

This is a postprint version of the following published document:

Pablo Basanta-Val. An Efficient Industrial Big-data Engine. IEEE
Transactions on Industrial Informatics (September 2017). In press.
DOI: 10.1109/TII.2017.2755398

1551-3203 © 2017 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

https://doi.org/10.1109/TII.2017.2755398

Abstract—Current trends in industrial systems opt for the use of
different big-data engines as a mean to process huge amounts of
data that cannot be processed with an ordinary infrastructure.
The number of issues an industrial infrastructure has to face is
large and includes challenges such as the definition of different
efficient architecture setups for different applications, and the
definition of specific models for industrial analytics. In this
context, the article explores the development of a medium size
big-data engine (i.e. implementation) able to improve
performance in map-reduce computing by splitting the analytic
into different segments that may be processed by the engine in
parallel using a hierarchical model. This type of facility reduces
end-to-end computation time for all segments with their results
then merged with other information from other segments after
their processing in parallel. This type of setup increases
performance of current clusters improving I/O operations
remarkably as empirical results revealed.

 Index Terms— industrial big-data, efficient infrastructure, map-
reduce, industrial infrastructure, big-data engine

I. INTRODUCTION

URRENTLY there is a trend in industry 4.0 pointing to the
use of big-data as a relevant element in the development

of next generation industrial-systems [1][2][3][37]. Big-data
offers many opportunities to evaluate data for example to
identify preferences from end-users, to target fraud and also to
relate other issues derived from a combined and statistical
processing of data [3][5][33]. Industrial big-data refers to large
amounts of time series data generated at high-speed by
industrial equipment, typically located in worldwide factories
[5][6][7][8][9]. Industrial big-data is used to help take
decisions from basic information, so that business will be able
to reduce maintenance costs offering improved services. Both,
“general purpose” and “industrial big-data” share a number of
defining characteristics such as volume, variety, velocity,
variability, and veracity. However, industrial big-data
applications add two additional V’s: visibility, which refers to
discovery of unexpected insights of existing processed data;
and value, which puts emphasis on the objective of analytics,
creating new value from data [10][11][40-44].

Another difference among traditional big-data and industrial
big-data is that industrial big-data is more structured,
correlated, and ready for analytics than its general purpose
big-data counterpart [1][12]. This is so because industrial big-

Pablo Basanta Val (pbasanta@it.uc3m.es) Web Technologies Laboratory,
Departamento de Ingeniería Telemática, Spain Departamento de Ingeniería
Telemática and UC3M-BS, Institute of Financial Big Data, Universidad
Carlos III de Madrid, Spain, 28911.

data is generated by automated equipment, where the
environment and processes are more controlled than in human
interactions typical of social networks. Besides 5 Vs of a big-
data system, industrial big-data is characterized with new 3Bs
[10][11][39]: below-surface, broken, and bad-quality. Below-
surface refers to the idea of mining relationships and capturing
the phenomena that are typical of an industrial system. Broken
refers to the idea of completeness of data over its volume that
it also present in many industrial systems. Bad-quality refers
to the problem of dealing with low-quality data, which may
lead to a disaster in the industrial ecosystem.

The list of technologies [14] ready to be used as a part of
industrial big-data infrastructure includes key technologies
such as Hadoop [15], Storm [16], and Spark [17], and other
technologies that are arranged as a part of the big-data
infrastructure. Complex applications require the use of online
and offline technologies to meet different application
requirements. Most technologies are in a consolidation process
that it is going to last for next years, specially for the industrial
big-data arena. Currently, there is a trend that looks for
efficiency in map-reduce interactions, showing an interest in
having a more efficient infrastructure [14][19][20][21][39].
The trend is of special interest in industrial systems that have
to produce shorter response times to external events even as
the system performance increases.

To improve the performance of current infrastructures, the
article describes an optimization, called hierarchical map-
reduce, under the context of an industrial infrastructure, called
IBIDAE (Industrial BIg-DAta Engine), which runs on a
hierarchically modified Spark and Hadoop engine. Engine
refers to a motor and may be used as synonym
implementation of an architecture. Conversely, an architecture
refers to the art of designing complex systems efficiently that
support applications. Lastly, applications are small programs
designed to run on a specific engine of an architecture.

 The main contribution of IBIDAE is a hierarchical map-
reduce architecture that shows how for an industrial trace
performance may be increased by running several parts of the
analytic in parallel. Current engines for MapReduce and Spark
do not offer a proper support to this type of facilities as a part
of their distributions but they can be extended to offer this
support and thus experience remarkable increases in
performance.

Regarding those works related to the performance of map-
reduce, the most relevant is [20] which offers four times
improvements in total response-time by parallelizing reduce
phases, in a map-reduce engine. The main difference among
the previous approach and the proposed one is that it

An Efficient Industrial Big-data Engine
Pablo Basanta-Val

pbasanta@it.uc3m.es

C

1

parallelizes different analytics using a double hierarchy to
offer reduced response times. In addition, previous work does
not create additional map-reduce tasks to be executed more
efficiently in parallel. The results included in IBIDAE are
relevant for architects of other infrastructures to further
improve their own systems.

The rest of the article describes related work, the
architecture of IBIDAE, and the performance results one may
expect from this type of infrastructure and its hierarchical
optimization. Section II deals with different technologies
similar in goals to the IBIDAE architecture, exploring their
mutual relationships. Then Section III describes the IBIDAE
architecture covering architectural issues, computational
model, and impact on current computational models. The
empirical benefits offered by the architecture are explained
later in Section IV. Section V draws conclusions and
highlights the most related lines of research.

II. RELATED WORK

This section explores initiatives related for IBIDAE from a
triple perspective: i) an architectural perspective, ii) efficient
map-reduce models, and iii) different industrial benchmarks
for industrial machines. In all possible cases, the architecture
is compared against other similar industrial approaches to
establish a nexus between current industrial initiatives and
IBIDAE.

A. Big-Data Architectures
HDP (HortonWorks Data Platform) [30] is a general

purpose platform for data processing. Its goal is to integrate
tools from different vendors. It integrates all different big-data
technologies (HDFS, Spark, Storm, or other Apache projects).
These technologies are available for developing different
projects, which are integrated by vendors. The hierarchical
approach of IBIDAE may be integrated as another technology
with enhanced primitives. Also, the idea of splitting an
application into different parallel segments, proposed by
IBIDAE, running on partially isolated clusters, is valuable to
extend the engine of HDP.

Oracle has its own architecture for big-data and
incorporates open-source technology [31]. In essence it
includes the same type of tools described in the HDP platform
(i.e. a set of open-source Apache projects). From the
perspective of the Oracle architecture, the hierarchical model
proposed in IBIDAE is a mechanism to improve performance,
which may be included as an enhanced architecture.

The lambda architecture derivates all data to a batch layer
that stores information and also to a speed layer that prompts
data that are accessed via a service layer (see [14]). The idea
in the lambda architecture is to be able to use batch and online
processing at the same time. Basically, batch is supported by
map-reduce engines for offline batch processing and
distributed stream processors for online data processing. One
technology used to implement map-reduce is Spark and/or
Hadoop. Therefore, the hierarchical techniques proposed for
IBIDAE, which runs on Spark, are directly useful to speed up
the map-reduce nodes described in the lambda architecture.

An industrial big-data ingestion and analysis platform for
industrial systems (IBDP) integrates a stack for industrial
analytics with cloud computations [25][29]. To offer this type
of facility, the architecture integrates a classical stack for big-
data processing: HDFS, Spark, and open-stack for cloud
computation. IBDP copes with three different types of
industrial big-data: thick data, which refer to business
relevance; fast data which need a prompt response; and slow
data which need response times in the range of hours. The
architecture proposed for IBIDAE, running on Spark and
Hadoop, may be integrated with the IBDP engine to increase
performance or reduce the number of required resources for a
given analytic.
 Decathlon [24] is an industrial platform that offers modern
software that helps automation industry to achieve their
business objectives. It offers a set of modules that includes a
big-data engine which is useful to take business decisions
based on for example condition monitoring or predictive
maintenance results. From an industrial perspective, IBIDAE
may be also beneficial to Decathlon to speed up performance
as the data to be analyzed increases.
 None of the previous products or architectures (HDP, Oracle,
IBDP, lambda architecture and the Decathlon industrial) has
integrated the hierarchical model within their cores. Current
engines are based on plain map-reduce models that are
composed of a single cluster of machines that share resources.
In this context IBIDAE contributes a hierarchical map-reduce
computational model with multiple clusters and operations
running in parallel.

B. Map-Reduce Optimizations
Several researchers analyzed the performance of map-

reduce. For instance [19] analyzes the set of configuration
parameters that may have an impact on the performance,
developing a benchmarking configuration method to
determine the set of configuration parameters that minimize
the execution time of the map-reduce interaction. [19] offers a
subset of them that has impact on performance, being able to
reduce execution times in 32%. The proposed hierarchical
model also adds an alternative way to reduce execution time in
applications, by parallelizing their execution in multiple
engines that share data. In the evaluation, test-bed reductions
may reach 60% of the total time for some configurations with
intensive I/O operations. The optimization algorithms
described in [19] may be extended with the proposed
hierarchical model in IBIDAE. In this case IBIDAE requires
to be optimized to meet application needs.

Researchers have proposed a concurrent map-reduce [20]
that deals with applications that have to share large amounts of
data, improving performance by a factor of 4. The proposed
hierarchical approach generates higher speedup factors (130x)
using a hierarchical approach that parallelizes the execution of
an analytic. However, both techniques differ in the way they
accomplish their goals. IBIDAE includes a concurrent model
to split the execution in a hierarchical model, as it is done in a
operating systems with processes and tasks, having different
map-reduce activities (of the same application) running in

2

parallel. On the other hand [20] is focused on the optimization
of reduce phases to increase performance.

Lastly, there is a last relevant optimization for skewed map-
reduce applications, named FP-Hadoop [32], which
incorporates intermediate reducers to offer improved
performance. This optimization is able to offer an
improvement of a factor of 5 in total execution time. IBIDAE
is able to offer higher speedup factors.

C. Big-Data Benchmarks
Currently, there are a number of big-data benchmarks that

may be used to compare equivalent technologies [34]. Some
of them also may generate synthetic benchmarks. One of them
is the BigdataBench [34], which is based on a suite for
Internet services. Among the different workloads available,
the proposed industrial service belongs to the sort and word-
count micro-benchmarks.

The benchmark used in IBIDAE comes from an industrial
surveillance domain. It is similar in size to other similar
approaches from the industrial scenarios (see [3], [26], and
[27]). The benchmark processes surveillance logs stored by a
set of 1600 sensors spread out in factory subsystems,
generating alarms which are processed later. The benchmark
processes logs with 0.1 Gbytes, 1 Gbytes, and 10 Gbytes of
data. In the logs each line of the file corresponds to the
description of an event with the following relevant
information: 1) Place where the sensor is located: text with a
description; 2) Date: text representing a day; 3) Event
generated: textual description of the event; 4) Relevance of the
event (medium, high, low); 5) Monetary costs; and 6) Speed
of the detected event. In comparison, BigDataBench datasets
are larger than in the industrial surveillance application
defined for IBIDAE, which comes from a real surveillance
trace.

Another benchmark is the TPCx-HS that adds formal
specification and enforcement rules that enable comparison of
results among systems [35]. One characteristic of TPCx-HS is
that it follows a stepped scaled sizing model on BigdataBench.
From the perspective of the benchmark used in IBIDAE the
type of surveillance application used corresponds to a new
application in BigdataBench.

Finally BigBench [36] offers an end-to-end benchmark
approach that addresses variety, velocity, and volume aspects
of many big-data systems in the analytic domain. It also
reports the generation and exploration of 200 Gbytes of data.
Analytics specified in BigBench offer response times in few
seconds to less than one hour. Comparatively, our benchmark
is smaller in size (0.1 Gbytes, 1 Gbytes, and 10 Gbytes) than
BigBench.

NASA’s repository [36] also offers an access to eleven
data-sets ranging from few hundreds of bytes to 3 Gbytes of
data. IBIDAE offers a larger amount of data: up to 10 Gbytes
from a simple a surveillance application.

III. IBIDAE
IBIDAE defines an architecture for industrial applications

that supports hierarchical efficient map-reduce processing.

The architecture is partially based on general purpose and
other big-data architectures such as the lambda architecture
[14], a cyber-architecture for real-time industrial applications
described in [3], and another architecture described for cloud
computing in [22]. From [3] IBIDAE derived an industrial
information subsystem in charge of connecting factory floor
elements to populate a big-data repository. From [22] it takes
the idea of processing offline and online data, stored in a large
storage space. Finally, from [14] it derived the idea of being
compatible with the lambda computational model.

A. Architecture
The basic map-reduce industrial architecture of IBIDAE

(see Fig. 1) consists of three layers in a top-down approach:

Big-Data
Engine

Machines
cluster

Big-data
storage

Map-Reduce

Analytics

Industrial
Information System

Industrial
Infraestructure

Industrial
Engine

Industrial
Analytics

Fig. 1. Industrial Big-Data Architecture

 Industrial analytics layer: This layer is in charge of
performing industrial analytics. Analytics are processed
by the engine that uses the resources of a map-reduce
infrastructure layer to speed up computations and access
data.

 Industrial engine: Basically, it is in charge of
coordinating different aspects of the big-data ecosystem.
It is in charge of providing proper support to provide
distribution and parallelism via a map-reduce engine,
offering support to different analytics. Typical stacks
include Hadoop, Storm, and Spark technologies. The
main difference in an industrial system is probably the
type of application they have to take into account.

 An industrial infrastructure layer: It provides low-level
resources stored in a cluster of machines. Typical clusters
[17][28] include MESOS, standalone clusters, and YARN
support. To store data, it includes a HDFS (Hadoop
Distributed File System) filesystem that offers safe access
to large datasets stored in it. It may also refer to any other
distributed filesystems (e.g. NFS or Lustre) able to offer
large and efficient storage space.

 In addition to the basic infrastructure, there is a hierarchical
approach used to increase scalability in different models (Fig.
2). Basically, the hierarchical infrastructure splits resources
into different units to improve performance. The approach
assumes that in some cases having a single space view is much
more inefficient than splitting this model to offer improved
performance.
 This hierarchical approach impacts on all elements of the
industrial architecture ranging from the clusters used for
storage to execution engines that support analytics. In all
cases, the application splits data into a set of m-tasks that can
be executed in n-different elements of the architecture. This
type of approach is able to increase parallelism as resources
may be used more efficiently in parallel to give improved
performance, as well as to reduce the number of messages

3

required to perform analytics.

Hierarchical
Industrial
Analytics

Hierarchical
Big-Data
Engine

lndustrial_Analytics (1, 1 J
Industrial Analytics (n,m)

MairReduce (n,m)
···-···-···-··············-···-···-··············-···-···-·········-···-···-···-·········-···-···-··············-···-···-··············-···-···

Hierarchical Cluster

I Clusiertl 1)
I Clustertn.m)

Hierarchical Storage

I Storaqe<1.1 > I
I storage(n,m) I

Hier. Information System
I Information l 1 1 , I
I lnlormal,on (n.m) I

Fig. 2. Hierarchical Industrial Big-Data Architecture

Potentially, the idea of splitting or partitioning resources to
increase performance is applied to all elements of the
architectw·e:

• On the analytic layer: Many analytics may be an-anged as
a set of hierarchical subtasks where the results of a subtask
are used to develop different types of analytics. The
application should be able to provide a hierarchical
organization in accessing resources. Therefore, the analytic
should be able to be split in different subtasks easily,
requiring in some cases help from the developer to provide
this hierarchical aspect.
• On the big-data layer: Although many of them provide
plain map-reduce models (based on traditional map-reduce
primitives), they lack direct support for implementing the
hierarchical model as a part of their logic. The map-reduce
already includes the possibility of rnnning different subtasks
in an analytic. This suppo1t should be extended with the
possibility of using multiple clusters.
• On resow·ces layer: Clusters may offer a hierarchical
organization as they are properly separated into different
computational units. Many storage spaces provide
hierarchical access by means of pa1titioned resow·ces. Also,
in many cases, the information available from the industrial
information system may be accessed with different levels of
quality, refel1'ing infonnation from a specific machine of a.
ce1ta.in floor or global info1ma.tion about business.
Therefore, the idea is to identify the mechanisms that enable
sharing data among different nodes to offer an efficient
configuration.
The main advantage of the hierarchical approach against the

plain map-reduce is that it may split work into smaller pieces
that may be more efficiently processed in parallel. This is of
special interest in applications that have high processing costs
(e.g. an expensive n2 s01t process) that can se.e how
perfonnance is sped up with a hierarchical approach. For
instance, the use of a. simple hierarchy of ten elements may
reduce computational costs in 10 times splitting data. Another
advantage is that peaks in computations get reduced with a
hierarchical approach that works with a reduced amount of
data.

B. Computational Model

The basic computational model of a map-reduce interaction
consists of a. map functions that takes an input key and a value
and outputs a. list of elements, each of them with a key and a
value:

map(Keyl, Valuel)-> List(Key2, Value2) (eq. 1)

After that reduce functions receive this list of elements for
ea.eh key and produce an output:

reduce(Key2, List (Value2))-> List(Value3) (eq. 2)

The hierarchical map-reduce (h _map) model adds parallel
execution for a. set of resources that are reduced to a. list of
values. Internally, the hierarchical map is composed of a set of
map-reduce that nm in parallel:
h map(Keyl, Value2,m)-> List(Key2, Value2)

-(1) 11 map(key, value))-> List(Key_l,Value_l)
(.) 11 ...
(m) I I map(key, value)->List(Key_m,Value_m)

reduce_h(key,List(Value))-> List(Key2, Value2)

(eq. 3)
This new type of primitive may be implemented as a set of

map-reduce operations that nm in parallel (I I) in order to
speed up execution and perform better resource utilization.
They are followed by an specific reduce phase (reduce_ h)
that conve1ts this m-lists into a list of values each one of them
generated as a. result of a map-reduce interaction into a. list of
values. In addition, it allows defining a number of n-clusters
that receive and process in m-parallel data units. Each of these
clusters process part of the m-tasks in parallel using an h _ map

function of m/n elements. The resulting hierarchical equation
that includes clustering is:
h map(Keyl, Value2,n,m)-> List(Key2, Value2)

-(1) I I h_map(key, value, m/n))-> List(Key_l,Value_l)
(.) 11 ...

(n) I I h_map(key, value, m/n)->List(Key m, Value m)
reduce_h(key, List(Value))-> List(K;y2, Valu;2)

(eq. 4)

HierarchicaUn=2 m=4)

Output

Fig. 3. Hierarchical map-reduce in a simple count and sort application.
The hierarchical approach creates new tasks that e�cute-in parallel and are
able to process data in a hierarchical fashion. The model requires two
additional reduce functions to mix the outputs of each computation, in an
L _ Reduce phase and globally with an H _ reduce phase. In the case of an
L _ Reduce stage the idea is to combine ordered lists. The same idea persists
in the case of an H _ Reduce stage.

As in the previous case (see eq. 3), there is a reduce phase
in charge of reducing data after perfonning n-hierarchical map
functions. To illustrate an application that benefits this
computational model, it was extended the wordcount
analytic, which has been modified to include a. sort phase (see

4

Figure 3).

C. Impact on Current Tools
 For the integration of the techniques in existing technology,
we observe two different ways: a non-invasive one and an
invasive one that requires modification inside current big-data
tools.
 The non-invasive approach replicates elements of the
architecture in different places to be compliant with the
hierarchical model. The advantage of the non-invasive
approach is that current technology may be easily used
without any modifications in their cores.
 The invasive approach consists in extending current tools to
take into account the hierarchical model while keeping a
unified system view of the programming model. For instance,
in the case of the RDD model of Spark [23], a solution to
integrate the hierarchical map-reduce is to extend the
programming model with h_map functions in the API with
these functions:
h_map(map_fun, reduc_fun, par_units) (fun. 1)
h_map(map_fun, reduc_fun, cluster, par_units) (fun. 2)

The first function takes as an input a map function
(map_fun), its internal reduction function (reduc_fun), and
the number of parallel units (par_units) to be executed
before calling the reduce function. Internally, it performs the
computation described in Equation 3. The second function
adds information about the number of clusters (cluster)
required to process the analytic and refers to Equation 4. Our
current implementation uses the non-invasive approach as it is
simpler from the perspective of an initial implementation.

IV. EMPIRICAL EVALUATION

A. Prototype Description
A prototype of IBIDAE has been developed to evaluate the

performance and the benefits stemmed from the use of a
hierarchical approach against a traditional stack (see Table I).
For the evaluation we built a system with a maximum of 64
low-cost machines interconnected with 2 Gbytes network.
Extending Hadoop 2.6.1 and Spark 1.6.1, we built the engine
of IBIDAE (see Figure 4) named H-Spark_1.6.1. The
deployment engine instantiates one H-Spark engine per
machine. To check the performance, we derived a benchmark
from a surveillance application described in the related work
section, which has been used to evaluate the performance
offered by IBIDAE. The goal of the evaluation is to establish
empirical evidence on the speedups one may expect from the
combination of these hierarchical and parallel models as a
trace is processed.

Our empirical results (see Table I) show an important
speedup experienced in the application with the use of a
hierarchical approach; using the same number of machines
hierarchical map-reduce outperforms a plain map-reduce
solution. The maximum performance of the proposed setup
refers to a speed-up factor of 130x for the hierarchical map-
reduce, and a minimum of 8x for plain map-reduce models.

IBIDAE

Industrial Cluster

2 Gbps

Link

HDFS

Analytics

NFS

Hierarchical
analytics

Hierarchical Spark

Hadoop

Fig. 4. Stack used in the evaluation

Table I: Cluster, software stack, and benchmark application characterization
Cluster

Resources
Available

64 machines with 256 cores (1,1 GHz) 512 GB
of RAM- 5120 GB HD

Machine
 features

4 cores, 8 GB of memory and 80 GB local disk
space (per machine)

Network 2 GBPS optical fiber accessed via LANs
Software Stack

Hadoop 2 6 1
Spark 1 6 1

H- Spark 1 6 1-hierarchical
Surveillance Benchmark

Industrial
application

Process data and generated a list with: IA1:
Most popular sensors; IA2: Less active
sensors; IA3: Most popular events; IA4: Less
popular events; IA5: Highest speed detectors;
IA6: Lowest speed detectors; IA7: Most
relevant alarms; and IA8: Less relevant
alarms

Analyzed Data Log Small: 0,1 Gbytes: 10 partitions (blocks)
Normal: 1 Gbytes: 100 partitions
Large: 10 Gbytes: 1000 partitions

Outcome for (small, normal, and large) data
Total time:

Plain M-R speedup:
Plain H-M-R speedup:

 [70 sec; 10 min; 1.8h]
 [8x; 9x; 10x]
 [110x; 117x; 130x]

B. Performance Patterns
1) Plain Map-Reduce Approach

To evaluate the performance of the infrastructure, first we
evaluated the influence of adding more machines to reduce
response time in all analytics. For this purpose we measure the
different speedups reached when adding additional cores to
the system. In the proposed ecosystem, each time we add new
machines, the total time required to execute the application
reduces, and the speed (defined as) increases.
Ideally, this factor should grow linearly with the number of
cores available in the system. However, due to different
characteristics of the infrastructure, its growing tends to be as
follows: there is a i) first phase where infrastructure overhead
rules, and adding cores increases more than linearly in
performance because this time is masked by the overhead of
the infrastructure; ii) a second one, where adding cores
reduces proportionally computation times, and where the
cluster work is dominant; iii) a third stage where adding more
cores does not linearly increase performance anymore due to
the overhead caused by communications among the different

5

elements of the cluster. Fig. 5 shows this evolution for the set

of proposed analytics. Results show the maximum speedup

factor is 6.7 for a system with 64 cores compared to a single

core setup. The example also shows that phase i) is from 1 to 4

cores, phase ii) is from 4 to 32 cores, and phase iii) is with

setups that have more than 32 cores.

Plain M-R: Speed

�

:1t
J!

)I(

:
JI:

"'

I I I I I I

0 50 100 150 200 250 300

Cores available

Fig. 5. Speedup factor offered adding cores. The figure refers to the cost of
running all eight analytics with l Gbytes of data.

Also of great importance is the efficiency associated to

adding new cores to the system (Fig. 6). The efficiency is

defined as the speed divided by number of cores used to

implement the system, i.e.: efficiency= .,, .. ". Ideally, i.e.
cores

assuming that all cores are able to reduce the response time

proportionally, efficiency should be a constant function.

However, the empirical pattern obtained in OW' experiments

show how the normalized efficiency decreases with number of

cores available from a normalized 1, which con-esponds to a

single core, to a minimum of 4% with an industrial big-data

engine that rnns 256 cores (i.e. 64 machines). The main cause

for the inefficiency is that in some stages of the analytics, the

number of blocks (pa1titions in the Spark jargon) is less than

one hundred and at least it should be equal to the number of

available cores.

Plain M-R: Efficiency ··"L
1,01
0,81
0,61
0,41
0,21
0,01 • I

0 100

Cores available

• I I

200 300

Fig. 6. Efficiency related to the scenario described in Fig. 5.

The second soUl'ce of inefficiency is that all cores are

blocked for the analytics. This type of effect has a negative

impact in perfonnance as the code perfoffllS many 1/0

operations that do not use all available resources for rnnning

the analytic. From the point of view of perfonnance, an

hierarchical approach may deliver higher perfo1mance

numbers, as analytics may nm different parts of the

application more efficient in smaller clusters, which are a

priori much more efficient than larger ones. For the analyzed

setup, the advantages offered by systems with more than 64

cores are marginal and it is preferable, from the perspective of

perfonnance, to nm analytics concmTently (as shown in Figw·e

5 and Figme 6).

2) Hierarchical Map-Reduce Patterns

For the hierarchical approach, the cluster is split in different

parallel map-reduce applications which are combined later,

using the hierarchical map-reduce model proposed in IBIDAE.

This idea, similar to the idea of multiprocessing, is to be able

to improve perfo1mance in inefficient scenarios, creating

smaller clusters that increase perfonnance .

The experiment introduces results for an application which

is split into two, foUl', and eight different analytics, whose

results have to be combined as they finish their executions.

The example also adds the possibility of using only one of

both clusters. Results (see Fig 7) for the absolute speedup due

to the use of hierarchical approach with clusters of 1-32 cores

per cluster show that the technique is able to offer acceptable

perfonnance for the analytics ca1ried out (8 stages with 1

Gbytes of industrial data logs). As in the previous experiment,

the speedup factor degrades as the number of cores in the

cluster increases. For the given configw·ation, with eight

different applications, in the hierarchical model the maximum

speedup is higher than the speedup offered by the plain map­

reduce model due to the blockings suffered in the plain map­

reduce model. Results show that the speedup factor increases

with number of analytics in the core, and decreases with

number of nodes in cluster, because there is not enough

partitions to be processed. This behavior can be seen along the

ve1tical axis of Fig 8.

H-M-R: Speed

30,0

� 25,0

20,0

15,0
"'

-+- Hierarchical{l,2}

--e- Hierarchical{l,4}

- Hierarchical{l,8}

- Hierarchical{2,2}

10,0 - Hierarchical{2,4}

5,0,. Hierarchical{2,8}

0,0
0 10 20 30 40

Cores per duster

Fig. 7. Speedup factor offered by the hierarchical approach

15,00

�10,00

<l!i! ... 5,00

0,00

H-M-R: Efficiency

0 10 20 30

Cores per cluster

40

-+- Hierarchical{l,2}
--e- Hierarchical{l,4}
....,._ Hierarchical{l,8}
- Hierarchical{2,2}
- Hierarchical{2,4}
-Hierarchical{2,8}

Fig. 8. Efficiency offered by the hierarchical approach

Efficiency results (see Fig. 8) show a decreasing efficiency

with an increasing number of available cores per cluster as in

6

the previous experiment. But results show that in efficiency

temlS the use of a hierarchical approach always increases

perfonna.nce because it reduces the number of pa1titions to be

processed in ea.eh node. Also, the use of two clusters instead

of one is also beneficial in terms of perfonnance because it

parallelizes execution.

3) Plain M-R vs. H-M-R Patterns

This experiment compares plain map-reduce against its

hierarchical approach. Results in tenns of speedup are shown

in Fig. 9 and Fig. 10 refers to efficiency results. Results show

that the use of a hierarchical approach is beneficial for the

evaluated scenarios outperfonning plain map-reduce models.

In all scenarios, the hierarchical approach is able to increase

the speed of the system.

100

90

� 80
t:

70
CL 60

so

�
40

30

20

10
0

0

Speed up factor

100 200

Number of cores

300

-MR

� Hierarchical{l,2)

-Hierarchical{l,4)

-Hierarchical{l,8)

-Hierarchical{2,2)

-e-Hierarchical{2,4)

-Hierarchical{2,8)

Fig. 9. Comparing speedup factors

Notice as the speedup for the plain map-reduce model is

below all speed curves for the same amount of work (see Fig.

9). Speed curves for two, four and eight split applications

show remarkable increase in speed processing, which

probably is the main benefit stelllllled for the use of a

hierarchical approach. The gap among the plain M-R and the

H-M-R is 14 times as 2 clusters and 8 segments are used to

produce the hierarchical application (see Figure 9).

In terms of efficiency (see Fig. 10) and comparing plain

map-reduce (MR) with an application composed of two (2),

four (4), and eight (8) parallel analytics, the empirical suggests

that the use of a. hierarchical approach increases efficiency

because it produces smaller clusters. The use of tv.•o clusters

also improves efficiency in comparison with a single cluster

machine.

9,00

8,00

7,00

6,00
.i! 5,00 �
ll:

4,00 ...

3,00

2,00

1,00

0,00

0

Efficiency per core

100 200

Number of cores

300

-MR

� Hierarchical{l,2)

-Hierarchical{2,2)

-Hierarchical{l,4)

-Hierarchical{2,4)

-+-Hierarchical{l,8)

-Hierarchical{2,8)

Fig. l 0. Combined efficiency

C. Benchmark Pe1formance

This section deals with the evaluation of the full

benchmark, which includes data sets ranging from small 0.1
Gbytes to large amounts of data: 10 GBytes. This experiment

extends previous micro-benchmarks to the surveillance

benchmark for the speedup and efficiency of the plain map­

reduce and hierarchical map-reduce models.

Regarding speedup factors (see Fig. 11), results show that

an increase in the amount of data. has a positive effect in the

maximum achievable speed (130x). This increase in speed is

due to the technological overhead of the approach which

surpasses collllllunica.tion costs. Results also show how a huge

amount of data reduces maximum speed. This reduction is

mainly due to an increase in the number of partitions, which

potentially enable a higher number of cores to be used.

120

� 100

] 80

l 60
"'

40

20

0

140

120
�
t:
J!

100

CL 80
::,

l 60

"'

40

20

0

Total speed up factor (SMALL)

-MR

� Hierarchical(l,2)

-Hierarchical(l,4)

-Hierarchical(l,8)

-Hierarchical(2,2)

-e-Hierarchical(2,4)

-Hierarchical(2,8)

0 100 200 300

Number of cores

Total speedup factor (LARGE)

-MR

(
+

=i -8-> Hierarchical{l,4)

-Hierarchical{2,2)

-Hierarchical{2,8)

-Hierarchical{2,2)

-+-Hierarchical{2,4)

-Hierarchical{2,8)

0 100 200 300

Number of cores

Fig. 11. Compared speedup with SMALL(O.l Gbytes) and LARGE (10

Gbytes) amounts of data

7

Likewise, Fig. 12 describes efficiency one may achieve

with the proposed models for O .1 Gbytes of data, and 10
Gbytes. Results C011'oborate previous perfo1mance terms and
show how the use of a hierarchical approach may improve
efficiency. As in the previous cases, perfonnance gets reduced
as the number of cores increases because the application is
more inefficient.

12,00

�
10,00

8,00

6,00

4,00

2,00

0,00

12,00

�
10,00

.I! 8,00
.II

6,00

4,00

2,00

0,00

0

Efficiency per core (SMALL)

100 200

Number of cores

Efficiency per core (LARGE)

0 100 200

Number of cores

_.,_MR

� Hierarchical{2,2)

-Hierarchical{2,4)

-Hierarchical{2,8)

-Hierarchical{2,2)

--&-Hierarchical{2,4)

-Hierarchical{2,8)

300

-MR

� Hierarchical(2,4)

-Hierarchical(2,2)

- Hierarchical(2,8)

- Hierarchical(2,2)

--e- Hierarchical(2,4)

Hierarchical(2,8)

300

Fig. 12. Compared speedup with SMALL (0.1 Gbytes) and LARGE (10
Gbytes) amounts of data

The main conclusion drawn from the evaluation is that the
hierarchical approach is able to increase perfo1mance
remarkably (up to a maximum of 130x). Results are in line
with what happens in parallel systems where the use of

clustering (hierarchical approaches) versus flattering
computation (plain models) is beneficial from the perspective

of perfonnance. The obtained results suggest that future

industrial architectures should consider the use of hierarchical
approaches to offer scalable perfonnance. In comparison to a
single M-R entity, H-M-R increases perfonnance due to two
complementary effects. The network bottleneck and

serialization/deserialization issues disappear because
computation may run in isolated clusters. The second is that
the cost of data representation is small as the data is split in
Spark.

V. CONCLUSIONS AND FUTuRE WORK

Next generation of industrial system will be part of a global

big-data infrastmcture able to provide self-configuration to

take intelligent decisions to operate efficient businesses. In

this context, the proposed architecture increases scalability by

means of a. hierarchical approach that improves cmTent map­

reduce perfonnance, increasing perfonnance of cmTent map­

reduce models. As a result of a proper hierarchical

organization, the system may see how performance increases,

with a large speedup factor. The empirical evidence showed

how the perfonnance of the engine may be improved by

splitting resources among different ana.lytics to speedup

perfonnance.

Ow· cul1'ent research efforts are extending cul1'ent machine
leaming engines based on Spark with the hierarchical
approach to increase operational perfonnance of genera.I
pwpose applications. Also, we are extending the proposed
techniques to larger cluster infrastmctw·es equipped with
ente1prise inachines. Finally we explore the integration
extending results given in [26] and [44-47] for distributed
stream processing as a building block for IBIDAE.

ACKNOWLEDGEMENTS

Work partially supported by "Distributed Java. Infrastmcture
for Rea.I-Time Big-data" (CAS14/00118), eMadrid
(S2013/ICE-2715), HERMES-SMARTDRIVER (TIN2013-
46801-C4-2-R), and AUDACity (TIN2016-77158-C4-l -R).
We thank our anonymous reviewers their efforts in improving
the quality of the article providing suggesting over 300
changes in the original a1ticle.

REFERENCES

[l] J . Lee, H . Kao, S. Yang "Service Innovation and Smart Analytics for
Industry 4.0 and Big Data Environment". Procedia CIR.P, Volume 16,
2014, Pages 3-8, ISSN 2212-8271.

[2] L. Jay, B. Bagheri, H. Kao "Recent advances and trends of cyber­
physical systems and big-data analytic.s in industrial informatics".
International Conference on Industrial Informatics (INDIN). July, 2014
pp.1-2.

[3] E. P. Xing et al. "A New Platform for Distributed Machine Learning on
Big Data". IEEE Transactions on Big Data 1(2) pp. 49-67 (2015)

[4] P. Basanta-Val, M. Garcia-Valls "A Distributed Real-Time Java-Centric
Architecture for Industrial Systems". IEEE Trans. Industrial Informatics
10(1) pp. 27-34 (2014)

[5] Y. Shen, 0. Kaynak "Big-data for Modem Industry: Challenges and
Trends [Point of View]". Proceedings of the IEEE 103.2 (2015) pp. 143-
146

[6] 0. Marek, V. Jirkovsky, J. Bezdicek. "Big-data challenges in industrial
automation". Industrial Applications of Holonic and Multi-Agent
Systems. Springer Berlin Heidelberg, (2013) pp. 305-316

[7] J. Williams, K. S. Aggour, J. Interrante, J. McHugh, E. Pool "Bridging
high velocity and high volume industrial big-data through distributed in­
memory storage & analytics". 2014 IEEE International Conference on
Big Data (Big Data), Washington, DC, 2014, pp. 932-941

[8] X. Wu, X. Zhu, G. Q. Wu, W. Ding "Data mining with big-0ata". IEEE
Transactions on Knowledge and Data Engineering, 26.1 (2014) pp. 97-
107.

[9] C. Hsinchun, R. H. Chiang, V. C. Storey "Business Intelligence and
Analytics: From Big-data to Big Impact". Journal MIS quarterly 36.4
(2012) pp. 1165-1188.

[10] J. M. Tien "Big-0ata: Unleashing information." Journal of Systems
Science and Systems Engineering 22.2 (2013) pp. 127-151.

[11] A. J. Guzzo et al. "Big-data recommendations for industrial­
organizational psychology". Industrial and Organizational Psychology
8.04 (2015) pp. 491-508.

[12] M. Minelli, M. Chambers A. Dhiraj "Big-data, big analytic.s: emerging
business intelligence and analytic trends for today's businesses". John
Wiley & Sons, 2012. ISBN: 978-1-118-14760-3

[13] J. Rifkin "How the Third Industrial Revolution Will Create a Green
Economy". New Perspectives Quarterly 33.1 (2016) pp. 6-10.

8

[14] N. Marz and J. Warren "Big-data: Principles and Best Practices of
Scalable Realtime Data Systems" (1st ed.). Manning Publications Co.,
Greenwich, CT, USA. 2015. ISBN: 9781617290343

[15] K. Shvachko, H. Kuang, S. Radia, R. Chansler "The hadoop distributed
filesystem". In IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST) pp. 1-10.

[16] Storm "Distributed and fault-tolerant real-time computation". Available
(2016) on https://storm.incubator.apache.org/

[17] Spark "Lightning-fast cluster computing". Available (2016) on
https://spark.apache.org

[18] S. Pandey, V. Tokekar "Prominence of MapReduce in big-data
processing". 2014 Fourth IEEE CSNT pp: 555-560

[19] J. Kim, T. K. A. Kumar, K. M. George, N. Park "Performance
evaluation and tuning for MapReduce computing in Hadoop distributed
file system". IEEE 13th INDIN, Cambridge, 2015, pp. 62-68.

[20] F. Zhang, M. Q. Malluhi, T. M. Elsyed. "ConMR: Concurrent
MapReduce Programming Model for Large Scale Shared-Data
Applications". In Proceedings Conference on Parallel Processing (ICPP
'13) pp. 671-679.

[21] S. Pandey, Vrinda Tokekar. "Prominence of MapReduce in big-data
processing". Communication Systems and Network Technologies
(CSNT), 2014 Fourth International Conference on. IEEE, 2014 pp.33-38

[22] C. Wang, B. Zhuming, L. D. Xu "IoT and cloud computing in
automation of assembly modeling systems." IEEE Transactions on
Industrial Informatics, 10.2 (2014) pp. 1426-1434.

[23] M. Zaharia et al. "Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing". Proceedings of the 9th
USENIX, (2012) pp: 2-2

[24] ABB, Decathlon. Available online (2016) at
http://new.abb.com/docs/librariesprovider9/about-us-fr---data-centers-
files/abb-decathlon.pdf?sfvrsn=4

[25] C. Ji, S. Liu, C. Yang, L. Wu, L. Pan "IBDP: An Industrial Big-data
Ingestion and Analysis Platform and Case Studies" 2015 International
Conference on (IIKI), Beijing, 2015, pp. 223-228.

[26] P. Basanta-Val, N. Fernández-García, A. J. Wellings, N. C. Audsley
"Improving the predictability of distributed stream processors". Future
Generation Comp. Syst. 52 pp. 22-36 (2015)

[27] P. Basanta-Val, M. García-Valls "Resource management policies for
real-time Java remote invocations". J. Parallel Distrib. Comput. 74(1)
pp. 1930-1944 (2014)

[28] K. Kambatla et al. "Trends in big-data analytics." Journal of Parallel and
Distributed Computing 74.7 (2014) pp. 2561-2573.

[29] Ji, Cun, et al. "Device Data Ingestion for Industrial Big-data Platforms
with a Case Study." Sensors 16.3 (2016): 279.

[30] Hortworkworks, "HortonWorks Data Platform". Available online (2017)
at http://hortonworks.com/products/hdp/

[31] Oracle, "Oracle Big-data reference architecture" Available online (2017)
at http://www.oracle.com/technetwork/topics/entarch/oracle-wp-big-
data-refarch-2019930.pdf

[32] M. Liroz-Gistau et al. "FP-Hadoop: Efficient processing of skewed
MapReduce jobs". Information Systems 60 (2016) pp. 69-84.

[33] M. Paiva Ramos et al."Distributed systems performance for big-data".
Information Technology: New Generations. Volume 448 of the series
Advances in Intelligent Systems and Computing pp. 733-744

[34] L. Wang et al. "Bigdatabench: A big-data benchmark suite from internet
services". IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA) (2014) pp. 80-92.

[35] R. Nambiar et al. "Introducing TPCx-HS: The First Industry Standard
for Benchmarking Big-data Systems". TPCTC 2014, LNCS 8904, pp. 1–
12, 2015. DOI: 10.1007/978-3-319-15350-6_1

[36] Ghazal et al. "BigBench: towards an industry standard benchmark for
big-data analytics". In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data pp. 1197-1208.

[37] NASA Prognostics Center of Excellence (PCoE). "PCoE Datasets".
National Aeronautics and Space Administration. Available online (2017)
at http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/

[38] P. Basanta-Val, et al. "Architecting Time-Critical Big-Data Systems," in
IEEE Transactions on Big Data, vol. 2, no. 4, pp. 310-324, Dec. 1 2016.

[39] J. Lee (2015). Industrial Big Data. China: Mechanical Industry Press.
ISBN 978-7-111-50624-9.

[40] P. Basanta-Val, N. Fernández-García, L. Sánchez-Fernández,
"Predictable remote invocations for distributed stream processing", In
Future Generation Computer Systems, 2017, ISSN 0167-739X,
https://doi.org/10.1016/j.future.2017.08.023.

[41] P. Basanta-Val, N. Fernandez-Garcia, L. Sanchez-Fernandez and J.
Arias Fisteus, "Patterns for Distributed Real-Time Stream Processing,"
in IEEE Transactions on Parallel and Distributed Systems, vol. PP, no.
99, pp. 1-1.doi: 10.1109/TPDS.2017.2716929

[42] Zhihan Lv et al.: "Next-Generation Big Data Analytics: State of the Art,
Challenges, and Future Research Topics". IEEE Trans. Industrial
Informatics 13(4): 1891-1899 (2017)

[43] Mariluz Congosto, Pablo Basanta-Val, Luis Sanchez-Fernandez, "T-
Hoarder: A framework to process Twitter data streams, In Journal of
Network and Computer Applications", Volume 83, 2017, Pages 28-39,
ISSN 1084-8045, https://doi.org/10.1016/j.jnca.2017.01.029

[44] P. Basanta-Val, M. García-Valls and I. Estévez-Ayres, "Towards a
Cyber-Physical Architecture for Industrial Systems via Real-Time Java
Technology," 2010 10th IEEE International Conference on Computer
and Information Technology, Bradford, 2010, pp. 2341-2346.

[45] Pablo Basanta-Val, Marisol García-Valls: "A library for developing real-
time and embedded applications in C”. Journal of Systems Architecture -
Embedded Systems Design 61(5-6): 239-255 (2015)

[46] M. Teresa Higuera-Toledano: "Java Technologies for Cyber-Physical
Systems". IEEE Trans. Industrial Informatics 13(2): 680-687 (2017)

[47] M. V. Moreno et al., "Applicability of Big Data Techniques to Smart
Cities Deployments," in IEEE Transactions on Industrial Informatics,
vol. 13, no. 2, pp. 800-809, April 2017.
doi: 10.1109/TII.2016.2605581

9

