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ABSTRACT 

Most  existing ESC (Electronic Stability Control) systems rely on the measurement of 
both yaw rate and sideslip angle. However, one of the main issues is that the sideslip angle 
cannot be measured directly because the sensors are too expensive. For this reason, 
sideslip angle estimation has been widely discussed in the relevant literature. The 
modeling of sideslip angle is complex due to the non-linear dynamics of the vehicle. In 
this paper, we propose  a novel  observer based on ANFIS, combined with Kalman Filters 
in order to estimate the sideslip angle, which in turn is used to control the vehicle 
dynamics and improve its behavior. For this reason, low-cost sensor measurements which 
are integrated into the actual vehicle and executed in real time have to be used. The 
ANFIS system estimates a “pseudo-sideslip angle” through parameters which are easily 
measured, using sensors equipped in actual vehicles (inertial sensors and steering wheel 
sensors); this value is introduced in UKF in order to filter  noise and to minimize the 
variance of the estimation mean square error. The estimator has been validated by 
comparing the observed proposal with the values provided by the CARSIM model, which 
is a piece of experimentally validated software. The advantage of this estimation is the 
modeling of the non-linear dynamics of the vehicle, by means of signals which are 
directly measured from vehicle sensors. The results show the effectiveness of the 
proposed ANFIS+UKF-based sideslip angle estimator. 

1. Introduction

With the recent advancements in the vehicle  industry, driving safety in passenger 
vehicles is considered to be one of the key issues in the design of any vehicle. Electronic 
Stability Control (ESC) is seen as the greatest road safety innovation since the seatbelt. 
Hence, the market demands more research in order to improve performance of these 
systems. 

To improve  vehicle handling and stability based on ESC, the yaw rate, that is, the yaw 
velocity of the chassis, and the vehicle sideslip angle, the angle between the directions of 
the vehicle’s velocity and its chassis,  are controlled  so that they follow their target values 
[1,2]. The yaw rate can be directly measured by a yaw rate sensor (gyroscope) [3,4]. In 
addition, the sideslip angle can be directly measured via optical or GPS sensors [5-7]. 
However, the drawbacks of measuring the yaw rate and the sideslip angle have to do with 
the accuracy, reliability and cost [8]. Sideslip angles cannot be directly measured using 
standard sensors, therefore,  the measurements must be estimated by means of an observer 
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[9-11]. For this reason, an accurate estimation of the vehicle’s sideslip angle is  essential 
for applications in vehicle dynamics and control. 

Sideslip angle estimation has been widely discussed in the literature. The modeling of 
sideslip angles is complex due to the non-linear dynamics of the vehicle. Some authors 
employ physical models for the estimation of sideslip angles [12-15]. The most-cited 
methods are based on the bicycle dynamic model or its variations. These models generate 
noise-free sideslip angle estimations, but they can be sensitive to changes in the vehicle 
parameters. Other authors use kinematic based-models that consider the motion of a body, 
which are not affected by  uncertainties [14,16,17]. These methods integrate the derivative 
of the sideslip angle, calculated from sensor signals including yaw rate, lateral 
acceleration and vehicle speed. Satisfactory robustness of tire properties, road friction and 
vehicle parameters, such as vehicle mass and moment of inertia, can be achieved. Finally, 
there are also authors who use combined methods which bring together the advantages of 
the previous two methods [9,11]. 

Furthermore, some authors propose methods for designing observers in order to estimate 
the sideslip angle from variables that can be easily measured; such as the yaw rate, lateral 
acceleration and velocity. Different models, such as linear [18] and nonlinear [19], and 
observers such as Kalman Filters [10,20] have also been considered in order to estimate 
the sideslip angle. A common feature of most of these observers for the estimation of the 
sideslip angle is that they rely heavily on an accurate tire model, which may vary during 
vehicle operation. 

The unscented Kalman filtering (UKF) is a powerful tool for the state estimate of 
nonlinear systems [21-23]. The UKF is able to achieve good performance if the complete 
information of measurement noise distribution is taken as known. 

The major problem for estimating the sideslip angle adequately is tire non-linarites. 
Nowadays, different non-linear tire models are considered in order to carry out a good 
modeling. The Pacejka tire model [23] is one which has been taken into consideration 
during recent years. There are various Pacejka tire models with different degrees of 
complexity. In one model, which is widely used, tire forces are considered relative to both 
normal forces and slip, non-linear forces.  

The problem is that the tire forces also depend on road conditions (icy, wet or dry road 
surface). Previous studies have estimated the sideslip angle assuming that the vehicle is 
driven on a road with the friction coefficient constant. When, the road friction coefficient 
changes, the vehicle dynamics also change. If the parameters of the model are not 
modified in the observers, the estimation of sideslip angle could be mistaken. 

The disadvantage of Kalman filters-based estimators is that is that the optimality of the 
estimation algorithm depends on the quality of a priori knowledge of the process and 
measurement noise statistics. 

More recently, Artificial Intelligence (AI) algorithms have been proposed in order to 
eliminate some of its inadequacies [24-27]. AI-based algorithms have been proved to be 
appropriated in order to avoid issues associated with the identification and adaptation of 
reference model parameters. In [28-30], AI-based algorithms are used to estimate the 
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sideslip angle based on fuzzy, Neural Network (NN) and ANFIS (Adaptive Neuro-Fuzzy 
Inference System), respectively. 

In our previous work [30], we proposed an ANFIS-based observer to estimate the sideslip 
angle. It proved that the ANFIS-based estimator provides an error smaller than the NN-
based and Kalman-based estimators. However, the disadvantage is that AI-based 
methods do not use any statistical information as input, nor do they output statistics 
associated with the solution, unless methods of cross-validation are applied. 

In this paper, we propose a novel observer based on ANFIS and combined with a Kalman 
Filter, in order to estimate the sideslip angle that is used to control the vehicle dynamics 
and improve its behavior.  

Other researches also combines AI-based techniques with Kalman Filter for estimation. 
In this case, The IA-based algorithm is based on the improvement of the filter 
performance through the adaptive estimation of the filter statistical information 
(covariance matrices) [31-33]. The problem is that the uncertainty learning is a difficult 
and complex process. In this case, we do not estimate the filter statistical information 
but also we estimate a “pseudo-parameter”, a “pseudo-sideslip angle”, which is 
introduced in Filter Kalman. 

The ANFIS system estimates a “pseudo-sideslip angle” through parameters which are 
easily measured  using  actual vehicles equipped with sensors (inertial sensor and steering 
wheel sensor) and this value is introduced in UKF in order to filter the noise and to 
minimize the variance of the mean square error estimation. The ANFIS-based observer 
combines the benefits of both Neural Networks and Fuzzy logic. The former is adaptive 
and can learn from generalization and pattern recognition. The latter allows soft and 
steady performance [34]. In [35], an ANFIS algorithm is proposed to estimate the yaw 
rate, providing good results. The advantage is that the ANFIS-observer could learn from 
different road conditions and maneuvers.   

CarSim software has been employed to test the effectiveness of the proposed algorithm 
[36] and its use  has become widespread as simulation software in the automotive 
industry. The software combines traditional and modern multi-body vehicle dynamics, 
based on parametric modeling. The software includes a three-part graphic database of a 
full-vehicle model, direction and speed control and external conditions, such as, road 
information, drag and so on.  

CarSim results obtained after training show that the proposed observer learns to estimate 
the sideslip angle behavior properly and reliably, without difficulty. The efficiency of the 
observer is demonstrated through plentiful simulation tests. 

2. Vehicle  dynamic  model

The dynamic model used in the estimation process is a 2-DOF vehicle model which 
consists of lateral and yaw motions. The state space equations of the model are: 

 Lateral motion:

𝑚(𝑉𝑦̇ + 𝑟𝑉𝑥) = (𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑟)𝑐𝑜𝑠𝛿 + 𝐹𝑦𝑟𝑙 + 𝐹𝑦𝑟𝑟 
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 Yaw motion:

𝐼𝑧𝑟̇ = 𝑎(𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑟)𝑐𝑜𝑠𝛿 − 𝑏(𝐹𝑦𝑟𝑙 + 𝐹𝑦𝑟𝑟) 

where, m is the vehicle mass, Iz is the moment of inertia of the vehicle, a and b are the 
distances from the center of gravity to the front and rear axles, respectively, Fyfi (i=f, r) is 
the lateral tire force of the front wheels, Fyri (i=f, r) is the lateral tire force of the rear 
wheels, Vx and Vy are longitudinal and lateral velocities of CG, r is the yaw rate of the 
vehicle, and δ is the front and steering angles.  

Two tire models are considered to prove the effectiveness of the proposed observer: the 
lineal tire model and the nonlinear tire model such as the Magic Formula of Pacejka [29]. 

3. Proposed observer based on ANFIS combined with Kalman Filters

The sideslip angle is an essential parameter  whose knowledge is fundamental for vehicle 
controlling behavior. The sideslip angle of a vehicle (β) is the angle between the 
orientation of the vehicle and the direction of travel at the center of gravity (COG). It is 
defined as:  

y

x
V
Varctan

The proposed observer architecture is shown in . The estimation process consists of two 
blocks. 

The former is an ANFIS-based observer which serves to estimate the sideslip angle 
(pseudo-variable). The inputs to this block are the measurements of steering angle using 
a steering wheel sensor, lateral acceleration, longitudinal velocity and yaw rate using a 
combination of GPS and inertial measurement unit (IMU). The advantage of this 
observer is that it uses measurements of sensors which are already incorporated in 
current vehicles. The ANFIS-based observer gives a “pseudo-sideslip angle” which is 
going to be incorporated to the second block. This “pseudo-measurement” can not be 
used directly as input in the vehicle lateral controller due to it is affected by noise of 
sensors. For this reason, it is necessary the second block.  

The latter is a Kalman-based observer which filters the noise of measurements obtained 
from the first block and the inertial sensor (IMU). In this block, the inputs are the yaw 
rate, which is measured by an inertial sensor, and the sideslip angle, which is obtained 
from an ANFIS-based observer. Both signals are used as observed data, yk, in the 
Kalman Filter. Then, the new sideslip angle is estimated in the update phase of the 
Kalman Filter such that the estimation error is minimized. Different types of Kalman 
Filters are considered (Lineal Kalman Filter, Extended Kalman Filter and Unscented 
Kalman Filter) in order to prove the effectiveness of the proposed observer. 
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3.1. ANFIS 

ANFIS is a fuzzy inference system whose parameters are iteratively adjusted according 
to a given set of input and output data. The system is an adaptive network, functionally 
equivalent to a first-order Sugeno fuzzy inference system. The resultant network 
architecture, called ANFIS (Adaptive Neuro-Fuzzy Inference System), is shown in .   

Consider a first-order Sugeno fuzzy inference with three inputs. The rules in this Sugeno 
model have the format: 

𝑖𝑓𝑥 𝑖𝑠 𝐴𝑖 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵𝑖 𝑎𝑛𝑑 𝑧 𝑖𝑠 𝐶𝑖 𝑡ℎ𝑒𝑛 𝑓 = p1 ∙ 𝑥 + 𝑞1 ∙ 𝑦 + 𝑞1 ∙ 𝑧 + 𝑟1 

The criteria considered to select the inputs for the ANFIS algorithm are: 

 To select the minimum number of inputs.
 To select signals that can be measured by onboard vehicle sensors (GPS, IMU and

steering wheel sensors).

Considering the previous criteria, the following input data have been selected: 

 Lateral acceleration, ay.
 Steering angle, .
 Yaw rate/Longitudinal velocity, (r/Vx).

Layer 1: Each node in this layer generates a membership grade of a linguistic label. Every 
node function of the i-th node is a square node with a node function: 

𝑂𝑖
1 = 𝜇(𝑖)

where μ(i)i are MFs. In this study, a Gaussian function with a maximum equal to 1 and 
minimum equal to 0 is selected: 

𝑂𝑖
1 = 𝑒𝑥𝑝 [− (

𝑥 − 𝑏𝑖

𝑎𝑖
)

2

] 

where ai and bi are the parameters that change the shapes of the membership function.   

Layer 2: Each node in this layer calculates the firing strength of a rule via multiplication: 

𝑂𝑖
2 = 𝑤𝑖 = 𝜇(𝑖)𝑖 ∙ 𝜇(𝑖)𝑖+1

Layer 3: Node i in this layer calculates the ratio of the i-th rule’s firing strength to the 
total of all firing strengths: 

𝑂𝑖
3 = 𝑤𝑖̅̅ ̅ =

𝑤𝑖

𝑤1 + 𝑤2
 (𝑖 = 1, 2) 

Layer 4: Node i in this layer computes the contribution of i-th toward the overall output, 
with the following node function: 

𝑂𝑖
4 = 𝑤𝑖̅̅ ̅𝑓 = 𝑤𝑖̅̅ ̅(p1 ∙ 𝑥 + 𝑞1 ∙ 𝑦 + 𝑞1 ∙ 𝑧 + 𝑟1)
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Layer 5: The single node in this layer computes the overall output as the summation of 
the contribution from each rule: 

𝑂𝑖
5 = Σ𝑤𝑖̅̅ ̅𝑓 =

Σ𝑤𝑖𝑓

Σ𝑤𝑖

To generate the Fuzzy Logic Estimator (FLE) presented in this work, a MATLAB ANFIS 
toolbox was used. The neural network was generated and trained, based on the input data 
specified previously. The network is trained and tested in order to prevent the learning 
algorithm from falling into a global minimum. 

The basic learning rule of ANFIS is the hybrid learning algorithm. This hybrid algorithm 
performs two phases at each learning stage; the first is a forward path learning technique 
that uses the least-squares learning technique, and the second is the back-propagation 
learning algorithm. 

The selection of training data is a crucial process. These data should contain all of the 
required representative features. In this case, different maneuvers are selected in order to 
characterize the linear and non-linear vehicle behavior. 

A total of 80 experiments were designed and carried out for J-turn maneuvers at different 
speeds (30 km/h, 65 km/h, 100 km/h and 130 km/h), steering angles in the clockwise and 
anti-clockwise direction (45 deg, 75 deg, 100 deg, 125 deg and 150 deg) and road friction 
coefficient (0.3 and 1). 

The number of generated FLE rules was 256. For the second input group, three Gaussian 
membership functions (gaussmf) were employed for each input. The number of generated 
FLE rules  was 216 and the NN were used to train ANFIS at 5 epochs. 

3.2. Kalman Filters 

The Kalman Filter is a mathematical tool that is used for stochastic  estimation from noisy 
sensor measurements. Measured vehicle motion data includes a substantial quantity of 
noise and also, there are  unobserved states in the system which must be estimated. For 
this reason different Kalman filtering techniques  have been employed in this work.  

The preliminary reconstruction of a sideslip angle from ANFIS-based observer is used as 
a “pseudo-measurement” in a Kalman Filter. This previous calculation presents the 
advantage  of being a simple method which considers the system non-linarites and which 
gives good estimations. 

3.2.1.  The  process to be  estimated 

The nonlinear system governed by the nonlinear stochastic difference equations can be 
written as: 

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢) + 𝑤𝑘

𝑦𝑘 = ℎ𝑘(𝑥𝑘, 𝑢) + 𝑣𝑘
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where xk represents the state vector, Vy, rT, u is the input, [], wk the process noise vector, 
yk the measurement vector and vk the measurement noise vector.  wk and vk are assumed 
to be white, zero mean and uncorrelated: 

𝑤𝑘~𝑁(0, 𝑄𝑘)

𝑣𝑘~𝑁(0, 𝑅𝑘)

where Q and R are the covariance matrices describing the second-order properties of the 
state and measurement noise. 

3.2.2. Linear Kalman Filter 

Assuming that the system of section 3.2.1 is linear, then: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢 + 𝑤𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 

where matrices A and B are obtained, a linear  tire model is considered: 

        
       

 

10
01

22






























C

IaCmCB

VICbCaVIbCaC

VmVbCaCmVCC
A

ZZff

XZZrfXZZrf

XXrfXrf

The LKF (Linear Kalman Filter) is summarized as the following recursive equations: 

1. The prediction of the state given by:

𝑥̃𝑘|𝑘−1 = 𝐴𝑥̃𝑘−1|𝑘−1 + 𝐵𝑢𝑘 

2. The predicted error covariance is computed as:

𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘−1|𝑘−1𝐴𝑇 + 𝑄

3. The Kalman gain is calculated by:

𝐾𝑥 = 𝑃𝑘|𝑘−1 + 𝐻𝑇[𝐻𝑃𝑘|𝑘−1𝐻𝑇 + 𝑅]
−1

4. The state estimation is updated with measurement yk:

𝑥̃𝑘|𝑘 = 𝑥̃𝑘|𝑘−1 + 𝐾𝑘[𝑦𝑘 − 𝐻𝑥̃𝑘|𝑘−1] 

5. The error covariance is updated:

𝑃𝑘|𝑘 = [𝐼 − 𝐾𝑘𝐻]𝑃𝑘|𝑘−1

3.2.3. Extended Kalman Filter 
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A Kalman Filter that linearizes  in relation to the current mean and covariance is referred 
to as an Extended Kalman Filter (EKF). 

The EKF is based on the assumption that a local linearization of the system may be a 
sufficient description of nonlinearity. Then, the system of section 3.2.1 can be described 
as: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑤𝑘 

𝑦𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 

where A is the Jacobian matrix of partial derivatives of f(·) with respect to x, that is: 

𝐴𝑖𝑗 =
𝜕𝑓𝑖

𝜕𝑥𝑖

(𝑥𝑘, 𝑢𝑘)

H is the Jacobian matrix of h(·) with respect to x, that is: 

𝐻𝑖𝑗 =
𝜕ℎ𝑖

𝜕𝑥𝑖

(𝑥𝑘, 𝑢𝑘)

and f(.) are the equations of section 2 assuming a non-linear tire model such as the Magic 
Formula of Pacejka [23].   

The EKF (Extended Kalman Filter) is summarized as the following recursive equations: 

6. The prediction of the state given by:

𝑥̃𝑘|𝑘−1 = 𝑓(𝑥̃𝑘−1|𝑘−1, 𝑢𝑘) 

7. The predicted error covariance is computed as:

𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘−1|𝑘−1𝐴𝑇 + 𝑄

8. The Kalman gain is calculated by:

𝐾𝑥 = 𝑃𝑘|𝑘−1 + 𝐻𝑇[𝐻𝑃𝑘|𝑘−1𝐻𝑇 + 𝑅]
−1

9. The state estimation is updated with measurement yk:

𝑥̃𝑘|𝑘 = 𝑥̃𝑘|𝑘−1 + 𝐾𝑘[𝑦𝑘 − ℎ(𝑥̃𝑘|𝑘−1)] 

10. The error covariance is updated:

𝑃𝑘|𝑘 = [𝐼 − 𝐾𝑘𝐻]𝑃𝑘|𝑘−1

3.2.4. Unscented Kalman Filter 

The basic premise behind the Unscented Kalman Filter (UKF) is that it is easier to 
approximate a Gaussian distribution than it is to approximate an arbitrary, nonlinear 
function. 
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The nonlinear system governed by the nonlinear, stochastic difference equations can be 
written as: 

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢) + 𝑤𝑘

𝑦𝑘 = ℎ𝑘(𝑥𝑘, 𝑢) + 𝑣𝑘

where xk represents the state vector, Vy, rT, u is the input, [], wk the process noise vector, 
yk the measurement vector and vk the measurement noise vector.  wk and vk are assumed 
to be white, zero mean and uncorrelated. 

Consider propagating a random variable x (dimension n) through a function, y. Assume x 
has mean 𝑥̃ and covariance Px. To calculate the statistics of y, a matrix X of 2n+1 sigma 
vectors Xi (with corresponding weight Wi) is formed: 

𝑋0 = 𝑥̃ 

𝑋𝑖 = 𝑥̃ + (√(𝑛 + 𝑘)𝑃𝑥𝑥)
𝑖

 𝑖 = 1, … … , 𝑛 

𝑋𝑖 = 𝑥̃ − (√(𝑛 + 𝑘)𝑃𝑥𝑥)
𝑖

 𝑖 = 𝑛 + 1, … … ,2𝑛 

and the associated weights: 

𝑊0
(𝑚)

= 𝑘 (𝑛 + 𝑘)⁄

𝑊𝑖
(𝑚)

= 1 2(𝑛 + 𝑘)⁄  𝑖 = 1, … … . ,2𝑛 

𝑊0
(𝑐)

= 𝑘 (𝑛 + 𝑘)⁄ + (1 − 𝛼2 + 𝛽)

𝑊𝑖
(𝑐)

= 1 2(𝑛 + 𝑘)⁄  𝑖 = 1, … … . ,2𝑛 

where  (√(𝑛 + 𝑘)𝑃𝑥𝑥)
𝑖
 is the i-th row of column of the matrix square root of (n+k)Pxx

and Wi is the weight which is associated with the i-th point. k is a scaling parameter and 
is given by: 

𝑘 = 𝛼2(𝑛 + 𝜀) − 𝑛

where  is the distribution of the sampling points around the state mean, 𝑥̃, and is usually 
set to a small positive value and ε is usually set to 0. Parameter β is used to incorporate 
prior knowledge of the distribution of  𝑥̃. 

The UKF algorithm can be applied by restructuring the state vector, process and 
observation models. The state vector is augmented with the process and noise terms to 
give an na=n+q dimensional vector: 

𝑋𝑘
𝑎 = [𝑋𝑘 𝑊𝑘]𝑇

The process model is rewritten as a function of 𝑋𝑘
𝑎:
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𝑋𝑘+1 = 𝑓[𝑋𝑘
𝑎 , 𝑈𝑘]

And the unscented transform uses 2na+1 sigma points to create: 

 The augmented state estimation:

𝑥̃𝑘|𝑘
𝑎 = (

𝑥̃𝑘|𝑘

0𝑞×1

) 

 The augmented covariance estimation:

𝑃𝑘|𝑘
𝑎 = (

𝑃𝑘|𝑘 𝑃(𝑋𝑊)𝑘|𝑘

𝑃(𝑋𝑊)𝑘|𝑘 𝑄
)

The UKF (Unscented Kalman Filter) is summarized as the following recursive equations: 

1. The set of sigma points, 𝑊𝑖
(𝑐) and 𝑊𝑖

(𝑚), are created and they are introduced to
the augmented system.

2. The transformed set is given by instantiating each point through the process
model:

𝑋𝑖,𝑘+1|𝑘 = 𝑓[𝑋𝑖,𝑘|𝑘
𝑎 , 𝑈𝑘]

3. The predicted mean is computed as:

𝑥̃𝑘+1|𝑘 = ∑ 𝑊𝑖
(𝑚)

∙ 𝑋𝑖,𝑘+1|𝑘
𝑎

2𝑛𝑎

𝑖=0

4. The predicted covariance is computed as:

𝑃𝑘+1|𝑘 = ∑ 𝑊𝑖
(𝑐)

∙ (𝑋𝑖,𝑘+1|𝑘 − 𝑥̃𝑘+1|𝑘) ∙ (𝑋𝑖,𝑘+1|𝑘 − 𝑥̃𝑘+1|𝑘)
𝑇

2𝑛𝑎

𝑖=0

5. Instantiate each of the prediction points through the observation model:

𝑌𝑖,𝑘+1|𝑘 = ℎ[𝑋𝑖,𝑘|𝑘
𝑎 , 𝑈𝑘]

6. The predicted observation is calculated by:

𝑦̃𝑘+1|𝑘 = ∑ 𝑊𝑖
(𝑚)

∙ 𝑌𝑖,𝑘+1|𝑘

2𝑛

𝑖=0

7. Since the observation noise is additive and independent, the innovation
covariance is:
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𝑃(𝜉ξ),𝑘+1|𝑘 = 𝑅 + ∑ 𝑊𝑖
(𝑐)

∙ (𝑌𝑖,𝑘+1|𝑘 − 𝑌̅𝑘+1|𝑘) ∙ (𝑌𝑖,𝑘+1|𝑘 − 𝑌̅𝑘+1|𝑘)
𝑇

2𝑛𝑎

𝑖=0

8. The cross correlation matrix is determined by:

𝑃(𝑋𝑌),𝑘+1|𝑘 = 𝑅 + ∑ 𝑊𝑖
(𝑐)

∙ (𝑋𝑖,𝑘+1|𝑘 − 𝑥̃𝑘+1|𝑘) ∙ (𝑋𝑖,𝑘+1|𝑘 − 𝑥̃𝑘+1|𝑘)
𝑇

2𝑛𝑎

𝑖=0

9. The filter gain is calculated by:

𝐾𝑘+1 = 𝑃(𝑋𝑌),𝑘+1|𝑘𝑃(𝜉ξ),𝑘+1|𝑘
−1

10. And the priori covariance:

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘−𝐾𝑘+1𝑃(𝜉ξ),𝑘+1|𝑘𝐾𝑘+1
𝑇

11. Finally, the state estimation is computed:

𝑥̃𝑘+1|𝑘+1 = 𝑥̃𝑘+1|𝑘 + 𝐾𝑘+1(𝑌𝑘 − 𝑌̅𝑘+1|𝑘) 

4. Results and discussion

The proposed observer algorithm, based on ANFIS and a Kalman Filter, presented in this 
work has been validated using a typical C-class hatchback car, available in the CarSim 
library, having 205/55 R16 tires. Table 1 shows the hatchback vehicle parameters such as 
mass, wheel base, tire radius, and moments of inertia. 

CarSim software is employed to test the effectiveness of the proposed algorithm [36]. Its 
use has become widespread as simulation software in the automotive industry as it 
combines traditional and modern multi-body vehicle dynamics, based on parametric 
modeling. This software also includes a three-part graphic database of a full-vehicle 
model, direction and speed control and external conditions, such as, road information, 
drag  and so on. 

In order to analyze the effect the sensor measurement  noises have on  the estimation of 
the sideslip angle, Gaussian noises with zero mean and variances of 0.01deg, 0.01 deg/s 
and 0.01 m/s2 and 0.01 km/h are added to  (steering angle), r (yaw rate), ay (lateral 
acceleration) and Vx (longitudinal velocity),  respectively, obtained from CarSim. 

The performance of the sideslip angle observer has been proven in maneuvers with 
different road conditions;  for example a double lane change maneuver of a vehicle 
travelling at 120 and 60 km/h on a road surface with friction coefficients of 0.3 and 0.85 
and a J-turn maneuver of a vehicle travelling at 120 km/h on a road surface with friction 
coefficients of 0.5 and 0.85 Proof of the effectiveness of the proposed model was 
performed by means of a quantitative analysis that takes into consideration the error for 
the different accomplished excitation conditions. The following equation has been used 
to represent the norm error as a function of time [37]: 
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t
tE 

where: 

   

T

estimatedCarSimt
0

22 

  

T

betaCarSim
0

22 

where βCarSim represents the measured sideslip angle obtained from CarSim, βestimated is 
the estimated sideslip angle and μbeta is the mean value of the sideslip angle obtained from 
CarSim during the period T. 

 shows the comparative results for the ANFIS-based observer (blue points) and 
ANFIS+UKF-based observer with lineal tire model (green points) for a double lane 
change  maneuver for a vehicle travelling at 120 km/h on a road surface of a friction 
coefficient of 0.85. This figure demonstrates that the observer based only on ANFIS, 
shows undesirable behavior when noisy input data are considered. However, if the 
sideslip angle obtained from ANFIS is considered as input of UKF, the new obtained 
sideslip angle fits better with the real sideslip angle (red points). The norm error for the 
ANFIS-based observer is 0.58. However, the norm error for the ANFIS+UKF-based 
observer is 0.31. In the case  of the yaw rate  only being considered as observed data, the 
norm error for UKF-based observer is 2.77 and for EKF-based observer is 2.26. 

 shows the results for a double lane change maneuver for a vehicle travelling at 120 km/h 
on a road surface of a friction coefficient of 0.3. The norm error for the ANFIS-based 
observer is 0.771. However, the norm error for the ANFIS+UKF-based observer is 0.72. 
In the case  of the yaw rate  only being considered as observed data, the norm error for 
the UKF-based observer is 7.122 and for the EKF-based observer it is 1.34. 

The effectiveness of the proposed method for a J-turn maneuver for a vehicle travelling 
at 120 km/h on a road surface of a friction coefficient of 0.85 (see ) is essentially similar 
to those obtained in the previous case. The norm error for the ANFIS-based observer is 
2.284. However, the norm error for the ANFIS+UKF-based observer is 1.93. In case that 
yaw rate was only considered as observed data, the norm error for the UKF-based 
observer is 2.77 and for the EKF-based observer it is 2.26.  

From the results, we can conclude that the proposed ANFIS+UKF-based observer obtains 
a better estimation of the sideslip angle. 

In order to demonstrate the improvement provided by the proposed observer, other 
Kalman-based observers with yaw rates and “pseudo-sideslip angles” as observer data 
were used for comparison purposes: 

 Linear Kalman Filter with lineal tire model (ANFIS+LKF).
 Extended Kalman Filter with non-lineal tire model (ANFIS+EKF).
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It is worth highlighting that the performance of the ANFIS-based sideslip angle estimator 
has also been proven in maneuvers with different road conditions (see Table 2 and Table 
3): 

 Double lane change (DLC) maneuver for a vehicle travelling at 120 km/h on a
pavement of a friction coefficient of 0.85.

 DLC maneuver for a vehicle travelling at 120 km/h on a pavement of a friction
coefficient of 0.3.

 DLC maneuver for a vehicle travelling at 60 km/h on a pavement of a friction
coefficient of 0.85.

 J-turn maneuver for a vehicle travelling at 120 km/h on a pavement of a friction
coefficient of 0.85

 J-turn maneuver for a vehicle travelling at 120 km/h on a pavement of a friction
coefficient of 0.5

The norm and maximum errors are provided in Table 2 and Table 3, respectively. The 
norm error supplies information about the state response and the maximum error in 
relation to  the transient response. It has been proven that a Kalman Filter is necessary to 
reduce the noisy measurements. Although all Kalman Filter-based observers have a good 
performance compared with ANFIS considered alone, the ANFIS+UKF-observer 
provides an equal or a better performance that the rest observers based on Kalman Filter 
(ANFIS+LKF and ANFIS+EKF). Similar results are obtained from observers based on 
ANFIS+LKF and ANFIS+EKF. In this case, the advantage of use the Extended Kalman 
Filter is not proved. 

Additionally, the proposed observer is evaluated under a slalom maneuver (Figure 7) 
with a vehicle speed defined by a ramp function profile (from 10 km/h to 120 km/h in 
120 seconds) and a sine sweep maneuver (Figure 8) at 80 km/h. Both tests are carried 
out on road surfaces of friction coefficients of 1, 0.5 and 0.2. Estimation results for 
slalom maneuver are shown in Figure 9 (a detail of results is shown in Figure 10). In 
Table 4 and Table 5, the norm and maximum errors are provided for slalom and sine 
sweep maneuvers, respectively. The proposed ANFIS+UKF-observer shows the 
smallest estimation error compared with the ANFIS-based and ANFIS+LKF-based 
observers. 
Finally, two DLC tests are performed with different mass and suspension in order to 
show the sensitivity of the estimation process considering parameter uncertainty. Both 
tests are carried out on road surfaces of a friction coefficient of 0.5 and 0.85, for a 
Double Lane Change test at 120 km/h. In the former case, it is considered an increase of 
225 kg corresponding a weight of 3 persons. In the latter case, the suspension of C-class 
hatchback car (which originally had an independent suspension designed for a big car) 
is changed by an independent suspension designed for a small car. Table 6 represents 
the results. The variations induced by mass change are low. This can be explained as in 
the vehicle model, the mass change in the denominator is partially compensated for the 
force change in the numerator, as it is indicated in [38]. Concerning the suspension 
change, the results are very similar. It's worth keeping in mind the fact that the simple 
vehicle models for lateral dynamics do not consider the suspension effect. The proposed 
ANFIS+UKF-based observer is not affected by these parameters uncertainties. 
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5. Conclusion

In this paper, the sideslip angle is estimated using a novel ANFIS+UKF estimator. The 
performance of recursive state estimation algorithms based on a Kalman Filter has been 
explored for sideslip angle estimation. The results indicate that the error in the estimation 
of sideslip angle decreases when a “pseudo-sideslip angle”, is considered as observed 
data in the Kalman Filter.  

The advantage of using an ANFIS-observer to calculate the “pseudo-sideslip angle” is the 
modeling of the non-linear vehicle dynamics, which requires sensor signals directly 
provided by vehicle sensors. The ANFIS-based estimator is better able to adapt in variable 
environments and learns by generalization. The Kalman Filter is suitable for reducing the 
noise  measurements. 

The model has been validated by means of a set of maneuvers that represent different 
driving and testing conditions. The ANFIS+UKF observer is more suitable for 
estimating the sideslip angle compared with other observers based on ANFIS and 
Kalman Filter such as Linear Kalman Filter (ANFIS+LKF) and Extended Kalman Filter 
(ANFIS+EKF). On the other hand, the proposed observer is not affected by parameter 
uncertainties such as suspension or vehicle mass.  

The proposed method has been proven by means of CarSim software, which is a 
widespread and validated software employed in the automotive industry. 
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Table 1. Vehicle parameters for the C-Class hatchback car 
Symbol Description Value Unit 

ms Sprung mass 1274 kg 
mu Unsprung mass 142 kg 
Ixx Roll inertia 606.1 kg·m2 
Iyy Pitch inertia 1523 kg·m2 
Izz Yaw inertia 1523 kg·m2 
a Distance from front tire to COG 1016 mm 
b Distance from rear tire to COG 1562 mm 

Rw Effective rolling radius 310 mm 
H Height of COG 540 mm 
T Wheel track 1539 mm 
Ks Steering ratio 17.5:1 - 
Cf Front tire cornering stiffness 125167 N/rad 
Cr Rear tire cornering stiffness 125167 N/rad 

Table 2. Error norms for sideslip angle estimators for Change Lane and J-turn maneuvers 
Et 

DLC at 120 km/h 
and friction 

coefficient of 
0.85 

DLC at 120 km/h 
and friction 

coefficient of 
0.3 

DLC at 60 km/h 
and friction 

coefficient of 
0.85 

J-turn at 120 
km/h and 

friction 
coefficient of 

0.85 

J-turn at 120 
km/h and 

friction 
coefficient of 

0.5 
ANFIS 0.58 0.771 0.679 2.284 2.43 
ANFIS+LKF 0.46 0.7 0.482 1.89 2.01 
ANFIS+EKF 0.46 0.7 0.48 1.89 2.01 
ANFIS+UKF 0.31 0.72 0.269 1.93 2.09 

Table 3. Maximum errors for sideslip angle estimators for Change Lane and J-turn maneuvers 
Emax (rad) 

DLC at 120 km/h 
and friction 

coefficient of 
0.85 

DLC at 120 km/h 
and friction 

coefficient of 
0.3 

DLC at 60 km/h 
and friction 

coefficient of 
0.85 

J-turn at 120 
km/h and 

friction 
coefficient of 

0.85 

J-turn at 120 
km/h and 

friction 
coefficient of 

0.5 
ANFIS 0.049 0.12 0.0354 0.04 0.171 

ANFIS+LKF 0.033 0.076 0.022 0.0363 0.106 
ANFIS+EKF 0.033 0.075 0.022 0.0363 0.1062 
ANFIS+UKF 0.016 0.032 0.016 0.022 0.019 

Table 4. Error norms and maximum error for a slalom test with a ramp speed 
Friction coefficient of 1 Friction coefficient of 0.5 Friction coefficient of 0.2 

Et Emax (rad) Et Emax (rad) Et Emax (rad) 

ANFIS 0.83 0.3 1.01 0.21 5.3 0.52 

ANFIS+LKF 0.69 0.13 0.85 0.14 4.3 0.46 

ANFIS+UKF 0.44 0.07 0.63 0.07 2.76 0.24 

Table 5. Error norms and maximum error for a sine sweep test with at 80 km/h 

Friction coefficient of 1 Friction coefficient of 0.5 Friction coefficient of 0.2 
Et Emax (rad) Et Emax (rad) Et Emax (rad) 

ANFIS 6.05 0.049 6.81 0.049 9.41 0.049 

ANFIS+LKF 4.13 0.03 4.63 0.030 6.40 0.030 

ANFIS+UKF 2.025 0.008 2.14 0.008 2.55 0.007 

Table
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Table 6. DLC test at 120 km/h, robustness to vehicle mass and suspension: error norms 
and maximum errors for sideslip angle ANFIS+UKF-based estimator  

 Friction coefficient of 0.85 Friction coefficient of 0.5 
Vehicle with 

initial 
conditions 

Increase of 
weight: 

m+225 kg 

Suspension of 
a small car 

Vehicle with 
initial 

conditions 

Increase of 
weight: 

m+225 kg 

Suspension of 
a small car 

Et 0.31 0.34 0.35 0.3 0.43 0.32 
Emax (rad) 0.016 0.016 0.016 0.016 0.016 0.016 
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