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ABSTRACT

This paper analyses the long run relationship between gold and silver
prices. The three main questions addressed are: the in¯uence of a large
bubble from 1979 :9 to 1980 :3 on the cointegration relationship, the extent
to which by including error correction terms in a non linear way we can
beat the random walk model out of sample, and the existence of a strong
simultaneous relationship between the rates of return of gold and silver.
Di�erent e�cient single equation estimation techniques are required for
each of the three questions and this is explained within a simple bivariate
cointegrating system. With monthly data from 1971 to 1990, it is found that
cointegration could have occurred during some periods and especially
during the bubble and post bubble periods. However, dummy variables for
the intercept of the long run relationships are needed during the full
sample. For the price of gold the non linear models perform better than the
random walk in sample and out of sample. In sample non linear models
for the price of silver perform better than the random walk but this
predictive capacity is lost out of sample, mainly due to the structural
change that occurs (reduction) in the variance of the out of sample models.
The in sample and out of sample predictive capacity of the non linear
models is reduced when the variables are in logs. Clear and strong evidence
is found for a simultaneous relationship between the rates of return of gold
and silver. In the three type of relationships that we have analysed between
the prices of gold and silver, the dependence is less out of sample, possibly
meaning that the two markets are becoming separated. # 1998 John Wiley
& Sons, Ltd.
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INTRODUCTION

Gold and silver have been actively traded for thousands of years and remain important, closely
observed markets. Traditionally the ratio of gold to silver prices lay between eight and twenty,
suggesting a fairly close long run relationship. Here monthly prices are analysed from the end of
1971, when both price series were deregulated, until mid 1990 using some recently developed
time series techniques, including cointegration and linear and non linear error correction
models. Data after June 1990 are used to evaluate models. The main objective is to see if there is
any evidence of a stable or semi stable long run relationship between these prices that can be
useful for forecasting gold and silver prices. We are interested in estimating the contemporaneous
relationships between the prices of gold and silver in levels, in logs, in rates of return and in ®rst
di�erences. The simple economics of the situation is not clear, as gold and silver have both
distinct and important commercial uses for which there are no substitutes, suggesting that the
two markets should be separated. However, elsewhere they do act as quite close substitutes, such
as for jewellers and as investments that are used to reduce certain types of risks in portfolios,
particularly high in¯ation risks. These prices are determined in clearly speculative markets and so
can be expected to be unit root processes. If they are then cointegrated, the extent to which either
can be forecast will be expected to be limited, due to the standard e�cient market hypothesis. We
check the departures from the pure e�cient hypothesis by analysing the dynamic linear and non
linear structure of the ®rst di�erence of the series with the class of error correction models.
There is a feature of this data that makes it particularly interesting, which is the widely known

and well documented `bubble' in silver prices from roughly June 1979 to March 1980. The Hunt
brothers, of Texas, and others, appeared to try to corner the silver available for speculation, so
that investors who sold short had di�culty in buying silver to deliver at the end of the contract.
By August 1979 the Hunt brothers and their collaborators may have owned or had rights to
$2 billion worth of silver, representing over 250 million ounces. The price of silver rose from $6 in
1978 to $10.61 on 31 August 1979, peaking at $48.70 on 7 January 1980 and falling back to
$10.80 on 28 March 1980. The eventual price reduction occurred after substantial changes in
market trading rules. A rather journalistic account of the period can be found in the book Beyond
Greed by S. Fay (1982). For convenience this period just will be called `the bubble' in this paper
although it does not completely correspond to the concept of bubble found in the ®nancial
literature as its period of existence and the reason for occurrence are known with some accuracy.
A plot of the prices against time, as used in this analysis, is shown in Figures 1(a) and 1(c). It is
seen that gold prices do increase during and around the bubble, even though the Hunts do not
seem to have undertaken any special trading in gold in this period. However, the gold price
movement is less spectacular. A further objective of the paper is to investigate the e�ects of the
substantial bubble on the long run relationship and evaluate to what extent non linear error
correction models (NECs) can account for the rest.

Figure 2(a) plots the price of gold against the price of silver. The bubble corresponds to the six
points in the upper right quadrant. Apart from these points, the remainder do generally lie
around lines of a similar slope, although there does seem to be a possible change in intercept in
the pre and post bubble period. In the following analysis the `full sample' period 1971 :1 to
1990 :6, with 224 observations is analysed and also the `post bubble' period 1980 :4 to 1990 :6,
having 111 observations. Log prices and price levels are analysed separately. The data is taken
from the IMF, International Financial Statistics, the price of gold is $ per ®ne ounce, London and
the price of silver per troy ounce, New York.
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Figure 1. (a) Price of gold (PG) and price of silver (PS). (b) First di�erences of the prices of gold (DPG) and
silver (DPS). (c) Log of price of gold (LPG) and log of price of silver (LPS). (d) First di�erences of the log
prices of gold (DLPG) and silver (DLPS). (e) Ratio of prices of gold and silver (RGS). (f) Log of the ratio
of the price of gold and silver (LRGS)
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Figure 2. (a) Cross plot of the price of gold (PG) and the price of silver (PS) from 1971 :11 to 1990 :06.
(b) Cross plot of the ®tted values of PG against the price of silver (PS) from 1971 :11 to 1990 :06.
(c) Crossplot of the log prices of gold (LPG) against silver (LPS) from 1971 :11 to 1990 :6. (d) Cross plot of
the ®tted values of LPG against the log prices of silver (LPS) from 1971 :11 to 1990 :6. (e) Long run
relationship between the prices of gold and silver: price of gold (PG), ®tted values (PGFIT), and residuals
(R1G). (f) Long run relationship between the log prices of gold and silver: log price of gold (LPG), ®tted
values (LPGFIT), and residuals (R1LG)

g

4



The post sample period is 1990 :7 to 1994 :6, contains 48 terms. The choice of 1990 :7 as the
starting date is accidental; when the ®rst version of this paper was prepared, only about 15 terms
were preserved for the post sample, but delays in completion of the analysis has allowed this post
sample size to increase. It does allow for a methodological opportunity, which we have not seen
investigated before. In many time series modelling exercises, alternative models are compared by
their post sample forecasting ability. One can use forecast encompassing, for example, or the
combination of forecasts. However, a possible di�culty that this procedure of post sample
evaluation faces is that the generating mechanism for the process could have changed between the
in and out of sample, so that a regime shift had occurred. For this data set, we have su�cient
post sample data to analyse it and to thus compare the models found with in sample models. The
forecasts from the in sample models can then be compared with these post sample models.

The following notation is used: PG, PS for the price of gold and silver; LX for log of X, D X for
di�erence of X, X k � Xt k i.e. Xt lagged k time units. Thus, DLPG 3 is DLog Price Goldt 3 .
Three dummies are used in presenting the results:

DB 1 if t 1979 : 9 to 1980 : 3 0 otherwise

D2 1 if t 1980 : 4 to 1986 : 4 0 otherwise

D3 1 if t 1986 : 5 to 1990 : 6 0 otherwise

Thus DB represents the bubble period, D2 the immediate post bubble period and D3 a later
period when a further change in the intercept of the cointegrating relationship (if any) may have
occurred. The dummies that mainly a�ects the intercepts of the cointegrating relationships are
shown in Figures 1(a) and 1(c). The three periods used for the dynamic (linear and non linear)
analysis are shown in Figures 1(b) to 1(f).

The analysis performed in this paper is quite di�erent from that of two earlier papers that
consider gold and silver prices. Chan andMountain (1988) analyse weekly data, plus and interest
rate series for the early 1980s and are concerned with causality questions, using linear models and
without consideration of cointegration. They claim to have found a feedback relationship
between gold and silver prices and models that out forecast random walks, although this latter
statement is not formally tested. Akgiray et al. (1991) look at daily returns for gold and silver for
the period 1975 to 1986, where return is the ``natural logarithm of the ratio of two successive daily
spot prices''. They ®nd no forecastability in the means of returns but temporal structure in the
variance, which is modelled as a GARCH process. Our results, presented below, are rather
di�erent, but are di�cult to compare as we use di�erent techniques, time periods, and monthly
data. MacDonald and Taylor (1988) do consider cointegration between three monthly metal
prices tin, lead, and zinc and ®nd none, but do not look at gold and silver prices.

The structure of the paper is the following. The next section presents the results of estimating
the cointegration relationships between the prices of gold and silver in levels and in logs. The
third section discusses the selected linear and non linear error correction models for the prices of
gold and silver. The same class of models but estimated for the rates of return of gold and silver
are presented in the fourth section. The ®fth section presents the estimated contemporaneous
relationships between the ®rst di�erences of the two prices and between the two rates of return.
The economic intuition of these results is explained in terms of the implications on a normalized
portfolio. Conclusions are presented in the sixth section. Finally, in the Appendix there is a
discussion about e�cient estimation procedures of the three di�erent types of parameters of
interest.
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LONG RUN RELATIONSHIPS

The variables PG, PS, LPG, and LPS were all tested using Dickey Fuller tests in all sample sizes
and in all cases the null of I(1) was not rejected, but details are not shown. The plots in
Figures 2(a) and 2(c) are of PG against PS and LPG against LPS indicated apparent linear
relationships, but with occasional switches in level (intercept). These switches correspond to the
periods captured by the dummies de®ned above.

Table I shows the long run estimated regressions used to investigate the possible presence of
cointegration. The ®rst column has PG as its dependent variable and this is related to PS plus a
constant, the dummies de®ned in the previous section and a product of the bubble dummy and
PS in the second column now has PS as the dependent variable, with PS replaced by PG as the
explanatory variable and the same dummies. The ®nal two columns investigate similar long run
relationships between the logs of the prices of gold and silver. The question of greatest interest is
whether or not the residuals are I(1). If this `equilibrium regression' contained r explanatory I(1)
variables, critical values for the Dickey Fuller test, with or without a linear trend, are given by

Table I. Price of gold (PG) and price of silver (PS): long run relationships from 1971 :11 to 1990 :6

Regressors

Dependent
variable is

PG

Dependent
variable is

PS

Dependent
variable is
log(PG)

Dependent
variable is
log(PS)

Const 30.1 0.52 3.8 4.28
PS 26.6
PG 0.03
DB 138.7 10.3
DB*PS 12.8
DB*PG 0.04
D2 124.6 3.55 0.45 0.47
D3 218.4 7.07 0.80 0.90
log(PS) 0.79
log(PG) 1.16

Sample size 224 224 224 224
R2 0.98 0.97 0.97 0.95
DW 0.50 0.66 0.25 0.26
DF (unit root test on residuals) 5.59 ( 4.78)a 6.58 ( 4.78) 4.25 ( 3.78) 4.5 ( 3.78)

Tests of long run parameter constancy of full sample models (1971 :11 to 1990 :6) forecasting period is from
1990 :7 to 1994 :6

Forecast 11.94 11.08 96.96 118.2
Chi2 (48) p value 1.0 p value 1.0 p value 0.0 p value 0.0

Unit root test on long run errors: out of sample period
(1990 :7 to 1994 :6)

DF (no constant and no trend) 3.4 ( 1.95)b 3.3 ( 1.95)
DF (with constant and trend) 3.5 ( 3.5) 3.3 ( 3.5)

a In parentheses are the 5% critical values for this particular sample size, obtained from Mackinnon (1991) by counting
each regressor, but the intercept, as a new variable.
b In parentheses are the 5% critical values obtained from Mackinnon (1991), which are the Dickey Fuller critical values
but adjusted for this particular sample size.
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MacKinnon (1991) for r4 5. However, our regression is not a traditional one, as each equation
contains one regular I(1) variable, two or three dummies and possibly a dummy multiplying the
I(1) variable. It is suggested that the equivalent number of explanatory variables will be either
between 1 and 5 for the PG and PS equations and either 1, 2, or 3 for the LPG and LPS
equations. Using the MacKinnon tables, the 95% critical values for 1, 2, 3, 4, and 5 explanatory
variables are 3.37, 3.80, 4.17, 4.49, and 4.77, respectively for H0 : the residual is I(1). For
each of the residuals, the null is rejected, in the direction of the residual being I(0). The results
thus suggest several features of the data:

(1) Cointegration appears to be found for the full sample, both for levels and for logs.
(2) The intercept dummies greatly strengthen the cointegration results. Without their use,

cointegration is marginal. Fewer dummies are needed for the logs of prices than for the
prices. The dummies are largely used to explain the bubble period and its impact on the post
bubble period.

If there is cointegration between PG and PS, there will be just a single equilibrium relationship,
and so it should be possible to solve for the second column of Table I from the ®rst column, by
switching the sides of the equation of PG and PS. This relation would hold exactly if R2 1.
Suppose that the ®rst equation is written as

PG c � yPS � b1DB � lDB � PS � b2D2 � b3D3 � e

which solves out as

PS y 1 �c � b1DB � b2D2 � b3D3 � PG�
�1 � l=y �DB�

From Table I it is seen that y 26.6, l 12.8, etc. For the period when DB 0, it is possible to
compare the values given by this formula with those obtained from the full sample regressions,
given in Table I.

Regressor Full-sample Derived estimate
Constant 0.52 1.13
PG 0.03 0.04
D2 3.55 4.68
D3 7.07 8.21

and for the bubble period:

DB 10.3 10.4
DB*PG 0.04 0.04

A similar exercise with the ®nal two columns of Table I, deriving an equation for LPS from the
LPG equation gave the following

Regressor Full-sample regressor Derived LPG eqn
Constant 4.28 4.80
LPG 1.16 1.27
D2 0.47 0.57
D3 0.90 1.01
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The bubble period was not speci®cally involved with the log price equations as the regressions
found the bubble dummies insigni®cant. The derived equations appear adequately to approxi
mate the values found by direct estimation. As these equations have residuals that are not white
noises, con®dence intervals on the coe�cient estimates are not reported, so a formal comparison
is not attempted. However, this analysis gives added con®dence that the apparent cointegration
was actually present at least during part of the in sample period.

Table I also shows the values found forDickey Fuller tests applied to the errors (parameters are
not estimated out of sample) of the equilibriummodels when applied to the out of sample period.
With 48 terms, theMacKinnon (1991) table suggests a 95% critical value of 1.94 for theDickey
Fuller test with no constant or trend and 3.42 for this test with a trend for a single series and with
no explanatory series, so that the ®rst pair of residual series reject I(1) but the residuals from the
log prices do not do so clearly. There is some evidence that the cointegration continues into the
post sample, but the evidence is weak for the log price series (compare Figures 2(e) and 2(f)).

Chow forecast test results for parameter constancy are also shown in Table I, ®nding no
further evidence of changes in parameter values for the long run relationships for the levels of the
prices of gold and silver, but there are signi®cant changes in the log price relationships (compare
also Figures 2(e) and 2(f)). A possible explanation for the results of the test is that the variances of
the residuals for the in and out of sample periods are quite di�erent, as will be documented in
later sections.

ERROR CORRECTION MODELS FOR THE PRICES OF GOLD AND SILVER

In this section a number of alternative error correction models are considered with DPG and DPS
as the dependent variables, where D denotes di�erence. Models are estimated over the three time
periods identi®ed in the ®rst section, the full sample (1972 :12 to 1990 :6), the post bubble period
(1981 :04 to 1990 :6), and the post sample period (1990 :7 to 1994 :6), then the models for the ®rst
two periods are used to provide one step forecasts over the post sample period.

Seven di�erent types of model speci®cation were considered. In models 1 to 4, lags of DPG and
DPS were included for consideration, up to lag 10. These terms were not used in models 5 to 7. In
models 1, 3, 4, and 7 the error correction terms Zt 1 entered the model non linearly.

Model 5 is the simplest in form, with no explanatory variable and so corresponds to the
random walk model. Model 2 is the standard linear error correction model, using lagged price
di�erences, Model 6 is similar but without the lagged terms. Model 1 uses a cubic inZt 1 , as used
previously by Escribano (1986) (see Figure 3(a)). Model 3 includes terms Zt 1D(Zt 14 0) and
Zt 1D(Zt 14 0) where D(Z4 0) is a dummy that is one if Z is positive, zero otherwise, which
corresponds to putting Zt 1 and its absolute value into the model (see Figure 3(c)). This non
linear form of the error correction model has been used by Granger and Lee (1989), for example.
Models 4 and 7 use terms Zt 1D(DZt 14 0) and Zt 1D(DZt 14 0), which is a form previously
used by Escribano and Pfann (1990) (see Figure 3(d)). In every model and for each time period
the term Zt is de®ned as the residual in the corresponding full sample equilibrium model given in
Table I. In sample, ®ve speci®cation tests are provided for each model, to test for autocorrela
tions in the residuals, up to lag seven, ARCH up to order 7, normality, heteroscedasticity and the
Reset test for linearity. Each equation is estimated individually by OLS. As essentially the same
explanatory variables are used in both model 1 for DPG and DPS, no gain in e�ciency would
occur from estimating the system, and similarly for other pairs. The coe�cients on the lags of
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DPG, DPS (or the lags) plus their t values, are not shown to save space. All t values shown are
heteroscedastic robust. However, the t values on Z terms are non standard under a null of no
cointegration.

Table II(a) shows the estimates of the seven models for the error correction model having DPG
as dependent variable, using the full sample period on the top, and below the same speci®cations
are used over the post sample period. Table II(b) similarly shows the estimates for these models
for the post bubble period at the top, and underneath the same speci®cation for out of sample.
Thus, if a particular group of variables are reported in the model in the top panel, they will be
used again in the bottom one. Tables II(c) and II(d) show the identical tables using DPS as the
dependent variable. Table II(e) summarizes forecasting evaluations of the four models in sample

Figure 3. (a) Non linear error correction (NEC1) (Escribano, 1986): model 1 of Table V(a). (b) Linear error
correction (LEC) (Engle and Granger, 1987): model 2 of Table V(a). (c) Non linear error correction
(NEC3) (Granger and Lee, 1989): model 3 of Table V(a). (d) Non linear error correction (NEC4)
(Escribano and Pfann, 1990): model 4 of Table V(a)
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(full and post bubble) models. Clearly these tables contain many results, and those to which we
wish to draw particular attention are:

(1) There does appear to be some evidence of non linearity in error correction terms in models 1
and 3 for DPG (Table II(a)) and possibly for DPS (Table II(c)) for the full sample. However,
no corresponding evidence of non linearity is found in the post bubble and out of sample
period models. Models in these latter two periods generally pass the speci®cation tests

Table II(a). Dependent variable: ®rst di�erence of the price of gold (DPG)

Regressors Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Full sample models (1972:12 to 1990:6)
Constant 4.7 (2.5)a 1.5 (0.9) 3.6 (1.9) 1.7 (1.1) 1.4 (0.8) 1.4 (0.8) 1.5 (0.8)
Lags of DPG and DPSb Yes Yes Yes Yes No No No
Z 1� 10 0.6 (0.9) 0.3 (0.4)

Z2
1 � 102 0.7 (3.4)

Z3
1 � 104 0.6 (2.7)

Z 1D(Z 14 0) 0.2 (2.2)
Z 1D(Z 14 0)
Z 1D(DZ 14 0) 0.1 (1.3) 0.04 (0.4)
Z 1D(DZ 14 0)
Sample size 211 211 211 211 211 211 211
R2 0.29 0.26 0.27 0.26 0.00 0.00 0.0
DW 2.04 2.03 2.02 2.03 1.61 1.6 1.6
s 22.54 23.07 22.88 23.05 26.21 26.26 26.26
AR(7), F(7, ) 0.24 0.43 0.47 0.42 3.47 3.47 3.46
ARCH(7), F(7, ) 2.2 2.4 2.3 2.4 2.0 2.06 2.04
Normality, Chi2 (2) 114.0 125.7 121.9 120.9 173.2 172.7 171.7
Heter. x2i , F( , ) 3.35 3.6 3.5 3.5 0.92 0.04
Reset, F(1, ) 0.04 0.20 0.21 0.10 3.30 2.83

Out of sample models (1990:7 to 1994:6)
Constant 0.5 (0.3)a 1.1 (0.1) 2.7 (1.6) 1.0 (0.8) 0.7 (0.4) 0.1 (0.1) 1.0 (0.8)
Lags of DPG and DPSb Yes Yes Yes Yes No No No
Z 1 0.3 (2.7) 0.3 (2.8)

Z2
1 � 104 0.6 (0.0)

Z3
1 � 103 0.7 (2.3)

Z 1D(Z 14 0) 0.5 (2.2)
Z 1D(Z 14 0)
Z 1D(DZ 4 0) 0.6 (3.9) 0.6 (3.4)
Z 1D(DZ 14 0)
Sample size 48 48 48 48 48 48 48
R2 0.27 0.30 0.26 0.40 0.00 0.15 0.22
DW 2.09 2.00 1.92 1.83 1.76 1.72 1.70
s 9.80 9.49 9.73 8.78 10.32 9.64 9.22
AR(7), F(7, ) 0.48 0.41 0.44 0.82 1.04 1.15 1.15
ARCH(7), F(7, ) 1.3 0.66 0.95 0.34 1.11 2.28 3.13
Normality, Chi2 (2) 11.7 13.4 14.3 9.3 5.8 4.16 4.5
Heter. x2i , F( , ) 0.54 0.56 0.49 0.68 0.07 0.82
Reset, F(1, ) 0.03 0.9 1.29 2.05 0.01 0.31

a In parentheses are the absolute values of the t ratios of the coe�cients. When homoscedasticity is rejected hetero
scedasticity consistent standard errors (HCSEs) are used in the t ratios (White, 1980).
b The terms not reported are the coe�cients of DPG 7 , DPG 10 , DPS 1 , DPS 2 , DPS 3 , DPS 8 , DPS 10 . Those
coe�cients are signi®cant in the full sample but many of them are not in the out of sample period.
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(except normality) whereas for the full sample most models failed the ARCH and
heteroscedasticity tests.

(2) For DPG, model 1 produced the lowest value of s in both the full and post bubble periods,
whereas model 7 produced the lowest s value out of sample. For DPS, model 1 gave the
lowest s in the full period, models 1 and 3were equal best in the post bubble period andmodel
6 was best in the out of sample period. Some of the s2 values obtained were not signi®cantly
di�erent, as reported below. The non linear error correction terms should be considered as

Table II(b). Dependent variable: ®rst di�erence of the price of gold (DPG)

Regressors Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Post bubble models (1981:04 to 1990:6)
Constant 1.3 (0.58)a 1.8 (1.0) 1.8 (0.8) 2.4 (1.3) 1.3 (0.7) 1.3 (0.7) 1.3 (0.7)
Lags of DPG and DPSb Yes Yes Yes Yes No No No
Z 1 0.2 (1.9) 0.06 (0.8)

Z2
1 � 102 0.6 (2.5)

Z3
1 � 104 0.9 (2.6)

Z 1D(Z 14 0) 0.37 (2.7)
Z 1D(Z 14 0)
Z 1D(DZ 14 0) 0.09 (0.8) 0.08 (0.8)
Z 1D(DZ 14 0) 0.27 (2.0) 0.05 (0.4)
Sample size 111 111 111 111 111 111 111
R2 0.17 0.13 0.16 0.14 0.00 0.00 0.0
DW 1.95 1.96 1.96 1.93 1.84 1.83 1.82
s 18.66 19.04 18.72 19.03 19.55 19.57 19.66
AR(7), F(7, ) 0.32 0.35 0.31 0.35 1.22 1.27 1.24
ARCH(7), F(7, ) 1.43 1.54 1.67 1.36 3.95 4.35 4.34
Normality, Chi2 (2) 6.35 7.20 8.02 5.81 24.7 28.8 28.3
Heter. x2i , F( , ) 0.62 0.78 0.69 0.72 0.07 0.16
Reset, F(1, ) 0.33 1.73 1.10 0.79 5.04 3.54

Out of sample models (1990:7 to 1994:6)
Constant 0.5 (0.2)a 0.1 (0.1) 2.5 (1.3) 0.9 (0.5) 0.7 (1.4) 0.1 (0.1) 0.9 (0.6)
Lags of DPG and DPSb Yes Yes Yes Yes No No No
Z 1 0.3 (2.3) 0.3 (2.8)

Z2
1 � 104 0.8 (0.0)

Z3
1 � 103 0.8 (2.0)

Z 1D(Z 14 0) 0.5 (1.8)
Z 1D(Z 14 0)
Z 1D(DZ 14 0) 0.6 (3.0) 0.6 (3.3)
Z 1D(DZ 14 0) 0.1 (0.6) 0.1 (0.6)
Sample size 48 48 48 48 48 48 48
R2 0.22 0.24 0.20 0.31 0.00 0.15 0.22
DW 2.11 1.98 1.95 1.88 1.76 1.72 1.67
s 10.27 10.03 10.28 9.66 10.32 9.64 9.31
AR(7), F(7, ) 1.34 0.75 0.89 1.02 1.04 1.15 1.26
ARCH(7), F(7, ) 1.04 1.48 1.23 2.76 1.11 2.28 3.11
Normality, Chi2 (2) 3.14 2.66 2.11 0.84 5.78 4.16 4.52
Heter. x2i , F( , ) 0.42 0.33 0.39 0.51 0.07 0.77
Reset, F(1, ) 0.09 1.49 2.69 1.05 0.01 0.40

a In parentheses are the absolute values of the t ratios of the coe�cients. When homoscedasticity is rejected hetero
scedasticity consistent standard errors (HCSEs) are used in the t ratios (White, 1980).
b The terms not reported are the coe�cients of DPG 1 , DPG 4 , DPG 5 , DPG 6 , DPG 8 , DPS 1 , DPS 4 , DPS 8 . Those
coe�cients are signi®cant in the post bubble sample but many of them are not in the out of sample period.
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local approximations to the true non linear speci®cation if it occurs. In particular, if Zt 1

enters a cubic it would produce a non stable di�erence equation for xt , since for large values
Zt 1 the cubic polynomial is unbounded, and so would not be appropriate as this series is
supposed to be I(0). However, as an approximation to the unknown non linear function the
cubic polynomial is very informative since it can encompass large types of nonlinear
adjustments toward the equilibrium (compare Figure 3(a) with 3(c)).

Table II(c). Dependent variable: ®rst di�erence of the price of silver (DPS)

Regressors Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Full sample models (1972:12 to 1990:6)
Constant� 10 2.0 (2.4)a 0.2 (0.2) 4.0 (2.6) 1.0 (0.9) 0.1 (0.1) 0.2 (0.1) 5.0 (2.7)
Lags of DPS and DPGb Yes Yes Yes Yes No No No
Z 1 0.1 (0.4) 0.05 (0.4) 0.1 (0.4)

Z2
1 0.3 (3.7)

Z 3
1 0.04 (0.6)

Z 1D(Z 14 0) 0.6 (2.3) 0.55 (2.0)
Z 1D(Z 14 0) 0.6 (1.9) 0.9 (1.6)
Z 1D(DZ 14 0) 0.4 (2.0)
Z 1D(DZ 14 0) 0.23 (1.0)
Sample size 211 211 211 211 211 211 211
R2 0.41 0.33 0.37 0.35 0.00 0.00 0.06
DW 1.85 2.02 1.94 2.00 1.35 1.36 1.38
s 1.41 1.50 1.45 1.48 1.789 1.790 1.74
AR(7), F(7, ) 2.36 0.16 0.42 0.18 11.55 11.0 11.76
ARCH(7), F(7, ) 4.11 10.4 5.94 8.21 8.68 8.32 6.12
Normality, Chi2 (2) 433.9 235.3 158.9 149.9 883.4 823.0 577.4
Heter. x2i , F( , ) 2.63 3.66 3.00 3.14 4.59 1.99
Reset, F(1, ) 4.44 12.02 9.70 12.48 29.28 27.87

Out of sample models (1990:7 to 1994:6)
Constant� 10 0.6 (1.3)a 0.2 (0.6) 1.0 (1.5) 0.4 (1.2) 0.1 (0.3) 0.2 (0.7) 0.6 (1.0)
Lags of DPS and DPGb Yes Yes Yes Yes No No No
Z 1 0.05 (0.3) 0.06 (0.6) 0.08 (1.2)

Z2
1 0.3 (1.3)

Z3
1 0.03 (0.1)

Z 1D(Z 14 0) 0.29 (1.1) 0.1 (0.8)
Z 1D(Z 14 0) 0.24 (1.5) 0.2 (1.7)
Z 1D(DZ 14 0) 0.1 (1.1)
Z 1D(DZ 14 0) 0.2 (1.9)
Sample size 48 48 48 48 48 48 48
R2 0.21 0.14 0.19 0.21 0.00 0.02 0.04
DW 1.94 2.04 2.01 2.00 1.81 1.84 1.89
s 0.2322 0.2348 0.2318 0.2288 0.2287 0.2285 0.2292
AR(7), F(7, ) 0.57 0.39 0.41 1.12 0.67 0.71 0.27
ARCH(7), F(7, ) 2.22 1.95 2.04 2.46 3.16 2.93 2.61
Normality, Chi2 (2) 14.69 10.9 13.60 20.20 7.95 8.52 10.48
Heter. x2i , F( , ) 1.39 1.53 1.48 1.28 1.35 1.24
Reset, F(1, ) 0.01 0.22 0.00 0.04 1.05 0.29

a In parentheses are the absolute values of the t ratios of the coe�cients. When homoscedasticity is rejected hetero
scedasticity consistent standard errors (HCSEs) are used in the t ratios (White, 1980).
b The terms not reported are the coe�cients of DPS 1 , DPS 2 , DPS 5 , DPS 7 , DPS 8 , DPG 1 , DPG 7 , DPG 9 . Those
coe�cients are signi®cant in the full sample but many of them are not in the out of sample period.
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(3) There are clear di�erences between s values across time periods. To summarize the data, the
following shows the median s value over the seven models for di�erent periods:

DPrice DPrice DLog price DLog price
gold silver gold silver

Full sample 23.07 1.50 0.0613 0.0953
Post bubble sample 19.04 0.61 0.0487 0.0736
Out of sample period 9.64 0.23 0.0278 0.0507
Forecasts from full sample 10.24 0.29 0.0284 0.0501
Forecasts from post bubble models 10.32 0.28 0.0289 0.0519

Table II(d). Dependent variable: ®rst di�erence of the price of silver (DPS)

Regressors Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Post-bubble models (1981 :04 to 1990 :6)
Constant� 10 0.3 (0.4)a 0.4 (0.7) 0.6 (0.7) 0.3 (0.5) 1.0 (1.0) 1.0 (1.1) 1.0 (1.0)
Lags of DPS and DPGb Yes Yes Yes Yes No No No
Z 1 0.2 (1.6) 0.01 (1.4) 0.1 (1.2)

Z2
1 0.1 (1.8)

Z3
1 0.04 (1.1)

Z 1D(Z 14 0) 0.2 (2.0) 0.3 (1.8)
Z 1D(Z 14 0) 0.05 (0.4) 0.1 (1.2)
Z 1D(DZ 14 0) 0.15 (1.2)
Z 1D(DZ 14 0) 0.1 (0.9)
Sample size 111 111 111 111 111 111 111
R2 0.34 0.32 0.34 0.32 0.00 0.03 0.07
DW 1.88 1.92 1.89 1.91 1.93 1.89 1.81
s 0.6051 0.6088 0.6051 0.6113 0.7017 0.6956 0.6846
AR(7), F(7, ) 0.46 0.51 0.51 0.51 2.41 2.46 2.49
ARCH(7), F(7, ) 0.87 0.86 0.89 0.88 3.49 4.67 5.54
Normality, Chi2 (2) 17.62 21.48 20.44 21.18 41.70 34.80 28.70
Heter. x2i , F( , ) 1.61 1.83 1.54 1.66 3.36 2.45
Reset, F(1, ) 0.23 0.01 0.00 0.00 4.67 0.15

Out-of-sample models (1990 :7 to 1994 :6)
Constant� 10 0.5 (1.1)a 0.2 (0.5) 1.0 (1.2) 0.3 (1.0) 0.1 (0.3) 0.2 (0.7) 1.0 (1.2)
Lags of DPS and DPGb Yes Yes Yes Yes No No No
Z 1 0.03 (0.2) 0.05 (0.4) 0.1 (1.2)

Z2
1 0.3 (1.1)

Z3
1 0.1 (0.4)

Z 1D(Z 14 0) 0.3 (0.9) 0.1 (0.8)
Z 1D(Z 14 0) 0.2 (1.0) 0.2 (1.7)
Z 1D(DZ 14 0) 0.2 (1.4)
Z 1D(DZ 14 0) 0.3 (1.8)
Sample size 48 48 48 48 48 48 48
R2 0.18 0.14 0.17 0.27 0.00 0.02 0.04
DW 1.94 1.92 1.95 1.95 1.81 1.84 1.89
s 0.2430 0.2419 0.2411 0.2261 0.2287 0.2285 0.2292
AR(7), F(7, ) 0.60 0.19 0.45 0.90 0.67 0.70 0.68
ARCH(7), F(7, ) 1.75 1.90 1.76 1.40 3.16 2.93 2.61
Normality, Chi2 (2) 7.22 3.70 6.25 7.16 7.95 8.52 10.48
Heter. x2i , F( , ) 0.24 0.22 0.26 0.18 1.35 1.24
Reset, F(1, ) 0.29 1.56 0.39 0.38 1.05 0.29

* In parentheses are the absolute values of the t ratios of the coe�cients. When homoscedasticity is rejected hetero
scedasticity consistent standard errors (HCSEs) are used in the t ratios (White, 1980).
b The terms not reported are the coe�cients of DPS 3 , DPS 4 , DPS 7 , DPS 8 , DPG 1 , DPG 3 , DPG 4 , DPG 5 , DPG 6 ,
DPG 8 . Those coe�cients are signi®cant in the full sample but many of them are not in the out of sample period.
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As the price of gold is substantially higher than that of silver, it is hardly surprising that the
standard deviations of the residuals for the DPG equations are much larger than those for
DPS. It is less clear why this inequality is reversed for the log prices. The full sample includes
the bubble, which is not completely captured by the simple dummies used in the long run
relationship, and so again it is not surprising that s for the full sample is larger than for other
periods. However, it is also clear from these results, and also visually from Figures 1(a) to
1(d), that volatility is less during the out of sample period than previous periods.

(4) The results of the out of sample one step forecasting exercises using the models in
Tables II(a) (d) are shown in Table II(e). The ®gures show that in terms of producing low
s values from these errors, models 6 and 7 do best for PG, with the post sample model
superior to the full sample model. Similarly models 5, 6, and 7 are superior for both periods
for PS. Thus, the models that ®t best in sample do not forecast the best. The table also shows
the result of testing if the errors from the apparently best forecasting model have a
signi®cantly lower variance than the errors from the random walk model (5). The test used is
that discussed in Granger and Newbold (1986), Chapter 7, and more recently by Diebold

Table II(e). Forecasting evaluation of models for DPG and DPS based on their one step forecast errors
from 1990 :7 to 1994 :6

Forecasting
error criteria Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Forecasting DPG with the full sample models of Table II(a)
(1972:12 to 1990:6)
s 10.40 10.36 10.19 10.24 10.32 10.17 10.16
SC 4.74 4.74 4.70 4.71 4.73 4.70 4.70
HQ 4.72 4.71 4.68 4.69 4.70 4.67 4.67
FPE 110.41 109.59 105.98 107.13 108.73 105.61 105.40
Forecast test: 26.5
compares models 7 and 5 (3.5)

Forecasting DPG with the post bubble models of Table II(b)
(1981:04 to 1990:6)
s 11.26 10.74 10.81 11.17 10.32 10.05 10.01
SC 4.90 4.81 4.82 4.89 4.73 4.67 4.67
HQ 4.88 4.78 4.80 4.86 4.70 4.65 4.64
FPE 129.38 117.72 119.29 127.41 108.73 103.10 102.24
Forecast test: 10.03
compares models 7 and 5 (2.9)

Forecasting DPS with the full sample models of Table II(c)
(1972:12 to 1990:6)
s 0.26 0.30 0.29 0.30 0.23 0.23 0.29
SC 2.65 2.36 2.44 2.34 2.89 2.91 2.43
HQ 2.68 2.39 2.46 2.37 2.92 2.93 2.46
FPE 0.07 0.09 0.08 0.09 0.05 0.05 0.08
Forecast test: 0.41
compares models 6 and 5 (0.3)

Forecasting DPS with the post bubble models of Table II(d)
(1981:04 to 1990:6)
s 0.29 0.29 0.28 0.28 0.23 0.24 0.23
SC 2.44 2.45 2.52 2.48 2.89 2.78 2.88
HQ 2.46 2.47 2.55 2.50 2.92 2.81 2.91
FPE 0.08 0.08 0.08 0.08 0.05 0.06 0.05
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and Mariano (1995). If the two sets of errors to be compared are e1t ,e2t , one forms
st e1t � e2t and dt e1t e2t and asks if st ,dt are correlated. In our case the regression of st
on dt was run and the results in Table II(e) show the coe�cient found and its t value. It is
seen that for gold the full sample and the post bubble period model 7 forecasts signi®cantly
better than the random walk, but no such result is found for silver.

(5) The results of the previous two comments suggest that there could have been a change in
parameter values for the models from in to out of sample, including a volatility change,
supporting the idea that the two markets are becoming more separated.

ERROR CORRECTION MODELS FOR THE LOG PRICES OF GOLD AND SILVER

A similar modelling process was conducted using log prices and the results for DLPG dependent
variable are shown in Tables III(a) and III(b) and with DLPS as dependent variable in
Tables III(c) and III(d) with the forecast evaluations shown in Table III(e). Speci®cation,
estimation, and evaluation details are as in the previous section. Some noteworthy features of
these results are:

(1) All the models for DLPG have no apparent signi®cant long run structure as all terms
involving Zt 1 have low t values. For the DLPS models, there is evidence that Zt 1 enters
signi®cantly, either linearly or possibly non linearly, at least in the full sample. Taken at its
face value, these results would be interpreted as saying that LPG and LPS are cointegrated
with LPG as the common stochastic trend. The statistical results for the post bubble and the
out of sample periods are less clear but are not contradictory to such a conclusion. If LPG is
the common stochastic trend, an implication is that there is evidence of a long run causality
from log gold prices to log silver prices, according to Granger and Lin (1995). It is possible
that this causality was present around the bubble period but not in more recent periods.

(2) In terms of s values, the ®rst four models generally ®tted best for the three sample periods
for both LPG and LPS, so that using lags of LPG, LPS produced an apparently superior
model, contrary to a random walk theory. The forecasting results are less clear, for log gold
prices models 5 and 6 or 7 provide the best forecasts but there is actually very little to choose
between the various models results. For log silver prices, models 2 or 3 provide the best
forecasts and generally, models 5, 6, and 7, which use no lag terms, all rank low in their
forecasting performance. The signi®cance of the best forecasting model compared to the
random walk was tested using the same sum and di�erence of errors procedure described in
the previous section. For LPG no comparison was required as the random walk was the best
model for both the full and post bubble periods. For LPS the best models were not found to
be signi®cantly better at forecasting than the random walk.

(3) Comparing the s values of the residuals of the out of sample models with those of the one
step forecasts shows that there is little gained from the out of sample modelling process, i.e.
with this data. Put another way, there seems to be little temporal structure in the post sample
period for either LPG or LPS, so that both are rather well described as random walks,
probably without cointegration. This appears to be a di�erent model from that found for the
in sample periods, at least for the LPS.

The tests for parameter constancy were applied to all the error correction models, either for the
full or post sample bubble sample periods compared to the post sample period. These tests
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typically assume that the variance of the residuals is the same in all periods. However, this seems
not to be true here, and if the residual variance is less out of sample than in sample, as found
here, the test is biased towards not rejecting the null of no change of parameter values. In all
cases, this null was not rejected but this is thought to be a consequence of the test rather than a
property of the data in some cases.

Generally, the results for the log prices are quite di�erent, and usually simpler, than those for
the levels of prices. The log gold prices are nearly a randomwalk, and are the long run cause of log
silver prices for at least part of the full period. Evidence of a non linear error correction model for

Table III(a). Dependent variable: ®rst di�erence of the log price of gold (DLPG)

Regressors Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Full sample models (1972:12 to 1990:6)
Constant� 102 1.0 (1.0)a 0.4 (0.9) 0.4 (0.8) 0.4 (0.9) 0.8 (1.8) 0.8 (1.8) 1.0 (1.6)
Lags of DLPG and DLPSb Yes Yes Yes Yes No No No
Z 1� 102 1.0 (0.1) 3.0 (0.6) 0.04 (0.01)

Z2
1 0.1 (0.6)

Z3
1 1.2 (0.7)

Z 1D(Z 14 0) 0.04 (0.6)
Z 1D(Z 14 0) 0.02 (0.2)
Z 1D(DZ 14 0) 0.05 (0.8) 0.02 (0.4)
Z 1D(DZ 14 0) 0.007 (0.1) 0.03 (0.4)
Sample size 211 211 211 211 211 211 211
R2 0.19 0.19 0.19 0.19 0.00 0.00 0.00
DW 2.03 2.02 2.02 2.03 1.41 1.41 1.42
s 0.0613 0.0611 0.0613 0.0612 0.0666 0.0667 0.0668
AR(7), F(7, ) 0.43 0.45 0.48 0.50 4.56 4.55 4.56
ARCH(7), F(7, ) 1.72 1.82 1.79 1.76 1.30 1.29 1.23
Normality, Chi2 (2) 43.03 42.21 42.31 43.33 47.53 47.54 45.96
Heter. x2i , F( , ) 1.81 1.91 1.82 1.65 1.16 0.66
Reset, F(1, ) 0.12 0.26 0.23 0.17 0.42 0.86

Out of sample models (1990:7 to 1994:6)
Constant� 10 0.3 (1.4)a 0.3 (2.0) 0.3 (2.0) 0.2 (1.8) 0.02 (0.5) 0.2 (1.5) 0.1 (1.2)
Lags of DLPG and DLPSb Yes Yes Yes Yes No No No
Z 1 0.6 (0.9) 0.16 (2.0) 0.1 (1.4)

Z2
1 5.4 (0.9)

Z3
1 16.1 (1.1)

Z 1D(Z 14 0) 0.16 (2.0)
Z 1D(Z 14 0)
Z 1D(DZ 14 0) 0.2 (2.0) 0.1 (1.5)
Z 1D(DZ 14 0) 0.1 (1.3) 0.05 (0.6)
Sample size 48 48 48 48 48 48 48
R2 0.22 0.17 0.17 0.18 0.00 0.04 0.06
DW 2.1 2.07 2.07 2.11 1.74 1.82 1.83
s 0.02765 0.02781 0.02781 0.02795 0.02817 0.02783 0.02791
AR(7), F(7, ) 1.27 1.24 1.23 1.03 1.06 1.25 1.07
ARCH(7), F(7, ) 1.89 1.68 1.68 1.76 1.00 1.16 1.21
Normality, Chi2 (2) 5.74 4.00 4.00 4.65 4.91 4.44 4.34
Heter. x2i , F( , ) 0.70 0.73 0.73 0.67 0.80 0.99
Reset, F(1, ) 0.20 0.46 0.46 0.26 0.62 0.56

a In parentheses are the absolute values of the t ratios of the coe�cients. When homoscedasticity is rejected hetero
scedasticity consistent standard errors (HCSEs) are used in the t ratios (White, 1980).
b The terms not reported are the coe�cients of DLPG 1 , DLPG 6 , DLPG 7 , DLPG 11 , DLPS 2 , DLPS 11 . Those
coe�cients are signi®cant in the full sample but many of them are not in the out of sample period.
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DLPS is possible but the evidence is not strong. For price levels, there is stronger evidence for non
linear error correction terms, the direction of long run causality is now more likely to be from PS
to PG but non linearly. There seems to be clear evidence of time varying coe�cients and of
volatility through the data period being considered. As the prices get further from the bubble
period, volatility decreases, prices become nearer to random walks and cointegration is reduced,
possibly lost. The advantage of having a long out of sample period is indicated, as an appropriate
time varying coe�cient test can be applied. Without this, the problem of the best in sample
models producing relatively inferior forecasts would have been unresolvable.

Table III(b). Dependent variable: ®rst di�erence of the log price of gold (DLPG)

Regressors Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Post bubble models (1981:4 to 1990:6)
Constant� 102 0.3 (0.6)a 0.4 (0.8) 0.3 (0.4) 0.3 (0.6) 0.3 (0.7) 0.3 (0.7) 0.3 (0.6)
Lags of DLPGb Yes Yes Yes Yes No No No
Z 1� 10 0.08 (0.1) 0.2 (0.5) 0.04 (0.8)

Z2
1 � 10 0.1 (0.2)

Z3
1 0.5 (0.3)

Z 1D(Z 14 0) 0.01 (0.2)
Z 1D(Z 14 0) 0.03 (0.4)
Z 1D(DZ 14 0) 0.001 (0.02) 0.02 (0.3)
Z 1D(DZ 14 0) 0.06 (0.6) 0.08 (0.6)
Sample size 111 111 111 111 111 111 111
R2 0.04 0.04 0.04 0.04 0.00 0.00 0.00
DW 1.93 1.93 1.93 1.94 1.83 1.84 1.83
s 0.0488 0.0484 0.0486 0.0485 0.0487 0.0488 0.0490
AR(7), F(7, ) 0.68 0.74 0.74 0.58 1.19 1.16 1.06
ARCH(7), F(7, ) 2.93 2.99 2.99 2.75 4.51 4.23 3.86
Normality, Chi2 (2) 3.41 3.33 3.33 2.65 16.36 14.02 11.44
Heter. x2i , F( , ) 2.26 3.48 2.54 2.87 0.08 1.85
Reset, F(1, ) 0.42 0.31 0.37 0.00 0.05 1.14

Out of sample models (1990:7 to 1994:6)
Constant� 10 0.2 (1.0)a 0.2 (1.4) 0.2 (1.4) 0.1 (1.2) 0.02 0.15 (1.5) 0.1 (1.2)
Lags of DLPGb Yes Yes Yes Yes No No No
Z 1 0.5 (0.7) 0.1 (1.4) 0.1 (1.5)

Z2
1 4.6 (0.8)

Z3
1 13.2 (1.0)

Z 1D(Z 14 0) 0.1 (1.4)
Z 1D(Z 14 0)
Z 1D(DZ 14 0) 0.09 (1.4) 0.1 (1.5)
Z 1D(DZ 14 0) 0.05 (0.5) 0.05 (0.6)
Sample size 48 48 48 48 48 48 48
R2 0.08 0.05 0.05 0.06 0.00 0.04 0.06
DW 1.95 1.92 1.92 1.92 1.74 1.82 1.83
s 0.02853 0.02838 0.02838 0.02848 0.02817 0.02783 0.02791
AR(7), F(7, ) 1.32 1.29 1.29 1.13 1.06 1.25 1.07
ARCH(7), F(7, ) 0.86 0.96 0.96 1.03 1.00 1.16 1.21
Normality, Chi2 (2) 4.25 3.75 3.75 3.79 4.91 4.44 4.34
Heter. x2i , F( , ) 0.97 0.35 0.35 0.56 0.80 0.99
Reset, F(1, ) 1.97 0.00 0.01 0.00 0.62 0.56

a In parentheses are the absolute values of the t ratios of the coe�cients. When homoscedasticity is rejected hetero
scedasticity consistent standard errors (HCSEs) are used in the t ratios (White, 1980).
b The terms not reported are the coe�cients of DLPG 1 , DLPG 6 . Those coe�cients are signi®cant in the full sample but
none of them are signi®cant in the out of sample period.
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SIMULTANEOUS RELATIONSHIPS

The models discussed in the previous sections have been concerned with temporal relationships
and not much of one variable can be explained by its own lags and the lags of other variables. If
one takes the best dynamic model for PG and best for PS, for some period, then the resulting
residuals will be correlated white noises. The extent to which the residuals are correlated could be
evidence of the presence of some unobserved `common factor or feature' that a�ects both price

Table III(c). Dependent variable: ®rst di�erence of the log price of silver (DLPS)

Regressors Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Full sample models (1972:12 to 1990:6)
Constant� 10 0.1 (1.3)a 0.01 (0.1) 0.1 (1.0) 0.01 (0.2) 0.05 (0.6) 0.04 (0.5) 0.02 (0.3)
Lags of DLPS and DLPGb Yes Yes Yes Yes No No No
Z 1 0.13 (1.4) 0.18 (2.8) 0.1 (1.6)

Z2
1 0.5 (1.6)

Z3
1 0.89 (0.7)

Z 1D(Z 14 0) 0.26 (2.1)
Z 1D(Z 14 0) 0.1 (1.1)
Z 1D(DZ 14 0) 0.2 (2.0) 0.05 (0.5)
Z 1D(DZ 14 0) 0.16 (2.1) 0.17 (1.9)
Sample size 211 211 211 211 211 211 211
R2 0.23 0.22 0.22 0.22 0.00 0.02 0.03
DW 2.04 2.00 2.02 2.01 1.44 1.41 1.44
s 0.0948 0.0951 0.0951 0.0953 0.1051 0.1042 0.1041
AR(7), F(7, ) 0.85 0.80 0.81 0.82 4.50 4.81 4.75
ARCH(7), F(7, ) 7.71 7.81 7.95 7.70 9.58 11.15 11.25
Normality, Chi2 (2) 93.3 93.3 92.1 94.3 204.0 190.8 173.0
Heter. x2i , F( , ) 3.81 4.72 4.22 4.10 5.32 2.70
Reset, F(1, ) 1.12 2.05 1.53 2.23 1.86 5.36

Out of sample models (1990:7 to 1994:6)
Constant� 10 0.1 (0.3)a 0.3 (1.5) 0.3 (1.5) 0.4 (1.6) 0.2 (0.3) 0.1 (0.4) 0.1 (0.9)
Lags of DLPS and DLPGb Yes Yes Yes Yes No No No
Z 1 1.6 (1.5) 0.2 (1.6) 0.04 (0.6)

Z2
1 13.0 (1.8)

Z3
1 25.2 (1.8)

Z 1D(Z 14 0)
Z 1D(Z 14 0) 0.2 (1.6)
Z 1D(DZ 14 0) 0.3 (1.9) 0.16 (1.6)
Z 1D(DZ 14 0) 0.17 (1.4) 0.04 (0.5)
Sample size 48 48 48 48 48 48 48
R2 0.30 0.23 0.23 0.25 0.00 0.00 0.06
DW 2.06 2.03 2.03 2.01 1.81 1.78 2.03
s 0.0498 0.0507 0.0507 0.0507 0.0520 0.0525 0.0516
AR(7), F(7, ) 0.76 1.26 1.26 0.58 0.62 0.60 0.54
ARCH(7), F(7, ) 0.89 1.12 1.12 1.52 3.17 2.98 2.87
Normality, Chi2 (2) 1.63 4.33 4.33 5.06 5.95 5.45 4.78
Heter. x2i , F( , ) 1.06 1.57 1.57 1.21 0.73 0.97
Reset, F(1, ) 0.05 0.01 0.01 0.03 0.04 0.21

a In parentheses are the absolute values of the t ratios of the coe�cients. When homoscedasticity is rejected hetero
scedasticity consistent standard errors (HCSEs) are used in the t ratios (White, 1980).
b The terms not reported are the coe�cients of DLPS 1 , DLPS 2 , DLPS 3 , DLPS 7 , DLPS 8 , DLPS 10 , DLPG 3 ,
DLPG 7 . Those coe�cients are signi®cant in the full sample but many of them are not in the out of sample period.
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series during the time span between observations. This factor is often characterized as `news' in
the ®nancial literature.

It is frequent practice to use the return on an asset as the standard measure, de®ned as
(Pt Pt 1)/Pt 1 and approximated by log Pt log Pt 1 . The approximation is satisfactory
provided that the size of the price change is small compared to the level of the price, but using
monthly data and over a volatile period there are several occasions when the approximation is not

Table III(d). Dependent variable: ®rst di�erence of the log price of silver (DLPS)

Regressors Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Post bubble models (1981:4 to 1990:6)
Constant� 102 0.07 (0.08)a 0.6 (0.8) 0.6 (0.6) 0.2 (0.3) 0.8 (1.2) 1.0 (1.3) 0.7 (0.9)
Lags of DLPS and DLPGb Yes Yes Yes Yes No No No
Z 1 0.2 (1.5) 0.12 (1.8) 0.11 (1.5)

Z2
1 0.5 (1.5)

Z3
1 0.7 (0.4)

Z 1D(Z 14 0) 0.3 (1.9)
Z 1D(Z 14 0) 0.01 (0.1)
Z 1D(DZ 14 0) 0.29 (2.4) 0.2 (1.6)
Z 1D(DZ 14 0) 0.05 (0.7) 0.04 (0.5)
Sample size 111 111 111 111 111 111 111
R2 0.19 0.17 0.19 0.19 0.00 0.03 0.04
DW 1.89 1.90 1.89 1.93 1.81 1.76 1.70
s 0.0732 0.0736 0.0733 0.0730 0.0782 0.0775 0.0772
AR(7), F(7, ) 0.89 0.85 1.00 0.77 1.69 1.90 1.80
ARCH(7), F(7, ) 2.09 1.87 2.14 1.44 2.26 2.29 2.18
Normality, Chi2 (2) 18.0 20.2 18.9 15.01 17.9 12.0 9.33
Heter. x2i , F( , ) 0.81 1.00 0.83 0.94 1.29 0.91
Reset, F(1, ) 0.08 1.13 0.02 0.00 2.30 0.33

Out of sample models (1990:7 to 1994:6)
Constant� 10 0.2 (0.4)a 0.3 (1.2) 0.3 (1.2) 0.3 (1.3) 0.02 (0.7) 0.06 (0.3) 0.2 (0.9)
Lags of DLPS and DLPGb Yes Yes Yes Yes No No No
Z 1 1.4 (1.3) 0.16 (1.4) 0.04 (0.6)

Z2
1 10.6 (1.5)

Z3
1 19.8 (1.5)

Z 1D(Z 14 0)
Z 1D(Z 14 0) 0.16 (1.4)
Z 1D(DZ 14 0) 0.2 (1.7) 0.16 (1.6)
Z 1D(DZ 14 0) 0.1 (1.1) 0.04 (0.5)
Sample size 48 48 48 48 48 48 48
R2 0.24 0.20 0.20 0.22 0.00 0.00 0.06
DW 2.06 1.96 1.96 1.99 1.81 1.78 2.03
s 0.0503 0.0505 0.0505 0.0505 0.0520 0.0525 0.0516
AR(7), F(7, ) 1.19 1.76 1.76 0.83 0.62 0.60 0.54
ARCH(7), F(7, ) 0.15 0.40 0.40 0.51 3.17 2.98 2.86
Normality, Chi2 (2) 2.05 4.34 4.34 4.60 5.95 5.45 4.78
Heter. x2i , F( , ) 0.31 0.30 0.30 0.56 0.73 0.97
Reset, F(1, ) 0.26 0.13 0.13 0.08 0.04 0.21

a In parentheses are the absolute values of the t ratios of the coe�cients. When homoscedasticity is rejected
heteroscedasticity consistent standard errors (HCSEs) are used in the t ratios (White, 1980).
b The terms not reported are the coe�cients of DLPS 1 , DLPS 3 , DLPS 4 , DLPG 4 , DLPG 5 , DLPG 7 . Those
coe�cients are signi®cant in the full sample but many of them are not in the out of sample period.
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acceptable (see Figures 4(a) to 4(d)). Modelling just returns also means that the information in
the cointegration between prices will not be properly used.

Tables IV(a) and IV(b) show these results. Using residuals of DPG or DLPG, as dependent
variables, either for the best model (1 for PG or 2 for LPG) or the random walk (model 5) against
the corresponding residual for DPS or DLPS as the explanatory variable using either the best
model (3 for PS or 1 for LPS) or the random walks (model 5). The results are for the full sample
and the post bubble period in Table IV(a) and the forecasting period in Table IV(b). Each table
shows the coe�cient value and associated t value in the regression, the achieved s value, denoted
s1 , and the s value from the original model for the dependent variable, plus the ratio of these last
two quantities. The square of this ratio is the amount of the change in the variance achieved; it is
roughly 50% in most cases. The results can be interpreted as saying that the common factor
represents approximating 50% of the variance of PG or LPG in all periods, but the size of the
regression coe�cient is seen to vary substantially. Generally, the regressions have satisfactory
Durbin Watson statistic values.

An alternative interpretation can be given for these results using the log price changes and
using s values as measures of risk. If R1t ,R2t are a pair of return series, consider a normalized
portfolio a1R1t � a2R2t , where a21 � a22 1, and where a negative ai means going short. The

Table III(e). Forecasting evaluation of models for DLPG and DLPS based on their one step forecast errors
from 1990 :7 to 1994 :6

Forecasting
error criteria Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Forecasting DLPG with the full sample models of Table III(a)
(1972:12 to 1990:6)
s 0.0284 0.0285 0.0284 0.0284 0.0282 0.0282 0.0292
SC 7.06 7.06 7.06 7.07 7.08 7.08 7.01
HQ 7.09 7.08 7.08 7.09 7.10 7.10 7.03
FPE 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0009

Forecasting DLPG with the post bubble models of Table III(b)
(1981:4 to 1990:6)
s 0.0291 0.0291 0.0290 0.0287 0.0282 0.0288 0.0282
SC 7.01 7.01 7.02 7.05 7.08 7.04 7.08
HQ 7.04 7.04 7.05 7.07 7.10 7.06 7.10
FPE 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008

Forecasting DLPS with the full sample models of Table III(c)
(1972:12 to 1990:6)
s 0.0501 0.0491 0.0495 0.0494 0.0520 0.0523 0.0569
SC 5.93 5.97 5.95 5.96 5.85 5.84 5.67
HQ 5.95 5.99 5.97 5.98 5.88 5.87 5.70
FPE 0.0026 0.0025 0.0025 0.0025 0.0028 0.0028 0.0028
Forecast test: 0.46
Compares models 7 and 5 (0.8)

Forecasting DLPS with the post bubble models of Table III(d)
(1981:4 to 1990:6)
s 0.0519 0.0510 0.0506 0.0521 0.0520 0.0522 0.0510
SC 5.86 5.89 5.91 5.85 5.85 5.85 5.89
HQ 5.88 5.92 5.93 5.87 5.88 5.87 5.92
FPE 0.0027 0.0026 0.0026 0.0028 0.0028 0.0028 0.0027
Forecast test: 0.47
compares models 2 and 5 (0.5)
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Figure 4. (a) Rate of return of gold (RRG) and the ®rst di�erence of the log price of gold (DLPG). (b) Rate
of return of silver (RRS) and the ®rst di�erence of the log price of silver (DLPS). (c) Cross plot of the
rate of return of gold (RRG) and the ®rst di�erence of the log price of gold (DLPG) from 1971 :12 to
1990 :6. (d) Cross plot of the rate of return of silver (RRS) and the ®rst di�erence of the log price of silver
(DLPS) from 1971 :12 to 1990 :06. (e) Cross plot of the rate of return of gold (RRG) and the ®rst di�erence
of the log price of gold (DLPG) from 1990 :07 to 1994 :06. (f) Cross plot of the rate of return of silver
(RRS) and the ®rst di�erence of the log price of silver (DLPS) from 1990 :07 to 1994 :06
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regressions have considered portfolios of the form LPG � lLPS which transform into a
normalized portfolio by taking a1 1/y and a2 l/y, where y2 1 � l2. As l̂ is negative, there is
a sign interdeterminency, but the case a1 positive, a2 negative, will be assumed. If the white noise
residuals are taken as returns, with zero expectations and if risk is measured by variance, it
follows that for the forecasting period, for instance, the risk for the residual of the random model
in LPG is 0.00076, for LPS is 0.00080, and for the portfolio is 0.00029. As the expected return

Table IV(a). Short run relationships between the prices of gold and silver

Regressors

Full sample period (1972 :12 to 1990 :6): dependent variable
Residuals
of model 1
(DPG)

Residuals
of model 5
(DPG)

Residuals
of model 2
DLPG

Residuals
of model 5
(DLPG)

Residuals of 12.15
model 3 of DPS (18.04)

Residuals of 11.90
model 5 for DPS (20.2)

Residuals of 0.45
model 1, DLPS (13.8)

Residuals of 0.47
model 5, DLPS (15.9)

Sample size 211 211 211 211
R2 0.61 0.66 0.48 0.55
s1 13.81 15.29 0.0434 0.0448
s
(Models with 22.54 26.21 0.0611 0.0666
only lagged (model 1) (model 5) (model 2) (model 5)
variables) Random walk Random walk

Ratio (s1/s) 0.61 0.58 0.71 0.67

Regressors

Post bubble period (1981 :04 to 1990 :6): dependent variable
Residuals
of model 1
(DPG)

Residuals
of model 5
(DPG)

Residuals
of model 5
(DLPG)

Residuals
of model 5
(DLPG)

Residuals of 20.2
model 3 of DPS (8.9)

Residuals of 19.77
model 5 for DPS (10.6)

Residuals of 0.49
model 4, DLPS (10.4)

Residuals of 0.45
model 5, DLPS (11.2)

Sample size 111 111 111 111
R2 0.41 0.50 0.49 0.53
s 13.56 13.78 0.0346 0.0333
s
(Models with 18.66 19.55 0.0487 0.0487
only lagged (model 1) (model 5) (model 5) (model 5)
variables Random walk Random walk Random walk

Ratio (s1/s) 0.73 0.70 0.71 0.66
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is still zero, there is seen to be a substantial reduction in risk from buying gold and going short
on silver, for the full sample. The risk is further reduced to 0.00021 if the best in sample models
are used (model 1 for gold, model 2 for silver).

CONCLUSIONS

In this paper we have analysed the relationships between gold and silver prices particularly from
the forecasting viewpoint. We have studied the in¯uence of the large bubble from 1979 :9 to
1980 :3 on the cointegration relationship and found evidence of cointegration but with di�erent
intercepts during the bubble and after the bubble periods. For the prices of gold and silver we
have studied whether alternative non linear error correction formulations can beat the random
walk, in terms of out of sample forecastability. Furthermore, we have studied the simultaneous
relationship between the rates of return of gold and silver and between the ®rst di�erence of the
two prices. Di�erent e�cient estimation techniques are required for each of the three questions
and this is explained in the Appendix with a simple bivariate cointegrating system.

Table IV(b). Short run relationships between the prices of gold and silver

Regressors

Forecasting period (1990 :07 to 1994 :6): dependent variable
Residuals
of model 1
(DPG)

Residuals
of model 5
(DPG)

Residuals
of model 1
(DLPG)

Residuals
of model 5
(DLPG)

Residuals of 24.80
model 5 of DPS (5.4)

Residuals of 31.10
model 5 for DPS (6.5)

Residuals of 0.40
model 2, DLPS (7.2)

Residuals of 0.37
model 5, DLPS (6.4)

Sample size 48 48 48 48
R2 0.39 0.47 0.53 0.46
s1 7.15 7.48 0.0171 0.021
s 9.80 10.32 0.0276 0.0282
(Models with only (model 1) (model 5) (model 1) (model 5)

lagged variables) Table II(a) Random walk Table II(a) Random walk
Ratio (s1/s) 0.73 0.72 0.62 0.74

Table IV(c). Relationship between the rate of return of gold (RRG) and the rate of return of silver (RRS)

Dependent variable
RRG RRG RRG

Regressors (1971 :12 to 1990 :06) (1981 :04 to 1990 :06) (1990 :07 to 1994 :06)

RRS 0.49 0.45 0.37
(17.4) (11.0) (6.3)

Sample size 211 111 48
R2 0.59 0.53 0.46
s1 0.0455 0.0338 0.0210
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With monthly data from 1971 to 1990, it is found that cointegration could have occurred
during some periods and specially during the bubble and post bubble period. In sample non
linear models for silver perform better than the random walk but this predictive capacity is lost
out of sample, mainly due to the structural change that occurs with a reduction in the variance of
the models during the out of sample period. For gold the non linear models perform better in
sample and out of sample. The in and out of sample predictive capacity of the non linear
models is reduced when the models are logs.

That gold and silver prices have been strongly related is evident from their behaviour during
the bubble period. The long run relationship appears to be complicated and one that varies at
particular dates. One gets a rather di�erent view of how the series are linked by looking at the
levels or the logs of the prices.

Table IV(e) shows the strong simultaneous relationship found by a simple linear regression
using the actual return of gold as the dependent variable and a constant and the return on silver
as the explanatory variable, for each of the three periods. The regression coe�cient is clearly
lower in the out of sample period and the standard deviation of the equations residual is the same
as for the ®nal column of Table IV(b), suggesting that in this last period the change in log prices is
a close approximation to the return (see Figures 4(e) and 4(f)).

If one assumes that a particular model, such as for log price of silver, is correctly speci®ed and
has Gaussian residuals, it is possible to derive the model for the price of silver, and hence its
error correction model. However, the usual presence of non normal residuals, the frequent
presence of heteroscedasticity, and the reality of possible model mis speci®cation makes such
exercise of little value. It does seem that the bubble period had a lasting in¯uence on cointegra
tion, on the short run dynamics and possibly on the non linearity of the relationship. The most
recent period in the data set has been the least volatile, follows models most closely agreeing with
the e�cient market theory, and has the ratio of gold to silver prices, at over 60 at the time of
writing, at historically high levels, possibly suggesting that some separation of the two markets is
occurring (see Figures 1(e) and 1(f)).

Many econometricians argue that a post sample evaluation of models is potentially a useful
exercise, and we support that proposition. However, if the structure of the model is changing
through time, it is more di�cult to evaluate the relevance of the models derived in sample, and this
does seem to be a property of the data being analysed in this paper. This also makes forecasting
particularly di�cult. We are convinced that this is an interesting data set to be used as a
benchmark for comparing di�erent methodologies and di�erent non linear models. Furthermore,
we believe that to consider the possibility of having non linear cointegration relationships seem to
be promising with this data set but this suggestion opens interesting and di�cult questions for
future research.

APPENDIX: EFFICIENT PARAMETER ESTIMATION IN A BIVARIATE
COINTEGRATED SYSTEM

Consider the following error correction (EC) data generating process (DGP):

DPGt a11DPGt 1 � a12DPSt 1 dg�PGt 1 bPSt 1� � egt �A1a�
DPSt a21DPGt 1 � a22DPSt 1 ds�PSt 1 b1PGt 1� � est �A1b�

where the 2� 1 vector e is i.i.d.N(0, O).
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Alternatively we can say that

egt aest � �t �A1c�

with orthogonal zero mean elements, cov(est , �t) 0.
The cointegrating vector (with long run parameters) is unique and equal to (1, b), the

contemporaneous relationship (short run parameter) is measured by a, and the coe�cients of the
dynamic terms have all the information about Granger causality in the short run (a12 , a21) and
Granger causality in the long run (dg , ds).

The above system can be written in two interesting equivalent ways that would allow us to
discuss alternative well known estimation procedures and to emphasize the advantages and
disadvantages of each.

By direct substitution of equation (A1c) in (A1a) one gets the following system of equations
with orthogonal errors:

DPGt a11DPGt 1 � a12DPSt 1 dg�PGt 1 bPSt 1� � aest � �t �A2a�
DPSt a21DPGt 1 � a22DPSt 1 ds�PSt 1 b 1

PGt 1� � est �A2b�

Alternatively one can form a linear combination of the two ®rst equations multiplying
equations (A1a) and (A1b) by the vector (1, a) giving the following two equation system:

DPGt a*11DPGt 1 � a*12DPSt 1 d*g�PGt 1 bPSt 1� � aDPSt � �t �A3a�
DPSt a21DPGt 1 � a22DPSt 1 ds�PSt 1 b 1

PGt 1� � est �A3b�

where a*11 �a11 aa21� and a*12 �a12 aa22�:
In what follows, fully e�cient estimation methods will be brie¯y discussed. The ®rst possibility

is to use system of equation methods, such as full information maximum likelihood (FIML)
on equations (A1a) and (A1b) (see Johansen, 1988). Notice that since there is a parameter
restriction (b) between the two equations of the system that invalidates estimating it by one step
single equation methods (such as NLS) even when all the equations have the same regressors.

Engle and Granger's (1987) two step estimator with the later improvement of Engle and Yoo's
(1991) three step estimator solved the ine�ciency problem of one step single equation methods.
In the ®rst step, the cointegrating vector (1, b) is superconsistently estimated (although not
e�ciently) by OLS in the equation

PGt bPSt � ut �A4�

In the second step, the lagged residuals are introduced in equations (A1a) and (A1b) since by
doing that we are imposing the cross equation parameter restriction and it is now, when the
system has the same regressors in all the equations, that system of equations estimation methods
are reduced to single equation ones (OLS in each equation of the second step).
In the third step of Engle and Yoo (1991), the OLS estimator of b is made e�cient, and less

biased, by correcting it using the estimated coe�cient (c1) obtained from the OLS regression of

egt c1PSt 1 � ot �A5�
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In the empirical application used by Engle and Yoo (1991) they estimate the second step in the
system (A3a) and (A3b). However, it is important to realize that by doing this the economic
interpretation of the coe�cients of equation (A3a) might change. Those changes can be
especially important if in equation (A1a) the coe�cient a12 0 and in (A1b) a22 6 0, because we
can even get the wrong direction of the short run Granger causality.

To avoid that problem one has two alternative and equivalent single equation procedures.
First, as is usual, estimate the cointegrating vector by OLS in equation (A4). Take those residuals
lagged once and form the error correction terms of equations (A1a) and (A1b). Second,
estimating the parameters of those equations (a11 , a12 , a21 , a22 , dg , and dg) by OLS is fully
e�cient since all the equations have same regressors. Third, estimate the parameter a of equation
(A1c) by substituting the unknown errors (egt and est) by the residuals of the regressions from the
second step (this is the estimation procedure implemented in this paper). Fourth, calculate the
e�cient estimator of the cointegrating vector by transforming its OLS estimate by the coe�cient
(c1) obtained by running the regression (A5) but with the residuals �t as the dependent variable.
The other equivalent procedure is to estimate the ®rst step as usual and in the second step,

estimate only the parameters of equation (A2b) to get the residuals est . In the third step, one
estimates equation (A2a) with the residuals, est , of (A2b) as a new regressor. In the fourth and
®nal step, equation (A5) is estimated to obtain the correction of the OLS estimated cointegrating
vector.

The main advantages of these last two fully e�cient estimation procedures are that they:

(1) Always estimate directly the parameters of interest
(2) Directly get from the usual econometric packages their corresponding standard errors
(3) Avoid getting wrong short run Granger causality conclusions
(4) Always use single equation methods that do not depend on weak exogeneity conditions
(5) Do not need to become involved in the speci®cation of the full dynamic systems of

equations.
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