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Abstract—Current trends in industrial systems opt for the use of 
different big-data engines as a mean to process huge amounts of 
data that cannot be processed with an ordinary infrastructure. 
The number of issues an industrial infrastructure has to face is 
large and includes challenges such as the definition of different 
efficient architecture setups for different applications, and the 
definition of specific models for industrial analytics. In this 
context, the article explores the development of a medium size 
big-data engine (i.e. implementation) able to improve 
performance in map-reduce computing by splitting the analytic 
into different segments that may be processed by the engine in 
parallel using a hierarchical model. This type of facility reduces 
end-to-end computation time for all segments with their results 
then merged with other information from other segments after 
their processing in parallel. This type of setup increases 
performance of current clusters improving I/O operations 
remarkably as empirical results revealed.  

 Index Terms— industrial big-data, efficient infrastructure, map-
reduce, industrial infrastructure, big-data engine 

I. INTRODUCTION

URRENTLY there is a trend in industry 4.0 pointing to the
use of big-data as a relevant element in the development 

of next generation industrial-systems [1][2][3][37]. Big-data 
offers many opportunities to evaluate data for example to 
identify preferences from end-users, to target fraud and also to 
relate other issues derived from a combined and statistical 
processing of data [3][5][33]. Industrial big-data refers to large 
amounts of time series data generated at high-speed by 
industrial equipment, typically located in worldwide factories 
[5][6][7][8][9]. Industrial big-data is used to help take 
decisions from basic information, so that business will be able 
to reduce maintenance costs offering improved services. Both, 
“general purpose” and “industrial big-data” share a number of 
defining characteristics such as volume, variety, velocity, 
variability, and veracity. However, industrial big-data 
applications add two additional V’s: visibility, which refers to 
discovery of unexpected insights of existing processed data; 
and value, which puts emphasis on the objective of analytics, 
creating new value from data [10][11][40-44]. 

Another difference among traditional big-data and industrial 
big-data is that industrial big-data is more structured, 
correlated, and ready for analytics than its general purpose 
big-data counterpart [1][12]. This is so because industrial big-
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data is generated by automated equipment, where the 
environment and processes are more controlled than in human 
interactions typical of social networks. Besides 5 Vs of a big-
data system, industrial big-data is characterized with new 3Bs 
[10][11][39]: below-surface, broken, and bad-quality. Below-
surface refers to the idea of mining relationships and capturing 
the phenomena that are typical of an industrial system. Broken 
refers to the idea of completeness of data over its volume that 
it also present in many industrial systems. Bad-quality refers 
to the problem of dealing with low-quality data, which may 
lead to a disaster in the industrial ecosystem. 

The list of technologies [14] ready to be used as a part of 
industrial big-data infrastructure includes key technologies 
such as Hadoop [15], Storm [16], and Spark [17], and other 
technologies that are arranged as a part of the big-data 
infrastructure. Complex applications require the use of online 
and offline technologies to meet different application 
requirements. Most technologies are in a consolidation process 
that it is going to last for next years, specially for the industrial 
big-data arena. Currently, there is a trend that looks for 
efficiency in map-reduce interactions, showing an interest in 
having a more efficient infrastructure [14][19][20][21][39]. 
The trend is of special interest in industrial systems that have 
to produce shorter response times to external events even as 
the system performance increases.  

To improve the performance of current infrastructures, the 
article describes an optimization, called hierarchical map-
reduce, under the context of an industrial infrastructure, called 
IBIDAE (Industrial BIg-DAta Engine), which runs on a 
hierarchically modified Spark and Hadoop engine. Engine 
refers to a motor and may be used as synonym 
implementation of an architecture. Conversely, an architecture 
refers to the art of designing complex systems efficiently that 
support applications. Lastly, applications are small programs 
designed to run on a specific engine of an architecture. 

 The main contribution of IBIDAE is a hierarchical map-
reduce architecture that shows how for an industrial trace 
performance may be increased by running several parts of the 
analytic in parallel. Current engines for MapReduce and Spark 
do not offer a proper support to this type of facilities as a part 
of their distributions but they can be extended to offer this 
support and thus experience remarkable increases in 
performance. 

Regarding those works related to the performance of map-
reduce, the most relevant is [20] which offers four times 
improvements in total response-time by parallelizing reduce 
phases, in a map-reduce engine. The main difference among 
the previous approach and the proposed one is that it 
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parallelizes different analytics using a double hierarchy to 
offer reduced response times. In addition, previous work does 
not create additional map-reduce tasks to be executed more 
efficiently in parallel. The results included in IBIDAE are 
relevant for architects of other infrastructures to further 
improve their own systems. 

The rest of the article describes related work, the 
architecture of IBIDAE, and the performance results one may 
expect from this type of infrastructure and its hierarchical 
optimization. Section II deals with different technologies 
similar in goals to the IBIDAE architecture, exploring their 
mutual relationships. Then Section III describes the IBIDAE 
architecture covering architectural issues, computational 
model, and impact on current computational models. The 
empirical benefits offered by the architecture are explained 
later in Section IV. Section V draws conclusions and 
highlights the most related lines of research. 

II. RELATED WORK

This section explores initiatives related for IBIDAE from a 
triple perspective: i) an architectural perspective, ii) efficient 
map-reduce models, and iii) different industrial benchmarks 
for industrial machines. In all possible cases, the architecture 
is compared against other similar industrial approaches to 
establish a nexus between current industrial initiatives and 
IBIDAE. 

A. Big-Data Architectures
HDP (HortonWorks Data Platform) [30] is a general

purpose platform for data processing. Its goal is to integrate 
tools from different vendors. It integrates all different big-data 
technologies (HDFS, Spark, Storm, or other Apache projects). 
These technologies are available for developing different 
projects, which are integrated by vendors. The hierarchical 
approach of IBIDAE may be integrated as another technology 
with enhanced primitives. Also, the idea of splitting an 
application into different parallel segments, proposed by 
IBIDAE, running on partially isolated clusters, is valuable to 
extend the engine of HDP. 

Oracle has its own architecture for big-data and 
incorporates open-source technology [31]. In essence it 
includes the same type of tools described in the HDP platform 
(i.e. a set of open-source Apache projects). From the 
perspective of the Oracle architecture, the hierarchical model 
proposed in IBIDAE is a mechanism to improve performance, 
which may be included as an enhanced architecture.  

The lambda architecture derivates all data to a batch layer 
that stores information and also to a speed layer that prompts 
data that are accessed via a service layer (see [14]). The idea 
in the lambda architecture is to be able to use batch and online 
processing at the same time. Basically, batch is supported by 
map-reduce engines for offline batch processing and 
distributed stream processors for online data processing. One 
technology used to implement map-reduce is Spark and/or 
Hadoop. Therefore, the hierarchical techniques proposed for 
IBIDAE, which runs on Spark, are directly useful to speed up 
the map-reduce nodes described in the lambda architecture. 

An industrial big-data ingestion and analysis platform for 
industrial systems (IBDP) integrates a stack for industrial 
analytics with cloud computations [25][29]. To offer this type 
of facility, the architecture integrates a classical stack for big-
data processing: HDFS, Spark, and open-stack for cloud 
computation. IBDP copes with three different types of 
industrial big-data: thick data, which refer to business 
relevance; fast data which need a prompt response; and slow 
data which need response times in the range of hours. The 
architecture proposed for IBIDAE, running on Spark and 
Hadoop, may be integrated with the IBDP engine to increase 
performance or reduce the number of required resources for a 
given analytic.   
  Decathlon [24] is an industrial platform that offers modern 
software that helps automation industry to achieve their 
business objectives. It offers a set of modules that includes a 
big-data engine which is useful to take business decisions 
based on for example condition monitoring or predictive 
maintenance results. From an industrial perspective, IBIDAE 
may be also beneficial to Decathlon to speed up performance 
as the data to be analyzed increases. 
  None of the previous products or architectures (HDP, Oracle, 
IBDP, lambda architecture and the Decathlon industrial) has 
integrated the hierarchical model within their cores. Current 
engines are based on plain map-reduce models that are 
composed of a single cluster of machines that share resources. 
In this context IBIDAE contributes a hierarchical map-reduce 
computational model with multiple clusters and operations 
running in parallel. 

B. Map-Reduce Optimizations
Several researchers analyzed the performance of map-

reduce. For instance [19] analyzes the set of configuration 
parameters that may have an impact on the performance, 
developing a benchmarking configuration method to 
determine the set of configuration parameters that minimize 
the execution time of the map-reduce interaction. [19] offers a 
subset of them that has impact on performance, being able to 
reduce execution times in 32%. The proposed hierarchical 
model also adds an alternative way to reduce execution time in 
applications, by parallelizing their execution in multiple 
engines that share data. In the evaluation, test-bed reductions 
may reach 60% of the total time for some configurations with 
intensive I/O operations. The optimization algorithms 
described in [19] may be extended with the proposed 
hierarchical model in IBIDAE. In this case IBIDAE requires 
to be optimized to meet application needs. 

Researchers have proposed a concurrent map-reduce [20] 
that deals with applications that have to share large amounts of 
data, improving performance by a factor of 4. The proposed 
hierarchical approach generates higher speedup factors (130x) 
using a hierarchical approach that parallelizes the execution of 
an analytic. However, both techniques differ in the way they 
accomplish their goals. IBIDAE includes a concurrent model 
to split the execution in a hierarchical model, as it is done in a 
operating systems with processes and tasks, having different 
map-reduce activities (of the same application) running in 
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parallel. On the other hand [20] is focused on the optimization 
of reduce phases to increase performance. 

Lastly, there is a last relevant optimization for skewed map-
reduce applications, named FP-Hadoop [32], which 
incorporates intermediate reducers to offer improved 
performance. This optimization is able to offer an 
improvement of a factor of 5 in total execution time. IBIDAE 
is able to offer higher speedup factors.  

C. Big-Data Benchmarks
Currently, there are a number of big-data benchmarks that 

may be used to compare equivalent technologies [34]. Some 
of them also may generate synthetic benchmarks. One of them 
is the BigdataBench [34], which is based on a suite for 
Internet services. Among the different workloads available, 
the proposed industrial service belongs to the sort and word-
count micro-benchmarks.  

The benchmark used in IBIDAE comes from an industrial 
surveillance domain. It is similar in size to other similar 
approaches from the industrial scenarios (see [3], [26], and 
[27]). The benchmark processes surveillance logs stored by a 
set of 1600 sensors spread out in factory subsystems, 
generating alarms which are processed later. The benchmark 
processes logs with 0.1 Gbytes, 1 Gbytes, and 10 Gbytes of 
data. In the logs each line of the file corresponds to the 
description of an event with the following relevant 
information: 1) Place where the sensor is located: text with a 
description; 2) Date: text representing a day; 3) Event 
generated: textual description of the event; 4) Relevance of the 
event (medium, high, low); 5) Monetary costs; and 6) Speed 
of the detected event. In comparison, BigDataBench datasets 
are larger than in the industrial surveillance application 
defined for IBIDAE, which comes from a real surveillance 
trace. 

Another benchmark is the TPCx-HS that adds formal 
specification and enforcement rules that enable comparison of 
results among systems [35]. One characteristic of TPCx-HS is 
that it follows a stepped scaled sizing model on BigdataBench. 
From the perspective of the benchmark used in IBIDAE the 
type of surveillance application used corresponds to a new 
application in BigdataBench. 

Finally BigBench [36] offers an end-to-end benchmark 
approach that addresses variety, velocity, and volume aspects 
of many big-data systems in the analytic domain. It also 
reports the generation and exploration of 200 Gbytes of data. 
Analytics specified in BigBench offer response times in few 
seconds to less than one hour. Comparatively, our benchmark 
is smaller in size (0.1 Gbytes, 1 Gbytes, and 10 Gbytes) than 
BigBench. 

NASA’s repository [36] also offers an access to eleven 
data-sets ranging from few hundreds of bytes to 3 Gbytes of 
data. IBIDAE offers a larger amount of data: up to 10 Gbytes 
from a simple a surveillance application. 

III. IBIDAE
IBIDAE defines an architecture for industrial applications 

that supports hierarchical efficient map-reduce processing. 

The architecture is partially based on general purpose and 
other big-data architectures such as the lambda architecture 
[14], a cyber-architecture for real-time industrial applications 
described in [3], and another architecture described for cloud 
computing in [22]. From [3] IBIDAE derived an industrial 
information subsystem in charge of connecting factory floor 
elements to populate a big-data repository. From [22] it takes 
the idea of processing offline and online data, stored in a large 
storage space. Finally, from [14] it derived the idea of being 
compatible with the lambda computational model.  

A. Architecture
The basic map-reduce industrial architecture of IBIDAE

(see Fig. 1) consists of three layers in a top-down approach: 

Big-Data
Engine

Machines
cluster

Big-data 
storage

Map-Reduce

Analytics

Industrial 
Information System

Industrial
Infraestructure

Industrial
Engine

Industrial
Analytics

Fig. 1. Industrial Big-Data Architecture 

 Industrial analytics layer: This layer is in charge of
performing industrial analytics. Analytics are processed
by the engine that uses the resources of a map-reduce
infrastructure layer to speed up computations and access
data.

 Industrial engine: Basically, it is in charge of
coordinating different aspects of the big-data ecosystem.
It is in charge of providing proper support to provide
distribution and parallelism via a map-reduce engine,
offering support to different analytics. Typical stacks
include Hadoop, Storm, and Spark technologies. The
main difference in an industrial system is probably the
type of application they have to take into account.

 An industrial infrastructure layer: It provides low-level
resources stored in a cluster of machines. Typical clusters
[17][28] include MESOS, standalone clusters, and YARN
support. To store data, it includes a HDFS (Hadoop
Distributed File System) filesystem that offers safe access
to large datasets stored in it. It may also refer to any other
distributed filesystems (e.g. NFS or Lustre) able to offer
large and efficient storage space.

   In addition to the basic infrastructure, there is a hierarchical 
approach used to increase scalability in different models (Fig. 
2). Basically, the hierarchical infrastructure splits resources 
into different units to improve performance. The approach 
assumes that in some cases having a single space view is much 
more inefficient than splitting this model to offer improved 
performance. 
  This hierarchical approach impacts on all elements of the 
industrial architecture ranging from the clusters used for 
storage to execution engines that support analytics. In all 
cases, the application splits data into a set of m-tasks that can 
be executed in n-different elements of the architecture. This 
type of approach is able to increase parallelism as resources 
may be used more efficiently in parallel to give improved 
performance, as well as to reduce the number of messages 
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required to perform analytics. 

Hierarchical 
Industrial 
Analytics 

Hierarchical 
Big-Data 
Engine 
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Hierarchical Cluster 

I Clusiertl 1) 
I Clustertn.m) 

Hierarchical Storage 

I Storaqe<1.1 > I 
I storage(n,m) I 

Hier. Information System 
I Information l 1 1 , I 
I lnlormal,on (n.m) I 

Fig. 2. Hierarchical Industrial Big-Data Architecture 

Potentially, the idea of splitting or partitioning resources to 
increase performance is applied to all elements of the 
architectw·e: 

• On the analytic layer: Many analytics may be an-anged as
a set of hierarchical subtasks where the results of a subtask
are used to develop different types of analytics. The
application should be able to provide a hierarchical
organization in accessing resources. Therefore, the analytic
should be able to be split in different subtasks easily,
requiring in some cases help from the developer to provide
this hierarchical aspect.
• On the big-data layer: Although many of them provide
plain map-reduce models (based on traditional map-reduce
primitives), they lack direct support for implementing the
hierarchical model as a part of their logic. The map-reduce
already includes the possibility of rnnning different subtasks
in an analytic. This suppo1t should be extended with the
possibility of using multiple clusters.
• On resow·ces layer: Clusters may offer a hierarchical
organization as they are properly separated into different
computational units. Many storage spaces provide
hierarchical access by means of pa1titioned resow·ces. Also,
in many cases, the information available from the industrial
information system may be accessed with different levels of
quality, refel1'ing infonnation from a specific machine of a.
ce1ta.in floor or global info1ma.tion about business.
Therefore, the idea is to identify the mechanisms that enable
sharing data among different nodes to offer an efficient
configuration.
The main advantage of the hierarchical approach against the

plain map-reduce is that it may split work into smaller pieces 
that may be more efficiently processed in parallel. This is of 
special interest in applications that have high processing costs 
(e.g. an expensive n2 s01t process) that can se.e how
perfonnance is sped up with a hierarchical approach. For 
instance, the use of a. simple hierarchy of ten elements may 
reduce computational costs in 10 times splitting data. Another 
advantage is that peaks in computations get reduced with a 
hierarchical approach that works with a reduced amount of 
data. 

B. Computational Model

The basic computational model of a map-reduce interaction
consists of a. map functions that takes an input key and a value 
and outputs a. list of elements, each of them with a key and a 
value: 

map(Keyl, Valuel)-> List(Key2, Value2) (eq. 1) 

After that reduce functions receive this list of elements for 
ea.eh key and produce an output: 

reduce(Key2, List (Value2))-> List(Value3) (eq. 2) 

The hierarchical map-reduce (h _map) model adds parallel
execution for a. set of resources that are reduced to a. list of 
values. Internally, the hierarchical map is composed of a set of 
map-reduce that nm in parallel: 
h map(Keyl, Value2,m)-> List(Key2, Value2) 

-(1) 11 map(key, value))-> List(Key_l,Value_l) 
(.) 11 ... 
(m) I I map(key, value)->List(Key_m,Value_m) 

reduce_h(key,List(Value))-> List(Key2, Value2)

(eq. 3) 
This new type of primitive may be implemented as a set of 

map-reduce operations that nm in parallel ( I I ) in order to 
speed up execution and perform better resource utilization. 
They are followed by an specific reduce phase (reduce_ h) 
that conve1ts this m-lists into a list of values each one of them 
generated as a. result of a map-reduce interaction into a. list of 
values. In addition, it allows defining a number of n-clusters 
that receive and process in m-parallel data units. Each of these 
clusters process part of the m-tasks in parallel using an h _ map 

function of m/n elements. The resulting hierarchical equation 
that includes clustering is: 
h map(Keyl, Value2,n,m)-> List(Key2, Value2) 

-(1) I I h_map(key, value, m/n))-> List(Key_l,Value_l) 
(.) 11 ... 

(n) I I h_map(key, value, m/n)->List(Key m, Value m) 
reduce_h(key, List(Value))-> List(K;y2, Valu;2) 

(eq. 4) 

HierarchicaUn=2 m=4) 

Output 

Fig. 3. Hierarchical map-reduce in a simple count and sort application. 
The hierarchical approach creates new tasks that e�cute-in parallel and are 
able to process data in a hierarchical fashion. The model requires two 
additional reduce functions to mix the outputs of each computation, in an 
L _ Reduce phase and globally with an H _ reduce phase. In the case of an 
L _ Reduce stage the idea is to combine ordered lists. The same idea persists 
in the case of an H _ Reduce stage. 

As in the previous case (see eq. 3), there is a reduce phase 
in charge of reducing data after perfonning n-hierarchical map 
functions. To illustrate an application that benefits this 
computational model, it was extended the wordcount 
analytic, which has been modified to include a. sort phase (see 
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Figure 3). 

C. Impact on Current Tools
  For the integration of the techniques in existing technology, 
we observe two different ways: a non-invasive one and an 
invasive one that requires modification inside current big-data 
tools.  
  The non-invasive approach replicates elements of the 
architecture in different places to be compliant with the 
hierarchical model. The advantage of the non-invasive 
approach is that current technology may be easily used 
without any modifications in their cores.  
  The invasive approach consists in extending current tools to 
take into account the hierarchical model while keeping a 
unified system view of the programming model. For instance, 
in the case of the RDD model of Spark [23], a solution to 
integrate the hierarchical map-reduce is to extend the 
programming model with h_map functions in the API with 
these functions: 
h_map(map_fun, reduc_fun, par_units)     (fun. 1) 
h_map(map_fun, reduc_fun, cluster, par_units) (fun. 2) 

The first function takes as an input a map function 
(map_fun), its internal reduction function (reduc_fun), and 
the number of parallel units (par_units) to be executed 
before calling the reduce function. Internally, it performs the 
computation described in Equation 3. The second function 
adds information about the number of clusters (cluster) 
required to process the analytic and refers to Equation 4. Our 
current implementation uses the non-invasive approach as it is 
simpler from the perspective of an initial implementation.  

IV. EMPIRICAL EVALUATION

A. Prototype Description
A prototype of IBIDAE has been developed to evaluate the

performance and the benefits stemmed from the use of a 
hierarchical approach against a traditional stack (see Table I). 
For the evaluation we built a system with a maximum of 64 
low-cost machines interconnected with 2 Gbytes network. 
Extending Hadoop 2.6.1 and Spark 1.6.1, we built the engine 
of IBIDAE (see Figure 4) named H-Spark_1.6.1. The 
deployment engine instantiates one H-Spark engine per 
machine. To check the performance, we derived a benchmark 
from a surveillance application described in the related work 
section, which has been used to evaluate the performance 
offered by IBIDAE. The goal of the evaluation is to establish 
empirical evidence on the speedups one may expect from the 
combination of these hierarchical and parallel models as a 
trace is processed. 

Our empirical results (see Table I) show an important 
speedup experienced in the application with the use of a 
hierarchical approach; using the same number of machines 
hierarchical map-reduce outperforms a plain map-reduce 
solution. The maximum performance of the proposed setup 
refers to a speed-up factor of 130x for the hierarchical map-
reduce, and a minimum of 8x for plain map-reduce models. 

IBIDAE

Industrial Cluster

2 Gbps 

Link

HDFS

Analytics

NFS

Hierarchical
analytics

Hierarchical Spark

Hadoop

Fig. 4. Stack used in the evaluation 

Table I: Cluster, software stack, and benchmark application characterization 
Cluster 

Resources  
Available 

64 machines with  256 cores (1,1 GHz) 512 GB 
of RAM- 5120 GB HD 

Machine 
 features 

4 cores, 8 GB of memory and 80 GB local disk 
space (per machine) 

Network 2 GBPS  optical fiber  accessed via LANs 
Software Stack 

Hadoop 2 6 1 
Spark 1 6 1  

H- Spark 1 6 1-hierarchical 
Surveillance Benchmark 

Industrial 
application 

Process data and generated a list with:  IA1: 
Most popular sensors; IA2:  Less active 
sensors; IA3: Most popular events; IA4: Less 
popular events; IA5: Highest speed detectors; 
IA6: Lowest speed detectors; IA7: Most 
relevant alarms; and IA8: Less relevant 
alarms  

Analyzed Data Log  Small: 0,1 Gbytes: 10 partitions (blocks) 
Normal: 1 Gbytes: 100 partitions 
Large: 10 Gbytes:  1000 partitions 

Outcome for (small, normal, and large) data 
Total time:  

Plain M-R speedup: 
Plain H-M-R speedup: 

 [70 sec; 10 min; 1.8h] 
 [8x;     9x;    10x] 
 [110x; 117x; 130x] 

B. Performance Patterns
1) Plain Map-Reduce Approach

To evaluate the performance of the infrastructure, first we
evaluated the influence of adding more machines to reduce 
response time in all analytics. For this purpose we measure the 
different speedups reached when adding additional cores to 
the system. In the proposed ecosystem, each time we add new 
machines, the total time required to execute the application 
reduces, and the speed (defined as       ) increases. 
Ideally, this factor should grow linearly with the number of 
cores available in the system. However, due to different 
characteristics of the infrastructure, its growing tends to be as 
follows: there is a i) first phase where infrastructure overhead 
rules, and adding cores increases more than linearly in 
performance because this time is masked by the overhead of 
the infrastructure; ii) a second one, where adding cores 
reduces proportionally computation times, and where the 
cluster work is dominant; iii) a third stage where adding more 
cores does not linearly increase performance anymore due to 
the overhead caused by communications among the different 
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elements of the cluster. Fig. 5 shows this evolution for the set 

of proposed analytics. Results show the maximum speedup 

factor is 6.7 for a system with 64 cores compared to a single 

core setup. The example also shows that phase i) is from 1 to 4 

cores, phase ii) is from 4 to 32 cores, and phase iii) is with 

setups that have more than 32 cores. 

Plain M-R: Speed 

� 

:1t 
J! 

)I( 

:
JI: 

"' 

I I I I I I 

0 50 100 150 200 250 300 

Cores available 

Fig. 5. Speedup factor offered adding cores. The figure refers to the cost of 
running all eight analytics with l Gbytes of data. 

Also of great importance is the efficiency associated to 

adding new cores to the system (Fig. 6). The efficiency is 

defined as the speed divided by number of cores used to 

implement the system, i.e.: efficiency= .,, .. ". Ideally, i.e. 
cores 

assuming that all cores are able to reduce the response time 

proportionally, efficiency should be a constant function. 

However, the empirical pattern obtained in OW' experiments 

show how the normalized efficiency decreases with number of 

cores available from a normalized 1, which con-esponds to a 

single core, to a minimum of 4% with an industrial big-data 

engine that rnns 256 cores (i.e. 64 machines). The main cause 

for the inefficiency is that in some stages of the analytics, the 

number of blocks (pa1titions in the Spark jargon) is less than 

one hundred and at least it should be equal to the number of 

available cores. 

Plain M-R: Efficiency ··"L
1,01 
0,81 
0,61 
0,41 
0,21 
0,01 • I 

0 100 

Cores available 

• I I 

200 300 

Fig. 6. Efficiency related to the scenario described in Fig. 5. 

The second soUl'ce of inefficiency is that all cores are 

blocked for the analytics. This type of effect has a negative 

impact in perfonnance as the code perfoffllS many 1/0 

operations that do not use all available resources for rnnning 

the analytic. From the point of view of perfonnance, an 

hierarchical approach may deliver higher perfo1mance 

numbers, as analytics may nm different parts of the 

application more efficient in smaller clusters, which are a 

priori much more efficient than larger ones. For the analyzed 

setup, the advantages offered by systems with more than 64 

cores are marginal and it is preferable, from the perspective of 

perfonnance, to nm analytics concmTently (as shown in Figw·e 

5 and Figme 6). 

2) Hierarchical Map-Reduce Patterns

For the hierarchical approach, the cluster is split in different

parallel map-reduce applications which are combined later, 

using the hierarchical map-reduce model proposed in IBIDAE. 

This idea, similar to the idea of multiprocessing, is to be able 

to improve perfo1mance in inefficient scenarios, creating 

smaller clusters that increase perfonnance . 

The experiment introduces results for an application which 

is split into two, foUl', and eight different analytics, whose 

results have to be combined as they finish their executions. 

The example also adds the possibility of using only one of 

both clusters. Results (see Fig 7) for the absolute speedup due 

to the use of hierarchical approach with clusters of 1-32 cores 

per cluster show that the technique is able to offer acceptable 

perfonnance for the analytics ca1ried out (8 stages with 1 

Gbytes of industrial data logs). As in the previous experiment, 

the speedup factor degrades as the number of cores in the 

cluster increases. For the given configw·ation, with eight 

different applications, in the hierarchical model the maximum 

speedup is higher than the speedup offered by the plain map­

reduce model due to the blockings suffered in the plain map­

reduce model. Results show that the speedup factor increases 

with number of analytics in the core, and decreases with 

number of nodes in cluster, because there is not enough 

partitions to be processed. This behavior can be seen along the 

ve1tical axis of Fig 8. 
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Fig. 7. Speedup factor offered by the hierarchical approach 
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Fig. 8. Efficiency offered by the hierarchical approach 

Efficiency results (see Fig. 8) show a decreasing efficiency 

with an increasing number of available cores per cluster as in 
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the previous experiment. But results show that in efficiency 

temlS the use of a hierarchical approach always increases 

perfonna.nce because it reduces the number of pa1titions to be 

processed in ea.eh node. Also, the use of two clusters instead 

of one is also beneficial in terms of perfonnance because it 

parallelizes execution. 

3) Plain M-R vs. H-M-R Patterns

This experiment compares plain map-reduce against its

hierarchical approach. Results in tenns of speedup are shown 

in Fig. 9 and Fig. 10 refers to efficiency results. Results show 

that the use of a hierarchical approach is beneficial for the 

evaluated scenarios outperfonning plain map-reduce models. 

In all scenarios, the hierarchical approach is able to increase 

the speed of the system. 
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Fig. 9. Comparing speedup factors 

Notice as the speedup for the plain map-reduce model is 

below all speed curves for the same amount of work ( see Fig. 

9). Speed curves for two, four and eight split applications 

show remarkable increase in speed processing, which 

probably is the main benefit stelllllled for the use of a 

hierarchical approach. The gap among the plain M-R and the 

H-M-R is 14 times as 2 clusters and 8 segments are used to

produce the hierarchical application (see Figure 9).

In terms of efficiency (see Fig. 10) and comparing plain 

map-reduce (MR) with an application composed of two (2), 

four (4), and eight (8) parallel analytics, the empirical suggests 

that the use of a. hierarchical approach increases efficiency 

because it produces smaller clusters. The use of tv.•o clusters 

also improves efficiency in comparison with a single cluster 

machine. 
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Fig. l 0. Combined efficiency 

C. Benchmark Pe1formance

This section deals with the evaluation of the full

benchmark, which includes data sets ranging from small 0.1 
Gbytes to large amounts of data: 10 GBytes. This experiment 

extends previous micro-benchmarks to the surveillance 

benchmark for the speedup and efficiency of the plain map­

reduce and hierarchical map-reduce models. 

Regarding speedup factors (see Fig. 11), results show that 

an increase in the amount of data. has a positive effect in the 

maximum achievable speed (130x). This increase in speed is 

due to the technological overhead of the approach which 

surpasses collllllunica.tion costs. Results also show how a huge 

amount of data reduces maximum speed. This reduction is 

mainly due to an increase in the number of partitions, which 

potentially enable a higher number of cores to be used. 
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Fig. 11. Compared speedup with SMALL(O.l Gbytes) and LARGE (10 

Gbytes) amounts of data 
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Likewise, Fig. 12 describes efficiency one may achieve 

with the proposed models for O .1 Gbytes of data, and 10 
Gbytes. Results C011'oborate previous perfo1mance terms and 
show how the use of a hierarchical approach may improve 
efficiency. As in the previous cases, perfonnance gets reduced 
as the number of cores increases because the application is 
more inefficient. 
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Fig. 12. Compared speedup with SMALL (0.1 Gbytes) and LARGE (10 
Gbytes) amounts of data 

The main conclusion drawn from the evaluation is that the 
hierarchical approach is able to increase perfo1mance 
remarkably (up to a maximum of 130x). Results are in line 
with what happens in parallel systems where the use of 

clustering (hierarchical approaches) versus flattering 
computation (plain models) is beneficial from the perspective 

of perfonnance. The obtained results suggest that future 

industrial architectures should consider the use of hierarchical 
approaches to offer scalable perfonnance. In comparison to a 
single M-R entity, H-M-R increases perfonnance due to two 
complementary effects. The network bottleneck and 

serialization/deserialization issues disappear because 
computation may run in isolated clusters. The second is that 
the cost of data representation is small as the data is split in 
Spark. 

V. CONCLUSIONS AND FUTuRE WORK

Next generation of industrial system will be part of a global 

big-data infrastmcture able to provide self-configuration to 

take intelligent decisions to operate efficient businesses. In 

this context, the proposed architecture increases scalability by 

means of a. hierarchical approach that improves cmTent map­

reduce perfonnance, increasing perfonnance of cmTent map­

reduce models. As a result of a proper hierarchical 

organization, the system may see how performance increases, 

with a large speedup factor. The empirical evidence showed 

how the perfonnance of the engine may be improved by 

splitting resources among different ana.lytics to speedup 

perfonnance. 

Ow· cul1'ent research efforts are extending cul1'ent machine 
leaming engines based on Spark with the hierarchical 
approach to increase operational perfonnance of genera.I 
pwpose applications. Also, we are extending the proposed 
techniques to larger cluster infrastmctw·es equipped with 
ente1prise inachines. Finally we explore the integration 
extending results given in [26] and [44-47] for distributed 
stream processing as a building block for IBIDAE. 
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