
This is a postprint version of the following published document:

Sánchez-Clemente, A.J., Entrena, L., García-Valderas, M. (2016). Partial TMR in FPGAs Using
Approximate Logic Circuits. IEEE Transactions on Nuclear Science, Vol. 63, Iusse 4, pp.
2233-2240.

DOI: 10.1109/TNS.2016.2541700

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

http://dx.doi.org/10.1109/TNS.2016.2541700


Abstract— TMR is a very effective technique to mitigate SEU

effects in FPGAs, but it is often expensive in terms of FPGA
resource utilization and power consumption. For certain
applications, Partial TMR can be used to trade off the reliability
with the cost of mitigation. In this work we propose a new
approach to build Partial TMR circuits for FPGAs using
approximate logic circuits. This approach is scalable, with a fine
granularity, and can provide a flexible balance between
reliability and overheads. The proposed approach has been
validated by the results of fault injection experiments and proton
irradiation campaigns.

Index Terms— Single Event Upset, Triple Modular
Redundancy, FPGA, Approximate circuit, selective mitigation.

I. INTRODUCTION
PGAS are becoming increasingly attractive for space
applications. In comparison with ASICs, they provide

higher flexibility and lower cost, particularly for the low
volume production which is characteristic of space
applications. As technology progresses, new devices with
increased resources and performance are becoming available.
Unfortunately, FPGAs are susceptible to radiation-induced
Single-Event Upsets (SEUs). Thus, SEU mitigation is
generally required for applications that operate in a radiation
environment [1]-[5].

In SRAM-based FPGAs, SEUs can affect the configuration
memory and provoke errors that remain until the device is
reconfigured. A commonly used technique to remove
configuration errors consists in the periodic refresh of the
configuration data [6]. This technique is known as
configuration scrubbing. New technologies provide increasing
support for configuration scrubbing. For instance, Xilinx 7
Series FPGAs include a module that can automatically check
the configuration memory and correct errors [7]. However,
scrubbing has significant error detection latency and therefore
it cannot prevent temporary erroneous behaviour. For this
reason, scrubbing is often combined with Triple Modular
Redundancy (TMR) [1]-[5]. Support for the automatic
application of TMR techniques is currently provided by some

This work was supported in part by the Spanish Ministry of Economy and
Competitiveness under contract ESP2015-68245-C4-1-P.

A. J. Sánchez-Clemente, L. Entrena and M. García-Valderas are with the
University Carlos III of Madrid, Electronic Technology Department, Avda.
Universidad, 30, Leganes (Madrid), Spain. (e-mails: ajscleme@ing.uc3m.es,
entrena@ing.uc3m.es and mgvalder@ing.uc3m.es)

tools, such as TMRTool from Xilinx [8] or BYU-LANL
Partial TMR (BLTmr) tool [9].

Although TMR is a very effective mitigation technique, it is
often expensive in terms of FPGA resource utilization and
power consumption [4]. For applications that can tolerate
some temporary misbehaviour, Partial TMR can be used to
trade off the reliability with the cost of mitigation. In [3] and
[4] an automatic solution for Partial TMR is proposed that is
based on the concept of persistence. A persistent configuration
bit is a sensitive configuration bit that will cause an error when
upset that cannot be recovered by scrubbing, so that even after
repairing persistent configuration bits through configuration
scrubbing, the FPGA circuit does not return to normal
operation. On the contrary, non-persistent bits imply some
data loss, but the design returns to normal operation when the
error is repaired through configuration scrubbing. Persistent
bits can be found by topological analysis, looking for feedback
structures. These feedback structures are associated to
persistent bits and thus must be triplicated first. If resources
allow, mitigation is applied to the non-persistent circuit
structures to reduce the remaining design sensitivity.

In this work we propose the use of approximate logic
circuits [10] to implement Partial TMR in FPGAs. Given a
logic circuit, an approximate logic circuit is a circuit that
performs a possibly different but closely related logic
function, so that it can be used for error detection or error
masking where it overlaps with the original circuit. Then,
Partial TMR can be implemented by voting among
approximate logic circuits instead of exact copies of the
original circuit. The goal is to find approximate logic circuits
that cover the persistent or most critical errors and reduce
mitigation on errors that are less critical to reduce resource
utilization.

The proposed approach is scalable, with a fine granularity,
and can provide a flexible balance between reliability and
overheads. In particular, an advantage of this approach is that
it can selectively provide protection against unidirectional
errors, i.e., errors that show up as a change of the output logic
value from 0 to 1 or from 1 to 0.

Approaches to build approximate logic circuits for partial
mitigation of Single-Event Transients (SETs) in combinational
circuits have been proposed in [10]-[16]. However, to the best
of our knowledge this is the first time approximate logic
circuits have been used for partial error mitigation in FPGAs,
with the exception of the preliminary proposal presented in
[21]. The proposed approach has been validated with a proton

Partial TMR in FPGAs using Approximate
Logic Circuits

A. J. Sánchez-Clemente, L. Entrena, M. García-Valderas

F

1

irradiation experiment on an Artix-7 FPGA. In addition, fault
injection campaigns have been carried out to elaborate on the
analysis. The results show that Partial TMR using approximate
logic circuits can be applied to significantly reduce the
overhead without degrading the error mitigation for critical
errors and even improving it with respect to conventional
TMR techniques.

This paper is organized as follows. Section II introduces
approximate logic circuits and summarizes previous work on
this topic. Section III describes the logic approximation
techniques for FPGAs that have been developed in this work.
Section IV describes the approach used to select
approximations. Section V presents the experimental results.
Finally, section VI summarizes the conclusions of this work.

II. APPROXIMATE LOGIC CIRCUITS

Given a logic function G, a logic function G’ which
correctly predicts the result of G for a fraction of its input
space is called an approximate logic function with respect to
G. Therefore, G’ can be used for partial error mitigation of G
in those cases where both functions overlap. The interest of
this idea lies in finding approximate functions with a good
balance between overheads and protection against faults.

When approximate logic circuits are used for fault-
tolerance, it is necessary to identify the overlapping cases for
comparison. In general, an additional logic function can be
used to explicitly mark such cases, which is referred as
indicator function [12]. However, this approach requires that
the indicator function is robust. A more convenient approach
is to implicitly identify the overlapping areas by means of
implication relationships between logic functions.

A logic function F which satisfies the implication
-is called an under-approximation or 1 ,ܩ  ܨ ,i.e ,ܩ ܨ
approximation with respect to G. Conversely, a logic function
H is an over-approximation or 0-approximation of G if ܪ ܩ
i.e. if ܩ  ܪ. These implication relationships are shown
graphically in Fig. 1 [10], where the on-sets of the original and
the approximate logic functions are represented. For all input
vectors in the gray area, the original and the approximate
functions produce the same result. Therefore, an error in any
of the functions will be masked by the other two. The white
area corresponds to input vectors for which one of the
approximate logic functions does not produce a correct result.
In this case, an error in any of the other two functions will not
be masked.

Fig. 1. Input space of the original function G, an under-approximation F,
and an over-approximation H.

Approximate logic functions that satisfy the implication
relationships can be used to protect against faults in several
ways, such as partial error detection by checking the
implication relationship or partial error masking with a TMR-
like scheme [13].

Consider the schematic shown on Fig. 2(a). This is similar
to TMR but using an over-approximation H and an under-
approximation F instead of exact replicas of the original
circuit G. With this schematic, the circuit is protected against
single faults as long as the three circuits give the same result,
which is represented in Fig. 1 as the grey area. In comparison
with conventional TMR, this schematic does not provide full
coverage against single faults. However, if approximations are
properly chosen, relevant resource savings can be obtained
with a low impact on the error masking capabilities. In
addition, the implication relationship ܨ  ܩ  ܪ guarantees
that the correct result is obtained in the absence of faults,
because at least one of the two approximations agrees with the
original circuit for every input vector. This schematic can be
extended for sequential circuits as shown in Fig. 2(b).
Approximations of the combinational part of the circuit are
generated, and then both outputs and flip-flops are voted. It
must be noted that voters can be affected by faults and
therefore they should be hardened either by design or by using
triple voters.

(a)

(b)

Fig.2. TMR schemes using approximate circuits for (a) a combinational
circuit and (b) a sequential circuit.

Several methods have been proposed to generate
approximations for a given logic circuit. Most of these
methods try to approximate the implementation of logic
functions using synthesis techniques [10], [11], [12], [15],
[16]. Synthesis techniques depart from a functional model of
the original circuit, such as a Binary Decision Diagram (BDD)
[10], and apply synthesis algorithms to simplify the logic
function while relaxing the constraint of matching the original

G
H

F

Original
Circuit

Over
Approximation

Under
Approximation

In
pu

ts

Voter

O
ut

pu
ts

Under
Approximation

Original Circuit

Over
Approximation

Voter Outputs

Triple
voter

Inputs

2

function. In particular, references [11] and [12] use cube
elimination based on the Observability Don’t Cares (ODCs),
[15] uses two-level minimization and [16] uses boolean
factoring. A disadvantage of synthesis-based approximation
techniques is that the error mitigation reduction caused by the
approximation transformations is difficult to estimate, because
approximation is based on functional considerations. As a
result, these techniques generally offer limited scalability.

An alternative approach to synthesis techniques is the line
substitution technique [13], [14]. This technique departs from
a technology-dependent network (netlist) of the original circuit
and produces approximations by substituting some of the lines
of the circuit with logic constants. Then, the logic originally
used to implement the substituted lines is removed. In this
case, each line substitution can be associated to a line stuck-at
fault and the probability of the unprotected input combinations
can be estimated through fault simulation. Another advantage
of the line substitution technique is that, under certain
conditions that can be automatically checked [13], each line
substitution is guaranteed to produce either an under-
approximation or an over-approximation, so that the
implication relationships can be preserved by construction.

III. APPROXIMATE LOGIC CIRCUITS IN FPGAS

In this work, we have adapted the line substitution
technique [13] for the case of FPGA circuits. Ideally, the
internal structure of the configuration memory should be taken
into account to guide the approximation process and to
evaluate the impact of each approximation in the amount of
essential bits. However, as this information is not generally
available to the average designer, our approach is based on the
netlist structure.

In a FPGA, the combinational circuit structure is typically
composed of Look-Up Tables (LUTs). A LUT is a small
memory that implements a logic function of its inputs,
typically up to 6 inputs in modern FPGA technologies.

In this context, the application of the line substitution
technique requires special attention in the sense of which logic
transformations are performed to generate approximations. In
particular, the most interesting line substitutions are those that
effectively reduce the number of LUTs in the circuit, either by
eliminating LUTs or by merging contiguous LUTs. The
contrary will result in a degradation of the logic function of
the circuit without achieving any benefits in terms of resource
utilization. Reducing the size of a LUT, by removing some of
its inputs, may also contribute to reduce the interconnection
needs and the associated configuration bits. Eventually, when
the input or the output of a flip-flop is substituted by a
constant, the flip-flop can be removed and the voting logic can
also be simplified.

To remove a LUT, we can set the output of the LUT to a
logic constant. The result of this transformation can be
analyzed using Shannon’s expansion. Let G be the function
implemented by a LUT and x one the inputs to the LUT. Using
Shannon’s expansion formula, we can express

ܩ ൌ ݔ௫̅̅ܩ ൅ ௫xܩ (1)

where ܩ௫̅ and ܩ௫ are the cofactors of G with respect to x.
In Boolean Algebra, the classical way to reduce a logic

function is to use the consensus and smoothing functions:

ܨ ൌ ௫ܩ௫̅ܩ (2)

ܪ ൌ ௫̅ܩ ൅ ௫ (3)ܩ

It is easy to demonstrate that F is an under-approximation
of G, because F = 1 => ܩ௫ = ܩ௫̅ = 1 => G = 1. Similarly, H
is an over-approximation of G, because H = 0 => ܩ௫ = ܩ௫̅ =
0 => G = 0. The consensus and smoothing functions for a
LUT can be easily computed by simple operations on its truth
table.

Fig. 3 shows an example involving two LUTs. To remove
LUT1, we can approximate LUT2 on input x. Cofactors and
approximation transformations can be easily computed on the
truth table of LUT2, as shown in Fig. 3(b). The cases for
which F and H differ from the original function are
highlighted. It can be clearly seen that ܩ௫̅ ൅ -௫ is an overܩ
approximation, as it covers the on-set of G, and ܩ௫̅ܩ௫ is an
under-approximation, as it covers the off-set of G.

(a)

(b)
Fig. 3. LUT approximation example: a) Structure of under-approximation

and over-approximation; b) Truth tables

Alternatively, the approximation can be performed on any
of the inputs of LUT1 or LUT2. If one of the inputs of LUT1
is removed, then LUT1 becomes a single-input LUT that can
be merged with LUT2 without increasing the number of inputs
of LUT2. If the inputs c or d of LUT2 are removed, then
LUT1 and LUT2 can be combined into a single 3-input LUT.

A. Relation with stuck-at faults
The next step is to evaluate the effects of the

approximations in the error correction capabilities. When an
approximation is taken, the approximate circuit differs from
the original circuit for some input vectors. For these input

LUT2
LUT1

a

b
x

d
c

F
c

d

H
c

d

c d F
0 0 0
0 1 0
1 0 1
1 1 0

c d H
0 0 1
0 1 0
1 0 1
1 1 1

x c d G
0 0 0 0 0 1 0 1
0 0 1 0 0 0 0 0
0 1 0 1 1 1 1 1
0 1 1 1 1 0 0 1
1 0 0 1 0 1 0 1
1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 1
1 1 1 0 1 0 0 1

GG xxGx GG xx Gx

3

vectors, the Partial TMR circuit is unprotected. The
probability of unprotection can be analyzed by relating the
difference to stuck-at faults.

To show the relationship between approximation and stuck-
at faults, we start with the particular case of LUTs that
implement unate functions. A function is said to be unate if
one of the cofactors is covered by the other. More precisely, a
function G is positive unate in x if ܩ௫̅ ⊆ ௫ and negative unateܩ
if ܩ௫ ⊆ ௫. Otherwise, the function is said to be binate. Unateܩ
functions have many interesting properties, among them, a
positive (negative) unate function can have an expression in
which x only appears in uncomplemented (complemented
form).

For a unate function, the under-approximation and over-
approximation functions coincide with the cofactors. For a
positive unate function, ܩ௫̅ ⊆ ௫̅ܩ = ௫ܩ௫̅ܩ = ௫ and therefore Fܩ
and H = ܩ௫̅ ൅ ௫. Similarly, for a negative unateܩ = ௫ܩ
function we have F = ܩ௫ and H = ܩ௫̅.

From these results, we can easily see that the result of
approximating a function G for a variable x is equivalent to
forcing the variable x to a logic constant value, 0 or 1. In the
case of a positive unate function, the under-approximation is
obtained by forcing x = 0 and the over-approximation is
obtained by forcing x = 1. Thus, the analysis of the differences
between the approximate and the original circuit is related to
the faults x stuck-at 0 or x stuck-at 1, respectively. The
probability that the approximate circuit differs from the
original circuit is the probability of the input vectors that test
the associated stuck-at fault.

In the general case of a binate function, any expression of
the function will contain x in both uncomplemented and
complemented form. However, the approximation can also be
associated to stuck-at faults. Shannon’s expansion formula
separates the contribution of the input x in complemented and
uncomplemented form, so that x can be represented in the
logic circuit by two lines ݔ଴ (complemented) and ݔଵ
(uncomplemented). In addition, let us extend Shannon’s
expansion formula (1) by adding the redundant consensus
term F = ܩ௫̅ܩ௫

ܩ ൌ ଴തതതݔ௫̅ܩ ൅ ଵݔ௫ܩ ൅ ௫ܩ௫̅ܩ (4)

If we force ݔ଴ = 0 and ݔଵ = 1 in this expression, we obtain
G = ܩ௫̅ ൅ ௫ܩ ൅ ௫ = H. Thus, the over-approximate circuitܩ௫̅ܩ
is related to the union of the faults ݔ଴ stuck-at 0 and ݔଵ stuck-
at 1. Note that the sets of test vectors for ݔ଴ stuck-at 0 and ݔଵ
stuck-at 1 are disjoint, because they require different values at
x. Therefore, the probability that the approximate circuit
differs from the original circuit is the sum of the probabilities
of the input vectors that test the associated stuck-at faults
Analogously, if we force ݔ଴ = 1 and ݔଵ = 0 in this expression,
we obtain G = ܩ௫̅ܩ௫ = F and the under-approximate circuit is
related to the union of the faults ݔ଴ stuck-at 1 and ݔଵ stuck-at
0.

Once the relationship between approximations and stuck-at
faults has been established, we can use a stuck-at fault
simulator to evaluate the quality of the approximations. To
this purpose, the original LUT-based netlist is transformed

into a logic netlist using the extended Shannon’s expansion
expression (4) for binate functions. Fig. 4 shows this
representation for the example in Fig. 3. In this representation,
we simulate the stuck-at faults at the inputs of all LUTs,
including the complemented and uncomplemented lines for
binate inputs. The quality of each approximation is measured
by counting the number of clock cycles for which the
associated stuck-at faults are detected. In this work we have
used the stuck-at fault simulator HOPE [17] for this purpose.
For instance, the over-approximation of LUT2 for input c is
associated to the fault c stuck-at 1 because LUT2 is positive
unate on c. On the other hand, to evaluate the effect of
removing input x and hence LUT1, we sum the number of
clock cycles for which the faults ݔ଴ stuck-at 0 and ݔଵ stuck-at
1 are detected (over-approximation) or the faults ݔ଴ stuck-at 1
or ݔଵ stuck-at 0 are detected (under-approximation).

Fig. 4. Logic representation of the example of Fig. 3

IV. SELECTING APPROXIMATIONS

Identifying the most critical or persistent bits and the circuit
primitives affected by them is a difficult task. Fault injection
can be used for this purpose, as proposed in [3]. Although
there are some known differences between the fault-injection
method and a radiation testing environment, it is shown in [3]
that a good estimate of the dynamic cross section can be
obtained by fault injection with a careful test design. However,
this approach is very time consuming. In practice, the authors
reason that circuit primitives that are part of feedback
structures within the design contribute to the persistent error
behaviour, and use a tool to identify the feedback structures
[4].

In our case, we use a probabilistic approach to identify the
most critical circuit lines. Our approach is based on analyzing
the number of clock cycles for which the faulty circuit
response differs from the correct one. Then, we consider a line
as critical if a fault in the line produces a large amount of
differences. The rationale of this criticality metric is that a
fault that produces a very different output response implies a
large data loss and most likely means the circuit functionality
cannot be recovered. Conversely, an error that produces an
almost correct response involves some data loss but the circuit
can be considered as being operational.

Fig. 5 shows the results of this analysis for the circuit that
has been used as a test case in the experiments. For each line
in the circuit, we measured the effect of substituting it with a
constant value, 0 or 1. As shown in the previous section, this

x

d

c
x0

x1

LUT2

LUT1
a

b

4

effect can be associated to permanent stuck-at faults. We used
the stuck-at fault simulator HOPE [17] to count the number of
clock cycles for which the circuit response is wrong. The
results are shown in Fig. 5 in increasing order of the proposed
criticality metric. It can be seen that there is an abrupt change
around 25% of the faults. The faults on the left can be
considered as non-critical and the faults on the right as critical.
In order to establish a threshold, we have considered a fault as
critical if it produces an erroneous response for more than
15% of the clock cycles in a representative testbench. This
threshold can be changed according to the reliability
requirements of the application. For the particular threshold
used, we have verified that the non-critical faults actually
belong to feed-forward logic. Therefore, this criterion
coincides with the feedback criterion proposed in [4] for the
studied circuit. In any case, the approximation method can use
other criticality criteria.

Fig. 5. Criticality estimation for the test case

After a classification of criticality is obtained, partial
mitigation can be achieved by approximating the less critical
lines first. The more lines are approximated, the lower the
mitigation and the smaller the approximate circuits. Thus, the
solution can be scaled with fine granularity to trade off the
error mitigation with the resource utilization.

When TMR is used for partial mitigation, the choices for
each component are to include it in the mitigated section or
not. However, approximate logic circuits can consider an
intermediate solution for unidirectional errors. For instance, an
error that changes the logic value of a line from 0 to 1 may be
critical while the opposite may be not. In such a case, we can
replace the line by a constant 0 in just one of the approximate
circuits. The overall effect is equivalent to having a non-
critical unidirectional hardwired error in one of the three
subcircuits that are voted.

A circuit that contains a unidirectional approximation still
works correctly in the absence of SEUs because there are
always two correct copies for voting. The circuit is not
protected for non-critical errors in the same direction, because
it is enough to have such an error in any of the other two
copies for the circuit to fail. However, the circuit is still
protected for critical errors in the opposite direction. As a
matter of fact, for such errors to be unmasked it is necessary
that the two correct copies have errors in the same critical

direction. Critical errors are less likely to happen than in the
TMR circuit, because in the TMR circuit an error is observed
when two out of the three copies fail. Thus, the overall effect
is a shift of the critical cross-section to the non-critical cross-
section with respect to the TMR circuit.

Fig. 6 shows the flow diagram to obtain the final circuit
using the proposed approach. First, a logic representation of
the original circuit is obtained and stuck-at fault simulation is
performed using a typical testbench. The results of fault
simulation are used as a criterion to estimate the criticality of
approximations and to select the less critical ones. Then, the
original circuit is divided into the combinational components,
mainly formed by LUTs, and sequential components (FFs).
From the combinational component we generate an under-
approximation and an over-approximation circuit based on the
previous criticality estimation. The sequential components are
hardened using TMR. Then, all the components are merged
following the schematic in Fig. 2. This circuit is resynthesized,
to optimize the logic resulting from the approximation
process. Appropriate synthesis directives are used to avoid
removing the redundant logic. With the exception of the stuck-
at fault simulation, this process is performed automatically
with in-house software tools. This approach can be extended
to include other FPGA components, such as memories or DSP
slices, which may require to be dealt with in a specific way.

Fig. 6. Flow Diagram of the proposed approximate TMR approach.

V. EXPERIMENTAL RESULTS
The proposed approach has been tested with the B13

benchmark from the ITC’99 set. This benchmark was selected
for compliance with current efforts towards a common set of
benchmarks that can be used for comparison among different
experiments [18]. It also includes a set of pre-generated input

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Er
ro

rs
in

 ti
m

e

Faults

Non-critical Critical

Original
Circuit

Logic
Model

Comb.
Comp.

Seq.
Comp.

Fault
Simulation

Under
Approx

Over
Approx

TMR’d
Seq. Comp.

Approx TMR
Circuit

FPGA Synthesis

5

vectors that were designed by the ATPG community to fully
cover the functionality of the circuit.

Firstly, we implemented a TMR version of B13 by
triplicating the logic and using triple voters at the output of
each flip-flop. The outputs of the circuit were also voted using
single voters. Inputs and clock lines were not triplicated for
the sake of simplicity. From this TMR design, we
implemented four different Partial TMR designs (A1 to A4)
using approximate circuits, where A1 has the lowest number
of approximated lines and A4 the highest. Approximations
were based on the results of the criticality analysis described
in the previous section. As a general target, we considered
only approximations that produce less than 15% erroneous
responses in the execution of the full set of input stimuli.
Then, for each design, lines with a percentage of errors below
a selected threshold were replaced by constants. Namely, we
used thresholds of 0.05%, 0.2%, 2% and 15% for A1 to A4,
respectively. For the sake of comparison, we also considered a
TMR design using single voters (SV) and the original
unmitigated design (ORIG) of B13.

The synthesis results for all considered designs, as given by
Xilinx Vivado tool, are shown in Table I. The designs are
ordered from the most protected (TMR) to the less protected
(ORIG). The last two columns show the relative use of
resources with respect to the TMR version.

TABLE I. SYNTHESIS RESULTS

Design #FFs #LUTs %FFs %LUTs
TMR 135 298 100% 100%
A1 127 287 94% 96%
A2 119 276 88% 93%
A3 117 265 87% 89%
A4 115 261 85% 88%
SV 135 213 100% 71%
ORIG 45 53 33% 18%

The experiments were run on an Artix7 XC7A100T FPGA
from Xilinx. As the B13 benchmark is rather small, we
included 24 instances of each design in the same FPGA.
Synthesis options were used to ensure instances of each circuit
version were not optimized away. However, the placement
was not constrained. All designs run concurrently using the
same input stimuli, which are the ITC’99 proposed input
stimuli. We also included a small checker circuit to detect if
any of the design copies produces an error or if the percentage
of errors in a single execution of the full set of input stimuli is
greater than the selected target of 15%. The checkers and the
interface to the host are tripled to reduce the impact of errors
in these modules on the measures. The complete circuit,
including all copies of all designs, used 66% of the LUTs and
15% of the flip-flops of the FPGA device.

A. Radiation test results
Radiation ground testing has been carried out in CNA

facilities (Centro Nacional de Aceleradores, Sevilla, Spain).
We used a cyclotron, capable of accelerating protons and
deuterons up to 18 MeV. Although it was originally intended

for radioisotope production in medical applications, an
external beam allows testing electronic circuits in either
vacuum or open air.

FPGA test has been performed with protons in open air,
with 18 MeV energy and flux range between 108 to 109 p/cm2s.
A single device has been exposed, as shown in Table II. The
device was allowed to run without scrubbing or reconfiguring
it until we observed most of the design versions had a critical
error. Then it was fully reconfigured and checked again. In
Run 3, with the largest fluence, 120 reconfiguration cycles
were completed.

TABLE II. XC7A100T IRRADIATION TEST

Run Energy
(MeV)

Flux
(p/cm2s)

Fluence
(p/cm2)

1 18 108 1.231011
2 18 2.5108 11.0 1011
3 18 109 50.31011
Total 62.531011

Fig. 7 shows a comparison of the Mean Time To Failure
(MTTF) obtained with the largest fluence. The results for
lower fluences are similar, but they are not reported here
because the number of collected errors is small and the
confidence intervals are wide. Cross-section can be obtained
as the inverse of the product of MTTF times the flux
(109p/cm2s). For each version, the non-critical MTTF was
measured as the mean time until the first error is detected in
any of the 24 design copies. The critical MTTF was measured
as the mean time until the first critical error is detected, i.e.,
until the percentage of erroneous responses in a single
execution of the full set of input stimuli is greater than the
selected target of 15%. The confidence intervals for 95%
confidence level are also displayed in the figure.

Fig. 7. MTTF for the tested design versions.

As expected, the original unmitigated design shows a low
MTTF in comparison with the mitigated versions. The critical
and non-critical MTTF are very close, because most errors
produce a critical effect. The version using single voters

0

10

20

30

40

50

60

TMR A1 A2 A3 A4 SV ORIG

M
TT
F
(s
)

Circuit version

Non‐Critical

Critical

6

improves MTTF with respect to the original version by a
factor of approximately 2.4. For the full and all the Partial
TMR versions, the non-critical MTTF is similar and between
6 to 8 times greater than that of the original design. Even
though some degradation of the non-critical MTTF can be
expected for the approximate logic circuits, the differences in
the results are small and some Partial TMR versions can even
be better than TMR. On the other hand, the results clearly
show that the MTTF for critical errors is significantly
improved in the Partial TMR versions. This behaviour can be
explained by the reduction in size produced by the use of
approximate logic circuits in combination with the shift of the
critical cross-section to the non-critical cross-section that can
be achieved by unidirectional approximation.

B. Fault injection results
To complement the analysis, we have also performed

several fault injection campaigns with the same circuit
versions and the same FPGA. Fault injection was implemented
using the Soft Error Mitigation (SEM) Core from Xilinx [7].

It must be noted that fault injection results may not
accurately match radiation results due to several reasons [9],
[19], [20]. First of all, fault injection must rely on the
mechanisms provided by the manufacturer for the access to
the configuration memory. The documentation about such
mechanisms is generally very limited, so that we cannot
guarantee a fair fault injection campaign. In particular, fault
injection cannot emulate changes in the internal proprietary
state of an FPGA (i.e., internal registers or global logic for
managing the device). On the other hand, the SEM Controller
is implemented in the FPGA and it can be affected by the
injected faults. Finally, we have only injected single bit errors
in the configuration memory and assume that all configuration
bits are equally vulnerable, which may not be true in real
devices. In spite of these limitations, fault injection plays a
very important part in evaluating and validating FPGA designs
for use in radiation environments [19]. We will show here that
fault injection results for the proposed approach follow a
pattern similar to the one of radiation test results.

To implement fault injection, we added the SEM Controller
to the same FPGA design used for radiation testing. Fault
injection was monitored through the serial interface provided
by the SEM Controller. This interface allowed us to observe
the internal state of the SEM Controller and inject faults. The
controller can also correct the internal configuration memory
errors. Because faults are injected randomly in the
configuration memory of the FPGA, the SEM Controller may
fail. However, this situation can be detected through the serial
interface. When an error cannot be corrected or we observe
abnormal operation of the SEM Controller through the serial
interface, the FPGA is fully reconfigured and the fault
injection process is resumed.

In the first fault injection campaign, we injected faults in
random addresses of the configuration memory at regular time
intervals. A sufficiently large time interval (12.2 ms) was
selected to allow for the complete execution of the full set of
input stimuli (7640 input vectors, 0.15 ms). Following the

same approach as in the radiation testing experiment, the
device was allowed to run without scrubbing or reconfiguring
it until we observed most of the design versions had a critical
error or the SEM Controller failed. Then the device was fully
reconfigured and checked again.

Fig. 8 summarizes the results obtained with this fault
injection campaign. We run 215 reconfiguration cycles with a
total of 389,764 injected faults. As as similar metric to MTTF,
we have used the ratio of injected faults to failures, called here
MIFTF (Mean Injected Faults To Failure). As in the radiation
test results, the difference between the non-critical MIFTF and
the critical MIFTF is small for the original unprotected design
and for the design using single voters, while the protected
versions (TMR and A1 to A4) clearly improve the critical
MIFTF. The Partial TMR versions show similar non-critical
MIFTF to the full TMR version but the critical MIFTF is
generally improved.

Fig. 8. MIFTF for the tested design versions using fault injection without
error correction.

In a second fault injection campaign we used the error
correction capabilities of the SEM Controller. In this case, we
injected a single fault in a random address of the configuration
memory, waited for sufficient time to make sure the full set of
input stimuli has been executed and then let the SEM
Controller attempt to correct the injected fault. This procedure
is repeated until the SEM Controller reports an uncorrectable
error or the SEM Controller itself fails. Then, the FPGA is
fully reconfigured before continuing the fault injection
campaign.

The SEM Controller supports three different error
correction modes [7]:

 Repair: ECC algorithm-based correction
 Enhanced Repair: ECC and CRC algorithm-based

correction
 Replace: Data reload based correction

In our fault injection experiments we used the Enhanced
Repair mode, because it provides higher error correction
capabilities, namely correction of configuration memory
frames with single-bit errors or double-bit adjacent errors. The
Replace mode supports correction of configuration memory

0

500

1000

1500

2000

2500

3000

TMR A1 A2 A3 A4 SV ORIG

M
IF
TF

Circuit version

Non‐Critical

Critical

7

frames with arbitrary errors, but requires partial
reconfiguration of the FPGA.

The results for the fault injection campaign using error
correction are shown in Fig. 9. In this campaign we injected
75,620 faults with a time interval of 37.4 ms between faults in
86 fault injection cycles. In this case we can see that the non-
critical MIFTF decreases as the protection for non-critical
errors decreases from TMR to A4. On the other hand, the
critical MIFTF is similar in all these circuit versions. This is
the expected behaviour, because these versions differ in the
protection for non-critical errors but keep a similar protection
for critical errors.

Comparing the results with and without error accumulation,
shown in Fig. 8 and Fig. 9, respectively, we can see that the
full TMR version produces the best MIFTF when
accumulation is prevented by error correction (Fig. 9), while
this may not be true with accumulation (Fig. 8). The full TMR
version has higher protection for non-critical errors at the
expense of increasing the size of the circuit. The additional
size increases the chances of error accumulation, for which the
circuit is not protected, resulting in a smaller critical MIFTF.
Thus, size plays a significant role when error accumulation is
possible. By reducing the protection for non-critical errors, the
approximate circuit versions can reduce the size and improve
the critical MIFTF.

Fig. 9. MIFTF for the tested design versions with error correction.

VI. CONCLUSIONS

The application of full TMR to FPGA designs often results
in very large overheads in resource utilization and,
consequently, power consumption. For applications that can
tolerate some temporary misbehaviour, Partial TMR can be
used to trade off the reliability with the cost of mitigation.

In this work we have proposed a new approach to build
Partial TMR circuits for FPGAs using approximate logic
circuits. Experimental results demonstrate that this approach
can provide protection for critical errors at lower hardware
cost than full TMR. Moreover, it can provide higher protection
than full TMR if errors are not corrected and may accumulate.
For the case study used in the experiments, up to 15% of
resources could be saved while the MTTF for critical errors

could be improved by 57%.

REFERENCES
[1] N. Rollins, M. Wirthlin, M. Caffrey, and P. Graham, “Evaluating TMR

techniques in the presence of single event upsets”, Proc. 6th Annual Int.
Conf. on Military and Aerospace Programmable Logic Devices
(MAPLD), P63, Sept. 2003.

[2] P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective Triple Modular
Redundancy (STMR) Based Single-Event Upset (SEU) Tolerant
Synthesis for FPGAs”, IEEE Trans. on Nuclear Science, vol. 51, no. 5,
pp. 2957–2969, Oct. 2004

[3] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M.
Wirthlin, “SEU-induced persistent error propagation in FPGAs,” IEEE
Trans. on Nuclear Science, vol. 52, no. 6, pp. 2438–2445, Dec. 2005.

[4] B. Pratt, M. Caffrey, P. Graham, E. Johnson, K. Morgan, and M.
Wirthlin, “Improving FPGA design robustness with partial TMR,” Proc.
Int. Reliability Physics Symp. (IRPS), Mar. 2006.

[5] F. L. Kastensmidt, L. Sterpone, L. Carro, and M. Sonza Reorda, “On the
Optimal Design of Triple Modular Redundancy Logic for SRAM-based
FPGAs”, Proc. Design, Automation and Test in Europe Conf. (DATE),
vol. 2, pp. 1290–1295, Mar. 2005.

[6] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, and K. A. LaBel,
“Effectiveness of Internal Versus External SEU Scrubbing Mitigation
Strategies in a Xilinx FPGA: Design, Test, and Analysis”, IEEE Trans.
on Nuclear Science, vol. 55, no. 4, pp. 2259–2266, Aug.. 2008.

[7] “Soft Error Mitigation Controller v4.1”, Product Guide, Xilinx
Corporation, PG036, Nov. 19, 2014

[8] “Xilinx TMRTool”, Product Brief, Xilinx Corporation, 2009.
[9] B. Pratt, M. Caffrey, J. F. Carroll, P. Graham, K. Morgan and M.

Wirthlin, “Fine-Grain SEU Mitigation for FPGAs Using Partial TMR”,
IEEE Trans. on Nuclear Science, vol. 55, no. 4, pp. 2274–2280, Aug.
2008.

[10] B. D. Sierawski, B. L. Bhuva, and L. W. Massengill, “Reducing Soft
Error Rate in Logic Circuits Through Approximate Logic Functions”,
IEEE Trans. on Nuclear Science, vol. 53, no. 6, pp. 3417–3421, Dec.
2006.

[11] M. R. Choudhury, and K. Mohanram, “Approximate logic circuits for
low overhead, non-intrusive concurrent error detection”, Proc. Design
Automation and Test in Europe Conf. (DATE), pp. 903–908, 2008.

[12] M. R. Choudhury, and K. Mohanram, “Low Cost Concurrent Error
Masking Using Approximate Logic Circuits”, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no.
8, pp. 1163– 1176, Aug. 2013.

[13] A. Sánchez-Clemente, L. Entrena, M. García-Valderas, and C. López-
Ongil, “Logic Masking for SET Mitigation Using Approximate Logic
Circuits”, Proc. Int. On-Line Testing Symp. (IOLTS), pp. 176–181, July
2012.

[14] A. Sánchez-Clemente, L. Entrena, and M. García-Valderas, “Error
masking with approximate logic circuits using dynamic probability
estimations”. Proc. Int. On-Line Testing Symp. (IOLTS), pp. 134-139,
July 2014.

[15] H. Xie, L. Chen; R. Liu, A. Evans, D. Alexandrescu, S.-J. Wen, and
R.Wong, “New approaches for synthesis of redundant combinatorial
logic for selective fault tolerance”, Proc. Int. On-Line Testing Symp.
(IOLTS), pp. 62–68, July 2014.

[16] I. A. C. Gomes, M. Martins, F. L. Kastensmidt, A. Reis, R. Ribas and
S.P. Novales, “Methodology for achieving best trade-off of area and
fault masking coverage in ATMR”, Proc. 15th Latin-American Test
Symp. (LATS), pp. 1–6, March 2014.

[17] H. K. Lee, and D. S. Ha. "HOPE: An Efficient Parallel Fault Simulator
for Synchronous Sequential Circuits", IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 15, no. 9, pp. 1048–
1058, Sep. 1996.

[18] H. Quinn et al., “Using Benchmarks for Radiation Testing of
Microprocessors and FPGAs”, IEEE Trans. on Nuclear Science, vol. 62,
no. 6, pp. 2547–2554, Dec. 2015.

[19] N. A. Harward, M. R. Gardiner, L. W. Hsiao, and M. J. Wirthlin,
“Estimating Soft Processor Soft Error Sensitivity Through Fault
Injection”, Proc. IEEE 23rd Annual Int. Symp. on Field-Programmable
Custom Computing Machines (FCCM), pp.143–150, May 2015.

0

1000

2000

3000

4000

5000

6000

TMR A1 A2 A3 A4 SV ORIG

M
IF
TF

Circuit version

Non‐critical

Critical

8

[20] J. Tarrillo, J. Tonfat, L. Tambara, F. L. Kastensmidt, and R. Reis,
“Multiple Fault Injection Platform for SRAM-based FPGA based on
Ground-level Radiation Experiments”, Proc. 16th Latin-American Test
Symposium (LATS), pp. 1–6, March 2015.

[21] A. J. Sánchez-Clemente, L. Entrena, and M. García-Valderas, “Partial
TMR in FPGAs using Approximate Logic Circuits”, Proc. Radiation
Effects on Components & Systems (RADECS), Sep. 2015.

9

	Página en blanco

