
TESIS DOCTORAL

Creating Planning Portfolios
with Predictive Models

Autor:
Isabel Rosario Cenamor Guijarro

Director/es:
Dr. D. Tomás Eduardo de la Rosa Turbides y

Dr. D. Fernando Fernández Rebollo

Departamento de Informática. Escuela Politécnica Superior

Leganés, 23 Marzo 2017

TESIS DOCTORAL

CREATING PLANNING PORTFOLIOS WITH PREDICTIVE MODELS

Autor: Isabel Rosario Cenamor Guijarro

Directores: Dr. D. Tomás Eduardo de la Rosa Turbides y
Dr. D. Fernando Fernández Rebollo

Tribunal Calificador Firma

Presidente: Araceli Sanchis de Miguel

Vocal: Álvaro Torralba Arias de Reyna

Secretario: Alessandro Saetti

Calificación: ..

Leganés, 23 de Marzo de 2017

ii

“Sometimes it is the people who no
one imagines anything of who do the
things that no one can imagine.”

– Alan Turing

To Carlos.

Agradecimientos

Firstly, I would like to express my sincere gratitude to my supervisors Tomás
and Fernando, who gave me continuous support, guidance, motivation and
their knowledge throughout this thesis. Thank you very much for your
patience and understanding, and for the trust you placed in me. Your
guidance helped me throughout the research and writing of this thesis. I
could not have imagined having a better mentors for my Ph.D.

I would also like to thank my fellow lab mates Álvaro, Vidal, Pulido, José
Carlos, Alberto, Javi who helped to create the nice workplace where I like
to go, even though not all of all the moments are always good moments,
but it is not possible to find a better without them. Over the years, we had
a lot of great moments and not just at the university, in bars, on holidays,
excursions amongst others. I hope these moments can be repeated when
this period of my life comes to an end, because you guys are not only mates,
you are trusted friends too.

It is impossible to forget the rest of the PLG group: Raquel, Daniel, Carlos,
Ángel, Susana, Neli are just some who spring to mind. I think it is the best
group ever in which do a Ph.D. Also, I want to thank other university people
that I met during this time, especially those from the gym. It was one of
the best places to go, when I was mentally blocked: get to the gym and
work out.

My sincere thanks also goes to Lee, Mauro and Lukas who gave me the
opportunity to join their team as an intern, and who gave me access to
their research group for almost four months.

I thank my friends: Leti, Jesús, Santi, Vero, and Montoya. I will never forget
all the chats, happy and beautiful moments that I continuously shared with
my friends. They are fundamental in my life and especially when they
supported me during these stressful and difficult moments. I would also
thank my university friends Alex, Oscar, Alberto, Irene and Javi, with
whom I spent lots of time at the university.

Y sobre todo quiero dar las gracias a mis padres y a mi hermano por el
apoyo que me han dado en esta etapa de mi vida y en todas ellas. Siempre
me han ofrecido consejo, amor y ánimo cuando lo he necesitado. En último
lugar, pero no por ello menos importante, gracias a Carlos por todo su
amor.

A todos vosotros, muchas gracias.

Abstract

Sequential planning portfolios are very powerful in exploiting the comple-
mentary strength of different automated planners: for each planning task
there are one or more base planners that obtain the best solution. There-
fore, the main challenge when building a planning portfolio is to ensure that
a suitable planner be chosen and that it gets enough planning time. To solve
this problem we need firstly to define three elements. The first is the settings
or planning conditions: time, memory, or other constraints. The second one
is the set of base planners. And finally, a benchmark that provides us with
knowledge on how the base planners will behave under the given settings,
following some kind of inductive process. Ideally, if the previous elements
are correctly defined, when a new planning task arrives, an oracle will be
able to tell which base planner to run and for how long. In practice, since
no oracle exists, the challenge to choose a sub-set of base planners, is as-
signing them a running time and deciding the order in which they are run
to optimize a planning metric under the predefined settings. Many state-of-
the-art portfolios might never achieve an optimal performance because they
do not select different planners for the different planning tasks. In addition,
these static techniques typically assign a fixed running time to the selected
set of planners, independently of the task. besides, the old-fashioned dy-
namic portfolios present a poor characterization of the planning task and
do not have enough knowledge to predict an accurate portfolio configura-
tion in many cases. The aforementioned drawbacks are intensified by the
fact that there is an increasing number of planners available to choose from,
although many of them are designed following similar approaches, so they
are expected to behave similarly.

This dissertation is built on two main hypotheses. Firstly that the space
of the base planners can be reduced just by selecting a subset of diverse or
complementary planners; e.g. that there is a minimal set of planners that
ensure that the optimal portfolio can be computed. Secondly, that planning
tasks can be characterized, and that the difficulty in solving them can be
modelled as a function of these features. To evaluate the first hypothesis,
we analyze different metrics that could be used to filter the initial set of base
planners. Classical metrics such as coverage, quality or execution time have
been chosen by different portfolios in the past. We demonstrate that these
selection methods may reduce the diversity of the portfolios, and propose
an alternative method based on the Pareto dominance. We then carry out
a profound analysis on previous planning task characterizations and show

how we could exploit them in current planning paradigms. A group of very
informative features are proposed to improve the current feature definition
of the planning tasks. These features have enough knowledge to differen-
tiate planning tasks with similar “a priori” complexity. In this thesis we
demonstrate that the implicit knowledge can be exploited in the construc-
tion of predictive models. These models estimate whether a base planner
will be able to solve a given problem and, if so, how long it will take. Never-
theless, the predictive models are not perfect and sometimes provide wrong
(or inaccurate) predictions. To solve this kind of problems, we propose dif-
ferent portfolio strategies to combine the number of selected base planners
and their times. These strategies take into account the predefined settings
and the knowledge learned in previous phases.

In conclusion, this thesis sets out a profound analysis of three different
mechanisms or steps to create planning portfolios with predictive models,
including new proposals for developing: planner filtering, planning task
featuring, learning predictive models and portfolio construction strategies.
One of the proposed portfolios was the winner of the Sequential Satisficing
Track of the International Planning Competition held in 2014.

Resumen

Los portfolios de planificadores tienen un gran potencial ya que pueden
aprovecharse de los diferentes planificadores automáticos, consiguiendo mejo-
rar el rendimiento de un único planificador. Sin embargo, la creación de un
portfolio no es una tarea sencilla, ya que para poder crear uno lo suficiente-
mente bueno, hay que tratar tres problemas fundamentales. El primero de
ellos es encontrar qué planificadores hay que seleccionar como componentes
del mismo. La segunda es el tiempo que hay que asignar a cada planificador
y, la última y no menos importante el orden en el que se tienen que ejecu-
tar. Actualmente en el estado del arte, estas configuraciones, se realizan a
partir de los resultados obtenidos por los planificadores en una fase previa
de entrenamiento con un conjunto de problemas y restricciones prefijado
(tiempo, memoria, etc), consiguiendo una configuración espećıfica tratando
de optimizar una métrica. Idealmente, la mejor configuración posible con-
siste en asignar el tiempo suficiente al mejor planificador para cada tarea
de planificación. Sin embargo, esta configuración no siempre es posible, y
hay que recurrir a otras aproximaciones como asignar un tiempo fijo a una
selección de planificadores. Ésta no es la única simplificación utilizada, ex-
isten otras técnicas más cercanas a la óptima, en las cuales se selecciona un
planificador o varios en función de la tarea a resolver. Sin embargo, estos
sistemas, denominados dinámicos, incluyen una escasa caracterización de
las tareas de planificación.

En esta tesis se parte de dos hipótesis. La primera de ellas es que existe un
conjunto reducido de planificadores que maximiza la diversidad. La segunda
de ellas consiste en la posibilidad de crear un conjunto de descriptivos lo
suficientemente bueno para caracterizar la tarea de planificación. La carac-
terización de las tareas de planificación puede estar basada en sus distintas
representaciones, aśı como en sus paradigmas. La primera tarea es selec-
cionar un conjunto de planificadores; realizando un análisis basado en las
métricas clásicas de planificación, como son problemas resueltos, calidad
y tiempo para seleccionar un subconjunto de planificadores. Adicional-
mente, proponemos como alternativa a estas métricas, una técnica multi-
objetivo. Este criterio está basado en la dominancia de Pareto combinando
las métricas de tiempo y calidad. Continuando con nuestras hipótesis es
necesario crear un conjunto de caracteŕısticas bien informado para la tarea
de planificación. Estas caracteŕısticas deben ser capaces de diferenciar ade-
cuadamente por problema y para ello será necesario basarse en los distintos
paradigmas de la planificación automática. Este grupo de caracteŕısticas

tienen que ser útiles para crear modelos predictivos. Estos modelos podrán
darnos además de una selección de planificadores, una aproximación del
tiempo asignado a cada componente y el orden de los mismos. Adicional-
mente se presentarán una serie de estrategias para explotar el conocimiento
obtenido con los modelos predictivos.

En conclusión, se plantea y desarrolla un sistema para configurar porfolios
de planificadores usando modelos predictivos en tres fases distintas. Una
instanciación de este sistema fue el ganador de la competición internacional
de planificación en el área de satisfacibilidad en el año 2014.

Contents

List of Figures xi

List of Tables xiii

Glossary xv

1 Introduction 1
1.1 Overview . 1
1.2 Objectives . 4
1.3 Thesis Outline . 5

2 State of the Art 7
2.1 Classical Planning . 7
2.2 Temporal Planning . 9
2.3 Modeling Languages in Automated Planning 10

2.3.1 PDDL . 10
2.3.2 SAS+ . 12

2.4 The International Planning Competition 14
2.5 Planning Paradigms . 16

2.5.1 Heuristic Planning . 17
2.5.2 Landmarks . 18
2.5.3 SAT . 20

2.6 Portfolios . 21
2.6.1 Portfolio Definition . 21
2.6.2 Portfolio Construction Process 22
2.6.3 Planning Portfolios . 23

2.7 Empirical Performance Modelling in AI Solvers 29

3 Planner Filtering Methods: A Multi-criteria approach 31
3.1 Filtering Methods Based on Quality, Time and Coverage 32

3.1.1 Scope of the metrics . 32
3.1.2 Empirical Evaluation of Problem Level based Filtering 34

3.2 Pareto Dominance-Based Planner Filtering 37
3.3 Evaluation of Planner Filtering Approaches 39

3.3.1 Planner Filtering . 40

vii

CONTENTS

3.3.2 Planner Selection . 42
3.3.3 Planner Filtering Portfolio . 45

3.4 Summary . 46

4 Planning Problem Characterization and Empirical Performance Mod-
eling 49
4.1 Planning Performance Modeling Process 49
4.2 Training data . 51
4.3 Feature Extraction . 52

4.3.1 PDDL Features . 52
4.3.2 FD Instantiation Features . 53
4.3.3 SAS+ Features . 53
4.3.4 Heuristic Features . 57
4.3.5 Fact Balance Features . 58
4.3.6 Landmark Features . 60
4.3.7 Process & Time to extract features 62

4.4 Data Integration . 62
4.5 Feature Selection . 64
4.6 Classification Models . 65
4.7 Regression Models . 66
4.8 Summary . 67

5 Configuration Strategies to Create Planning Portfolios 69
5.1 Static Strategies . 69
5.2 Dynamic Strategies . 71
5.3 Estimated Number of Planners . 73
5.4 Portfolio Configuration Strategy Proposals 77
5.5 An Algorithm for Portfolio Construction 78
5.6 Summary . 79

6 Experimental Evaluation of Instance-Based Configured Portfolios 81
6.1 Scope of the Evaluation of Different Planning Portfolios 81
6.2 Settings . 82
6.3 Results . 84
6.4 Selection of Planners: per Domains vs. per Problem 86
6.5 Confidence in Planner Prediction . 87
6.6 The 2014 International Planning Competition 90
6.7 Summary . 91

7 Performance Modeling of Planners in Homogeneous Problem Sets 93
7.1 Experimental Preview . 94
7.2 Experimental Procedure . 95
7.3 Experimental Evaluation . 98

7.3.1 Barman Domain - Mercury Planner 99
7.3.2 Barman Domain - Probe Planner 101
7.3.3 Barman Domain - Lama-2011 Planner 103

viii

CONTENTS

7.3.4 Depots Domain - Mercury Planner 105
7.3.5 Depots Domain - Lama-2011 Planner 110
7.3.6 Floortile Domain - Probe Planner 113

7.4 General Feature Analysis . 115
7.5 Summary . 116

8 Temporal Approximation 117
8.1 Planner Selection . 118
8.2 Benchmarks . 118
8.3 Features . 118
8.4 Extracting Features . 121
8.5 Experimental Settings . 124
8.6 Experimental Results . 124

8.6.1 Classification . 125
8.6.2 Regression . 128
8.6.3 Exploiting EPMs for Algorithm Selection 130
8.6.4 Planner Selection Analysis . 134

8.7 Summary . 136

9 Conclusions and Future Work 139
9.1 Conclusions . 139
9.2 Future Work . 141
9.3 Publications . 142
9.4 Awards . 142

References 143

A Portfolio Base Planners 155
A.1 Initial Planners from IPC-2011 . 155
A.2 Planner Filtering Planners . 156
A.3 Temporal Planners . 157

B Methods of Empirical Evaluation 159

C Appendix: Training Results 163

D Appendix: International Planning Competition 165

ix

CONTENTS

x

List of Figures

2.1 Problem in Transport Domain . 8
2.2 Graphic representation of a durative action temporal transport domain 10
2.3 PDDL problem . 11
2.4 Description of durative Action Temporal Transport Domain 12
2.5 Causal Graph on Transport Domain . 13
2.6 Domain Transitions Graph at Transport Domain 14
2.7 Example of a graph plan . 17
2.8 The three phases of FD’s execution. 18
2.9 Zhu & Givan Landmarks . 19
2.10 Keyder, Richter & Helmert with m = 1 Landmarks 20
2.11 Steps required for configuring a planning portfolio. 22
2.12 Example of sequential portfolio . 23

3.1 Scope of planning ranking selection . 32
3.2 Best planner per problem in Openstacks domain. 36
3.3 Best planner per problems in Openstacks and parcprinter domains. . . . 37
3.4 Selected planners . 38
3.5 Coverage, time and quality planner sets 38
3.6 Solved problems of all planner filtering strategies using uniform time. . . 47

4.1 General Diagram for Learning the Planning Performance Predictive Models 50
4.2 Proportion of solved and unsolved problems 63

5.1 Representation of configuration sets and their relationships 71
5.2 Number of solved problems by different Portfolio configurations 74
5.3 Problems’ Gain . 75
5.4 Number of Solved Problem per N portfolio 76

6.1 Experimental Strategies . 83
6.2 Coverage Results . 86
6.3 Proportion planners has been selected in a domain 88
6.4 Prediction confidence in Tetris domain. 89

7.1 Experimental procedure to evaluate homogeneous problems set 97
7.2 200 problems in Barman with Mercury planner 99

xi

LIST OF FIGURES

7.3 Diferent confidence values in barman domain Mercury planner. 100
7.4 200 problems in Barman with Probe planner 102
7.5 Different confidence values in barman domain Probe planner. 102
7.6 200 problems in Barman domain with Lama-2011 105
7.7 Different confidence values in barman domain Lama-2011 planner. . . . 106
7.8 200 problems in Depots domain with Mercury planner 108
7.9 Different confidence values at depots domain Mercury planner. 108
7.10 200 problems in Depots domain with Lama-2011 planner. 110
7.11 Diferent confidence values in Depots domain with Lama-2011 planner . 110
7.12 Floortile domain . 113
7.13 200 problems in Floortile domain with Probe 113
7.14 Selection features per all selected domains. 115

8.1 Performance Temporal Portfolio . 132
8.2 Dificulty of temporal domains . 136

B.1 Example of several ROC curves in contracts with a random ROC area. 160

xii

List of Tables

2.1 Different features of planning portfolios. 24
2.2 Summary of the state-of-the-art planning portfolios. 28

3.1 Quality and Time planner filtering per domain. 40
3.2 Coverage planner filtering . 41
3.3 Best QT planners . 42
3.4 Summary of Planner Filtering Results 44
3.5 Quality Results of all planner filtering strategies 46

4.1 List of training set . 52
4.2 Features Summary. 53
4.3 PDDL Features. 53
4.4 Extracted Features from console output in the FD system. 54
4.5 CG Features obtained from SAS+ representation I. 55
4.6 HV Features obtained from SAS+ representation II. 55
4.7 DTG Features obtained from SAS+ representation. 56
4.8 Heuristics features with unit cost included. 57
4.9 Features Related with the Red-Black heuristic. 58
4.10 Features about the fact balance. 61
4.11 Features about the landmark graph. 61
4.12 Extracted Features . 63
4.13 List of features from the feature selection. 65
4.14 Clasification Results . 67
4.15 Regression Results . 68

5.1 Results of Best N Confidence strategy for different values of N 75

6.1 Results in the IPC-2014 domains . 84
6.2 Results Candidate Planners . 87
6.3 Summary Planner Selection . 89

7.1 Coefficient of variation in Homogeneous Problem Sets 95
7.2 Solved problems and time in Homogeneous Problem Sets 96
7.3 Accuracy and AUROC in Barman domain with Mercury 101
7.4 Barman Features with Mercury planner 101

xiii

LIST OF TABLES

7.5 Accuracy and AUROC in Barman domain with Probe 103
7.6 Barman Features at Probe planner . 104
7.7 Accuracy and AUROC in Barman domain with Lama-2011 105
7.8 Barman Features with Lama-2011 planner 107
7.9 Accuracy and AUROC in Depot domain with Mercury 108
7.10 Depots features with Mercury planner 109
7.11 Accuracy and AUROC in depots domain with Lama-2011 111
7.12 Depots features with Lama-2011 . 112
7.13 Accuracy and AUROC in Floortile domain with Probe 114
7.14 Floortile features with Probe planner 114

8.1 Test Domains . 118
8.2 Temporal PDDL Features . 119
8.3 Problem Size Features . 120
8.4 TFD Features . 121
8.5 Temporal SAS+ Features . 122
8.6 Extracted time Features for temporal aproximation. 123
8.7 Feature selection at Temporal Domains 125
8.8 Accuracy of EPM part I . 127
8.9 Accuracy of EPM part II . 128
8.10 Regression Results part I . 129
8.11 Regression Results part II . 130
8.12 Temporal Portfolio Configuration I . 131
8.13 Temporal Portfolio Configuration II . 133
8.14 Performance Temporal Portfolio III . 134
8.15 Selected Planners at temporal approximation 135
8.16 Temporal Selected planners . 137

B.1 Confusion Matrix . 159
B.2 Interpretation of index of Dispersion . 161

C.1 Solved problems in the training phase IPC-2005 163
C.2 Solved problems in the training phase IPC-2008. 163
C.3 Solved problems in the training phase IPC-2011. 164
C.4 Solved problems in the training phase. IPC-2008 in the learning track. 164
C.5 Solved problems in the training phase. IPC-2011 in the learning track. . 164

D.1 IPC-2014 sequential Satisficing track I 166
D.2 IPC-2014 sequential Satisficing track II 166
D.3 IPC-2014 sequential Agile track I . 167
D.4 IPC-2014 sequential Agile track II . 167
D.5 IPC-2014 sequential multi-core track I 167
D.6 IPC-2014 sequential multi-core track II 168
D.7 Planning & Learning track IPC-2014 . 168

xiv

Glossary

ADL Action Description Language

AI Artificial Intelligence

AP Automated Planning

ASP Answer Set Programming

AUROC Area Under the ROC Curve

Avg Average

BN Best Number

C Coverage

CFS Correlation based Feature Se-
lection

CG Causal Graph

CNF Conjunctive Normal Form

CPU Central Processing Unit

CSP Constraints satisfiability
problems

DCK Domain-specific Control
Knowledge

Def Default

DTG Domain Transition Graph

EPM Empirical Performance Mod-
eling

ET Equal Time

FB Fact Balance

FD Fast Downward

FDSS Fast Downward Stone Soup

FF Fast Forward

FPR False Positive Rate

GB Gigabyte

GBFS Greedy Best-First Search

GPU Graphics Processing Unit

GR Gain Ratio

HSP Heuristic Search Planner

HV High Level Variables

IBaCoP Instance Based Configured
Portfolio

IBaCoP-BNE Instance Based Configured
Portfolio - Best N Estimation

IPC International Planning Com-
petition

LISP LISt Processing

LS Local Search

Max Maximum

Min Minimum

MIP Mixed-Integer Programming

ML Machine Learning

nT non Temporal

OET Overall Equal Time

PCA Principal Component Analy-
sis

PDDL Planning Domain Definition
Language

Q Quality

RAE Relative Absolute Error

RAM Random Access Memory

Rand Random

RHW Richter, Helmert and West-
phal

RMSE Root Mean Square Error

ROC Receiver Operating Charac-
teristic

RP Relaxed Plan

SAT Boolean satisfiability problem

SBS Single Best Solver

SD Standard Deviation

Sel Selection

seq-sat Sequential Satisficing

xv

GLOSSARY

STRIPS Stanford Research Institute
Problem Solver

T Time

TFD Temporal Fast Downward

Tp Temporal

TPR True Positive Rate

VAL The Automatic Plan Valida-
tor

Var Variance

VBS Virtual Best Solver

VMR Variance-to-mean ratio

xvi

1

Introduction

This chapter provides a general overview of this thesis, including an overall idea of
Automated Planning and Machine Learning. In addition, this chapter provides the
objectives of the thesis, its main contributions and, finally, a brief outline of the rest of
the document.

1.1 Overview

Planning is the process of deciding what to do in the future. More specifically: “Plan-
ning is the reasoning side of acting. It is an abstract, explicit deliberation process that
chooses and organizes actions by anticipating their expected outcomes” (Ghallab et al.,
2004). The objective of this deliberation is to achieve some predefined objectives in the
best possible way. Automated planning is the area of Artificial Intelligence (AI) that
studies this deliberation process from the computational point of view.

Formally, Automated Planning (AP) is the area of Artificial Intelligence (AI) that
studies the explicit deliberation processes that choose and organize actions in steps to
set out a plan (Ghallab et al., 2004, Russell and Norvig, 1995). Automated planning
tasks are made up of a domain and a problem definition. The domain is defined as
a set of permitted actions and rules that allow the state of the world to be defined;
and the problem is a set of instantiated predicates that define an initial state and a
goal state and that takes into account the rules defined in the domain model. An
example of a planning task is the transportation of packages between two different
locations. In this situation, the plan depends on the constraints of the transport sys-
tem and its fuel consumption, the knowledge you have as regards the problem, etc.
Depending on how the planning task is described, the planning system could be differ-
ent. This work is centred on domain-independent planning, but there are others such
as domain-specific planning and domain-configurable planning. Domain-Independent
Planning uses generic representations and techniques to carry out the planning tasks.
The planning engine is general enough to work in a planning domain that satisfies
any set of simplifying assumptions. These techniques are able to change the domain
easily. However, this mechanism does not guarantee efficiency in all possible planning
problems. The second type, Domain-specific Planning, uses specific representations and

1

1. INTRODUCTION

techniques adapted to each planning problem or each planning domain. In this case, the
planning engine takes advantage of the specific knowledge of the domain, and this type
of planning usually obtains better results than domain-independent approaches but is
less effectiveness in the rest of planning domains. The last one, Domain-configurable
planning, uses specific representations and techniques only useful for a specific problem
or domain, these modifications are sometimes included in the planner. These planning
systems, which are tailor-made for use in a given planning domain (or problem), are
unlikely to work in other domains unless major modifications of the planning system
are carried out. In this thesis, we will focus in domain-independent planning, and we
propose the reuse previously developed planning systems to carry out new planning
tasks.

All previous types of planning are concerned with choosing and organizing actions
for changing the state of a system from an initial situation to another one in which
several goals are satisfied. Formally, AP requires a conceptual model in which the
elements of the task to be carried out are described. This conceptual model is interest-
ing because it is good for explaining basic concepts, proving semantic properties and
clarifying assumptions (Ghallab et al., 2004). In this context, in 1998, the planning
community set up a competition, the International Planning Competition (IPC) , to
establish a common language and framework for comparing automated planners. Until
2008, the IPC was a biennial event. After that, it was held every three years (2011
and 2014), however, there are no more planned at the moment. This event remains a
keystone in the planning community. The IPC generates a global standard in which any
planning system may be compared with others. In each competition, different planning
systems compete in different tracks with different metrics (or planning goals), and only
one planner is declared the winner of each track. However, one of the main invariants
of the competition is that there is no single planner which is always the best (or at least
the same) for every domain or problem. This means that, although there is a planner
which, following the quality metrics of the competition, can be considered the best, we
can always find some problems in different domains in which other planners outperform
the overall winner. Therefore the AP community has generated a set of single planners
that are better than all of the others in specific situations. For this reason, discarding
these best planners seems meaningless. This situation leads us to one of the bases of
this thesis: the use of planning portfolios could improve the performance of every single
planner.

In fact, the idea of reusing a set of individual or base systems to generate more
accurate solutions than those obtained separately is not new in AI. For instance, in
Machine Learning (ML), meta-classifiers use different base classifiers to increase the
coverage of the representation bias of the resulting classifier (Dietterich, 2000). In
problem solving, portfolios of search algorithms have also demonstrated that they can
outperform the results of a single search strategy (Malitsky et al., 2013, Xu et al., 2010,
2008). For example, the SAT Competition has a special track on systems that included
more than two solvers (Open track). In the automated planning community, planner
portfolios have also been subject to great deal of interest. In IPCs from 2006 to 2014,
portfolio approaches obtained good results in almost every track in which they took
part.

2

1.1 Overview

However, although the use of portfolios has become the norm in the community,
there is still no agreement as to what a planning portfolio is (Vallati et al., 2015). In
this work, we assume that a portfolio of planners is a set of planning engines selected
and scheduled according to an exploited automatic selection strategy. This selection
strategy is what generates a specific portfolio configuration, whose goal is to maximize
the performance metrics. A configuration has to define three main elements: (1) which
sub-set of planners to run, (2) how long to run each planner and (3) in which
order. There are many techniques for configuring a planning portfolio (Vallati, 2012),
and depending on how accurate they are, the chances of selecting the best planner in a
given situation will increase. Note that, in this definition, if a planner has different con-
figuration parameters which modify its behaviour, each parameterization is considered
a different base planner, so base planners can be considered as black boxes.

The number of planners in the state of the art is large, and a portfolio with all avail-
able planners is an impractical idea. Nevertheless, if a planner is discarded in an initial
phase, it might not be useful in future planning tasks since, otherwise, its planning ca-
pabilities will decrease. Therefore, one hypothesis of this thesis is that there is a small
group of planners with enough diversity to be able to solve the same planning tasks
as using all available planners. A planner filtering is an option to select the minimum
number of planners to ensure that the best performance for each evaluated domain is
achieved, or even for every problem in each domain. Obviously, good results in current
domains do not ensure good results in new domains but, as will be demonstrated in this
thesis, it is a good estimator. We evaluate filtering strategies with classic metrics (like
time, quality and coverage) and establish that they are not good enough in some cases.
In this sense, we propose a Pareto efficiency-based approach (Censor, 1977) to reduce
the number of planners that we consider eligible for a planning portfolio. However, we
will show that with this mechanism, the first of the aforementioned questions (which
is the minimal set of base planners to use) can only be answered partially since the
number of candidate planners might still be considerable.

Ideally, the best solution to the portfolio configuration problem is to have an oracle
that predicts, given a domain, a problem and a metric, which planner will obtain the
best performance and how long it will take. Given that it is not possible to have this
oracle, in this thesis we propose the use of predictive models, automatically generated
with Machine Learning (ML) and Data Mining (DM) techniques. ML is an area of
AI that has evolved from the study of pattern recognition and computational learn-
ing theory (Russell and Norvig, 1995, Witten and Frank, 2005). It explores the study
and construction of algorithms that can learn and make predictions on data. Notwith-
standing, learning data should represent the planning task in our case. Previous works
have already tried to represent planner performance, but they have only partially suc-
ceeded (Howe et al., 1999). Several of them are based on obvious features that could
be extracted directly from the problem definition as the number of goals, number of
objects, etc. Furthermore, other feature analyses have been carried out (Roberts and
Howe, 2009, Roberts et al., 2008) but they still do not characterize the planning task
properly. We hypothesize that characterization could be better and we propose new
planning features, including features extracted from techniques that planners use to
solve problems. These features could generate examples of data to use in a learning

3

1. INTRODUCTION

process, because the learning is always done through the observation of data, examples,
direct experience, or instructions. In general, ML is about knowing how to do better
in the future based on what has been experienced in the past, and representing that
knowledge in models or other depictions. In our case, these models summarize the
results of all the candidate planners from the past: whether they were able to solve
planning problems or not, as well as the time required to generate a good solution (Ce-
namor et al., 2012, 2013). Given this knowledge on the past, the inductive hypothesis
also gives us an idea as to how they will behave in future planning domains and with
different problems. In addition, the order in which the planners are executed that can
be given by the expected accuracy of these predictions. Therefore, we are able to config-
ure a portfolio for each planning problem using these predictive models, like in previous
works on the use of portfolios in search (Gomes and Selman, 2001). This is a renewed
idea in automated planning since recent works have focused in static (Helmert, 2006)
or domain-specific portfolios (Gerevini et al., 2009, 2014), in which the configuration
of the portfolio is fixed for all the domains or chosen for each one respectively.

In this thesis we assert that ML can efficiently assist AP to build an Instance-
Based Configured Portfolio (IBaCoP). IBaCoP is a family of planning portfolios that
were built for competing in IPC-2014. One of these versions was the winner of the
Sequential Satisficing Track, and is one of the main contributions of this thesis.

1.2 Objectives

This thesis analyses the state-of-the-art in planning portfolios and studies the mech-
anisms required to build, as the ultimate goal, a general system able to configure a
planning portfolio using predictive models. To do so, this thesis focuses on several
sub-objectives.

The first is the study of the possible planners: to create a portfolio, it is necessary
to evaluate the previous planners to select the best candidates. This research takes into
account the type of technique, its history and performance. However, given the large
number of state-of-the-art planners, not all of them can be included in a portfolio. For
this reason, this initial set of planners should be reduced. We analyze several planner
filtering techniques in the state of the art, and we focus this study on coverage, time
and quality score. Nevertheless, these mechanisms are not able enough to obtain a
good selection as they may reduce the diversity of the set of planners. Instead, we
propose a multi-criteria planner selection based on the Pareto dominance between time
and quality to solve planning tasks.

The next objective is to develop a set of features able to characterize a planning
task. The previous features in AP only focus on the elements that appear in the
problem or domain definition, such as objects, types and goals. These kinds of features
are not sufficient to characterize the planning task because problems with the same
number of objects and goals could be extremely different, from a planner performance
perspective. For example, a problem with only three blocks might be very easy, but as
the Sussman Anomaly (Sussman, 1975) postulates, a particular instance of these kinds
of problems could be hard for many planners because they typically work on goals
separately. We argue that these kinds of features could be helpful but insufficient,

4

1.3 Thesis Outline

and there is the need for other features that take into account the interactions and
relationships within the search process. To improve the characterization, we propose
additional features based on alternative representations of the problem, such as SAS+,
and another information extracted from landmarks, heuristics and the relaxed plan
of the initial state. These features should be evaluated to understand what they are
encoding, and how they are useful in selecting different candidate planners in a portfolio.
This evaluation should include a comparative analysis of the performance between all
features and their subsets. In addition, a study into what are the features that have
different values in problems with similar structure is required. These problems have
the same number of objects and goals when they are created but they may have other
properties in the initial state that give rise to differences in the search for the plan.

The proposed set of features should be useful in creating more easily reusable knowl-
edge with different predictive models. These predictive models are created to prognos-
ticate the potential planners to carry out every planning task. In addition, these pre-
dictive models could be used to configure a portfolio. For this purpose, it is necessary
to determine the best predictive model for the portfolio. To achieve this objective we
propose to evaluate the predictive models following standard metrics from the field of
machine learning.

The next sub-objective is to create several configuration strategies to build a portfo-
lio. These strategies consist of selecting more than one candidate planner and assigning
the running time. These strategies may improve the results of the predictive models
when they are unable to discern the correct planner accurately or when all the planners
are expected to behave similarly.

Another sub-objective is to verify the applicability of our proposal in different plan-
ning sub-fields. Although most of the research carry out in classical deterministic
planning, we propose to characterize planning tasks also within a temporal planning
setting. In this configuration, as in the previous one, the system would use the learned
knowledge to configure a temporal planning portfolio, including the planner filtering,
the predictive models and the configurable strategies. Portfolios for temporal planning
were an unexplored idea at the beginning of this thesis, and there were none in the state
of the art. In addition, the temporal planners are clearly separated into two different
types, and, consequently, the selection of the candidate planners should be influenced
by this planner division. This is a perfect situation in which to create portfolios, since
the portfolio should include a combination of these types of planners. Following the
hypothesis of this thesis, our study includes a characterization of the temporal task,
including temporal specific features and, finally, strategies to build a temporal portfolio
per instance.

Stated briefly, in this thesis we develop and update the idea of dynamic configurable
portfolios that can be used for domain-independent or domain-dependent contexts.

1.3 Thesis Outline

This dissertation starts with its motivation, and a general overview on the reasons for
creating planning portfolios based on knowledge acquired in previous planning process

5

1. INTRODUCTION

executions. In this first Chapter 1 (Introduction), we also explain the objectives of this
thesis and we finish with the outline of this document.

Chapter 2, State of the Art, begins by describing Classical Planning, including the
main formulations and representations of the planning task. This chapter follows with
the description of the most important planning paradigms and the relevant planners for
this thesis. A review of the portfolio construction techniques in AP, previous research
based on the characterization of the planning task and the International Planning
Competition (IPC) are included.

Chapter 3, The Planning Filtering Methods: A Multi-Criteria Approach, carries
out an study of current selection techniques to maintain the most useful planners. This
chapter includes a new proposal to filter the planners used in the planning portfolio
and we compare all the approaches to understand their contributions.

Chapter 4, The Planning Problem Characterization and Empirical Performance
Modelling, carries out a study on off-line learning to create predictive models. This
chapter includes the description of current and new features developed to characterize
the planning tasks. An evaluation of the learning of empirical performance models of
the planners selected in the previous chapter is also reported.

Chapter 5, The Configuration Strategies to Create Planning Portfolios, provides an
overview of the current strategies to configure planning portfolios, including some new
proposals based on the use of empirical performance models. We present a study on the
influence of the number of selected base planners in the performance of the portfolio
and finally this chapter includes a portfolio construction algorithm that merges several
proposed techniques.

Chapter 6, Experimental Evaluation of Instance-Based Configured Portfolios, per-
forms the experiments to evaluate the deployment of the results in previous chapters
to create planning portfolios. In this sense, we carry out a profound analysis of the
results, showing which planners are the most selected and why they have been included.
We also report several insights into the different versions of dynamic portfolios devel-
oped in this thesis, which obtained amazing results in different tracks of the IPC 2014
competition.

Chapter 7, The Performance Modelling of Planner in Homogeneous Problem Sets,
develops a study into the relevance of the proposed features in homogeneous problems.
This study confirms the hypothesis that a dynamic portfolio selects different sets of
planners for different planning tasks and it gives us several insights into the relevance
of the features in homogeneous problem sets.

Chapter 8, The Temporal Portfolio, explains the temporal approximation of dy-
namic portfolios based on empirical performance models. We create a temporal port-
folio with a new set of temporal features and candidate planners, and we report the
results when compared with current state-of-the-art planners.

Chapter 9 summarizes the results of this thesis, essentially presenting its most
important contributions, gathering the main results achieved and proposing several
lines of research that could continue this work.

In addition, this thesis includes four appendices: the planner components, a brief
description of different methods of empirical evaluation in ML, training results for each
planner component and the results of IPC-2014.

6

2

State of the Art

This chapter is a review of the background related to the main topics addressed in this
thesis. First, we explain Classical and Temporal Planning. After that, we present the
modelling languages in Automated Planning (AP) and an introduction to the Interna-
tional Planning Competition. Then, a set of AP concepts and techniques that are used
in the following chapters is presented, since it is required to understand the features
used to create empirical models, and how these features are computed. Specifically,
heuristic planning, landmarks and SAT representations are described. This chapter
finishes with the state of the art of planning portfolios and a report about current
approaches for the characterization of planning tasks.

2.1 Classical Planning

Classical Planning (Ghallab et al., 2004) is one of the first approximations of AP.
Summarizing, it deals with deterministic, static, finite, and fully observable state-
transition tasks with restricted goals and implicit time. However there are other plan-
ning paradigms that do not assume some of them (e.g. uncertainty, temporal or proba-
bilistic planning). Classical planning usually follows the STRIPS representation, which
is described bellow.

Definition 1 (STRIPS planning task). A STRIPS planning task is a state-transition
system (the conceptual model in AP) described as a 5-tuple Π = 〈S,O, c, s0, s?〉 formed
by a finite set of facts, S, a set of actions O, a cost function c, the initial state s0 of
the task, where s0 ⊆ S, and a set of goals s?, where s? ⊆ S . Each action o ∈ O is
a triple (preo, effo , delo) of subsets of S referred to the action’s precondition, add and
delete lists respectively, satisficing that addo ∩ delo = ∅.

Π has a uniform cost if, for all o ∈ O , c(o) = 1. The solution of a planning problem
Π consists of generating a sequence of instantiated actions (o1, o2, . . . , on), usually called
a plan, where oi ∈ O. The application of a solution plan generates a sequence of states
(s0, s1, s2, . . . , sn) such that si ⊆ S, s? ⊆ sn, where si results from executing the action

oi in the state si−1, ∀i = 1..n. Finally, the cost of a plan is defined by
n∑
i=1

c(oi).

7

2. STATE OF THE ART

The representation of the STRIPS planning task is usually done through a :

• Domain model: it is the general description of how the world changes, normally
defined as the set of allowed actions or rules that transform world states into
other states.

• Problem: it is a particular situation of the domain, normally made up of a set of
objects, an initial state, a set of goals that need to be achieved and a metric to
be optimized.

Figure 2.1 details an example of a planning task in the transport domain. The
transport domain consists of moving several packages from the initial state to the goals.
Each vehicle (truck or airplane) can transport some packages depending on its capacity
and moving has a cost depending on the length of the road. In this example, there are
three vehicles, one package and four locations in two different cities. Each truck can
drive only in the same city and airplanes fly between cities. The goal of this problem
is to have the package in a particular location. More specifically, in this problem,
the initial state (s0) contains the static information about: the connections between
the locations in the same city (loc-01 with loc-00 and back); and the connections
between different cities (loc-01 with loc-10 have one). Furthermore, the initial state
also contains dynamic information such as: where the package is located (at p loc-00);
where the trucks in the two cities are (at loc-01 and loc-11); and where the plane is
(at a loc-01). The domain definition has the actions of move, load and unload from the
different vehicles.

loc-01

loc-00 loc-11

loc-10p

t1

t0
a

Figure 2.1: Initial state in a transport problem with a package, two cities, two trucks,
and a plane. The location in red is the final state of the package. The road for each truck
is the continuous line and the available movement for the airplane is the blue dotted line.

The plan for this problem is an ordered sequence that includes the actions: to move
truck t0 from loc-01 to loc-00, to load the package p, to move the truck back to loc-01,
to unload the package p, to load the package p onto the airplane a, to fly from loc-01
to loc-10, to unload the package p, to move the trunk t1 to loc-10, to load the package
p, to move the truck back to loc-11 and to unload the package p. The location of the
vehicles in the goal state is not important, only the final location of the package.

8

2.2 Temporal Planning

2.2 Temporal Planning

Classical planning imposes several assumptions, such as the implicit time of the ac-
tions (Gerevini et al., 2006). In many real-world planning domains, the carrying out
of certain actions can only occur during some predefined time windows where one or
more necessary conditions is imposed. For instance, a truck can be refueled at a gas
station only when the gas station is open. Temporal planning arises with the reason
for handling situations where actions have variable duration, might overlap in time or
an explicit representation of time is required.

Definition 2 (Temporal Planning task (Fox and Long, 2003)). A temporal planning
task is a tuple P = 〈S,A, c, s0, s?〉, where S, c, s0, s? are defined as in classical planning
in Definition 4.3.5. However, each a ∈ A is a temporal action made up of:

• duration (d(a)),

• pres(a), preo(a), pree(a): preconditions of a at the start, over all and at the end,
respectively,

• adds(a), adde(a): add effects of a at the start and at the end,

• dels(a), dele(a): delete effects of a at the start and at the end.

A plan for P is not a sequence but rather a set of action-time pairs P = (a1, t1), ..., (an, tn),
where ti, 1 ≤ i ≤ n, is the scheduled start time of action ai. Let (a, t) in P be an action-
time pair of the plan. Although a has a continuous duration, its effects only apply at
the start and the end. We can therefore associate two discrete events starta and enda
to a, such that starta has associated time t and enda has associated time t + d(a).
The plan P induces an event sequence P = 〈e1, ..., e2ni〉 that includes starta and enda
for each pair (a, t) ∈ P and is ordered by the associated times of events. We only
consider plans that associate single times to events, i.e. actions cannot start and/or
end simultaneously.

The temporal actions present events starta and enda as classical actions (Celorrio
et al., 2015) to describe the semantics of a temporal plan:

1. pre(starta) = pres(a), pre(enda) = pree(a),

2. add(starta) = adds(a), add(enda) = adde(a),

3. del(strata) = dels(a), del(enda) = dele(a).

There are two types of temporal planning (Cushing et al., 2007). The first, conserva-
tive temporal planning, in which concurrency is strictly optional. These problems have
some additional temporal information (action durations) that can be used to obtain
the scheduling of the sequences. The second is interleaved temporal planning, in which
concurrency is required; the actions in the plan could be carried out in parallel and it
is important to fulfill the requirements (preconditions, add and delete at start, at end
or over all) of actions at specific time. Figures 2.2 details a graphical representation of
the action Move from one location ?l1 to ?l2. To start the action, it needs the truck

9

2. STATE OF THE ART

to be in location ?l1, that both locations are connected, and that there is enough fuel.
At the end of the activity, the location of the truck has changed. Fuel is also decreased
by the amount spent.

move (v, l1, l2)

(at ?v ?l1)

(road ?l1 ?l2)

true

true

false

(at ?v ?l1)false true

duration

preconditions effects

Figure 2.2: Graphic representation of a durative action temporal transport domain

As noted above, Figure 2.2 details the same action graphically. It represents when
the facts are true and false in the course of the actions, and when a fluent changes the
value (in this case decreases).

2.3 Modeling Languages in Automated Planning

A common specification language is useful to define the classical planning problem. The
planning community has adopted Planning Domain Description Language (PDDL) (Ghal-
lab et al., 1998) as the de facto standard (Rintanen, 2015). PDDL appeared in 1998
and this standard has promoted several comparisons between planning algorithms for
classical planning. This fact led to the development of standard benchmark domain
and problem sets. However PDDL is not the only way of formalizing a planning task.
Several planning systems formulate the planning task with other representations on the
basis of the techniques used. The SAS+ representation (Bäckström and Jonsson, 1995)
is a transformation of the propositional definition in PDDL that defines a set of finite
multi-valued variables in contrast to PDDL which defines a set of Boolean propositions.
The translation from PDDL to SAS+ can be performed automatically (Helmert, 2009).
The finite domain representation is presented in detail in subsection 2.3.2.PDDL is
described bellow.

2.3.1 PDDL

PDDL was proposed as the language of the first International Planning Competition,
whose objective was to compare state-of-the-art techniques and further encourage the
development of more efficient planners. This standard has evolved with several versions,
each of them adding new features.

An example of a problem and domain definition appears in Figure 2.3. The first part
of the figure sets out the definition of the domain. This file represents the predicates
and the actions that model this world. The second part is the example described in
Figure 2.1 for this domain in PDDL.

We highlight two versions of PDDL below:

10

2.3 Modeling Languages in Automated Planning

(define (domain transport)

(:requirements :typing :action-costs)

(:types

location target locatable - object

vehicle package - locatable

capacity-number - object)

(:predicates

(road ?l1 ?l2 - location)

(at ?x - locatable ?v - location)

(in ?x - package ?v - vehicle)

(capacity ?v - vehicle ?s1 - capacity-number)

(capacity-predecessor ?s1 ?s2 - capacity-number))

(:action drive

(:action pick-up

(:action drop

...

(define (problem transport-cities)

(:domain transport)

(:objects

city0-loc0-0, city0-loc0-1, city1-loc1-0, city1-loc1-1 - location

truck0, truck1, airplane0 - vehicle)

package - package

(:init

(at truck0 city0-loc0-1)

(at truck1 city1-loc1-1)

(at airplane0 city0-loc0-1)

(at package city0-loc0-0))

(:goal

(at package city1-loc1-1))

Figure 2.3: Simplified example of the transport problem and domain in which the con-
nection between locations and actions are omitted. This problem is the same as appears
at Figure 2.1

11

2. STATE OF THE ART

• PDDL 1.7 (Ghallab et al., 1998) supports the basic representation (STRIPS (Fikes
and Nilsson, 1971)), using a LISP-like syntax. This version includes action pre-
conditions and the goals can be expressed not just as conjunctions of propositions
but also as disjunctions or quantified formulas. In addition, actions can have con-
ditional effects and typed objects.

• PDDL 2.1 (Fox and Long, 2003) added numeric variables which could be modified
by actions. A new type of action is included: durative actions (for temporal
planning). Durative actions could have discrete and continuous effects. These
actions allowed time on the planning task to be represented. Figure 2.4 details a
durative action.

(:durative-action move

:parameters

(?v - vehicle ?l1 ?l2 - location)

:duration

(= ?duration (road-length ?l1 ?l2))

:condition (and

(at start (at ?v ?l1))

(at start (road ?l1 ?l2))

(at start (>= (fuel-left ?v) (fuel-demand ?l1 ?l2))))

:effect (and

(at start (not (at ?v ?l1)))

(at end (at ?v ?l2))

(at start (decrease (fuel-left ?v) (fuel-demand ?l1 ?l2)))))

Figure 2.4: Description of durative Action Temporal Transport Domain

Figure 2.4 details an action in which a vehicle can drive between two points.
During the trip, it uses up fuel and the time depends on the length of the road. It
is important to note that the precondition should be true when the action starts
(at start precondition). Other actions can restrict some preconditions throughout
the entire duration (over all). The effects in this action could be applied at the
start and at the end.

2.3.2 SAS+

The SAS+ planning formalism (Helmert, 2004) is an alternative to propositional STRIPS (Fikes
and Nilsson, 1971) that has been analyzed in depth by several researchers. Unlike
STRIPS, it allows state variables to have non-binary (finite) domains. Planning tasks
specified in propositional STRIPS can be easily translated into a SAS+ planning task
(Helmert, 2009). The definition of the planning tasks with multi-valued variables is
shown in Definition 3, which is shortened to the FDR Planning task.

Definition 3 (FDR planning task). A deterministic planning task in finite-domain
representation or FDR planning task is a 5-tuple Π = 〈V,O, c, s0, s?〉, where:

• V is a finite set of state variables, each v ∈ V with a finite domain D.

12

2.3 Modeling Languages in Automated Planning

• O is a finite set of actions, each o ∈ O is a pair (preo, effo).

• c is the cost function.

• s0 is a complete variable assignment called the initial state.

• s? is a partial variable assignment called the goal.

This formalism permits the construction of two different types of graph; a Causal
Graph (CG) and a Domain Transition Graph (DTG). The causal graph is a directed
graph that represents the interaction among variables in the planning task. Each node
is associated with a finite-domain variable and there is an edge from p to q if the value
of variable q depends on the value of p. It was first used in the context of the generation
of hierarchical abstractions (Bacchus and Yang, 1994, Knoblock, 1994). Later, it was
defined for unary operator tasks (Brafman and Domshlak, 2003). We use the definition
given by Helmert (Helmert, 2004) in the context of heuristic search planning:

Definition 4 (Causal Graph). Given a FDR planning task Π = 〈V,O, c, s0, s?〉, a
causal graph is a directed graph (V, A) containing an arc (u, v) if and only if u 6= v and
there exists an operator (pre(o), effo , c(o)) ∈ O such that v ∈ Veffo and u ∈ Veffo∪Vpre(o).

The causal graph of a planning task offers an overall view of the interaction among
variables in which the high level variables in this graph are the variables that define a
goal in the problem. The weight for the arcs is the number of DTG transitions that
are included in each arc.

Figure 2.5 shows an example of the Causal Graph in a Transport domain referred to
in Subsection 2.3.1. In this figure, there is only one high level variable and it appears in
red. This high level variable is the package p0 in the problem, and the other variables
are the trucks and the airplane. For each arch between a vehicle and the package, the
graph represents the possible actions in the domain; e.g, the loading and unloading of
the package in the available positions (two in all cases).

P0

T0

A0

T1

4

4

4

Figure 2.5: Causal Graph on Transport Domain. It represents two trucks, an airplane
and a package.

Furthermore, domain transition graphs (DTG) describe the transitions between val-
ues of a single variable of the problem, and their relationship with other variables (Jon-
sson and Bäckström, 1998).

13

2. STATE OF THE ART

Definition 5 (Domain Transition Graph). A domain transition graph of a state
variable v ∈ V of a FDR task Π = 〈V,O, c, s0, s?〉 is the labeled directed graph
DTG(v, π) with vertices Dv and an arc (d, d′) labeled with action o ∈ O if and only if
d 6= d′ and there is an operator (pre(o), eff(o), c(o)) where (pre(o) = d or v 6∈ pre(o))
and eff(v) = d′. For each arc (d, o, d′) we say that there is a transition of v from d to
d′ enabled by o.

Figure 2.6 details the DTG for three variables in the previous example. It is im-
portant to note that the arc representations in this figure are a simplification of the
instantiated actions that appear in the SAS+ representation. For example, in the sub
figure 2.6a the instantiated action is drive-package0-city1 because there are other ob-
jects which are parameters of the action. As in the previous figure, the goals in this
graph are highlighted in red. The weights in these arcs are the number of conditions
for the transition; in other words, the number of variables that need to have a specific
value for this transition.

Loc1-0 Loc1-1

Drive

Drive

(a) DTG truck 1

Loc0-0 Loc1-0

Fly

Fly

(b) DTG plane 0

Loc0-1

Loc1-0

T0

A0

Loc1-1T1

Loc0-0

load-truck

load-truck

load-truck

load-truck

unload-truck

unload-truck

unload-truck

unload-truck

load-plane

load-plane

unload-plane
unload-plane

(c) DTG package 0

Figure 2.6: Three DTG’s on Transport domain. The graph (a) depicts the transitions of
a single truck in city 1 (the DTG for the other truck is the same but changes the name of
the nodes with the names of the locations in the city 0). The graph (b) is the transitions
of an airplane. The graph (c) depicts the transitions of a package in the transport domain
where the green nodes represent the vehicles.

Both modeling languages (PDDL and SAS+) are used in next chapter to generate
features and characterize the planning task. More specifically, the structure of the
graphs is one of the most relevant knowledge sources in this dissertation.

2.4 The International Planning Competition

The International Planning Competition was held for the first time in 1998 to obtain a
general framework to compare the current planning systems and to assess the state of

14

2.4 The International Planning Competition

the art. The competitions have several advantages for the planning community: plan-
ning benchmarks are changing; the created planning systems are improving remarkably
every year; planners are capable of solving large and complex problems, using rich ex-
pressive domain models and improving the quality of solutions. In addition, the IPC
determines an empirical methodology to compare the planners and implant several
metrics. These metrics include coverage, quality and time, which are described below:

• Coverage: The coverage is the total number of problems solved from the bench-
mark within the time and memory bounds.

• Time score: While coverage is only taken into account if a planner solves a
problem or not, time score metrics reward planners for solving the problems as
soon as possible. Thus, the planner which solves each problem in less time receives
one point, while other planners solving the same problem in more time receive a
score of between 0 or 1. The specific formula is shown in equation 2.1. T ∗ is the
minimum time required by any planner to solve the same task and T is the time
this particular planner took to solve the task. If the planner does not solve the
problem, then T = 0.

T =
1

1 + log(TT ∗)
(2.1)

1

• Quality score: A planner finds a plan with a quality where Q < Q∗ (assume the
best quality is Q∗, and the obtained quality is Q). This planner would aggregate
the quality ratio Q∗/Q to its total score (lower qualities are considered best). In
cases in which it is not feasible to obtain Q∗, it will be considered the best plan
quality found by any planner and, like the previous metric, if a planner does not
solve the problem, Q = 0.

The last two metrics are scores that depend on the included planners; it is meant
that the T ∗ and Q∗ are calculated with the execution of the planners because an
optimal solution could be computationally expensive. In addition, the competitions
have several rules that contribute to standardizing the process of evaluating automated
planners. The benchmarks are described in the Planning Domain Definition Language
(PDDL) (Ghallab et al., 1998), which is used to provide domain and problem descrip-
tions. Every IPC developed a software that automates the experimentation (López
et al., 2013). In this thesis, the experiments are carried out within the framework of
the IPC-2011. The software automatically tracks the execution of the planners, mea-
suring the time and memory use. In addition, after the execution of each planners, the
results are validated by an automatic validation tool (VAL) (Howey et al., 2004).

Every IPC was made up of several tracks; for example, IPC-2011 had three (de-
terministic, learning and uncertainty). However, each track, at the same time, is split

1This formula is assumed for our evaluation. The first time that this formula is used in learning
track. The time score is given by T ∗/T .

15

2. STATE OF THE ART

into categories. The deterministic track is divided into: temporal and sequential; and
sequential has satisficing, optimal and multi-core tracks. In addition, in the last IPC,
the agile track was included in this section. The goal in every track is different and,
consequently, the requirements and metrics might be different. We highlight several
tracks below:

• The Satisficing track covers classical STRIPS planning (non-durative actions)
with actions having associated non-negative costs (not necessarily uniform), nega-
tive preconditions and conditional effects. The goal of this track is to find low-cost
plans, and the planners can generate more than one solution, where the cost is
defined as the sum of the costs of each plan’s actions. The metric for this track
was the quality score and the memory limit was 4 GB in the last IPC.

• The Optimal track seeks to find optimal plans in terms of total cost, where the
total cost of each plan is defined as the sum of the costs of its actions. Planners
compete on the number of problems they manage to solve (coverage).

• The Multi-core track takes into account that the code of the planner will run
in different cores simultaneously and/or with different threads in each core. No
GPU computing is available. Moreover, it is not the aim of this track to distribute
work among different nodes of large clusters. Only one computer with a number
of cores is devoted to each planner. And the memory of all cores is the same as
the satisficing track. The metric for this track is the quality score.

• The Agile track objective is to find a satisfacing solution as soon as possible,
given the very short amount of CPU time available. The metric appears on the
formula for the time score described in Equation 2.1.

• The Learning track is a track made up of two stages. In the first stage, the
system extracts Domain-specific Control Knowledge (DCK) for each domain. The
source code should be prepared previously to support this knowledge and the
system is evaluated in each domain of the competition with and without the
learned DCK on the same problem set. The no-knowledge evaluation helps to
provide insights into the impact that learning had for each participant. The
metric for this track is the quality score.

• The Temporal track consists of finding short plans in terms of their makespan.
The planners in this track have to support durative actions and numeric state
variables. The metric for this track is a quality score.

2.5 Planning Paradigms

The AP community has contributed many algorithms that are implemented for domain-
independent planning. In this section, we explain heuristic planning as the most ex-
tended technique, landmarks and SAT.

16

2.5 Planning Paradigms

2.5.1 Heuristic Planning

There is extensive related work on planning with heuristic search in which the search
algorithms try to find a path in a graph between the initial state and the final state (a
state that satisfies the goals). An example of a planning graph appears in Figure 2.7.
This graph has a group of eight states and the only path to achieve the goal state is
〈Init, S2, S4, Goal〉.

Init

S1 S2

S4

S5 Goal S6

S3

Figure 2.7: Example of a graph plan

In order to improve the search algorithms, heuristics introduce a guide to go through
a planning graph, skipping useless nodes in the graph, and making the solution finding
easier for the planning problem. Typically, a heuristic function estimates the remaining
cost from the current state to the goals. It is usual to denote the heuristic evaluation
function by h(s).

Definition 6 (Heuristic function). A heuristic function h(s) estimates the cost of a
path from the actual state si to the goal; search methods prefer to expand states si+n
with small h(si+n) values.

The heuristic search-based planners can be categorized by following three different
criteria: the direction of the search (progression from the initial state or regression from
the goal state); the search algorithm used (the most extended are best-first and hill
climbing search); and the heuristic function used for the search.

Heuristic Search Planner (HSP) (Bonet and Geffner, 2001) is one of the pioneer
planners that uses heuristic functions. This planner applies a hill-climbing search with
heuristic hadd from the initial state to the goal (progression search). This heuristic is
based on a delete-relaxation of the problem (a version of the original planning task in
which all the delete effects of all the actions a ∈ A are ignored). hadd is computed by
iteratively adding the costs of achieving the preconditions of the actions that get the
goals.

Fast Forward (FF) (Hoffmann and Nebel, 2001) uses progression search in the
state space with a heuristic that estimates goal distances by ignoring delete lists (hff).
This planner introduced several techniques that increased its efficiency considerably

17

2. STATE OF THE ART

with respect to the previous planners. For instance, FF has a more sophisticated
method for heuristic evaluation than HSP; it uses a kind of local search strategy, em-
ploying systematic search for escaping plateaus and local minima and it identifies the
successors that are most helpful in achieving the goal: helpful actions. The set of help-
ful actions are the set of useful successors generated by the relaxed plan, where the
relaxed plan is an instance just like the plan Π, but in which the operators do not have
a delete list.

Fast Downward (FD) represents a generation of heuristic planners that use
the progression search (Helmert, 2006). FD is a planning framework that uses a
multi-valued representation (SAS+) of the problem (Helmert, 2009) and implements
a broad range of techniques. The most successful ones include landmarks, new heuris-
tics (Causal Graph, Landmark, etc.) and the use of multiple open queues, amongst
others. There are several planners that are implemented on top of FD. For example,
planners such as lama-2008, lama-2011 and portfolios like FDSS. In this section,
we will explain several techniques that are based on this system (landmarks, SAS+

formulation) and we use them in this thesis.
FD carries out a planning task in three phases as detailed in Figure 2.8. The

first step is the translation process. This step transforms PDDL into a multi-valued
representation. The second step, preprocess, generates structures in the system, such
as Causal Graphs and Domain Transition Graphs. The last step, search, implements
three different search algorithms with different heuristics.

Figure 2.8: The three phases of FD’s execution.

2.5.2 Landmarks

In its initial definition, landmarks are a set of propositional formulas that have to
become true at some point in every plan (Porteous et al., 2001). Later, that definition
was extended to include both action landmarks (Richter and Westphal, 2010) and
conjunctive sets of propositions (Keyder et al., 2010).

Definition 7 (Fact Landmark). Given a FDR planning task Π = 〈V,O, c, s0, s?〉 and
s ∈ Π. A fact p is a fact landmark for s if p 6∈ s, and for every plan (o1, o2, . . . , on) for
s, there exists an state t so that p ∈ apply(s, 〈o1, o2, . . . , ot〉).

18

2.5 Planning Paradigms

Definition 2.5.2 explains that a fact landmark is a variable value that must become
true at some point during every plan, but not in the current state s. This landmark
should appear on the effo of the actions of the plan (o1, o2, . . . , on).

Landmarks were also formalized in a framework that relates them to abstractions
and critical paths (Helmert and Domshlak, 2009), giving them a stronger theoreti-
cal background. Several planners use landmarks to direct the search towards those
states where many landmarks have already been reached. The landmarks are the in-
tuitive solutions that the humans might use. For example, consider the example in
Figure 2.1 where the goal is to deliver packages to various locations using different
vehicles. Cities consist of sets of locations, where trucks may transport packages within
the city, whereas airplanes have to be used between cities. For a human, the first step
is to load the package onto the truck to move it to the airport, because the package
must be transported between the two cities, from city 0 to city 1.

The landmark precisely captures these intermediate conditions which can then be
used. Figure 2.9 shows several landmarks, L1 = “package at loc-01” and L2 = “package
at in loc-11” are examples of landmarks in the task shown in Figure 2.1. Furthermore,
these landmarks give extra knowledge because L1 must be true before L2. The entire
this process could be carried out in a pre-processing step (Hoffmann et al., 2004).

In (p0, t1) In (p0, L01)

In (p0, t0)

In (p0, a0)

In (p0, L10)

In (a0, L10) In (t1, L11)

In (a0, L01)

In (t0, L01)

In (t0, L00)In (p0, L00) In (t1, L10)

at (p0, L11)

Figure 2.9: Landmark graph produced by Zhu & Givan method from the previous prob-
lem in Figure 2.3 at transport domain.

More specifically, Figure 2.9 shows the generation method by Zhu & Givan (Zhu and
Givan, 2003), in which the landmark graph represents a conjunction of propositions (the
preconditions of the actions). In this graph, the landmarks that appear in the relaxed
problem after a simple verification process is carried out. This representation is an
easy representation of the landmarks. This graph connects all facts with the fact that
achieves the goal at (p0, L10).

This representation is not the only one: Richter, Helmert and Westphal (Richter
et al., 2008) introduce another. Their algorithm recognizes landmarks and landmark
orderings for a multi-valued state variable representation of planning tasks.

A more recent approach (Keyder et al., 2010) creates landmarks for the delete
relaxation of the planning problem. This method does not guarantee to find all the
possible sets of landmarks. However, this method guarantees that all the landmarks
in accordance with the causality criterion will be found. This method is similar to the
previous one but adapted to the SAS+ formulation to create more accurate landmarks
with better orderings. Figure 2.10 details an example of a landmark graph. There

19

2. STATE OF THE ART

is real difference between Figure 2.9 and Figure 2.10. The second one shows more
dependencies between facts in the final plan, but the same number of facts.

In (p0, t1)

at (p0, L01)

In (p0, t0)

In (p0, a0)

at (p0, L10)

at (a0, L10)

at (t1, L11)

at (a0, L01)

at (t0, L01)

at (t0, L00)

at (p0, L00)

at (t1, L10)

at (p0, L11)

Figure 2.10: Landmark graph extracted by the formulation of Keyder, Richter & Helmert
with m = 1 from the previous problem in Figure 2.3 at transport domain.

2.5.3 SAT

Propositional satisfiability (SAT) is the problem of determining whether there is a
substitution of variables for specific values in a propositional formula that make the
formula true. SAT is one of the first problems proven to be NP-complete and one of
the most important areas in AI. Planning as satisfiability is an approach to domain-
independent planning and is one of the earliest applications of SAT to solve generic
search problems. In this scope, the planning task becomes an to satisfy a propositional
formula which can be easily constructed from the problem description (Biere et al.,
2009). The idea of using SAT for planning is to encode the planning problem as
a bounded plan existence problem, i.e., whether a plan of a given length exists, as a
formula in SAT. The efficiency of the SAT-based approach to AI planning is determined
by an efficient representation of the problem.

The final goal of these techniques is to determine whether there is an interpretation
that satisfies a given Boolean formula. This is a domain-independent planning approach
proposed by Henry Kautz and Bart Selman in SATPlan (Kautz et al., 2006). This
planner compiles a planning task iteratively into several SAT tasks using the concept
of parallel steps. The planner maps the problem into a SAT instance and uses a state-
of-the-art SAT solver to find a solution or prove that there has been no solution up to

20

2.6 Portfolios

the current horizon. This planner has another version, SatPlan-2005, which includes

a mutex propagation. This process is carried out on the plan graph but only a subset

of the inferred mutexes are encoded as binary clauses. An encoding with Boolean

variables for both actions and fluents is used, rather than on which only uses actions.

The current state-of-the-art SAT-based planner is Madagascar (Rintanen, 2014).

This planner includes efficient encoding, parallelized search strategies (Rintanen et al.,

2006), and SAT heuristics specialized for planning. There are three versions of this

planner, Madagaspar, Madagascar-p and Madagascar-pC. Madagascar-p is

similar to Madagascar but it uses backward chaining and Madagascar-pC is similar

as Madagascar-p but it replaces the horizons that uses the others for smaller ones.

2.6 Portfolios

In this Section, first, we set out some relevant definitions on planning portfolios. Next,

we describe the different portfolio configuration strategies that can be found in the

literature, and we characterize them by specifying some important properties. Finally,

we describe the state-of-the-art techniques in the planning portfolios.

2.6.1 Portfolio Definition

The automated planning community has created a very large number of different plan-

ning algorithms (solvers). No single solver dominates all of the others on all planning

tasks, although there is an overall winner in each IPC. For this reason, combining all

of them could be a good idea to achieve a better overall performance than any base

one. However, there are many ways of defining a planning portfolio. A simple way is

to assign run time slots to each base planner, so it must only be executed in these time

slots. Another way is by assigning execution times to a sequence of planners, as we do

in Definition 8.

Definition 8 (Planning Portfolio). Given a set of base planners, {pl1, . . . , pln}, and a
maximum execution time, T , a planning portfolio can be considered as a sequence of
m pairs < pl1, t1 >, . . . , < plm, tm >. where pli ∈ {pl1, . . . , pln} and

∑m
j=1 tj ≤ T .

The goal of a portfolio is to offer an implementation of the Virtual Best Solver

(VBS), described in Definition 9. The VBS selects the best solver from a given portfolio

of alternatives on a per-instance basis (Cameron et al., 2016). This approximation

usually achieves much a better performance than the Single Best Solver (SBS), SBS

being the best planner for a set of tasks. This VBS provides a useful theoretical upper

bound on the currently achievable performance. However, this bound is usually not

tight: the VBS is not an actual planner (to compute without an oracle, it needs to

run each planner sequentially) and the VBS is calculated by a set of planners. As

a consequence, VBS is biased by the planners used, it is not generalizable for new

instances.

21

2. STATE OF THE ART

Definition 9 (Virtual Best Solver (VBS)). Given a set of base planners, pl1, . . . , pln, a
set of problems to solve, {p1, . . . , pk}, and a metric m, the Virtual Best Solver is the best
possible combination of planners to solve the set of planning tasks: V BS = argi∈{1,...,n}
minm(pli, pj);∀j ∈ {1 . . . k}.

VBS is, therefore, an oracle which always selects the best planner for each planning
task and it always achieves the upper bound in terms of the metric used.

2.6.2 Portfolio Construction Process

There are several steps in configuring a portfolio of planners (Vallati, 2012) as described
in Figure 2.11.

Figure 2.11: Steps required for configuring a planning portfolio.

The first step is to select the initial configuration from which the portfolio will
be constructed. This information consists of the set of base planners, the planning
benchmarks, and portfolio configuration data. An accurate selection of base planners
is a main issue when constructing portfolios, since the portfolio will only be able to
solve problems that the candidate planners can solve but nobody else. However, the
number of candidate planners should be bounded because the total execution time
is distributed among all the planners, so more planners mean less average time per
planner. And limitations in time assignment may increase completeness problems.

The task benchmark influences the target of the portfolio. For example, if the train-
ing set only includes problems in the same domain, the portfolio achieved is domain-
dependent. However, if the benchmark suite is too large, the process of analysing the
benchmark may require a great computational effort, which may also increase with
the number of planners. In this scope, there are not an standard criteria on how the
domains/problems are to be selected; the most widespread is to use IPC benchmarks
to make up the training set.

Other decisions are related to the type of portfolio we want to create, such as config-
uration target, optimization criteria, or order. The configuration target defines whether
the portfolio is domain-independent (static), domain-specific or instance-specific. The

22

2.6 Portfolios

optimization criteria may include several factors,such as the time available, whether
this time is fixed or whether we want maximize coverage or minimize execution time.
Execution order of the base planners is also an important issue, and also whether the
portfolio can be executed sequentially or in parallel.

The second step is offline construction. All selected planners are run in the
training benchmark. This process generates a database with “Planning Performance
Knowledge”. In previous works, this knowledge was mainly used only to establish the
running time per base planner and the relative order in the portfolio. However, in this
thesis, this information is also used to provide an initial planner selection.

Lastly, the final selection of planners, their execution time and relative order defines
a specific portfolio configuration. Figure 2.12 shows a portfolio in which there
are three components selected to run for a fixed amount of time. If the order of
the sequence is assumed, the portfolio will present an arbitrary order of execution
(e.g., Pl6, Pl11, Pl3). Note , there are no constrains on a planner appearing different
points of the sequence, although the portfolios that we build in this thesis satisfy this
constraint (∀pli, plj ∈< pl1, t1 >, . . . , < plm, tm >, pli 6= plj , therefore m 6 n, where
m is the number of selected planners and n is the initial one). Other assumptions of
our approximation are that: i) there is no transfer information between each candidate
planner at the time of execution; ii) each candidate is a black box in the portfolio, as
they appear in Figure 2.12.

Figure 2.12: Example of sequential portfolio

2.6.3 Planning Portfolios

In this section, we review the main portfolios in the literature. To describe them, we
use a set of characteristics summarized in Table 2.1. This characterization includes
whether the portfolio has a step to filter the planners or its selection is quite arbitrary
(F); how the time is assigned to each base planner (T), i.e. whether it is a uniform
assignment, based on quality metric rankings, etc; the order in which each component is
executed (O), performance prediction, expected required time, etc; the type of portfolio
configuration (C): static, dynamic per domain or dynamic per problem; whether the
portfolio has components that could transfer information between themselves (Pl);

23

2. STATE OF THE ART

whether the planner is domain independent or not (K); and last, in which IPC track
the planner has participated or is designed for.

Table 2.1: Different features of planning portfolios.

Characteristic Possible values

Number of Planner candidate (N.) Natural number
Planner Filtering (F) Yes / No
Time Assignment(T) Equal Time (Uniform), based on score,

etc.
Order (O) Performance, less time, etc
Configuration (C) Static / Dynamic / Per problem
Independent planners (Pl) Yes / No
Knowledge (K) Other information
Track Sequential Satisficing, Optimal, Agile,

Multi core, Temporal, Learning

Howe et al. describes one of the first per instance planning portfolios (Howe et al.,
1999) . They implement a system called BUS that runs 6 planners (all planners avail-
able until that moment) and whose goal is to find a solution in the shortest period of
time. To achieve this, they run the planners in portions of time and in circular order
until one of them finds a solution. In this portfolio, the planners are sorted in accor-
dance with the estimation provided by a linear regression model of their success and
run-time so, they use predictive models for the behavior of the planners to decide their
order of execution. They use only 5 features extracted from the PDDL description:
from the domain, they count the number of actions and the number of predicates; from
the problem, they count the number of objects, the number of predicates in the initial
conditions and the number of goals. BUS minimizes the expected cost of implement-
ing a sequence of algorithms until one works in an instance-specific configuration with
independent planners.

Fast Downward Stone Soup (FDSS (Helmert et al., 2011)) is based on the
Fast Downward (FD) planning system (Helmert, 2006), with several versions for the
different tracks. FDSS is an approach for selecting and combining heuristics and search
algorithms. In training, they evaluate the possible configurations with a time limit,
and select the set of configurations that maximizes the IPC score. For the portfolio
presented in the IPC-2011 Sequential Satisficing Track, they sort the configurations by
decreasing the order of IPC score, hence beginning with algorithms likely to succeed
quickly. The time limit for each component is the lowest value that would still lead
to the same portfolio score in the training phase. However, the order is important,
since each setting communicates the quality of the best solution found so far to the
following one, and this value is used to improve the performance of the next setting.
Therefore, FDSS can only include configurations within the FD framework. However,
it is not the only ordering strategy, FDSS for optimal track selects the components

24

2.6 Portfolios

that maximizes the coverage and sorted by decreasing the order of failures in memory
use. These portfolios present a sequential domain independent configuration. They
share the best solution among the candidate planners. The candidate planners, their
order and their time are designed by empirical evaluation.

Fast Downward Cedalion (Seipp et al., 2015) is a portfolio configured with
an automatic parametric algorithm. Given a parametric planner and a set of training
instances, it selects the pair (planner, time) iteratively. At the end of each iteration, all
instances for which the current portfolio finds the best solution are removed from the
training set. The algorithm stops when the total run time of the added configurations
reaches the portfolio time limit or if the training set becomes empty. Configurations
are generated using SMAC (Hutter et al., 2011), which is a model-based algorithm
configurator on the training instances. Cedalion has the same configuration for all the
problems but a different configuration per version (There are 4 versions of Cedalion:
Satisficing, optimal, agile and learning). The diversity of the candidate planners is lim-
ited by the heuristics and search methods included in FD. The configuration processes
and the resulting configured portfolios of Cedalion are the same as FDSS.

The Fast Downward Uniform (Seipp et al., 2012) portfolio runs 21 automat-
ically configured Fast Downward instantiations sequentially for the same amount of
time. Uniform portfolio approaches are configured using the automatic parameter tun-
ing framework ParamILS (Hutter et al., 2009) to find fast configurations of the FD
planning system for 21 planning domains separately. At run time, all configurations
found are run sequentially for the same amount of time for 85 seconds at most.

PbP (Gerevini et al., 2009) is a domain-specific portfolio with independent plan-
ners. This portfolio incorporates macro-actions in the specific knowledge of the do-
mains. The incorporation of this knowledge establishes the order of a subset of plan-
ners which contain macro-actions. The running time is assigned through a round-robin
strategy. This portfolio incorporates seven planners (the latest version, PbP2, adds
lama-2008 (Gerevini et al., 2014)). The automatic portfolio configuration in PbP aims
to build different types of planning systems: a domain-optimized portfolio planner
for each given domain in PbP. It uses several planners that focus on macro-actions.
This portfolio was the winner of the learning tracks of IPC-2008 and IPC-2011 and
the additional knowledge of the domain is extracted in a previous offline phase. Fur-
thermore, PbP has two different variants one focuses on time, and the other focuses
on quality. This portfolio is built focud on learning track, but it could be used in a
domain-independent way (not including the offline learning knowledge per domain).

MiPlan (Núñez et al., 2015a) is a sequential portfolio using Mixed-Integer Pro-
gramming (MIP), which computes the portfolio that obtains the best achievable per-
formance with respect to a selection of training planning tasks. In their case, they have
created a sequential portfolio with a subset of sequential planners with fixed times. For
this approximation, the planner does not consider the other portfolios, only their com-
ponents. This portfolio has four versions: optimal, satisficing, multi-core and learning.
The resulting portfolio is a linear combination of planners defined as a sorted set of pairs
planner, time without sharing information among them. Their MIP model considers
an objective function that maximizes a weighted sum of different parameters including
overall running time and quality per track.

25

2. STATE OF THE ART

DPMPLAN (Núñez et al., 2014) is a modified portfolio based on MIPlan. In
this case, the MIP task tries to maximize the objective function for a set of times (in
seconds). The times considered are 1, 5, 10, 25, 50, 100, 200, 450, 900 and 1800 (time
limit). This portfolio has two different configurations for the optimal and satisficing
tracks. For each configuration there are different candidate planners and different times
per each planner and all of them come from IPC-2011.

NuCeLaR (Núñez et al., 2014) is a portfolio created in two independent steps.
The first one is based on a clustering to split the training problems into groups. Once
the set of training problems is split into different subsets (clusters), it computes a
different portfolio configuration for each subset using a technique based on Mixed-
Integer Programming. This portfolio has three different configurations for the optimal,
satisficing and multi-core tracks. For each configuration there are different candidate
planners and different times per planner.

ArvandHerd (Valenzano et al., 2014) is a sequential satisficing planner that uses a
portfolio consisting of lama and Arvand. This portfolio tries to exploit the strengths
of the complementary approaches of random-walk and best-first search based planning
used by Arvand. The multi-core version has three threads of different Arvand configu-
rations and one of lama. The single core configurations, first, run the Arvand planner
for a defined period of time and then it switches to lama. The agile configuration runs
Arvand for 3 minutes and 2 minutes for lama.

Bidirectional Fast Downward (BiFD) portfolio (Alcázar et al., 2014) com-
bines FD progression with FD Regression. The aim of the combination is to exploit
the advantages of searching in both directions. This portfolio performs a single prepro-
cessing phase, including the computation of h2 heuristic in both directions. The time
for each search is based on which direction has the least amount of time so far.

USE (Sadraei and Agmadi, 2014) is a sequential portfolio planner that uses forward
and backward search. The forward search used is a stochastic planner that takes
advantage of “Useful Operator Selection”, heuristic functions and preferred operators
of lama. When the search process does not go forward, the portfolio resets the search
with backward search. This process is repeated until the goal is reached.

Freelunch (Balyo, 2014) consists of two planning algorithms. The first one is a
simple heuristic forward search algorithm, and the second is a SAT based approach.
The time limit for the forward search is set to 10 seconds, the rest of the time is used
for SAT search and post planning optimization.

AllPACA (Malitsky et al., 2014) is a portfolio which automatically chooses which
of several planners to run for the planning task that is given. It chooses a planner that
is expected to solve the given planning task the quickest based on several features of
the planning task. It is a dynamic per instance portfolio that took part in the optimal
track. It was designed to select a planner that solves the instance in the shortest time.
The predictive model is based on random forest and the input planners are the optimal
ones from IPC-2011 with only 65 features extracted from PDDL and SAT formalisms.

ASAP (Vallati et al., 2014) is a domain-dependent static portfolio using an addi-
tional representation of the planning problem with macro-actions and outer and inner
entanglements. The offline learning of this portfolio consists of select the best encoding

26

2.6 Portfolios

in a domain in a specific planner. To this end, all combinations of their learning proce-
dure are executed. The final version is made up of the best combination of the planning
representation and the planner works with it until a solution is found. This portfolio
presents two versions, one optimized by quality and other one by time. AGAP (Vallati
et al., 2014) is an improved version of ASAP. It is an automatic algorithm selection
approach for planning that, for a given domain, initially learns additional knowledge,
in the form of macro-operators and entanglements. The knowledge is used for creating
a different encoding of the given planning domain and problems and selects the most
promising algorithm for optimizing the quality of the solution plans.

IBaCoP, IBaCoP2 (Cenamor et al., 2016) and LIBaCoP2 (Cenamor et al., 2014b)
are the portfolios as the result of this thesis. IBaCoP is the Pareto-QT selection,
IBaCoP2 is the previous one and the classification model and LIBaCoP2 is IBaCoP2
and the regression model.

The list of planning portfolios would not be complete without IBaCoP, IBaCoP2
and LIBaCoP2. Since they are the object of this thesis, we will not give more details
on them until the next section.

The previous described portfolios with a summary of the characteristics of the
Table 2.1 appears in the Table 2.2.

27

2. STATE OF THE ART

Table 2.2: Summary of the state-of-the-art planning portfolios. For each portfolio ap-
pears: number of planners (N), if there is any criteria to select the planners (F), time
strategy (T), ordering strategy (S), if the planners share information between components
(Pl), if present additional information of Knowledge (K) and the submitted track (TK).

N F T O C Pl K TK

BUS 6 no Round Robin Confidence Dynamic per
Problem

no no Agile

FDSS-2011 15-6 yes Lowest Main-
tain the score

Performance +
Contribution

Static yes no Satisficing,
Optimal

FDSS-2014 27 yes Lowest Main-
tain the score

Performance +
Contribution

Static yes no Satisficing

FD-Uniform 21 yes ET – Static yes no Satisficing,
Optimal,
Agile

FD-Cedalion 8 yes SMAC – Static yes no Satisficing,
Optimal, Ag-
ile, Learning

MiPlan 12 yes Optimal Less time Static no no Satisficing,
Optimal,
Multi-core,
Learning

DPMPLAN 14 yes Optimal Less time Static yes no Satisficing,
Optimal

NuCelar 21 yes Optimal Less time Dynamic per
Problem

no no Satisficing,
Optimal,
Multi-core

ArvandHerd 4 no Arbitrary Different propor-
tions

Static yes no Satisficing,
Agile, Multi-
core

BiFD 2 no Depend of the
problem

Proportions Static no no Satisficing

Freelunch 2 no Arbitrary Fix Process of the
system

yes no Satisficing

USE 2 no Depend of the
problem

Proportions Static no no Satisficing,
Agile, Multi-
core

AllPACA 12 yes All for one Confidence Dynamic yes no Optimal
PbP 7-8 no Round Robin Macros Dynamic per

Domain
no yes Learning

AGAP 5 yes All for one Learning Dynamic per
Domain

yes yes Learning

IBaCoP 11 no ET – Static yes no Satisficing,
Agile, Multi-
core

IBaCoP2 11 yes ET Confidence Dynamic yes no Satisficing,
Agile, Multi-
core, Learn-
ing

LIBaCoP2 11 yes Predictive
Model

Confidence Dynamic yes no Learning

28

2.7 Empirical Performance Modelling in AI Solvers

2.7 Empirical Performance Modelling in AI Solvers

The idea of exploiting the synergy of different solvers to improve the performance of
the individual ones is applied in propositional satisfiability problems (SAT), constraints
satisfiability problems (CSP), answer set programming (ASP) and in the scope of this
dissertation, AP. The SAT area involves considerable research into the importance
of selecting the components of the portfolio (Xu et al., 2012a) and how select each
component automatically (Lindauer et al., 2015b). The study of strategy selection in
this area also includes per-instance selections (Lindauer et al., 2015a). Furthermore,
there is an intensive study into the solver’s run time prediction (Hutter et al., 2015),
including a good characterization of the satisfiability task. In other scopes of the
AI, CSP has portfolio configurations based on machine learning techniques such as
SUNNY (Amadini et al., 2014b) and other empirical research (Amadini et al., 2014a).
For example in ASP, the ASP-based Solver Scheduling (Hoos et al., 2012) is a multi-
criteria optimization problem and provides the corresponding ASP encoding. We follow
with the main approximations in Automated Planning.

Definition 10 (Empirical Performance Model (EPM)). Empirical Performance Mod-
els are created to predict the performance of algorithms on previously unseen input,
including previously unseen problem instances, previously untested parameter settings,
or both.

Roberts et al. (Roberts et al., 2008) presented a set of learned models to assess a set
of features, set of planners, and the search space topology. This study demonstrated
that having more features could improve accuracy in the predictive models. Addition-
ally, they examine the models to get planner dependencies and to identify problem with
a similar structure. This research continues (Roberts and Howe, 2009) to show that
models learned from the planners performance on known benchmarks up to 2008. They
include a study into the empirical planner’s performance, it consist of a set of 28 plan-
ners on 4,726 problems. They limited their study to STRIPS and ADL problems and
their problem characterization is defined by 19-32 features extracted from the domain
and problem definitions. This study includes predictive models based on the success
and time of each planner, in which the time models are less accurate than the success
ones. This research incorporates a study into the feebleness of the existing benchmark
problems and how improve them.

Torchlight (Hoffmann, 2011) is a toolkit which allows the search space topology
to be analyzed without actually running any search. The analysis is based on the rela-
tionship between the topology under delete relaxation heuristics and the causal graph
together with as DTGs. The feature extraction process is built on top of the FF plan-
ner (Hoffmann and Nebel, 2001). This system distinguishes between an overall analysis
and a local analysis. The overall analysis shows the absence of local minima once and
for all, for the entire state space of a given planning task. Local analysis computes what
we call the success rate, which estimates the percentage of individual sample states not
on local minima and thus allows finer distinctions to be made. Finally, a diagnosis
summarizes structural reasons for the analysis failure, thus indicating domain aspects

29

2. STATE OF THE ART

that may cause local minima. Calculating these features is, however, computationally
expensive (Fawcett et al., 2014).

SATzilla (Xu et al., 2012b, 2008) is a system that extracts a group of 138 features
from the propositional satisfiability (SAT) problem and these features are used to pre-
dict the runtime of solvers. Since a pre-processing step can significantly reduce the size
of the CNF formula (especially in industrial-like instances), they chose to apply the pre-
processing procedure on all instances first, and then to compute instance features on the
preprocessed instances. These can be categorized as problem-size features, graph-based
features, balance features, proximity to horn formula features, DPLL probing features,
and local search probing features. This group of features is proposed to characterize a
SAT task and it is used to find a solver in a portfolio approach for SAT.

Recently, other research (Fawcett et al., 2014) has generated models for accurately
predicting the planning run time. These models exploit a large set of instance features,
including many of the features detailed in Section 4.3. These features are derived from
the PDDL and SAS+ representations of the problem, a SAT encoding of the plan-
ning problem and short runs of the planners. Some other features are extracted using
Torchlight (Hoffmann, 2011). The experimental results in the work indicate that the
performance models generated are able to produce very accurate run time predictions.
This study of empirical performance models has not been applied to portfolio configu-
rations. Continuing this research (Rizzini et al., 2015), they introduced four dynamic
portfolio approximations per optimal planning and 5 different static strategies. These
portfolios are used all of the optimal submitted planners at IPC-2014 and the domains
that were used in the optimal track in the same IPC, but not in the same problems.
They generated 200 problems with the same distribution as in the IPC.

30

3

Planner Filtering Methods: A
Multi-criteria approach

The planner community creates more efficient planners every year. Most of these

planners are available for improving and developing better systems. Therefore, they

could be used as base planners in a new portfolio. However, using all the planners in a

portfolio is an impractical idea, since it requires time that increases linearly with the

number of base planners. Discarding the idea of having all planners in a portfolio, the

portfolio should be created according to the construction method seen in the previous

chapter. This procedure requires all selected planners with the benchmark set to be

executed. As a consequence, if the number of selected planners is large, this training

phase will be computationally expensive. For this reason, it is necessary to select a

small group of planners. A first idea for selecting the planners is to create a ranking

with the IPC metrics as time, quality or coverage. Nevertheless, using these metrics in

a ranking might not be helpful because it could create portfolios with planners that are

not complementary: they all are good but solve the same problems and fail in the same

ones. This selection process should give us a group of significantly different planners

based on different criteria.

For this purpose, we want this filtering process to select a diverse, but small, subset

of planners which have few elements to be distributed in the available execution time.

In this chapter, we present a ranking criteria based on a multi-objective technique,

taking into account previous metrics (time and quality).

The chapter is organized as follows. First, we describe the metrics and the scope

to select the planners. Then, we present our proposal, a multi-criteria approximation.

Finally, we show the results of the planner filtering method, the planner selection per

metric and the results of the portfolio configured using the previous planner selection

mechanism.

31

3. PLANNER FILTERING METHODS: A MULTI-CRITERIA
APPROACH

3.1 Filtering Methods Based on Quality, Time and Cov-
erage

The planner filtering process consists of the pre-selection of suitable candidate base
planners from a larger number of available planners. There is sufficient evidence that
there is no overall best planner across a variety of benchmarks. However, it can be
verified empirically that some planners dominate over others. Consequently, it does
not make sense to include, those that are always worse in terms of performance metrics
as base planners. Some of these metrics were described in Section 2.4, like coverage,
time and quality. So a first approach to the planner filtering problem could be to
compute previous metrics and make decisions based on these values. A simple approach
is to use the metrics to create planner rankings, and then, to select the top planners
in accordance with this ranking. In the literature, there are examples that follow this
approximation. For example, FDSS (Helmert et al., 2011) uses the selection of planners
that maximizes the score (It might not be meant to select the individually best ones; it
uses the ones that complement each other best), whilst MIPlan (Núñez et al., 2015a)
uses the portfolio configuration that obtains the best achievable performance in terms
of quality (in a overall optimization).

3.1.1 Scope of the metrics

To make a ranking, we need to define the scope of this ranking. We have identified
three different levels, problem, domain, and overall (See Figure 3.1).

problem

domain

overall

Figure 3.1: Scope of planning ranking selection

Definition 11 (Problem level). Given a problem p, a metric m, and a set of planners
Pl, a problem-based ranking Rmp (Pl) is defined as the result of ordering each planner
by the score obtained with the given metric m on the planning problem p: Rmp (Pl) =
{pl1, . . . , pln}, such that m(pli, p) ≤ m(pli+1, p).

The VBS is created based on a problem level scope. This portfolio always has
the best planner per problem in accordance with one metric, where a planner plb is
selected when m(plb) = MAX{m(pl1, p), . . . ,m(pln, p)} for any problem p. The princi-
pal drawback of a problem-level scope is the number of resulting planners. If you want
to create the VBS, you need to select all the best planners but, as will be shown in

32

3.1 Filtering Methods Based on Quality, Time and Coverage

Subsection 3.1.2, this method does not guarantee that the size of the planner set will
be reduced. The next scope is a domain level that consists of a group of problems in
the same domain.

Definition 12 (Domain level). Given a set of problems PD in a same domain D,
PD = {p1, . . . , pn}, a metric m, a set of planners Pl, a domain based ranking RmD(Pl) is
defined as the result of ordering each planner by the score obtained with the given metric
m on all problems in the domain D: RmD(Pl) = {pl1, . . . , plj}, such that m(pli, PD) ≤
m(pli+1, PD).

This approximation generates only one ranking per domain. Therefore, if we only
get the top planner in each domain, this method can reduce the number of planners
more drastically (in IPC, each domain gathers 20-50 problems in IPC-2006-20111),
and it could reject a planner even if it is a best planner per problem. Thus, it is not
possible to obtain a VBS; and consequently, it does not work perfectly in a training
phase. Nevertheless, the objective of planning selection is to find a group of potential
planners that might generalize for future problems.

The last scope is the overall level that consists of generating only one ranking for
all problems in all domains.

Definition 13 (Overall level). Given a set of domains G where G = {D1, . . . , Dm}, a
set of problems in these domains, PG = PD1, ∪ · · · ∪ PDn , a metric m, a set of planners
Pl, an overall-based ranking RmG (Pl) is defined as the result of ordering each planner
by the score obtained with the given metric m on all planning problems and domains
G: RmG (P) = {pl1, . . . , plj}, such that m(pli, PG) ≤ m(pli+1, PG).

The last method only generates one ranking for all of the problems in any domain.
Selecting only the one top planner in a configuration does not represent a suitable
strategy for selecting planners in a portfolio: it is only a criteria for selecting a good
planner in certain settings, as will be shown below. It is important to highlight that
the benchmark suite also influences this process. On the one hand, a small set of
problems/domains could create a non-generalizable planner selection. If a benchmark
suite is inappropriate, the selection of the planners could be inefficient and it might
imply that the final portfolio does not solve new problems. Additionally, if the training
benchmark is too small, introducing a new instance or a group of them will trigger
changes in the ranking, independently of the scope level. Conversely, a large benchmark
set could solve the volatility and inefficient problems, as the training set should be
sufficient to create a more stable ranking.

For example, an example of a small training benchmark is made up 5 of problems
from 5 domains and a set of 502 initial planners. This planner selection includes
5 planners in the problem and domain scope and 1 planner at the overall level. This
planner selection is volatile because if a new problem is introduced the planner selection
will change in most of the cases. The ranking presents 5 planners with a score of between
0 to 5, but on average the planners have 2 points. This is easy when introducing a
new problem (a possible new point in the score), as the ranking changes, regardless of

1Other domains gather from 5-150 problems.

33

3. PLANNER FILTERING METHODS: A MULTI-CRITERIA
APPROACH

the problem corresponding to a new domain or not. This situation is totally different
when the training set includes 500 problems from 10 domains and the same set of
502 initial planners. In the first case, the number of selected planners is different, a
maximum number of 500 planners at the problem level, 10 planners at the domain
level and 1 planner at the overall level. This planner selection is more stablr than
previous one. If a new problem is introduced the probability of changing the ranking
is much lower than the first ranking. The overall level only changes the planner if
the difference between the first and the second planner is less than one point, and the
second planner gets the best result for the new problem. The domain level presents
two possibilities for changing the ranking, the first one is that the new problem is from
an included domain. The ranking changes in the same situation of the overall level,
only the selected planner is changed if this domain has a small differences between the
first and the second planner. The second is when the problem is a new domain, a new
ranking is created. There is a possibility that the selected planner is not included, and
the number of planners increases from 10 to 11 (the number of selected planners are
the same in the two previews cases). The problem level evaluates a new ranking for
this problem and selects one planner that could be included in the previous selection.
This situation would increase the number of planners from 500 to 501.

In conclusion, a small training set will drastically modify the planner selection at
all scope levels. However, an appropriate training set modifies the planner selection
with less probability provided that Probability(Rproblem) ≥ Probability(RDomain) ≥
Probability(RGlobal), where Probability(Rx) is the probability of changing the ranking
at the different levels.

In any case, the next subsection presents an evaluation that provides an intuition
as to how the problem level scope will work in general to filter a set of planners.

3.1.2 Empirical Evaluation of Problem Level based Filtering

To carry out this evaluation, we consider a large and diverse group of planners: 27 plan-
ners that include the Sequential Satisficing Track of IPC-2011 plus LPG-td (Gerevini
et al., 2006). Although LGP-td did not compete in IPC-2011, we considered it worth-
while to include it because it is still considered a state-of-the-art planner due to its
outstanding performance in previous competitions. Furthermore, this set of planners
was the most up-to-date when this dissertation started. To carry out this evaluation,
we present the Hypothesis of Increasing Planner Selection. It proposes that if you have
a group of potential planners with a large enough set of benchmarks, the final planner
selection will tend to include all initial planners.

Hypothesis of Increasing Planner Selection. Given a set of planners Pl and a
set of n problems P = {p1, . . . , pn}, where each planner pli has a probability P (pi) such
that ε ≥ P (pi) > 0 to obtain the best solution for some problem, the final selection of
planners, Plend goes towards Pl when n increases.

In other words, this hypothesis says that, as we introduce more and more problems,
an instance-based ranking will provide every planner some chance of being selected
since there is a chance greater than zero (ε) that it is the best for a particular problem.

To illustrate this hypothesis empirically, we show two different examples; the first
one is the domain openstacks with its 20 problems, and the second one is an openstacks

34

3.1 Filtering Methods Based on Quality, Time and Coverage

and parcprinter domain with 20 problems each (both domains from sequential satis-
ficing track IPC-2011). The openstacks domain is based on the “minimum maximum
simultaneous open stacks” combinatorial optimization problem 1 . Parcprinter domain
models the operation of the multi-engine printer. Given a set of heterogeneous works:
color or mono, one-sided or two-sided print. The domain tries to solve the planning
task to optimize the printers according to requirements.

These examples are evaluated with a quality score because it is the most standard
metric in the planning community. For each evaluation, all best planners are shown
because the quality score metric does not include any criteria for solving a tiebreak. The
second part of this evaluation includes all IPC-2011 domains to evaluate the minimum
number of planners that achieve the VBS with different metrics (coverage, quality and
time). This case includes a criterion to solve a technical draw.

The results of the first evaluation with 20 openstacks domain problems is shown
in Figure 3.2 with a quality score. For the 20 problems, 13 different planners achieve
the best solution in at least one problem. In several cases, several planners obtain the
best quality, so all of them could be selected. This is not a normal situation and, for
example, problems 5 and 6 only select one best planner. Nevertheless, other problems
such as 1, 4 and 7 select three planners. In conclusion, there is no general rule for
determining the number of best planners per problem.

Figure 3.3 details one domain in red and the other in blue. This example consists
of 20 openstacks problems like the previous figure (Figure 3.2) and 20 parcprinter
problems. This situation gets worse with more problems from the second domain.
These results only discard 5 planners from the initial 28, with only 2 domains. It is
important to highlight that every competition presents more than 5 domains, and these
results only show a small sample of the filtering process that should be included in a
planner filtering process. This technique is not enough to select an appropriate planner
selection. The figures show that these initial planners are suitable, and this strategy
is not enough to obtain a proper planner filtering. This selection means that we are
getting close to all initial planners with these problems (26 of the 28). This planner
filtering does not consider planners that have no probability of achieving a best result
from a single problem, at least in this training set.

This method only excludes useless planners because this approximation does not
represent the minimum set of planners that achieve the best score in this group of
problems.

The next experiment is carried out from 0 to 14 domains from IPC-2011 (280
problems in total). This approximation presents a “tie-break” rule to determine the
minimum number of planners that achieve VBS according to a metric and it illustrates
how the number of planners increase as the number of problems/domains increase. The
X axis represents the increase in the number of domains in the selection criteria (20
problems per domain).

Figure 3.4 details the planners necessary to obtain the minimum number of planners
to reach an approximation of VBS, following the three different metrics, coverage,
quality and time. The minimum number of planners for the coverage criterion is only

1The problem is that a manufacturer has a number of orders, each for a combination of different
products, and can only make one product at a time.

35

3. PLANNER FILTERING METHODS: A MULTI-CRITERIA
APPROACH

 2

 4

 6

 8

 10

 12

 14

 16

 18

acoplan
acoplan2
arvand
brt
cbp
cbp2
cpt4
dae_yahsp
fd-autotune-1
fd-autotune-2
fdss-1
fdss-2
forkuniform
lam

a-2008
lam

a-2011
lam

ar
lpg
lprpgp
m

adagascar
m

adagascar-p
popf2
probe
randw

ard
roam

er
satplanlm

-c
sharaabi
yahsp2
yahsp2-m

t

P
ro

bl
em

Figure 3.2: Best planner per problem in terms of quality score at Openstacks domain.
Axis x is the problem and axis y is the initial set of planners. Each row could select one
or more planners in function of whether the planner achieves the best solution.

three, which means that with only three planners we can solve all problems in all the

domains. However, this method does not guarantee the best quality or the minimum

planning time. With the quality criterion, 17 of the 28 initial planners are selected, so

this mechanism discards 11 planners. This planner filtering could suppose an initial

appropriate sub-set. With the last metric, time, 21 planners are selected, so only 7

planners are discarded.

These results show a big difference between the three metrics. The selected planners

are different in the case of the time or quality score (this point will be shown in Fig-

ure 3.5). These planners do not match because they are built with different objectives.

The “time” planners focus on solving problems as fast as possible, whereas that the

“quality” planners focus on achieving the best solution, without taking into account

how much time takes. This situation raises two problems; the first one is the limitation

in selecting the minimum number of planners following one criterion. This method

discards many planners, several of them are potential candidates, however they are not

selected because one of them achieved similar results in training phase (remember that

this method only includes one planner in the case of a tie). The second problem is the

disjunction of the selected planners with another criterion. The best planner for time

might not be the best planner for quality. These metrics are tangential, because in a

normal situation better quality implies more time. For this reason, a planner filtering

36

3.2 Pareto Dominance-Based Planner Filtering

 5

 10

 15

 20

 25

 30

 35

 40

acoplan
acoplan2
arvand
brt
cbp
cbp2
cpt4
dae_yahsp
fd-autotune-1
fd-autotune-2
fdss-1
fdss-2
forkuniform
lam

a-2008
lam

a-2011
lam

ar
lpg
lprpgp
m

adagascar
m

adagascar-p
popf2
probe
randw

ard
roam

er
satplanlm

-c
sharaabi
yahsp2
yahsp2-m

t

P
ro

bl
em

parcprinter
openstacks

Figure 3.3: Best planner per problem in terms of quality score in Openstacks and Par-
cprinter domains. x-axis is the problem and y-axis is the initial set of planners. Each
row could select one or more planner in function on whether the planner achieves the best
solution. This evaluation presents 40 problems in 2 domains.

criteria should include adequate suitable set of diverse planners, not only focusing on
one criterion.

Figure 3.5 represents a figurative separation between planners, where there are three
different groups: planners that are good at coverage, the planners that work very fast
and planners that achieve the best qualities. If a planner achieves the best results on
quality means that the planner is also good at solving problems, because these metrics
are correlated. This is the same situation as with the time metric: if a planner solves
the planning task in less time than the others, it means that the planner has solved
it. Both metrics (quality and time) are correlated to coverage, but they are not among
them.

3.2 Pareto Dominance-Based Planner Filtering

Two main conclusions arise from previous section. On one hand, a planner selection
approach should be performed at the domain level, since the problem level does not
generate accurate planner sets. On the other hand, it is important to consider both
metrics, quality and time, in a planner filtering method. To address these issues, we
propose a multi-criteria planner filtering method carried out at the domain level. This

37

3. PLANNER FILTERING METHODS: A MULTI-CRITERIA
APPROACH

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14

N
um

be
r P

la
nn

er
s

Number Domains

Covarage
Quality

Time

Figure 3.4: Number of Selected planners by different metrics (Quality, Time and Cover-
age) at 14 sequential satisficing domains (IPC-2011).

multi criteria planner filtering is described in terms of Pareto dominance, described in
definition 14.

Definition 14 (Pareto dominance). Pareto dominance is a metric that determines
whether at least one individual is better off without making any other individual worse
off, given a certain initial allocation of goods among a set of individuals. Given two
points p1 = 〈x, y〉 and p2 = 〈x′, y′〉, p1 dominates p2 when x ≥ x′ and y > y′ or x > x′

and y ≥ y′. Another case, there is no dominance relationship between these points.

For filtering, we propose to run the candidate planners on a representative set of
benchmarks and then evaluate them in terms of time and quality. To consider both

Time Quality

Coverage

Figure 3.5: Coverage, time and quality planner sets

38

3.3 Evaluation of Planner Filtering Approaches

metrics we propose an approach based on Pareto-efficiency (Censor, 1977) that allows us

to determine the dominance between planners in a multi-criteria fashion. In particular,

we select a planner as a candidate for the portfolio if it is the best planner for at least

one domain in terms of the IPC-2011 multi-criteria QT score (Linares López et al.,

2015). Briefly, for a single problem, this metric computes the tuple 〈Q,T 〉 for each

planner, where Q is the quality of the planner’s best solution and T the time used to

find this solution. Then, for a given planner, pl, the dominance relationships between

p and the rest of planners are computed as described in Definition 15.

Definition 15 (QT-Pareto dominance). A QT-Pareto dominance is the determination
of the best planner with a QT metric; where a planner pl1 gets a tuple 〈Q,T 〉 in a
problem p, and a planner pl2, in the same problem, gets 〈Q′ , T ′〉. The planner pl1
dominates pl2 if Q ≥ Q′ and T < T

′
.

In our approximation, a tuple 〈Q,T 〉 Pareto dominates the tuple 〈Q′, T ′〉 if and only

if Q ≥ Q′ and T < T ′. Therefore, we do not admit that a planner dominates another

with less time but less quality.

Finally, the QT-Pareto score for a domain is the sum of the points achieved in

all of the problems in the domain following Definition 16. The idea of this selection

mechanism is as follows: if a planner demonstrates a good dominance property in a

given domain, it should be included in the portfolio because it will be a good candidate

for solving the problems of the same domain or even other planning tasks that have

similar characteristics. Therefore, a simple strategy to filter a first pool of planners is

given by the procedure that selects only those planners with the maximum QT-Pareto

score for at least one domain. We refer to this procedure as QT-Pareto Score Filtering.

Definition 16 (QT-Pareto Score). QT-Pareto Score is the metric for discovering which
planner dominates the others; where, a planner pl1 gets N

N∗ points, where N is the
number of tuples where pl1 Pareto-dominates another planner, and N∗ is the number
of different tuples in which planner pl appears.

3.3 Evaluation of Planner Filtering Approaches

In this section, we carry out a complete evaluation of the planner filtering approaches,

which is the basis for deciding which planners should be included in a future port-

folio. To select the candidate planners, we propose four different planner filtering

metrics (coverage, time, quality and Pareto QT) at a domain level. The benchmarks

for computing the planner filtering is the set of domains and problems of the sequential

satisficing track of IPC-2011 (Linares López et al., 2015). At the end of the section, a

first set of portfolios with all the planners pre-selected by each of the metrics studied

are evaluated.

39

3. PLANNER FILTERING METHODS: A MULTI-CRITERIA
APPROACH

Table 3.1: Quality and Time planner filtering per domain. For each metric, the selected
planners, score and coverage are shown.

Quality Time
Domain Q Coverage Planners T Coverage Planners

pegsol 20.00 20
arvand,
lama-2011

18,97 20 madagacar-p

scanalyzer 18.53 20 arvand 20.00 19 yahsp2
parcprinter 19.42 20 arvand 15.34 20 madagacar-p
openstacks 19.09 20 fd-autotune-2 16.92 19 lprpgp
tidybot 16.67 19 lamar 14.27 18 probe
nomystery 18.97 19 arvand 17.15 15 madagacar-p
woodworking 19.99 20 fdss-1 13.91 20 forkuniform
sokoban 18.57 20 fd-autotune-1 17.25 19 fdss-2
visitall 19.71 20 dae yahsp 13.31 20 yahsp2-mt
transport 16.72 19 roamer 16.10 20 yahsp2
elevators 18.01 20 fd-autotune-2 17.39 20 lama-2011
parking 18.11 20 lama-2011 17.43 20 lamar
barman 19.37 20 fd-autotune-1 18.59 20 probe
floortile 12.00 12 LPG-td 09.37 12 LPG-td

total 255.15 269 225.99 265

3.3.1 Planner Filtering

Table 3.1 shows the planners selected by the quality (Q) planner filtering and the time
(T) planner filtering.

In this table, the score obtained per domain and the total for all the planner se-
lection methods are set out (each column is evaluated by its metric since both metrics
are not comparable). In addition, each metric includes the coverage per domain and
the problems solved with the perfect portfolio in each planner filtering. The sub-set
of planners for Q are lama-2011, arvand, fd-autotune-2, lamar, fdss-1, fd-
autotune-1, dae yahsp, roamer and LPG-td (9 planners from 14 domains). Ar-
vand is selected by four domains, fd-autotune-1 by two as the same as lama-2011
and fd-autotune-2. The T planner filtering presents other planners: madagacar-p,
yahsp2, yahsp2-mt, lprpgp, probe, forkuniform, fdss-2, lama-2011, lamar,
and LPG-td. There are 10 planners in each group, and there are only three planners
included in both.

Table 3.2 shows the planner filtering in terms of coverage. In this case, the planner’s
column shows all those planners that solve the maximum number of problems per
domain. The big difference with the previous table is that now, more than 2 planners get
the maximum performance in 11 domains; only tidybot, nomystery and floortile reveal
a small set of planners. Therefore, the selected planners, in this case, are 22: LPG-
td, lama-2011, fdss-2, probe, fdss-1, fd-autotune-1, roamer, forkuniform,
lamar, fd-autotune-2, arvand, lama-2008, randward, lpgrgp, madagascar,
madagascar-p, arvand, brt, cbp, cbp2, dae yahsp, yahsp2 and yahsp2-mt.

40

3.3 Evaluation of Planner Filtering Approaches

Table 3.2: Coverage planner filtering with the planners that obtain the maximum coverage
per domain.

Domain Coverage Planners

pegsol 20
lama-2011,fdss-2, probe, fdss-1, fd-autotune-1,
roamer, forkuniform, lamar, fd-autotune-2, arvand,
lama-2008, randward, lprpgp, madagascar-p

scanalyzer 20
lama-2011, fdss-2, probe, fdss-1, fd-autotune-1,
roamer, lamar, arvand, lama-2008, brt

parcprinter 20
lama-2011, fdss-2, fdss-1, fd-autotune-1, forkuni-
form, arvand, yahsp2, madagascar-p

openstacks 20
lama-2011, fd-autotune-1, roamer, lamar, fd-
autotune-2, arvand, lama-2008, randward, cbp2, cbp

woodworking 20
lama-2011, fdss-2, probe, fdss-1, fd-autotune-1,
roamer, forkuniform, lamar, randward

transport 20 probe, yahsp2, yahsp2-mt, cbp2, dae yahsp
tidybot 19 lamar, brt

elevators 20
lama-2011, fdss-2, probe, fdss-1, fd-autotune-1,
forkuniform, arvand, brt

visitall 20
lama-2011, probe, lama-2008, randward, yahsp2,
yahsp2-mt, dae yahsp

nomystery 19 fd-autotune-2, arvand

parking 20
lama-2011, fdss-2, fdss-1, lamar, lama-2008, rand-
ward

sokoban 19 lama-2011, fdss-2, fdss-1, fd-autotune-1
barman 20 lama-2011, probe, fd-autotune-1
floortile 12 LPG-td

total 269

41

3. PLANNER FILTERING METHODS: A MULTI-CRITERIA
APPROACH

This planner filtering only discards a few planners of the initial set (6 planners), and
most from them came from the last positions in the ranking results at IPC-2011.

Furthermore, we propose a multi-criteria QT-Pareto Score Filtering to reduce the
initial set of candidate planners as an alternative technique to planner filtering. This
technique integrates both quality and time in a multi-criteria style, as described above.
Table 3.3 shows the best planner in terms of QT-Pareto score for each domain. Ad-
ditionally, we include the number of problems solved by the best planner to highlight
the correlation between both values. The QT-Pareto score values closer to 20 reflect
that the planner is able to beat the other planners at most problems. Probe was
the best planner in 4 domains. However the other planners only stood out in one do-
main. This reinforces the need to find a diverse subset of planners. Finally, out of
28 initial planners, the QT-Pareto score filtering pre-selected the subset of 11 planners
as candidate planners, which was made up of: lama-2011, probe, arvand, fdss-2,
fd-autotune-1, fd-autotune-2, lamar, lama-2008, madagascar, yahsp2-mt
and LPG-td.

Table 3.3: List of the best planners ordered by their QT-Pareto score for each domain
of IPC-2011.

Planner Domain QT Coverage
scanalyzer probe 16.59 20
woodworking probe 18.55 20
tidybot probe 16.77 18
barman probe 19.42 20
pegsol arvand 18.88 20
parcprinter madagascar 17.63 20
transport lama-2008 17.84 19
openstacks lama-2011 17.30 20
sokoban fd-autotune-1 17.56 19
nomystery fd-autotune-2 16.73 19
elevators fdss-2 17.84 20
parking lamar 18.12 20
visitall yahsp2-mt 18.74 20
floortile LPG-td 11.96 12

total 243.77 267

3.3.2 Planner Selection

Planner filtering based on QT-metric has three planners in common with Q and T
filtering: lama-2011, lamar and LPG-td. The selected planners are different de-
pending on the criteria, for example at Q filtering has arvand, fd-autotune-1 and
fd-autotune-2 and T filtering has yahsp2-mt, fdss-2 and probe. The QT-Pareto
Filtering has only one planner. Madagascar that does not appear in both techniques
(However, madagascar-p is a modificated version of it.)

42

3.3 Evaluation of Planner Filtering Approaches

Table 3.4 shows the ranking of planners following the quality score of the IPC
results (Linares López et al., 2015) and which of them were selected by Q, T, C and
QT-Pareto Score Filtering 1. It is worth noting that 12 of the 13 best planners in the
IPC are built on top of FD, which reduces the diversity of the planners. The planner
filtering strategies select several of them: in the C case, the 20 best planners according
to the ranking plus LPG-td are selected. On the other hand, the Q filtering only selects
9 planners and the selection criterion does not look at ranking selection, and 7 of 9 are
based on FD. The T filtering is the technique that selects fewer planners based on
top of FD (5 planners) although it has one planner more than the Q filtering. The
QT-Pareto Score Filtering only includes 8 planners built on top of FD and one planner
more than T filtering. It should be pointed out that the last three selections of the
QT-Pareto Score Filtering are planners from the lower positions in the table which, as
will be demonstrated later, increases the diversity of the portfolio and its performance.

It is important to highlight that there are three planners that are included in the four
planner filtering approaches: lama-2011, LPG-td and lamar, so it seems that these
planners are always good options for creating a portfolio. However, it is important to
remember that the selection is made by domain. For example, the selection of LPG-td
is due to the floortile domain, where this planner solved more problems than the others.
This is not the case for the other planners, as shown in Table 3.2, and lama-2011 and
lamar obtains the maximum number of problems solved at least in 5 domains, but
they are also good in some domains in terms of quality or time.

1This results does not correspond with the IPC-2011 results because LPG-td were not included,
for this ranking we evaluate the planners included it.

43

3. PLANNER FILTERING METHODS: A MULTI-CRITERIA
APPROACH

Table 3.4: List of planners ordered by its score at IPC-2011. The columns Q, T , C and
QT indicates whether the planner is eligible by the Quality, Time, Coverage and QT-Pareto
Score Filtering, respectively. The last column shows whether the planners are built on the
top of FD. The planners are not selected by any strategy are not include in this table.

Ranking planner Q T C QT FD

1 lama-2011
√ √ √ √ √

2 fdss-1
√ √ √

3 fdss-2
√ √ √ √

4 fd-autotune-1
√ √ √ √

5 roamer
√ √ √

6 forkuniform
√ √ √

7 fd-autotune-2
√ √ √ √

8 probe
√ √ √

9 arvand
√ √ √ √

10 lama-2008
√ √ √

11 lamar
√ √ √ √ √

12 randward
√ √

13 brt
√ √

14 cbp2
√

15 dae yahsp
√ √

16 yahsp2
√ √

17 yahsp2-mt
√ √ √

18 cbp
√

19 lprpgp
√ √

20 madagascar-p
√ √

22 madagascar
√

24 LPG-td
√ √ √ √

Total 28 9 10 22 11 12

44

3.3 Evaluation of Planner Filtering Approaches

3.3.3 Planner Filtering Portfolio

In this section, we report a first approximation on the creation of planning portfolios,
built on the aforementioned results. Specifically, we have built the portfolios with
the planners selected by each filtering approach described. The resulting portfolios
have a uniform configuration (assign the same time per each candidate planner) and
are evaluated with the domains at IPC-2014. The results of each planner filtering are
shown in terms of quality and coverage. Furthermore, we included a baseline strategy to
compare, Overall Equal Time (OET). This strategy is a non-informed strategy which
does not carry out any planner filtering, and assigns equal time for each available
planner. Given that we have 28 planners (all the participants in IPC-2011 plus LPG-
td), each planner will run for 64 seconds. With this planner we see the need for some
planner filtering since, although it already obtains results close to current state-of-the-
art base planners, these results can be improved by selecting a reduced set of planners.
The QT portfolio gives 163 seconds per planner, Q gives 200 seconds, T gives 180 and
C gives 81.

Table 3.5 shows that the results in terms of quality. They show the QT is the best
over the rest of the techniques obtaining more than 56 points of difference. The quality
results in this table are essentially related to the coverage results. Furthermore, we
present Figure 3.6 which depicts the problems solved in 1, 800 seconds. The QT solves
249, Q 191, T 185 and C 178. QT solves at least 58 problems more than the other
strategies.

The best planner at IPC-2011, lama-2011, solves 166 problems, less than the base
strategy OET . Somehow, it is normal that every portfolio in this section achieves
better solutions than the best individual planners, since all configurations have this
planner as a component. These results confirm the initial idea of the thesis that “the
use of planning portfolios could improve the performance of every single planner.”

In conclusion, we can say that our approximation, QT-Pareto Score Filtering, works
better than the other planner filtering strategies in our training data set. Furthermore,
from the results we can derive some insights as regards the different configurations.
The difference in score between OET and QT reveals the importance of making a
pre-selection of candidate planners with an accurate filtering procedure. The Pareto-
dominance approach allows us to have a smaller set of planners, which means having
more time per planner.

There is a trade-off between having more time per planner and loosing the diversity
of solvers, and the results demonstrate that it is more important to maintain diversity
than to increase running time per planner. For instance, C planner filtering obtains
similar results to those using the original 28 (OET) at the end of the running time.
These portfolios solve the same number of problems (178) but C planner filtering gets
0.65 points more in terms of quality. This is a logical result because the C planner
filtering only discards 6 planners from the initial 28. The T planner filtering solves
185 problems with 10 planners, so the results increase by 3.78% from no applying any
filter or by applying coverage filtering. The Q planner filtering solves 191 problems
with 9 planners, so this filtering increases the performance by 3.14% with respect to
the T planner filtering. These results demonstrate that using more planners does
not mean better performance. This approximation has better results than T planner

45

3. PLANNER FILTERING METHODS: A MULTI-CRITERIA
APPROACH

Table 3.5: Results in terms of quality of all planner filtering strategies and all initial
planner components. QT is the portfolio created from the QT-Pareto Score Filtering, Q
is the portfolio from the quality selection, T is the portfolio with time selection and OET
is the portfolio with all the initial planners. All portfolios follow a uniform distribution of
time to all planners.

Portfolio QT Q T C OET
Number planners 11 9 10 22 29
Hiking 19.14 19.38 18.56 19.12 18.17
Barman 19.64 17.65 19.14 19.38 16.74
Thoughtful 19.54 18.79 18.53 18.61 14.51
GED 19.17 18.52 19.29 19.08 18.28
Openstacks 19.66 19.99 19.50 14.88 15.44
Parking 18.99 19.00 16.99 9.72 17.64
Maintenance 15.53 16.84 13.89 16.46 15.00
Tetris 15.22 15.89 7.38 12.51 4.99
CityCar 13.50 12.69 7.82 8.68 5.99
Visitall 16.90 9.02 9.12 3.94 13.25
Childsnack 18.73 5.37 8.24 7.53 11.95
Transport 19.95 5.98 5.40 5.69 8.92
Floortile 17.00 3.43 1.88 3.43 4.81
CaveDiving 6.39 0.00 7.00 7.00 0.00

total 239.35 182.56 172.73 166.03 165.68

filtering with one planner less. The last approximation, QT-Pareto Filtering, solves
249 problems, increasing the performance by 23.29% from the Q planner filtering.

In the next chapter, we only consider the QT-Pareto based planner selection de-
scribed in this chapter. See more details of the planners in Appendix A.

3.4 Summary

There are a lot of planners in the state of the art and it is not possible to include
all them in a portfolio. One of the most successful techniques uses a combination of
search and heuristics, however this approximation is dependent on the system. Other
techniques use a sequential combination of planners that are selected arbitrarily or by
a filtering criteria based on IPC metrics. This chapter proposes “scope of the metrics”
to perform the planner filtering to limit the number of selected planners. This is an
idea that has been never formalized before, but somehow extended to AP. We carried
out an empirical evaluation based on the Hypothesis of Increasing Planner Selection, in
which we presented the idea of the selection per problem not being successful in terms
of planner filtering. We solved this problem by using the domain level in the filtering
criteria. Notwithstanding, this obstacle being solved, there is another issue to resolve,
the metric of the filtering criteria. The metrics contemplated are tangential and, it
is not easy to select a diverse set of planners. We proposed a multi-criteria method

46

3.4 Summary

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600 1800

P
ro

bl
em

s

Time

QT
Q
T
C

0ET

Figure 3.6: Solved problems (Coverage) of all planner filtering strategies using uniform
time per each candidate planner.

to obtain a good set of base planners. The results of our proposal against the single
criterion achieve promising results.

47

3. PLANNER FILTERING METHODS: A MULTI-CRITERIA
APPROACH

48

4

Planning Problem
Characterization and Empirical
Performance Modeling

One of the objectives of this thesis is to define a group of features able to characterize a
planning problem. Initial representations (Roberts and Howe, 2009) were poor and not
enough to determine every planning task properly, as explained in Section 2.7. These
characterizations were based on the PDDL formalism and mainly consisted of domain
differentiation and problem-size prediction. Moreover, there are other representations
that are not based on the PDDL, such as SAT formulation (Kautz et al., 2006). These
features are based on the propositional satisfiability formula (Xu et al., 2008) and are
computed in the procedure to simplify this representation to solve the planning task
in a SAT solver. We propose to improve the current representation of the planning
problem based only on planning formalism, so we create new ones based on SAS+

formulation, landmarks, fact balance and, by taking advantage of the heuristic functions
and the translation process from PDDL to SAS+. These features could be created
under a general Data Mining process to produce predictive models. In this chapter
we demonstrate that, with the new features, the characterization of the planning task
improves in terms of prediction accuracy. Therefore, they are suitable for creating
empirical models of the planner’s behavior.

The chapter is organized as follows. First, we explain a general process for creating
empirical performance models using a new set of features extracted from different plan-
ning paradigms. Then, we describe all the features used in this process. After that,
we present the final datasets, and a feature selection process. Finally, we present the
results from classification and regression perspective.

4.1 Planning Performance Modeling Process

As stated above, modelling the planner’s behavior as a function of the planning task
features becomes a key process in building instance-based portfolios. To learn these

49

4. PLANNING PROBLEM CHARACTERIZATION AND EMPIRICAL
PERFORMANCE MODELING

predictive models we follow a Data Mining approach, as shown in Figure 4.1. In our
case, we start from a set of candidate planners and a set of planning benchmarks.
The output of the process is the set of models that will predict the performance of
the candidate planners. We have defined the data mining goal as the creation of two
predictive models. First, whether a planner will be able to solve a problem (i.e. a
classification task) and, if so, what time will be required to compute the best plan (i.e.,
a regression task).

PlannersPlanners

BenchmarksBenchmarks

Feature
Extraction

Feature
Extraction

Planner
Execution

Planner
Execution

Data
Integration

Data
Integration

Feature
Selection

Feature
Selection ModelingModeling EvaluationEvaluation

Best
Model

Best
Model

Performance
Dataset

Feature Dataset

Training Data Training Data Training Data,
Models

Performance Modeling

Figure 4.1: General Diagram for Learning the Planning Performance Predictive Models

The complete set of features is listed and organized by their category in the next sec-
tion. The Data Integration process receives the features and the performance datasets
as inputs to produce a final dataset in accordance with the modeling goal. In the dataset
for the classification task, a training/test instance includes the planning task features
plus the planner’s name and the boolean feature indicating whether this planner solved
the planning task. The dataset for the regression task only includes the cases in which
the planning tasks are solved. We make this exclusion because it does not make sense
to model or estimate the planning time beyond the given time limit and, in addition,
in most cases this time is unknown. A training/test instance in the regression dataset
includes the planning task features, the planner’s name and the time this planner takes
to find the best solution.

The Feature Selection is an optional process for reducing the number of features
used for the modeling. This procedure is applied because there might be irrelevant
or redundant features that might degrade the modeling capabilities of some learning
techniques (Blum and Langley, 1997). The outcome of the process is dependent on the
original data. Thus, the decision of whether to apply it or not is taken based on the
results of the model evaluation.

For the Modeling process, we can use an off-the-shelf data-mining tool that provides
a set of learning algorithms for both classification and regression. The generated mod-
els are then evaluated in the Evaluation process to determine the best model for the
classification and regression tasks. There are many different ways of carrying out the
model evaluation and comparison (Han et al., 2011, Witten and Frank, 2005), which

50

4.2 Training data

will reflect the generalization ability of the different models when making predictions
on unseen data.

The evaluation is an integral part of the development process of the model. It helps
to find the best model that represents our data and to evaluate how well the model cho-
sen will work in the future. There are several methods of evaluating models (Cenamor
et al., 2013): cross-validation, leave-one-domain-out, split evaluation. All techniques
use a test set (not seen by the model) to evaluate the model performance.

• Cross-validation (Browne, 2000): this evaluation permits the classification accu-
racy (percentage of times that the model outputs the expected class) of a classifier
to be estimated in the future, or the predicting capability (relative absolute error
of the predicted value in respect to that expected) of a regression model. A cross-
validation splits the data randomly into k groups, (k − 1) used for training the
model and the rest to test the model learnt. This process is repeated k rounds.
The result of this process is the average of the results obtained by all the models
computed in the k rounds.

• Split evaluation: this evaluation splits the available data into two sets: a training
set and a test set. For example, the problems are split in two sets depending on
its identifier: odd or even. There is not bad choice because the problems used
in the competition are created in increasing difficulty, so separating them in this
way almost ensures that the difficulty of the problems in the two sets generated
is very similar.

• Leave-one-domain-out: this evaluation permits how the models will behave in
problems of unseen domains to be evaluated. The approach is based on the
leave-one-out evaluation method, which in machine learning can be seen as a
cross-validation, where k is set to the amount of available data. This method is
a cross-validation in which the data is not separated in folds randomly, but per
domain. Therefore, with this approach we create as many folds as domains and,
each time, we build a predictive model with the data from all the domains except
one. In this way we estimate the behavior of the models learnt in previously
unseen planning domains.

4.2 Training data

The training data for the learning process requires a set of domains and problems
used to gather the input features. We need a wide range of domains and problems
to generalize future unknown planning tasks properly. We have included the planning
problems available from IPC-2006 onwards. If we do not mention the test set explicitly,
we will always refer to the satisficing tracks of the competitions. The included domain
and problems appear in Table 4.1.

From this list we obtained 45 different domain descriptions. Although some of
them represent alternative encodings of the same domain, all have been included. Can-
didate planners were run on these benchmarks to obtain the features related to the
performance of the planners. We obtained a total of 1, 251 planning tasks.

51

4. PLANNING PROBLEM CHARACTERIZATION AND EMPIRICAL
PERFORMANCE MODELING

Table 4.1: List of domains used to generate the training set. This information includes
the track, year, name of the domain and number of problems per domain.

Track Domains Problems

seq-sat-2006 openstacks, pathways, tpp, trucks 30
rovers, storage 40

seq-sat-2008 pipesworld 50
openstacks-adl 31
cybersec, openstacks, pegsol, scanalyzer,
sokoban,transport, woodworking, eleva-
tors

30

seq-sat-2011

barman, elevators, floortile, nomystery,
openstacks, parcprinter, parking, pegsol,
scanalyzer, sokoban, tidybot, transport,
visitall, woodworking

20

learning-2008
gold-miner, matching-bw, n-puzzle, park-
ing, sokoban, thoughtful

30

learning-2011
barman, blocksworld, depots, gripper,
parking, rovers, satellite, spanner, tpp

30

4.3 Feature Extraction

The first step in the mining process comprises the generation of training and test data-

sets. On the one hand, the planners are run on the set of benchmarks to obtain their

performance data. This data includes the outcome of the execution (success or failure)

and, in the positive cases, the time elapsed in finding the best solution. On the other

hand, planning tasks are processed to extract a set of features that characterize them.

According to the mechanism for generating these features, we classify them into the

following categories: PDDL, FD instantiation, SAS+, Heuristic, Fact Balance (FB) and

Landmark (Summary in Table 4.2).

Next, we describe the features in detail.

4.3.1 PDDL Features

These basic features, which appear in Table 4.3, offer information on the domain and

the size of the problems. In fact, most problem generators receive the number of

objetcts of each type and the number of goals as input, so they can determine the size

of the instance. However, these basic features and many others that can be extracted

from the domain definition will not be sufficient to discriminate between instances of

the same size. There are 8 features in this section.

52

4.3 Feature Extraction

Table 4.2: Features Summary, the first column is the type, the second is the number of
features per type and the last one refers to whether the features are extracted from the FD
system and, if so, what step.

Type Number FD

PDDL 8
√

- translation
FD Instantiation 16

√
- translation & preprocess

SAS+ 50
√

- preprocess
Heuristic 16

√
- search

FB 10 ×
Landmark 14

√
- search

Total 114 5/6

Table 4.3: PDDL Features.

Name Description

Objects Number of objects in the problem.
Goals Number of goals in the problem.
Init Number of in facts in the initial state.
Types Number of types in the domain.
Actions Number of actions in the domain.
Predicates Number of predicates in the domain.
Axioms Number of axioms in the domain.
Functions Number of functions in the domain.

4.3.2 FD Instantiation Features

A Fast-Downward pre-processor instantiates and translates the planning tasks into
a finite domain representation (Helmert, 2009). From the output of this process, 16
features are obtained, as shown in Table 4.4.

4.3.3 SAS+ Features

Features based on a finite domain representation of SAS+ has an associated Causal
Graph (CG) and a set of Domain Transition Graphs (DTGs), as described in sec-
tion 2.3.2. As regards DTGs, the number of graphs in a problem corresponds to the
number of edges in the CG, which makes it difficult to encode the general attributes
for each DTG. Therefore, we summarize the DTGs characteristics by aggregating the
relevant properties of all graphs. Thus, features from DTGs are statistics on them such
as the maximum, the average or the standard deviation of their graph properties. All
these features are described in tables 4.5 and 4.6 for the CG and 4.7 for the DTG.
There are a total of 50 features in this section.

53

4. PLANNING PROBLEM CHARACTERIZATION AND EMPIRICAL
PERFORMANCE MODELING

Table 4.4: Extracted Features from console output in the FD system.

Name Description

Relevant facts Number of facts marked as relevant by FF instantiation.
Cost metric Whether action costs are used or not.
Generated rules Number of created rules in the translation process to create SAS+ task.
Relevant atoms Number of relevant atoms found in the translator process.
Auxiliary atoms Number of auxiliary atoms found in the translator process.

Final queue length
Length of the queue at end of the translation. This queue is an auxiliary
list that is used in the translation process to compute the model.

Total queue pushes Number of times an element has been pushed into the queue.
Implied effects re-
moved

Number of implied effects removed. Where the implied effects that the
translator knows are already included.

Effect preconditions
added

Number of implied effects added.

Translator vari-
ables

Number of created variables in SAS+ formulation.

Derived variables
Number of state variables that correspond to derived predicates or to
other artificial variables not directly affected by operator applications.

Translator facts Number of facts that the pre-process takes into account.
Mutex groups Number of mutex groups.
Total mutex size The sum of all mutex group sizes.
Translator opera-
tors

Number of instantiated operators in SAS+ formulation.

Total task size The allowed memory for the translation process.

54

4.3 Feature Extraction

Table 4.5: CG Features obtained from SAS+ representation I.

Name Description

General Features
Variables Number of variables of the CG.
HV Variables Number of high-level variables.
Total Edges Number of edges.
Total Weight The sum of the edge weights.

CG Ratios

VE Ratio
Ratio between the total number of variables and the total number of edges.
This ratio shows the level of connection in the CG.

WE Ratio
Ratio between the sum of the weights and Number of edges. This ratio
shows the average weight for the edges.

WV Ratio Ratio between the sum of the weights and the number of variables.

HV Ratio
Ratio between Number of high-level variables and the total number of vari-
ables. This ratio shows the percentage of variables involved in the problem
goals.

Statistics of the CG

Input Edge
Maximum, average and standard deviation of the number of incoming edges
for each variable. (3)

Input Weight
Maximum, average and standard deviation of the sum of the weights of the
incoming edges for each variable. (3)

Output Edge
Maximum, average and standard deviation of the number of outgoing edges
for each variable. (3)

Output Weight
Maximum, average and standard deviation of the sum of the weights of the
incoming edges for each variable. (3)

Table 4.6: HV Features obtained from SAS+ representation II.

Name Description

Statistics of high-level Variables (HV)

Input Edge
Number of incoming edges for each of the high level variables. This value
produces three new features following the same computation as Input Edge
CG. (3)

Input Weight
The edge weight sum of the incoming edges for each of the high level variables.
This value produces three new features following the same computation as
Input Weight CG. (3)

Output Edge Number of outgoing edges for each of the high level variables. (3)
Output Weight The sum of the weights of the incoming edges for each high level variables. (3)

55

4. PLANNING PROBLEM CHARACTERIZATION AND EMPIRICAL
PERFORMANCE MODELING

Table 4.7: DTG Features obtained from SAS+ representation.

Name Description

General Aggregated Features DTG
Vertices The sum of the number of nodes of all DTGs.
Edges The sum of the number of edges of all DTGs.

Weight
The sum of the edge weights of all DTGs. The edge weight in a DTG corre-
sponds to the cost of applying the action that induced the edge.

DTG Ratios

edVa Ratio
Ratio between the total number of edges and the total numbers of variables.
This ratio shows the level of connection in the DTG.

weEd Ratio Ratio between the sum of the weights and the number of edges.
weVa Ratio Ratio between the sum of the weights and the number of variables.

Statistics of DTGs1

Input Edge
Maximum, average and standard deviation of the number of incoming edges
for a vertex in a DTG. (3)

Input Weight
Maximum, average and standard deviation of the sum of the weights of the
incoming edges of all nodes.

Output Edge
Maximum, average and standard deviation of the number of outgoing edges for
a vertex in a DTG. (3)

Output Weight
Maximum, average and standard deviation of the sum of the weights of the
outgoing edges of all nodes. (3)

56

4.3 Feature Extraction

4.3.4 Heuristic Features

Some features are based on the heuristic value of the initial state, computed from a

set of widely-used unit cost heuristic functions. These heuristics can be obtained at

a reasonable cost as we will show in Table 4.12. To guarantee a domain-independent

estimation, the heuristics are computed with a unit cost that helps in the characteri-

zation of the problem size and/or difficulty. The features derived from heuristics are

described in tables 4.8 and 4.9. There are 16 features in this section.

Table 4.8: Heuristics features with unit cost included.

Name Description

Max (Bonet
and Geffner,
2000, Bonet
et al., 1997)

The maximum of the accumulated costs of the paths to the goal propositions
in the relaxed problem.

Landmark
cut (Helmert
and Domshlak,
2009)

The sum of the costs of each disjunctive action landmark that represents a
cut in a justification graph towards the goal propositions.

Landmark
count (Richter
et al., 2008)

The sum of the costs of the minimum cost achiever of each unsatisfied or
required again landmark.

Goal count The number of unsatisfied goals.
FF (Hoffmann
and Nebel,
2001)

The cost of a plan that reaches the goals in the relaxed problem that ignores
negative interactions.

Additive (Bonet
and Geffner,
2000, Bonet
et al., 1997)

The sum of the accumulated costs of the paths to the goal propositions in the
relaxed problem.

Causal
Graph (Helmert,
2004)

The cost of reaching the goal from a given search state by solving a number of
sub problems of the planning task which are derived from the causal graph.

Context-
enhanced addi-
tive (Helmert
and Geffner,
2008)

The causal graph heuristic modified to use pivots that define contexts relevant
to the heuristic computation.

Red-
black (Katz
and Hoffmann,
2013, Katz
et al., 2013)

It is an approach to partial delete relaxation, where red variables take the
relaxed semantics (accumulating their values), while black variables take the
regular semantics.

57

4. PLANNING PROBLEM CHARACTERIZATION AND EMPIRICAL
PERFORMANCE MODELING

Table 4.9: Features Related with the Red-Black heuristic.

Name Description

Black Vari-
ables

Number of black variables in the Red-Black compilation.

Black Root
Variables

Number of black root variables in the Red-Black compilation.

Red Black
Variables

Number of variables in the Red-Black compilation.

pairs values
connected

Number of variables with all pairs of values connected in the Red-Black com-
pilation.

Connected
goal

Number of variables with all values connected to goal in the Red-Black compi-
lation.

Strongly par-
ents

Number of black variables with strongly connected only with the parents in the
Red-Black compilation.

Maximal ef-
fects

Maximal number of side effects for black variables in the Red-Black compila-
tion.

4.3.5 Fact Balance Features

Some features are based on the relaxed plan (RP) of the initial state, extracted when
computing the hFF heuristic. In this section, we describe the general background and
process to extract them. Remember, a planning task Π = 〈S,O, c, s0, s?〉, where each o ∈
O is defined as the tuple 〈pre(o), add(o), del(o)〉 representing the action preconditions,
added effects and deleted effects respectively. A plan π is a sequence of actions that
achieve the goals s?.

Definition 17 (Relaxed plan). A relaxed plan π+ is the sequence of actions that
solves a relaxed planning task, i.e. a task in which the deleted effects of the actions
have been ignored (Hoffmann and Nebel, 2001).

The plan π± is defined as the sequence of actions corresponding to π+, but with
the actions taken from the original task. This plan is obviously not applicable in most
cases, but it provides useful information for a variety of search control techniques,
such as look-ahead states (Vidal, 2004). For the fact balance, π± is the base for
encoding additional information that is not incorporated into the heuristic values of
delete relaxation heuristics. Specifically, the information is computed from the relaxed
plan of the initial state, which is denoted by π±s0 . We will still call π± a relaxed plan
to highlight that it is basically obtained by the original procedure of π+.

Definition 18 (The balance of a fact). Given a relaxed plan π±, the balance of a
fact p is a function B that computes the difference in the number of times p is added
and the number of times p is deleted in π±.

B(p, π±) = |{o|o ∈ π± ∧ p ∈ add(o)}| − |{o|o ∈ π± ∧ p ∈ del(o)}| (4.1)

58

4.3 Feature Extraction

The idea behind computing the balance of facts is that we can reflect with a number
whether the relaxation is altering the possible application of a sequence of actions more
or less from π±. A negative balance for a fact p indicates that π± will probably not
be applicable, and p will have to be recovered through other actions in the real plan.
The intuition behind fact balances is that high positive values would characterize the
(relaxed) problems for a given domain easier, since achieved facts do not need to be
deleted many times.

Furthermore, the Relaxed Planning Graph (RPG) built by the ff provides additional
information.

Definition 19 (Relaxed Planning Graph). An RPG is a sequence of proposition and
action layers P0, A0, P1, A1, . . . , At−1, Pt, representing the reachability analysis of the
relaxed planning task. Each action in π± has an associated layer that we denote with
level(a).

The value of the hFF heuristic is the number of actions in the relaxed plan. However,
this number does not reflect many properties of the structure in π± and its correspond-
ing RPG. The idea behind these new features is to partially encode this underlying
structure, and therefore find the difference between tasks that may have the same
heuristic value in the initial state.

Definition 20 (Level balance of a fact). A level balance of a fact p at layer l is a
function B[l] that computes the difference of the number of times p is added and the
number of times p is deleted by actions of π± that belongs to layer l − 1.

B[l](p, π
±) = B(p, {o|o ∈ π± ∧ level(o) = l − 1})

In the same way, we define the function B[∗l](p, π
±) to compute the sum of the

level balance for a fact up to layer l, which considers the prefix of π± that includes
all actions from layer 0 to l − 1.

We compute the balance in each RPG layer because we can use it to establish part
of the structure of π±. If we imagine the application of π± through a group of actions
(i.e, divided by each layer), each layer would have a mark or a “balance footprint” of how
far π± is from being applicable. Algorithm 1 presents the BalanceFootprint function,
an algorithm that computes the following values:

1. fp+
l , the balanced footprint in layer l, as a measure that aggregates the occurrences

in which a fact has a positive balance.

2. fp−l , the unbalanced footprint in a layer l, as a measure that aggregates the
occurrences in which a fact has a negative balance.

3. dist fpl, the distortion in the unbalanced footprint to record whether the unbal-
anced facts remain for many layers. This measure is computed as an exponential
penalty of the number of layers, to represent that unbalanced facts tend to pro-
duce uninformed heuristic values specially if this situation holds for many layers
or until the RPG fix-point.

59

4. PLANNING PROBLEM CHARACTERIZATION AND EMPIRICAL
PERFORMANCE MODELING

Algorithm 1: Algorithm for computing the positive and negative balance foot-
prints for a layer of the RPG.

fp+ = 0; fp− = 0; dist fp = 0
for p ∈ P do

if is goal(p) then
target = 1

else
target = 0

if B[l](p, π
±) 6= 0 then

if B[∗l](p, π
±) ≥ target then

fp++ = B[∗l](p, π
±) - target

else
fp−+ = target - B[∗l](p, π

±)
lgap = 1
diff = B[∗l](p, π

±)

while (lgap +l) < layers(RPG) and diff ≥ target do
diff += B[l](p, π

±)
lgap += 1

dist fp += (target - B[∗l](p, π
±)) * 2lgap

The balance footprints computed by the algorithm in Algorithm 1 are associated to
particular layers of RPG. Furthermore, their magnitude is affected by the number of
actions in the previous layer. Therefore, to compute the balance and unbalance features
in a normalized way, we aggregate the value of each layer by multiplying it by a weight
that represents the proportion of actions that appear in each particular layer of RPG.
The distortion measure involves information of several layers, therefore it will not be
weighted. There are 10 features in this section and we summarize them in Table 4.10

4.3.6 Landmark Features

Features based on the landmark graph detailed in Section 2.5.2 are also computed. To
try to maximize the dependence between the different results of the landmark graph,
the features are extracted through the merging of the landmarks and orderings from
hm with m = 1, Richter, Helmert and Westphal (RHW) and Zhu/Givan landmarks.
The specific features are listed in Table 4.11. There are 14 features in this section. This
landmark graph is obtained by FD using the Merged Landmarks in the pre-processing
part.

60

4.3FeatureExtraction

Table4.10: Featuresaboutthefactbalance.

Name Description

RPinit
Minimum,averageandvarianceofthenumberoftimesthatafactintheinitial
stateisdeletedinthecomputationoftherelaxedplan.(B(p,π±s0),∀p∈S).
(3)

RPgoal
Minimum,averageandvarianceofthenumberoftimesthatagoalisdeleted
inthecomputationoftherelaxedplan.(B(g,π±s0),∀g∈s)(3)

Ratioff
RatiobetweenthevalueofthemaxandFFheuristic.Thisproportionshows
theideaofparallelizationoftherelaxedplan.

RP Balance
Ratio

Aggregatethevalueofeachlayermultiplyingitbyaweightthatrepresentsthe
proportionofactionsthatappearineachparticularlayeroftheoccurrencesin
whichafacthasapositivebalance.
layers(RPG)
i=1

|Ai 1|
|A| ×fp

+
i

RP Unbal-
anceRatio

Aggregatethevalueofeachlayermultiplyingitbyaweightthatrepresentsthe
proportionofactionsthatappearineachparticularlayeroftheoccurrencesin
whichafacthasanegativebalance.
layers(RPG)
i=1

|Ai 1|
|A| ×fp

−
i

BalanceDis-
torsion

Aggregatethevalueofeachlayerforthedistorsionofunbalancedfacts.

layers(RPG)
i=1 distfpi

Table4.11: Featuresaboutthelandmarkgraph.

Name Description

nlandmarks Numberoflandmarksincludedinthemergedlandmarkgraph.
Number
Edges

Numberofedgesinthelandmarkgraph.

edVaratio Theratiobetweentheedgesandlandmarks.
Fathernodes Numberofnodesthatdonothaveincomingedgesinthelandmarkgraph.
Children
nodes

Numberofnodesthatdonothaveoutgoingedgesinthelandmarkgraph

Between
nodes

Nodesinthegraphthathavefatherandchildren.

InputEdges
Average,maximumandstandarddeviationoftheinputedgesofallnodesin
thelandmarkgraph.(3)

Output
Edges

Average,maximumandstandarddeviationoftheoutputedgesofallnodesin
thelandmarkgraph.(3)

61

4. PLANNING PROBLEM CHARACTERIZATION AND EMPIRICAL
PERFORMANCE MODELING

4.3.7 Process & Time to extract features

The features representing each planning task are automatically generated from the
domain and problem definitions. The PDDL features, FD instantiation and SAS+

features are computed using the Fast-Downward pre-processor. The computation
time needed to extract these features is negligible compared to the SAS+ translation,
given that we only compute sums and statistics on the data provided by the SAS+

representation. The heuristic and landmark features are computed using the Fast-
Downward search engine, and the fact balance features are generated using the relaxed
planning graph structures (of the initial state) provided by the ff planner (Hoffmann,
2003). The Fast-Downward pre-processor could fail when instantiating a planning
task, in which case, features that are not computed and missing values are assumed.

However, there are different difficulties in the extraction of the features. The PDDL
features are easier to extract than the SAS+ ones. The extraction of the FD Features
has the same complexity as the SAS+ ones and they all are extracted in the same
procedure. Finally, the heuristic and landmark values have the same complexity as the
latter, but they can only be extracted if the pre-processing of the FD is completed. It is
worth noting that the inclusion of these features in the FD pre-processor is useful in the
next steps, because FD-based planners will take advantage of this part of the process:
these phases in the planners are built on top of FD and are skipped in the running
process. Several features are obtained out of the FD pre-processor, as Heuristics, Fact
Balance and landmark features. Table 4.12 has an additional row indicating the extra
time that the feature extraction process takes and that is not included in any other
part.

Table 4.12 also shows the success rate for extracting the features of each type from
the training problems, and the average, standard deviation, maximum and median time
in seconds to extract them. The PDDL, FD and SAS+ features are extracted from the
FD pre-processor which is why they have the same success rate. The table shows the
time in which the features are calculated in the whole process. The time required to
compute the heuristic features is only the time for calculating the value in the initial
state, but these features are also needed to finish the FD pre-process. The average time
to extract all of the features are close to 24 seconds: it is a small part of the execution of
the planner since it only spends 1.3% of the total planning time (i.e. 1800 seconds). In
this sense, the most expensive part is the computation of the heuristic features: it takes
13 seconds to extract them and they are not always extracted (with only an 87.54%
success rate). However, the process does not fail when the features are not extracted,
and the system replaces these features with a missing value. This method guarantees
the same number of input features, regardless of whether they were correctly extracted.
Furthermore, this procedure ensures a perfect working in the deployment phase.

4.4 Data Integration

Once the features are defined, we are ready to define the instances generated. The
performance data comprises 13, 761 instances (i.e., 1, 251 problems × 11 planners)
where 9, 156 correspond to successfully solved problems, and 4, 605 to planning failures.

62

4.4 Data Integration

Table 4.12: Summary of the extracted features with the average, standard deviation,
maximum and median time in seconds (s.) required to extract them. These processes are
on the top of the two first steps of all planners based on FD.

Process Success Mean (s.) SD Max (s.) Median (s.)

Tranlate (PDDL) 97% 5.98 14.42 50.71 0.36
Preprocess (FD & SAS+) 97% 1.10 5.00 50.02 0.06

Fact Balance 93% 0.73 4.54 50.18 0.03
Heuristics 87.54% 13.15 33.14 230.36 0.68
Landmarks 87.54% 1.72 7.96 100.06 0.24
Mercury 97% 0.01 0.00 0.02 0.00
Extra time 0.44 0.55 4.29 0.22

Total 23.11 - 485.63 1.60

Figure 4.2 shows the proportion of instances solved by each candidate planner. These
results are a summary of the entire training phase (see more details in Appendix C).

To generate this dataset, the execution of all candidate planners previously selected
in the Chapter 3 (Section 3.3.3) is required. Each candidate planner takes 1, 800 seconds
for each planning task (2, 251, 800 seconds per planner).

The first dataset corresponds to a binary classification problem. An instance is
positive if the planner finds at least one solution, and negative if the planner does not
solve the problem in 1, 800 seconds.

 0

 200

 400

 500

 600

 800

 900

 1000

 1200

la
m

a
-2

0
1

1

p
ro

b
e

fd
-a

u
to

tu
n

e
-1

la
m

a
-2

0
0

8

fd
-a

u
to

tu
n

e
-2

la
m

a
r

a
rv

a
n

d

fd
s

s
-2

y
a

h
s

p
2

-m
t

L
P

G
-t

d

m
a

d
a

g
a

s
c

a
r

Figure 4.2: Proportion of solved (green) and unsolved (red) planning tasks in the training
instances for each of the candidate planners.

A second dataset is created by filtering “False” instances from the previous dataset,
and it only preserves positive values. This dataset has an output attribute that repre-
sents the time to get the best solution in all cases.

63

4. PLANNING PROBLEM CHARACTERIZATION AND EMPIRICAL
PERFORMANCE MODELING

In summary, we have two different datasets:

1. Classification dataset: Input Features (Section 4.3) + Planner + True/False
(114 numeric input attributes, 1 enumerate input attribute and 1 enumerate
output attribute).

2. Regression dataset: Input Features (Section 4.3) + Planner + Time, where
0 < Time < 1800 (114 numeric input attributes, 1 enumerate input attribute
and 1 numeric output attribute).

4.5 Feature Selection

We have carried out a feature selection process for two main reasons. On the one
hand, some features might be irrelevant whilst others might be redundant for modeling
purposes. Therefore, we want to analyze whether it is possible to obtain better models
using only a subset of the available features. On the other hand, this study will allow
us to recognize the most relevant features for characterizing a planning task.

The selection of attributes is important because it can mean the difference between
successfully and meaningfully modeling the problem and not. This feature selection can
identify potential problems such as dominant attributes, usefulness or attributes with
a high percentage of missing values. There are three general automated methods of
feature selection algorithms: filter methods, wrapper methods and embedded methods.

• Filter Methods: apply a statistical measurement to assign a score to each feature.
The features are ranked by the score and either selected to be kept or removed
from the dataset. The methods are often univariate and consider the feature
independently, or with regard to the dependent variable.

• Wrapper Methods: consider the selection of a set of features as a search prob-
lem, where different combinations are prepared, evaluated and compared to other
combinations. A predictive model is used to evaluate a combination of features
and assign a score based on the accuracy of the model.

• Embedded Methods: learning which features the best contribution to the accu-
racy of the model while the model is being created. The most common type of
embedded feature selection methods are regularization methods.

We carried out an a informal evaluation using the Weka (Witten and Frank, 2005)
toolkit. The main algorithms do not provide a suitable feature selection. This process
almost gave a selection which only included the planner and the output attribute. The
models generated gave us information on the planner’s performance in the training
phase. These methods did not work and we carried put a manual filter based on a
decision tree. The feature selection was carried out using the J48 algorithm, a top-
down induction algorithm for building decision trees (Quinlan, 1993), by selecting the
features that appear in the top nodes of the tree (Grabczewski and Jankowski, 2005).
Decision trees make an implicit feature selection as the model includes queries to those

64

4.6 Classification Models

features considered relevant. Therefore the root node of a decision tree is the most
important feature from the classification point of view, since it has the maximum
attribute gain (Quinlan, 1993). The feature selected in each node of the tree is the
best one for the instance space in that node, i.e. the set of instances that satisfies
the conditions from the root to that node. The attribute with the highest gain ratio is
selected as the splitting attribute. The non-leaf nodes of the decision tree are considered
as relevant attributes.

After applying this feature selection process on the feature dataset, the total number
of features decreased from 114 to 14. This leads to a reduction in the size of the dataset
of around 87%. Table 4.13 contains the list of features resulting from the feature
selection process. The selection chooses features from almost every category. We kept
both datasets separately for the modeling and evaluation process, one with all available
features (f-all) and the other one with the selected features (f-14).

Table 4.13: List of features from the feature selection.

Type Features

PDDL types
actions

FD generated rules
Instantiation effect conditions simplified

translator variables
avg. edge CG

SAS+ variables DTG
avg. input edge DTG
relevant facts
avg. fact balance

FB unbalance ratio
balance distorsion

Landmark number edges
edges / variables ratio

In tables 4.14 and 4.15 in the next section, the differences in performance of the
prediction models learned with all of the features and the reduced set are shown. The
models used to select the features were built with the J48 algorithm using all of the fea-
tures and by pruning. This mechanism is a sensitive instrument that permits avoiding
overfitting by pruning the decision tree.

4.6 Classification Models

The detailed performances of the predictive models are evaluated with a 10-fold cross-
validation on a uniform random permutation of all training data. This is an evaluation
technique that guarantees the best trade-off between predictive quality and complexity

65

4. PLANNING PROBLEM CHARACTERIZATION AND EMPIRICAL
PERFORMANCE MODELING

of data (Friedman et al., 2001). It is very extensive in the literature (Fawcett et al.,
2014, Hutter et al., 2015, Roberts and Howe, 2009).

We have trained the classifiers using 27 classification algorithms provided by Weka (Wit-
ten and Frank, 2005), which includes different types of model such as decision trees,
rules, support vector machines and instance-based learning. We recall that training
instances include the planning task features described plus the name of the planner
and the Boolean feature indicating whether this planner solved the planning task or
not.

Table 4.14 shows the accuracy, standard deviation and area under the ROC curve
of each model when evaluated using a 10-fold cross-validation. The ZeroR algorithm
predicts the mode (majority class) of the training data. This dummy classifier serves as
baseline to show that most of the models are able to obtain a high degree of accuracy
when predicting out-of-sample data. For both datasets f-all and f-14, the best model
is that generated using Rotation Forest (Rodriguez et al., 2006). Rotation Forest
produces an ensemble of classifiers (decision trees) in which each base classifier is trained
on different feature sets. To create the training data for a base classifier, the whole
feature set is randomly split into K subsets and Principal Component Analysis (PCA)
is applied to each subset. All of the main components are retained in order to preserve
the variability information in the data. Thus, K-axis rotations take place to form the
new features for a base classifier.

The accuracy of the best model (90.50%) is far from the accuracy of the default
model (ZeroR). Even though a good accuracy in the classification model does not
guarantee a good performance of the portfolio, this result is a great starting point for
selecting promising planners. The accuracy results of the feature selection only showed
small differences compared to results obtained with all the features.

Seven algorithms have a statistically better accuracy with the f-14 dataset and
twelve of them have the similar accuracy, but in all cases they were close to the results
with all features.

4.7 Regression Models

We have trained regression models with only the positive instances of the classification
training phase. In the classification phase, all of the planners have the same proportion
of instances, but in this case, not all of the planners have the same number of instances
given that they solved a different number of problems.We have trained the models with
18 regression algorithms, also provided by Weka.

Table 4.15 shows the results of the Relative Absolute Error (RAE) and the corre-
lation coefficient obtained by each algorithm. In the table, the small RAE values are
better.

The feature selection achieved better results in only four algorithms, and only one
worse than the initial dataset. All of these cases are close to the best performance
with all features. The rest of algorithms achieved comparable results with and without
feature selection.

The best algorithm for f-all is Decision Table (Kohavi, 1995). We have selected
the Decision Table model for the regression task in both datasets (f-all and f-14). In

66

4.8 Summary

Table 4.14: Accuracy, standard deviation and Area under curve ROC for each training
algorithm using 10-fold cross-validation. Also, results of a t-test (O’Mahony, 1986) for the
two training sets is shown. Symbols ◦, • means statistically significant improvement or
degradation respectively

Algorithm f-all dataset f-14 dataset

acc. ± SD AUROC acc. ± SD AUROC
rules.ZeroR 66.54 ± 0.0 0.50 66.54 ± 0.0 0.50
rules.Ridor 81.49 ± 2.4 0.74 80.82 ± 2.3 0.74
rules.PART 86.88 ± 0.9 0.92 86.37 ± 1.0 0.92
rules.JRip 85.74 ± 1.1 0.83 85.23 ± 1.1 0.83
rules.DecisionTable 86.48 ± 1.0 0.92 86.41 ± 1.2 0.92
trees.REPTree 86.19 ± 0.9 0.90 85.73 ± 1.0 0.90
trees.RandomTree 82.28 ± 1.6 0.83 84.04 ± 1.0 0.85 ◦
trees.RandomForest 84.90 ± 1.3 0.91 86.12 ± 0.9 0.92 ◦
trees.J48 86.46 ± 0.9 0.90 86.62 ± 0.9 0.90
trees.DecisionStump 66.83 ± 0.72 0.63 66.83 ± 0.79 0.63
lazy.LWL 66.91 ± 0.8 0.73 66.83 ± 0.8 0.76
lazy.IBk K 1 76.26 ± 1.2 0.73 77.92 ± 1.0 0.77 ◦
lazy.IBk K 3 78.82 ± 1.1 0.81 80.98 ± 1.0 0.83 ◦
lazy.IBk K 5 78.10 ± 1.1 0.83 81.09 ± 1.0 0.85 ◦
meta.RotationForest 90.50 ± 0.8 0.96 90.07 ± 0.8 0.96 •
meta.AttributeSelectedClassifier 86.63 ± 0.92 0.90 86.69 ± 0.90 0.90
meta.Bagging 87.41 ± 0.88 0.93 86.97 ± 0.86 0.93 •
meta.ClassificationViaClustering 52.08 ± 1.88 0.53 61.66 ± 5.21 0.57 ◦
meta.ClassificationViaRegression 88.46 ± 1.00 0.94 87.70 ± 0.93 0.94 •
meta.MultiClassClassifier 78.03 ± 0.89 0.84 72.36 ± 1.01 0.77 •
functions.SimpleLogistic 76.00 ± 0.89 0.82 72.37 ± 0.97 0.77 •
bayes.NaiveBayes 68.48 ± 1.08 0.71 68.08 ± 0.97 0.72
bayes.NaiveBayesUpdateable 68.48 ± 1.08 0.71 68.08 ± 0.97 0.72
bayes.BayesNet 69.01 ± 1.18 0.76 73.64 ± 1.20 0.79 ◦
functions.SMO 76.97 ± 1.00 0.71 72.65 ± 1.00 0.65 •
functions.MultilayerPerceptron 86.33 ± 1.71 0.90 83.38 ± 1.40 0.88 •
functions.RBFNetwork 68.31 ± 1.46 0.63 68.37 ± 1.07 0.65

the following sections, the regression model will always refer to that trained with the
Decision Table algorithm.

The output in the Planning Performance Modeling Process is the best two models,
one for classification, the other for regression. The best models in the first part are the
Rotation Forest, and the Decision Table in the second case. These models are used in
the next section of the thesis.

4.8 Summary

The characterization of planning tasks used before this Ph.D. thesis is partially unsuit-
able for differentiating each planning task since it is only based on the PDDL represen-
tation. This issue is a big deal because if the problem definition is not correlated to the
performance of the planners, a system that uses this information would not work well.
To solve these problems, we propose a set of new features that significantly improve
the characterization of the problem. These features came from a different planning
representation (PDDL and SAS+) and we take advantage of other information that
the planners use in the search process (for example: landmarks, heuristics, to name a

67

4. PLANNING PROBLEM CHARACTERIZATION AND EMPIRICAL
PERFORMANCE MODELING

Table 4.15: Results for the 10-fold cross-validation in the regression models. RAE is the
Relative Absolute Error and standard deviation (SD) is the correlation coefficient. Symbols
◦, • means statistically significant improvement or degradation respectively

f-all dataset f-14 dataset
RAE SD RAE SD

rules.ZeroR 100.00 ± 0.00 100.00 ± 0.00
rules.M5Rules 72.40 ± 4.31 71.95 ± 2.74
rules.ConjunctiveRule 90.46 ± 1.75 90.11 ± 1.85
rules.DecisionTable 64.13 ± 3.62 66.83 ± 3.08 ◦
trees.DecisionStump 88.86 ± 1.55 88.86 ± 1.55
trees.REPTree 73.21 ± 2.96 72.44 ± 2.91
trees.M5P 64.69 ± 4.31 70.50 ± 4.50
lazy.IBk K 1 87.18 ± 5.02 94.06 ± 6.79 ◦
lazy.IBk K 3 84.58 ± 3.36 83.56 ± 4.57
lazy.IBk K 5 82.46 ± 3.02 80.74 ± 3.93
lazy.KStar 75.36 ± 3.25 73.22 ± 3.17 •
lazy.LWL 93.57 ± 1.24 93.90 ± 1.44
meta.Bagging 69.67 ± 2.27 69.18 ± 2.25
meta.AdditiveRegression 84.82 ± 2.22 86.94 ± 2.29 ◦
functions.LinearRegression 88.21 ± 2.08 90.90 ± 2.05 ◦
functions.LeastMedSq 106.81 ± 1.04 106.59 ± 0.54
functions.MultilayerPerceptron 97.65 ± 17.68 90.36 ± 14.05
functions.RBFNetwork 95.46 ± 2.23 93.15 ± 3.35 •

few). This set of features are used in predictive models to learn the performance of
the selected planners in the filtering process in Chapter 3. The classification results
show a good performance of the models learnt, achieving close to a 90% accuracy and
AUROC values of 0.90. All learning algorithms achieve better results than the default
model in both metrics. The regression results are not as promising as the classification
ones, but they provide some slight knowledge on how predict the planner’s runtime.
These models are good enough to be used in a portfolio configuration. Furthermore,
we show that there is no real difference between f-all and f-14 (using all the features or
a selected one respectively). It means that the selected features are enough to obtain
similar results, but this selection does not have any advantages in terms of the quality
or accuracy in the predictive models learnt.

68

5

Configuration Strategies to
Create Planning Portfolios

Current state-of-the-art portfolio construction methods have different steps, as can
be seen in Subsection 2.6.1. The first one included the selection of the candidate
planners. Within this first step, the configuration target is another important issue.
This configuration target could be static, i.e. it is always the same throughout the entire
planning problem, or dynamic, whose configuration could change planners, execution
time and/or order per planning problem or domain. This chapter provides an analysis
of most extended techniques, and we propose several to use the empirical performance
models that can be learned following the ideas introduced in Chapter 4.

Specifically, in this chapter we review the state of the art in portfolio configurations
based on time, order and planner selection. In Section 5.3, we carry out an analysis of
the performance of our portfolios according to the number of base planners selected.
After that, we propose a set of configurations based on previous studies and an overall
algorithm to merge several strategies. Summarizing, we present different ideas to com-
bine previously acquired knowledge, as the predictive models to configure a portfolio
per instance.

5.1 Static Strategies

The static portfolios always have the same configuration for all problems and domains.
These portfolios always present the same candidate planners with their running time,
and the absolute order among them never changes, as described in the next definition.

Definition 21 (Static Strategy). Given a set of planners Pl = {pl1, . . . , pln}, a static
portfolio is the configuration made up of n pairs, always in the same order and time
Pf = 〈< pl1, t1 >, . . . , < pln, tn >〉, where

∑n
i=1 ti ≤ T , T being the time limit.

However, there is not only one technique to set these variables; for example, FDSS
performs a local search in the space of schedules to find a portfolio that maximizes
the score of the final portfolio on the training set and assigns the minimum time to

69

5. CONFIGURATION STRATEGIES TO CREATE PLANNING
PORTFOLIOS

solve them for each component. This is one of the possible approximations, there are
other approaches. We highlight two different categories, depending on whether we are
defining the time assigned or the order of execution. There are many approaches to
assign the time to each base planner:

• Equal Time (ET): This strategy assigns equal time for each planner (uniform
strategy). The idea behind this strategy is to have more planners but with
less time for each one. This strategy has obtained good results in other port-
folios (Seipp et al., 2012).

• Minimum Required Time: This strategy assigns different times per candidate
planner and this time it is the minimum time a planner requires to solve all of
the tasks solved by it during the training phase as FDSS.

• Average Time: This strategy assigns different times per candidate planner and
this time it is the average time that the planners expended in training phase for
all of the planning tasks.

• Maximum Time: This strategy assigns different times per candidate planner and
this time it is the maximum time required to solve every planning task in the
training phase.

There is no research into portfolios based on average time or maximum time in
static configurations. These strategies are our proposals to assign non-uniform time in
these types of portfolio. The main reason for these strategies is based on the idea that
more time can be better expended in a planner that introduces a new one if the selected
planner obtains the best solution. Assigning more time per planner could guarantee
that a problem, which is more complex than the training one, has enough time to be
solved. Minimum Required Time presents a limitation because the training problems
could be smaller, and require less time, than a new test set.

When defining the order, we differentiate:

• Arbitrary : this strategy does not have any knowledge on ordering. An example
of this ordering could be alphabetical, or appearance.

• Shorter Time: this strategy sorts the component solvers of a given portfolio in to
the increasing order of the allotted time to run each solver, like the PbP portfolio
does.

• Memory Failures: this strategy sorts the components according to the fewest
memory limit failures, like FDSS.

• Higher Coverage: this strategy sorts the components according to the number of
problems solved.

• Density function this strategy sorts the component according to the contribution
of its candidate to the total time, maximizing the area under the curve (Núñez
et al., 2015b).

70

5.2 Dynamic Strategies

Dynamic

Static

Figure 5.1: A diagrammatic representation of configuration sets and their relationships.

The static strategies are the most extended, but these techniques are less flexible
than the dynamic ones. The dynamic strategies are closer to the definition of VBS,
because they have the possibility to change the planner to find a better solution. How-
ever, these strategies are more complex than the previous ones, and they sometimes
require extra knowledge or they become overly expensive (see the scope of strategies in
Figure 5.1).

5.2 Dynamic Strategies

These strategies have the ability to change the number of planners, the order and the
time assigned to each candidate planner, depending on the problem or the domain, as
described in the next definition.

Definition 22 (Dynamic Strategy). Given a problem p, a set of planners Pl =
{pl1, . . . , pln} and a maximum time T . A dynamic portfolio is a specific configura-
tion of j pairs such that Pf = 〈< pl1, t1 >, . . . , < plm, tm >〉 in which, plj ∈ Pl and∑m

j=1 tj ≤ T .

The only example of portfolios that select different candidate planners appears in the
last IPC apart from ours, AllPACA (Malitsky et al., 2014). The closest approximation
can be found in SAT solvers, in which they present predictive models to select the best
solver per task (Lindauer et al., 2015b, Xu et al., 2012a). These predictive models show
the trustworthiness (confidence) of each solver to achieve the solution, in which case,
the confidence is an indication of how often the rule has been found to be true. This
confidence could be used to select a group of N planners in a portfolio. We describe
next a set of configurations in terms of the number or set of planners and the use of
the predictive models.

• Random: this strategy selects a number N of planners randomly.

• Classification Model : this strategy selects the N planners that the classification
model returns as true.

• Best N confidence (BN): this strategy includes the subset of N planners with the
best prediction confidence in the positive class in the portfolio. In this case, the

71

5. CONFIGURATION STRATEGIES TO CREATE PLANNING
PORTFOLIOS

idea is that we select a subset of promising planners so they can spend more time
in solving the planning task.

• Logarithmic time: this strategy includes the subset of N planners with the less
predicted run time.

• Probability distribution: this strategy includes the subset of N planners if they
always have less predicted run time than a fixed time T .

In a classification model, each candidate planner will get a yes/no prediction given
a new planning task. The direct use of the boolean variable makes it difficult to decide
which planners to include in the portfolio. Consider, for instance, the two extreme
cases: (1) If all planners get a positive prediction, should we include all of them? (2) If
all planners get a negative prediction, which planner should we include in the portfolio?

Instead of using the boolean prediction we propose to rank the predictions by their
confidence in the positive class, and then make the selection of planners according to
this ranking. Then, each planner should be assigned a slice of the total time, in which
this assignment can be carried out uniformly or dependently, again, from the predictive
models learned.

In terms of time, we differentiate:

• All static strategies

• Best N Estimated Time (BNE): the subset of planners is selected as mentioned
before, but now the time is assigned proportionally to the estimated time provided
by the regression model.

• Confidence: the time is assigned proportionally to the estimated trustworthiness
provided by the predictive model.

In terms of order, we differentiate:

• All static strategies

• Random: this strategy sorts the solvers of the input portfolio randomly.

• Confidence: this strategy sorts the solvers with the trustworthiness provided by
the classification models in decreasing order.

• Probability: this strategy sorts the solvers with the ratio between the probability
of success and the time assigned per each candidate planner (P (p1)/T (p1)) as
BUS.

As we have shown, there are many possible strategies for configuring a portfolio, and
there is no standard way to determine the best. Furthermore, the number of planners
in a portfolio is an unexplored issue. The most extended criterion is to ensure solving
the maximum number of problems, or the achievement of the best performance in terms
of another metric.

72

5.3 Estimated Number of Planners

5.3 Estimated Number of Planners

Several strategies need to define “a priori” the number of selected planners, as the Best
N Confidence strategy, whereN must be selected. This is an important decision because
there is a trade off between the diversity and effectiveness in the planning resolution.
For this reason, we carry out an experimental study that uses the predictive model by
changing the number of planners that run in the available time.

In the experiment, the 11 selected planners that result of Section 3.3 are used as
initial base planner set. We also use the classification model from Section 4.6 with
all the features. The test set is the planning benchmark of sequential satisficing in
IPC-2011, the time limit is 1, 800 seconds and the memory limit is 4 Gb. We evaluate
different portfolios created with the Best N Confidence strategy, where we modify the
parameter N . We apply a uniform distribution of time among the selected planners,
i.e. 1, 800/N .

Figure 5.2 details the number of problems solved depending on N . These results
included two additional configuration to understand the contribution. IBaCoP is the
result of the planner filtering applied in Chapter 3 (11 planners). OET is the initial
set of planners with uniform time (28 planners). Note, that neither configurations
have an initial phase of feature extraction, and they are a sequential execution of all
planners. The initial portfolio OET solves more problems than a portfolio with only one
or two planner selections. Over this limit when the planner selection includes three or
four planners, it achieves better results than OET but under the portfolio configuration
applied by Pareto Filtering (eleven planners). From five to ten, the number of problems
solved increase the QT-Pareto Score filtering strategy. The best strategy is 10 planners
because it solves 254 problems, however there is not significant difference between the
results when N ranges from 6 to 10.

Table 5.1 shows the results of selecting a different number of planners in a portfolio
using the predictive model learned in Chapter 4 in the Best N Confidence Portfolio
Configuration strategy. The name of each column references the N parameter and
each cell is the quality obtained in each domain. Additionally the last row presents
the number of problems solved. The best results are obtained for N = 10, so it only
discards one planner from the initial set of 11. However, the portfolio with n = 7
obtains the best results in 4 domains. The results of not applying any filtering or the
QT-Pareto Score filtering appear in Subsection 3.3.3. These results show that filtering
processes improves from 165.68 to 239.35. Even the classification models improve the
performance from 6 planners, and with only 5 planners the results are comparable.

Figure 5.3 details the problem’s gain between the planner filtering criteria (IBaCoP)
and Best N Confidence strategy for different values of N . The value in the graphic is
the number of problems solved by the Best N Confidence strategy minus the number of
problems solved per IBaCoP at different running times. These values could be positive
if it is better than IBaCoP, negative if it is under IBaCoP, and zero when there is no
difference in the number of problems solved.

All strategies give worse results than IBaCoP until 17 seconds from the execution
because these strategies need to run the feature extraction phase. After that, the first
strategy that obtains better results is for N = 8, close to N = 7. In addition, we

73

5. CONFIGURATION STRATEGIES TO CREATE PLANNING
PORTFOLIOS

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600 1800

P
ro

bl
em

s

Time

10
07
06
08
09
05

IBaCoP
04
03

0ET
02
01

Figure 5.2: Number of solved problems by different Portfolio configurations. OET means
the set of 28 planners; IBaCoP means the selection after applying QT-Pareto Score filtering
strategy; and 01 to 10 references to the parameter N of a portfolio created with the Best
N Confidence

highlight for N = 10, that the benefits arise only at the end of the time and that it
even gets a negative gain when the running time is around 300 seconds.

Summarizing, if you consider more than four planners, a dynamic portfolio at least
achieves the same results as a static strategy. These results show that the best strategies
are for N = 7 and N = 8, considering that the test set is limited only for a IPC-2011.

Figure 5.4 shows the number of problem solved in the end with the different strate-
gies (1, 800 seconds in Figure 5.3). The red line is the number of solved problems with
the initial 28 planners (OET strategy) and the green line is the number of problems
solved with the QT-Pareto Score filtering (QT). The strategies from 5 to 10 are close to
them. The portfolio with 5 planners solves fewer problems, but achieves better quality
solutions as previously seen in Table 5.1. The portfolios with more than 5 planners also
solve more problems and obtain a better quality score with respect to IBaCoP.

The results of this experiment show a classification method at least is as good as
the static strategy when the number of planners is large enough (in this case, 5). The
classification model guarantees accuracy in the selected planners and only wastes some
time in computing the features that are not extracted from the pre-processing of FD.
Henceforth, we consider a value of N = 5 for the following experiments with the Best
N Confidence strategy.

74

5.3 Estimated Number of Planners

Table 5.1: Results of the Best N Confidence Portfolio Configuration strategy selecting
among one to ten planners (N parameter); in bold, the best results per domain and in blue
the best strategy in more domains.

domain 10 09 08 07 06 05 04 03 02 01
barman 19.76 19.78 19.77 19.72 19.65 19.65 19.87 19.87 19.21 17.87
scanalyzer 19.58 19.56 19.80 19.93 19.50 19.50 19.32 18.64 17.85 5.44
parcprinter 19.99 19.98 19.99 20.00 19.99 19.94 19.84 19.23 18.36 0.00
pegsol 20.00 19.95 19.95 19.64 19.64 19.64 19.72 19.77 18.77 0.00
wood. 19.79 19.79 19.79 19.87 19.79 19.79 19.75 17.76 16.71 1.78
openstacks 19.65 19.72 19.72 19.44 19.44 18.45 18.16 18.04 14.57 6.57
nomystery 18.82 18.84 18.89 18.91 18.88 17.96 17.83 16.79 15.47 6.93
parking 17.62 17.73 18.13 17.90 17.90 17.79 18.02 18.27 16.01 4.52
tidybot 17.72 17.75 16.73 17.18 17.15 17.62 17.46 16.07 3.00 1.00
sokoban 18.68 18.72 18.52 18.57 18.76 18.48 15.14 4.37 0.00 0.00
transport 12.99 13.70 13.54 15.29 15.84 15.90 15.59 14.46 7.92 2.82
elevators 19.52 19.66 17.04 15.80 14.68 13.77 13.15 6.70 2.82 0.00
visitall 13.78 13.61 13.73 13.53 13.36 13.16 10.25 5.86 2.90 1.75
floortile 8.88 7.88 7.88 6.87 6.83 5.81 5.83 5.90 5.90 4.90

Total 246.77 246.67 243.49 242.64 241.41 237.43 229.93 201.71 159.50 53.58
254 251 252 253 253 244 240 211 186 65

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200 1400 1600 1800

+P
ro

bl
em

s

Time

10
09
08
07
06
05

IBaCoP

Figure 5.3: Problems’ gain from five to ten planners selection against QT-Pareto Score
filtering strategy at IPC-2011 (IBaCoP).

75

5. CONFIGURATION STRATEGIES TO CREATE PLANNING
PORTFOLIOS

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8 9 10 11 28

P
ro

bl
em

s

Number Planners

N-portfolio
OET

IBaCoP

Figure 5.4: Number of Solved Problem per N -porfolio configuration. Red line is the
number of solved problems per OET configuration (the final point of the blue line) and
the green line (IBaCoP) is the number of solved problem per static configuration from the
QT-Pareto Score filtering strategy (the point at 11 planners).

76

5.4 Portfolio Configuration Strategy Proposals

5.4 Portfolio Configuration Strategy Proposals

We have defined several strategies for the configuration of the portfolio in this thesis.

The list of the strategies is ordered depending on the use they make of the knowledge

provided by the predictive models. We have named the portfolios according to the

names given in IPC-2014.

IBaCoP: This portfolio uses an equal time strategy (ET) on the set of 11 candidate

planners previously filtered by the QT-Pareto Score Filtering procedure. There-

fore, the single planners will run for 163 seconds. This strategy does not use the

predictive models. The planner using this strategy was awarded runner-up in the

sequential multi-core track at IPC-2014.

IBaCoP2: This portfolio uses the Best N confidence strategy (BN), where N = 5.

This means that the 5 planners with the best prediction confidence in solving the

problem are included in the configuration. The run time is assigned uniformly to

each planner (360 seconds). This strategy, using the feature selection model, was

the winner of the sequential satisficing track of IPC-2014 (For more details 6.6).

IBaCoP-B5E: This portfolio uses the best estimated time strategy (BNE) with N =

5. It follows the same procedure as IBaCoP2 to select 5 planners, and then the

time is assigned by scaling the time prediction provided by the regression model

(Decision Table). This strategy participated in the learning track of IPC-2014

under the name of LIBaCoP2. In this case the training data and models were

generated for each domain separately, since the learning track provides a training

problem set for each domain “a priori”.

In addition, we have built other portfolio configurations that will serve as the base-

line for comparison:

Random 5 Planners (Rand): This strategy is one of the baselines for comparing

the best 5 confidence strategy (IBaCoP2). Given a planning task, this strategy

takes a random sample of 5 planners from the population of 11 candidate planners

selected by the QT-Pareto filtering, and assigns equal time to them. We expect

that a wise selection of 5 planners (IBaCoP2) will be on average better than a

random selection.

Default 5 Planners (Def): In this case, the strategy always includes the best 5 plan-

ners in terms of score. (i.e., lama-2011, probe, fd-Autotune-1, lama-2008

and fd-autotune-2). Then, the time is assigned equitably. We want to see

if using the best 5 planners is better than making a per-instance selection of 5

planners.

77

5. CONFIGURATION STRATEGIES TO CREATE PLANNING
PORTFOLIOS

5.5 An Algorithm for Portfolio Construction

An instance-based configuration of a portfolio implies that the subset of base planners
and the time assigned to each one varies as a function of the planning task features.
The set of candidate planners, the predictive models and the configuration strategy are
previously fixed during the construction phase. Algorithm 2 shows how to use these
strategies (Equal Time (ET), Best N Confidence (BN) and Best N Estimated Time)
to configure the portfolio for a given planning task.

Algorithm 2: Algorithm for configuring the portfolio for a particular planning
task.

Data: Problem (π), Domain (d), Set of base planners (Pini), Classification model (C), Regression
model (R), Available time (T), Strategy (SN)

Result: Portfolio Configuration: A sequence of planners with their assigned runtime,
Portfolio = [〈p1, t1〉, . . . , 〈pc, tc〉]

Portfolio=[];
if SN == ET then

/*(No classification nor regression models available)*/
n = size(Pini);
for p in Pini do

append(〈p, T
n
〉, Portfolio);

else
〈F, tF 〉 = extractFeatures(d, π);
for pk in Pini do

prediction〈pk, conf⊕k 〉 ←− predict (C, 〈F, pk〉);

sorted candidates ←− sort(prediction, key = conf⊕);
p′ ←− sorted candidates[i . . . N];
if SN == BN then

/*Classification model available, applying Best N confidence strategy*/
for i = 1 to N do

append(〈p′i,
T−tF

N
〉, Portfolio);

else
/*Regression model available, applying Best N Estimated Time*/
for i = 1 to N do

ti = predict time(R, 〈F, p′i〉);

t′ = scaleTime(t, T − tF);
for i = 1 to N do

append(〈p′i, t′i〉, Portfolio) ;

The method receives a problem (π), a domain (d), the set of base planners (Pini),
the classification model (C), the regression model (R), the time available (T) and the
portfolio configuration strategy (SN ∈ {ET,BN,BNE}). The procedure uses several
functions described below:

• extractFeatures: This is the same feature extraction procedure used in the port-
folio construction phase. From the pair (domain, problem) the function outputs
the set of features F . This function also computes the time (tF) as the time spent
in extracting all features.

• predict : This function is a query to the classification model C. It receives a new
instance represented by the tuple 〈F, p〉, where F is the previously computed

78

5.6 Summary

features, and p is the name of the planner. From the result of the function we
ignore the class, and only keep the prediction confidence of the positive class,
forming the tuple 〈p, conf ⊕〉. This output represents the confidence that the
planner p will solve the problem.

• predict time: This function uses the model R to estimate the execution time
for the subset of planners PN ⊆ Pini that has been established as the best N
candidates in terms of classification confidence. As in the classification model,
this function receives the input tuple 〈F, p〉.

• scaleTime: This function transforms the vector of estimated times into another
proportional vector for which its sum fits in the available time, which is the
original time bound T minus the time used to compute the features tF . Thus,

the time t′ assigned to each planner is computed with the formula t′ = (T−tF)∗t∑N
i=1 ti

The output of the algorithm is a sequence of planners and their assigned time.
The execution of a particular configuration of the portfolio comprises the sequential
execution of these base planners ensuring that each CPU process does not exceed the
assigned time.

5.6 Summary

This chapter presents a selection and evaluation of different configuration strategies
(configuration target) in a portfolio. The state of the art has two different branches:
static and dynamic. Static configurations require a set of base planners, their times
and their relative order, and these decisions are taken before the portfolio is built.
Nonetheless, each criteria could be decided from among several strategies, for example,
uniform time distribution and random order with all base planners. The drawback of
the selection of this type of configuration target is that it could be far away for the
VBS. The best approximation of achieve VBS is a dynamic configuration per problem,
in which case the planners, their times and their orders have been decided at the time
of execution. The closest approximation arises in SAT, where the portfolios always
select the best solver per task. This was an unseen approach in AP until IPC-2014
when our approximation and AllPaca (Malitsky et al., 2014) appeared. However, the
AllPaca approximation keeps the idea of selecting one planner. In contrast, we propose
several strategies to select more than one planner. This novel idea requires the number
of selected planner to be known. We determine the number of planners in an exper-
imental evaluation to fix a set of two strategies (one strategy with the classification
and another one including the regression task). Additionally, we establish a general
algorithm to merge a uninformed strategy and the two proposed ones, in accordance
with the requirements.

79

5. CONFIGURATION STRATEGIES TO CREATE PLANNING
PORTFOLIOS

80

6

Experimental Evaluation of
Instance-Based Configured
Portfolios

Chapter 3 showed that, when creating portfolios, a main issue consists of defining the
initial set of base planners from the whole set of available ones. In this chapter, the
QT-Pareto Score Filtering was established as a method of selecting this initial set,
maintaining a high level of diversity in the set of planners selected. Then, in Chapter 4
we demonstrated that accurate empirical performance models can be created to predict
the behavior of the planners over a given task if we characterize the input tasks correctly.
Finally, in Chapter 5 we described how these empirical models can be used in different
configuration strategies to create portfolios.

In this chapter, we summarize the experimental results of these configuration strate-
gies, creating portfolios based on the conclusions obtained in the previous three chap-
ters, comparing the overall performance of planner selection, predictive models and
portfolio strategies.

Firstly, we present an overview of the proposed ideas on the creation of planning
portfolios, the experimental settings and the benchmark suit, following, the results
of all strategies. Additionally, in Section 6.4 and 6.5, we provide an analysis of the
diversity of the planner selection achieved by some configurations. We conclude the
chapter with a brief summary of the IPC-14, in which our planners were prominent
participants.

6.1 Scope of the Evaluation of Different Planning Portfo-
lios

An ultimate goal of this thesis is the creation of a per instance-based configured portfolio
in the general scope of a portfolio design seen at Section 2.6. To achieve this goal, we
have evaluated the different portfolio strategies described in Section 5.4, which permits
different portfolio configurations to be created. IBaCoP2 and IBaCoP-B5E were run

81

6. EXPERIMENTAL EVALUATION OF INSTANCE-BASED
CONFIGURED PORTFOLIOS

with two predictive model versions, one trained with all of the features (f-all) and the

other one trained with the selected features (f-14) (See Figure 6.1 as a summary of

the developed strategies). We present other strategies to compare the effectiveness

of the predictive models. The Random strategy was run 5 times and the average

is reported. In addition, we have included the Jasper and Mercury planners in the

comparison. These planners also raised in a sequential satisficing track in IPC-2014.

Mercury (Domshlak et al., 2015) was the second best planner in terms of IPC score

and Jasper (Xie et al., 2014b) was the second best planner in terms of problems solved

(coverage). We summarize their main characteristics bellow:

• Mercury (Domshlak et al., 2015) is a sequential satisficing planner that is based

mainly on the red-black planning heuristic. Red-black planning is a systematic

approach to partially delete relaxation, taking into account some of the delete

effects: red variables take the relaxed (value-accumulating) semantics, while black

variables take the regular semantics. This planner, additionally, has a version for

the agile competition.

• Jasper (Xie et al., 2014b) is a satisficing planner built on LAMA-2011 that

includes two main additional capabilities. First, it implements an improved search

algorithm, called Type Exploration based Greedy Best-First Search with Local

Search (Type-GBFS-LS) (Xie et al., 2014a). This technique always expands a

node which is the closest to a goal state according to a heuristic h. Second, it

uses Diverse Anytime Search (Nakhost and Müller, 2010, Xie et al., 2013) which

is a meta algorithm designed for solution improvement. This planner also has a

version for the agile track.

6.2 Settings

As the test set we have used all the benchmarks of the sequential satisficing track in

IPC-2014. This test set comprises 14 domains with 20 problems. These domains can

be classified into several categories:

1. Previous IPCs: barman, floortile, openstacks, thoughtful tidybot, transport and

visitall. These domains have been used in the training phase of this thesis, but

the problems are totally new.

2. New domains: ChildSnack, GED, Hiking and Tetris. These domains are not used

in the training phase.

3. New domains with conditional effects: Cave Diving, City Car and Maintenance.

These domains present a difficulty for the portfolio construction because the initial

set of planners does not support conditional effects.

82

6.2 Settings

Figure 6.1: Experimental Strategies

To handle domains with conditional effects, we have included a parser that translates
tasks with conditional effects into an equivalent planning task without this property.
This translator is based on a previous translator ADL2STRIPS (Hoffmann et al.,
2006). Specifically, we have implemented the compilation that creates artificial actions
to effect evaluations (Nebel, 2000). Furthermore, many of the 11 candidate planners
were built on the FD framework, which among other things, separates the planning
process into the sub-process of translation, pre-processing and search. Indeed, the
translation and the pre-process steps are already executed when the feature generation
process for a given task is performed. We take advantage of this fact to avoid doing the
first two steps repeatedly if some of these planners are included in the configuration of
the portfolio for the regarding task.

The experiments follow the settings of the IPC-2014 in sequential satisficing track.
This track covers classical STRIPS planning (non-durative actions) with actions having
associated non-negative costs (not necessarily uniform), negative preconditions and
conditional effects. Each planner is given 30 minutes to solve each problem. The
problems should be solved within reasonable time. The goal of this track is to find low-
cost plans, in which the cost is defined as the sum of the costs of each plan’s actions.
The memory limit is 4GB of RAM.

IBaCoP configurations require a feature extraction phase. This process was lim-
ited to 4 GB of RAM (following IPC competition rules) and 300 seconds (which is
approximately the maximum time used in the training set to obtain the features, as
described in Table 4.12). The time needed to extract the features is included in the

83

6. EXPERIMENTAL EVALUATION OF INSTANCE-BASED
CONFIGURED PORTFOLIOS

execution of the portfolio where, in the worst case, the feature extraction process takes
300 seconds and, therefore, the candidate planners have only 1, 500 seconds to run.
If the system does not extract the features in the 300 seconds, the input features are
treated as missing values.

6.3 Results

Table 6.1 shows the results of all evaluated planners using the IPC quality score. The
overall best planner is IBaCoP2 (f-all), followed closely by IBaCoP and IBaCoP-B5E (f-
all). The difference between these configurations is negligible. All of the configurations
using predictive models are much better than Default or Random baselines. IBaCoP
has a very good performance, comparable to the best performance. Moreover, there is a
big difference between our configurations and the other planners (Jasper and Mercury).
IBaCoP based configurations are 21 or more points higher in all cases.

Table 6.1: Results in terms of quality score. This table shows the second best planners:
Mercury, the second planner in terms of quality and Jasper, the second planner in terms
coverage in the IPC-2014. Following columns present a portfolio with the best 5 planners
(Def.) and a random portfolio with 5 planners (Rand.) The remaining columns are our
approximations, IBaCoP is the results of the QT Pareto Score Filtering, IBaCoP2 is our
approximation with the classification model and IBaCoP2-B5S is our approximation with
the classification and regression models.

IBaCoP2 IBaCoP2-B5S
Mercury Jasper Def Rand IBaCoP f-all f-14 f-all f-14

Hiking 18.96 18.17 18.78 18.07 19.25 19.63 18.51 19.63 18.39
Openstacks 19.64 18.76 19.25 17.23 17.35 17.38 17.74 17.37 17.74
Thoughtful 12.73 16.37 19.15 17.60 19.17 18.15 17.41 18.23 18.37
GED 19.46 17.95 16.40 14.22 17.31 17.70 17.70 17.70 17.70
Parking 18.14 17.22 18.18 12.47 17.89 18.16 17.20 18.17 17.23
Barman 14.61 18.97 17.17 14.10 16.79 16.85 15.44 16.87 15.44
Maintenance 5.72 10.79 12.52 15.27 16.45 16.21 16.36 16.25 15.56
Tetris 16.37 16.14 9.37 11.49 13.60 15.69 15.09 13.55 14.13
Childsnack 0.00 0.00 2.67 10.16 19.50 19.23 19.27 19.36 19.23
CityCar 4.10 11.03 4.96 9.77 11.43 14.36 12.37 12.57 10.73
Visitall 20.00 15.36 13.68 12.72 15.24 9.94 8.00 8.01 8.01
Transport 19.87 12.02 6.90 8.51 10.25 11.53 11.56 11.13 12.14
CaveDiving 7.00 8.00 7.00 7.00 6.30 7.00 7.00 7.00 7.00
Floortile 2.00 2.00 4.14 9.39 16.22 15.28 17.24 17.46 12.04
total 178.59 182.78 170.16 177.99 216.75 217.11 210.88 213.31 203.70

However, the QT-Pareto Filtering mechanism maintains the diversity, obtaining
very good results. But again, increasing diversity will improve the results: the IBaCoP
system, which uses the 11 planners, is better than the Random and Default configura-
tions that use 5, although the latter have more running time per planner.

Therefore, reducing the number of planners is feasible if this reduction is informed
by accurate predictors of the planner’s behavior. For instance, the selection based on
the predictive models, IBaCoP2 is able to perform better than IBaCoP, as it does

84

6.3 Results

not lose much diversity (IBaCoP only solves 3 problems more) while increasing the
quality of the plans (since the planners in IBaCoP2 have more time). Once the set of 5
planners has been selected, the regression models do not contribute to obtaining a better
performance. The task of estimating the run time needed to solve a problem is more
difficult than the classification task (Schwefel et al., 2013). Additionally, given that the
aggregated time predictions could exceed the time limit, our proposal re-scales these
estimations and alters the real predictions. One alternative to this proposal is to keep
the real prediction and run the planners in the order established by the confidence in the
classification prediction, until one of them reaches the time limit. However, preliminary
experiments during the development of the planner showed us that this approach does
not compensate the risk of losing diversity due to fewer planner executions.

Another aspect to be analyzed is the performance of the planners in the new do-
mains. The IPC-2014 incorporated seven new domains, which means that the QT-
Pareto Filtering and the predictive models have not been trained on them. These do-
mains are Cave Diving, Child-Snack, CityCar, GED, Hiking, Maintenance and Tetris.
The results show that the IBaCoP2 and IBaCoP-B5E generalize very well in unseen
domains. In two domains they solve all the problems (GED and Childsnack), and in
the other domains they solve the same or a fairly close number of problems as other
planners.

The comparison between the results of the Def approach (the best 5 planners in
terms of performance) with IBaCoP2 also shows the importance of the selection of
different and diverse planners. For instance, the results in Table 6.1 show more than 44
points in terms of quality between both approaches. In addition, the comparison with
Rand (the random selection of 5 planners) demonstrates that the predictive models
select the planners properly to run in the available time, obtaining 30 points more
than the random selection. Interestingly, the random selection performs better than
selecting the best planners by score, because randomness provides diversity. The results
in coverage enforce the previous ideas: Def solves 193 problems and Rand is slightly
better (207 solved) while IBaCoP and IBaCoP2 solve more than 245.

Figure 6.2 details the evolution of the number of problems solved as a function
of the run-time elapsed. The far right-hand point of the figure represents the final
coverage. The best planner in terms of coverage is IBaCoP, with 249 problems, and
the second is IBaCoP2 (f-all) with 246. In this figure, the planners show two different
behaviors. On the one hand, an asymptotic growth in the number of problems solved
demonstrates that giving more time to the planners does not permit the number of
problems solved to be increased. That is the extreme case of Jasper, which after
300 seconds is almost unable to improve. Mercury has the same problem, as well as
the portfolio configurations that do not take care of diversity. However, the IBaCoP,
IBaCoP2 and IBaCoP-B5E, which selected a diverse set of planners, show a growing
behavior throughout the time.

Table 6.2 presents the number of problems solved for each of the 11 candidate plan-
ners. The final column has the maximum number of problems that can be solved by
the complete set of candidate planners. The optimal selection of 5 planners for each
planning task would lead to 253 problems solved. IBaCoP2 is close to this optimum,

85

6. EXPERIMENTAL EVALUATION OF INSTANCE-BASED
CONFIGURED PORTFOLIOS

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600 1800

P
ro

bl
em

s

Time

IBaCoP
IBaCoP2

IBaCoP2-B5E
Random

Jasper
Default

Mercury

Figure 6.2: Comparison of IBaCoP configurations (IBaCoP, IBaCoP2 and IBaCoP2-
B5E), the baseline configurations (Random and Default), and the Mercury and Jasper
planners.

confirming its ability ti select good candidates for the portfolio. The default configura-
tion solved 193 problems, and the average number of problems solved by the random
configuration is 207 problems. Both of them are far from the best possible value.

6.4 Selection of Planners: per Domains vs. per Problem

In the previous section, we demonstrated that the diversity of the planners is the
main element when deciding a portfolio configuration. A simple reason is that some
planners may be good solvers in some domains, but not so good in others. However,
in this section, we want to demonstrate that the planners might not be classified by
how good they are at solving specific domains, but at solving specific problems in
different domains. Note that the test problems of a given domain usually range from
easy to hard. The increase in difficulty is mainly due to the larger size of the problems.
Nevertheless, this increase affects the learning features at a different scale and intensity.

Therefore, in this section we discuss the diversity of the selected planners by IBa-
CoP2: we want to demonstrate empirically that, in the same domain, the classification
model selects different subsets of planners for different problems, highlighting the im-
portance of configuring the portfolio for each problem in each domain, instead of only
for each domain (Gerevini et al., 2014), or fully static (Helmert et al., 2011). The
importance of configuring a portfolio per problem is that the set of planners selected

86

6.5 Confidence in Planner Prediction

Table 6.2: Results of the candidate planners defined in Table 3.3 and the maximum
number of problems that can be solved by the complete set of these planners (VBS).

lama11 probe FDA1 lama08 FDA2 lamar arvand fdss2 ya2-mt LPG M VBS
Hiking 18 20 18 20 20 20 20 20 4 20 3 20
Thoughtful 15 12 16 17 12 14 20 17 13 8 5 20
Openstacks 20 4 19 20 20 20 20 12 0 1 0 20
Tetris 9 14 15 8 1 13 18 17 0 0 0 18
GED 20 20 20 0 0 0 0 20 0 14 0 20
Transport 15 12 7 12 6 7 5 10 20 0 0 20
Parking 20 9 14 13 2 18 0 16 0 0 0 20
Barman 20 19 15 13 2 15 0 8 0 0 0 20
Maintenance 7 8 10 1 8 1 17 16 3 8 6 17
CityCar 1 0 5 4 5 8 19 5 2 0 14 19
Visitall 20 10 0 2 0 0 2 0 20 1 0 20
Childsnack 0 0 2 2 0 2 8 3 0 7 20 20
Floortile 2 2 2 2 5 2 1 2 0 19 0 19
CaveDiving 0 0 0 0 0 0 0 0 0 0 7 7
total 166 130 143 114 81 120 128 146 62 74 55 260

can be better adjusted to the problem, using fewer planners, and providing more ex-
ecution time to each planner. This contrasts to a per domain configuration, in which
more planners must be selected to ensure that they cover the whole range of different
problems in the domain, so less time must be assigned to each planner.

Figure 6.3 shows the diversity of the planners according to the selection made by
IBaCoP2 (blue dots for f-14 and red dots for f-all). The x axis shows the IPC-2014
domains and the y axis lists the 11 candidate planners that the portfolio can use. The
size of the dots is proportional to the number of times a planner has been selected for
a particular domain, i.e. the number of problems for which the planner was selected.
If a domain has five dots in one column (one domain), it means that it was selected by
the portfolio configuration for all problems in the domain. However, every column with
more than five dots reveals the use of different 5-planner sets for different problems
in the same domain. The highlight of this analysis is that the 11 planners have been
selected in at least one domain, and in 13 out of 14 domains the selections involve
more than 5 planners. Note, for instance, that lama-2011 has the best “a priori”
confidence in solving problems, but it is not always used (i.e., it was selected only 6
times in Floortile and 11 times in Openstacks). Furthermore, some planners have a low
“a priori” probability of being selected, but are frequently used in some domains (like
LPG-td in Floortile).

Table 6.3 shows the sum of the number of times that each planner has been selected.
The maximum number of times that a planner could be selected is 14 × 20 = 280.
The last column states the average and the standard deviation of the number of times
that each planner has been selected per domain in both approximations (all and the
reduced set of features).

6.5 Confidence in Planner Prediction

In addition to the previous analysis, we wanted to carry out the underlying mechanism
to achieve the diversity of planners. Remember that planners are selected based on the
confidence of the success prediction. Therefore, in order to achieve different 5-planner

87

6. EXPERIMENTAL EVALUATION OF INSTANCE-BASED
CONFIGURED PORTFOLIOS

madagascar

LPG-td

yahsp2-mt

fdss-2

arvand

lamar

fd-autotune-2

lama-2008

fd-autotune-1

probe

lama-2011

Barm
an

CaveDiving
Childsnack
CityCar
Floortile
G

ED
Hiking
M

aintenance
O

penstacks
Parking
Tetris
Thoughtful
Transport
Visitall

Figure 6.3: Proportion of the number of times each planner has been selected in a
domain. In red dots, the proportion for IBaCoP2 (f-all), and in blue dots, the proportion
for IBaCoP2 (f-14).

sets in the same domain, the ranking of the confidence of the prediction should vary
throughout the problem. To visualize and confirm this fact, we have selected the Tetris
domain, which is one of the new domains in IPC-2014 and it shows a good diversity
selection as shown in Figure 6.3. This domain is a simplified version of the well-known
Tetris game.

A heatmap with the confidence of the prediction of success appears in Figure 6.4. At
a glance we realized that in general, a planner with a higher success rate in training time
obtains greater confidence, but confidence ranking varies throughout different problems
in the same domain. Another way of reading the picture is that the 5 darkest squares
per column make up the set of selected planners. For instance, lama-2011 was selected
in all problems and probe was selected 18 times. On the other hand Madagascar
was not selected, and LPG-td was selected 3 times.

88

6.5 Confidence in Planner Prediction

Table 6.3: Number of times a candidate planner has been selected by the two different
classification models (f-14 and f-all)

f-14 f-all Average ± SD
lama-2011 248 256 18,00 ± 4,02
probe 200 206 14,50 ± 6,71
fd-autotune-1 173 151 11,57 ± 6,29
lama-2008 173 157 14,50 ± 6,71
fd-autotune-2 93 88 6,46 ± 7,13
lamar 152 133 10,18 ± 6,98
arvand 65 111 6,29 ± 5,90
fdss-2 122 149 9,68 ± 7,94
yahsp2-mt 95 71 5,93 ± 7,26
LPG-td 29 31 2,14 ± 4,99
madagascar 35 45 2,86 ± 5,73

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

madagascar

LPG-td

yahsp2-mt

fdss-2

arvand

lamar

fd-autotune-2

lama-2008

fd-autotune-1

probe

lama-2011

S
co

re

Figure 6.4: Success prediction confidence provided by the classification model (f-all)
for each planner and problem in the Tetris domain. Scale goes from 0.0 (white) or no
confidence at all to 1.0 (dark blue) or complete confidence

89

6. EXPERIMENTAL EVALUATION OF INSTANCE-BASED
CONFIGURED PORTFOLIOS

6.6 The 2014 International Planning Competition

In this section, we describe the planners derived from this thesis and that competed

in IPC-2014. The submitted portfolio configurations are not exactly the same as those

reported and evaluated in this dissertation, since the set of base planners and features

used to describe the planning tasks have been amended since the competition. We have

set out the full results of IPC-2014 in Appendix D. The IPC results are adequate for

the evaluation of techniques, although the results may have been biased due to bugs

and execution errors present in many planners and domains when they were submitted.

All of these errors were fixed in the experiments reported in previous chapters.

1. Sequential Satisficing track

• IBaCoP (Cenamor et al., 2014a): Static portfolio with 12 planners. In the

competition, it included randward (Olsen and Bryce, 2011) and FDSS-1,

but did not select lamar.

• IBaCoP2: Dynamic portfolio. The planning tasks were characterized with

fewer features, and the best predictive model for this set was Random For-

est (Breiman, 2001). The same base planner selection as IBaCoP was sub-

mitted.

2. Sequential Sequential Multi-core track

• IBaCoP: The same portfolio configuration as for the Sequential Satisficing

track was used, but each of the 4 threads defined in the track run 3 planners

with 1 Gb.

• IBaCoP2: The same planner as in the Sequential Satisficing track, but three

threads run 1 planner; and one, 2 planners.

3. Sequential Agile track

• IBaCoP: This portfolio uses the 12 planners as the previous IBaCoP. How-

ever, we assigned the average time to find the first solution in 300 seconds

as running time. The order of execution for the planners is given by this av-

erage from less time to larger values. Even though all planners are included,

in practice, only a few of them will have the chance to run, until consuming

the time limit of 300 seconds.

• IBaCoP2: This portfolio uses the learned model to select 5 planners; the

order of the planners is decided from the confidence and the time for each

planner is the same for the five planners. The training set only includes the

results of the planners up to 300 seconds.

4. Learning Track

90

6.7 Summary

• LIBaCoP Cenamor et al. (2014b): is a portfolio configurable with a predic-
tive classification model similar to IBaCoP2. However, this predictive model
is built Ad hoc per domain (using only problems of this domain for training
purposes). The 5 planners with higher confidence are selected, and they
are ordered following this confidence. Then, the running time is divided
uniformly among them. The candidate planners are the same to IBaCoP
and including additionally Lamar, dae-yahsp (Dréo et al., 2011) and sg-
plan (Bonisoli et al., 2015) (15 planners).

• LIBaCoP2: is a portfolio that includes a regression model to predict the
running time for the planners selected by the classification model. This
strategy is similar as IBaCoP2-B5S but the predictive models are built only
for one domain and the candidate planners are the same as in LIBaCoP.

In the competition, all the dynamic configurations presented a control memory
bug, so the available memory was exceeded. This issue has been solved in all of
the experiments reported in this thesis, improving the results.

In this chapter we have highlighted the performance of the planners we developed
in this thesis. We made an empirical comparison of all the approaches we considered
and highlighted our results against the most promising planners in IPC-2014.

6.7 Summary

The empirical results of the application of the contents of the three previous chapters to
build a dynamic portfolios. We summarize the strategies, and we explain the setting and
the set of planners that we compare with. This reported evaluation shows remarkable
results: our approximations achieve 20 more points in quality than the second planner in
the IPC-2014. Despite the differences, these results confirm that our approximations are
the state of the art in satisficing planning. Reducing the number of planners is feasible
if this reduction is informed by accurate predictors of the planner’s behavior. The
generated predictive models could be generalized across unseen domains as we reported
in the results. Additionally, we present an analysis of the results to discover the selected
planners with the learned models per domain (f-14 and f-all models). Furthermore, we
report the evaluation of confidence in a domain to understand how the predictive model
is working. In the last part of the chapter, we explain the submitted version of the
portfolio to the IPC-2014, and the small differences from the reported strategies in this
dissertation.

91

6. EXPERIMENTAL EVALUATION OF INSTANCE-BASED
CONFIGURED PORTFOLIOS

92

7

Performance Modeling of
Planners in Homogeneous
Problem Sets

One of the main objectives of this thesis is to develop a per-instance configured portfo-
lio. Therefore, we have to show that empirical performance models are able to recognize
different planner performances even when planning tasks are fairly similar in their struc-
ture. However, the evaluation shown in previous sections is not enough to demonstrate
this ability. IPC benchmarks are not suitable for this propose because, given a domain,
the problem set is usually created in such a way that they tend to increase the difficulty
of the problem. For this reason, in this chapter we propose to train performance mod-
els with homogeneous problem sets in order to verify whether some of our features are
able to characterize planning tasks even when they have the same syntactic structure.
The issue with these kinds of sets is that planners might have significant differences in
performance for some problems, however, problems could produce the same value for
superfluous features, such as the number of goals, objects, actions, etc. Consequently,
instances characterized only by these features are indistinguishable. In this chapter,
we demonstrate that this situation does not happen if we consider our whole set of
features (de la Rosa et al., 2017).

In addition, this study takes into account that a problem may not have the same
difficulty for each planner. For this reason, models will be created for individual plan-
ners. The selected planners for this study are lama-2011, Probe and Mercury.
These planners obtained good results in the competitions in which they have partic-
ipated. Lama-2011 was the winner of the IPC-2011, Probe was the second best
planner in terms of coverage in IPC-2011, and Mercury was the best individual plan-
ner and achieved the Runner-Up and innovate planner award in the last competition
(IPC-2014).

This chapter is organized as follows. First, we present an experimental preview in
which we identify the homogeneous test sets that are of interest for this study. After
that, we explain our proposal, a experimental procedure to evaluate these interesting

93

7. PERFORMANCE MODELING OF PLANNERS IN
HOMOGENEOUS PROBLEM SETS

problem sets. Then, we apply the procedure in six of these problem sets and show a
summary of the relevant features in each one.

7.1 Experimental Preview

Firstly, we propose a proof-of-concept to demonstrate that homogeneous problems may
require different run times to be solved by the same planner. Therefore, a first step is
to find a group of domains that satisfies this situation. To test it, a problem genera-
tor should be available for the domains, so problems can be easily generated. As an
additional condition, the same input configuration for these problem generators should
generate different planning problems. These requirements restrict the domains we can
use.

For the evaluation, we have initially considered the domains from IPC-2011 and
IPC-2014 for which we have found random problem generators. The first step we have
made towards the selection of interesting problem sets is the generation of a set of 30
random problems with the same input parameters for each domain. The size of the
problem, determined by these input parameters, was manually adjusted to ensure a
non-trivial problem that, in most cases, can be solved within 1, 800 seconds time limit.
Planners were run on these problem sets to visualize the performance profile of each
domain.

Table 7.1 shows the coefficient of variation (i.e., the ratio of the standard deviation
to the mean, Cv = σ/µ) for the 13 domains that fulfill the requirements for the problem
generator. With this relative measure of dispersion one can compare performance in
different domains and realize which of them have more variety in their performance
profile. A large coefficient means the runtimes are fairly different among the problems;
opposite, values close to zero means that all problems are solved in almost the same
running time. We have marked the top 6 Cv in bold. We have focused on these
planner/domain performances for the rest of the evaluation. The selected problem sets
are from Barman, Depots and Floortile.

The results of this table show that blocksworld, transport and rovers domains have
small values for the coefficient of variation for all of the planners, which means that
the “complexity” of the problems of these domains is quite similar for all planners.
However, different planners may have totally different behaviors in the same domain.
For instance, in domains such as tpp and depots, Mercury and Lama-2011 planners
have large values of Cv while Probe has small values. The planners based on the
same system (i.e., Lama-2011 and Mercury) could have a similar performance and
consequently, similar values of Cv. The inverse situation appears in the floortile domain
in which the Probe planner has high values of variation and the other planners low
values. In summary, our hypothesis is that planning tasks of the same size might not
need the same time to be solved, and this time depends on the planner, the domain
and the capability of the problem generator to produce problems of the same size but
a significantly different search space.

Other aspects are the number of problems solved and the average time to carry out
the planning tasks for all planners (Table 7.2). Most of the problems of each domain
are solved for at least one planner except for the nomystery domain. This domain only

94

7.2 Experimental Procedure

Table 7.1: Coefficient of variation (Cv = σ/µ) of the time with 30 problem per each
domain with the same size. In this table appears in bold the 6 bigger values.

No. Domain Mercury Probe Lama

1 barman 2.86 2.02 2.63
2 blocksworld 0.54 0.14 0.76
3 depots 2.97 0.08 2.00
4 elevators 0.05 0.22 1.03
5 floortile 0.82 1.88 0.41
6 parking 0.20 0.69 0.26
7 transport 0.02 0.00 0.01
8 spanner 0.04 0.21 0.08
9 rovers 0.49 0.17 0.42
10 gripper 0.72 0.04 0.65
11 tpp 1.57 0.17 1.07
12 satellite 1.25 0.39 0.30
13 nomystery 0.25 – 0.41

gets solutions from Mercury and Lama-2011 planners, but these planners do not
solve all the problems: the maximum number of problems solved is 14. The execution
time of the problems depends on the planner, the domain and the size of the problem in
general. For example in the transport domain, Mercury has an average time of 20.30,
very far from the values obtained by the others (Probe time is close to 690 seconds
and Lama-2011 time close to 200 seconds).

These results provide insights into the differences between problems of the same
size. Additionally, they show that the planners do not take the same amount of time
to solve them so it is hard to predict this running time. This fact reinforces the idea
of a proper characterization of the planning task to truly predict the performance of
the planners per problem, and not only per domain. In the next section, we explain
the experimental procedure and the evaluation made in the selected domain/planner
combinations.

7.2 Experimental Procedure

We propose an evaluation strategy following Procedure 7.1. The first step is to generate
170 additional problems of the same size and structure (the problem sets are those from
the highest Cv values in Table 7.1). After that, we need to separate the problems into
two parts, the first part is the “easy” one; this group has to ensure that the planning
task is solved by the planner and the time needed to solve it is under a fixed cut-off
point. The second group is the subset of “hard” problems, including the unsolved ones.
These problems need more time to be solved than a particular cut-off point. For the
separation we have used Algorithm 3.

Algorithm 3 receives a list of problems (Π), a domain (d), a base planner (p), a
list of times for the first solution per each problem (T) and a cut-off (c). The first

95

7. PERFORMANCE MODELING OF PLANNERS IN
HOMOGENEOUS PROBLEM SETS

Table 7.2: Solved problems and average time to solve 30 problems in each domain for
Mercury, Probe and Lama-2011 planners. In bold the selected domains for the exper-
iments and in blue the five concrete set of planner-domain with high values in terms of
coefficient of variation.

No. Domain Mercury Probe Lama

1 barman 30 36.97 26 65.92 30 76.60
2 blocksworld 27 97.30 30 154.03 26 122.00
3 depots 27 114.63 29 5.24 26 162.85
4 elevators 30 10.83 30 327.43 28 199.79
5 floortile 29 372.69 12 217.92 22 375.45
6 parking 30 28.77 20 786.90 30 52.73
7 transport 30 20.30 30 690.80 30 197.27
8 spanner 30 71.27 30 129.37 30 80.27
9 rovers 26 477.15 29 599.48 30 428.53
10 gripper 17 670.12 30 49.63 30 195.13
11 tpp 30 118.30 30 268.90 30 111.80
12 satellite 30 49.33 25 537.48 21 379.57
13 nomystery 14 3.86 0 – 4 40.00

Algorithm 3: Generating different datasets with homogeneous problems set.
Data: Problems (Π), Domain (d), Times (T), Planner (Pl), Cut-off (c)
Result: Problems list with label solve/unsolved L = [〈π1, l1〉, ..., 〈πc, lc〉]
ExecutionTimes = sortedList(Π, T);
if c < UnsolvedProblems then

return LabelClass(ExecutionTimes)
else

LabelList = SelectPositiveClass(ExecutionTimes,c);
return LabelList

step consists of sorting the problems by the execution time in ascending order. If
the unsolved problems have more than a c percentage, we always preserve the highest
value. This procedure (LabelClass) labels the problem with True when the time is
t ≥ 0; if, t= − 1, the problem is labeled as False. If the problems solved are less
than c, several problems are labeled as False although the times are greater than zero.
This procedure, (SelectPositiveClass), labels as False the problems where the planner
needs more time to solve the planning task. For the experiments, we have built several
datasets with different cutoffs (c = 95, 90, 75, 66). The general idea of this procedure
is to generate datasets by changing the instances labeled “True” or “False” according
to the cut-off, similar to filtering the instances with a time limit lower than the initial
one.

After that, (Step 5), there are five files with different cut-offs. We evaluate them by
taking into account accuracy and the area under the ROC curve (AUROC). AUROC
is a curve that evaluates the true positive rate against the false positive rate at various
threshold values. ROC curves have an attractive property: they are robust to changes
in class distribution (the proportion of positive to negative instances). The AUROC

96

7.2 Experimental Procedure

Procedure:

1. Generate 200 problems (D) with the same size Pp
2. Run this 200 problems, D with each planner pli ∈ P a time limit T
3. Generate a dataset per each domain D and planner Pli
4. Apply Algorithm 3 to generate different datasets per experiment
5. Evaluate a set of predictive model with previous datasets (ZeroR, J48,
Naive Bayes, Random Forest & Rotation Forest)
6. Select the most balanced dataset
7. Delete features with a standard deviation with values lower than 1.0
8. Apply Feature Filtering Criteria
9. Show ranking and feature selection

Figure 7.1: Experimental procedure to evaluate homogeneous problems set

has an important statistical property: the AUROC of a classifier is equivalent to the
probability that the classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative instance, which is a close to the Wilcoxon test of
ranks (Hanley and McNeil, 1982). The results of the evaluation are generated using
10-fold cross-validation.

The selected algorithms are a small set of all the available ones; in this selection we
include a base model, ZeroR, based on the majority class; a decision tree, J48 (Quin-
lan, 1993); a bayesian classifier, Naive Bayes (John and Langley, 1995); Rotation For-
est (Rodriguez et al., 2006), which carries out an analysis on the main components to
transform the features before training a base classifier; and Random Forest (Breiman,
2001) which constructs a forest of random trees. In theory, a random classifier has an
AUROC of 0.5, no matter the class balance, given that true and false positive ratios
are independent of the number of positive and negative instances. In the evaluation, if
the computed AUROC for a classifier is larger than 0.5, we can claim that it behaves
better than random.

The next step, (Step 6 & 7), is to select the most balanced dataset, which is almost
always when the cut-off is 66%. The dataset is cleaned by deleting all of the features
that have a standard deviation of less than one point. As a consequence, the features
with less different values are deleted from the datasets for the feature evaluation.

The feature evaluation (step 8) (Karegowda et al., 2010) determines the relevant
features of the dataset. The techniques used are: Gain Ratio (GR) and Correlation
based Featured Selection (CFS).

Definition 23 (Gain Ratio). It is a standard discrimination criterion used in decision
trees. A decision tree is a simple structure where non-terminal nodes represent tests on
one or more attributes and terminal nodes reflect decision outcomes. The information
gain ratio is used to select the test attribute at each node of the decision tree. This
ratio is defined in the equation 7.2

GainR(Class,Attribute) =
(H(Class)−H(Class|Attribute))

H(Attribute)
(7.1)

97

7. PERFORMANCE MODELING OF PLANNERS IN
HOMOGENEOUS PROBLEM SETS

The attribute with the highest gain ratio is selected as the splitting attribute re-
spect to the class. The non-leaf node of the decision tree generated is considered as
a relevant attribute. Formula 7.2 represents the gain ratio per attribute in respect
to the class in which H(class) is the entropy of the class; H(Class|Attribute) is the
conditional entropy or quantity mutual information; and H(Attribute) is the entropy
of the attribute. The results of the feature evaluation will show the Gain Ratio and
a ranking of features generated from the relative order of these values. The ranking
procedure is provided by the Weka tool.

The second feature selection method is the Correlation based Feature Selection (Hall,
2000).

Definition 24 (Correlation based Feature Selection (CFS)). CFS is a heuristic for eval-
uating the worth or merit of a subset of features. This heuristic takes into account the
usefulness of the individual features for predicting the class label along with the level
of intercorrelation between them. The relevance of the features grows with the correla-
tion between features and classes, and decreases with a growing inter-correlation (Hall,
1999). The CFS is defined by the equation 7.2

rzr =
kr̄zi√

k + k(k − 1)r̄ii
(7.2)

where rzr is the correlation between the sum of the feature subsets and the class variable
(it is the heuristic of the feature that allow the merit to appear in the final selection),
k is the number of subset features, r̄zi is the average of the correlations between the
subset features and the class, and r̄ii is the average inter-correlation between the subset
features (feature-feature).

This metric is used with search strategies such as Hill-climbing and Best First (Ko-
havi and John, 1997) that find a good subset of features in a reasonable time. This
search starts with an empty set of features and generates all possible single feature
expansions. The subset with the highest evaluation is chosen and expanded in the
same manner by adding single features. The search stops when the algorithm finds five
consecutive subsets that do not improve the results. The feature ranking will show a
relative order among them.

The last step (Step 9) is to show two rankings of the feature selection. These
methods are included in the algorithm to select the features and their significance in
the dataset.

7.3 Experimental Evaluation

The experimental evaluation is made in three different domains following the experi-
mental procedure explained in Section 7.2. The experiments are the six highest values
according to Table 7.1. We should highlight three different cases taking into account
that their coefficients of variations are the highest. The first one is the same domain
(Barman) with all planners. The second one is when two planners (Mercury and
Lama-2011) have high values and the other one, Probe, has a small value. The last

98

7.3 Experimental Evaluation

case is the inverse case when the Probe planner has a high value and the other planners
have less variation.

7.3.1 Barman Domain - Mercury Planner

This domain consists of a robot that handles drink dispensers, glasses and a shaker.
The goal is to find a plan of the robot’s actions that serves a desired set of drinks. In
this domain, deletions of actions encode relevant knowledge given that robot’s hands
can only grasp one object at a time and given that glasses need to be empty and clean
to be filled. The size of the problems are as follows: 1 shaker, 2 hands, 15 shots, 5
ingredients, 10 cocktails, 5 dispensers and 3 different levels. The goal is to prepare 14
shots.

First, we show the execution times of all of the problems included with Mercury.
The execution times follow approximately a Chi-squared distribution (Huzak, 2011) in
which most of the problems are solved in similar periods of times and a small number
of them take the whole of the time available. Figure 7.2 shows that the 200 are solved
in 1, 000 seconds. However, the majority of the problems are solved before 20 seconds.
In addition, more than 100 problems are solved in 10 seconds.

 0

 20

 40

 60

 80

 100

 120

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

Figure 7.2: Execution time for the 200 problems of Barman domain with Mercury
planner.

Figure 7.3 shows the data in the four datasets with different cut-offs. In subfig-
ure 7.3a, the problems with the first time greater than 100 are labeled as unsolved. In
subfigure 7.3b, the problems with a time greater than 40 are labeled as unsolved in
this case. The other two subfigures, 7.3c and 7.3d split the data into 20 seconds and
10 seconds respectively.

Table 7.3 shows the results in terms of accuracy and AUROC. The values of this
table are always better than the base algorithm, ZeroR, increasing the value of AUROC
up to around 0.7.

99

7. PERFORMANCE MODELING OF PLANNERS IN
HOMOGENEOUS PROBLEM SETS

 0

 20

 40

 60

 80

 100

 120

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(a) c = 95

 0

 20

 40

 60

 80

 100

 120

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(b) c = 90

 0

 20

 40

 60

 80

 100

 120

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(c) c = 75

 0

 20

 40

 60

 80

 100

 120
0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(d) c = 66

Figure 7.3: Execution time for the 200 problems of barman domain with Mercury
planner when 95, 90, 75 and 66 are label as solved problem (True) in green.

The next step is to discover the knowledge implicit in these models and select a
group of relevant features. The number of features that are included in this experiment
is 56. A total of 33 based on the SAS+ formulation, 6 from the fact balance, 7 heuristic
values and 10 from the landmark graph. Several of these features do not have a standard
deviation of more than one point. After deleting these features, the set decreases to 17
features. The following step is to discover the relevance of these features for the class
with the two metrics proposed in the section 7.2 (Gain Ratio and Correlation based
Feature Selection). These mechanisms work better when the proportions of the output
class are balanced. In this case, we have selected the 66% dataset to carry out the
analysis.

Table 7.4 shows a list of the features grouped by type (the first column of the
table) and the two accomplished tests. CFS only selects 2 features and GR selects 8.
It seems intuitive that PDDL or FD features are not informative enough for problem
differentiation, in contrast to heuristic values or other types of features.

100

7.3 Experimental Evaluation

Table 7.3: Barman Results in terms of accuracy (Acc) and area under the ROC curve
(AUROC) with the original data and a cut-off of 95, 90, 75 and 66.

Original 95% 90% 75% 66%
Algorithm Acc AUROC Acc AUROC Acc AUROC Acc AUROC Acc AUROC
ZeroR 100.0 -1.0 95.0 0.50 90.0 0.50 75.0 0.50 66.0 0.50
J48 100.0 -1.0 94.5 0.50 90.5 0.59 76.5 0.58 68.0 0.62
NaiveBayes 100.0 -1.0 77.0 0.68 71.0 0.71 65.5 0.71 67.0 0.71
RandomForest 100.0 -1.0 94.0 0.67 89.5 0.60 75.0 0.67 66.5 0.65
RotationForest 100.0 -1.0 95.0 0.51 90.0 0.61 79.0 0.60 70.0 0.64

Table 7.4: List of useful features in Barman domain with Mercury planner, the ranking
of the features, their gain ratio (GR) and the ranking provided by correlation based feature
selection (CFS).

Type Name Ranking GR CFS

SAS – CG Total edges 18 0.00 -
Maximum output edge HV 11 0.00 -
Maximum input weight HV 9 0.00 -
Maximum output weight HV 13 0.00 -

SAS – DTG Total edges 12 0.00 -
Total weigth 15 0.00 -
Maximum input weight 14 0.00 -
Maximum output weight 16 0.00 -

FB Balance ratio 4 0.11 1
Balance distorsion 3 0.11 -

Heuristics Additive 7 0.11 -
Causal Graph 8 0.11 -
Context-enhanced Additive 6 0.11 -
FF 10 0.00 -
Landmark-cut 17 0.00 -
Hred-black 2 0.11 -

Landmarks Number edges 1 0.12 2
Maximum input edges 5 0.11 -

7.3.2 Barman Domain - Probe Planner

The next experiment is with the same domain, but changing the planner. The Probe
planner obtains the solutions about twice as fast as Mercury. Figure 7.4 shows that
the problems start to be solved after approximately 10 seconds, and several problems
are not solved in 1, 800 seconds. Figure 7.4 details that the 70% of the problems are
solved in 20 seconds and 80 problems more in the following 160 seconds (75% of the
problems). The number of unsolved problems is 27 (13.5%).

Figure 7.5 shows the four datasets with different cut-offs. The negative class has
13.5% of the problems, and the original dataset is not modified until a cut-off of 75%

101

7. PERFORMANCE MODELING OF PLANNERS IN
HOMOGENEOUS PROBLEM SETS

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

Figure 7.4: Execution time for the 200 problems of Barman domain with Probe planner.

is applied. (a) Subfigure 7.5a splits the data into 140 seconds and (b) Subfigure 7.5b

splits the data into 100 seconds.

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(a) c = 75

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(b) c = 66

Figure 7.5: Execution time for the 200 problems of barman domain with Probe planner
when 75% and 66% are labeled as solved problem (True) in green.

Table 7.5 shows the accuracy and AUROC using a 10-fold cross-validation. The best

algorithm is Rotation Forest when the value of AUROC is 0.72 in the initial dataset

and more than 0.60 in the other cases. These results improve the base models or a

random classifier in all cases.

The next step is to discover the implicit knowledge in these models. The group of

selected features are identical because the input attributes are the same. It only changes

the output attribute that is created through the execution of the Probe planner and

the algorithm 3.

102

7.3 Experimental Evaluation

Table 7.5: Barman results in terms of accuracy (Acc) and area under the ROC curve
(AUROC) with a with the original data and a cut-off of 75% and 66% with Probe planner.

Original 75% 66%
Algorithm Acc AUROC Acc AUROC Acc AUROC

ZeroR 86.5 0.46 75.0 0.50 66.0 0.48
J48 85.0 0.58 72.5 0.48 61.5 0.59
NaiveBayes 69.5 0.61 65.0 0.61 55.0 0.54
RandomForest 85.5 0.70 69.5 0.58 63.0 0.57
RotationForest 85.5 0.72 72.0 0.61 63.0 0.63

Table 7.6 has different values in the two feature metrics. GR discards six addi-
tional features and two of them are the same as the Mercury planner (maximum
input/output weight at DTG graphs), however, the ranking value is totally different.
The Probe dataset takes the SAS+ features into account before heuristic values on
almost all occasions. The CFS method only considers 4 features as relevant, 2 more
than the previous evaluation and 1 of them coincident (balance ratio). This feature is
always selected with the two methods.

7.3.3 Barman Domain - Lama-2011 Planner

The next experiment is with the same domain and the Lama-2011 planner. Figure 7.6
details the problems solved in 1, 800 seconds. This planner solves close to 150 problems
in less than 40 seconds and less than 50 problems from between 40 to 1, 500 seconds.
Five of the 200 are unsolved (2.5%).

Figure 7.7 represents the different proportions used. In Subfigure 7.7a, the problems
that require more than 1, 000 seconds to achieve the solution are labeled as unsolved.
In Subfigure 7.7b, the problems with a execution time of more than 600 are labeled as
unsolved in this case. The other two subfigures, 7.7c and 7.7d split the data into 20 or
16 seconds respectively.

Table 7.7 shows the accuracy and AUROC of these datasets, evaluated using a 10-
fold cross-validation. There are two important things to highlight; the first one, the
values of the AUROC are over the base algorithm in all cases; the second one is that for
cut-offs equal to or less than 90%, there is a model that obtains an AUROC of around
0.70.

Table 7.8 shows the list of those features with a standard deviation of more than
one. 4 of them do not contribute to the class, reducing the relevant feature to 12 in
this case. As expected, none of the PDDL features appear in the list because they
always have the same values. FD Instantiation features are not relevant enough for
this domain.

The study of one domain with three different planners gives us several highlights.
The best feature is the Balance ratio, very close to the other ones based on the fact
balance. The heuristic values are close to the most important ones but they depend on

103

7. PERFORMANCE MODELING OF PLANNERS IN
HOMOGENEOUS PROBLEM SETS

Table 7.6: List of useful features in Barman domain with Probe planner, the ranking of
the features, their gain ratio (GR) and the ranking provided by correlation based feature
selection (CFS).

Type Name Ranking GR CFS

SAS – CG Total edges 5 0.12 1
Maximum output edge HV 3 0.15 2
Maximum input weight HV 2 0.15 -
Maximum output weight HV 4 0.15 -

SAS – DTG Total edges 7 0.11 -
Total weigth 6 0.11 -
Maximum input weight 11 0.00 -
Maximum output weight 10 0.00 -

FB Balance ratio 9 0.10 3
Balance distorsion 18 0.00 -

Heuristics Additive 15 0.00 -
Causal Graph 17 0.00 -
Context-enhanced Additive 16 0.00 -
FF 1 0.16 -
Landmark-cut 8 0.10 4
Hred-black 12 0.00 -

Landmarks Number edges 14 0.12 -
Maximum input edges 13 0.11 -

the planner. However, the only planner that considers the SAS+ features as relevant is
Probe and it does not use this formulation.

104

7.3 Experimental Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

Figure 7.6: Execution time for the 200 problems of Barman domain with Lama-2011
planner.

Table 7.7: Barman Results in terms of accuracy (Acc) and area under the ROC curve
(AUROC) with a original data and a cut-off of 95, 90, 75 and 66.

Original 95% 90% 75% 66%
Algorithm Acc AUROC Acc AUROC Acc AUROC Acc AUROC Acc AUROC
ZeroR 97.5 0.24 95.0 0.50 90.0 0.50 75.0 0.50 66.0 0.48
J48 97.5 0.24 95.0 0.50 90.0 0.50 75.0 0.64 66.0 0.57
NaiveBayes 52.0 0.46 53.5 0.58 59.5 0.70 64.0 0.70 64.5 0.71
RandomForest 97.5 0.44 94.0 0.58 85.5 0.54 78.5 0.67 67.0 0.59
RotationForest 97.5 0.24 95.0 0.50 90.0 0.52 75.0 0.67 69.0 0.65

7.3.4 Depots Domain - Mercury Planner

This is an experiment in another domain, depots, with the Mercury planner. This
domain is a combination of a transportation domain and the Blocksworld domain. The
transportation element of the task is to move crates from one depot to another using
trucks. The blocksworld element arises due to the need to stack and unstack the crates,
with the space on the ‘table’ being limited by the number of pallets at each location.
Hoists serve as the function of the robot arm, including the mechanism by which crates
are loaded/unloaded into/from trucks. The goal is to find a plan in which crates are
stacked appropriately at their destinations.

The size of the problems are as follows: 2 distributors, 2 trucks, 6 pallets, 20 crates
and 3 hoists and the goals are to locate all of the crates in the right place. Figure 7.8
shows the progression of the 200 problems with the Mercury planner. This planner
does not solve 26 problems (13%). Most of them are solved in less than 160 seconds.

Figure 7.9 represents the different proportions used. The percentage of unsolved

105

7. PERFORMANCE MODELING OF PLANNERS IN
HOMOGENEOUS PROBLEM SETS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(a) c = 95

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(b) c = 90

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(c) c = 75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90
0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(d) c = 66

Figure 7.7: Execution time for the 200 problems of Barman domain when 95%, 90%,
75% and 66% are label as solved problem (True) in green.

problems is 13%, therefore 90% and 95% cutoff points do not make sense. Subfig-
ure 7.9a(a) labels the problems as unsolved in times greater than 300 seconds and
Subfigure 7.9b(b) has the split point at 120 seconds.

Table 7.9 shows the accuracy and AUROC of the different proportions of the training
data. It is important to highlight that the 75% cutoff has an AUROC of 0.98, very
close to the perfect value 1.0.

In this case the group of relevant features is different from the Barman domain.
After the filtering of the standard deviation, 34 features are selected. This feature
selection includes features from all types, one from PDDL, one from the FD instan-
tiation, 14 from the SAS+ formalism, 3 from Fact Balance, 9 heuristic values and 7
from landmarks. The feature from the PDDL group is the number of goals, however its
contribution is not significant. The number of goals in Depots can have small variations
due the list of goals created by the generators with an additional source of randomness.

Tabla 7.10 shows the list of features sorted by type, as well as the position of the two
feature filtering criteria. Both filters discarded features, 2 features in the case of GR or
23 features in the case of CFS. GR provides similar values (between 0.11 − 0.12) in a
group of 16 features, most of them from the SAS+ formalism. The resulting rankings
emphasize the importance of the fact balance, heuristic value and landmark graph

106

7.3 Experimental Evaluation

Table 7.8: List of useful features in Barman domain with Lama-2011 planner, the
ranking of the features, their gain ratio (GR) and the ranking provided by correlation
based feature selection (CFS).

Type Name Ranking GR CFS

SAS – CG Total edges 18 0.00 -
Maximun output edge HV 17 0.00 -
Maximum input weight HV 14 0.00 -
Maximum output weight HV 13 0.00 -

SAS – DTG Total edge 12 0.17 1
Total weight 11 0.17 -
Maximum input weight 15 0.00 -
Maximum output weight 16 0.00 -

FB Balance ratio 1 0.27 2
Balance distorsion 6 0.26 3

Heuristic Additive 5 0.26 4
Causal Graph 4 0.26 -
Context-enhanced Additive 7 0.26 -
FF 9 0.26 5
Landmark-cut 10 0.2 6
Hred-black 3 0.26 -

Landmark Number edges 8 0.26 -
Maximum input edges 2 0.26 -

features over the rest. CFS only selects 12 features, selecting the SAS+ formalism in
the first case, fact balance, heuristic values and the last one from the landmark graph.

107

7. PERFORMANCE MODELING OF PLANNERS IN
HOMOGENEOUS PROBLEM SETS

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

Figure 7.8: Execution time for the 200 problems of Depots domain with Mercury
planner.

Table 7.9: Depots Results in terms of accuracy (Acc) and area under the ROC curve
(AUROC) with a original data and a cut-off of 75 and 66 with Mercury planner.

Original 75% 66%
Algorithm Acc AUROC Acc AUROC Acc AUROC

ZeroR 87.0 0.45 75.0 0.50 66.0 0.48
J48 85.5 0.54 71.0 0.58 76.5 0.70
NaiveBayes 72.5 0.84 76.5 0.85 67.0 0.76
RandomForest 87.5 0.79 96.0 0.98 72.5 0.76
RotationForest 87.5 0.78 96.5 0.98 71.0 0.78

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(a) c = 75

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(b) c = 66

Figure 7.9: Execution time for the 200 problems of depots domain when 75% and 66%
are label as solved problem (True) in green.

108

7.3 Experimental Evaluation

Table 7.10: List of useful features in Depots domain with Mercury planner, the ranking
of the features, their gain ratio (GR) and the ranking provided by correlation based feature
selection (CFS).

Type Name Ranking GR CFS

PDDL Goal 17 0.12 -
FD Translator task size 24 0.12 -
SAS - CG High level variables 23 0.12 -

Maximum output weight 27 0.11 1
Average output edge HV 21 0.12 -
Standard deviation output edge HV 22 0.12 -
Average input weight HV 20 0.12 -
Standard deviation input weight HV 26 0.12 -
Average output weight HV 25 0.12 -
Standard deviation output weight HV 19 0.12 -

SAS - DTG Maximum input edge 15 0.12 -
Maximum output edge 30 0.09 -
Maximum input weight 31 0.09 -
Average input weight 8 0.18 2
Maximum output weight 16 0.12 -
Average output weight 14 0.12 -

FB FF ratio 28 0.10 -
Balance ratio 17 0.12 3
Balance distorsion 13 0.14 4

Heuristics Additive 10 0.17 -
Causal graph 1 0.34 5
Context-enhanced additive 5 0.21 6
FF 3 0.21 7
Goal count 2 0.24 8
Landmark count 9 0.18 9
Landmark-cut 29 0.10 -
Max 35 0.00 -
Hred-black 6 0.20 -

Landmarks Landmarks 12 0.14 -
Number edges 7 0.18 10
Father nodes 33 0.05 -
Children nodes 4 0.21 11
Nodes between 11 0.16 -
Maximum input edges 34 0.00 -
Maximum output edges 32 0.08 12

109

7. PERFORMANCE MODELING OF PLANNERS IN
HOMOGENEOUS PROBLEM SETS

7.3.5 Depots Domain - Lama-2011 Planner

The next experiment is with the same domain, Depots, but changing the planner to
Lama-2011. The time allocated to solve the problems is 162.85 seconds on average.
Figure 7.10 shows the progression of 200 problems in 1, 800 seconds. The majority of
the problems are solved within 160 seconds (139 problems). The problems start to be
solved at 20 seconds from the execution and there are 21 problems with no solution
(10.5%).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

Figure 7.10: Execution time for the 200 problems of Depots domain with Lama-2011
planner.

Figure 7.11 shows the datasets with different proportions of unsolved problems.
Subfigure 7.11a labels them as unsolved after 280 seconds, and Subfigure 7.11b labels
them as unsolved after 120 seconds.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(a) c = 75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

(b) c = 66

Figure 7.11: Execution time for the 200 problems of depots domain when 75% and 66%
are label as solved problem (True) in green.

110

7.3 Experimental Evaluation

Table 7.11 shows the results of accuracy and AUROC of the all datasets. Rotation
Forest is the best algorithm in 2 of 3 cases, obtaining AUROC values of more than
or equal to 0.75. The base algorithm obtains 0.45 in terms of AUROC, a value quite
distant from the other algorithms.

Table 7.11: Depots Results in terms of accuracy (Acc) and area under the ROC curve
(AUROC) with original data and a cutoff of 75 and 66 with Lama-2011 planner.

Original 75% 66%
Algorithm Acc AUROC Acc AUROC Acc AUROC

ZeroR 89.5 0.45 75.0 0.50 66.0 0.48
J48 90.0 0.69 71.0 0.63 66.5 0.59
NaiveBayes 60.5 0.67 69.0 0.73 65.5 0.72
RandomForest 90.0 0.76 76.5 0.76 72.5 0.75
RotationForest 93.5 0.80 79.5 0.78 70.5 0.74

The next step is to discover the relevant features for the depots domain in the
Lama-2011 planner. The pre-selected features are the same as in the previous sub-
section. Table 7.12 shows the relevant features using the two criteria, GR and CFS.
GR discarded 7 more than features, such as the maximum input and output edges of
the landmark graph, hmax and hL−cut heuristics. CFS only selects 5 features from the
initial set, in contrast to the 12 selected in the Mercury dataset.

The GR ranking values between Mercury and Lama-2011 are similar in relation
to the type of feature, highlighting the features based on heuristic values and the
landmark graph. In this domain, the CFS method always emphasizes Balance Ratio
and the Balance Distorsion and discards features from PDDL and FD. These results
are in accordance with the previous ones from the Barman domain, in which these
features were discard in the first step.

111

7. PERFORMANCE MODELING OF PLANNERS IN
HOMOGENEOUS PROBLEM SETS

Table 7.12: List of useful features in Depots domain with Lama-2011 planner, the ranking
of the features, their gain ratio (GR) and the ranking provided by correlation based feature
selection (CFS).

Type Name Ranking GR CFS

PDDL Goal 22 0.02
FD Translator task size 25 0.04
SAS -CG High level variables 26 0.03

Maximum output weight 28 0.04
Average output edge HV Avg 24 0.04
Standard deviation output edge HV 19 0.04
Average input Weight HV 23 0.04
Standard deviation input Weight HV 27 0.04
Average output weight HV 20 0.04
Standard deviation output weight HV 21 0.04

SAS - DTG Maximum input Edge 35 0.00
Maximum output edge 17 0.05
Maximum input Weight 30 0.00
Average input Weight 16 0.06
Maximum output weight 18 0.05
Average output weight 31 0.00

FB FF ratio 10 0.12
Balance Ratio 14 0.08 1
Balance Distorsion 8 0.13 2

Heuristics Additive 15 0.08
Causal graph 1 0.20 3
Context-enhanced additive 4 0.15 4
FF 5 0.14
Goal count 11 0.12
Landmark count 3 0.15
Landmark-cut 29 0.00
Max 32 0.00
Hred-black 6 0.13

Landmarks Landmarks 2 0.17 5
Number Edges 7 0.13
Father Nodes 12 0.09
Children Nodes 13 0.09
Nodes between 9 0.13
Maximum input 34 0.00
Maximum output 33 0.00

112

7.3 Experimental Evaluation

7.3.6 Floortile Domain - Probe Planner

The next experiment is in the Floortile domain using Probe. This domain has the

sixth highest value in terms of the coefficient of variation. Furthermore, this domain is

quite difficult for this planner because it only solved 12 of the initial 30 problems.

This domain consists of a set of robots that use different colors to paint patterns

on floor tiles. The robots can move around the floor in four directions (up, down, left

and right). Robots paint with one color at a time, but can change their spray guns to

any available color. However, robots can only paint the tile that is in front (up) and

behind (down) them, and once a tile has been painted no robot can stand on it. An

example of a floortile problem appears in figure 7.12.

Figure 7.12: Example of Floortile do-
main in a grid of 3x2 with one robot.

For this set, robots need to paint a grid

in black and white, where the color of the cell

is always alternated. This particular configu-

ration makes the domain hard because robots

can only paint the tiles in front of them, since

painting the tiles behind make the search to

reach a dead-end in most cases. The problems

have a 5x4 grid with two robots and two col-

ors.

Figure 7.13 details the problems solved in

1, 800 seconds with Probe. This planner only

solved 56 of the 200 problems. Our procedure 7.2 does not generate a dataset of

different proportions, and only the real proportion is considered as the percentage of

unsolvability is 72%.

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 1 2 3 4 5 10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

40
0

50
0

60
0

36
00

S
ol

ve
d

P
ro

bl
em

s

Execution Time(s)

Figure 7.13: Execution time for the 200 problems of Floortile domain with Probe plan-
ner.

113

7. PERFORMANCE MODELING OF PLANNERS IN
HOMOGENEOUS PROBLEM SETS

Table 7.13 shows the results in terms of accuracy and AUROC. All of the algorithms
are slightly better than the base algorithm ZeroR. However, these values are close to
the performance of a random classifier.

Table 7.13: Floortile Results in terms of accuracy (Acc) and area under the ROC curve
(AUROC) with original data with Probe planner.

Original
Algorithm Acc AUROC

ZeroR 72.0 0.47
J48 72.5 0.54
NaiveBayes 63.0 0.50
RandomForest 60.5 0.51
RotationForest 70.5 0.52

As regards the relevant features, only 11 features have a standard deviation if more
than one point. Table 7.14 shows that only the Balance ratio is relevant in the floortile
domain. The GR method does not give any value to the rest of the features and as well
like CFS, that also discarded these features.

Table 7.14: List of useful features in Floortile domain with Probe planner, the ranking
of the features, their gain ratio (GR) and the ranking provided by correlation based feature
selection (CFS).

Type Name Ranking GR CFS

FB Balance ratio 1 0.10 1
Balance distorsion 3 0.00 -

Heuristics Additive 2 0.00 -
Causal graph 5 0.00 -
Context-enhanced Additive 4 0.00 -
FF 11 0.00 -
Landmark-cut 10 0.00 -
Hred-black 6 0.00 -

Landmarks Landmarks 9 0.00 -
Number edges 8 0.00 -
Number father Nodes 7 0.00 -

114

7.4 General Feature Analysis

7.4 General Feature Analysis

In this chapter, we propose to study the performance of the individual planners in
homogeneous problem sets. We have analyzed the quality of the models and the relevant
features in a combination of three domains and three planners. The datasets of interest
were selected by considering the value of the coefficient of variation in the performance
data evaluated.

The results have shown that the relevant features depend on the domain, which are
not always are the same. Nevertheless, there is a sub-group of features that always
appear in the three domains. This group consists of 9 features, 2 come from the Fact
Balance (Balance Ratio and Balance distortion), 6 from the heuristic values (Additive,
Causal Graph, Context-enhanced Additive, FF, Landmark-cut and Red-black) and 1
based on the landmark graph (Number of edges in the graph). What these groups of
features have in common is that they are scattered among the problems, and conse-
quently when they produce different performance data, the models are able to recognize
these differences.

Figure 7.14 shows the importance of these features from between 0 to 1. These
values are calculated using the values obtained from the GR between the maximum
values in each dataset. This graph does not represent all of the significant features but
all of them are common in the previous experiments.

B
-M B
-P B
-L

D
-M D
-L

F-
P

B-Ratio

B-Distorsion

Additive

Causal Graph

C-e Additive

FF

Landmark-cut

Hred-black

Number Edges

 0

 0.2

 0.4

 0.6

 0.8

 1

S
co

re

Figure 7.14: Selection features per the selected domains with the three planners. The x
axis represents the different datasets and the y axis the list of features and the intensitivity
of the color the relevance of the feature.

115

7. PERFORMANCE MODELING OF PLANNERS IN
HOMOGENEOUS PROBLEM SETS

The x-axis represents the datasets, the first letter symbolises the domainB being the
barman domain, D is depots and F is floortile. The second letter symbolises the planner,
M being Mercury, L is lama-2011 and P is Probe. The most important feature
is the Balance ratio (B − Ratio) because it has meaningful gain ratio in all datasets.
The Causal Graph heuristic is also important because it has the best gain ratio when it
appears as relevant for a dataset. Other important features are the Balance Distortion
or Number in Edges in the landmark graph, since they give information in almost all
cases.

In general, the features extracted from the relaxed plan give us about a greater
illumination as to what really matters in the characterization of the problem. These
features, in addition to the heuristic values of the initial state and the landmark graph
could be crucial for knowing when a problem will be hard for a planner.

7.5 Summary

The majority of the state-of-the-art features produce the same or similar values in
homogeneous problem sets. Therefore, they do not add discriminant information to
recognize which tasks are potentially difficult for a given planner. In this chapter,
we propose a new experimental procedure to evaluate a homogeneous problem set to
confirm that our EPM gives a different representation per problem and that it improves
the prediction capability. Several different ideas arise from this study: the relevance of
each feature is not dominant across different domains and planners; however this set of
new features give vital information to the EPM. The trained models in this case are far
from perfect classifiers, however they demonstrated a better performance than random
classifiers in almost all cases.

116

8

Temporal Approximation

State-of-the-art planning EPMs mainly focus on classical planning, like described in

previous chapters in this dissertation. The features and learning processes followed

are, therefore, adapted to that scope, and do not guarantee any prediction on the

planner’s performance in more expressive planning paradigms, like those paradigms in

temporal planning, which are more expressive as regards the time constraints of the

problems and domains, as it was described in the state in the art at Section 2.2.

The temporal problem incentive is to extract more representative features that

represent temporal constraints, but there are no features in the current state of the

art. Furthermore, some of the features previously used in classical planning might not

be available in temporal planning. This type of planning usually requires the time

constraints to be dealt with; actions have a duration and it might be necessary to run

them concurrently to achieve some goals.

In this chapter, we propose a new set of features which are specific to problems

dealing with durative actions and temporal constraints. We integrate them with exist-

ing classical planning features, and investigate the efficacy of EPMs in predicting the

performance of temporal planners. In particular, we study the exploitability of features

for building both classification and regression EPMs for a range of temporal planning

engines, and we show the effectiveness of the models built for algorithm selection (Rice,

1976). Moreover, our analysis allows to gain some insights to be gained into the state

of the art of temporal planning systems and we fill the gap between classical and tem-

poral planning. This approximation differs slightly from the general formulation of the

IBaCoP portfolios. The experimentation of this section is influenced by the limited

research into the EPM of the planners in temporal planning. This is the first temporal

portfolio approximation and temporal EPM could be interesting because these planners

are good in different domains.

This chapter is organized as follows. First, we detail the planners and the bench-

marks. Then, we explain all of the features used in this section (not all of them are the

same as Chapter 4) and the time and process to extract them. After that, we present the

results in terms of EPM, the results in a planning portfolio, and the planner selection.

Finally, we present the conclusions of the temporal approximation.

117

8. TEMPORAL APPROXIMATION

8.1 Planner Selection

Planning systems able to deal with temporal problems are not as numerous as classical
planning solvers. We initially collected the temporal planners which took part in the
IPCs, that showed good coverage performance. We then ran them on our training
instances, and removed those characterized by very poor performance (in terms of
coverage). For this reason, we initially considered discarding three different planners
(CPT4, LMTD and TLP-GP). Therefore, there are 8 planners considered and they
are explained in Appendix A.3: LPG-td,POPF2, Yahsp2, Yahsp2-mt, Temporal
Fast Downward, ITSAT, Yahsp3 and Yahsp3-mt.

8.2 Benchmarks

We consider temporal planning problems gathered from the temporal tracks of the last
editions of the IPC, namely 2002, 2004, 2006, 2008, 2011 and 2014. Table 8.1 presents
the training and test benchmarks used. The training set is IPCs 2008 and 2011: 25
domain models and 630 problems. It should be noted that where possible, we also
considered different encodings of the same domain. Problems not solved by at least
one planner were not included in the training set. The test set is IPCs 2002, 2004,
2006 and 2014. These IPCs are split into three parts: a set of new problems in known
domains, and a set of new problems in unknown domains and the last IPC, which are
detailed in Table 8.1.

Table 8.1: Domains included in the training and test phase categorized by origin. The
origin of all problems and domains came from International Planning Competition, in the
proper column the year of the competition appears.

Type Origin # Domains

Training phase 2008− 2011 25

Test Domains included at Training Set [2002 : 2006] 7
2014 6

phase Domains not included at Training set [2002 : 2006] 23
2014 4

We considered different encodings of the same domain (for example, a domain could
use the STRIPS representation , other numerical constraints, and other ADL features).
Specifically, the test set that is included in training set only has three domains with
different encodings (Openstacks, Storage and Satellite).

8.3 Features

We introduce 71 new features that are specific to temporal planning problems. This,
together with several “classical” features provides us with 139 features in total. Overall,
those features considered can be divided into six groups, described bellow.

118

8.3 Features

Propositional PDDL

We consider 8 features that are extracted by considering both the domain and problem
models that are specified in PDDL. They are a subset of the features proposed in
previous works (Roberts et al., 2008), namely: the number of requirements in the
domain, number of types, objects, predicates, facts in the initial state, number of (non-
durative) actions and axioms. These features can be extracted from classical planning
problems and thus are not temporal-specific. These features are explained in detail in
Section 4.3.1.

Temporal PDDL

This set of features considers PDDL elements that appear in temporal models and
numerical planning. For instance, we consider the number of assignments in the initial
state, the presence of functions as the duration of the actions, the minimum, maximum,
average and the standard deviation of the arity of the functions that are included in the
actions, the number of preconditions and effects that should be fulfilled at the start, in
the end or during actions execution (at_start, at_end and over_all). Intuitively, this
set of features allows some insights to be gained into the constraints of the temporal
part of the problem. For instance, it is possible to extrapolate whether some actions
can be run in parallel (effects that are available early, preconditions that are required
at_end), or actions are “locking” resources (preconditions that need to be fulfilled
over_all). For these reasons, this set of features is deemed to be the most informative
for EPMs aiming at predicting the performance of temporal planners. A total of 28
features are considered in this class and appear in Table 8.2.

Table 8.2: Temporal PDDL Features

Name Description

assignment Number of numeric assignments in the problem.
num durative actions Number of durative action included in the domain definition.
type numeric duration Number of durative actions have numeric duration.
type function duration Number of durative actions have a function for the duration.
average numeric duration Average, minimum and maximum of the value of the durative

actions.
functions Number of functions included in the domain definition
avg arity Average, minimum and maximum of the arity of the functions

included in the domain.
at start precondition Average, minimum, maximum and standard deviation of

at start preconditions.
over all precondition Average, minimum, maximum and standard deviation of

over all preconditions.
at start postcondition Average, minimum, maximum and standard deviation of

at start postconditions.
at end postcondition Average, minimum, maximum and standard deviation of at end

postconditions.
durative actions Number of actions that included temporal restrictions.

119

8. TEMPORAL APPROXIMATION

General SAS+

We consider features that can be extrapolated from the SAS+ encoding (Bäckström and
Nebel, 1995) which in contrast to the predicate-centric PDDL encoding is object-centric.
For instance, the number of vertices and edges of the causal and domain transition
graphs, which represent relationships between actions and objects, are considered. In
total, 49 features belong to this class. It should be noted that not all of the features
are temporal-specific, so they have also been explained in Section 4.3.3.

Problem Size

We have included several from SATzilla (Xu et al., 2008), however the ITSAT (Rankooh
et al., 2012) planner does not provide a proper file to extract the features of the system.
This process only extracts the first category of these features, called “Problem Size
Features”. A total of 13 features are considered in this class and they are explained in
Table 8.3.

Table 8.3: Problem Size Features. These features are from the 1-12 features SATzilla.

Name Description

Ratio of Relevant Actions Number of the final actions between the number of initial
Actions.

NAction Number of final actions
N Propositions Number of all propositions usefull included
N Relevant Actions Number of actions are included before simplification with

SATElite.
N Relevant Propositions Number of proposition that are included in the relevant

actions (without instanciate).
Variables End Created Variables at SATElite. formulation.
prop End Number of proposition that are included in the instantiated

actions (without instantiate).
action End Instantiated actions a SATElite formulation post simplifi-

cation.
Total Mutex Clauses Number of mutex clauses in the variables.
ratio End Ratio of variables to clauses
TEvent Clauses Number of clauses in original formula.
TClauses Number of simplification clauses.
Number Files Number of the temporary files created.

Temporal Fast Downward

The pre-processing of Temporal Fast Downward (Eyerich et al., 2012) uses multi-valued
state variables and the handling of logical dependencies and arithmetic subterms via
axioms. The values of these numerical variables are set directly by the actions or,

120

8.4 Extracting Features

in the case of compound expressions, determined by newly introduced numerical ax-
ioms. Comparisons between the numerical expressions are translated to logical variables
whose values are determined using comparison axioms in the internal process of the
planner. This is a hard process, in which the system counts the number of axioms.
Furthermore, other considerations are included in this process to compile the temporal
restrictions with auxiliary variables. For example, the final state variables in the SAS+

formulation are divided into those affected by temporal operators and derived variables
(these variables are computed using axioms). Several of these features are previously
included in the general process in FD, however it is not possible to calculate others
in TFD. A total of 11 features are considered in this class, and they are explained in
Table 8.4.

Name Description

init Number of predicates that appear in the initial state
goals Number of predicates that appear in the goal state.
function administrator Auxiliary number of TFD
final queue length Size of the queue in the translation process.
translator operator Number of operators that appear in the translation process.
necessary operators Number of operators at preprocess phase.
uncovered facts Number of facts included in the preprocess phase.
necessary variables Number of variables that appear in the translation process.
relation axiom Number of axioms that are relational in TFD.
functional axiom Number of axioms that are functional in TFD.
true axioms Number of axioms that are true in the translation process.

Table 8.4: TFD Features

Temporal SAS+

This group of features is a extension of the Temporal Fast Downward features. In a
sense, these SAS+ related features are created based on the internal structure of the
planner to create the temporal planning task. Several are specific to the aspects of the
planners to treat fluents and handle numerical features, because these characteristics
are not supported by FD, and this system is built on top of it. Consequently, several of
them have no semantic meaning, only for the translation process from temporal PDDL
to SAS+. There are 30 features which are listed in Table 8.5.

8.4 Extracting Features

We observed that Propositional PDDL features require negligible time to be extracted,
while temporal PDDL feature extraction requires at most 10 CPU time seconds. Fur-
thermore, extracting SAS+ features is usually more expensive; on average, close to 29
seconds are required. It is something we also noticed in a few problems, we considered

121

8. TEMPORAL APPROXIMATION

Table 8.5: Temporal SAS+ Features

Name Description

durative actions Number of durative actions identified by TFD.
action counter Number of different actions when the temporal task are

translated a general SAS+

function symbols Number of symbols of the TFD.
generated rules Number of rules generated in TFD in the translation process.
final queue Number of the elements that appear in the planning queue.
translator variables Number of temporal variables in TFD.
translator derived variables Number of temporal derived variables in TFD.
translator facts Number of temporal facts in TFD.
mutex key Number of mutexes at the initial state
strips to sas Number of auxiliary variables used in a temporal SAS+

ranges Number of different variables that are numeric and have dif-
ferent intervals.

goal list Number of elements in the final state in the temporal task.
task init Number of elements in the initial state in the temporal task.
translator durative act Number of actions in a preprocess phase.
translator axiom Number of axioms in a translation phase.
translator num axioms Simplified axioms in a translation phase.
translator num axioms by layer Number of actions per level
translator max num layer Maximum number of layers
translator num axiom map Number of total axioms that appear in all process
translator const num axioms Minimum number of necessary axioms
translator reachable Number of variables that are reachable in the initial state.
translator mutex group Number of groups of variable/value pairs of which no two

can be simultaneously true.
translator translation key Auxiliary value of TFD
avg level Average of the number of levels.
str level Standard deviation of the number of levels.
global num type start Number of transitions that are label at at start.
global num type end Number of transitions that are label at at end.
global min level Minimum number of levels in the graphs.
global max level Maximum number of levels in the graphs.
global total level Total number of levels in all graphs.

122

8.4 Extracting Features

in the experimental analysis (crewplannning, matchCellar and transport). The extrac-
tion of the SAS+ features needs a significantly longer CPU time. Only in a few domains
the CPU time required was significantly higher. However, only in a few domains con-
sidered in our experimental analysis, the time required to extract these features was
longer than 13 seconds.

Problem size features are cheaper than SAS+ features, and usually require around
1 CPU-time second to be computed. It is worth noting that he SAS+ features have
not been computed, due to timeout or the memory running out, in approximately 15%
of the problems considered in our experimental analysis. Table 8.6 shows the average
and maximum time required to extract the different sets of features, as well as the
percentage of problems in which the extraction was completed on time. A timeout
of 100 seconds for the overall extraction process has been used. Using an excessively
large amount of CPU time for extracting features reduces their usefulness, in the light
of the fact that planners also tend to solve problems quickly, or not at all (Howe and
Dahlman, 2002).

Propositional and temporal PDDL features are extracted using different systems,
and therefore they are independent. Both general, temporal SAS+ and TFD features
are extracted using TFD, thus their extraction time is the same.

Table 8.6: Average and Maximum CPU time needed to extract features, the number of
features per group (#) and the percentage of successful features extraction (succ.).

Average Maximum # Succ.

PDDL Prop 0.01 0.15 8 100%
Temp 5.06 10.00 28 100%

P. size 0.89 2.00 13 80%
SAS+ 28.89 50.00 90 80%

Total 33.96 60.15 139 -

Finally, many useful methods exploited for computing classical planning features
are not able to handle temporal planning problems, since they rely on the modules of
classical solvers.

For similar reasons, we could not extract any useful SAT-related feature, although
there is a planner – ITSAT (Rankooh et al., 2012) – that exploits SAT for solving
temporal planning problems, however, the CNFs generated only represent the variables,
not the problem.

They can be naively solved by unit propagation, and thus their ability to provide in-
formation is extremely limited. For this research, we considered the well known features
for Torchlight (Hoffmann, 2011). However, it does not support temporal constrains and
these features are computationally expensive. For these reason, we discarded it.

The translation process from PDDL to SAS+ is in the TFD system. It is quite simi-
lar to the general process of IBaCoP planners (changing FD to TFD). This algorithm is
included when the features are extracted according to the information required. PDDL
features (temporal and prepositional) and the problem size features only require PDDL

123

8. TEMPORAL APPROXIMATION

files. SAS+ (temporal or general) and Temporal Fast Downward features require
the problem in a finite-domain representation. The translation process is performed
over several stages.

8.5 Experimental Settings

All planners and feature extractors were run on a cluster with Intel XEON 2.93 Ghz
nodes with 8 GB of RAM each, using Linux Ubuntu 12.04 LTS. The planners had a cut-
off of 1, 800 CPU-time seconds, and a maximum of 4 GB of RAM, like in the temporal
track of IPC-2014. The features extraction cut-off time was set to 100 seconds. A
maximum of 4 GB of RAM for feature extraction was also used.

We considered EPMs for both classification and regression approaches. Given a
planner, classification approaches classify planning problems into a single category,
corresponding to the fact that the planner will either solve the problem or not. Re-
gression techniques model the behavior of each planning engine in order to predict its
runtime on a given problem.

Firstly, we assessed the performance of various classification and regression models
(45 different algorithms in total), using the WEKA tool (Hall et al., 2009). We consid-
ered linear regression, neural networks, Gaussian processes, decision trees, regression
methods, support vector machine and rule-based techniques. The EPMs generated
were evaluated using a 10-fold cross-validation approach on a uniform random permu-
tation of the training instances. It is a standard method in which nine slices are used
for generating the model, and the tenth for assessing the performance of the model as
explained in Section 4.1. Furthermore, we carried out other interesting tests divided
into three groups to understand how well these models are generalized as detailed in
Table 8.1.

8.6 Experimental Results

In order to evaluate how different features affect the ability to predict the planners’
performance, we consider 6 distinct groups of features. The features have been grouped
according either to the encoding they refer to, or their temporal-specificity, as follows.
We also considered a small set of automatically selected features.

All indicates the whole set of computed features (139). PDDL refers to the 49
Features including Propositional and Temporal PDDL. SAS+ considers the 90 features
that are extracted by considering the SAS+ encoding. 68 nT (Non-Temporal) features
are typical of classical planning. The features are gathered from Propositional PDDL
and General SAS+ sets. T (Temporal) this set considers the 71 features that are
extracted by considering Temporal PDDL and Temporal SAS+ encodings. Finally, the
Sel set includes 11 features, gathered from all of the sets considered, that have been
identified through a feature selection process.

Feature selection is made by looking at a J48 decision tree (Quinlan, 1993), which is
built for predicting the solvability of the training instances, by considering planners as
input information. Given the model, we select the features used in nodes placed in the

124

8.6 Experimental Results

top fifth level of the decision tree. They are believed to be important since, according
to the J48 algorithm, they provide the best information gain (Quinlan, 1993). This
can be seen as a supervised method of feature selection. Moreover, considering the top
nodes allows potential overfitting to be avoided; it can arise in the lower-level leaves of
the tree that are used for classifying a very few instances. The accuracy of the EPM
generated by the J48 algorithm is good, with almost 91% of accuracy. Therefore, we
believe information extracted from this model is relevant.

According to the process described, there are 11 features selected, distributed as
follows in Table 8.7.

Table 8.7: Feature selection at Temporal Domains

Type Name

Propositional PDDL predicates
Temporal PDDL type function duration

avg arity
min at start precondition
max over all precondition
min at end postcondition
max at end postcondition

Problem Size ratioEnd
General SAS+ max outputEdgeCG

max inputEdgeDTG
Temporal SAS+ translator durative act

Temporal features tend to appear earlier in the J48 decision tree, thus they are
deemed to be more informative. On the other hand, this distribution of selected fea-
tures across the SAS+ and PDDL sets, requires that both the extraction processes are
executed, and successful.

8.6.1 Classification

In classification, a different predictive model is built per planner, in order to predict
whether the planner will find a solution to a given problem or not. Rotation Forest
(Rodriguez et al., 2006) performed the best from among the classification approaches
considered in the training instances, and is exploited hereinafter.

Table 8.8 shows the results in terms of per-solver accuracy. The performance in
training instances is very good, regardless of the set of features considered. Usually,
any set of features allows around 90% of accuracy to be achieved. This is probably due
to the fact that each class has a number of informative features, and that some domains
have a large number of problems. It should also be noted that the two classes considered
(solved, unsolved) are balanced between all the planners; the maximum difference is
40 − 60%. In order to achieve this class balance, we assessed the initial distribution
between classes and, in imbalanced cases, randomly over-sampled the minority class.
This approach is common practice in machine learning (He and Garcia, 2009).

125

8. TEMPORAL APPROXIMATION

The results at the top of the Table 8.8 clearly indicate this in training instances,
EPMs are able to identify relevant features, and combine them for predicting the solv-
ability of problems. The results at the bottom of the table are the test from IPC-2014.
The performance on testing instances provides a number of interesting insights: (i) the
PDDL set usually leads to the best prediction results. Even when it is not the best set,
it is very close to the best one; (ii) using either a temporal or non-temporal set of fea-
tures allows similar prediction results to be achieved; (iii) counter-intuitively, using all
the features together does not guarantee the best performance; (iv) TFD and Yahsp3
behaviors are hard to predict in testing instances, and (v) the set of selected features
usually allows EPMs to achieve good prediction results, particularly considering that
only 11 features are considered for a domain-independent prediction. We observed that
TFD and Yahsp2/3 show a very different behavior on training and testing problems,
possibly because of the new domains and/or significantly larger instances used in the
testing set. TFD translates the PDDL planning problem into SAS+, and then solves
the SAS+ problem; the translation phase can be slow and, sometimes, requires a huge
amount of memory. On large instances, such as those used in the IPC-14, it happens
that the translation step fails due to the lack of memory available; this is clearly hard to
predict for an EPM that has been trained on smaller instances, where this issue did not
usually arise. Moreover, both planners have some issues in dealing with problems that
need concurrency to be solved. Another reason for this behavior is that the planner is
able to find plans requiring some limited from concurrency point of view. Furthermore,
it is necessary to consider that this planner translates the task and this process fails.
In fact, on the benchmarks of IPC 2014, TFD is not able to solve problems from 5
domains, while Yahsp3 is not able to solve from 3 domains. In the results from the
last IPC, TFD was unable to solve any problems in 5 different domains.

Finally, with regard to the fact that the set considering all the features is not
always the best option, we believe this is mainly because of introduced “noise”. Our
hypothesis is supported by the results achieved using the 11 features selected: they
represent a (hopefully) noise-free set of features, and their exploitation allows results
close to those achieved using the All set to be obtained. It should also be noted that
the sets considered have some overlap, and this partially explains why in some cases
they show a similar performance.

Table 8.9 shows the results from other domains. The first part of the table details
the known domains. The performance results of the planners are a lot worse than
the previous test instances (IPC-2014). One of the possible reasons for the results is
that the encoding of the known domains are not supported by the new planners, and
the accuracy of the performance modelling decreases because the “input features” are
similar, but the result are totally different. From these results, it could be highlighted
that the Yashp2 and Yashp3 versions provide similar results in all cases. The TFD
planner obtains similar results in previous test set, around 70% of accuracy taking into
account that the planner has a worse performance in the training phase.

The only planner that achieves better results is ITSAT, which increases the per-
formance in known domains, achieving 100% with the PDDL domain definition. In
contrast, LPG-td decreases the performance in terms of predictability, but the results
of the planner are better than the training instances. This planner in the training phase

126

8.6 Experimental Results

Table 8.8: Accuracy (higher is better) of classification EPMs predicting whether a planner
will solve a problem or not. Results are shown for each considered set of features, on both
training (upper table) and testing (lower table) instances. Performance on training are
assessed through cross-validation. Bold indicates the best results, also considering hidden
decimals.

Training Instances
Planner All PDDL SAS+ nT T Sel

LPG-td 92.6 88.5 88.6 92.7 91.9 88.4
POPF2 88.6 87.2 84.9 88.7 88.2 87.7
yahsp2 89.6 91.0 89.1 87.9 89.9 91.4
yahsp2-mt 95.5 91.9 89.3 93.9 95.3 89.8
ITSAT 94.1 88.2 88.4 93.6 94.1 89.1
TFD 94.1 87.5 84.9 93.5 94.2 88.8
yahsp3 91.0 90.8 89.0 89.7 91.2 93.1
yahsp3-mt 93.9 93.4 90.7 92.2 93.8 90.7

IPC-2014 Testing Instances
Planner All PDDL SAS+ nT T Sel

LPG-td 76.5 81.5 73.0 75.0 74.5 76.0
POPF2 87.0 77.5 83.5 86.5 80.5 68.5
yahsp2 74.5 76.0 67.5 57.0 59.5 56.5
yahsp2-mt 63.5 80.5 65.0 72.5 57.0 68.0
ITSAT 89.0 88.5 73.0 84.5 88.5 74.5
TFD 67.0 67.0 69.5 71.0 67.0 67.0
yahsp3 60.0 74.0 61.5 59.0 57.0 56.0
yahsp3-mt 75.0 82.0 73.0 65.5 57.0 78.0

has a solve/unsolved ratio of 329/301, almost perfectly balanced, but the test phase

achieves 143/53 ratio in known problems and 359/375 in unknown domains, a relevant

unbalanced group. In any case the percentage of solved/unsolved problems are totally

different of the training phase.

In order to investigate how the importance of features varies between training and

testing problems, we applied our selection process in EPMs built by considering the

testing instances only. Like to the selection process made on the training problems, 11

features are selected.

One of them is exactly the same: the minimum number of effects that become

true when the action finishes (at_end). Moreover, six features selected according to

testing instances are strongly related to those extracted in training problems, as they

consider similar aspects of the problem, but from slightly different perspective: the

maximum arity of temporal functions (PDDL), minimum number of at_start pre-

conditions (PDDL), minimum duration of an action (PDDL), standard deviation of

incoming edges of the domain transition graph (SAS+), number of variables (SAS+),

and number of relevant actions (SAS+). Finally, the remaining features are completely

different from those included for EPMs built considering the training instances. This is

the case for: the number of PDDL requirements (PDDL), number of facts in the initial

127

8. TEMPORAL APPROXIMATION

Table 8.9: Accuracy of classification EPMs to predict whether a planner will solve a
problem or not. Results are shown for each considered set of features as the same as
previous table. Results of EPMs on different sets of features, on known domains (upper
Table) and unknown domains (lower Table). Bold indicates the best results.

Know Domains
All PDDL SAS+ nT T Sel

LPG-td 42.5 81.2 33.3 31.2 76.3 53.8
POPF2 65.6 72.0 67.20 45.7 77.4 51.6
yahsp2 43.6 75.8 74.19 76.9 78.0 78.0
yahsp2-mt 80.1 57.5 76.9 76.3 79.0 79.0
ITSAT 97.3 100 76.3 86.0 98.4 92.5
TFD 42.5 39.3 71.5 75.3 44.6 41.4
yahsp3 71.5 77.4 65.1 74.7 57.5 77.4
yahsp3-mt 53.2 78.5 76.9 75.8 78.5 78.5

Unknown Domains
All PDDL SAS+ nT T Sel

LPG-td 62.6 48.9 64.4 55.4 55.7 56.8
POPF2 59.8 57.0 67.3 77.1 42.1 57.1
yahsp2 48.9 80.3 84.7 84.5 73.2 75.7
yahsp2-mt 75.0 71.4 79.4 82.2 74.7 72.0
ITSAT 92.4 86.2 90.0 75.0 89.3 92.4
TFD 57.6 53.7 70.8 68.0 40.8 30.6
yahsp3 62.2 73.7 78.2 71.9 78.2 55.7
yahsp3-mt 86.4 65.0 78.3 72.7 73.6 57.1

state (PDDL), ratio between the weight and the edges in the causal graph (SAS+), and
the ratio between edges and variables of domain transition graph (SAS+).

Overall, also considering the results achieved by EPMs exploiting the Sel set of
features, this analysis confirms their ability to inform. It also indicates that the tech-
nique we designed for selecting informative features is reasonably accurate, and selects
features that allow EPMs to exploit them to generalise different benchmarks.

8.6.2 Regression

Regression EPMs predict the runtime a planner will need to solve a given problem.
The runtimes of our planners vary from between 0.1 to 1, 800 CPU seconds, for solved
instances. For unsolved problems, we considered 2000 CPU time seconds. This was
also done to allow for the regression EPMs to predict unsolved instances (when the
predicted runtime is between 1, 800 and 2, 000 seconds) without adding too large a
bias towards unsolved benchmarks. It should be noted that, otherwise, it would be
impossible to distinguish between problems solved in approximately 1, 800 seconds and
unsolved runs. Given the large variations in CPU times, our regression models predict
the log-runtime rather than absolute time to use them as a Logarithm time strategy (see
Section 5.2). Experimentally, we observed that the Decision Tables algorithm (Kohavi,
1995) allows, –on average–, the most accurate predictive models to be generated.

128

8.6 Experimental Results

Table 8.10 shows the results, in terms of the Root Mean Square Error (RMSE), of the

best regression models with a 10-fold cross validation on a uniform random permutation

of the 630 training instances, and on the IPC 2014 testing instances. Firstly, we noticed

that runtime of the prediction algorithms is challenging, according to the RMSE values.

On the other hand, RMSE is sensitive to the occasional large error (e.g., predicting an

unsolvable instance that can be solved quickly), thus actual predictions can be better,

on average. Futhermore, training instances are usually representative of testing ones,

since they allow regression EPMs to achieve similar results to the IPC 2014 benchmarks.

As regards the different classes of features, using the Sel set often allows the best

regression EPMs to be built. This set is noisy free and very informative–, while the

SAS+ set does not provide informative features for predicting runtimes. Remarkably,

we also observed that the features from the temporal set are very informative, and

allow a prediction performance to be achieved which is usually very close to the best.

Interestingly, we noticed that the regression approach has a similar RMSE perfor-

mance to the TFD planner in training and testing instances. This was not the case

for the classification model. On the other hand, we observed that Yahsp-based sys-

tems show a very different behavior in training and testing performance than in the

classification case. In particular, the behavior of MT versions is the most challenging

to predict. This has a limited impact on the ability of the planner to solve instances,

but makes the actual runtime harder to predict.

Table 8.10: Root mean squared error (lower is better) of regression EPMs built by using
Decision Tables. A different model is built for each planner. Results of EPMs on different
sets of features, on training (upper Table) and testing (lower Table) instances are shown.
Bold indicates the best performance.

Training Instances
Planner All PDDL SAS+ nT T Sel

LPG-td 1.49 1.57 1.84 1.54 1.48 1.49
POPF2 2.12 2.27 2.53 2.23 2.11 2.05
yahsp2 1.76 1.45 2.07 1.86 1.65 1.27
yahsp2-mt 1.41 1.45 2.25 1.84 1.33 1.30
ITSAT 1.45 1.58 1.68 1.41 1.42 1.38
TFD 2.18 2.32 2.56 2.19 2.16 2.02
yahsp3 1.61 1.60 2.04 1.81 1.43 1.41
yahsp3-mt 1.42 1.28 1.29 1.55 1.21 1.17

IPC-2014 Testing Instances
Planner All PDDL SAS+ nT T Sel

LPG-td 3.29 3.56 2.61 2.60 3.44 2.20
POPF2 2.49 2.43 2.22 2.84 2.48 2.76
yahsp2 2.76 2.55 3.22 2.76 2.37 3.63
yahsp2-mt 2.83 3.05 3.36 3.08 2.89 2.86
ITSAT 2.06 2.28 2.54 2.42 2.36 1.87
TFD 2.51 2.73 2.87 2.80 2.83 2.19
yahsp3 2.60 3.33 3.23 2.85 2.79 2.20
yahsp3-mt 2.99 2.85 3.12 3.27 2.65 2.64

129

8. TEMPORAL APPROXIMATION

Table 8.11 shows the results in the same terms as previous table, but changing the
test sets. The first part of the table corresponds to the known domains and the last
part to the unknown domains. These results are totally comparable with the previous
ones, in which case the worse predictability is LPG-td. The classification results show
a high number of solved problems and as a consequence, the predictive time changes in
the same way. An overdone example of that, is a ZeroR model: a predictive time based
on the average. If 51% of the data is unsolved, the predicted solution is ln(2, 000).
For this reason, the predictive models tend to return low times (average time in the
training phase) as the predictive model learned in the training phase however the real
time and error is high.

Table 8.11: Root mean squared error of regression EPMs built by using Decision Tables.
A different model is built for each planner. Results of EPMs on different sets of features,
on Known domains (upper Table) and unknown domains (lower Table) .

Know Domains
All PDDL SAS nT T Sel

LPG-td 3.02 3.02 3.54 3.53 3.02 3.02
POPF2 2.86 2.46 2.53 2.67 2.43 2.46
yahsp2 1.73 1.57 2.03 2.06 1.57 1.62
yahsp2-mt 3.18 3.16 2.12 2.13 3.16 1.54
ITSAT 1.61 1.61 0.87 0.99 2.15 2.29
TFD 3.47 3.47 2.98 2.94 3.45 3.09
yahsp3 1.46 1.51 2.12 2.12 1.47 1.57
yahsp3-mt 2.42 1.99 1.95 1.97 1.68 1.49

Unknown Domains
All PDDL SAS nT T Sel

LPG-td 2.86 2.86 2.13 2.86 2.86 2.31
POPF2 2.26 2.35 2.15 2.06 2.35 2.36
yahsp2 2.18 2.15 2.39 2.37 2.15 2.15
yahsp2-mt 2.80 2.78 2.40 2.35 2.78 2.02
ITSAT 2.70 2.70 2.45 2.56 2.84 2.85
TFD 3.86 3.86 2.81 2.78 3.86 2.80
yahsp3 2.15 2.15 2.46 2.44 2.12 2.32
yahsp3-mt 2.13 2.03 2.16 2.20 2.02 1.88

8.6.3 Exploiting EPMs for Algorithm Selection

After evaluating the prediction performance of classification and regression EPMs, we
compared them to understand which is the most promising approach to be used for
on-line algorithm selection. In particular, we tested them to select the most promising
planner to exploit a given (and previously unseen) testing instance. In our work, EPMs
are built with the aim of maximising coverage, i.e., the number of problems solved.
Algorithm selection made by exploiting the classification EPMs considers only planners
which are predicted to solve the given problem. Among them, the planner with the
best EPM accuracy (in training instances) is selected. Instead, regression EPMs predict

130

8.6 Experimental Results

Table 8.12: Performance, in terms of coverage and overall IPC score, of regression and
classification EPMs exploited for algorithm selection, the best basic solver according to
coverage (Best-C), the best basic solver according to IPC score (S-Best), the virtual best
solver (VBS), and a static portfolio including 4 planners (B4P). The rows in grey indicate
the domains that are not included in the training set. Bold indicates the best performance.

Classification Regression Best VBS B4P
Domain All Sel nT T All Sel nT T C S
TMS 18 18 16 18 18 18 18 18 0 0 18 0
Turn&Open 12 12 14 15 17 17 17 17 0 0 17 15
Storage 17 17 17 17 17 17 17 17 17 9 17 17
Driverlog 7 2 6 0 13 0 13 13 13 9 13 12
Floortile 20 20 20 20 20 20 20 20 20 8 20 20
MatchCellar 19 20 20 20 20 20 20 20 0 0 20 20
MapAnalyser 10 14 9 10 7 7 7 7 7 20 20 20
RTAM 0 6 0 3 20 20 20 20 20 20 20 20
Satellite 12 3 6 2 20 20 20 20 20 20 20 20
Parking 14 20 20 20 20 20 20 20 20 20 20 20
Coverage 129 132 128 125 172 159 172 172 117 106 185 164
IPC-Score 91.8 102.4 95.1 105.8 129.3 126.6 129.3 129.3 62.1 86.2 185 72.5

the runtime of each planner; that predicted to be the fastest is selected. Table 8.12

shows the results, in terms of number of problems solved and the IPC speed score for

classification and regression EPMs using different sets of features. In this experimental

analysis, the IPC score as defined in the Agile track of IPC 2014 is used. For a planner

C and a problem p, Score(C, p) is 0 if p is unsolved, and 1/(1 + log10(Tp(C)/T ∗p)), where

Tp(C) is the CPU-time needed by planner C to solve problem p and T ∗p is the CPU-time

needed by the best considered planner. The IPC score for a set of problems is given by

the sum of the scores achieved in each problem considered.

For the sake of comparison, Table 8.12 includes the performance of the virtual best

solver (VBS) which represents an Oracle that always selects the best possible planner for

solving the specific problem, the best two basic solvers according to (C)overage (LPG-

td) and IPC (S)core (Yahsp2), and a static portfolio (B4P). The portfolio includes

the best four planners, according to coverage performance on testing instances: LPG-

td, Yashp2, Yashp3 and TFD. The Solvers are ordered according to their coverage

(descending order) and each planner runs for 1/4 of the cutoff time (i.e., 450 seconds

per planner). Considering these additional systems –VBS, B4P and the best basic

solvers–, allows to get a better and more complete understanding of the performance

of the algorithm selection through EPMs. Figure 8.1 shows the number of problems

solved as, regards the CPU time, of the solvers considered.

Classification and regression EPMs allow better coverage results to be achieved

than the best basic solver (+11% and +32.5%, respectively). Moreover, performance

achieved using regression EPMs is very close to the Oracle performance, and better

than using the static portfolio. It is useful to remember that B4P has been configured

by considering the performance of the planners in testing instances, while both regres-

sion and classification EPMs have been trained on a different set of instances. From this

131

8. TEMPORAL APPROXIMATION

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800

C
ov

er
ag

e

Time (seconds)

LPG
yahsp2
yahsp3

TFD
yashp2-mt
yahsp3-mt

itsat
popf2

Figure 8.1: Performance, in terms of coverage over time, of the considered solvers on
the benchmarks of the IPC 14 temporal track.

perspective, the proposed EPMs demonstrate their ability to generalize, since they pro-
vide useful predictions for make the algorithm selection in unseen instances. Although,
we observed that regression EPMs are always better than classification models, both
in terms of coverage and IPC score, this is probably due to the fact that classification
EPMs do not estimate the performance difference between solvers, and a misclassified
problem can easily go from success to failure. Regression techniques model the behav-
ior of algorithms, which are ordered accordingly. In this way, a mistakenly selected
planner usually leads to a longer execution runtime, however the selection of solvers
with extremely poor performance is avoided.

As regards the sets of features considered, we noticed a very different behavior in
classification and regression EPMS. Classification achieves the best coverage perfor-
mance when using the selected set of 11 features; the IPC score on that set is close to
the best, which is obtained using Temporal features. On the other hand, the Sel set
is not the most informative for algorithm selection through regression; using the whole
set of features –or even the set including only temporal / non-temporal features– allows
a better performance to be achieved.

Table 8.13 shows the results, in terms of number of problems solved and the IPC
speed score for classification and regressions EPMs using different sets of features.
Furthermore, we included the result of the best planner component in terms of score
and coverage, which is LPG-td. This planner achieves better results than our EPM in
terms of problems solved, but the scores in the regression strategies are always higher.
The regression models are working better than classifications ones. These models not
only try to predict whether a planner solves the planning task,but also try to predict
which planner solves the problem soonest. This table has the results of the unknown
domains taking into account that the unsolved domains are not discarded. Other
domains are only close to being unsolved and several planners only solve a few of them,

132

8.6 Experimental Results

for example UMLS FLUENTS, UMLS FLAWS. In this case, all approximations that
always select LPG-td planner are worse in terms of coverage, however LPG-td is not
the best planner in all cases in the training phase. A selection base of the training
phases always select the TFD planner, and this planner solves 230 problems. Six of
our strategies get more than this value. These results entrench the idea of a portfolio
of planners, with different characteristics to try to deal with unexpected situations.
In addition, only TANKAGE, Notankage, airport-s, pipesworld-MT, depots-simple-T,
rover-Simple-T, driverlog-simple-T and zenotravel-simple-T are easy to predict. In
contrast, the remaining domains are very difficult in term of predictability, in which
cases, only one planner is the correct answer. The real importance of these results is
the correct predictability of every planner. If you have an unknown situation, deciding
on a single planner without information could be a bad decision. In these cases, the
EMPs are the best options, and our approximations guarantee the fastest planner for
carrying out the temporal task.

Table 8.13: Performance, in terms of coverage and overall IPC score, of regression and
classification EPMs exploited for algorithm selection at known domains.

Classification Regression C & S VBS B4P
Domain All Sel NT T All Sel NT T
TANKAGE 24 0 28 22 29 29 22 29 28 30 30
UMLS FLUENTS 16 16 1 0 43 43 43 43 50 50 50
UMLS FLAW 0 0 0 3 12 12 12 12 50 50 50
NOTANKAGE 17 0 24 27 23 23 23 23 30 31 31
Airport-S 32 39 39 30 36 36 36 36 34 46 44
Pispesworld-MT 28 21 25 22 29 29 28 29 26 30 30
Airport-adl 0 0 0 0 0 0 0 0 0 0 0
Rovers-MT 16 8 16 14 15 15 15 15 16 19 19
Trucks-adl 0 0 0 0 0 0 0 0 7 30 30
Trucks-T 0 0 0 0 1 1 1 1 1 1 0
Tpp-MTC 0 0 0 0 0 0 0 0 0 0 0
NOTANKAGE 17 0 27 27 23 23 23 23 22 27 0
Depots-s-T 13 10 17 10 16 16 16 16 22 22 22
Depots-T 0 1 1 0 1 1 1 1 1 1 1
Trucks-TC 0 0 0 0 1 1 1 1 2 4 1
Rovers-s-T 20 20 20 20 20 20 20 20 20 20 20
Driverlog-T 8 9 14 8 15 15 15 15 19 19 19
Driverlog-s-T 11 14 12 12 10 10 10 10 20 20 20
rovers-T 16 8 16 14 15 15 15 15 13 16 16
PipesWold-MTC 0 1 0 0 0 0 0 0 0 1 1
Zenotravel-T 0 0 0 0 0 0 0 0 0 0 0
Trucks-TC-adl 0 0 0 0 0 0 0 0 0 0 0
Zenotravel-s-T 20 20 20 20 20 20 20 20 20 20 20
Total 238 167 260 229 309 309 301 309 360 437 404
IPC-Score 175.1 177.9 183.0 168.4 277.0 277.0 269.2 277.0 242.6 437 249.6

Table 8.14 presents similar results to previous table. Regression models work better
than classification ones. LPG-td has the same results as the unknown domains, which
are always better in terms of coverage, but it achieves worse results in terms of score.
The results of the LPG-td are in the column (C % S) because it is the best solver in
this test set. The results of these tables show the results of the Virtual Best Solver

133

8. TEMPORAL APPROXIMATION

(VBS) in both cases which is the upper limit of our technique in terms of score and
solved problems. Furthermore, we show the results of a portfolio with the best planners
in the training phase. This portfolio is the sequential execution of LPG-td, Yashp2,
Yashp3 and TFD. A natural consequence of the portfolio is to solve more problems
than every approximation, but the time necessary to find the solution could be high.
This situation occurs when the TFD is the solver that finds the solution. This planner
starts to find solutions at 1, 350 seconds into the execution. It is the reason why the
score is not far from for the best planner (LPG-td).

Table 8.14: Performance, in terms of coverage and overall IPC score, of regression and
classification EPMs exploited for algorithm selection at know domains.

Classification Regression C & S VBS B4P
Domain All Sel NT T All Fea NT T
Openstacks 20 20 18 20 20 17 20 20 20 20 20
Storage 25 29 15 29 23 22 23 22 29 29 28
Satellite-adl 6 9 10 2 11 11 11 11 0 19 11
Openstacks-s 20 20 20 20 18 18 18 18 20 20 20
Openstacks-S 0 0 0 0 20 20 20 20 20 20 20
Satellite s 8 0 8 7 3 3 3 3 34 34 34
Openstacks-S 0 0 0 0 20 20 20 20 20 20 20
Coverage 79 78 71 78 115 111 115 114 143 162 153
IPC-Score 50.0 57.3 64.2 54.8 113.1 110.2 110.2 108.6 88.7 162.0 90.0

8.6.4 Planner Selection Analysis

All the predictive models select one planner per instance (problem), however the se-
lection between the problems in the same domain is sometimes a difficult situation. In
this section, we look at the results of the table 8.12 to find out the selection of the
planner.

Of the 4 domains introduced in IPC 2014, we noticed that the regression approaches
have a better performance on average, so they are able to better generalize in previously
unseen domains; the classification approach is unable to select a good planner for the
RTAM domain, but it makes good decisions in the MapAnalyser problems. Finally,
we observed that the regression EPMs generally select the same planner for all of the
instances within the same domain for this test set (IPC-2014). This is not true for
the classification approaches, which usually exploit more planners per domain. Table
8.15 shows the planners selected by the EPMs considered using the different sets of
features. Interestingly, in every domain except Floortile, the algorithm selection based
on regression uses one single planner. This, in combination with the results shown
in Table 8.12, supports the hypothesis that a single planner usually performs well on
benchmarks from the same domain. Also, by analysing the results shown in Table 8.15,
we can extrapolate that the difference in performance between regression EPMs using
the selected set of features, and the other sets, mainly arises in the Driverlog domain.
In that domain, TFD does not solve any problem, thus selecting it has a detrimental
effect on performance. It should also be noted that the winner of the IPC-14 temporal

134

8.6 Experimental Results

track –Yahsp3-MT– is never selected by the regression EPMs, and is selected in only
one domain by the classification EPMs. Similarly, the previous version of that planner
is rarely used. This is possibly due to the fact that these planners show impressive per-
formance on a very limited number of domains –particularly RTAM and MapAnalyser,
which are not included in the training set–. We also noticed the remarkable perfor-
mance of the LPG-td planner; even though it was developed more than a decade ago,
it is competitive with the current state-of-the-art of temporal planning. Moreover, it
is usually selected by both classification and regression EPMs; thus its performance is
good both in training and testing instances, and is possibly “easy” to predict. Finally,
Table 8.16 summarises the number of times that each planner was selected by the EPMs
built.

Table 8.15: Planners selected using Classification or Regression EPMs, with different sets
of features, on IPC 2014 benchamrks.

Classification Regression
All Sel nT T All sel nT T

Driver LPG-td 0 0 2 0 20 0 20 20
POPF2 0 3 0 1 0 0 0 0
TFD 3 14 3 19 0 20 0 0
Y2 17 3 13 0 0 0 0 0
ITSAT 0 0 2 0 0 0 0 0

Floor ITSAT 10 0 20 20 15 20 15 20
LPG-td 10 20 0 0 5 0 5 0

Map LPG-td 0 0 0 0 20 20 20 20
POPF2 5 0 0 0 0 0 0 0
TFD 15 20 14 14 0 0 0 0
ITSAT 0 0 6 6 0 0 0 0

MatchC. ITSAT 15 0 9 9 0 0 0 0
POPF2 0 0 4 4 0 20 0 20
TFD 5 20 7 7 20 0 20 0

Park. POPF2 11 0 0 0 0 0 0 0
Y2 0 20 0 0 0 0 0 0
Y2-MT 9 0 0 0 20 20 20 20
Y3-MT 0 0 20 20 0 0 0 0

RTAM LPG-td 0 6 0 0 20 20 20 20
TFD 20 14 17 17 0 0 0 0
Y3-MT 0 0 3 3 0 0 0 0

Satellite LPG-td 0 0 0 0 20 20 20 20
POPF2 7 20 0 0 0 0 0 0
TFD 13 0 2 2 0 0 0 0
ITSAT 0 0 18 18 0 0 0 0

Stor. LPG-td 20 20 20 20 20 20 20 20
TMS ITSAT 20 20 20 20 20 20 20 20
T&O ITSAT 3 0 0 0 0 0 0 0

POPF2 6 11 2 2 0 0 0 0
TFD 11 9 18 18 20 20 20 20

In Figure 8.2, the domains are not sorted alphabetically, but follow the complexity
of their instances. In this context, the smaller the number of planners that can solve all
the problems, the more complex the domain is. According to this intuitive definition,
the less complex (easier) domain is Parking, since 6 planners solve all of the problems,

135

8. TEMPORAL APPROXIMATION

and all the planners considered solve at least 6 instances. The two more complex
domains are TMS, because only one planner is able to solve its benchmark problems,
and TurnAndOpen, where 3 planners only solve some problems, 10 on average. The
complexity of the domains plays a pivotal role in the selection of the algorithm. If a
complex domain is included in the training set, it is easier for the EPM to identify the
planner(s) correctly to be used in corresponding testing instances. On the other hand,
if the domain is not considered in the training set, the capability of the EPM-based
approach to select the better planner depends only on the information capabilities of
the features and generalisation.

Figure 8.2 provides an overview of the complexity of the testing domains used in
IPC 2014, both from the planning and instances perspective. The red line (Solved
Problems) represents the proportion of problems solved per domain. A value of 1
indicates that all of the planners are able to solve all of the testing problems; on the
other hand, a value of 0 means that no planner can solve any of the testing problems.
Similarly, the green line (Planners) sets out the planners’ perspective, as the proportion
of planners that can solve all the problems of a domain. Figure 8.2 clearly shows that
out of the domains considered, 4 are extremely complex for the state-of-the-art domain-
independent planners. Intuitively, the complexity of TMS and TurnAndOpen derives
from the fact that their problems need the actions to be executed concurrently, in order
to be solved.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Parking Satellite Mapanalyser RTAM MatchCellar Floortile Driverlog Storage TurnandOpen TMS

Solved Problems
Planners

Figure 8.2: The red line (Solved Problems) is the proportion of the problems solved by all
the state-of-the-art planners. The green line (Planners) is the proportion of the planners
that solved all the problems of the domain.

8.7 Summary

In this chapter, we fill the gap between classical and temporal planning in terms of
predictive models. Our work establishes a new extensive set of features that can
be extracted from temporal planning problems. In particular, we introduce 71 new
temporal-specific features, and merge them with “classical” features that can also be

136

8.7 Summary

Table 8.16: Number of times each planner has been selected by classification or regression
EPMs exploiting different sets of features. nT and T refer respectively to Non-Temporal
and Temporal sets of features.

Classification Regression
All Sel nT T All sel nT T

LPG-td 30 46 22 20 105 80 100 105
yahsp2 17 23 13 0 0 0 0 0
yahsp2-mt 9 0 0 0 20 20 20 20
POPF2 29 34 6 7 0 20 20 0
ITSAT 48 20 57 55 35 40 40 35
TFD 67 77 61 77 40 40 20 40
yahsp3 0 0 0 0 0 0 0 0
Yashp3-MT 0 0 23 23 0 0 0 0

extracted from temporal problems. In total, 139 planning-specific features have been
considered for generating both classification and regression EPMs in order to select
the algorithm to be executed for solving a target planning task on-line. The analysis
carried out in this work: (i) suggests that the performance of many temporal planners
can be accurately predicted using EPMs; (ii) gives insights into the reasons that make
planners hard to predict, particularly those that run out of memory and those with the
concurrency requirements; (iii) provides a valuable and informative set of 11 features
that can be used for effectively predicting the performance of the temporal planners;
(iv) shows that both temporal-specific and non-temporal features are useful for predict-
ing planners’ performance; (v) demonstrates that using EPMs for algorithm selection
can improve the current state-of-the-art of temporal planning lightly. Our work also
highlights worrying evidence: in terms of coverage, those planners that were introduced
more than a decade ago are able to achieve a performance comparable to –and often
better– with the most recent planning systems. LPG-td results have emphasized this
idea, in which old problems and domains work better than new planners. This should
be a matter of reflection for the planning community. Furthermore, this chapter has
set out a great deal of experimentation in temporal domains with the state-of-the-art
temporal planners and including EPMs.

We included this chapter after Chapter 7, but this part was developed before.

137

8. TEMPORAL APPROXIMATION

138

9

Conclusions and Future Work

In this Chapter, we discuss the conclusions and describe possible future work.

9.1 Conclusions

In this thesis we renew the idea of planning portfolios configured through predictive
models. The first hypothesis of this work is that a small group of planners could have
a better performance than a large number of them if this small group provides enough
diversity. As we proposed in our objectives, we have carried out an experimental study
with classical metrics to discover which metric could come up with a subset of planners
with enough diversity. We show that this kind of selection might reduce the diversity of
the portfolios and we introduce a multi-criteria method to achieve this objective, which
has never been used before in AP. The experimental results demonstrate that the simple
criterion of a combination of time and quality, without any other information, could
create the best static state-of-the-art portfolio.

The second sub-objective of this thesis consists of creating a group of well-informed
features that could properly characterize the planning tasks. We propose 50 new fea-
tures from the SAS+ representation, 10 from the fact balance of the relaxed plan, 14
from the landmark graph and 16 from the heuristic values of the initial state. Further-
more, we incorporate the old features based on PDDL representations to the new set
of features. This group of features provides a better characterization for a wide range
of planning tasks, even in many cases in which these problems are of equivalent size at
the PDDL representation level.

We have created predictive models using the proposed features. These models are
trained inductively through a Data Mining process. The set of proposed features par-
tially characterizes the difficulty in the planning problems, which allows us to model
the performance of the automated planners. Extracting features is not a disadvantage
because the complete set of features is easy to compute, therefore these features are
generated in a pre-processing stage, and then used to query predictive models for decid-
ing the set of planners to be run and for how long. Furthermore, we include a feature
selection process with a small group of them with comparative results in terms of cov-
erage. These predictive models are proposed as a second method to filter planners and

139

9. CONCLUSIONS AND FUTURE WORK

maintain the diversity of the planners by reducing the size of the initial set of planners
by about 80% (around 45% from the other planner filtering).

In this thesis, we also propose a group of portfolio configuration strategies based on
the previous knowledge. These strategies are created taking into account the different
amounts of knowledge acquired previously. On several occasions, a static configuration
is enough to configure a portfolio; however, other times it is not. We detail a group of
strategies to create static portfolios with uniform time, dynamic portfolios customizable
per problem with no time estimation and dynamic portfolios customizable per problem
with time estimation. We have completed a study to delimit the number of planners
that are necessary to guarantee similar performance to our static approximation. This
study shows that five planners are enough to achieve it in the set-up evaluated. These
strategies take into account other constraints, such as the time limit, and could be easy
adaptable to future requirements (like memory).

The results show that the portfolio configurations using the classification models
are able to select a good subset of 5 planners, which with uniformly distributed time
outperforms the selection provided randomly and the best planners in terms of quality.
Additionally, our experimental evaluation confirms the great performance of IBaCoP
and IBaCoP2 in IPC-2014. Configurations using regression models do not have benefits
over IBaCoP2. Even though we recognize that estimating the runtime for solving a
problem is still very difficult.

These experimental results show that the static strategies have promising results.
For instance, our planner filtering (IBaCoP) has similar results to those using predictive
models IBaCoP2, the main difference is the number of selected planners in IBaCoP2.
With just the 5 planner selection we obtain similar or slightly better scores (quality).
Static portfolio configurations (including IBaCoP) are limited by the components and
the fixed time limit for each base planner. Their performance has an upper-limit, as
computed by MiPlan (Núñez et al., 2015a), which is smaller than the achievable per-
formance of a dynamic configuration. This is because, in a per-instance configuration,
the portfolio strategy could assign different times for different base planners or in a
more drastic way, all the time for the best planner.

Furthermore, we analyze the diversity of the planner selection methods in the IPC-
2014 benchmark to find out the importance of each component and how the models take
a different configuration according to the problems. To go further with this process,
the confidence analysis on one test domain is included. In this analysis, we show the
real differences in the planner’s confidence in different problems of a specific domain.
The last study demonstrates that our system has a different configuration per domain
and per problem.

In this thesis we also verify whether known features for characterizing planning tasks
are able to encode knowledge for the classification of hard tasks in scenarios in which
performance models have to discriminate between problems with similar characteristics
(input configuration). These results show that by considering the most diverse perfor-
mance data from a set of planners and domains, the performance models behave better
systematically than random classifiers. Most of the EPMs trained on homogeneous
problem sets are still far from perfect classifiers, so we think there is room for aggre-
gating additional features that characterize other aspects regarding the search space.

140

9.2 Future Work

However, these results highlight that our proposed features contribute to identifying
differences between problems.

Furthermore, we propose a temporal planning portfolio. In this configuration, we
include temporal planners and build EPMs to analyze their predictability. This is the
first temporal approximation, and the first study of EPMs in this field. Following
the hypothesis of this thesis, we have changed the system to adapt and extract the
features, including temporal-specific ones and, finally, strategies to build a temporal
portfolio per instance. The results show that the portfolio could be useful in different
types of planning settings such as temporal, although a static sequential portfolio is
enough to improve the current state-of-the-art planners, at least in terms of coverage.

Summarizing, the main contributions of this thesis are:

• To define a scope of the metrics to select a group of potential planners and explain
the advantages and disadvantages of using them in Chapter 3.

• To propose a multi-criteria planner selection based on Pareto Efficiency as pre-
sented in Chapter 3.

• A new set of features that characterize the planning task in Chapter 4.

• Several overall EPMs based on previous features with a set of 45 domains as
detailed in Chapter 4.

• To create several strategies that use EPMs and we propose a new idea to incor-
porate more than a one planner into a portfolio configuration as we set out in
Chapter 5.

• To carry out a study to verify whether some of our features are able to characterize
planning tasks even when they have the same structure as explained in Chapter 7.

• The first temporal portfolio as illustrated in Chapter 8.

9.2 Future Work

As future work we want to study the synergy between different automated planners
that solve a planning task, incorporating this information for the portfolio configuration.
These situations could learn rules such as: if the planner A is good within this planning
task then planner B could be better. Furthermore, we want to continue the development
of new features in order to improve the results, mainly in the regression task.

Additionally, we want to include other features extracted from search probes (Lipovet-
zky and Geffner, 2011), without compromising the computational cost of computing
them too much. We are also interested in developing random generators of hard prob-
lems. The idea consists of making a wrapper of the problem generators available with
produces only those instances that are considered above a certain cut-off of difficulty
as provided by the corresponding model prediction.

The integration of different planner configurations using algorithm configuration
tools, such as SMAC (Hutter et al., 2011) to create automated strategies, is also a

141

9. CONCLUSIONS AND FUTURE WORK

promising line of research. This tool constructs explicit regression models to describe
the dependence of target algorithm performance on parameter settings. This system
has shown to be successful in many areas of AI.

9.3 Publications

Next, the list of publications related to this Thesis is included:

• Isabel Cenamor, Tomás de la Rosa and Fernando Fernández, Mining IPC-2011
Results. In Proceedings of the Third ICAPS Workshop on the International
Planning Competition. June, 2012.

• Isabel Cenamor, Tomás de la Rosa and Fernando Fernández, Learning Predictive
Models to Configure Planning Portfolios, Proceedings of ICAPS workshop on
Planning and Learning. June, 2013.

• Isabel Cenamor, Tomás de la Rosa and Fernando Fernández, IBaCoP and IBa-
CoP2 Planner. In: Planner description, Deterministic track, International Plan-
ning Competition 2014

• Isabel Cenamor, Tomás de la Rosa and Fernando Fernández, LIBaCoP and LIBa-
CoP2 Planner. In: Planner description, Learning track, International Planning
Competition 2014

• Isabel Cenamor, Tomás de la Rosa and Fernando Fernández, The IBaCoP Plan-
ning System: Instance-Based Configured Portfolios. Journal of Artificial Intelli-
gence Research (JAIR) No. 56

• Tomás de la Rosa, Isabel Cenamor and Fernando Fernández, Performance mod-
elling of planners from homogeneous problem sets. In the 27th International
Conference on Automated Planning and Scheduling (ICAPS-2017).

9.4 Awards

• Winner planner in Sequential Satisficing track in the International Planning Com-
petition 2014

• Runner-up planner in Sequential Multi-core track in the International Planning
Competition 2014

•

142

References

Alcázar, V., Fernández, S., and Daniel, B. (2014). BiFD: Bidirectional fast downward.
IPC 2014 planner abstracts, pages 18–19. 26

Alcázar, V., Fernández, S., Borrajo, D., and Veloso, M. (2015). Using random sampling
trees for automated planning. AI Communications, 28(4):665–681. 155

Amadini, R., Gabbrielli, M., and Mauro, J. (2014a). Portfolio approaches for constraint
optimization problems. TPLP, 8426:21–35. 29

Amadini, R., Gabbrielli, M., and Mauro, J. (2014b). SUNNY: a lazy portfolio approach
for constraint solving. TPLP, 14(4-5):509–524. 29

Bacchus, F. and Yang, Q. (1994). Downward refinement and the efficiency of hierar-
chical problem solving. Artificial Intelligence, 71(1):43–100. 13

Bäckström, C. and Jonsson, P. (1995). Planning with abstraction hierarchies can be
exponentially less efficient. In Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25
1995, 2 Volumes, pages 1599–1605. Morgan Kaufmann. 10

Bäckström, C. and Nebel, B. (1995). Complexity results for SAS+ planning. Compu-
tational Intelligence, 11:625–656. 120

Baioletti, M., Chiancone, A., Poggioni, V., and Santucci, V. (2014). Towards a new
generation aco-based planner. In International Conference on Computational Science
and Its Applications, pages 798–807. Springer. 155

Balyo, T. (2014). The freelunch planning system entering ipc 2014. IPC 2014 planner
abstracts, pages 43 – 44. 26

Biere, A., Heule, M., and van Maaren, H. (2009). Handbook of satisfiability, volume
185. IOS press. 20

Blum, A. L. and Langley, P. (1997). Selection of relevant features and examples in
machine learning. Artificial intelligence, 97(1):245–271. 50

Bonet, B. and Geffner, H. (2000). Planning as heuristic search: New results. In Recent
Advances in AI Planning, pages 360–372. Springer. 57

143

REFERENCES

Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence,
129(1–2):5 – 33. 17

Bonet, B., Loerincs, G., and Geffner, H. (1997). A robust and fast action selection
mechanism for planning. In AAAI/IAAI, pages 714–719. 57

Bonisoli, A., Gerevini, A. E., Saetti, A., and Serina, I. (2015). Effective plan retrieval
in case-based planning for metric-temporal problems. J. Exp. Theor. Artif. Intell.,
27(5):603–647. 91

Brafman, R. I. and Domshlak, C. (2003). Structure and complexity in planning with
unary operators. Journal of Artificial Intelligence Research (JAIR), 18:315–349. 13

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32. 90, 97

Browne, M. W. (2000). Cross-validation methods. Journal of mathematical psychology,
44(1):108–132. 51

Cai, D., Hu, Y., and Yin, M. (2011). SatPlanLM and SatPlanLM-c: Using landmarks
and their orderings as constraints. The 2011 International Planning Competition,
pages 77–78. 156

Cameron, C., Hoos, H. H., and Leyton-Brown, K. (2016). Bias in algorithm portfolio
performance evaluation. In Kambhampati, S., editor, Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016, pages 712–719. IJCAI/AAAI Press. 21

Celorrio, S. J., Jonsson, A., and Palacios, H. (2015). Temporal planning with required
concurrency using classical planning. In Brafman, R. I., Domshlak, C., Haslum, P.,
and Zilberstein, S., editors, Proceedings of the Twenty-Fifth International Conference
on Automated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11,
2015., pages 129–137. AAAI Press. 9

Cenamor, I., de la Rosa, T., and Fernández, F. (2012). Mining IPC-2011 results.
In Proceedings of the Third Workshop on the International Planning Competition -
ICAPS. 4

Cenamor, I., de la Rosa, T., and Fernández, F. (2013). Learning predictive models to
configure planning portfolios. In Proceedings of the Workshop on the Planning and
Learning - ICAPS, pages 14–22. 4, 51

Cenamor, I., de la Rosa, T., and Fernández, F. (2014a). Ibacop and ibacop2 planner.
IPC 2014 planner abstracts, pages 35–38. 90

Cenamor, I., de la Rosa, T., and Fernández, F. (2014b). LIBaCoP and LIBaCoP2
planner. Eighth International Planning Competition (IPC-8) Planning and Learning
Part: planner abstracts. 27, 91

144

REFERENCES

Cenamor, I., de la Rosa, T., and Fernández, F. (2016). The IBaCoP planning sys-
tem: Instance-based configured portfolio. Journal of Artificial Intelligence Research
(JAIR), 56:657–691. 27

Censor, Y. (1977). Pareto optimality in multiobjective problems. Applied Mathematics
and Optimization, 4(1):41–59. 3, 39

Coles, A., Coles, A., Fox, M., and Long, D. (2011a). LPRPG: A planner for metric
resources. The 2011 International Planning Competition, 58. 156

Coles, A., Coles, A., Fox, M., and Long, D. (2011b). popf2: a forward-chaining partial
order planner. The 2011 International Planning Competition, page 65. 156, 157

Cushing, W. A., Kambhampati, S., Mausam, and Weld, D. S. (2007). When is temporal
planning really temporal? In IJCAI, pages 1852–1859. 9

de la Rosa, T., Cenamor, I., and Fernández, F. (2017). Performance modelling of
planners from homogeneous problem sets. In ICAPS. 93

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Kittler, J. and
Roli, F., editors, Multiple Classifier Systems, First International Workshop, MCS
2000, Cagliari, Italy, June 21-23, 2000, Proceedings, volume 1857 of Lecture Notes
in Computer Science, pages 1–15. Springer. 2

Domshlak, C., Hoffmann, J., and Katz, M. (2015). Red-black planning: A new system-
atic approach to partial delete relaxation. Artificial Intelligence, 221:73–114. 82

Dréo, J., Savéant, P., Schoenauer, M., and Vidal, V. (2011). Divide-and-evolve: the
marriage of descartes and darwin. Proceedings of the 7th international planning
competition (IPC). Freiburg, Germany. 91, 155

Eyerich, P., Mattmüller, R., and Röger, G. (2012). Using the context-enhanced additive
heuristic for temporal and numeric planning. In Towards Service Robots for Everyday
Environments, pages 49–64. Springer. 120, 158

Fawcett, C., Helmert, M., Hoos, H., Karpas, E., Röger, G., and Seipp, J. (2011). FD-
Autotune: Domain-specific configuration using fast-downward. Proceedings of the
Workshop on the Planning and Learning - ICAPS, 2011(8). 156

Fawcett, C., Vallati, M., Hutter, F., Hoffmann, J., Hoos, H. H., and Leyton-Brown, K.
(2014). Improved features for runtime prediction of domain-independent planners.
In In Proceedings of the 24th International Conference on Automated Planning and
Scheduling (ICAPS-14). 30, 66

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208. 12

Fox, M. and Long, D. (2003). PDDL2. 1: An extension to pddl for expressing temporal
planning domains. Journal of Artificial Intelligence Research (JAIR), 20:61–124. 9,
12

145

REFERENCES

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learning,
volume 1. Springer series in statistics Springer, Berlin. 66

Fuentetaja, R. (2011). The CBP planner. In International Conference on Automated
Planning and Scheduling (ICAPS) Workshop on International Planning Competition
(IPC). 155

Gerevini, A., Saetti, A., and Serina, I. (2003). Planning through stochastic local
search and temporal action graphs in LPG. Journal of Artificial Intelligence Re-
search (JAIR), 20:239–290. 157

Gerevini, A., Saetti, A., and Serina, I. (2006). An approach to temporal planning
and scheduling in domains with predictable exogenous events. Journal of Artificial
Intelligence Research (JAIR), 25:187–231. 9, 34, 157

Gerevini, A., Saetti, A., and Vallati, M. (2009). An automatically configurable portfolio-
based planner with macro-actions: PbP. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling (ICAPS-09). 4, 25

Gerevini, A., Saetti, A., and Vallati, M. (2014). Planning through automatic portfolio
configuration: The PbP approach. Journal of Artificial Intelligence Research (JAIR),
50:639–696. 4, 25, 86

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D.,
and Wilkins, D. (1998). PDDL — the planning domain definition language version
1.2. Technical report, Yale Center for Computational Vision and Control. 10, 12, 15

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated planning: theory & practice.
Elsevier. 1, 2, 7

Gomes, C. P. and Selman, B. (2001). Algorithm portfolios. Artificial Intelligence,
126(1):43–62. 4

Grabczewski, K. and Jankowski, N. (2005). Feature selection with decision tree cri-
terion. In Proceedings of the Fifth International Conference on Hybrid Intelligent
Systems (HIS’05), pages 212–217. IEEE. 64

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.
(2009). The WEKA data mining software: An update. SIGKDD Explorations,
11(1):10–18. 124

Hall, M. A. (1999). Correlation-based feature selection for machine learning. PhD
thesis, The University of Waikato. 98

Hall, M. A. (2000). Correlation-based feature selection for discrete and numeric class
machine learning. In Langley, P., editor, Proceedings of the Seventeenth International
Conference on Machine Learning (ICML 2000), Stanford University, Stanford, CA,
USA, June 29 - July 2, 2000, pages 359–366. Morgan Kaufmann. 98

146

REFERENCES

Han, J., Kamber, M., and Pei, J. (2011). Data mining: concepts and techniques.
Elsevier. 50

Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a
receiver operating characteristic (roc) curve. Radiology, 143(1):29–36. 97

He, H. and Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions
on Knowledge and Data Engineering, 21(9):1263–1284. 125

Helmert, M. (2004). A planning heuristic based on causal graph analysis. In Zilberstein,
S., Koehler, J., and Koenig, S., editors, Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS), pages 161–170. AAAI. 12, 13, 57

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intel-
ligence Research (JAIR), 26:191–246. 4, 18, 24, 157

Helmert, M. (2009). Concise finite-domain representations for PDDL planning tasks.
Artificial Intelligence, 173:503–535. 10, 12, 18, 53

Helmert, M. and Domshlak, C. (2009). Landmarks, critical paths and abstractions:
What’s the difference anyway? In In Proceedings of the 19th International Conference
on Automated Planning and Scheduling (ICAPS-09). 19, 57

Helmert, M. and Geffner, H. (2008). Unifying the causal graph and additive heuristics.
In In Proceedings of the 18th International Conference on Automated Planning and
Scheduling (ICAPS-08), pages 140–147. 57

Helmert, M., Röger, G., Seipp, J., Karpas, E., Hoffmann, J., Keyder, E., Nissim, R.,
Richter, S., and Westphal, M. (2011). Fast downward stone soup. The Seventh
International Planning Competition, IPC-7 planner abstracts:38. 24, 32, 86, 155, 157

Hoffmann, J. (2003). The metric-FF planning system: Translating “ignoring delete
lists” to numeric state variables. Journal of Artificial Intelligence Research (JAIR),
20:291–341. 62

Hoffmann, J. (2011). Analyzing search topology without running any search: On the
connection between causal graphs and h+. Journal of Artificial Intelligence Research
(JAIR), 41:155–229. 29, 30, 123

Hoffmann, J., Edelkamp, S., Thiébaux, S., Englert, R., Liporace, F., and Trüg, S.
(2006). Engineering benchmarks for planning: the domains used in the deterministic
part of ipc-4. Journal of Artificial Intelligence Research (JAIR), 26:453–541. 83

Hoffmann, J. and Nebel, B. (2001). The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research (JAIR), 14:253–
302. 17, 29, 57, 58

Hoffmann, J., Porteous, J., and Sebastia, L. (2004). Ordered landmarks in planning.
Journal of Artificial Intelligence Research(JAIR), 22:215–278. 19

147

REFERENCES

Hoos, H., Kaminski, R., Schaub, T., and Schneider, M. T. (2012). aspeed: ASP-based
solver scheduling. ICLP (Technical Communications), 17:176–187. 29

Howe, A. and Dahlman, E. (2002). A critical assessment of benchmark comparison in
planning. Journal of Artificial Intelligence Research (JAIR), 17:1 – 33. 123

Howe, A. E., Dahlman, E., Hansen, C., Scheetz, M., and von Mayrhauser, A. (1999).
Exploiting competitive planner performance. In Biundo, S. and Fox, M., editors,
Recent Advances in AI Planning, 5th European Conference on Planning, ECP’99,
Durham, UK, September 8-10, 1999, Proceedings, volume 1809 of Lecture Notes in
Computer Science, pages 62–72. Springer. 3, 24

Howey, R., Long, D., and Fox, M. (2004). Val: Automatic plan validation, continuous
effects and mixed initiative planning using pddl. In Proceedings of the International
Conference on Tools with Artificial Intelligence (ICTAI), pages 294–301. IEEE Com-
puter Society. 15

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential model-based opti-
mization for general algorithm configuration. In Learning and Intelligent Optimiza-
tion, pages 507–523. Springer. 25, 141

Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009). ParamILS: An auto-
matic algorithm configuration framework. Journal of Artificial Intelligence Research
(JAIR), 36:267–306. 25

Hutter, F., Xu, L., Hoos, H., and Leyton-Brown, K. (2015). Algorithm runtime pre-
diction: Methods and evaluation (extended abstract). In Yang, Q. and Wooldridge,
M., editors, Proceedings of the Twenty-Fourth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages
4197–4201. AAAI Press. 29, 66

Huzak, M. (2011). Chi-square distribution. International Encyclopedia of Statistical
Science, pages 245–246. 99

John, G. H. and Langley, P. (1995). Estimating continuous distributions in bayesian
classifiers. In Proceedings of the Eleventh conference on Uncertainty in artificial
intelligence, pages 338–345. Morgan Kaufmann Publishers Inc. 97

Jonsson, P. and Bäckström, C. (1998). State-variable planning under structural restric-
tions: Algorithms and complexity. Artificial Intelligence Journal, 100(1-2):125–176.
13

Karegowda, A. G., Manjunath, A., and Jayaram, M. (2010). Comparative study of
attribute selection using gain ratio and correlation based feature selection. Interna-
tional Journal of Information Technology and Knowledge Management, 2(2):271–277.
97

Katz, M. and Domshlak, C. (2011). Planning with implicit abstraction heuristics. 7th
International Planning Competition (IPC), pages 46–49. 156

148

REFERENCES

Katz, M. and Hoffmann, J. (2013). Red-black relaxed plan heuristics reloaded. In
Proceedings of the Sixth Annual Symposium on Combinatorial Search, SOCS 2013,
Leavenworth, Washington, USA, July 11-13, 2013. 57

Katz, M., Hoffmann, J., and Domshlak, C. (2013). Red-black relaxed plan heuristics.
In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,
July 14-18, 2013, Bellevue, Washington, USA. 57

Kautz, H. A., Selman, B., and Hoffmann, J. (2006). SatPlan: Planning as satisfiability.
In Abstracts of the 5th International Planning Competition. 20, 49, 156

Kavuluri, B. R. (2011). Extending temporal planning for the interval class. 7th Inter-
national Planning Competition (IPC), pages 79–82. 156

Keyder, E., Richter, S., and Helmert, M. (2010). Sound and complete landmarks for
and/or graphs. In ECAI, pages 335–340. 18, 19

Knoblock, C. A. (1994). Automatically generating abstractions for planning. Artificial
intelligence, 68(2):243–302. 13

Kohavi, R. (1995). The power of decision tables. In Machine Learning: ECML-95,
pages 174–189. Springer. 66, 128

Kohavi, R. and John, G. H. (1997). Wrappers for feature subset selection. Artificial
intelligence, 97(1):273–324. 98

Linares López, C., Celorrio, S. J., and Olaya, A. G. (2015). The deterministic part of
the seventh international planning competition. Artificial Intelligence, 223:82–119.
39, 43

Lindauer, M. T., Hoos, H. H., and Hutter, F. (2015a). From sequential algorithm
selection to parallel portfolio selection. In Dhaenens, C., Jourdan, L., and Marmion,
M., editors, Learning and Intelligent Optimization - 9th International Conference,
LION 9, Lille, France, January 12-15, 2015. Revised Selected Papers, volume 8994
of Lecture Notes in Computer Science, pages 1–16. Springer. 29

Lindauer, M. T., Hoos, H. H., Hutter, F., and Schaub, T. (2015b). Autofolio: An au-
tomatically configured algorithm selector. Journal of Artificial Intelligence Research
(JAIR), 53:745–778. 29, 71

Lipovetzky, N. and Geffner, H. (2011). Searching for plans with carefully designed
probes. In In Proceedings of the 21st International Conference on Automated Plan-
ning and Scheduling (ICAPS-11), pages 154–161. 141, 157

López, C. L., Celorrio, S. J., and Helmert, M. (2013). Automating the evaluation of
planning systems. AI Commun., 26(4):331–354. 15

Lu, Q., Xu, Y., Huang, R., and Chen, Y. (2011). The roamer planner random-walk
assisted best-first search. The 2011 International Planning Competition, pages 73–76.
156

149

REFERENCES

Malitsky, Y., Sabharwal, A., Samulowitz, H., and Sellmann, M. (2013). Algorithm port-
folios based on cost-sensitive hierarchical clustering. In Proceedings of the Twenty-
Third international joint conference on Artificial Intelligence, pages 608–614. AAAI
Press. 2

Malitsky, Y., Wang, D., and Karpas, E. (2014). The allpaca planner: All planners
automatic choice algorithm. IPC 2014 planner abstracts, pages 71–73. 26, 71, 79

Nakhost, H. and Müller, M. (2010). Action elimination and plan neighborhood graph
search: Two algorithms for plan improvement. In icaps, pages 121–128. 82

Nakhost, H., Müller, M., Valenzano, R., and Xie, F. (2011). Arvand: the art of random
walks. The Seventh International Planning Competition, IPC-7 planner abstracts:15–
16. 156

Nebel, B. (2000). On the compilability and expressive power of propositional planning
formalisms. Journal of Artificial Intelligence Research (JAIR), 12:271–315. 83

Núñez, S., Cenamor, I., and Virseda, J. (2014). NuCeLaR. IPC 2014 planner abstracts,
pages 58–61. 26

Núñez, S., Borrajo, D., and Linares López, C. (2015a). Automatic construction of op-
timal static sequential portfolios for AI planning and beyond. Artificial Intelligence,
226:75–101. 25, 32, 140

Núñez, S., Borrajo, D., and Linares López, C. (2015b). Sorting sequential portfolios
in automated planning. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015, pages 1638–1644. 70

Núñez, S., Borrajo, D., and López, C. L. (2014). Miplan and dpmplan. IPC 2014
planner abstracts, pages 13–16. 26

Olsen, A. and Bryce, D. (2011). Randward and lamar: Randomizing the FF heuristic.
The 2011 International Planning Competition, page 55. 90, 156, 157

O’Mahony, M. (1986). Sensory evaluation of food: statistical methods and procedures,
volume 16. CRC Press. 67

Porteous, J., Sebastia, L., and Hoffmann, J. (2001). On the extraction, ordering, and
usage of landmarks in planning. In Sixth European Conference on Planning. Citeseer.
18

Quinlan, J. R. (1993). C4. 5: programs for machine learning, volume 1. Morgan
kaufmann. 64, 65, 97, 124, 125

Rankooh, M. F., Mahjoob, A., and Ghassem-Sani, G. (2012). Using satisfiability for
non-optimal temporal planning. In Logics in Artificial Intelligence, pages 176–188.
Springer. 120, 123, 158

150

REFERENCES

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15:65 –
118. 117

Richter, S., Helmert, M., and Westphal, M. (2008). Landmarks revisited. In Fox, D.
and Gomes, C. P., editors, Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pages
975–982. AAAI Press. 19, 57

Richter, S. and Westphal, M. (2010). The LAMA planner: Guiding cost-based any-
time planning with landmarks. Journal of Artificial Intelligence Research (JAIR),
39(1):127–177. 18, 157

Richter, S., Westphal, M., and Helmert, M. (2011). Lama 2008 and 2011. The Seventh
International Planning Competition, IPC-7 planner abstracts:50. 157

Rintanen, J. (2011). Madagascar: Efficient planning with SAT. The Seventh Interna-
tional Planning Competition, IPC-7 planner abstracts:61. 157

Rintanen, J. (2014). Madagascar: Scalable planning with SAT. Proceedings of the 8th
International Planning Competition (IPC-2014). 21

Rintanen, J. (2015). Impact of modeling languages on the theory and practice in
planning research. In Twenty-Ninth AAAI Conference on Artificial Intelligence. 10

Rintanen, J., Heljanko, K., and Niemelä, I. (2006). Planning as satisfiability: parallel
plans and algorithms for plan search. Artificial Intelligence, 170(12):1031–1080. 21

Rizzini, M., Fawcett, C., Vallati, M., Gerevini, A. E., and Hoos, H. H. (2015). Port-
folio methods for optimal planning: an empirical analysis. In Tools with Artificial
Intelligence (ICTAI), 2015 IEEE 27th International Conference on, pages 494–501.
IEEE. 30

Roberts, M. and Howe, A. (2009). Learning from planner performance. Artificial
Intelligence, 173:536–561. 3, 29, 49, 66

Roberts, M., Howe, A. E., Wilson, B., and desJardins, M. (2008). What makes planners
predictable? In In Proceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS-08), pages 288–295. 3, 29, 119

Rodriguez, J. J., Kuncheva, L. I., and Alonso, C. J. (2006). Rotation forest: A new
classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(10):1619–1630. 66, 97, 125

Russell, S. and Norvig, P. (1995). Artificial intelligence: a modern approach. Artificial
Intelligence. Prentice-Hall, Egnlewood Cliffs. 1, 3

Sadraei, R. and Agmadi, A. (2014). USE: The useful operator selection. IPC 2014
planner abstracts, pages 71 – 73. 26

151

REFERENCES

Schwefel, H.-P., Wegener, I., and Weinert, K. (2013). Advances in computational intel-
ligence: Theory and practice. Springer Science & Business Media. 85

Seipp, J., Braun, M., Garimort, J., and Helmert, M. (2012). Learning portfolios of
automatically tuned planners. In McCluskey, L., Williams, B., Silva, J. R., and
Bonet, B., editors, Proceedings of the Twenty-Second International Conference on
Automated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June
25-19, 2012. AAAI. 25, 70

Seipp, J., Sievers, S., Helmert, M., and Hutter, F. (2015). Automatic configuration of
sequential planning portfolios. In Bonet, B. and Koenig, S., editors, Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA., pages 3364–3370. AAAI Press. 25

Sussman, G. J. (1975). A computer model of skill acquisition, volume 1. American
Elsevier Publishing Company New York. 4

Valenzano, R., Nakhost, H., Müller, M., Schaeffer, J., and Sturtevant, N. (2014). Ar-
vandherd 2014. IPC 2014 planner abstracts, pages 11 – 14. 26

Vallati, M. (2012). A guide to portfolio-based planning. In Multi-disciplinary Trends
in Artificial Intelligence, pages 57–68. Springer. 3, 22

Vallati, M., Chrpa, L., and Kitchin, D. (2014). ASAP: an automatic algorithm selec-
tion approach for planning. International Journal on Artificial Intelligence Tools,
23(06):1460032. 26, 27

Vallati, M., Chrpa, L., and Kitchin, D. E. (2015). Portfolio-based planning: State of
the art, common practice and open challenges. AI Communications, 29:1–17. 3

Vidal, V. (2004). A lookahead strategy for heuristic search planning. In In Proceed-
ings of the 14th International Conference on Automated Planning and Scheduling
(ICAPS-04), pages 150–160. 58

Vidal, V. (2011). Yahsp2: Keep it simple, stupid. The 2011 International Planning
Competition, pages 83–90. 157

Vidal, V. (2014). YAHSP3 and YAHSP3-MT in the 8th international planning compe-
tition. In Proceedings of the 8th International Planning Competition. 158

Vidal, V. and Geffner, H. (2006). Branching and pruning: An optimal temporal POCL
planner based on constraint programming. Artificial Intelligence, 170(3):298–335.
155

Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools
and Techniques. 2nd Edition, Morgan Kaufmann. 3, 50, 64, 66

Xie, F., Müller, M., and Holte, R. (2014a). Adding local exploration to greedy best-first
search in satisficing planning. In AAAI, pages 2388–2394. 82

152

REFERENCES

Xie, F., Müller, M., and Holte, R. (2014b). Jasper: the art of exploration in greedy
best first search. In Planner abstracts. IPC-2014. 82

Xie, F., Valenzano, R. A., and Müller, M. (2013). Better time constrained search via
randomization and postprocessing. In ICAPS. 82

Xu, L., Hoos, H., and Leyton-Brown, K. (2010). Hydra: Automatically configuring
algorithms for portfolio-based selection. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI 2010), pages 210–216. 2

Xu, L., Hutter, F., Hoos, H., and Leyton-Brown, K. (2012a). Evaluating component
solver contributions to portfolio-based algorithm selectors. In Theory and Applica-
tions of Satisfiability Testing–SAT 2012, pages 228–241. Springer. 29, 71

Xu, L., Hutter, F., Hoos, H., and Leyton-Brown, K. (2012b). Features for sat. Univer-
sity of British Columbia,, Tech. Rep. 30

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2008). Satzilla: portfolio-
based algorithm selection for SAT. Journal of Artificial Intelligence Research (JAIR),
32:565–606. 2, 30, 49, 120

Zhu, L. and Givan, R. (2003). Landmark extraction via planning graph propagation.
ICAPS Doctoral Consortium, pages 156–160. 19

153

REFERENCES

154

Appendix A

Portfolio Base Planners

This annexe presents a description of all planners included in this thesis. Section A.1
explains a set of initial ones that were not included in the final version of the port-
folio. Section A.2 explains the planners that are included in the planner filtering and
Section A.3 explains temporal planners.

A.1 Initial Planners from IPC-2011

The following list is the set of planners in the pre-selection in the initial state which
are not included in Section A.

• ACOPlan & ACOPlan2 (Baioletti et al., 2014) are planners based on the ant
colony optimization framework, in which a colony of planning ants searches for
near optimal solution plans with respect to an overall plan cost metric.

• BRT: Biased Rapidly-exploring Tree (Alcázar et al., 2015) is a planner
based on a rapidly exploring random tree adapted to the FD system. This plan-
ner estimates which propositions are more likely to be achieved throughout some
solution plan and uses that estimation in order to sample more relevant inter-
mediates states. These samples are computed using the planning graph with
landmarks as support.

• CBP & CBP2 (Fuentetaja, 2011): Cost-Based Planner is a planner that car-
ries out a heuristic search with a numerical heuristic and a selection of actions
extracted from a relaxed planning graph.

• CPT4 (Vidal and Geffner, 2006) is a planner based on constraint programming
that integrates existing lower limits with novel representations and propagation
rules that manage to prune the search space considerably.

• Dae-YAHSP (Dréo et al., 2011) is a planner based on Evolutionary Computa-
tion. It is a Divide-and-Conquer strategy driven by an evolutionary algorithm.

• Fast Downward Stone Soup-1 (Helmert et al., 2011) is anoother combination
of heuristics and search algorithms like A.2.

155

A. PORTFOLIO BASE PLANNERS

• ForkUniform (Katz and Domshlak, 2011) is a sequential planner that itera-
tively invoke weighted A? heuristic search. This search process uses admissible
implicit abstraction heuristics.

• LPRPG (Coles et al., 2011a) is a planner that is designed to solve problems using
metric resources according to linear constraints.

• Madagascar-p is a parallel version of Madagascar

• POPF2 (Coles et al., 2011b) is a planner that uses forward-chaining search,
expanding a partial-order rather than the conventional total-order: steps added
to the plan are ordered after a subset of those in the plan.

• Randward (Olsen and Bryce, 2011) is a modification of the LAMA planner that
includes a randomized FF heuristic.

• Roamer (Lu et al., 2011) is a planner that uses a random-walk assisted best-first
search algorithm for planning, which invokes a random walk procedure to find
exits when the best-first search is stuck on a plateau1.

• Sharaabi (Kavuluri, 2011) is a planner which tackles required concurrency with
overall preconditions requiring continuous support.

• SatPlanLM-c (Cai et al., 2011) is a planner that built on top of SatPlan (Kautz
et al., 2006). This planner compiles the planning task into several SAT tasks using
the concept of parallel steps and supports action costs.

• YAHSP2 is a non-parallel version of YAHSP2-MT

A.2 Planner Filtering Planners

The following list is the set of planners pre-selected as candidates from the Pareto-
dominance filtering described in Section 3.3.

• Arvand (Nakhost et al., 2011): is a stochastic planner that uses Monte Carlo
random walks to balance exploration and exploitation in a heuristic search. This
version uses an online learning algorithm to find the best configuration of the
parameters for the given problem.

• Fast Downward Autotune-1 and Fast Downward Autotune-2 (Fawcett
et al., 2011): are two instantiations of the FD planning system automatically
configured for performance on a wide range of planning domains, using the well-
known ParamILS configurator. The planners use three main types of search in
combination with several heuristics.

1 A well-observed phenomenon that explores a large number of states without reducing the heuristic
function value

156

A.3 Temporal Planners

• Fast Downward Stone Soup-2 (Helmert et al., 2011) (FDSS-2): is a sequen-
tial portfolio with several search algorithms and heuristics. Given the results of
the training benchmarks, the best combination of algorithms and heuristics is
found through a hill-climbing search. Here, the only information communicated
between the component solvers is the quality of the best solution found so far.

• LAMA-2008 and LAMA-2011 (Richter and Westphal, 2010, Richter et al., 2011)
is a propositional planner based on the combination of landmark count heuristic
and the FF heuristic. The search carries out a set of weighted A∗ with itera-
tively decreasing weights. The planner was developed within the FD Planning
System (Helmert, 2006).

• Lamar (Olsen and Bryce, 2011) is a modification of the LAMA planner that
includes a randomized construction of the landmark count heuristic.

• Madagascar (Rintanen, 2011): implements several innovations of SAT plan-
ning, including compact parallelized/interleaved search strategies and SAT-based
heuristics.

• Probe (Lipovetzky and Geffner, 2011): exploits the idea of wisely constructed
lookaheads or probes, which are action sequences computed without searching for
a given state that can quickly go deep into the state space, terminating either in
the goal or in failure. This technique is integrated within a standard greedy best
first search.

• YAHSP2-MT (Vidal, 2011) extracts information from the relaxed plan in order
to generate lookahead states. This strategy is implemented in a complete best-
first search algorithm, modified to take helpful actions into account.

• LPG-td (Gerevini et al., 2006) is based on a stochastic local search in the space
of particular action graphs derived from the planning problem specification.

A.3 Temporal Planners

The following list the set of planners selected as candidates from temporal approxima-
tion at Section 8.1.

• LPG (Gerevini et al., 2003) is a planner using local search for solving planning
graphs.

• POPF2 (Coles et al., 2011b) is a Forward-Chaining Partial Order Planner that
uses forward-chaining search, expanding a partial-order rather than the conven-
tional total-order.

• Yahsp2 and Yahsp2-MT (Vidal, 2011) are planners that compute a lookahead
from relaxed plans and use them in the forward state-space heuristic search.

157

A. PORTFOLIO BASE PLANNERS

• Temporal Fast Downward (TFD) (Eyerich et al., 2012) is based on the
Fast Downward planning system and uses an adaptation of the context-enhanced
additive heuristic to guide the search in the temporal state space induced by the
given planning problem.

• ITSAT (Rankooh et al., 2012) is an SAT-based (satisfiability based) temporal
planner capable of temporally expressive planning.

• Yahsp3 and Yahsp3-MT (Vidal, 2014) are forward state-space heuristic search
planners that embed a lookahead policy based on an analysis of relaxed plans.
They are the updated versions of Yahsp2 and Yahsp2-MT.

158

Appendix B

Methods of Empirical Evaluation

In this thesis, there are other metrics that are taken into account in the learning phase.
This metrics, used to evaluate the predictive models, will be created in the first part
of this thesis. In the following paragraphs we introduce several high-level concepts in
evaluating machine learning models: evaluation metrics, test data sets and mechanisms,
starting with metrics for classification.

There are many ways of measuring classification performance. Accuracy, confusion
matrix, log-loss, Area Under the Curve (AUC) and precision-recall are some of them.
I shall explain the important metrics for this thesis and other ones that are related.

• Accuracy: measures how often the classifier makes the correct prediction. It
is the ratio between the number of correct predictions and the total number
of predictions (the number of test data points). ACC = (True Positive +
True negative)/(Total Population)

• Confusion matrix: (or confusion table) shows a more detailed breakdown of
correct and incorrect classifications for each class. The rows of the matrix cor-
respond to ground truth labels, and the columns represent the prediction. The
table B.1 is an example of a confusion matrix.

Table B.1: Confusion Matrix

Predicted as positive Predicted as negative
Labeled as positive True Positive False Positive
Labeled as negative False Negative True negative

• AUC (ROC area): is the area under the plot that shows the sensitivity of the
classifier by plotting the rate of true positives (TPR) to the rate of false positives
(FPR). In other words, it shows you how many correct positive classifications can
be gained as you allow for more and more false positives. The perfect classifier

159

B. METHODS OF EMPIRICAL EVALUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
 p

o
s
it

iv
e
 r

a
te

False positive rate

Example ROC curves

Example 1
Example 2
Example 3

random

Figure B.1: Example of several ROC curves in contracts with a random ROC area.

that makes no mistakes would hit a true positive rate of 100% immediately, with-
out incurring any false positives. Where the TPR and FPR follow the formula B.1
and B.2. The figure B.1 shows an example of the comparison between 4 different
ROC curves.

TPR = True Positive/(True Positive+ False Negative) (B.1)

FPR = False Positive/(False positive+ True negative) (B.2)

• Relative Absolute Error: is a measure of the uncertainty of the measurement
compared to the size of the measurement. The formula B.3 is made up of the
true value Θ, the value estimated using algorithm such as Θ̂ and the mean value
is Θ.

RAE =

∑N
n=1 |Θ̂i −Θi|∑N
n=1 |Θi −Θi|

(B.3)

There is another term known as the measure of dispersion which indicates the extent
to which the observations are dispersed or spread around the center. The most common
measures of dispersion are standard deviation and variance.

When the dispersion is less, the values would be close together or thus close to the
center. On the other hand, when the dispersion is more, the values would be far apart
and farther from the center.

160

• Standard Deviation: is a measure that is used to quantify the amount of
variation or dispersion in a set of data values (Formula B.4).

σ =

√√√√ 1

N − 1

N∑
1

(θi − θ̄)2 (B.4)

• Index of Dispersion (also known as VMR i.e. variance-to-mean ratio) is the
proportion between the variance squared and the average. This index of dispersion
which represents a summary statistic indicates the magnitude of the dispersion. It
is the measure of how far the observed frequencies follow the Poisson distribution.

Table B.2: Interpretation of index of Dispersion

VMR Interpretation Distribution

0 Not dispersed Constant random variable
0 to 1 Under dispersed Binomial distribution
> 1 Over dispersed Negative binomial distribution

1 – Poisson distribution

Table B.2 shows that aa interpretation of dispersion is as follows, when the VMR =
1, the distribution is a Poisson. If 0 < VMR < 1 the distribution is under dispersed,
binomial distributions have less than 1. If VMR > 1 the distribution is over dispersed,
negative binomial distributions have s WMR greater than 1. The last case, when
VMR = 0 there is no dispersion in the data.

• Coefficient of variation(or relative standard deviation (RSD)) is a is a stan-
dardized measure of dispersion of a probability distribution or frequency distri-
bution. It is the ratio between the standard deviation and the mean. Cv = σ/µ

161

B. METHODS OF EMPIRICAL EVALUATION

162

Appendix C

Appendix: Training Results

In this section appear the results of the candidate planners in the training phase. In
each table, the last column is the number of problems included for training. The time
for this experimentation is 247, 690, 800 seconds.

Table C.1: Solved problems in the training phase IPC-2005

Lama11 Probe FDA1 Lama08 FDA2 Lamar Arvand FDSS2 ya2-mt LPG M #

openstacks 30 30 30 30 30 30 27 30 0 27 11 30
pathways 30 30 26 29 29 30 30 0 0 30 30 30
rovers 40 40 40 40 40 40 40 40 40 40 40 40
storage 40 40 40 40 40 40 40 40 40 40 40 40
tpp 30 30 30 30 30 30 30 30 30 24 30 30
trucks 19 8 18 16 22 15 15 20 0 11 21 30

Table C.2: Solved problems in the training phase IPC-2008.

Lama11 Probe FDA1 Lama08 FDA2 Lamar Arvand FDSS2 ya2-mt LPG M #

pipesworld 42 44 40 38 33 43 46 42 41 33 14 50
cybersec 28 24 28 28 26 27 28 28 0 7 0 30
opens.-adl 31 31 31 31 31 31 31 31 0 1 16 31
opens. 30 30 30 30 30 30 30 30 1 0 15 30
pegsol 30 30 30 30 30 30 30 30 22 1 27 30
scanalyzer 30 30 30 30 27 30 30 30 27 0 21 30
sokoban 29 27 29 25 27 25 8 29 0 0 2 30
transport 18 10 17 17 18 17 19 15 11 0 9 30
woodworking 23 30 25 26 24 25 30 30 23 0 2 30
elevators 30 29 30 25 30 27 30 30 2 0 0 30

163

C. APPENDIX: TRAINING RESULTS

Table C.3: Solved problems in the training phase IPC-2011.

Lama11 Probe FDA1 Lama08 FDA2 Lamar Arvand FDSS2 ya2-mt LPG M #

barman 20 20 20 4 6 6 0 17 12 0 0 20
elevators 20 20 20 6 17 11 20 20 0 0 0 20
floortile 6 5 7 3 9 3 3 7 8 12 0 20
nomystery 10 6 10 12 19 12 19 12 10 0 17 20
openstacks 20 14 20 20 20 20 20 19 0 2 0 20
parcprinter 20 14 20 1 14 0 20 20 13 0 20 20
parking 20 19 19 20 9 20 4 20 3 0 0 20
pegsol 20 20 20 20 20 20 20 20 15 0 17 20
scanalyzer 20 20 20 20 17 20 20 20 17 0 11 20
sokoban 19 17 19 15 16 14 2 19 0 0 0 20
tidybot 16 18 15 14 17 19 17 18 0 15 1 20
transport 19 20 11 19 10 3 15 15 20 0 0 20
visitall 20 20 2 20 5 11 10 6 20 8 0 20
woodworking 20 20 20 14 14 9 20 20 19 0 1 20

Table C.4: Solved problems in the training phase. IPC-2008 in the learning track.

Lama11 Probe FDA1 Lama08 FDA2 Lamar Arvand FDSS2 ya2-mt LPG M #

Gold-miner 30 30 30 30 26 29 30 0 30 30 30 30
Matching-bw 25 15 24 23 23 17 16 0 25 22 1 30
N-puzzle 29 20 30 29 9 27 6 0 20 30 0 30
parking 28 24 25 28 16 30 17 0 13 13 0 30
sokoban 23 23 30 18 30 17 30 30 28 15 22 30
thoughtful 0 18 0 0 0 0 0 0 22 7 0 30

Table C.5: Solved problems in the training phase. IPC-2011 in the learning track.

Lama11 Probe FDA1 Lama08 FDA2 Lamar Arvand FDSS2 ya2-mt LPG M #

barman 9 5 0 0 0 0 0 13 0 0 0 30
blocksworld 29 30 22 21 15 0 0 20 16 29 0 30
depots 1 30 0 0 0 6 0 0 29 6 0 30
gripper 0 0 0 0 30 0 4 0 0 30 0 30
parking 18 9 6 13 1 19 4 9 0 0 0 30
rovers 30 30 30 29 24 30 30 30 30 11 14 30
satellite 16 10 3 3 29 1 2 22 13 30 0 30
spanner 0 0 0 0 0 0 0 0 0 30 15 30
tpp 30 20 30 30 6 21 30 25 30 1 9 30

Total 998 960 927 877 869 835 823 837 630 505 436 1251

164

Appendix D

Appendix: International
Planning Competition

The results of the International Planning Competition 2014 appear in this section for
all the track we participated in (sequential satisficing, agile, multi-core and learning).
Our approximation appears in blue in the tables. These results are the raw results that
appeared at ICAPS-2014. Moreover, some bugs arose during the execution of IPC-
2014, as some issues in the domain models required updates 1, and some planners were
updated 2. These issues were also fixed prior to running the experimental evaluation
presented in this thesis. That the reason why both results does not complexity agree.

Hardware Platform at Sequential Satisficing: The competition run in a cluster of
256 cores. Each core is an AMD Processor 2.39 Ghz. Up to 4GB of RAM and 200
GB of hard disk memory will be available for each planner. Each planner will be run
in a single node and no planner is allowed to run in more than one simultaneously
(although in the multicore track it is allowed to use all the 4 cores of a node). No GPU
is available. Memory and time will be externally limited.

The learning track has 6 domains chosen from previous competitions: elevators,
floortile, nomystery, parking, spanner, and transport. At the start of a six-week learn-
ing stage, competitors were provided with generators for these domains, a represen-
tative set of training problems, and guidelines for the evaluation distributions. After
the learning stage was complete, competitors were provided with runs from selected
training problems to ensure that their planner was performing as expected. Problems
found in these runs were corrected before gathering the final results. For the final
evaluation, 5 problems from each domain were randomly generated from the distribu-
tions, resulting in 30 instances of problems. The planners were run on the EC2 cloud
computer platform with the support of a generous grant from Amazon Web Services;
each computer platform had a computer equivalent of 2 cores and 3.75 GB memory and
ran Ubuntu 12.04 LTS. To account for variations in the actual computing resources on
the cloud platform, each planning system was run 30 times with and without domain
knowledge on each instance of a problem.

1https://helios.hud.ac.uk/scommv/IPC-14/benchmark.html,Accessed:2015-07-29
2https://helios.hud.ac.uk/scommv/IPC-14/errPlan.html,Accessed: 2015-07-29

165

D. APPENDIX: INTERNATIONAL PLANNING COMPETITION

Table D.1: Results in terms of quality of all competitor planners in 7 domains of the
competition (sequential Satisficing track).

Tetris Barman Cave Childsnack Citycar Floortile Hiking
IBaCoP2 4.02 16.38 7.00 14.98 6.95 18.23 18.04
IBaCoP 6.28 16.27 7.00 15.29 7.32 15.18 18.65
mercury 14.38 13.94 3.00 0.00 3.99 2.00 16.46
MIPlan 7.46 16.54 7.00 18.22 4.69 4.10 18.14
jasper 9.52 19.78 8.00 0.00 8.89 2.00 17.19
uniform 11.52 17.83 7.00 1.23 12.74 1.53 17.01
cedalion 3.20 16.85 7.00 0.71 7.71 7.98 18.74
arvandherd 14.63 18.12 7.00 5.57 19.39 2.00 19.00
fdss-2014 9.87 11.64 7.00 1.36 5.00 2.00 17.44
dpmplan 1.80 16.57 7.00 18.46 5.82 1.97 16.28
use 3.76 15.12 0.00 0.00 1.65 9.17 8.79
nucelar 6.60 15.89 7.00 3.66 7.49 3.37 17.24
rpt 9.41 0.00 3.00 2.98 3.11 19.30 17.35
bfs-f 11.03 8.89 7.94 0.00 0.00 9.71 2.00
bifd 8.67 0.62 3.00 1.16 3.16 19.30 15.25
dae yahsp 0.00 0.35 0.00 9.36 0.00 0.46 8.12
freelunch 3.74 0.00 3.00 17.43 0.00 7.52 1.91
yahsp3-mt 0.67 6.60 0.00 0.00 0.00 1.22 3.81
yahsp3 0.54 1.33 0.00 0.00 0.00 1.09 4.80
planets 0.00 0.00 5.97 0.00 3.96 1.00 0.77

Table D.2: Results in terms of quality of all competitor planners in 7 domains of the
competition and the overall score (sequential Satisficing track).

Mainte. Openstacks Parking Thoughtful Transport Visitall GED Total
IBaCoP2 16.71 5.15 5.28 15.75 7.01 13.32 17.40 162.20
IBaCoP 16.81 3.58 1.74 13.76 9.94 14.18 16.73 156.45
mercury 5.06 19.69 15.64 0.00 20.00 19.88 19.01 138.66
MIPlan 16.62 9.07 11.08 11.18 0.00 8.18 17.72 142.55
jasper 9.28 17.28 12.91 0.00 7.59 15.18 17.27 135.37
uniform 9.36 10.83 9.74 0.00 9.25 19.56 15.65 131.74
cedalion 14.15 17.08 4.29 0.00 5.14 19.49 15.01 134.14
arvandherd 13.17 14.22 0.69 0.00 4.53 0.68 18.09 122.47
fdss-2014 16.63 17.63 10.86 0.00 4.06 8.78 15.61 118.03
dpmplan 15.07 10.15 0.00 13.18 0.00 3.41 15.79 123.70
use 15.03 15.76 3.65 0.00 6.27 14.80 13.15 103.38
nucelar 16.63 2.73 1.41 0.00 0.00 3.38 16.02 94.84
rpt 10.82 10.61 4.70 0.00 3.57 0.06 13.33 88.85
bfs-f 7.72 0.00 19.94 5.00 3.57 18.99 1.33 85.08
bifd 7.83 5.76 5.38 0.00 3.52 0.00 13.33 78.32
dae yahsp 0.00 0.00 0.00 17.10 9.02 17.26 2.52 64.19
freelunch 15.26 9.82 0.00 0.00 0.02 2.51 0.00 57.48
yahsp3-mt 0.00 0.00 1.37 14.42 10.74 10.73 8.94 57.83
yahsp3 0.00 0.00 0.00 6.93 8.03 17.08 8.31 47.57
planets 0.00 0.00 0.00 13.25 0.00 0.00 0.00 24.95

166

Table D.3: Results in terms of quality of all competitor planners in 7 domains of the
competition (sequential Agile track).

Tetris Barman Cave Childsnack Citycar Floortile Hiking
yahsp3 0.44 0.45 0.00 0.00 0.00 0.85 11.29
mpc 2.96 0.31 1.97 7.00 7.17 20.00 4.16
m 0.00 0.00 4.35 17.10 5.46 20.00 1.84
probe 0.00 18.07 0.53 0.00 7.88 1.30 9.55
bfs-f 0.40 15.37 6.70 6.00 2.96 1.67 0.75
cedalion 2.33 11.96 2.46 0.00 2.62 0.75 2.93
freelunch 20.00 0.00 0.00 0.93 0.00 0.70 2.12
yahsp3-mt 0.92 0.00 0.00 0.61 0.00 0.00 14.00
arvandherd 4.68 6.98 2.21 2.57 12.72 0.61 7.98
IBaCoP 1.31 0.40 2.79 9.47 2.55 4.89 5.15
use 0.97 12.14 0.00 3.96 0.00 2.33 3.53
jasper 0.97 10.35 3.96 0.00 2.38 1.00 4.28
mercury 1.03 4.28 0.98 1.61 0.84 1.13 3.29
siw 0.00 0.00 0.00 0.00 2.05 0.00 1.76
IBaCoP2 0.00 0.39 2.46 6.96 1.24 4.38 4.71

Table D.4: Results in terms of quality of all competitor planners in 7 domains of the
competition and the overall score (sequential Agile track).

Mainte. Openstacks Parking Thoughtful Transport Visitall GED Total
yahsp3 0.00 0.00 0.00 9.02 20.00 19.58 20.00 61.62
mpc 12.34 0.00 5.66 3.49 0.00 0.00 4.90 65.06
m 16.31 0.00 0.00 2.56 0.00 0.00 0.00 67.63
probe 6.41 0.00 0.00 13.02 1.74 1.31 6.88 59.82
bfs-f 3.69 0.00 2.22 15.16 1.00 2.33 4.61 58.26
cedalion 5.34 3.72 1.30 0.00 1.97 15.95 10.71 51.32
freelunch 11.04 20.00 0.00 0.00 2.76 2.57 0.00 60.12
yahsp3-mt 0.00 0.00 0.00 16.76 15.97 4.52 0.50 52.78
arvandherd 5.65 2.50 0.00 0.00 1.29 1.25 4.73 48.44
IBaCoP 7.06 0.00 0.00 7.12 2.64 1.93 5.37 45.32
use 8.24 2.50 0.00 0.00 0.98 2.91 9.81 37.55
jasper 4.43 2.51 0.00 0.00 0.96 1.60 9.85 32.43
mercury 5.66 2.55 0.00 0.00 2.04 3.53 9.79 26.94
siw 0.00 0.00 12.00 17.29 0.32 1.58 0.76 35.01
IBaCoP2 6.17 0.00 0.00 1.46 0.00 1.43 5.13 29.19

Table D.5: Results in terms of quality of all competitor planners in 7 domains of the
competition (sequential multi-core track)

Barman Cave Childsnack Citycar Floortile GED Hiking
arvandherd 20.00 7.00 5.50 19.73 2.00 19.13 20.00
IBaCoP 0.00 6.30 8.69 8.78 13.82 18.78 0.00
use 16.04 0.00 5.79 1.00 1.93 15.58 10.11
IBaCoP2 0.00 6.30 9.00 8.38 11.69 18.53 0.00
nucelar 0.00 3.96 1.18 4.26 3.50 17.57 0.00
miplan 0.00 4.95 19.00 4.22 2.69 0.00 0.00
yahsp3-mt 6.95 0.00 4.63 0.00 1.20 10.16 4.69
dae yahsp 0.58 0.00 0.00 0.00 0.00 0.22 0.64
planets 0.00 0.00 0.00 0.00 0.00 0.00 0.00

167

D. APPENDIX: INTERNATIONAL PLANNING COMPETITION

Table D.6: Results in terms of quality of all competitor planners in 7 domains of the
competition and the overall score (sequential Multi-core track).

Mainte. Openstacks Parking Tetris Thoughtful Transport Visitall Total
arvandherd 15.19 17.46 1.00 17.11 0.00 5.77 3.41 149.90
ibacop 15.89 13.54 0.73 0.00 11.74 3.76 19.89 102.03
use 12.00 14.22 8.31 2.77 0.00 6.77 14.04 94.51
ibacop2 16.92 0.00 0.00 0.00 11.80 7.66 0.00 90.29
nucelar 16.47 1.84 1.80 11.39 8.00 2.52 10.92 72.48
miplan 16.78 4.00 5.00 2.32 10.00 4.33 9.85 73.28
yahsp3-mt 0.00 0.00 2.31 0.78 14.24 17.71 11.83 62.67
dae yahsp 0.00 0.00 0.00 0.00 3.61 0.57 1.89 5.61
planets 0.00 0.00 0.00 0.00 2.88 0.00 0.00 2.88

Table D.7: Planning & Learning track IPC-2014. The first column is the ranking results,
the column third and fourth are results in terms of quality, and the last ones are in terms
of coverage.

ranking Planner Quality Coverage
Nknowledge Knowledge Nknowledge Knowledge

8 eroller 1.06 12.51 90 540
9 rollent 1.06 11.83 90 600
5 agap 7.98 15.94 237 489
2 cedalion 8.12 19.98 300 603
3 smac 8.12 17.45 300 749

10 badff 11.44 10.24 330 330
11 badffp 11.44 10.17 330 390
7 llama 16.47 14.30 450 450
6 libacop 16.66 15.31 630 607
4 libacop2 16.88 16.60 630 605
1 miplan 20.22 21.88 618 779

168

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Overview
	1.2 Objectives
	1.3 Thesis Outline

	2 State of the Art
	2.1 Classical Planning
	2.2 Temporal Planning
	2.3 Modeling Languages in Automated Planning
	2.3.1 PDDL
	2.3.2 SAS+

	2.4 The International Planning Competition
	2.5 Planning Paradigms
	2.5.1 Heuristic Planning
	2.5.2 Landmarks
	2.5.3 SAT

	2.6 Portfolios
	2.6.1 Portfolio Definition
	2.6.2 Portfolio Construction Process
	2.6.3 Planning Portfolios

	2.7 Empirical Performance Modelling in AI Solvers

	3 Planner Filtering Methods: A Multi-criteria approach
	3.1 Filtering Methods Based on Quality, Time and Coverage
	3.1.1 Scope of the metrics
	3.1.2 Empirical Evaluation of Problem Level based Filtering

	3.2 Pareto Dominance-Based Planner Filtering
	3.3 Evaluation of Planner Filtering Approaches
	3.3.1 Planner Filtering
	3.3.2 Planner Selection
	3.3.3 Planner Filtering Portfolio

	3.4 Summary

	4 Planning Problem Characterization and Empirical Performance Modeling
	4.1 Planning Performance Modeling Process
	4.2 Training data
	4.3 Feature Extraction
	4.3.1 PDDL Features
	4.3.2 FD Instantiation Features
	4.3.3 SAS+ Features
	4.3.4 Heuristic Features
	4.3.5 Fact Balance Features
	4.3.6 Landmark Features
	4.3.7 Process & Time to extract features

	4.4 Data Integration
	4.5 Feature Selection
	4.6 Classification Models
	4.7 Regression Models
	4.8 Summary

	5 Configuration Strategies to Create Planning Portfolios
	5.1 Static Strategies
	5.2 Dynamic Strategies
	5.3 Estimated Number of Planners
	5.4 Portfolio Configuration Strategy Proposals
	5.5 An Algorithm for Portfolio Construction
	5.6 Summary

	6 Experimental Evaluation of Instance-Based Configured Portfolios
	6.1 Scope of the Evaluation of Different Planning Portfolios
	6.2 Settings
	6.3 Results
	6.4 Selection of Planners: per Domains vs. per Problem
	6.5 Confidence in Planner Prediction
	6.6 The 2014 International Planning Competition
	6.7 Summary

	7 Performance Modeling of Planners in Homogeneous Problem Sets
	7.1 Experimental Preview
	7.2 Experimental Procedure
	7.3 Experimental Evaluation
	7.3.1 Barman Domain - Mercury Planner
	7.3.2 Barman Domain - Probe Planner
	7.3.3 Barman Domain - Lama-2011 Planner
	7.3.4 Depots Domain - Mercury Planner
	7.3.5 Depots Domain - Lama-2011 Planner
	7.3.6 Floortile Domain - Probe Planner

	7.4 General Feature Analysis
	7.5 Summary

	8 Temporal Approximation
	8.1 Planner Selection
	8.2 Benchmarks
	8.3 Features
	8.4 Extracting Features
	8.5 Experimental Settings
	8.6 Experimental Results
	8.6.1 Classification
	8.6.2 Regression
	8.6.3 Exploiting EPMs for Algorithm Selection
	8.6.4 Planner Selection Analysis

	8.7 Summary

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work
	9.3 Publications
	9.4 Awards

	References
	A Portfolio Base Planners
	A.1 Initial Planners from IPC-2011
	A.2 Planner Filtering Planners
	A.3 Temporal Planners

	B Methods of Empirical Evaluation
	C Appendix: Training Results
	D Appendix: International Planning Competition

