the frequency of tweets by areas is displayed by
means of a heat map. This template is instantiated by replacing the
token “@data file” by the name of the file with the data. Fig. 6 shows
an example of a heat map with geographic areas with more density of
tweets. This template is available on Congosto (2015).

Fig. 3. Different areas on the t-hoarder web panel: navigation bar, experiment description, menu options and interactive graphs.

Fig. 4. Example of an interactive graph of the evolution of user participation.

7

this type of infrastructure. It also shows the benefits stemmed from
dividing the data into different blocks, called packages in the T
Hoarder jargon. To this end, the evaluation has been carried out on a
single machine (Table 4) which computes the different performance of
different streams of tweets. This type of infrastructure is enough to
determine bands of performance for T Hoarder when using it to
process medium size data sets.

5.1. Benchmark characterization

The four dataset analyzed (see Table 5) corresponds to Spanish and
international microblogging communities. The first, labeled
Diputados, contains the impact of tweets of the members of the
Spanish parliament; it is a large data set (3 years) with a small tweeting
frequency (8k tweets per day). The second dataset refers to tweets with
an URL that belongs to the main newspaper in Spain: El Pais; it can
be classified as a medium duration time (> 1 year) and average
frequency among tweets (27k tweets per day). The third dataset is
international, labeled Ecology, refers to tweets that containing a set of
words related with sustainable environment. It has long duration (3
years) with average data rate. Lastly, the forth dataset refers to Ebola
refereeing to a higher tweet rate (0,5 million tweets daily) in a short
time (80 days).

The datasets may also be considered in terms of the packages
necessary to process each dataset and the storage space required to
store them (see Table 6). In terms of number of packages, Diputados
requires 26 packages, El Pais takes 46, Ecology 100, and Ebola
169. The number of packets has a direct connection with the number of
GB required to store the dataset information, which varies from
2.77 Gb for Diputados to the 16 Gb required for Ebola.

Each different dataset takes a different amount of time to be
processed by the T Hoarder engine. Diputados is the smaller dataset
and takes 4 h and 13 min. El Pais takes 4.5 h of computation time.
On the other hand, Ecology and Ebola are large dataset and take
more than half a day to compute the dataset.

5.2. Package processing times

One of the main sources of computational overhead is in the time
required for processing each package. For the proposed dataset, the
amount of time depends on the type of processing carried out and
mainly on the amount of tweets that have to be processed.

Fig. 5. Example of tweets related with an interactive graph.

4.4.4. Template for geo locating
It is an HTML template that enables visualizing in a map of Google

Maps the geo located tweets. This template is customized by replacing
the “@data file” token with the name of the data file. Placing the
mouse over certain location it is possible to read the messages
associated to such location. Fig. 7 shows an example of a map with
the geo located tweets of an experiment. This template is available on
Congosto (2015).

5. Empirical evaluation

The goal of the experimental studies carried out with T Hoarder is
to provide empirical evidence on the performance one may expect from

Fig. 6. Showing the origin of tweets according to the defined location in user profiles in T-Hoarder.

8

data, the most expensive calculation is the counters and the less
expensive is the location information:

• For the Diputados dataset (Fig. 8), the results show the different
costs associated to the scripts in charge of processing tweets: tweets
counter.py, tweets talk.py, and tweets loca tion.py. In
the case of tweets counter.py, the time ranges from 4 min and 22
5 min and 40 for larger packages. The tweet s location.py script
moves form 2 min and 20 3 min, for the same data set. Lastly, the
tweets talk.py script is in the 1 min and 25 s range to the 2 min
and 20 s for larger datasets.

• For the El Paisdataset, the results are shown in Fig. 9 The results
show that the tweets counter.py script requires from 2 min and
40 s to 3:50, having a more reduced amount of tweet bundled in
each package than the Diputados dataset. For the tweet s
talk.py script, the outcome moves from the 50 s to the 1 min
and 10 s. Lastly, the code in charge of location takes from 1 min and
26 2 min.

• The third dataset, Ecology, the data shows the same performance
patterns (see Fig. 10). The tweets counter.py script takes from
3 min to 4 min and 40 s. For the same scenario, the script in charge
of calculating locations moves from 2 min to 3 min and 10 s. Lastly,
the less heavy script is the tweets talk.py script, which moves

Fig. 7. Geolocated tweets on T-Hoarder.

Table 4
Characterizing the evaluation infrastructure.

Infrastructure

CPU 2 Ghz (8 cores)
Memory 8 Gigabytes
OS Ubuntu
T-Hoarder 0.0.9

Benchmarked application

Templates T-hoarder end-to-end tool-chain:
1. tweets_counter.py
2. tweets_talk.py
3. tweets_location.py

Number of tweets 10 44 million of tweets

Number of packets 26 169 packets of
100 Mbytes

Since the size of each package is fixed to 100 Mb, the number of
tweets of each block depends on the stored format of the tweets. In
older datasets less information was stored and as a result, it is included
further data at the end of each registry in order that they were
backward compatible scripts.

For this reason in datasets like Diputados and Ecology the
number of tweets by package moves between 300,000 to 400,000
whereas in datasets like El Pais and Ebola, the range of tweets per
package moves from 210,000 to 300,000. The variation of the number
of tweets in datasets with the same format has dependency with the
number of URLs, geolocation information, and size of the user's bios.

Therefore, for the given dataset, the average time for processing a
tweet oscillates in 1.3 1.5 ms range. As it is shown in Figs. 8 11, the
run time seems to keep some linearity with the number of tweets. In all

Table 5
Types of datasets evaluated in T-Hoarder.

Data set (LANG) Total number of tweets Total Number of days From to Average Tweets/day

Diputados (ES) 10,100,380 1235 11-12-29 15-05-17 8177.68
El Pais (ES) 11,703,899 433 14-05-07 15-07-14 27,052.19
Ecology (EN) 37,219,566 1130 12-06-09 15-07-14 32,940.71
Ebola (EN) 44,550,169 80 14-08-04 14-10-24 555,241.75

Table 6
Performance for each dataset in T-Hoarder.

Data set Packets Storage space (Gb) Processing time
(hh:mm:ss)

Diputatos 26 2.77 4:13:54
El Pais 49 5.15 4:33:02
Ecology 100 10.28 13:57:14
Ebola 169 16.80 17:58:13

9

from 1 min to almost 2 min.
• Lastly, the fourth dataset refers to Ebola datasets, shown in Fig. 11.
Again, the same patterns shown in the previous dataset are valid for
the experiment. The tweets counter.py script takes from 3 min
to 5 min per packet. The location script moves from 2 min to 3 min
and 30 s. Lastly, the tweets talk.py script moves from 1 min to
almost 2 min.

From these empirical results we can infer:

1. Runtime to process a packet does not depend on the size of the
dataset or the number of packets in which it is divided. The four cases
studied have different sizes and the execution time per packet are
similar

2. The execution time of a package depends on the number of tweets it
contains. In Figs. 9 and 11 with fewer tweets per packet the runtimes

3. The processing system is scalable because, regardless of the size of
the dataset, the tweets are processed in small packages in which the
runtimes are known: less than six minutes for tweets counter,
less than three minutes for tweets location and less than 2 min
for tweets talk.

5.3. Joining performance

The division of data comes with extra overheads since the data has
to be merged after being partially processed in each package. The
integration time for packages depends on the duration of the dataset.
This is because the information is processed per days and therefore it
increases the number of iterations of the algorithm.

For the datasets described in previous sections, it has been
evaluated this overhead. The results (in Fig. 12) show how these times

Fig. 8. Processing time per each package in Diputados dataset in hh:mm:ss format.

Fig. 9. Processing time per each package in El_Pais dataset in hh:mm:ss format.

Fig. 10. Processing time per each package in Ecology dataset in hh:mm:ss format.

Fig. 11. Processing time per each package in Ebola dataset in hh:mm:ss format.

are less than four minutes whereas Figs. 8 and 10 with more tweets
per packet exceed this time.

10

Fig. 12. Processing for joining data in hh:mm:ss format.

are shorter, in comparison with the total time required to process a
package of data. In those cases, where the interval of the data is larger,
like the case of Diputados and Ecology datasets, the joining process
needs more time in spite of having fewer packages. However, this time
is much more reduced than the total time required to process the
package. Specifically, the overhead produced by the join of packages
with respect to total runtime of packages is a 0.33% in Diputados
(long period), a 0.16% in El Pais (medium duration), a 0.19% in
Ecology (long period) and 0.09% in Ebola (low duration).

5.4. Benefits stemmed from splitting packages

Our last experiment analyzes the benefits in splitting tweets in
several packages, comparing the performance of this strategy against
another equivalent strategy which consists in having a single package.

A monolithic dataset has been evaluated. It consists of 10 packages
which contain a large amount of tweets. This dataset is much more
reduced than the number of packages introduced in previous sections;
our previous experiments refer to 26 169 packets. It has been
calculated the execution time for different packets separately, and the
global dataset. On these data, it has been looked for the correlation
between the number of tweets processed and the three contributors to
the overhead: tweets counter.py, tweets talk.py, and tweet
s location.py.

The results of the evaluation have graphically displayed in Fig. 13.
Among the three scripts, tweets talk.py is the most affected by the
size of the packet and tweets counter.py the script that has less
influence from the amount of data processed. The three run times for
scripts moves from 0:05:31 to 0:00:59. The average time of execution
of a package is 0:07: 28. Because once processed a package it is not
necessary to process it again, it can measure the improvement in the
execution time of the model based on packages to work with a complete
dataset.

With a large package the computation time increases with the size
of the package. In our experiments, the processing of the dataset is
processed in 1:04:43, more than 8x times the executing of the individual
packages (see Fig. 14 to establish the empirical evidence). This type of
result seems to justify the benefits by exploiting the data into different
files in T Hoarder. This numbers are much more relevant when the
number of tweets that have to processed increases, but it is also
significant with 10 packages.

6. Conclusions and future work

The analysis of micro blogs requires specific tools that help perform
global analytics applied to this popular environment. This work
contributes with our particular experience in designing and evaluating
a tool to perform analytics on micro blogs. With the aim on Twitter, the

Fig. 13. Correlation among the number of tweets and time taken to processed them.
Time measured in hh:mm:ss.

Fig. 14. Correlation among the number of tweets and time taken to process them, with a
single packet strategy. Time measured in hh:mm:ss.

article has described a cost effective framework called T Hoarder. The
main advantage provided by this framework is the possibility of using
an integrated approach to store, process, and to display preprocessed
data as an output directly on a navigator. The empirical evaluation
carried out with several datasets, revealed the performance delivered
by the proposed approach which is able to process millions of tweets in
seconds.

Our future work in relationship with T Hoarder includes two
main research lines. First, the authors are analyzing the advantages
stemmed from the use of different techniques of parallel and
distributed computing as architectonic blocks useful to reduce the
total computation time of our current engine. The second line refers
to the development of an alternative approach by using common off
the shelf big data engines (based on Storm (Apache Storm, 2014;
Marz and Warren, 2015; Basanta Val et al., 2015; Basanta Val et al.,
2016), efficient map reduce strategies (Anjos et al., 2015; Lee et al.,
2013), and Hadoop (Zikopoulos and Eaton, 2011) to run stream
analytics.

11

〈https://storm.incubator.apache.org〉.
Asur, S., Huberman, B.A., 2010 Predicting the Future With Social Media, Computing.
Barberá, P., Rivero, G., 2012. Desigualdad en la discusión política en Twitter. Congr.

ALICE.
Basanta-Val, P., Fernández-García, N., Wellings, A.J., Audsley, N.C., 2015. Improving

the predictability of distributed stream processors, future generation computer
systems. SciencieDiret 52, 22 36.

Basanta-Val, P., Audsley, N.C., Wellings, A., Gray, I., Fernandez-Garcia, N., 2016.
Architecting time-critical big-data systems. In: IEEE Transactions on Big Data, vol.
PP, no.99, pp. 1 1. 〈http://dx.doi.org/10.1109/TBDATA.2016.2622719〉.

Black, A., Mascaro, C., Gallagher, M., Goggins, S., 2012. Twitter zombie : architecture for
capturing , socially transforming and analyzing the Twittersphere. In: Proceedings of
the 17th ACM Int. Conf. Support. Gr. Work, pp. 229 238.

Bollen, J., Mao, H., Zeng, X., 2011 Twitter mood predicts the stock market. Computer
(Long. Beach. Calif). pp. 1 8.

Bollen, J., Gonçalves, B., Ruan, G., Mao, H., 2011. Happiness Is Assortative In Online
Social Networks. pp. 1 17.

Bošnjak, M., Oliveira, E., Martins, J., Mendes-Rodrigues, E., Sarmento, L., 2012.
TwitterEcho a distributed focused crawler to support open research with Twitter
data. In: Proceedings of the WWW 2012, 21st Int. Conf. Companion World Wide
Web, pp. 1233 1239.

Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K., 2010. Measuring user influence in
twitter: The million follower fallacy. Icwsm, 10(10-17), 30

Congosto, M., 2015. T-Hoarder source-code. Available: 〈https://github.com/congosto/t-
hoarder〉.

Congosto, M., 2015. Elecciones Europeas 2014: Viralidad de los mensajes en Twitter.
Rev. Redes 26, 23 52.

Congosto, M., Aragón, P., 2012. Análisis De Las Elecciones 20N, ALICE2012.
Congosto, M., 2014. Twitter como fuente para conocer la opinión pública. In: Las nuevas

tecnologías audiovisuales frente a los procesos tradicionales de comunicación, C. A.
de C./64 CAC, Ed. pp. 117 142.
Conover, M.D., Ratkiewicz, J., Francisco, M., Gonçalves, B., Flammini, A., Menczer, F.,

2010. Political polarization on Twitter. Networks, 89 96.
Crockford, D., 2006. The application/json media type for javascript object notation.

JSON.

De Domenico, M., Lima, a., Mougel, P., Musolesi, M., 2013. The anatomy of a scientific
rumor. Sci. Rep. 3, 2980.

Del Fresno, G., 2012. Twitterstream-to-mongodb. Available: 〈https://github.com/
gdelfresno/twitterstream-to-mongodb〉.

Dodds, P.S., Harris, K.D., Kloumann, I.M., Bliss, C.A., Danforth, C.M., 2011. Temporal
patterns of happiness and information in a global social network: Hedonometrics

and Twitter. PloS one, 6(12), e26752
Gayo-Avello, D., 2011. Don’t turn social media into another ‘Literary Digest’. Commun.

ACM 54 (10), 121.
Goonetilleke, O., Sellis, T., Zhang, X., Sathe, S., Goonetilleke, O., Sellis, T., Zhang, X.,

Sathe, S., 2014. Twitter analytics: a big data management perspective twitter
analytics : data management perspective. ACM SIGKDD Explor. Newsl., vol. 16, no.
1, pp. 11 20.

Gudivada, V.N., Baeza-Yates, R.A., Raghavan, V.V., 2015. Big Data: Promises and
Problems. IEEE Computer, 48(3), pp. 20-23

Honey, C., Herring, S.C., 2009. Beyond microblogging: conversation and collaboration
via Twitter. In: Proceedings of the 42nd Hawaii International Conference. System

Sciences 2009. HICSS’09. pp. 1-10. IEEE, pp. 1 10.
Huberman, B.A., Romero, D.M., Wu, F., 2008. Social networks that matter: Twitter

under the microscope. Computing, 1 9.
Java, A., Song, X., Finin, T., Tseng, B., 2007, August. Why we twitter: understanding

microblogging usage and communities. In Proceedings of the 9th WebKDD and 1st
SNA-KDD 2007 workshop on Web mining and social network analysis pp. 56-65.
ACM

Kranjc, J., 2014. Twitter-Tap. Available: 〈https://github.com/janezkranjc/twitter-tap〉.
Lee, D., Kim, J.S., Maeng, S., 2014. Large-scale incremental processing with MapReduce.

Futur. Gener. Comput. Syst. 36, 66 79.
Leiba, B., 2012. Oauth web authorization protocol. IEEE Internet Comput. 1, 74 77.

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H., 2011.
Big data: The next frontier for innovation, competition, and productivity

Marz, N., Warren, J., 2015. Principles and Best Practices of Scalable Realtime Data
Systems. Manning Publications Co..

OBrien, J., 2011. TwapperKeeper. Available: 〈https://github.com/540co/
yourTwapperKeeper〉.

Peña-lópez, I., Congosto, M., Aragón, P., 2014. Journal of Spanish cultural studies
Spanish Indignados and the evolution of the 15M movement on Twitter: towards

networked para-institutions. J. Spanish Cult. Stud., 37 41.
Preotiuc-Pietro, D., Samangooei, S., Cohn, T., Gibbins, N., Niranjan, M., 2012, June.

Trendminer: An architecture for real time analysis of social media text. In
Proceedings of the workshop on real-time analysis and mining of social streams

Stavrakas, Y., Plachouras, V., 2012. A platform for supporting data analytics on twitter:
challenges and objectives. In: CEUR Workshop Proceedings, vol. 895, no. Ict

270239, pp. 1 6.
Zikopoulos, P., Eaton, C., 2011. Understanding Big Data: Analytics For Enterprise Class

Hadoop And Streaming Data. McGraw-Hill Osborne Media.

Acknowledgements

This work been partially supported by HERMES SMARTDRIVER
(TIN2013 46801 C4 2 R) and AUDACity (TIN2016 77158 C4 1 R).

References

Anjos, J.C., Carrera, I., Kolberg, W., Tibola, A.L., Arantes, L.B., Geyer, C.R., 2015. MRA+
+: scheduling and data placement on MapReduce for heterogeneous environments.

Futur. Gener. Comput. Syst. 42, 22 35.
Apache Storm, 2014. Distributed and Fault-tolerant Real-time Computation. Available:

12

