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 
Abstract— TMR is a very effective technique to mitigate SEU 

effects in FPGAs, but it is often expensive in terms of FPGA 
resource utilization and power consumption. For certain 
applications, Partial TMR can be used to trade off the reliability 
with the cost of mitigation. In this work we propose a new 
approach to build Partial TMR circuits for FPGAs using 
approximate logic circuits. This approach is scalable, with a fine 
granularity, and can provide a flexible balance between 
reliability and overheads. The proposed approach has been 
validated by the results of fault injection experiments and proton 
irradiation campaigns.  

Index Terms— Single Event Upset, Triple Modular 
Redundancy, FPGA, Approximate circuit, selective mitigation. 

I. INTRODUCTION 
PGAS are becoming increasingly attractive for space 
applications. In comparison with ASICs, they provide 

higher flexibility and lower cost, particularly for the low 
volume production which is characteristic of space 
applications. As technology progresses, new devices with 
increased resources and performance are becoming available. 
Unfortunately, FPGAs are susceptible to radiation-induced 
Single-Event Upsets (SEUs). Thus, SEU mitigation is 
generally required for applications that operate in a radiation 
environment [1]-[5].  

In SRAM-based FPGAs, SEUs can affect the configuration 
memory and provoke errors that remain until the device is 
reconfigured. A commonly used technique to remove 
configuration errors consists in the periodic refresh of the 
configuration data [6]. This technique is known as 
configuration scrubbing. New technologies provide increasing 
support for configuration scrubbing. For instance, Xilinx 7 
Series FPGAs include a module that can automatically check 
the configuration memory and correct errors [7]. However, 
scrubbing has significant error detection latency and therefore 
it cannot prevent temporary erroneous behaviour. For this 
reason, scrubbing is often combined with Triple Modular 
Redundancy (TMR) [1]-[5]. Support for the automatic 
application of TMR techniques is currently provided by some 
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tools, such as TMRTool from Xilinx [8] or BYU-LANL 
Partial TMR (BLTmr) tool [9]. 

Although TMR is a very effective mitigation technique, it is 
often expensive in terms of FPGA resource utilization and 
power consumption [4]. For applications that can tolerate 
some temporary misbehaviour, Partial TMR can be used to 
trade off the reliability with the cost of mitigation. In [3] and 
[4] an automatic solution for Partial TMR is proposed that is 
based on the concept of persistence. A persistent configuration 
bit is a sensitive configuration bit that will cause an error when 
upset that cannot be recovered by scrubbing, so that even after 
repairing persistent configuration bits through configuration 
scrubbing, the FPGA circuit does not return to normal 
operation. On the contrary, non-persistent bits imply some 
data loss, but the design returns to normal operation when the 
error is repaired through configuration scrubbing. Persistent 
bits can be found by topological analysis, looking for feedback 
structures. These feedback structures are associated to 
persistent bits and thus must be triplicated first. If resources 
allow, mitigation is applied to the non-persistent circuit 
structures to reduce the remaining design sensitivity.  

In this work we propose the use of approximate logic 
circuits [10] to implement Partial TMR in FPGAs. Given a 
logic circuit, an approximate logic circuit is a circuit that 
performs a possibly different but closely related logic 
function, so that it can be used for error detection or error 
masking where it overlaps with the original circuit. Then, 
Partial TMR can be implemented by voting among 
approximate logic circuits instead of exact copies of the 
original circuit. The goal is to find approximate logic circuits 
that cover the persistent or most critical errors and reduce 
mitigation on errors that are less critical to reduce resource 
utilization.  

The proposed approach is scalable, with a fine granularity, 
and can provide a flexible balance between reliability and 
overheads. In particular, an advantage of this approach is that 
it can selectively provide protection against unidirectional 
errors, i.e., errors that show up as a change of the output logic 
value from 0 to 1 or from 1 to 0. 

Approaches to build approximate logic circuits for partial 
mitigation of Single-Event Transients (SETs) in combinational 
circuits have been proposed in [10]-[16]. However, to the best 
of our knowledge this is the first time approximate logic 
circuits have been used for partial error mitigation in FPGAs, 
with the exception of the preliminary proposal presented in 
[21]. The proposed approach has been validated with a proton 
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irradiation experiment on an Artix-7 FPGA. In addition, fault 
injection campaigns have been carried out to elaborate on the 
analysis. The results show that Partial TMR using approximate 
logic circuits can be applied to significantly reduce the 
overhead without degrading the error mitigation for critical 
errors and even improving it with respect to conventional 
TMR techniques. 

This paper is organized as follows. Section II introduces 
approximate logic circuits and summarizes previous work on 
this topic. Section III describes the logic approximation 
techniques for FPGAs that have been developed in this work. 
Section IV describes the approach used to select 
approximations. Section V presents the experimental results. 
Finally, section VI summarizes the conclusions of this work. 

II. APPROXIMATE LOGIC CIRCUITS

Given a logic function G, a logic function G’ which 
correctly predicts the result of G for a fraction of its input 
space is called an approximate logic function with respect to 
G. Therefore, G’ can be used for partial error mitigation of G 
in those cases where both functions overlap. The interest of 
this idea lies in finding approximate functions with a good 
balance between overheads and protection against faults. 

When approximate logic circuits are used for fault-
tolerance, it is necessary to identify the overlapping cases for 
comparison. In general, an additional logic function can be 
used to explicitly mark such cases, which is referred as 
indicator function [12]. However, this approach requires that 
the indicator function is robust. A more convenient approach 
is to implicitly identify the overlapping areas by means of 
implication relationships between logic functions. 

A logic function F which satisfies the implication 
-is called an under-approximation or 1 ,ܩ  ܨ ,i.e ,ܩ ܨ
approximation with respect to G. Conversely, a logic function 
H is an over-approximation or 0-approximation of G if ܪ ܩ 
i.e. if ܩ  ܪ. These implication relationships are shown 
graphically in Fig. 1 [10], where the on-sets of the original and 
the approximate logic functions are represented. For all input 
vectors in the gray area, the original and the approximate 
functions produce the same result. Therefore, an error in any 
of the functions will be masked by the other two. The white 
area corresponds to input vectors for which one of the 
approximate logic functions does not produce a correct result. 
In this case, an error in any of the other two functions will not 
be masked.  

Fig. 1. Input space of the original function G, an under-approximation F, 
and an over-approximation H. 

Approximate logic functions that satisfy the implication 
relationships can be used to protect against faults in several 
ways, such as partial error detection by checking the 
implication relationship or partial error masking with a TMR-
like scheme [13]. 

Consider the schematic shown on Fig. 2(a). This is similar 
to TMR but using an over-approximation H and an under-
approximation F instead of exact replicas of the original 
circuit G. With this schematic, the circuit is protected against 
single faults as long as the three circuits give the same result, 
which is represented in Fig. 1 as the grey area. In comparison 
with conventional TMR, this schematic does not provide full 
coverage against single faults. However, if approximations are 
properly chosen, relevant resource savings can be obtained 
with a low impact on the error masking capabilities. In 
addition, the implication relationship ܨ  ܩ  ܪ guarantees 
that the correct result is obtained in the absence of faults, 
because at least one of the two approximations agrees with the 
original circuit for every input vector. This schematic can be 
extended for sequential circuits as shown in Fig. 2(b). 
Approximations of the combinational part of the circuit are 
generated, and then both outputs and flip-flops are voted. It 
must be noted that voters can be affected by faults and 
therefore they should be hardened either by design or by using 
triple voters. 

(a) 

(b) 

Fig.2. TMR schemes using approximate circuits for (a) a combinational 
circuit and (b) a sequential circuit.  

Several methods have been proposed to generate 
approximations for a given logic circuit. Most of these 
methods try to approximate the implementation of logic 
functions using synthesis techniques [10], [11], [12], [15], 
[16]. Synthesis techniques depart from a functional model of 
the original circuit, such as a Binary Decision Diagram (BDD) 
[10], and apply synthesis algorithms to simplify the logic 
function while relaxing the constraint of matching the original 
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function. In particular, references [11] and [12] use cube 
elimination based on the Observability Don’t Cares (ODCs), 
[15] uses two-level minimization and [16] uses boolean 
factoring. A disadvantage of synthesis-based approximation 
techniques is that the error mitigation reduction caused by the 
approximation transformations is difficult to estimate, because 
approximation is based on functional considerations. As a 
result, these techniques generally offer limited scalability. 

An alternative approach to synthesis techniques is the line 
substitution technique [13], [14]. This technique departs from 
a technology-dependent network (netlist) of the original circuit 
and produces approximations by substituting some of the lines 
of the circuit with logic constants. Then, the logic originally 
used to implement the substituted lines is removed. In this 
case, each line substitution can be associated to a line stuck-at 
fault and the probability of the unprotected input combinations 
can be estimated through fault simulation. Another advantage 
of the line substitution technique is that, under certain 
conditions that can be automatically checked [13], each line 
substitution is guaranteed to produce either an under-
approximation or an over-approximation, so that the 
implication relationships can be preserved by construction.  

III. APPROXIMATE LOGIC CIRCUITS IN FPGAS

In this work, we have adapted the line substitution 
technique [13] for the case of FPGA circuits. Ideally, the 
internal structure of the configuration memory should be taken 
into account to guide the approximation process and to 
evaluate the impact of each approximation in the amount of 
essential bits. However, as this information is not generally 
available to the average designer, our approach is based on the 
netlist structure.  

In a FPGA, the combinational circuit structure is typically 
composed of Look-Up Tables (LUTs). A LUT is a small 
memory that implements a logic function of its inputs, 
typically up to 6 inputs in modern FPGA technologies. 

In this context, the application of the line substitution 
technique requires special attention in the sense of which logic 
transformations are performed to generate approximations. In 
particular, the most interesting line substitutions are those that 
effectively reduce the number of LUTs in the circuit, either by 
eliminating LUTs or by merging contiguous LUTs. The 
contrary will result in a degradation of the logic function of 
the circuit without achieving any benefits in terms of resource 
utilization. Reducing the size of a LUT, by removing some of 
its inputs, may also contribute to reduce the interconnection 
needs and the associated configuration bits. Eventually, when 
the input or the output of a flip-flop is substituted by a 
constant, the flip-flop can be removed and the voting logic can 
also be simplified. 

To remove a LUT, we can set the output of the LUT to a 
logic constant. The result of this transformation can be 
analyzed using Shannon’s expansion. Let G be the function 
implemented by a LUT and x one the inputs to the LUT. Using 
Shannon’s expansion formula, we can express 

ܩ ൌ ݔ௫̅̅ܩ ൅ ௫xܩ (1)

where ܩ௫̅ and ܩ௫ are the cofactors of G with respect to x.  
In Boolean Algebra, the classical way to reduce a logic 

function is to use the consensus and smoothing functions: 

ܨ ൌ  ௫ܩ௫̅ܩ (2) 

ܪ ൌ ௫̅ܩ ൅  ௫   (3)ܩ

It is easy to demonstrate that F is an under-approximation 
of G, because F = 1 => ܩ௫ = ܩ௫̅ = 1 => G = 1. Similarly, H 
is an over-approximation of G, because H = 0 => ܩ௫ = ܩ௫̅ = 
0 => G = 0. The consensus and smoothing functions for a 
LUT can be easily computed by simple operations on its truth 
table.  

Fig. 3 shows an example involving two LUTs. To remove 
LUT1, we can approximate LUT2 on input x. Cofactors and 
approximation transformations can be easily computed on the 
truth table of LUT2, as shown in Fig. 3(b). The cases for 
which F and H differ from the original function are 
highlighted. It can be clearly seen that ܩ௫̅ ൅ -௫ is an overܩ
approximation, as it covers the on-set of G, and ܩ௫̅ܩ௫ is an 
under-approximation, as it covers the off-set of G.  

(a) 

(b) 
Fig. 3. LUT approximation example: a) Structure of under-approximation 

and over-approximation; b) Truth tables 

Alternatively, the approximation can be performed on any 
of the inputs of LUT1 or LUT2. If one of the inputs of LUT1 
is removed, then LUT1 becomes a single-input LUT that can 
be merged with LUT2 without increasing the number of inputs 
of LUT2. If the inputs c or d of LUT2 are removed, then 
LUT1 and LUT2 can be combined into a single 3-input LUT.  

A. Relation with stuck-at faults 
The next step is to evaluate the effects of the 

approximations in the error correction capabilities. When an 
approximation is taken, the approximate circuit differs from 
the original circuit for some input vectors. For these input 

LUT2
LUT1

a

b
x

d
c

F
c

d

H
c

d

c d F
0 0 0
0 1 0
1 0 1
1 1 0

c d H
0 0 1
0 1 0
1 0 1
1 1 1

x c d G
0 0 0 0 0 1 0 1
0 0 1 0 0 0 0 0
0 1 0 1 1 1 1 1
0 1 1 1 1 0 0 1
1 0 0 1 0 1 0 1
1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 1
1 1 1 0 1 0 0 1

GG xxGx GG xx Gx

3



vectors, the Partial TMR circuit is unprotected. The 
probability of unprotection can be analyzed by relating the 
difference to stuck-at faults. 

To show the relationship between approximation and stuck-
at faults, we start with the particular case of LUTs that 
implement unate functions. A function is said to be unate if 
one of the cofactors is covered by the other. More precisely, a 
function G is positive unate in x if ܩ௫̅ ⊆  ௫ and negative unateܩ
if ܩ௫ ⊆  ௫. Otherwise, the function is said to be binate. Unateܩ
functions have many interesting properties, among them, a 
positive (negative) unate function can have an expression in 
which x only appears in uncomplemented (complemented 
form).  

For a unate function, the under-approximation and over-
approximation functions coincide with the cofactors. For a 
positive unate function, ܩ௫̅ ⊆  ௫̅ܩ = ௫ܩ௫̅ܩ = ௫ and therefore Fܩ
and H = ܩ௫̅ ൅  ௫. Similarly, for a negative unateܩ = ௫ܩ
function we have F = ܩ௫ and H = ܩ௫̅.  

From these results, we can easily see that the result of 
approximating a function G for a variable x is equivalent to 
forcing the variable x to a logic constant value, 0 or 1. In the 
case of a positive unate function, the under-approximation is 
obtained by forcing x = 0 and the over-approximation is 
obtained by forcing x = 1. Thus, the analysis of the differences 
between the approximate and the original circuit is related to 
the faults x stuck-at 0 or x stuck-at 1, respectively. The 
probability that the approximate circuit differs from the 
original circuit is the probability of the input vectors that test 
the associated stuck-at fault.  

In the general case of a binate function, any expression of 
the function will contain x in both uncomplemented and 
complemented form. However, the approximation can also be 
associated to stuck-at faults. Shannon’s expansion formula 
separates the contribution of the input x in complemented and 
uncomplemented form, so that x can be represented in the 
logic circuit by two lines ݔ଴ (complemented) and ݔଵ 
(uncomplemented). In addition, let us extend Shannon’s 
expansion formula (1) by adding the redundant consensus 
term F = ܩ௫̅ܩ௫ 

ܩ ൌ ଴തതതݔ௫̅ܩ ൅ ଵݔ௫ܩ ൅  ௫ܩ௫̅ܩ (4) 

If we force ݔ଴ = 0 and ݔଵ = 1 in this expression, we obtain 
G = ܩ௫̅ ൅ ௫ܩ ൅  ௫ = H. Thus, the over-approximate circuitܩ௫̅ܩ
is related to the union of the faults ݔ଴ stuck-at 0 and ݔଵ stuck-
at 1. Note that the sets of test vectors for ݔ଴ stuck-at 0 and ݔଵ 
stuck-at 1 are disjoint, because they require different values at 
x. Therefore, the probability that the approximate circuit
differs from the original circuit is the sum of the probabilities 
of the input vectors that test the associated stuck-at faults 
Analogously, if we force ݔ଴ = 1 and ݔଵ = 0 in this expression, 
we obtain G = ܩ௫̅ܩ௫ = F and the under-approximate circuit is 
related to the union of the faults ݔ଴ stuck-at 1 and ݔଵ stuck-at 
0.  

Once the relationship between approximations and stuck-at 
faults has been established, we can use a stuck-at fault 
simulator to evaluate the quality of the approximations. To 
this purpose, the original LUT-based netlist is transformed 

into a logic netlist using the extended Shannon’s expansion 
expression (4) for binate functions. Fig. 4 shows this 
representation for the example in Fig. 3. In this representation, 
we simulate the stuck-at faults at the inputs of all LUTs, 
including the complemented and uncomplemented lines for 
binate inputs. The quality of each approximation is measured 
by counting the number of clock cycles for which the 
associated stuck-at faults are detected. In this work we have 
used the stuck-at fault simulator HOPE [17] for this purpose. 
For instance, the over-approximation of LUT2 for input c is 
associated to the fault c stuck-at 1 because LUT2 is positive 
unate on c. On the other hand, to evaluate the effect of 
removing input x and hence LUT1, we sum the number of 
clock cycles for which the faults ݔ଴ stuck-at 0 and ݔଵ stuck-at 
1 are detected (over-approximation) or the faults ݔ଴ stuck-at 1 
or ݔଵ stuck-at 0 are detected (under-approximation).  

Fig. 4. Logic representation of the example of Fig. 3  

IV. SELECTING APPROXIMATIONS

Identifying the most critical or persistent bits and the circuit 
primitives affected by them is a difficult task. Fault injection 
can be used for this purpose, as proposed in [3]. Although 
there are some known differences between the fault-injection 
method and a radiation testing environment, it is shown in [3] 
that a good estimate of the dynamic cross section can be 
obtained by fault injection with a careful test design. However, 
this approach is very time consuming. In practice, the authors 
reason that circuit primitives that are part of feedback 
structures within the design contribute to the persistent error 
behaviour, and use a tool to identify the feedback structures 
[4].  

In our case, we use a probabilistic approach to identify the 
most critical circuit lines. Our approach is based on analyzing 
the number of clock cycles for which the faulty circuit 
response differs from the correct one. Then, we consider a line 
as critical if a fault in the line produces a large amount of 
differences. The rationale of this criticality metric is that a 
fault that produces a very different output response implies a 
large data loss and most likely means the circuit functionality 
cannot be recovered. Conversely, an error that produces an 
almost correct response involves some data loss but the circuit 
can be considered as being operational.  

Fig. 5 shows the results of this analysis for the circuit that 
has been used as a test case in the experiments. For each line 
in the circuit, we measured the effect of substituting it with a 
constant value, 0 or 1. As shown in the previous section, this 
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effect can be associated to permanent stuck-at faults. We used 
the stuck-at fault simulator HOPE [17] to count the number of 
clock cycles for which the circuit response is wrong. The 
results are shown in Fig. 5 in increasing order of the proposed 
criticality metric. It can be seen that there is an abrupt change 
around 25% of the faults. The faults on the left can be 
considered as non-critical and the faults on the right as critical. 
In order to establish a threshold, we have considered a fault as 
critical if it produces an erroneous response for more than 
15% of the clock cycles in a representative testbench. This 
threshold can be changed according to the reliability 
requirements of the application. For the particular threshold 
used, we have verified that the non-critical faults actually 
belong to feed-forward logic. Therefore, this criterion 
coincides with the feedback criterion proposed in [4] for the 
studied circuit. In any case, the approximation method can use 
other criticality criteria. 

Fig. 5. Criticality estimation for the test case 

After a classification of criticality is obtained, partial 
mitigation can be achieved by approximating the less critical 
lines first. The more lines are approximated, the lower the 
mitigation and the smaller the approximate circuits. Thus, the 
solution can be scaled with fine granularity to trade off the 
error mitigation with the resource utilization. 

When TMR is used for partial mitigation, the choices for 
each component are to include it in the mitigated section or 
not. However, approximate logic circuits can consider an 
intermediate solution for unidirectional errors. For instance, an 
error that changes the logic value of a line from 0 to 1 may be 
critical while the opposite may be not. In such a case, we can 
replace the line by a constant 0 in just one of the approximate 
circuits. The overall effect is equivalent to having a non-
critical unidirectional hardwired error in one of the three 
subcircuits that are voted.  

A circuit that contains a unidirectional approximation still 
works correctly in the absence of SEUs because there are 
always two correct copies for voting. The circuit is not 
protected for non-critical errors in the same direction, because 
it is enough to have such an error in any of the other two 
copies for the circuit to fail. However, the circuit is still 
protected for critical errors in the opposite direction. As a 
matter of fact, for such errors to be unmasked it is necessary 
that the two correct copies have errors in the same critical 

direction. Critical errors are less likely to happen than in the 
TMR circuit, because in the TMR circuit an error is observed 
when two out of the three copies fail. Thus, the overall effect 
is a shift of the critical cross-section to the non-critical cross-
section with respect to the TMR circuit. 

Fig. 6 shows the flow diagram to obtain the final circuit 
using the proposed approach. First, a logic representation of 
the original circuit is obtained and stuck-at fault simulation is 
performed using a typical testbench. The results of fault 
simulation are used as a criterion to estimate the criticality of 
approximations and to select the less critical ones. Then, the 
original circuit is divided into the combinational components, 
mainly formed by LUTs, and sequential components (FFs). 
From the combinational component we generate an under-
approximation and an over-approximation circuit based on the 
previous criticality estimation. The sequential components are 
hardened using TMR. Then, all the components are merged 
following the schematic in Fig. 2. This circuit is resynthesized, 
to optimize the logic resulting from the approximation 
process. Appropriate synthesis directives are used to avoid 
removing the redundant logic. With the exception of the stuck-
at fault simulation, this process is performed automatically 
with in-house software tools. This approach can be extended 
to include other FPGA components, such as memories or DSP 
slices, which may require to be dealt with in a specific way. 

Fig. 6. Flow Diagram of the proposed approximate TMR approach. 

V. EXPERIMENTAL RESULTS 
The proposed approach has been tested with the B13 

benchmark from the ITC’99 set. This benchmark was selected 
for compliance with current efforts towards a common set of 
benchmarks that can be used for comparison among different 
experiments [18]. It also includes a set of pre-generated input 
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vectors that were designed by the ATPG community to fully 
cover the functionality of the circuit. 

Firstly, we implemented a TMR version of B13 by 
triplicating the logic and using triple voters at the output of 
each flip-flop. The outputs of the circuit were also voted using 
single voters. Inputs and clock lines were not triplicated for 
the sake of simplicity. From this TMR design, we 
implemented four different Partial TMR designs (A1 to A4) 
using approximate circuits, where A1 has the lowest number 
of approximated lines and A4 the highest. Approximations 
were based on the results of the criticality analysis described 
in the previous section. As a general target, we considered 
only approximations that produce less than 15% erroneous 
responses in the execution of the full set of input stimuli. 
Then, for each design, lines with a percentage of errors below 
a selected threshold were replaced by constants. Namely, we 
used thresholds of 0.05%, 0.2%, 2% and 15% for A1 to A4, 
respectively. For the sake of comparison, we also considered a 
TMR design using single voters (SV) and the original 
unmitigated design (ORIG) of B13.  

The synthesis results for all considered designs, as given by 
Xilinx Vivado tool, are shown in Table I. The designs are 
ordered from the most protected (TMR) to the less protected 
(ORIG). The last two columns show the relative use of 
resources with respect to the TMR version. 

TABLE I. SYNTHESIS RESULTS 

Design #FFs #LUTs %FFs %LUTs 
TMR 135 298 100% 100% 
A1 127 287 94% 96% 
A2 119 276 88% 93% 
A3 117 265 87% 89%
A4 115 261 85% 88%
SV 135 213 100% 71% 
ORIG 45 53 33% 18% 

The experiments were run on an Artix7 XC7A100T FPGA 
from Xilinx. As the B13 benchmark is rather small, we 
included 24 instances of each design in the same FPGA. 
Synthesis options were used to ensure instances of each circuit 
version were not optimized away. However, the placement 
was not constrained. All designs run concurrently using the 
same input stimuli, which are the ITC’99 proposed input 
stimuli. We also included a small checker circuit to detect if 
any of the design copies produces an error or if the percentage 
of errors in a single execution of the full set of input stimuli is 
greater than the selected target of 15%. The checkers and the 
interface to the host are tripled to reduce the impact of errors 
in these modules on the measures. The complete circuit, 
including all copies of all designs, used 66% of the LUTs and 
15% of the flip-flops of the FPGA device. 

A. Radiation test results 
Radiation ground testing has been carried out in CNA 

facilities (Centro Nacional de Aceleradores, Sevilla, Spain). 
We used a cyclotron, capable of accelerating protons and 
deuterons up to 18 MeV. Although it was originally intended 

for radioisotope production in medical applications, an 
external beam allows testing electronic circuits in either 
vacuum or open air.  

FPGA test has been performed with protons in open air, 
with 18 MeV energy and flux range between 108 to 109 p/cm2s. 
A single device has been exposed, as shown in Table II. The 
device was allowed to run without scrubbing or reconfiguring 
it until we observed most of the design versions had a critical 
error. Then it was fully reconfigured and checked again. In 
Run 3, with the largest fluence, 120 reconfiguration cycles 
were completed. 

TABLE II. XC7A100T IRRADIATION TEST 

Run Energy 
(MeV) 

Flux 
(p/cm2s)   

Fluence 
(p/cm2) 

1 18 108 1.231011 
2 18 2.5108 11.0 1011 
3 18 109 50.31011 
Total  62.531011 

Fig. 7 shows a comparison of the Mean Time To Failure 
(MTTF) obtained with the largest fluence. The results for 
lower fluences are similar, but they are not reported here 
because the number of collected errors is small and the 
confidence intervals are wide. Cross-section can be obtained 
as the inverse of the product of MTTF times the flux 
(109p/cm2s). For each version, the non-critical MTTF was 
measured as the mean time until the first error is detected in 
any of the 24 design copies. The critical MTTF was measured 
as the mean time until the first critical error is detected, i.e., 
until the percentage of erroneous responses in a single 
execution of the full set of input stimuli is greater than the 
selected target of 15%. The confidence intervals for 95% 
confidence level are also displayed in the figure. 

Fig. 7. MTTF for the tested design versions.  

As expected, the original unmitigated design shows a low 
MTTF in comparison with the mitigated versions. The critical 
and non-critical MTTF are very close, because most errors 
produce a critical effect. The version using single voters 
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improves MTTF with respect to the original version by a 
factor of approximately 2.4. For the full and all the Partial 
TMR versions, the non-critical MTTF is similar and between 
6 to 8 times greater than that of the original design. Even 
though some degradation of the non-critical MTTF can be 
expected for the approximate logic circuits, the differences in 
the results are small and some Partial TMR versions can even 
be better than TMR. On the other hand, the results clearly 
show that the MTTF for critical errors is significantly 
improved in the Partial TMR versions. This behaviour can be 
explained by the reduction in size produced by the use of 
approximate logic circuits in combination with the shift of the 
critical cross-section to the non-critical cross-section that can 
be achieved by unidirectional approximation.  

B. Fault injection results 
To complement the analysis, we have also performed 

several fault injection campaigns with the same circuit 
versions and the same FPGA. Fault injection was implemented 
using the Soft Error Mitigation (SEM) Core from Xilinx [7]. 

It must be noted that fault injection results may not 
accurately match radiation results due to several reasons [9], 
[19], [20]. First of all, fault injection must rely on the 
mechanisms provided by the manufacturer for the access to 
the configuration memory. The documentation about such 
mechanisms is generally very limited, so that we cannot 
guarantee a fair fault injection campaign. In particular, fault 
injection cannot emulate changes in the internal proprietary 
state of an FPGA (i.e., internal registers or global logic for 
managing the device). On the other hand, the SEM Controller 
is implemented in the FPGA and it can be affected by the 
injected faults. Finally, we have only injected single bit errors 
in the configuration memory and assume that all configuration 
bits are equally vulnerable, which may not be true in real 
devices. In spite of these limitations, fault injection plays a 
very important part in evaluating and validating FPGA designs 
for use in radiation environments [19]. We will show here that 
fault injection results for the proposed approach follow a 
pattern similar to the one of radiation test results.  

To implement fault injection, we added the SEM Controller 
to the same FPGA design used for radiation testing. Fault 
injection was monitored through the serial interface provided 
by the SEM Controller. This interface allowed us to observe 
the internal state of the SEM Controller and inject faults. The 
controller can also correct the internal configuration memory 
errors. Because faults are injected randomly in the 
configuration memory of the FPGA, the SEM Controller may 
fail. However, this situation can be detected through the serial 
interface. When an error cannot be corrected or we observe 
abnormal operation of the SEM Controller through the serial 
interface, the FPGA is fully reconfigured and the fault 
injection process is resumed. 

In the first fault injection campaign, we injected faults in 
random addresses of the configuration memory at regular time 
intervals. A sufficiently large time interval (12.2 ms) was 
selected to allow for the complete execution of the full set of 
input stimuli (7640 input vectors, 0.15 ms). Following the 

same approach as in the radiation testing experiment, the 
device was allowed to run without scrubbing or reconfiguring 
it until we observed most of the design versions had a critical 
error or the SEM Controller failed. Then the device was fully 
reconfigured and checked again. 

Fig. 8 summarizes the results obtained with this fault 
injection campaign. We run 215 reconfiguration cycles with a 
total of 389,764 injected faults. As as similar metric to MTTF, 
we have used the ratio of injected faults to failures, called here 
MIFTF (Mean Injected Faults To Failure). As in the radiation 
test results, the difference between the non-critical MIFTF and 
the critical MIFTF is small for the original unprotected design 
and for the design using single voters, while the protected 
versions (TMR and A1 to A4) clearly improve the critical 
MIFTF. The Partial TMR versions show similar non-critical 
MIFTF to the full TMR version but the critical MIFTF is 
generally improved.  

Fig. 8. MIFTF for the tested design versions using fault injection without 
error correction. 

In a second fault injection campaign we used the error 
correction capabilities of the SEM Controller. In this case, we 
injected a single fault in a random address of the configuration 
memory, waited for sufficient time to make sure the full set of 
input stimuli has been executed and then let the SEM 
Controller attempt to correct the injected fault. This procedure 
is repeated until the SEM Controller reports an uncorrectable 
error or the SEM Controller itself fails. Then, the FPGA is 
fully reconfigured before continuing the fault injection 
campaign. 

The SEM Controller supports three different error 
correction modes [7]:  

 Repair: ECC algorithm-based correction
 Enhanced Repair: ECC and CRC algorithm-based

correction
 Replace: Data reload based correction

In our fault injection experiments we used the Enhanced 
Repair mode, because it provides higher error correction 
capabilities, namely correction of configuration memory 
frames with single-bit errors or double-bit adjacent errors. The 
Replace mode supports correction of configuration memory 
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frames with arbitrary errors, but requires partial 
reconfiguration of the FPGA. 

The results for the fault injection campaign using error 
correction are shown in Fig. 9. In this campaign we injected 
75,620 faults with a time interval of 37.4 ms between faults in 
86 fault injection cycles. In this case we can see that the non-
critical MIFTF decreases as the protection for non-critical 
errors decreases from TMR to A4. On the other hand, the 
critical MIFTF is similar in all these circuit versions. This is 
the expected behaviour, because these versions differ in the 
protection for non-critical errors but keep a similar protection 
for critical errors. 

Comparing the results with and without error accumulation, 
shown in Fig. 8 and Fig. 9, respectively, we can see that the 
full TMR version produces the best MIFTF when 
accumulation is prevented by error correction (Fig. 9), while 
this may not be true with accumulation (Fig. 8). The full TMR 
version has higher protection for non-critical errors at the 
expense of increasing the size of the circuit. The additional 
size increases the chances of error accumulation, for which the 
circuit is not protected, resulting in a smaller critical MIFTF. 
Thus, size plays a significant role when error accumulation is 
possible. By reducing the protection for non-critical errors, the 
approximate circuit versions can reduce the size and improve 
the critical MIFTF. 

Fig. 9. MIFTF for the tested design versions with error correction. 

VI. CONCLUSIONS

The application of full TMR to FPGA designs often results 
in very large overheads in resource utilization and, 
consequently, power consumption. For applications that can 
tolerate some temporary misbehaviour, Partial TMR can be 
used to trade off the reliability with the cost of mitigation. 

In this work we have proposed a new approach to build 
Partial TMR circuits for FPGAs using approximate logic 
circuits. Experimental results demonstrate that this approach 
can provide protection for critical errors at lower hardware 
cost than full TMR. Moreover, it can provide higher protection 
than full TMR if errors are not corrected and may accumulate. 
For the case study used in the experiments, up to 15% of 
resources could be saved while the MTTF for critical errors 

could be improved by 57%. 
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