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Spoken dialog systems have been proposed as a solution to facilitate a more natural human machine
interaction. In this paper, we propose a framework to model the user's intention during the dialog and
adapt the dialog model dynamically to the user needs and preferences, thus developing more efficient,
adapted, and usable spoken dialog systems. Our framework employs statistical models based on neural
networks that take into account the history of the dialog up to the current dialog state in order to predict
the user's intention and the next system response. We describe our proposal and detail its application in
the Let's Go spoken dialog system.

1. Introduction

Continuous advances in the development of information tech
nologies and the miniaturization of devices have made it possible
to access information, web services, and artificial intelligence
systems from anywhere, at anytime and almost instantaneously
through wireless connections [1]. Although devices such as smart
phones and tablets are widely used today to access the web, the
reduced size of the screen and keyboards makes the use of
traditional graphical user interfaces (GUIs) difficult, especially for
motor handicapped and visually impaired users. This way, alth
ough mobile phones are designed to provide ubiquitous access to
Internet, the present challenge is to make the enormous web
content accessible to all mobile phone users by means of more
natural communication metaphors.

Dialog systems go a step beyond GUIs by adding the possibility
to communicate with these devices through other interaction modes
such as speech [2 5]. These systems can be defined as computer
programs designed to emulate human communication capabilities
including several communication modalities. To successfully manage
the interaction with the users, spoken dialog systems usually carry out
five main tasks: automatic speech recognition (ASR), spoken language
understanding (SLU), dialog management (DM), natural language
generation (NLG) and text to speech synthesis (TTS).

The goal of speech recognition is to obtain the sequence of
words uttered by a speaker [6]. Once the speech recognizer has
provided an output, the system must understand what the user
said. The goal of spoken language understanding is to obtain the
semantics from the recognized sentence [7]. This process generally
requires morphological, lexical, syntactical, semantic, discourse
and pragmatical knowledge.

The dialog manager decides the next action of the system,
interpreting the incoming semantic representation of the user
input in the context of the dialog [8]. In addition, it resolves ellipsis
and anaphora, evaluates the relevance and completeness of user
requests, identifies and recovers from recognition and under
standing errors, retrieves information from data repositories, and
decides about the next system's response. In order to complete
these tasks and decide “what to say”, the dialog manager needs to
track the dialog history and update some representation of the
current state of the dialog. In addition, the DM needs a dialog
model that defines the conversational behavior of the system, for
example when to take the initiative in a dialog, when to confirm a
piece of information, how to identify and recover from recognition
and understanding errors, and so forth.

Natural language generation is the process of obtaining sen
tences in natural language from the non linguistic, internal repre
sentation of information handled by the dialog system [9]. Finally,
the TTS module transforms the generated sentences into synthe
sized speech [10].

During the last years, Internet is playing an increasingly
important role for making speech technology available anywhere.



By giving the user the chance to interact with the web via natural
language, users are provided with the possibility to come up with
less restricted input. Initial application domains included simple
solutions to provide a vocal interface to an existing web browser
[11] or to access information in limited on line domains [12].

The performance of spoken language dialog systems to access
web contents has improved over time, extending these initial
application domains to more complex information retrieval and
question answering applications [13,14], e commerce systems
[15], surveys applications [16], recommendations systems [17],
e learning and tutoring systems [18,19], in car systems [20,21],
remote control of devices and robots in smart environments
[22,23], healthcare and Ambient Assisted Living systems [24,25],
or embodied dialog systems and companions [26,27].

Many companies and public institutions have also taken advan
tage of using Voice Portals as a cheap and effective way of supporting
customers [28]. Besides spoken and written language have become
popular with the incorporation of chatbots for web based customer
support [29]. The spread of information through social web media
has also made possible to generate models for conversation that take
profit of the data's vast size and conversational nature of web
applications like Twitter or Wikipedia [30,31], and also allow spoken
interaction in 3 D immersive virtual environments like Second Life or
Open Simulator [32,33]. Mobile devices have also extended the
possibilities of integrating speech interaction to develop advanced
apps that access the web [2].

The described systems are usually designed ad hoc for their
specific domain using rule based models and standards in which
developers must specify the steps to be followed by the system.
This way, the adaptation of the hand crafted designed systems to
consider specific user requirements or deal with new tasks is a
time consuming process that implies a considerable effort, with
the ever increasing problem of dialog complexity [34,35].

In addition, although much work emphasizes the importance of
taking into account user's models not only to solve the tasks
presented to the dialog system by the user, but also to enhance the
system performance in the communication task, this information
is not usually considered when designing the dialog model for the
system [36,37]. For this reason, in most dialog applications,
the dialog specification is the same for all cases: users typically
have no control over the content or presentation of the service
provided.

Incorporating intelligence into a spoken language based com
munication system requires, among other things, careful user
modeling in conjunction with an effective dialog management.
With the aim of creating dynamic and adapted dialogs, the appli
cation of statistical approaches to user modeling and dialog man
agement makes it possible to consider a wider space of dialog
strategies in comparison to engineered rules [38,8].

The main reason is that statistical approaches for dialog man
agement can be trained from real dialogs, modeling the variability
in user behaviors. Although the parameterization of the model
depends on expert knowledge of the task, the final objective is to
develop dialog systems that have a more robust behavior, better
portability, and are easier to adapt to different user profiles or
tasks [39]. This would help to create user adapted speech enabled
interfaces for the wide range of web based applications previously
described, reducing the effort and time required by hand crafted
designed systems to consider specific users requirements or deal
with new tasks with the ever increasing problem of dialog com
plexity [34,35].

In this paper we describe a framework to develop user adapted
spoken dialog systems. Our proposal is based on the definition of a
statistical methodology for user modeling that estimates the user
intention during the dialog. The term user intention expresses the
information that the user has to convey to the system to achieve

their goals, such as extracting some particular information from
the system. It is a very useful and compact representation of
human computer interaction that specifies the next steps to be
carried out by the user as a counterpart in the human machine
conversation.

This prediction, carried out for each user turn in the dialog,
makes it possible to adapt the system dynamically to the user's
needs. To do this, a statistical dialog model based on neural
networks is generated taking into account the predicted user's
intention and the history of the dialog up to the current moment.
The next system response is selected by means of this model. The
codification of the information and the definition of a data
structure which takes into account the data supplied by the user
throughout the dialog make the estimation of the dialog model
from the training data and practical domains manageable.

The remainder of the paper is organized as follows. In Section 2
we describe the motivation of our proposal and review main
approaches focused on key aspects related to it, such as user
modeling techniques when interacting with dialog systems and
the application of statistical methodologies for dialog manage
ment. Section 3 presents in detail our proposal to develop adaptive
dialog systems. Section 4 describes the application of our proposal
in the CMU Let's Go spoken dialog system, a system that has been
used during the last years by the dialog systems community as a
common ground for comparison and verifiable assessment of
the improvements achieved. In this section we also discuss the
evaluation results obtained in this application. Finally, in Section 5
we present the conclusions and outline guidelines for future work.

2. Related work

The design and development of a comprehensive adaptive
spoken dialog system can be conceptually composed of two inter
connected components; the user modeling, and the corresponding
adaptation that in our proposal is implemented on the dialog
manager.

Research in techniques for user modeling has a long history
within the fields of language processing and dialog systems. A
thorough literature review on the application of how data mining
techniques to user modeling for system personalization can be
found in [39 41]. It is possible to classify the different approaches
with regard to the level of abstraction at which they model dialog.
This can be at either the acoustic level, the word level or the
intention level. The latter is a particularly useful representation of
human computer interaction [39].

Intentions cannot be observed, but they can be described using
the speech act and dialog act theories [42,43]. The notion of a
dialog act plays a key role in studies of dialog, in particular in the
interpretation of the communicative behavior of the participants;
in building annotated dialog corpora; and in the design of dialog
management systems for spoken human computer dialog. A
dialog act has two main components: a communicative function
and a semantic content. A standard representation for dialog act
annotation is proposed in [44], which uniformizes the semantic
annotation of dialog corpora. Thus, it provides a standard repre
sentation for the output provided by the SLU module in dialog
systems and its communication with the dialog manager (e.g., Yes
No Question, Reject, Conventional Closing, or Thanks).

In recent years, simulation on the intention level has been most
popular [39]. This approach was first used by [45] and has been
adopted for user simulation by most research groups [46 49].
Modeling interaction on the intention level avoids the need to
reproduce the enormous variety of human languages on the level
of speech signals [50,51] or word sequences [52,53].



In [54], Eckert, Levin and Pieraccini introduce the use of
statistical models to predict the user's intention by means of a
n gram model, predicting the user action that is most probable
given the dialog history of system and user actions. In practice,
data sparsity makes long dialog histories intractable in practice.
Eckert et al. approximate the full history with a bigram model.
Bigram and in general n grams models consider that the 2 or N
previous user responses are informative enough to predict the
next one, an assumption which is usually valid but sometimes
leads to lose information which is necessary for a correct compu
tation of the user model. The main weakness is that the responses
generated may correspond well to the previous system action, but
do not make sense in the larger context of the dialog.

In [46], Scheffler and Young propose a graph based model. In
depth knowledge of the task and great manual effort are necessary
for the specification of all possible dialog paths (i.e., different
conversations defined as sequences of user and system dialog
turns). The arcs of the graph represent actions and the nodes
represent “choice points”. Some of these points are identified as
probabilistic choice points (i.e., random decision by a simulated
user estimated from training data). The remaining nodes are
deterministic choice points. Pietquin, Beaufort and Dutoit combine
characteristics of Scheffler and Young's model and Levin's model to
reduce the manual effort necessary for the construction of such
graphs [55].

Georgila, Henderson and Lemon propose the use of Hidden
Markov Models (HMMs), defining a more detailed description of
the states and considering an extended representation of the
history of the dialog [48]. Dialog is viewed as a sequence of
Information States [56], each of which is represented as a large
feature vector describing the current state of the dialog, the
previous dialog history, and any ongoing actions. Cuayahuitl
et al. define a HMMs based dialog simulation technique in which
both the user and system behaviors are simulated [49]. Instead of
training only a generic HMM model to simulate any type of dialog,
a submodel is trained for each one of the objectives.

A data driven user intention simulation method that integrates
diverse user discourse knowledge (cooperative, corrective, and
self directing) is presented in [57]. User intention is modeled
based on logistic regression and the Markov logic framework.
Higashinaka et al. also propose incorporating discourse features
for a more accurate confidence scoring of intention recognition
results in slot based dialog systems [58]. To do this, both acoustic
and language model features extracted from the words uttered by
the user are considered to estimate the confidence scoring of the
intention recognition results.

Seon et al. propose a statistical prediction model of the user's
intentions using morpheme level features, discourse level fea
tures, and domain level features as inputs to a statistical model
based on the Maximum Entropy Model (MEM) [59]. This model
allows integrating information from many heterogeneous sources.
Each feature corresponds to a constraint and the model employed
is the one with maximum entropy that satisfies the constraints.

Very recently, Wang and Swegles propose a technique that
employs knowledge about the user's activity to disambiguate their
spoken inputs [60]. A Reinforcement Learning algorithm is pro
posed to acquire the knowledge and apply it for disambiguation.
The interpreted user utterance is then transmitted to the dialog
manager to select the next system response.

In [61], the authors present a technique for user simulation
based on explicit representations of the user goal and the user
agenda. This model formalizes human machine dialogs at a seman
tic level as a sequence of states and dialog acts for which the user
has a predefined plan (agenda) that may vary during the conversa
tion. The user agenda is a stack like structure containing the
pending user dialog acts that are needed to elicit the information

specified in a dialog goal. As the dialog progresses the agenda and
goal are dynamically updated and the dialog acts are selected from
the top of the agenda to form user acts.

As will be described in Section 3, our user intention simulation
technique considers specific user interactions by incorporating
several knowledge sources, combining statistical and heuristic
information to enhance the dialog model. Some of its main
advantages are the simple integration with the dialog manager
and the possibility to use simulated dialogs for cost effective
development.

Once a user model has been generated, it is required to define
how to use it to adapt the dialog system. Although dialog manage
ment is only a part of the development cycle of spoken dialog
systems, it can be considered one of the most demanding tasks
given that this module encapsulates the logic of the speech
application [62]. This way, the design of an appropriate dialog
management strategy is at the core of dialog system engineering.
A comprehensive study of dialog management methodologies and
architectures is presented in [63 65].

Automating dialog management by means of statistical meth
odologies is useful for developing, deploying and re deploying
applications and also reducing the time consuming process of
hand crafted design. Statistical models can be trained with cor
pora of human computer dialogs with the main objective of
explicitly modeling the variance in user behavior that can be
difficult to address by means of hand written rules [39]. The goal
is to build systems that exhibit more robust performance,
improved portability, better scalability and easier adaptation to
other tasks.

The most widespread methodology for machine learning of
dialog strategies consists of modeling human computer interac
tion as an optimization problem using Markov Decision Processes
(MDP) and reinforcement methods [45,66]. The main drawback of
this approach is that the large state space of practical domains
makes its direct representation intractable [67]. Partially Obser
vable MDPs (POMDPs) outperform MDP based dialog strategies
since they provide an explicit representation of uncertainty [68].
However, they are also limited to small scale problems, since the
state space would be huge and exact POMDP optimization is again
intractable [67].

Other authors have combined conventional dialog managers with a
fully observable Markov decision process [69,70], or proposed the use
of multiple POMDPs and selecting actions using hand crafted rules
[71]. In [72], the authors combine the robustness of the POMDP with
conventional approaches. The POMDP then chooses the best action
from this limited set. Bayesian reinforcement learning frameworks for
learning the POMDP parameters from data have been recently
proposed in [73,74]. Other interesting approaches for statistical dialog
management are based on modeling the system by means of Hidden
Markov Models [49], stochastic Finite State Transducers [75 77], or
Bayesian Networks [78,79].

Our methodology for dialog management (Section 3) is based on
the estimation of a statistical model from the user's intention
prediction provided by the user's model and sequences of the
system and user dialog acts obtained from a corpus of training data.
This way, the next system response is selected by means of a
classification process that considers the complete history of the
dialog and the user model, which is one of the main advantages
regarding the previously described statistical methodologies for
dialog management. Another benefit is the inclusion of a data
structure that efficiently stores the complete information related to
the task provided by the user during the dialog history. The main
objective of this structure is to easily encode the complete informa
tion related to the task provided by the user during the dialog
history, then considering the specific semantics of the task and
including this information in the proposed classification process.
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The classification function can be defined in several ways. We
have evaluated seven different definitions of this function in
previous works: a multinomial naive Bayes classifier, an n gram
based classifier, a decision tree classifier, a support vector machine
classifier, a classifier based on grammatical inference techniques,
Fuzzy rule based (FRB) classifiers, and a classifier based on artifi
cial neural networks [8,80,81]. The best results were obtained
using a multilayer perceptron (MLP) [82]. Neural networks have
also proven to be useful in for other tasks related to natural
language processing [83,84], such as the estimation of text sim
ilarity [85,86], handwritten text recognition [87], automatic lan
guage recognition [88], out of vocabulary word detection [89],
word sense disambiguation [90], associative memory models [91],
language model estimation for speech recognition [92], spoken
language understanding [93], or question answering [94].

3. Proposed framework to develop adaptive spoken dialog
systems

Fig. 1 shows the architecture that integrates our proposed
framework to generate adaptive spoken dialog systems. A User
Modeling module considers the previous dialog interactions and
specific features of the user (defined by means of user profiles) to
predict the user intention, defined as the next user action, which
we represent by one or more dialog acts as described in the
previous section.

The Dialog Manager takes as an input this prediction, the
current user utterance, and the sequence of user and system
dialog acts until the current moment. Using this information it
selects the next system action (next system dialog act). The
following subsections describe the statistical methodologies pro
posed for the development of the two modules.

3.1. User modeling

Our proposed technique for user modeling simulates the user
intention providing the next user dialog act in the same repre
sentation defined for the spoken language understanding module.
We represent dialogs as a sequence of pairs (A;, U;), where A; is the
output of the system (the system response or turn) at time i, and Uj;
is the semantic representation of the user turn (the result of the
understanding process of the user input) at time i; both expressed

in terms of dialog acts [8]. This way, each dialog is represented by

A1, Uy, ...,(AL Up, ..., (An, Un)
where A; is the greeting turn of the system, and U, is the last user
turn. We refer to a pair (A, U;) as S; the state of the dialog
sequence at time i.

The lexical, syntactic and semantic information associated to
the speaker u's ith turn (U;) is denoted as cf. This information is
usually represented by

® The words uttered.

® Part of speech tags, also called word classes or lexical cate
gories. Common linguistic categories include noun, adjective,
and verb, among others.

® Predicate argument structures, used by SLU modules in various
contexts to represent relations within a sentence structure.
They are usually represented as triples (subject verb object).

® Named entities: sequences of words that refer to a unique
identifier. This identifier may be a proper name (e.g., organiza
tion, person or location names), a time identifier (e.g., dates,
time expressions or durations), or quantities and numerical
expressions (e.g., monetary values, percentages or phone
numbers).

Our model is based on the one proposed in [95]. In this model,
each user turn is modeled as a user action defined by a subtask to
which the turn contributes, the dialog act of the turn, and its
named entities. For example, for the Let's Go system, a subtask
may be to provide the information necessary to perform a time
table query, the turn may be to provide the origin address, and the
dialog act may be Provide Street, being Queen Avenue the named
entity involved.

For speaker u, DA} denotes the dialog label of the ith turn, and
STY denotes the subtask label to which the ith turn contributes.
The dialog act is determined from the information about the turn
and the previous dialog context (i.e., k previous utterances) as
shown in the following equation:

DAY = argmax P(d"|c¥,STi=%, DAI=% ci-¥) 1)
d'eD

In a second stage, the subtask is determined from the lexical
information, the dialog act computed according to Eq. (1), and the
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Fig. 1. Architecture to develop adaptive spoken dialog systems.



dialog context, as shown in the following equation:

STY = argmax P(s" | DAY, ¥, ST: %, DA =K -k )
sieS

In our proposal, we consider static and dynamic features to
estimate the conditional distributions shown in (Egs. (1) and 2) .
Dynamic features include the dialog act and the task/subtask.
Static features include the words in each utterance, the dialog acts
in each utterance, predicate arguments in each utterance, and also
a set of features included in a user profile. All pieces of information
are computed from corpora using n grams, that is, computing the
frequency of the combination of the n previous words, dialog acts,
or predicate arguments in the user turn.

The user profile is composed of the following user features:

® [d, which they can use to log in to the system.

Gender.

® Experience, which can be either O for novel users (first time the
user calls the system) or the number of times the user has
interacted with the system.

® Skill level, estimated taking into account the level of expertise,
the duration of their previous dialogs and the time that was
necessary to access a specific content and the date of the last
interaction with the system. A low, medium, high or expert
level is assigned using these measures. The experience and skill
level features are subtly different. The former encodes the
number of previous interactions, while the latter indicates
the difficulty experienced by the user to succeed in such
interactions.

® Most frequent objective of the user.

® Reference to the physical location of the user during previous
interactions (when available), in which the previous set of
objective and subjective parameters for the user has been
estimated.

As described in [95], the conditional distributions shown in
(Egs. (1) and 2) can be estimated by means of the general
technique of choosing the maximum entropy (MaxEnt) distribu
tion that properly estimates the average of each feature in the
training data [96]. This can be written as a Gibbs distribution
parameterized with weights A as Eq. (3) shows, where V is the size
of the label set, X denotes the distribution of dialog acts or
subtasks (DAY or ST}') and @ denotes the vector of the described
features used for user modeling

s b
— 3)
Z 1 e’sti

st

PX =sti|¢p) =

Such calculation outperforms other state of the art approaches
[95,97,96], as it increases the speed of training and makes possible
to deal with large data sets. Each of the classes can be encoded as a
bit vector such that, in the vector corresponding to each class, the
ith bit is one and all other bits are zero. Then, V one versus other
binary classifiers are used as follows:

el o 1

Pylp)=1 PyIp) = C))

b et e id
where /Ay is the parameter vector for the anti label y and
A’y—:/ly Ay

3.2. Dialog management

A conventional dialog manager maintains the dialog state
encoded as a form or frame and uses two functions for selecting
the next system response, that we will denote by G and F. For a
given dialog state n, G(n) decides which system action (a) to
output, and then after observation o has been received, F(n,o)

decides how to update the dialog state n to ng (n after observing o).
This process repeats until the dialog ends.

In a statistical approach, the conventional dialog manager is
extended in three respects: firstly, its action selection function G
(n) is changed to output a set of one or more (M) valid actions
given a dialog state n, G(n)={a,,as,...,ay}. Next, its transition
function F is extended to allow for different transitions depending
on which of the actions was taken, F(n, a, 0). This way, rather than
maintaining a single hypothesis for the dialog state, these func
tions maintain a distribution over many hypotheses, which are
ordered from the most to the least probable, for the correct dialog
state. Then, the dialog manager may select to consider only the
best or a set of the N best options available.

Considering the representation of dialogs as the sequence of
pairs (A;, U;) described in the previous subsection, at time i, the
objective of the dialog manager is to find the best system answer
A;. This selection is a local process for each time i and takes into
account the previous history of the dialog

»Sic1) ®)

A; = argmax P(A;| Sy, ..
Aje A
where set .4 contains all the possible system answers.

Following Eq. (5), the dialog manager selects the next system
response taking into account the sequence of previous pairs (A; U;).
The main problem to resolve this equation is usually the large number
of possible sequences of states. To solve the problem, we define a data
structure in order to establish a partition in this space, ie. in the
history of the dialog preceding time i. This data structure, which we
call Interaction Register (IR), contains the following information:

® Sequence of user dialog acts provided by the user throughout
the previous history of the dialog (i.e., the output of the SLU
module).

® Predicted user dialog act (generated by means of Eq. (1)).

® Predicted user subtask (generated by means of Eq. (2)).

After applying these considerations and establishing the
equivalence relation in the histories of the dialogs, the selection
of the best A; is given by the following equation:

A; = argmax P(Ai| IR _1,5; 1) ©6)
Aie A

Each user turn supplies the system with information about the task;
i.e,, the user asks for a specific concept and/or provides specific values
for certain attributes (e.g., to obtain timetables from a specific origin
and destination in a bus information system). However, a user turn can
also provide other kinds of information, such as task independent
information (e.g., Affirmation, Negation, and Not Understood dialog acts).
This kind of information implies some decisions which are different
from simply updating the IR; ;. Hence, for the selection of the best
system response A;, we take into account the IR from turn 1 to turn
i 1, and we explicitly consider the last state S;_ ;.

For the dialog manager to determine the next system answer, we
have assumed that the exact values of the task dependent attributes
are not significant. They are important for accessing data repositories
and for constructing the output sentences of the system. However, the
only information necessary to predict the next system action is the
presence or absence of concepts and attributes (i.e. whether each
relevant piece of information has been correctly provided or not).
Therefore, the codification we use for this information in the IR is in
terms of three values, {0, 1,2}, according to the following criteria:

® (0) The concept is unknown or the value of the attribute is not
given.

® (1) The concept or attribute is known with a confidence score
that is higher than a given threshold. To decide whether the
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state of a certain value in the IR is 1 or 2, the system employs
confidence measures provided by the ASR and SLU modules
[98].

® (2) The concept or attribute has a confidence score that is lower
than the given threshold.

We propose to solve (6) by approximating this equation by a
learned function. To do this, every dialog situation is classified
taking into account a set of classes C, in which a class contains all
the sequences that provide the same set of system actions
(responses). The objective of the dialog manager at each moment
is to select a class of this set c e C, so that the system answer is the
one associated with the selected class. As stated in Section 2, the
classification function can be defined in several ways. The best
results were obtained using a multilayer perceptron (MLP) where
the input layer receives the current state of the dialog, which is
represented by the term (IR; 1,A;). The values of the output layer
can be viewed as the a posteriori probability of selecting the
different system responses given the current situation of the
dialog.

Fig. 2 summarizes the combination of the proposed user
modeling and dialog management methodologies. As can be
observed, the user modeling module provides a prediction of the
next user dialog act and the current subtask of the dialog. The set
of user dialog acts and predicted values for the current user's
dialog act and subtask are used to update the interaction register.
The dialog manager considers this register and the last system
response for the selection of the next system action.

3.3. MLP classifier

In order to apply a MLP to select the system answer, as
previously stated, the input layer holds a codification of the input
pair (IR;_1,Si_1). The representation defined for this pair is as
follows:

® [ast system response (A;_1): This information is modeled using
a variable, which has as many bits as possible system responses

©

ve C
X1 =(X1,,X1,,X15,....X1.) € {0, 1}

® [nteraction register (IR; {): As previously stated, the interaction
register includes task dependent user dialog acts and the
prediction of the current user dialog act and subtask. Each
one of the task dependent user dialog acts can take the values
{0,1,2} and then be modeled using a variable with three bits.

The prediction of the current user dialog act is modeled using a
variable, which has as many bits as possible user responses (N).
The prediction of the current dialog subtask is modeled using a
variable, which has as many bits as possible subtasks (T)

Ki=(%,%,,%;,) (0,1, i=2,..,N+1
—
X Ni2 = (X1,,X1,,X1,, X1, ) € {0, 1}V

- T
X N3 = (X1,,X1,, %15, X1,) €{0, 1}

Task independent information (Affirmation, Negation, and Not
Understood dialog acts): These three dialog acts have been
coded with the same codification used for the task dependent
information in the IR; that is, each one of these three dialog acts
can take the values {0, 1,2}. This information is modeled using
three variables with three bits

Xi=(%,,%,,X;,) €{0,1)°, i=N+4,..,N+6

For the process of classification, the number of output units of
the MLP is defined as the number of classes, |C|, and the input
layer must hold the input samples (IR;_,S;_1). For uniclass
samples, the activation level of an output unit in the MLP can be
interpreted as an approximation of the a posteriori probability that
the input sample belongs to the corresponding class [82,84].
Therefore, given an input sample x, the trained MLP computes
g.(X, w) (the cth output of the MLP with parameters @ given the
input sample x), which is an approximation of the a posteriori
probability P(c|x). Thus, for MLP classifiers we can use the uniclass
classification rule as
¢ = argmax P(c|X) ~ argmax g.(X, w)

ceC ceC
where the variable x, which holds for the pair (IR;_1,S;_1), can be
represented using the vector of characteristics

— - = — —
=(X1,X2,X3,...., XNyt6

X

4. Application to the Let's Go dialog system

Let's Go is a spoken dialog system developed by the Carnegie
Mellon University to provide bus schedule information in Pitts
burgh. The system has had many users since it was made available
for the general public in 2005 20,000 calls collected just from
March to December of 2005 [99], so there is a substantial dataset
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Fig. 2. Combination of the proposed user modeling and dialog management methodologies for the development of adaptive spoken dialog systems.
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that can be used to train a dialog model. In addition, this large
amount of data from spoken interactions has been acquired with
real callers, rather than lab testers.

In 2009, a corpus of 338 dialogs acquired with real users was
distributed among the scientific community as a common testbed
for the 2010 Spoken Dialog Challenge initiative [100]. The aim of
the Challenge was to bring together multiple implementations of
the same dialog task and deploy them in uncontrolled real user
conditions and then make the results available for common
evaluation techniques.

We have chosen the Let's Go task to evaluate our proposal for
several reasons. Firstly, the corpus available was gathered from a
real task in an operative dialog system that provided its service to
real users. This poses a challenge to build realistic user models and
find new dialog strategies that are at least as good as the hand
crafted system. Secondly, Let's Go is a common ground for experi
mentation and evaluation within the dialog system community,
which therefore makes our results directly comparable to the
alternatives presented by other authors, and this is why it has been
intensively used by researchers in the last years [101,100,102,103].

Fig. 3 shows an example of a dialog extracted from the Let's Go
corpus [103]. In each dialog, the user needs to provide a place of
departure, a destination and a departure time. To model this, the
system uses a set of user dialog acts that has been classified into 16
categories following the criteria described in [104]. Table 1 shows
the defined categories of user dialog acts and their specific values.
Four of the concepts are used to model where the user is leaving
from (monument, pair of road names, neighborhood, or stop). The
four concepts used for modeling the place of arrival are similar. Six
concepts are used for describing the user's required time of travel
(next bus or specific times). The meth node describes whether the
user is asking for a bus with some constraints, is finished or wants
to restart. The concept disc models how the user issues “discourse”
actions, which relate to only one tum in a dialog.

The 36 system dialog acts can also be classified into 5 groups:
formal (dialog formalities like “welcome™”), results (presentation of
search results), queries (request for values to fill slots), statusre
ports (when the system reports about its status, e.g. “looking up
database”), error (error messages), and instructions (instructions to
the user how to speak to the system).

The different objectives of the dialogs for the Spoken Dialog
Challenge were labeled in the corpus by considering the different
places and times for which the users required information (from
one to five), users’ requirements about previous and next buses,
number of uncovered places, and possible system failures. The
different combinations of these parameters in the corpus lead to

the definition of 38 different objectives. The dialogs were also
divided into 10 subtasks (welcome, ask. for_query,ask. for_attribute,
confirm_query, confirm_attribute, looking_up_database, provide_re
sults, provide_instructions, query_error, and goodbye).

A total number of 22 features define the pair (IR;_;,S;_) for
the Let's Go task: the last system response (A;_,), 18 features
corresponding to the Interaction Register IR; , (predicted current
user dialog act, 16 task dependent user dialog acts, and predicted
current dialog subtask), and 3 features corresponding to the task
independent information (Affirmation, Negation, and Not
Understood dialog acts). This information is the input to our MLP
and the number of features is similar to other application domains
in which our proposal has been previously applied [8|.

The good operation of the MLP is also fostered in our approach by
determining beforehand the value of several input features (e.g.
predicted current user dialog act and subtask) by means of the
process described in Section 3.1, thus reducing the number of input
features for the MIP with respect to state of the art approaches. As
described in Table 1, the Let's Go task considers up to 455 different
values for the task dependent user dialog acts. Our codification of the
features using only 3 values (0,1, 2) makes it possible to reduce the
dimensionality of the problem making the dialog manager more
efficient and scalable, and suitable for complex application domains.

As explained in the previous section, our approach incorporates
a module that predicts the user intention, which is then forwarded
to the dialog manager as another input feature. This is why we

Table 1
User dialog acts categories defined in the let's Go system [104].

Category Size Example values

from 3 fistop, ftmonument, ftneigh

fstop 328, 455 “FORBES&MURRAY", “ANYWHERE&FORBES”
Sfmon 52 “AIRPORT*“, “CENTURY SQUARE"

Sfreigh 220 “DOWNTOWN", “SQUIRREL HILL"

to 3 ttstop, ttmonument, ttmeigh

tstop 328, 455 “FORBES&MURRAY", “ANYWHERE&FORBES™
tmon 52 “AIRPORT", “CENTURY SQUARE"

tneigh 220 “DOWNTOWN", “SQUIRREL HILL"

time 2 “NEXT", time specific

hour 12 “ONE", “TWELVE"

min 60 “ZERO", “TEN", “THIRTY RAVE"

pd 2 “AM", “PM™

day 2 day 10, “TODAY", “WEDNESDAY", “TOMORROW"
tref 4 “ARRIVE BERORE", “LEAVE AFTER"

meth 4 “RESTART", “FINISHED", constraints,

disc 9 “REPEAT", “FOLLOWING", “PREVIOUS", none

System: Surc. Where do you want to go?
User: Duquesnc.

System: Did you mean Duquesne?

User: Yes

User: Around 4.15pm

Is that OK?

User: Yes.

System: On which day?
User: Today

It will arrive in Duquesne at 4.21pm.

User: No thanks
System: Thanks for calling. Good byc!

System: Welcome to the Pittsburgh bus information line. You can say start over anytime.
Where are you going to take your bus from?
User: Hi yeah I want to go from McKeesport

System: At what time do you want to take it? Say next bus or a time for example 8.40pm.

System: I'm going to search for buses around 4.15pm.

System: I have found one bus. It is at 4.15pm. There is a bus number 61C from McKcesport.

System: Is there anything else I can do for you?

Fig. 3. Example of dialog extracted from the let's Go corpus.
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have evaluated our proposal with the Let's Go dialog system using two
experiments: the first one evaluates whether the user modeling
module is able to produce realistic user behaviors, and the second
experiment evaluates the appropriateness of the decision of the dialog
manager computed considering the user model.

Thus, the main objective of the first experiment, described in Fig. 4,
is to assess the proposed methodology for user modeling (Section 3.1).
To do this, we applied our proposal to build a user model trained with
the initial corpus of 338 dialogs. Then it was used to acquire a second
corpus of 1000 simulated dialogs by means of its interaction with the
initial version of the Let's Go dialog system (DM ).

Since user models are built to replace human users, a good user
model should be able to replicate human user behaviors. Hence, in
the experiment we had to check whether the simulated dialogs
generated with our user modeling technique were similar to those
that would take place with real users.

Under this assumption, assessing the user model usually con
sists in a subjective assessment of the realism of the simulated
user (e.g. with human judges in a kind of Turing test) or measuring
the similarity to real user behavior based on more formal criteria.
In order to avoid biases, we selected to use objective criteria and
computed a large set of dialog parameters that characterize the
real and simulated dialogs (which are discussed in Section 4.1).
Then, we employed a technique called subspace clustering [105]
with which we studied whether the clustering algorithm was able
to find significant differences between the simulated and real
users, which would indicate that the simulated users behave in a
significant different way with respect to the real users. By means
of this particular clustering technique it is not necessary to reduce
the dimensionality of the space beforehand unlike other state of
the art approaches, which would lead to a loss of valuable
information. The results of the first experiment are discussed in
Section 4.1.

Fig. 5 shows the second experiment, in which we evaluated the
operation of the complete framework, that is, with this experi
ment we assessed the appropriateness of the dialog manager
decisions taking into account also the result of the user modeling
module. A 5 fold cross validation process was used to carry out
the evaluation. The initial corpus of 338 dialogs was randomly split
into five subsets of 1817 samples (20% of the corpus). Our
experiment consisted of five trials. Each trial used a different
subset taken from the five subsets as the test set, and the
remaining 80% of the corpus was used as the training set for the
user and dialog models. A validation subset (20%) was extracted
from each training set.

From our previous work on statistical dialog management [8],
in this case we propose three measures to evaluate the quality of

the responses selected by the statistical dialog manager. These
measures are calculated by comparing the answer automatically
generated by the statistical dialog manager (DM,) for each input in
the test partition with regard to the reference answer annotated in
the corpus (DM;). This way, the evaluation is carried out turn by
turn. Thus, the aim is not to evaluate the complete dialog as a unit,
but to assess the appropriateness of the dialog manager response
for each sample in the test partition (i.e., current situations of the
dialog). The three measures used for the described evaluation are
the following:

® Matching: the percentage of responses provided by DM, that
are equal to the reference answer in the corresponding turn of
the test corpus.

® (Coherence: the percentage of answers provided by DM, that are
coherent with the current state of the dialog although they are
not necessarily the same that the reference answer.

® Error: the percentage of answers provided by DM, that would
cause the failure of the dialog.

The measure Matching is automatically calculated, evaluating
whether the responses provided by DM; and DM, are the same.
The calculation of the Coherence and Error measures requires
expert annotation of the corpus. Thus, to decide about coherence
of system responses, we asked three annotators to answer the
following question: “Given the current dialog state: does it make
sense that the system generates this response?”. They were also
advised about considering user's adaptation as an important
criterion to answer the question. The responses labeled as Error
correspond to those that have not been considered coherent. The
results of the second experiment are discussed in Section 4.2.

4.1. Evaluation of the user modeling module

Table 2 shows the features computed for the 1338 dialogs
acquired for the Let's Go task. For each one of the 5 groups of
system dialog acts the counts and percentages of each group were
calculated as new parameters. For our experiments we have
employed the PROCLUS projected clustering algorithm, which
detects all the possible clusters in all subspaces. The algorithm
builds the clusters taking into account different subsets of the
attributes and assigns each dialog to a unique cluster. To do so, we
used Opensubspace [106], an implementation of the algorithm
that can be integrated into the Weka machine learning tool.

Table 3 shows the 4 clusters generated. As can be observed,
different features have been chosen for each cluster, and thus there
are 4 dimensional and bidimensional subspaces. The features selected
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Table 2
Features computed for the simulated and real dialogs.

numExchanges Number of exchanges between user and system. An exchange is composed of a system turn and the successive user turn, where the user turn
can be empty (e.g. no-input or when the end of a dialog is reached)
percConfirm Percentage of confirmation dialog acts
meanReasks and mean and maximum re-asks
maxReasks
numNoMatches, Number and percentage of no-matches
percNoMatches
numNolnputs, Number and percentage of no-inputs
percNolnputs
meanAVPs Mean number of concepts provided in the user utterances. A concept can be a value for a slot, a logical (yes/no), a DTMF (Dual-Tone Multi-

Frequency) signal, navigation keywords such as next bus, help requests or a dialog ending action. The total number of concepts is divided by
the number of exchanges in the dialog to obtain the mean
successDial Task success, determined automatically by checking if the objective of the dialog was reached
SysActPerUserAct Number of system turns in a dialog divided by the total number of concepts provided by the user

are mainly related to situations in the dialog which differ from the
optimal, such as out of vocabulary inputs, silences, number of error
messages, percentage of error messages and the percentage of
presentation of results.

We have carried out a statistical study of the parameters per
cluster computing their maximum, minimum, average and stan
dard deviation (Table 4 shows average values). The study reveals
that the dialogs in cluster 1 and cluster 2 (82.21% of the corpus)
usually reached their objective, sometimes with the use of re asks
and other techniques in order to solve the possible errors in the
input. Cluster 1 is composed of dialogs with no error system dialog
acts and with the lowest mean number of concepts provided in
each user utterance, while cluster 2 is composed of dialogs in
which the speech understanding phase has an optimal behavior as
there are no no matches and no no inputs. Cluster O and cluster
3 hold the longest dialogs, the case of cluster 3 is peculiar as it
holds the dialogs (2.16% of the corpus) with a higher number of
no inputs.

The users of the Let's Go system follow different objectives, e.g.
some users simply look for a line connecting 2 stops, others need
departure times, and others need information about complete
connections. Completing these tasks with the system can involve
navigation within the results, and in some cases also changing the
query, e.g. if two stops are not connected by a line. Cluster 1 mainly
comprises short dialogs, and cluster 2 contains searches for a
connection between 2 stops. Dialogs with more than 2 stops are
distributed across all clusters except cluster 1. Thus, clustering can
be used to group dialogs with many different objectives to a few
groups.

Fig. 6 shows the percentages of real and simulated dialogs in
each cluster. It can be observed that both datasets are differently
structured with regard to the distribution of clusters. Fig. 6 (down)
shows that both are mainly in clusters 1 and 2. As those clusters
contain more standard interactions, it seems that the user model
was able to render such behaviors appropriately, which represent

Table 3
Results of the subspace clustering for the Let's Go task.

Cluster (dimensions): relevant features #Dialogs
0 (4D): numNolnputs, percNolnputs, successDial, percResults 59
1 (4D): percNolnputs, meanAVP, numError, percError 861
2 (2D): numNoMatches, numNolnputs 239
3 (2D): percNolnputs, percResults 29
Table 4
Average value of the interaction parameters in each cluster.

Parameters Cluster 0 Cluster 1 Cluster 2 Cluster 3
numExchanges 18.10 9.76 9.69 30.14
percConfirm 0.62 0.59 0.57 0.66
numNoMatches 3.61 0.40 0.00 10.52
numNolnputs 0.00 0.00 0.00 0.04
meanAVPs 1.03 1.00 0.99 1.04
successDial 1.00 0.97 0.46 1.00
sysActPerUserAct 1.76 212 233 1.53
meanReasks 1.28 1.09 1.15 1.58
maxReasks 2.78 1.56 1.69 424
percNoMatches 0.18 0.03 0.00 0.03
percNolnputs 0.00 0.00 0.00 0.01
Dialog acts Cluster0 Cluster1 Cluster2 Cluster3
numFormal 1.19 112 1.08 1.03
numResults 1.81 143 113 1.59
numQueries 13.78 7.99 6.97 22.41
numStatusReports 8.39 5.15 5.22 10.73
numError 1.02 0.00 1.06 3.24
numlnstructions 3.39 231 2.09 417
percFormal 0.08 0.13 0.19 0.05
percResults 0.10 0.15 0.07 0.05
percQueries 0.78 0.82 0.62 0.76
oercStatusReports 0.46 0.53 0.42 0.04
percError 0.06 0.00 0.26 0.10
perclnstructions 0.20 0.25 0.27 0.15
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the 82.21% of the dialogs. However, as shown in Fig. 6 (up),
clusters 1 and 2 are mainly built based on the simulated data,
whereas the real data contributed mostly to clusters 0 and 3. This
shows that the features used to define the subspaces for those
clusters might indicate a difference in the behavior of the simu
lated and real dialogs. Concretely the number of no inputs seems
to be relevant, as the presence of such behavior is not common in
the simulated dialogs. In any case, as shown in Table 4 the number
of no inputs (numNolnputs and percNolnputs parameters) is very
reduced, also these situations represent the most uncommon
human user behaviours as cluster 3 only contains 2.16% of the
dialogs considered. Thus, we can conclude that the simulated
users rendered a realistic behavior which was in most cases not
distinguishable from the real users.

4.2. Evaluation of the complete proposed framework.

Table 5 shows the results of the proposed evaluation that
compared the initial dialog manager for the Let's Go system
(DM;) and the dialog manager developed using our proposal
(DM>). The values obtained for the matching and coherence meas
ures show that the DM, dialog manager deviates from the initial
dialog model and provides new valid paths to achieve each one of
the required objectives defined in each task. This way, exact
matches between DM; and DM, were reduced while coherence
increased, as most of the non matching responses were coherent
and thus acceptable for the task.

A deeper study of the system responses provided by both
dialog managers showed that DM, by considering the information
provided by the user model was able to tackle new situations and
generate new coherent answers for the situations already present
in the initial corpus. Also it could avoid previously detected errors
anticipating the user's intention and was better prepared for

Table 5
Evaluation results obtained with the DMs developed for the Let's Go system.

DM Matching (%) Coherence (%) Error (%)

DM, 93.28 94.52 5.48

DM, 81.22 97.14 2.86
Table 6

Percentages of system dialog acts using DM; and DM.

System dialog acts DM, DM,

S_Confirm 39.16 36.19
S_Request 20.08 18.21
S_Inform 40.39 45.37
S_Other 0.37 0.23

Table 7
Percentages of goal directed and grounding actions using DM; and DM,.

System actions DM, DM,
Goal-directed actions 73.16 78.89
Grounding actions 26.84 21.11

future user's actions being able to disambiguate between different
alternatives for the user's dialog acts at each turn.

Moreover, the codification developed to represent the state of
the dialog and the good operation of the MLP classifier make it
possible for the number of responses that cause the failure of the
system to be only 2.86% for the DM, dialog manager, instead of the
initial 5.48% in DM;.

With respect to the dialog style features, we measured the
balance between different types of system dialog acts using DM,
and DM,. The results, showed in Table 6, indicate that using DM,
there was an increment in the number of system turns that
actually provide information to the user, which is consistent with
the fact that the task completion rate is higher using our dialog
manager.

In addition, we grouped all user and system dialog acts into
“goal directed” (actions to provide or request information) and
“grounding” actions (dialog formalities, unrecognized actions,
confirmations, and negations). The results in Table 7 show that
the dialogs acquired with DM, are better as the proportion of goal
directed actions increases for this system.

5. Conclusions

In this paper, we have combined different aspects from the
areas of knowledge representation, natural language processing,
user modeling and intelligent information retrieval to facilitate a
personalized and more natural access to information and services
by means of speech interaction. In order to do this, we have
contributed a framework which can be used to develop adaptive
spoken dialog systems.

Our proposal is based on the definition of a statistical metho
dology for user modeling that anticipates the next user turn
during the dialog and makes it possible to adapt the system
dynamically to the user's needs. To do this, a statistical dialog
model based on neural networks selects the next system response
taking into account the prediction of the user's intention and the
history of the dialog up to the current dialog state.
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Our methodology for dialog management is based on the esti
mation of a statistical dialog model from the sequences of the
system and user dialog acts and the prediction of the user's
intention (predicted next user dialog act). The complete history
of the dialog is considered to determine the next system answer.
The codification of the information and the definition of a data
structure which takes into account the data supplied by the user
throughout the dialog makes possible to isolate task dependent
knowledge and apply our proposal to real practical domains.

This methodology can be used to model slot filling tasks, which
cover the most common application domains in which current
dialog systems are involved, and for which defining a good dialog
strategy can be difficult [38]. We have shown that our approach is
scalable and can help to reduce the dimensionality of complex
slot filling domains with a high number of parameters. Besides, it
can also be used in more open ended situations in which the user
responses are less predictable and the system must take into
account additional sources of information generated by a module
that controls the application, for instance, to validate specific
restrictions, apply privacy policies or carry out computations that
define the next system response based on the application context.
The output of such module can be considered transparently in our
approach as an additional feature for the selection of the next
system action.

We have provided a complete implementation of our frame
work for the Let's Go dialog system, a dialog system that has been
widely used in the scientific community for dialog evaluation.
With regard to the assessment of the proposed user modeling
technique, we have shown that the user model resembles the real
user behaviors in the majority of the dialogs considered, and thus
can be used as a reliable input to the dialog manager. With respect
to the assessment of the compute proposed framework integrating
the dialog manager and the user modeling module, the results
show that the number of coherent responses provided by the
statistical dialog manager increases with respect to the baseline,
while the number of responses that lead to dialog failure decre
ases. The dialog manager also improves the confirmation and error
correction rates for the different tasks.

For future work we plan to apply the proposed technique to
other tasks in order to see whether it can be used for comparison
between several user models and dialog management techniques.
We also intend to extend the evaluation of the system considering
user satisfaction measures that complement the statistical mea
sures employed.

Acknowledgments

Work partially supported by Projects MINECO TEC2012 37832
C02 01, CICYT TEC2011 28626 C02 02, CAM CONTEXTS (S2009/
TIC 1485).

References

[1] E. Corchado, M. Grafia, M. Wozniak, New trends and applications on hybrid
artificial intelligence systems, Neurocomputing 75 (1) (2012) 61-63.

[2] M. McTear, Z. Callejas, Voice Application Development for Android, Packt
Publishing, Birmingham, UK, 2013.

[3] R. Pieraccini, The Voice in the Machine: Building Computers that Understand
Speech, MIT Press, Cambridge, USA, 2012.

[4] R. Lopez-Cézar, M. Araki, Spoken, Multilingual and Multimodal Dialogue
Systems, John Wiley & Sons Publishers, Hoboken, USA, 2005.

[5] ML.E. McTear, Spoken Dialogue Technology: Towards the Conversational User
Interface, Springer, Berlin, Germany, 2004.

[6] A. Tsilfidis, 1. Mporas, ]J. Mourjopoulos, N. Fakotakis, Automatic speech
recognition performance in different room acoustic environments with and
without dereverberation preprocessing, Comput. Speech Lang. 27 (1) (2013)
380-395.

[7] W.-L. Wu, R.-Z. Lu, J.-Y. Duan, H. Liy, F. Gao, Y.-Q. Chen, Spoken language
understanding using weakly supervised learning, Comput. Speech Lang. 24
(2) (2010) 358-382.

[8] D. Griol, L. Hurtado, E. Segarra, E. Sanchis, A statistical approach to spoken
dialog systems design and evaluation, Speech Commun. 50 (8-9) (2008)
666-682.

[9] O. Lemon, Learning what to say and how to say it: joint optimisation of
spoken dialogue management and natural language generation, Comput.
Speech Lang. 25 (2011) 210-221.

[10] T. Dutoit, An Introduction to Text-to-speech Synthesis, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 1996.

[11] B. Vesnicer, J. Zibert, S. Dobrisek, N. Pavesic, F. Mihelic, A voice-driven web browser
for blind people, in: Proceedings of the Interspeech, 2003, pp. 1301-1304.

[12] J. Polifroni, G. Chungand, S. Seneff, Towards the automatic generation of
mixed-initiative dialogue systems from web content, in: Proceedings of the
Eurospeech, Geneva, Switzerland, 2003, pp. 193-196.

[13] S. D'Mello, A. Olney, C. Williams, P. Hays, Gaze tutor: a gaze-reactive
intelligent tutoring system, Int. J. Human-Comput. Stud. 70 (5) (2012)
377-398.

[14] F. Metze, X. Anguera, E. Barnard, M. Davel, G. Gravier, Language independent
search in MediaEval's Spoken Web Search task, Comput. Speech Lang. 28 (5)
(2014) 1066-1082.

[15] M. Tsai, The VoiceXML dialog system for the e-commerce ordering service,
in: Proceedings of the CSCWD, 2005, pp. 95-100.

[16] A. Stent, S. Stenchikova, M. Marge, Reinforcement learning of dialogue
strategies with hierarchical abstract machines, in: Proceedings of the SLT,
2006, pp. 210-213.

[17] J. Chai, V. Horvath, N. Nicolov, M. Stys, N. Kambhatla, W. Zadrozny,
P. Melville, Natural language assistant: a dialog system for online product
recommendation, Al Mag. 23 (2002) 63-75.

[18] K. Kopp, M. Britt, K. Millis, A. Graesser, Improving the efficiency of dialogue
in tutoring, Learn. Instr. 22 (5) (2012) 320-330.

[19] D. Litman, S. Silliman, ITSPOKE: an intelligent tutoring spoken dialogue
system, in: Proceedings of the HLT/NAACL, 2004, pp. 233-236.

[20] H. Hofmann, A. Silberstein, U. Ehrlich, A. Berton, C. Muller, A. Mahr,
Development of speech-based in-car HMI concepts for information exchange
Internet apps, in: Natural Interaction with Robots, Knowbots and Smart-
phones: Putting Spoken Dialog Systems into Practice, Springer Scien-
ce+Business Media, 2014, pp. 15-28.

[21] J. He, A. Chaparro, B. Nguyen, R. Burge, ]. Crandall, B. Chaparro, R. Ni, S. Cao,
Texting while driving: is speech-based texting less risky than handheld
texting? in: Proceedings of the Automotive'Ul 13, 2013, pp. 124-130.

[22] G. Skantze, A. Hjalmarsson, C. Oertel, Turn-taking, feedback and joint
attention in situated human-robot interaction, Speech Commun. 65 (2014)
50-66.

[23] W. Minker, T. Heinroth, P. Strauss, D. Zaykovskiy, Spoken dialogue systems
for intelligent environments, in: Human-Centric Interfaces for Ambient
Intelligence, Elsevier, Amsterdam, the Netherlands, 2010, pp. 453-478.

[24] T. Bickmore, K. Puskar, E. Schlenk, L. Pfeifer, S. Sereika, Maintaining reality:
relational agents for antipsychotic medication adherence, Interact. Comput.
22 (2010) 276-288.

[25] O. Saz, S.-C. Yin, E. Lleida, R. Rose, C. Vaquero, W.-R. Rodriguez, Tools and
technologies for computer-aided speech and language therapy, Speech
Commun. 51 (10) (2009) 948-967.

[26] O. Horchak, J.-C. Giger, M. Cabral, G. Pochwatko, From demonstration to
theory in embodied language comprehension: a review, Cognit. Syst. Res.
29-30 (2014) 66-85.

[27] C. Qu, W. Brinkman, Y. Ling, P. Wiggers, 1. Heynderickx, Conversations with a
virtual human: synthetic emotions and human responses, Comput. Human
Behav. 34 (2014) 58-68.

[28] D. Griol, M. Garcia-Jiménez, Development of interactive virtual voice portals
to provide municipal information, Adv. Soft Comput. 151 (2012) 161-172.

[29] T. Shibata, Y. Egashira, S. Kurohashi, Chat-like conversational system based
on selection of reply generating module with reinforcement learning, in:
Proceedings of the IWSDS, 2014, pp. 227-231.

[30] E. Bessho, T. Harada, Y. Kuniyoshi, Dialog system using real-time crowdsour-
cing and twitter large-scale corpus, in: Proceedings of the SIGDIAL, 2012,
pp. 227-231.

[31] E. Burkhardt, J. Zhou, “Askwiki: shallow semantic processing to query
Wikipedia, in: Proceedings of the EUSIPCO, 2012, pp. 350-354.

[32] B. Hasler, P. Tuchman, D. Friedman, Virtual research assistants: replacing
human interviewers by automated avatars in virtual worlds, Comput. Human
Behav. 29 (4) (2013) 1608-1616.

[33] D. Griol, J. Molina, Z. Callejas, An approach to develop intelligent learning
environments by means of immersive virtual worlds, ]. Ambient Intell. Smart
Environ. 6 (2) (2014) 237-255.

[34] T. Paek, R. Pieraccini, Automating spoken dialogue management design using
machine learning: an industry perspective, Speech Commun. 50 (89) (2008)
716-729.

[35] J. Rouillard, Web services and speech-based applications around VoiceXML,
J. Netw. 2 (1) (2007) 27-35.

[36] S. Seneff, M. Adler, ]. Glass, B. Sherry, T. Hazen, C. Wang, T. Wu, Exploiting
context information in spoken dialogue interaction with mobile devices, in:
Proceedings of the IMUX, 2007, pp. 1-11.

1"



[37] S. Kartakis, A. Design-and-Play, Approach to accessible user interface devel-
opment in ambient intelligence environments, J. Comput. Ind. 61 (4) (2010)
318-328.

[38] S. Young, The Statistical Approach to the Design of Spoken Dialogue Systems,
Technical Report, Cambridge University Engineering Department (UK), 2002.

[39] J. Schatzmann, K. Weilhammer, M. Stuttle, S. Young, A survey of statistical
user simulation techniques for reinforcement-learning of dialogue manage-
ment strategies, Knowl. Eng. Rev. 21 (2) (2006) 97-126.

[40] D. Pierrakos, G. Paliouras, C. Papatheodorou, C. Spyropoulos, Web usage
mining as a tool for personalization: a survey, User Model. User-Adapted
Interact. 13 (4) (2003) 311-372.

[41] M. Eirinaki, M. Vazirgiannis, Web mining for web personalization, ACM
Trans. Internet Technol. 3 (1) (2003) 1-27.

[42] ]. Searle, Speech acts, An Essay on the Philosophy of Language, Cambridge
University Press, Cambridge, UK, 1969.

[43] D. Traum, Speech acts for dialogue agents, Foundations of Rational Agency,
Kluwer, Dordrecht, the Netherlands (1999) 169-201.

[44] H. Bunt, J. Alexandersson, J. Carletta, ]. Choe, A. Fang, K. Hasida, K. Lee,
V. Petukhova, A. Popescu-Belis, L. Romary, C. Soria, D. Traum, Towards an ISO
standard for dialogue act annotation, in: Proceedings of the LREC, 2010,
pp. 2548-2555.

[45] E. Levin, R. Pieraccini, W. Eckert, A stochastic model of human-machine
interaction for learning dialog strategies, IEEE Trans. Speech Audio Process. 8
(1) (2000) 11-23.

[46] K. Scheffler, S. Young, Automatic learning of dialogue strategy using dialogue
simulation and reinforcement learning, in: Proceedings of the HLT, 2001,
pp. 12-18.

[47] O. Pietquin, A framework for unsupervised learning of dialogue strategies
(Ph.D. thesis), Faculte Polytechnique de Mons, 2004.

[48] K. Georgila, ]J. Henderson, O. Lemon, Learning user simulations for informa-
tion state update dialogue systems, in: Proceedings of the Eurospeech, 2005,
pp. 893-896.

[49] H. Cuayahuitl, S. Renals, O. Lemon, H. Shimodaira, Human-computer
dialogue simulation using hidden Markov models, in: Proceedings of the
ASRU, 2005, pp. 290-295.

[50] M. Araki, T. Watanabe, S. Doshita, Evaluating dialogue strategies for recover-
ing from misunderstandings, in: Proceedings of the IJCAI Workshop on
Collaboration Cooperation and Conflict in Dialogue Systems, 1997, pp. 13-18.

[51] T. Watanabe, M. Araki, S. Doshita, Evaluating dialogue strategies under
communication errors using computer-to-computer simulation, IEICE Trans.
Inf. Syst. E81-D (9) (1998) 1025-1033.

[52] R. Lépez-Cézar, A. de la Torre, J. Segura, A. Rubio, Assessment of dialogue
systems by means of a new simulation technique, Speech Commun. 40
(2003) 387-407.

[53] E. Filisko, S. Seneff, Developing city name acquisition strategies in spoken
dialogue systems via user simulation, in: Proceedings of the SIGdial, 2005,
pp. 144-155.

[54] W. Eckert, E. Levin, R. Pieraccini, User modeling for spoken dialogue system
evaluation, in: Proceedings of the ASRU, 1997, pp. 80-87.

[55] O. Pietquin, T. Dutoit, A probabilistic framework for dialog simulation and
optimal strategy learning, IEEE Trans. Speech Audio Process. 14 (2005)
589-599.

[56] J. Bos, E. Klein, O. Lemon, T. Oka, DIPPER: description and formalisation of an
information-state update dialogue system architecture, in: Proceedings of
the SIGdial, 2003, pp. 115-124.

[57] S. Jung, C. Lee, K. Kim, D. Lee, G. Lee, Hybrid user intention modeling to
diversify dialog simulations, Comput. Speech Lang. 25 (2) (2011) 307-326.

[58] R. Higashinaka, K. Sudoh, M. Nakano, Incorporating discourse features into
confidence scoring of intention recognition results in spoken dialogue
systems, Speech Commun. 48 (2006) 417-436.

[59] C. Seon, H. Kim, J. Seo, A statistical prediction model of speakers intentions
using multi-level features in a goal-oriented dialog system, Pattern Recognit.
Lett. 33 (2012) 1397-1404.

[60] F. Wang, K. Swegles, Modeling user behavior online for disambiguating user
input in a spoken dialogue system, Speech Commun. 55 (2013) 84-98.

[61] J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, S. Young, Agenda-based
user simulation for bootstrapping a POMDP dialogue system, in: Proceedings
of the HLT/NAACL, 2007, pp. 149-152.

[62] Y. Wilks, R. Catizone, S. Worgan, M. Turunen, Some background on dialogue
management and conversational speech for dialogue systems, Comput.
Speech Lang. 25 (2) (2011) 128-139.

[63] M. Ahmed, R. Riyaz, S. Afzal, A comparative study of various approaches for
dialogue management, Int. J. Adv. Comput. Technol. 2 (4) (2013) 89-96.

[64] Y. Wilks, R. Catizone, S. Worgan, M. Turunen, Some background on dialogue
management and conversational speech for dialogue systems, Comput.
Speech Lang. 25 (2011) 128-139.

[65] C. Lee, S. Jung, K. Kim, D. Lee, G. Lee, Recent approaches to dialog manage-
ment for spoken dialog systems, J. Comput. Sci. Eng. 4 (1) (2010) 1-22.

[66] S. Singh, M. Kearns, D. Litman, M. Walker, Reinforcement learning for spoken
dialogue systems, in: Proceedings of the NIPS, 1999, pp. 956-962.

[67] S.Young, ]. Schatzmann, K. Weilhammer, H. Ye, The hidden information state
approach to dialogue management, in: Proceedings of the ICASSP, 2007,
pp. 149-152.

[68] N. Roy, J. Pineau, S. Thrun, Spoken dialogue management using probabilistic
reasoning, in: Proceedings of the ACL, 2000, pp. 93-100.

[69] S. Singh, D. Litman, M. Kearns, M. Walker, Optimizing dialogue management
with reinforcement leaning: experiments with the NJFun system, ]. Artif.
Intell. 16 (2002) 105-133.

[70] P. Heeman, Combining reinforcement learning with information-state
update rules, in: Proceedings of the HLT-NAACL, 2007, pp. 268-275.

[71] J. Williams, P. Poupart, S. Young, Partially observable Markov decision
processes with continuous observations for dialogue management, Recent
Trends in Discourse and Dialogue, Springer, Berlin, Germany (2006) 191-217.

[72] J. Williams, The best of both worlds: unifying conventional dialog systems
and POMDPs, in: Proceedings of the Interspeech, 2008, pp. 1173-1176.

[73] P. Lison, Model-based Bayesian reinforcement learning for dialogue manage-
ment, in: Proceedings of the Interspeech, 2013, pp. 457-461.

[74] S. Png, J. Pineau, B. Chaib-draa, Building adaptive dialogue systems via Bayes-
adaptive POMDPs, IEEE J. Select. Top. Signal Process. 6 (8) (2012) 917-927.

[75] C. Hori, K. Ohtake, T. Misu, H. Kashioka, S. Nakamura, Recent advances in
WEFST-based dialog system, in: Proceedings of the Interspeech, 2009,
pp. 268-271.

[76] L. Hurtado, J. Planells, E. Segarra, E. Sanchis, D. Griol, A stochastic finite-state
transducer approach to spoken dialog management, in: Proceedings of the
Interspeech, 2010, pp. 3002-3005.

[77] ]. Planells, L. Hurtado, E. Sanchis, E. Segarra, An online generated transducer
to increase dialog manager coverage, in: Proceedings of the Interspeech,
2012.

[78] T. Paek, E. Horvitz, Conversation as action under uncertainty, in: Proceedings
of the 16th Conference on Uncertainty in Artificial Intelligence, 2000,
pp. 455-464.

[79] H.H. Meng, C. Wai, R. Pieraccini, The use of belief networks for mixed-
initiative dialog modeling, IEEE Trans. Speech Audio Process. 11 (6) (2003)
757-773.

[80] D. Griol, L.F. Hurtado, E. Segarra, E. Sanchis, Managing unseen situations in a
stochastic dialog model, in: Proceedings of AAAI Workshop Statistical and
Empirical Approaches for Spoken Dialogue Systems, Boston, USA, 2006,
pp. 25-30.

[81] D. Griol, ]. Iglesias, A. Ledezma, A. Sanchis, A dialog management methodol-
ogy based on evolving fuzzy-rule-based (FRB) classifiers, in: Proceedings of
the EAIS, Linz, Austria, 2014, pp. 1-8.

[82] D.E. Rumelhart, G.E. Hinton, RJ. Williams, Learning internal representations
by error propagation, PDP: Computational Models of Cognition and Percep-
tion, I, MIT Press, Cambridge, USA (1986) 319-362.

[83] S.M. Siniscalchi, T. Svendsen, C.H. Lee, An artificial neural network approach
to automatic speech processing, Neurocomput. J. 140 (2014) 326-338.

[84] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University
Press, Oxford, UK, 1995.

[85] H. Hotta, M. Kittaka, M. Hagiwara, Word vectorization using relations among
words for neural network, IEE] Trans. Electron. Inf. Syst. 130 (1) (2010)
75-82.

[86] G. Tsatsaronis, I. Varlamis, M. Vazirgiannis, Text relatedness based on a word
thesaurus, J. Artif. Intell. Res. 37 (1) (2010) 1-40.

[87] F. Zamora-Martinez, V. Frinken, S. Espana-Boquera, M. Castro-Bleda,
A. Fischer, H. Bunke, Neural network language models for off-line hand-
writing recognition, Pattern Recognit. 47 (4) (2014) 1642-1652.

[88] M. Zissman, Comparison of four approaches to automatic language identi-
fication of telephone speech, IEEE Trans. Speech Audio Process. 4 (1) (1996)
31-44.

[89] I. Bazzi, J. Glass, Modeling out-of-vocabulary words for robust speech
recognition, in: Proceedings of the ICSLP, 2000, pp. 401-404.

[90] G. Tsatsaronis, I. Varlamis, M. Vazirgiannis, Word sense disambiguation with
semantic networks, in: Lecture Notes in Computer Science, vol. 5246, 2008,
pp. 219-226.

[91] H. Markert, U. Kaufmann, Z. Kara, G. Palm, Neural associative memories for
the integration of language, vision and action in an autonomous agent,
Neural Netw. 22 (2009) 134-143.

[92] L. Gajecki, Architectures of neural networks applied for LVCSR language
modeling, Neurocomput. J. 133 (2014) 46-53.

[93] R. Socher, C. Chiung-Yu, A. Ng, C. Manning, Parsing natural scenes and
natural language with recursive neural networks, in: Proceedings of the
ICML, 2011, pp. 129-136.

[94] T. Sagara, M. Hagiwara, Natural language neural network and its application
to question-answering system, Neurocomput. J. 142 (2014) 201-208.

[95] S. Bangalore, G. DiFabbrizio, A. Stent, Learning the structure of task-driven
human-human dialogs, IEEE Trans. Audio Speech Lang. Process. 16 (7)
(2008) 1249-1259.

[96] A. Berger, S. Pietra, V. Pietra, A maximum entropy approach to natural
language processing, Comput. Linguist. 22 (1) (1996) 39-71.

[97] P. Haffner, Scaling large margin classifiers for spoken language understand-
ing, Speech Commun. 48 (4) (2006) 239-261.

[98] E. Torres, L. Hurtado, F. Garcia, E. Sanchis, E. Segarra, Error handling in a
stochastic dialog system through confidence measures, Speech Commun. 45
(3) (2005) 211-229.

[99] A. Raux, B. Langner, A. Black, M. Eskenazi, Let's go public! taking a spoken
dialog system to the real world, in: Proceedings of the Interspeech, 2005,
pp. 885-888.

[100] A. Black, S. Burger, B. Langner, G. Parent, M. Eskenazi, Spoken dialog
challenge 2010, in: Proceedings of the IEEE SLT, 2010, pp. 448-453.

12



[101] A.Schmitt, S. Ultes, W. Minker, A parameterized and annotated spoken dialog
corpus of the CMU Let's Go bus information system, in: Proceedings of the
LREC, 2012, pp. 3369-3375.

[102] J. Williams, I. Arizmendi, A. Conkie, Demonstration of AT&T Let's Go: a
production-grade statistical spoken dialog system, in: Proceedings of the SLT,
2010, pp. 157-158.

[103] H. Hastie, N. Merigaud, X. Liu, O. Lemon, “Let's Go, DUDE!” Using the Spoken
Dialogue Challenge to teach Spoken Dialogue development, in: Proceedings
of the IEEE SLT, 2010, pp. 466-471.

[104] B. Thomson, K. Yu, S. Keizer, M. Gasic, F. Jurcicek, F. Mairesse, S. Young,
Bayesian dialogue system for the Let's Go spoken dialogue challenge, in:
Proceedings of the IEEE SLT, 2010, pp. 460-465.

[105] R. Vidal, Subspace clustering, IEEE Signal Process. Mag. 28 (2) (2011) 52-68.

[106] E. Muller, S. Gunnemann, I. Assent, T. Seidl, Evaluating clustering in subspace
projections of high dimensional data, in: Proceedings of the VLDB, 2009,
pp. 1270-1281.

13





