
Planning and Estimation
Algorithms for Human-like

Grasping

David Álvarez Sánchez

Ph.D. Thesis

Department of Systems Engineering and Automation
Leganés, Madrid, Spain, September 2016

Universidad
Carlos ill de Madrid

Planning and Estimation Algorithms for Human-like
Grasping

Candidate
David Álvarez Sánchez

Advisers
Luis Enrique Moreno Lorente

Santiago Garrido Bullón

Review Committee

President:

Secretary:

Vocal:

Grade:

Leganés, Madrid, Spain, November 2th, 2016

A mis padres, a mi hermana y a mis abuelos.
Fuente de amor e inspiración.

Espejo en el que verse reflejado.

i

ii

Abstract

The use of robots in human-like environments requires them to be able to sense and
model unstructured scenarios. Thus, their success will depend on their versatility
for interacting with the surroundings. This interaction often includes manipulation
of objects for accomplishing common daily tasks. Therefore, robots need to sense,
understand, plan and perform; and this has to be a continuous loop.

This thesis presents a framework which covers most of the phases encountered in
a common manipulation pipeline. First, it is shown how to use the Fast Marching
Squared algorithm and a leader-followers strategy to control a formation of robots,
simplifying a high dimensional path-planning problem. This approach is evaluated
with simulations in complex environments in which the formation control technique
is applied. Results are evaluated in terms of distance to obstacles (safety) and the
needed deformation.

Then, a framework to perform the grasping action is presented. The necessary
techniques for environment modelling and grasp synthesis and path planning and
control are presented. For the motion planning part, the formation concept from the
previous chapter is recycled. This technique is applied to the planning and control of
the movement of a complex hand-arm system. Tests using robot Manfred show the
possibilities of the framework when performing in real scenarios.

Finally, under the assumption that the grasping actions may not always result as
it was previously planned, a Bayesian-based state-estimation process is introduced
to estimate the final in-hand object pose after a grasping action is done, based on
the measurements of proprioceptive and tactile sensors. This approach is evaluated
in real experiments with Reflex Takktile hand. Results show good performance in
general terms, while suggest the need of a vision system for a more precise outcome.

iii

iv

Resumen

La investigación en robótica avanza con la intención de evolucionar hacia el uso de
los robots en entornos humanos. A d́ıa de hoy, su uso está prácticamente limitado
a las fábricas, dónde trabajan en entornos controlados realizando tareas repetitivas.
Sin embargo, estos robtos son incapaces de reaccionar antes los más mı́nimos cambios
en el entorno o en la tarea a realizar.

En el grupo de investigación del Roboticslab se ha construido un manipulador
móvil, llamado Manfred, en el transcurso de los últimos 15 años. Su objetivo es
conseguir realizar tareas de navegación y manipulación en entornos diseñados para
seres humanos. Para las tareas de manipulación y agarre, se ha adquirido reciente-
mente una mano robótica diseñada en al universidad de Gifu, Japón. Sin embargo,
al comienzo de esta tesis, no se hab́ıa realzado ningún trabajo destinado a la manipu-
lación o el agarre de objetos. Por lo tanto, existe una motivación clara para investigar
en este campo y ampliar las capacidades del robot, aspectos tratados en esta tesis.

La primera parte de la tesis muestra la aplicación de un sistema de control de
formaciones de robots en 3 dimensiones. El sistema explicado utiliza un esquema de
tipo ĺıder-seguidores, y se basa en la utilización del algoritmo Fast Marching Square
para el cálculo de la trayectoria del ĺıder. Después, mientras el ĺıder recorre el camino,
la formación se va adaptando al entorno para evitar la colisión de los robots con los
obstáculos. El esquema de deformación presentado se basa en la información sobre el
entorno previamente calculada con Fast Marching Square. El algoritmo es probado a
través de distintas simulaciones en escenarios complejos. Los resultados son analiza-
dos estudiando principalmente dos caracteŕısticas: cantidad de deformación necesaria
y seguridad de los caminos de los robots. Aunque los resultados son satisfactorios en
ambos aspectos, es deseable que en un futuro se realicen simulaciones más realistas
y, finalmente, se implemente el sistema en robots reales.

El siguiente caṕıtulo nace de la misma idea, el control de formaciones de robots.
Este concepto es usado para modelar el sistema brazo-mano del robot Manfred. Al
igual que en el caso de una formación de robots, el sistema al completo incluye un
número muy elevado de grados de libertad que dificulta la planificación de trayec-
torias. Sin embargo, la adaptación del esquema de control de formaciones para el

v

brazo-mano robótico nos permite reducir la complejidad a la hora de hacer la plan-
ificación de trayectorias. Al igual que antes, el sistema se basa en el uso de Fast
Marching Square. Además, se ha construido un esquema completo que permite mod-
elar el entorno, calcular posibles posiciones para el agarre, y planificar la movimientos
para realizarlo. Todo ello ha sido implementado en el robot Manfred, realizando prue-
bas de agarre con objetos reales. Los resultados muestran el potencial del uso de este
esquema de control, dejando lugar para mejoras, fundamentalmente en el apartado
de la modelización de objetos y en el cálculo y elección de los posibles agarres.

A continuación, se trata de cerrar el lazo de control en el agarre de objetos. Una
vez un sistema robótico ha realizado los movimientos necesarios para obtener un
agarre estable, la posición final del objeto dentro de la mano resulta, en la mayoŕıa
de las ocasiones, distinta de la que se hab́ıa planificado. Este hecho es debido a la
acumulación de fallos en los sistemas de percepción y modelado del entorno, y los de
planificación y ejecución de movimientos. Por ello, se propone un sistema Bayesiano
basado en un filtro de part́ıculas que, teniendo en cuenta la posición de la palma y
los dedos de la mano, los datos de sensores táctiles y la forma del objeto, estima
la posición del objeto dentro de la mano. El sistema parte de una posición inicial
conocida, y empieza a ejecutarse después del primer contacto entre los dedos y el
objeto, de manera que sea capaz de detectar los movimientos que se producen al
realizar la fuerza necesaria para estabilizar el agarre. Los resultados muestran la
validez del método. Sin embargo, también queda claro que, usando únicamente la
información táctil y de posición, hay grados de libertad que no se pueden determinar,
por lo que, para el futuro, resultaŕıa aconsejable la combinación de este sistema con
otro basado en visión.

Finalmente se incluyen 2 anexos que profundizan en la implementación de la
solución del algoritmo de Fast Marching y la presentación de los sistemas robóticos
reales que se han usado en las distintas pruebas de la tesis.

vi

Acknowledgments

First, I want to thank my advisors, Luis and Santiago for believing I could make
it and guide me through the thesis. I do not want to forget Dolores, who should
probably appear as co-advisor, it is difficult to come across anyone more helpful than
her. In general, I find all the members of RoboticsLab make it a good place to work
and learn, and that makes all easier. I feel lucky for having such a nice working
environment. I want to specially thank Javi for all the talking, the travelling, the
cycling and projects we had together, you are a good lab mate and friend to have.

A big part of this thesis has been developed abroad, making it a very special
experience. I want to thank Kawasaki-sensei and Mouri-sensei for inviting me to
Gifu University and introducing me to Japanese culture, I’ll always remember my
experience in Japan. I also want to thank Máximo for inviting me to work with his
group at DLR, that felt like an intensive robotics course. You might not know, but I
really learnt a lot working around you.

Outside robotics, there is also a lot of people to remember now. It’s difficult to
express the gratitude to my family for their support. All my close friends deserve
a whole paragraph each of them; you are just awesome and I really enjoy my time
with you. Thanks for being around, for making me a little bit how I am and for your
encouragement all these years.

The last person to appear is probably the most important along these years,
Naiara. Thanks for the unconditional support I always find in you and for being by
my side during this journey. Also, for many other things, I’ll just keep them between
us.

It’s been a very long way until I got here. However, it is not the destiny, but
walking the path which makes it interesting. This path has allowed me to visit very
beautiful places and to meet very nice people in the way. I just cannot name all of
you here, but all of you helped in some way.

vii

viii

Contents

Abstract iii

Resumen v

Acknowledgments vii

1 Introduction 1
1.1 Context and motivation . 4
1.2 Document structure . 6

2 3D Robot Formations 7
2.1 Introduction . 8
2.2 Fast Marching Square path planning method 10

2.2.1 The Fast Marching Method 10
2.2.2 Fast Marching Square Method 13
2.2.3 3-Dimensional Fast Marching Square 15

2.3 Robot Formation planning with FM2 15
2.3.1 Robot pose coordination . 18
2.3.2 Distance based shape deformation 20
2.3.3 Mobile obstacles modelling based on a distance map 22
2.3.4 Formation planning algorithm 23

2.4 Results . 26
2.5 Conclusions . 34

3 From Robot Formations to Grasping Control 37
3.1 Introduction . 38

3.1.1 Grasp Synthesis . 38
3.1.2 Motion Planning for Hand-Arm Systems 39
3.1.3 Grasping Framework . 42

3.2 Grasping Approach based on FM2 . 43
3.2.1 Environment Modelling . 43

ix

3.2.2 Grasp Pose Selection . 51
3.2.3 Motion Planning and Control based on FM2 57

3.3 Evaluation with ManfredV2 . 68
3.4 Conclusions . 71

4 In-hand Object Pose Estimation 77
4.1 Introduction . 78
4.2 Problem Description . 79
4.3 Bayesian Filtering . 83

4.3.1 Monte Carlo Approach . 84
4.4 Implementation . 89

4.4.1 System Model . 89
4.4.2 Measurement Model . 89
4.4.3 Inference of the best estimate 92

4.5 Experimental Setup . 93
4.5.1 Results . 98

4.6 Conclusions . 111

5 General Conclusions 113
5.1 Future Work . 115

A Fast Marching and Path Planning 117
A.1 Introduction . 118
A.2 Introduction to Fast Marching Methods 118
A.3 Problem Formulation . 120

A.3.1 n-Dimensional Discrete Eikonal Equation 121
A.3.2 Solving the nD discrete Eikonal equation 122

A.4 Fast Marching Method . 124
A.5 Path planning with the Fast Marching Method 125

B Experimental Platforms 129
B.1 Mechanical Design - Robot Structure 132
B.2 Sensory System . 138
B.3 Control System . 143
B.4 Software . 145

B.4.1 MATLAB . 145
B.4.2 ROS . 146

B.5 ReFlex TakkTile Hand . 147
B.5.1 Mechanical System . 147
B.5.2 Degrees of freedom . 148
B.5.3 Sensors . 150

x

Bibliography 151

xi

xii

List of Tables

2.1 Computation times for the leader’s paths, formation algorithm itera-
tions and followers’ paths. 34

3.1 Computation time for the voxelization of the same mesh at different
resolutions over 20 trials. 50

3.2 Grasping possibilities of the objects used. 69
3.3 Success grasping rate in the different objects under the situations tested. 71

4.1 The average time used to compute a new prediction and the number
of particles. 95

4.2 Characteristics of the objects used for pose estimation. 97
4.3 Parameters used for the pose estimation with the proposed filter. . . 98

B.1 ManfredV2’s weight. 134
B.2 SICK PLS technical characteristics. 141

xiii

xiv

List of Figures

1.1 Examples of anthropomorphic robotic hands. Top-left: DLR hand-
arm system. Top-right: Azzurra hand. Bottom-left: Elu2 hand by
Elumotion. Bottom-right: Shadow hand. 3

1.2 On the left, a general view of ManfredV2 mobile manipulator. On the
right, the robotic hand Gifu Hand III. 4

2.1 Lyapunov surface created when the propagation of the wave starts in
one point and the refraction index is constant. Time is used as the
vertical axis. 11

2.2 Example of a path obtained with the FMM. The left side shows the
original map and the path calculated. In the right there is the map of
distances computed with FMM, these distances are expressed in the
same units as the cell resolution. 12

2.3 Example of a slowness map, result of computing the FMM to an occu-
pancy map and considering all the obstacles as sources of a wave. . . 13

2.4 Example of a path obtained with the FM2. The left side shows the
resulting path of the algorithm in the initial occupancy map. In the
right side there is the time of arrival map. 14

2.5 FM2 saturated variation: modification of the path depending on the
saturation value. 14

2.6 The robot ManfredV2 performing a 3D trajectory computed using FM2. 16

2.7 Top left - Main components of the robot formation algorithm. Top
right - Reference geometric definition of a simple, triangle-shaped robot
formation, note that the definition is based on vectors ~u and ~v (tan-
gential and perpendicular to the path, respectively). Bottom left -
Behaviour of the partial goals depending on the leader’s pose. Bottom
right - Behaviour of the partial goals depending on the obstacles in the
environment. 17

2.8 The red vector represents the tangent to the trajectory and the red
circle is the perpendicular plane to this vector. 18

xv

2.9 Definition of the formation based on the Frenet trihedron. Robots are
represented by rectangles, red for the leader and blue for the followers.
Attached to the leader, the Frenet trihedron is represented by 3-axes
frame. The leader’s path is represented by a grey line. Partial goals for
the follower robots are computed with respect to the Frenet trihedron,
as indicated in the right part of the figure. 20

2.10 Followers’ partial goals modification based on linear functions. 21

2.11 Computation of the distance based model of an obstacle with different
uncertainty value. Top left - Local 3D map with a punctual obsta-
cle. Top right - Central slices of the 3D grid representing the distance
transform function of the obstacle. Bottom images: final result for
different uncertainties, left U = 0.3 and right U = 0.6. It is important
to note that the furthest positions in the grey scale images should be
white, but they have been plotted in black to help the visualization. . 23

2.12 Robot formation path planning algorithm using FM2. 25

2.13 Example of a motion sequence in a narrow corridor, leveraging the
priorities introduced in the algorithm. Top: 3D view. Bottom: top-
view which allows to see how the robots change their relative position
in the direction of the motion. 28

2.14 Quantitative analysis of scenario 1. Top: distance to the closest ob-
stacle. Bottom: average displacement of the formation with respect to
the default shape of the formation. 29

2.15 Example of a motion sequence in a map of one of our laboratories.
Two robots (blue and red) move in parallel to a virtual leader (green). 30

2.16 Quantitative analysis of scenario 2. Top: distance to the closest ob-
stacle. Bottom: average displacement of the formation with respect to
the default shape of the formation. 31

2.17 Environment with mobile obstacles. The temporal evolution starts in
the top-left image and ends in the bottom-right image. 32

2.18 Quantitative analysis of scenario 3. Top: distance to the closest ob-
stacle. Bottom: average displacement of the formation with respect to
the default shape of the formation. 33

3.1 General computation pipeline for grasping objects. 43

3.2 At the top, a scene with several objects lying on a surface. Below, the
cloud of the non-recognised objects extracted from the scene after Eu-
clidean segmentation is applied. In the third row, besides the cloud of
the object, several views of the corresponding 3D model of a recognised
object can be seen. 45

xvi

3.3 From left to right: the total workspace of the arm forms a sphere
around the initial point. In the middle, the arm is attached to the
robot base with which it collides. The green cone shows frontal area of
the workspace. On the right, the fourth of the workspace which does
not collide with the mobile base, only the frontal part of it is actually
considered for manipulation. 46

3.4 On the left, the rear view of the considered workspace of the arm. On
the right, the workspace in modelled in an occupation matrix, the arm
coordinate frame is in the top right corner of the image and the start
position of the hand can also be seen. The workspace of the arm can
be seen in grey, it can be appreciated that the space under the object
(a jug) is also marked as occupied as that is the table plane. 47

3.5 Steps of the voxelization of a 3D mesh. From left to right: first, a grid
that covers the object size and using the desired resolution is made;
then, the ray-tracing starts creating samples of the grid (red dots).
Finally, the samples which are considered to be part of the object
(blue dots), those pixels (voxels in 3D) are considered as occupied in
the world representation. 49

3.6 A frontal view of the bunny 3D mesh voxelized at a resolution of
1.25mm. In this case, the voxelization has only been done in on di-
mension, X, Y and Z respectively. 50

3.7 A frontal view of 3D mesh of a bunny voxelized at different resolutions. 51

3.8 Gifu Hand III with the workspaces of its fingers (in green) and the
workspace of the thumb (in red). Besides, the reference frame of the
origin of the hand (H) and the reference frame of the GCF (G) are
shown. 52

3.9 A full 3D model of an object, and the point cloud captured by a depth
sensor in a frontal view. In this case, the centre of mass of the point
cloud has a displacement of: X = 2.15, Y = 0.46, Z = 1.8 millimetres
with the one of the 3D model. Besides, the main axis of the point
cloud has an angular displacement of 2.6 degrees around the Y axis. 53

3.10 The hand positioned at different samples of possible a side grasps. . . 54

3.11 Examples of top grasped sampled by rotating around the world’s Z-
axis, there is one sample every 45o. 55

3.12 Collision checking examples in a top and side grasp pose candidates. . 56

3.13 Kinematic model of the Gifu Hand III. 58

3.14 Simple scenario in which the object to be grasped is a cube floating in
space, located on the right. The hand, on the left, is not attached to
any arm, and they are both located in free space. 60

3.15 Evolution of the hand towards an open configuration. 61

xvii

3.16 Second phase of the approaching step, while getting close to the object,
the hand starts closing. 61

3.17 Starting configuration of the hand to avoid a collision with the base. . 62

3.18 Geometrical representation of the slerp formulation. 63

3.19 On the left, an object in an on-the-table scene modelled with the tech-
niques explained through this chapter. On the right, the velocities map
of the scene sliced around the object position drawn over the scene. . 64

3.20 Different views of the evolution of the hand while performing the reach-
ing phase of a side grasp. The hand starts completely closed and opens
while approaching the object. The orientation of the hand changes lin-
early from initial to final pose. 64

3.21 Different views of the hand while moving towards a top grasp pose. The
hand starts completely closed, opens while approaching the object and,
at the same time, the orientation of the hand changes linearly along
the movement. 65

3.22 Left: a human hand holding a cube. Centre: in red, the paths com-
puted with FM2 from the initial position of the fingertips to their goal
locations on the objects. Right: Final configuration of the hand grasp-
ing the object. 66

3.23 A close look of the object on the table and the slices of X, Y and Z
planes of the velocities map around the object. 67

3.24 X, Y and Z slices of the velocities map respectively. The vectors indi-
cate the direction of the gradient of these velocities. 67

3.25 Scene for grasp testing. Objects are positioned on the table for the
robot to grasp them. 69

3.26 Objects used to test the grasping framework in standing (left) and
lying poses (right). 70

3.27 Examples of finger positioning in successful grasps. 72

3.28 Movement of the hand-arm system towards a top grasp of the box lying
on the table. 74

3.29 Movement of the hand-arm system towards a side grasp of the cylinder
standing on the table. 75

4.1 Overview of the pressure sensors in the fingers of the ReFlex TakkTile
Hand. 80

4.2 A positive contact is detected but the estimated pose of the object is
far from producing a contact at the sensor location. 81

4.3 Examples of the fingers in collision with the object, and an object
floating. 81

xviii

4.4 When the fingers are in contact with the object and move, the object
should move with them. 82

4.5 A circle whose perimeter is assigned to the particles in such a way that
the length of the perimeter associated to each particle is proportional
to its weight. 88

4.6 Function used in the case no contact is detected. In left picture, σd =
0.01m, in right one, σd = 0.005m. 90

4.7 Function used in the case a contact is detected. In left picture, σc =
0.01m, in right one, σc = 0.005m. 91

4.8 On the left, the robotic hand lies on the table ready to perform a grasp.
On the right, the tags needed to locate the reference frame for the pose
estimation of the base of the hand. 94

4.9 On the left, the average and standard deviation if the time used by the
filter in each iteration against the number of particles. On the right,
the standard deviation of the estimated pose against the number of
particles. 96

4.10 On the top row, pictures of the real objects used in for testing of the
system. On bottom row, the 3D models provided in the YCB database. 97

4.11 Scenario 1, a Pringles can grasped while the hand lies on the surface
of the table. 100

4.12 Results of scenario 1, the hand on the table grasping a Pringles can.
Left column corresponds to the position in X, Y, and Z axes. Right
one is the rotation around the same axes. 101

4.13 Scenario 2, a Pringles can grasped from the side while the hand is held
by an operator. 103

4.14 Results of scenario 2, the hand on the table grasping a Pringles can.
Left column corresponds to the position in X, Y, and Z axes. Right
one is the rotation around the same axes. 104

4.15 Scenario 3, a cereals heavy box grasped from the side while the hand
is held by an operator. 106

4.16 Results of scenario 3, the hand on the table grasping a Pringles can.
Left column corresponds to the position in X, Y, and Z axes. Right
one is the rotation around the same axes. 107

4.17 Scenario 4, a small chocolate powder box grasped from the top while
the hand is held by an operator. 109

4.18 Results of scenario 4, the hand on the table grasping a Pringles can.
Left column corresponds to the position in X, Y, and Z axes. Right
one is the rotation around the same axes. 110

A.1 Examples of a wave propagation through media with different velocities.119

xix

A.2 3D representation of the FMM output in a 2D grid. The arrival time
is shown in the Z axis . 120

A.3 Example of a path planning problem solved with Fast Marching. . . . 128

B.1 ManfredV2, mobile manipulator with robotic arm. 132
B.2 ManfredV2, lateral view. 134
B.3 Power supply system. 135
B.4 LWR-UC3M-1(robotic arm). 137
B.5 Virtual workspaces of the fingers (green) and the thumb (red) in frontal

and lateral view. 138
B.6 Gifu Hand III and its control and power supply box. 139
B.7 Hokuyo UTM-30LX (laser range finder). 140
B.8 SICK PLS (laser range finder). 140
B.9 Colour cameras. 141
B.10 Time-of-flight camera: Kinect. 142
B.11 JR3 67M25A-U560 (force/torque sensor). 142
B.12 PMAC2-PCI (controller card). 143
B.13 ACC-8E. Interface between the PMAC2-PCI and the devices. 144
B.14 Electromechanical system of Reflex TakkTile Hand. 147
B.15 Angular limits of the joints of the fingers of Reflex TakkTile Hand. . 149
B.16 Angular limits of the preshape joint of Reflex TakkTile Hand. 149
B.17 Pressure sensors configuration along a finger. 150

xx

Chapter 1

Introduction

1

2 Chapter 1. Introduction

Human expectancy for robots’ performance and appearance is highly influenced
by futuristic science fiction on literature and movies. When hearing the word ’robot’,
most usual images that are brought to anyone’s mind include a nicely design, high
skilled, and, very commonly, human-like machine which does not fail in whatever it is
asked to do, ever. But those mechanisms are not real yet. In fact, the kind of robots
that are actually most often used, industrial manipulators, are very poorly skilled
and not looking as a human being. They, at least, usually have a nice design. From
the point of view of the tasks they perform and how they do them, there are two
essential properties. First, they are able to perform one, and only one, task for which
they have been programmend previously. They do it very fast and accurately, but
their ability to adapt to the slightest change in the task in almost null. And second,
they rarely rely on sensors which measure the environment. This means that their
ability to react and response in a different manner due to environmental changes is
also almost null. In other words, their main lack is versatility.

Non-industrial robots are usually designed to work in human environments and
perform common human daily tasks. These scenarios are usually unstructured, either
due to the design of the place or to human intervention. This means that, just for
moving around, robots cannot only rely on a perfectly modelled environment, but
they actually need to be aware of unexpected obstacles before making any decision,
or react to them if the decision was previously made, what we usually call ’a change
of plans’. Besides, human environments tend to change over time. The most basic
change is the one provoked by humans moving around. From the robot’s point of
view, they not only are obstacles but they also move all the time in a not very
predictable way. Other challenging situations may be: using different locations for
the same object every day or performing the same task at a different location; all of
them make it a must for the robot to have good sensing capabilities. In order to sum
up, in human-like environments robots need to: sense, understand, plan and perform;
and this has to be a continuous loop.

As examples of the general pipeline for robots working in human environments,
we can think on a couple of common daily tasks: opening doors and grasping a
cup of water. Some problems we can find during these manipulation tasks are: the
unexpected weight of the cup depending of the amount of water it has; the difficulty
of detecting a transparent object if it is made of glass; the many different shapes of
doorhandles which lead to a broad amount of manners to open a door. This list can
be made as long as desired. From the manipulation point of view, human experience
on performing the tasks starts with a very lengthy training which, as a result, gives
us a high level of awareness of our capabilities and a high degree of understanding
the outcome of the actions performed, both after failing or success, and therefore,
makes us unaware of the tremendous complexity they require. However, there are
many difficulties for a robot to perform them. If we want to understand them, we can

3

think of ourselves trying to perform them as if we were a child (before the training
happened) or as if we were somehow physically or mentally impaired, or even both
at the same time, like it usually happens with aging. When combining some of this
issues together, the likeliness of success in the task decreases exponentially.

Grasping is a particular case of the tasks robots are designed for, commonly form-
ing part of more complex manipulation functions. Mechanical hands are developed to
give robots the ability to grasp objects of varying geometric and physical properties.
The price of using a mechanical hand is the complexity of the overall system. An-
thropomorphic designs usually involve from four to five fingers, like the examples in
figure 1.1, and therefore the whole hand-arm system can sum up to more than twenty-
five degrees of freedom (DOFs), which makes analytical studies much harder. On the
other hand, this high number of DOFs increases the possible ways of performing a
task to a point in which it is not obvious how to choose the best, or simply a good
one, among all of them. Besides this, one of the biggest problems in the grasping
task (and maybe in robotics in general) is uncertainties. In all the stages of a control
loop of a versitle robotic system (as described above), several level of unaccuracies
and errors are accumulated. The information from the environment provided by the
sensors, the execution of a given plan by the actuators, or even the planning itself,
all of them include a centain level of uncertainties.

Figure 1.1: Examples of anthropomorphic robotic hands. Top-left: DLR hand-arm
system. Top-right: Azzurra hand. Bottom-left: Elu2 hand by Elumotion. Bottom-
right: Shadow hand.

In this thesis, two parts of the grasping problem are addressed: first, given a table

4 Chapter 1. Introduction

top scene, how to make and execute a plan in the high dimensional space of a hand-
arm system in order to grasp an object; second, once this object is grasped by the
hand and assuming that the grasping action may have not been perfectly performed,
how to evaluate the resulting in-hand object to hand pose, so that we are able to plan
further than that, is studied.

1.1 Context and motivation

Mobile manipulators are nowadays a common research platform in many laboratories
around the world, either because they are now more affordable, or because research
groups have accumulated enough knowledge to build one. Robotics Lab research
group at Carlos III University of Madrid (UC3M) has been building and improving
such a robotic platform for more than ten years. It is denominated ManfredV2 [1]
and it can be seen in figure 1.2. It consists of a differential type mobile base with two
DOFs, an anthropomorphic light-weight arm with six DOFs and a very small and
simple gripper as an end-effector. The mobile base encloses a computer with all the
electronic components needed to operate and the batteries. ManfredV2 is equipped
with a vision sensorial system (both colour and depth based), two-dimensional (2D)
and three-dimensional (3D) range lasers and encoders in each DOF. In 2012, the
end-effector was updated with Gifu-Hand III [2], which is shown in figure 1.2. It is
a human-like hand, with four fingers and one thumb. Each finger has four DOFs,
three of which are actuated and one of them under-actuated. The thumb has four
fully actuated DOFs. The mechanical design integrates the actuators (DC motors)
and the sensors (incremental encoders), although an outer control and power system
are needed.

Figure 1.2: On the left, a general view of ManfredV2 mobile manipulator. On the
right, the robotic hand Gifu Hand III.

The final purpose of the team working with ManfredV2 is to develop techniques

1.1. Context and motivation 5

to make it robust, reliable, accurate, and safe to work with when it is performing
daily life tasks in human environments. ManfredV2 is already capable of performing
localization [3, 4], path planning [5, 6], navigation and obstacle avoidance [7, 8] or ob-
ject recognition and reconstruction [9, 10] among other tasks. These skills have been
acquired throughout the years and most of them are still part of on-going research
activities. However, at the start point of this thesis, manipulation skills were limited
to path planning and following with the arm [11, 12]. One objective of this thesis is
to explore new ways to enhance the grasping capabilities of ManfredV2.

As mentioned before, grasping tasks include solving several problems of different
categories. First, it requires sensing the environment to detect the object to be
grasped and other objects around it. From these objects, their pose and an estimated
geometrical structure are needed. The techniques used in this part of the thesis
are all of them based on previous projects in Robotics Lab [10], or other software
available [13, 14]. A model of the environment is then built using this information in
order proceed with the next stages. The second step consists on selecting a grasping
pose for the end-effector which allows the robot to grasp the object. For this part,
basic data-driven based algorithms have been developed for grasp selection. The
generation of possible grasps is based on geometrical properties of the object to be
grasped, while the grasp pose selection is based on the arm capabilities and the
avoidance of collisions with obstacles in the scene.

Then, path planning techniques are needed to decide how to get to the selected
grasp pose. Here, an important problem arises. The total hand-arm system consists
on twenty-six DOFs, twenty-two of which are actuated. We are, obviously, in front
of a high dimensional path planning problem. Several techniques have been used to
solve this kind of problem before [11, 15]. However, a complete different approach
is presented in this thesis. If the path planning and control problems applied to a
formation of robots are considered, they actually represent a different example of
the same problem, dealing with high-dimensional spaces due to the accumulation
of robots. In this case, it is more straight forward to think that one could try to
solve it for one of the robots, and then focus the effort in the coordination. This is
called the leader-followers approach, in which the followers are organized to follow
the leader while keeping a geometric formation. An example on how to reproduce
such a thinking in a 2D formation based on the Fast Marching Method (FMM) is
given in [16, 17]. This thesis presents the adaptation of this technique to the 3D
world. Furthermore, a framework in which the robotic hand-arm system is treated
as a robots formation, is also developed. Therefore, path planning is only done for
the leader, the wrist, while the hand movements are controlled based on the leader’s
position and keeping a geometric formation highly constrained by the mechanical
structure of the hand. This way, a reduction of the dimensionality of the problem is
achieved in order to make it easier and faster to find a solution.

6 Chapter 1. Introduction

Finally, grasping the object is commonly part of a more general task. However,
in order to carry on, it is important to know the pose of the object inside the hand,
so that further decisions can be taken. One could assume that the result of the
grasping action finishes exactly as it was planned or simulated. This is a very hard
assumption though, since the accumulation of inaccuracies of actuators, sensor noise
and simplifications in simulation or modelling, generally produces a different result
than expected. For this reason, an in-hand pose estimation of the object is presented,
in order to be able to have a more precise knowledge of the result of the grasping
action.

1.2 Document structure

The document is divided into four chapters and two appendixes apart from this intro-
duction. The first three chapters contain the specific methodologies and algorithms
used to solve the problems above mentioned. Thus, a detailed formulation and state
of the art is given in each one of them. They also contain their own results section.

Chapter 2 introduces the methodology for path planning and control of 3D robot
formation based on Fast Marching Squared. Several simulations are analyzed to prove
the usefulness of the method.

Chapter 3 presents the framework built on top of chapter 2 in order to treat a
robotic hand-arm system as a robots formation in order to perform a grasping action.

Chapter 4 treats the in-hand object pose estimation issue. A methodology based
on tactile sensing and particle filtering is presented.

Then, chapter 5 outlines the main conclusions extracted from this thesis and its
results, pointing out the most promising ideas in this area.

Finally, appendices A and B are attached. The former contains a detailed descrip-
tion of the Fast Marching Method and its use in the path planning problem. The
latter presents the robotic platforms used in the experimental part of chapters 3 and
4.

Chapter 2

3D Robot Formations

7

8 Chapter 2. 3D Robot Formations

2.1 Introduction

In recent years, research on multi-robot systems (MRS) in 3D environments has in-
creased exponentially due to the price drop of unmanned aerial vehicles (UAV) and
the advent of micro-aerial vehicles (MAV) as a popular robotic test bed in the robotics
community. Furthermore, in many tasks the use of multi-agent systems increases in
overall mission performance, flexibility and robustness without augmenting the capac-
ity of each UAV unit [18]. Based on these characteristics, typical applications for MRS
are: exploration [19], search and rescue [20], surveillance [21, 22], and many others.
In order to achieve a good performance in any of these applications several research
topics need to be addressed, such as: modelling and control of such agents [23], colli-
sion avoidance [24], mapping and state estimation with such agents [25] or formation
control and planning [26].

In formation control, a group of coordinated robots have to perform a specific task
trying to keep a certain geometric configuration. The coordination of the robots is one
of the essential topics in the field of MRS. When operating in close proximity, limited
space or in a collaborative task, the movements of the robots have to be planned
and coordinated efficiently. In real world applications, this synchronised navigation
requires a computationally fast solution so that the velocity of the motion can be
maintained.

There are many issues to be considered when designing a controller for mobile
robot formation, such as: the stability of the formation, the controllability of the
shape patterns or the safety of the movements. All these issues need to be addressed
while the formation is moving along different scenarios. Therefore, the configuration
of the formation should evolve over time in order to meet the different constraints.
This evolution can be quantified using different metrics that characterize it. Only
a few approaches have been found in the literature on how to do this measurement,
mainly because of its difficulty to be generalised. However, some of the most used
criteria for 2D formations can be easily extended to 3D formations. [27, 28] use two
similar performance metrics for the evaluation of their experiments: average position
error, which is the average displacement of each robot from their predefined positions
in the formation, and percentage of time in formation, that reflects the amount of
time in which the robots keep the geometry of the formation. [29, 30] use a formation
evaluation criterion called uniform dispersion, which evaluates if the same distance is
kept between all neighbour robots with a maximum tolerance of εd.

In this chapter, the average position error of each robot along the path is com-
puted. Moreover, since the environments used in the simulations are quite challenging,
an analysis based on the distance of the robots to obstacles is also considered so that
the safety of the presented algorithm can be evaluated.

2.1. Introduction 9

When looking into the literature describing how to control the evolution of the for-
mation, many different strategies can be found. In [31] the multi-agent coordination
problem is studied under the framework of control Lyapunov functions. The main
idea is that every robot has a control Lyapunov function, and there exists a global
Lyapunov function, for the whole formation, which is a weighted sum of individual
Lyapunov function of each robot. The main drawback is the mathematical complexity
needed to obtain satisfactory results. Other works use an approach based on potential
fields which are combined in order to get the desired behaviour of the formation [32].
The major problem of these approaches is the existence of local minima. In other
behaviour-based approaches [33] each robot has basic primitive actions that generate
the desired behaviour in response to sensory input. Possible schemas include colli-
sion avoidance and goal seeking. Virtual structure introduced by [34] is defined as a
collection of agents that maintain a desired geometric configuration. The algorithm
has three main steps: the virtual structure is aligned with the position of the robots,
then a trajectory for every agent is obtained, and finally each robot follows its own
path. This approach is capable of maintaining a highly precise formation and has
mainly been used for satellite formation control [35]. However, due to its high com-
putational complexity is very difficult to apply it to multi-UAV control. In the case
of leader-followers approach, a common scheme is the model predictive controller [36]
which was recently introduced for holonomic robots [37]. The major focus of most
methods is mainly to maintain the formation based on pre-planned paths and static
environment assumption.

In this research a leader-followers approach has been used, extending the initial
work presented in [38]. In this strategy, a robot (that could be virtual) is designated
as the leader of the formation and follows a trajectory towards the goal point. At the
same time, follower robots are positioned behind it according to a default geometry
shape that can be deformed, within a given range, trying to accommodate to the
environment conditions [39, 40, 41]. An advantage of this strategy lies on its simple
implementation since no feedback loop from the followers to the leader is needed.
This is due to the leader’s behaviour, which can be considered as egoistic, since in
the path planning phase the formation itself is not considered, and in the motion
phase it also does not take into consideration the follower robots. This approach
leads to paths that are optimal for the leader, while they might not be as good for
the followers. Although a bigger robot describing the formation (instead of punctual
ones) could be considered in planning phase, so that narrow passages are avoided,
our approach considers that any path can be accomplished if the deformation scheme
is good enough. Besides, the algorithm can find a solution even in the presence of
very constrained situations. Therefore, our deformation scheme allows the robots to
adapt their paths in the situations where their movements are constrained by the
environment, which is one of the key points of the algorithm. Another important

10 Chapter 2. 3D Robot Formations

characteristic is that it depends on the leader’s motion, so it is very important to
have very good path planning and tracking because once the leader loses its path, its
error is fully propagated to all the followers and both the mission and coordination
objectives could fail.

In the presented approach, the leader’s path is calculated using the Fast Marching
Square (FM2) path planning method, which ensures obtaining very safe and smooth
paths [5]. For the followers, a predefined geometry evolves dynamically, while the
leader is covering the path, based on a velocities map calculated as a first step of
FM2. The manner the deformation is produced is based on the algorithm described
in [42], which shows an easy way to deal with robot priorities when going through
very narrow environments, with a very low mathematical complexity. Besides, a
3D modelling of dynamic obstacles based on a distance local map is introduced.
Also, a slight modification of the algorithm is introduced so that all the robots are
able to take into account the moving obstacles while covering the path. Finally, a
quantitative analysis on the performance of the algorithm with respect to the amount
of deformation needed to avoid the obstacles, and the safety of the solution in terms
of distance to obstacles are presented. Furthermore, qualitative results are shown for
different complex scenarios.

The next sections of this chapter are organised as follows. Section 2.2 introduces
the Fast Marching Square path planning method. In section 2.3 the application of
FM2 to the robot formation problem in static and dynamic scenarios is explained.
In section 2.4 simulation results for difference scenarios and a qualitative analysis of
the performance of the algorithm are shown. Finally, in section 2.5 conclusions are
addressed.

2.2 Fast Marching Square path planning method

The FM2 is based on the Fast Marching Method (FMM), which was proposed by
Sethian [43] in order to solve the Eikonal equation on Cartesian grids. This differential
equation models an isotropic front propagation. Although a deep explanation of the
FMM is made in appendix A, a general view is given next as an introduction of FM2.

2.2.1 The Fast Marching Method

Light rays travelling through different materials follow the path which is less time-
consuming, according to Fermat’s principle [44]. This is an interesting concept in
robotics since, if we are able to model how light waves travel in space, we can easily
compute the fastest path between two points in space. This is exactly what we can
do with FMM. If the goal point of a path is considered as the source of a light

2.2. Fast Marching Square path planning method 11

wave, and the FMM is computed over all the free space of a map, the time of arrival
of the wave at every cell in the map is obtained. Moreover, considering the set of
all cells representing free space and the time as last coordinate, we can create a
Lyapunov surface in which the level curves are isochronal, and the Fermat’s paths
are orthogonal to them. This means that it is impossible for the method to have
local minima. Graphically, this can be seen in figure 2.1, which represents the funnel
potential of the light wave propagation with a constant refraction index.

Figure 2.1: Lyapunov surface created when the propagation of the wave starts in one
point and the refraction index is constant. Time is used as the vertical axis.

Mathematically, the propagation of the light is given by the Eikonal equation 2.1.
In [43] a first order approximation of the solution for this equation was proposed and
called the Fast Marching Method.

Let us assume a 2D map, where xij = (xi, yi) represents the point x = (x, y) in
the space corresponding to a cell (i, j) of the grid (for the 2D case) in relation to
a Cartesian referential. Besides, let T (x) be the arrival time function of the front
wave and F (x) the velocity of the wave propagation. Moreover, we assume that a
wave starts propagating at time T (xo) = 0, and the velocity F (x) is always non-
negative. The Eikonal equation defines the time of arrival of the propagating front
wave, T (x), at each point x, in which the propagation speed depends on the point,
F (x), according to: ∣∣∇T (x)

∣∣F (x) = 1, X ⊂ RN (2.1)

12 Chapter 2. 3D Robot Formations

Discretising the gradient∇T (x) according to [45] it is possible to solve the Eikonal
equation at each point xij, as follows:

T = Ti,j
Tx = min(Ti−1,j, Ti+1,j)
Ty = min(Ti,j−1, Ti,j+1)

(2.2)

max

(
T − Tx

∆x

, 0

)2

+ max

(
T − Ty

∆y

, 0

)2

=
1

F 2
ij

(2.3)

The FMM consists on solving T (x) for every point of the map starting at the source
point of the wave where T (xo) = 0. The following iterations solve the value T (i, j) for
the neighbours of the points solved in the previous one. Using as an input a binary
occupancy grid map, the output of the algorithm is similar to the distance transform,
but in this case is continuous, not discrete. These distances have the meaning of the
time of arrival of the expanding wave at every point in the map, since the velocity of
the wave at every cell is known (and in this case constant). After applying the FMM,
gradient descent can be used from any point of the map of distances to obtain a path
towards the source of the wave, which works as a goal point. This is valid only if
one wave has been employed to generate the map of distances. The main advantage
of this method is that the path obtained is optimal in distance, like the example in
figure 2.2.

Figure 2.2: Example of a path obtained with the FMM. The left side shows the
original map and the path calculated. In the right there is the map of distances
computed with FMM, these distances are expressed in the same units as the cell
resolution.

2.2. Fast Marching Square path planning method 13

2.2.2 Fast Marching Square Method

As we can see in figure 2.2, although optimal in distance, it is obvious that the path
produced by FMM is not safe in terms of distance to the obstacles, nor feasible in
terms of the abruptness of the turns that the path requires. These problems lead
us to consider using the Fast Marching Square method (FM2) as path planner. The
FM2 [7] solves these two main disadvantages. It is based on applying the FMM twice.

Let us now consider a map in which obstacles are labeled as 1 and free space as 0.
The Fast Marching Method can be applied to this map considering all the obstacles
to be wave sources. When FMM was applied in section 2.2.1, there was just one wave
source (at the target point). In this case, all the obstacles are considered a source
of the wave, and hence, several waves are being expanded at the same time. If this
technique is applied to the occupancy map in figure 2.2 (left), the resulting map can
be seen in figure 2.3. This map can be interpreted in several different manners. It
represents a potential field of the original map, as cells get further from obstacles,
the computed Ti value is greater, as in the case of a distance field/map. It can
also be interpreted as a slowness/velocities map: Ti value can be considered to be
proportional to the maximum allowed speed of the robot at each point, which leads
to allowing lower speeds when the cell is close to the obstacles, and greater when it
is far away from them. In fact, a robot whose speed at each point is given by the Ti

value will never collide, as Ti → 0 when approaching the obstacles.

Figure 2.3: Example of a slowness map, result of computing the FMM to an occupancy
map and considering all the obstacles as sources of a wave.

The second time the FMM is applied, the resulting slowness map after the first
step is applied, is considered as a map of velocities for the second wave expansion.
This means that the second time the wave is propagated, the velocity at which it
moves forward may be different at every point in the map. Furthermore, this velocity
is proportional to the distance to the closest obstacle, meaning that the wave is faster
when it is far from obstacles. This produces important differences in the path that

14 Chapter 2. 3D Robot Formations

is computed, as it can be seen in figure 2.4. On the right, there is the time of arrival
function result of applying the FM2 algorithm over the occupancy map on the left of
the figure. Besides, the computed path is drawn on the original map, it is easy to
appreciate that the path avoids getting close to obstacles in a smooth manner.

Figure 2.4: Example of a path obtained with the FM2. The left side shows the
resulting path of the algorithm in the initial occupancy map. In the right side there
is the time of arrival map.

Furthermore, assuming that the slowness map contains values between O and 1,
relative to the maximum allowed velocity, it is possible to trim (saturate) this map of
velocities. With this small modification the safety and smoothness of the computed
paths is still ensured (except for saturation values close to 0), while obtaining trajec-
tories closer to the optimal one in terms of distance. Examples of the variation of the
path when the saturation value is modified are shown in figure 2.5. As the saturation
value becomes lower, the clearance between the path and the obstacles is smaller

(a) Saturation: 0. 75 (b) Saturation: 0.5 (c) Saturation: 0. 25 (d) Saturation: 0

Figure 2.5: FM2 saturated variation: modification of the path depending on the
saturation value.

The proposed FM2 algorithm has several properties which make it very good for

2.3. Robot Formation planning with FM2 15

path planning purposes [17, 41]. The most important ones include:

• No local minima: as long as only one wave is employed to generate the time of
arrival map, FM2 ensures that there is a single global minimum at the source
point of the wave (goal of the path).

• Completeness : the method finds a path if it exists and notifies in case of no
feasible path.

• Smooth trajectories : the planner is able to provide a smooth motion plan which
can be executed by the robot motion controller. In other words, the plan does
not need to be refined.

• Reliable trajectories : it provides safe (in terms of distance to obstacles) and
reliable trajectory (free from local traps). This avoids the coordination problem
between the local collision avoidance controllers and the global planners, when
local traps or blocked trajectories exist in the environment.

• Fast response: if the environment is static, the map of velocities is calculated
only once. Since the FMM can be implemented with a complexity order of
O(n) [46], building the map of velocities is a fast process.

2.2.3 3-Dimensional Fast Marching Square

Since the FM2 algorithm is based on the standard FMM, it is extensible to more
than 2D, as it is done in this work on 3D robot formations planning. The algorithm
works exactly in the same way as the 2D version, with the only difference that the
front wave becomes a spatial curve. Also, the time response is a little slower since
the size of the grid that models the environment is much bigger. Despite this, all the
properties of the FM2 remain in a n-dimensional environment. This is the main fact
that leads us to use this algorithm as path planner. Figure 2.6 shows a lateral view of
an example trajectory computed with FM2 and performed by the arm of ManfredV2.

2.3 Robot Formation planning with FM2

The algorithm described next is an extension of [16, 42], in which the FM2 path
planning method is used to control 2D formations in different scenarios. A general
idea of the algorithm was presented in [38], however, still some improvements are
necessary for adapting this method to dynamic and more complex environments.

This algorithm is based on a leader-followers scheme, which is used to control the
robot formation. In this scheme, the reference pose for the follower robots is defined

16 Chapter 2. 3D Robot Formations

Figure 2.6: The robot ManfredV2 performing a 3D trajectory computed using FM2 .

by a geometric shape for the formation. This means that the goal poses along t he
path of each follower are a function of the leader's pose. How this shape is controlled
is introduced in section 2.3.1. T he leader of the formation can be a robot, a person
or even a virtual leader. It is important to say that the path planning algorithm
considers all the robots in the formation as punctual objects. Besides, the path for
the leader is computed in an egoistic way, not taking into account the other robots
in the format ion. This might lead to situations where the followers may move too
close to obstacles, or even collide with them. In order to avoid these situations,
new partial goals are computed for the follower robots using the shape deformation
scheme explained in section 2.3.2 while the leader covers its path. This approach
takes the advantage of only computing the path for t he leader of the formation ,
saving computation time in the path planning phase.

Both , the path planning and the evolution of the shape of t he formation , are based
on FM2. FM2 provides a two-level artificial potential field which repels the robots
from obstacles and has no local minima. Integrating the potential given by FM2 and
the shape deformation scheme for the follower robots, each robot has at each moment
one single potential attracting it into the objective, but repelling it from obstacles
and other robots . The main requirement when integrating all the potentials is to

2.3. Robot Formation planning with FM2 17

do it in a way that does not create local minima. Figure 2. 7 shows the steps of the
algorithm on a triangle-shaped robot formation . Although it is a 2D shape, it has
been chosen because it is easier to understand the behaviour the followers to avoid
colliding with obstacles and among themselves. The images are ordered starting from
the top left one, which shows the different components of the robotic formation: the
leader and its path, the followers , and their partial goals. Then, the top-right image
presents a default triangle-shape formation (in green), note that it is expressed as
a funct ion of the tangential and perpendicular vectors (iJ and il respectively) of the
leader's path and depends on distance dl and d2 , which are non-constant, so they
may change along the path. Next, bottom left image shows the partial goals of the
follower robots (blue circles) for a different step of the algorithm. The shape of the
formation is kept when the leader turns. Finally, bottom right image shows that,
when the new objectives (dashed blue line and circle) of the follower robots are close
to an obstacle (grey shadow), these objectives are updated in order to move away
from obstacles deforming the original triangle shape by changing the value d2 of the
top follower into d2' (blue line and circle).

Partial -d1 •v + d2•u

I ~ goals I o
Followers \Followers' paths - ~

.) / ~ ~ Leader's path

~ Leader

V

u

V

Figure 2. 7: Top left - Main components of the robot formation algorithm. Top right -
Reference geometric definition of a simple, triangle-shaped robot formation, note that
the definition is based on vectors il and iJ (tangential and perpendicular to the path,
respectively) . Bottom left - Behaviour of the partial goals depending on the leader's
pose. Bottom right - Behaviour of the partial goals depending on the obstacles in the
environment.

18 Chapter 2. 3D Robot Formations

2.3.1 Robot pose coordination

The aforementioned figure 2.7 shows the basic scheme for controlling a robots for-
mation in a 2D scene. However, when the formation performs in a 3D environment,
a problem arises when dealing with the orientation of the followers. While in 2D,
perpendicular and tangent vectors can be used because they are unique, this cannot
be directly applied in 3D, since there are an infinite number of perpendicular vec-
tors to the tangent to the path. All these vectors are contained in a plane that is
perpendicular to the tangent vector, as depicted in figure 2.8.

Figure 2.8: The red vector represents the tangent to the trajectory and the red circle
is the perpendicular plane to this vector.

In order to be able to use the proposed robot formation planning method in 3D, a
third reference has to be specified so that the reference shape of the formation can be
determined in a unique form. In this case, a generalization using a relative reference
based on the Frenet-Serret formulae [47, 48] is proposed. It consists on extracting the
local characteristics of the path as a third reference, this way it allows the formation
to be environment-independent when defining the reference geometry.

The Frenet-Serret formulae are used to describe the kinematic properties (velocity,
curvature and torsion) of a particle which moves in a three-dimensional Euclidean
space, R3. Let r(t) be a parameterization of a continuous, differentiable curve C in a
Euclidean space R3. Then, its curvature, κ(t), is defined as:

κ(t) =
||r′(t)× r′′(t)||
||r′(t)||3

(2.4)

being κ(t) a non-negative number. Then, for space curves with non-zero curvature, it
is possible to define a higher-level curvature called torsion, τ(t), which is associated

2.3. Robot Formation planning with FM2 19

with the third time derivative r′′′(t) . It describes the twisting of the curve, and it is
defined as:

τ(t) =
det[r′(t)r′′(t)r′′′(t)]

||r′(t)× r′′(t)||2
(2.5)

Curvature and torsion define the local characteristics of the curve r(t). Then, let
us denote T(t), N(t) and B(t) as the unit tangent vector, the unit normal vector and
the unit binormal vector respectively. The Frenet-Serret formulae defines them as:

T′(t) = κ(t)|r′(t)|N(t) (2.6)

N′(t) = −κ(t)|r′(t)|T(t) + τ(t)|r′(t)|B(t) (2.7)

B′(t) = −τ(t)|r′(t)|N(t) (2.8)

The Frenet-Serret frame along the curve is defined by the collection of the three
vector functions T(t), N(t) and B(t) which satisfy the following fundamental rela-
tions:

T(t) = r′(t)
|r′(t)| N(t) = T′(t)

|T′(t)| B(t) = T(t)×N(t) (2.9)

The graphical representation of the Frenet trihedron at a certain point of a curve
has already been shown in figure 2.8, where the red vector is T(t), the blue vector is
N(t) and the green vector represents B(t). The main advantage of using the Frenet
trihedron is that among the infinite possible vectors perpendicular to the tangent
vector, the one chosen is in the direction of the curvature N (or normal acceleration).
Furthermore, the direction of the vectors in the frame changes continuously, this is
an important property when using it as a reference for the shape of the formation, in
order to have a smooth evolution. So, from a geometrical point of view, by combining
vectors T, N and B any shape can be given to the formation.

Based on the Frenet trihedron of a 3D path, figure 2.9 shows an example of a robot
formation shaped as a quadrangular base pyramid. The left side shows the different
components of the formation: leader (red) and follower (blue) robots are represented
by rectangles. The leader path is drawn as a grey line and attached to the leader,
the Frenet trihedron is represented by a 3-axes frame in which the tangential vector
is drawn in red, the normal vector in blue and the binormal vector in green. Also,
blue and green circles (the difference in the colours is just for visualization purposes)
represent partial goals of the follower robots. On the right, the partial goals (forming
a quadrangular base pyramid) are defined as a function of the Frenet trihedron vectors
and parameters d1, d2 and d3. d1 defines the height of the pyramid, while d2 and

20 Chapter 2. 3D Robot Formations

d3 define the base. As in the 2D example explained before, these parameters may
change while the leader covers its path, adapting the shape of the formation to the
environment.

Followers

Partial
goals

-d1'T - d2'B

-d1'T + d2'B

}
Figure 2.9: Definition of the formation based on the Frenet trihedron. Robots are
represented by rectangles1 red for the leader and blue for the followers. Attached to
the leader the Frenet trihedron is represented by 3-axes frame. The leader 's path is
represented by a grey line. Partial goals for the follower robots are computed with
respect to the Frenet trihedron, as indicated in the right part of the figure.

2.3.2 Distance based shape deformation

As explained before, although the formation is predefined by geometric relationships1

this shape cannot be exact ly the same along all the path because this could lead to
collisions. Therefore1 when the formation gets close to obstacles1 the positions of the
robots in the formation should be modified in order to adapt the initial shape to the
obstacles in the environment. The proposed method achieves this by modifying the
distances which define the default geometry. The manner these distances are modified
will determine the behaviour of the formation.

If the quadrangular base pyramid in figure 2.9 is taken as a default formation,
then figure 2.10 shows simple deformation rules than can be used to adapt this shape
to the environment. Nate that dist ances in the vert ical axis are named after their
corresponding vector in the Frenet trihedron. Thus, dTi is the distance along the
Tangential (T) axis for every follower , which corresponds to dl in figure 2.9. Besides1

the value max represents the distances defining the desired default formation for the
robots , the original pyramid. While min is the minimum value those distances can
take when the geometric shape is deformed.

2.3. Robot Formation planning with FM2 21

0 1

min

max

follower gray level

dB
or

dN

0 1

min

max

follower gray level

dT
i

i=4

i=3

i=2

i=1

Figure 2.10: Followers’ partial goals modification based on linear functions.

These two simple rules cause two kind of behaviours of the follower robots. For the
distances in directions parallel to the Binormal (B) and Normal (N) axis, namely
dB and dN , the behaviour is the same: since a lower less grey level means the robot
is closer to obstacles, the distances in these directions have to decrease towards the
minimum. Therefore, the follower robots get closer to the leader’s path, which is
collision free. In the formation presented in figure 2.9, this means that the base of
the pyramid becomes smaller.

However, in very narrow environments, this deformation rule can make the robots
suffer an excessive contraction towards the leader’s path, forcing them to move too
close to each other or even collide. In order to avoid this kind of situations, the
concept of priority among the robots is introduced. This is done by modifying the
distance in the direction parallel to the Tangential (T) axis, dT . When a different
variation of this distance is set for each robot, it makes the followers to be located
at a different distance at the back of the leader. According to figure 2.10, follower
4 will not modify its distance, while follower 1 will be the one which gets closest to
the leader. Therefore, highest priority is given by a higher slope in this function.
This deformation rule allows the formation to contract as much as needed so that the
obstacles are avoided since the maximum deformation would make the pyramid to
change its shape into a line, in which the order of the robots is set by their priority
rule.

In the previous paragraphs two simple rules have been introduced to control a
pyramid-shaped formation in narrow environments. However, the behaviour of the
followers can be modified by simply setting different functions to define the shape
changes. For the experimental results in section 2.4, the values of the parameters in
the rules presented have been chosen empirically. It is important to note that they
mainly depend on the size of the robots, since they set how much close they can
get among them, and on the abitlity of the robots, since more steep functions which
govern the shape change require a more agile dynamic response of the robots.

22 Chapter 2. 3D Robot Formations

2.3.3 Mobile obstacles modelling based on a distance map

Common environments for UAVs are not static in the real world scenarios. In order
to take into account mobile obstacles, a local distance map model of the obstacles
based on FMM has been developed. This technique deals, not only with the position
of the obstacles, but also with their uncertainty which could exist due to, for example,
sensor noise.

Let us consider a mobile obstacle Oi with position Pi = [xi, yi, zi] and uncertainty
Ui, where i is the number of obstacles and Ui is 0 ≤ Ui ≤ 1, being Ui = 1 the
maximum uncertainty. This uncertainty level models the noise and inaccuracies of
the sensors used for obstacle detection and modelling, since it is used to create areas
around the objects in which we cannot assure whether there is an obstacle or not.
Note that the aim is not to create an accurate error model for a given sensor, but
to create a sensor-independent algorithm. This uncertainty could be understood as
a safety parameter. Besides, the obstacles can be modelled differently, depending
on the desired degree of accuracy. In the most simple case, a bounding box [49, 50]
containing the obstacle is created. Other possibility can be modelling the objects
using one or several superquadric functions [51, 52]. In any of these cases, a local 3D
grid map around each mobile obstacle is created. In this map, we model the obstacle
by filling with ones the voxels that correspond to the shape of the chosen model of
the obstacle. The accuracy of this model is limited by the resolution of the grid.

As an example, we will consider a punctual obstacle as can be seen in figure
2.11, top-left. The rest of the voxels of the local map will have zero values, meaning
that they are free locations. Now, if we compute the FMM over this map, we will
get a distance transform function. Figure 2.11, top-right, shows the central slices
of the 3D grid which contains an example of the distance transform in which the
locations around the obstacle have a greater grey-scale value than those further from
it. The drop of the grey level value as the voxels are further from the obstacle can
be interpreted as the uncertainty, in which higher values mean a higher likelihood of
the voxel to be occupied by the obstacle. Then, the distance map can be saturated
with the value given by Ui to control the level of uncertainty. Then, the values in
the map are scaled between 0 and 1. Figure 2.11, bottom, shows the final step of the
local map computation for two different uncertainty values, left U = 0.3 and right
U = 0.6. It can be seen how the uncertainty value Ui allows us to control the area
of influence of the obstacle. It is important to note that the furthest positions in the
grey scale images should be white, but they have been plotted in black to help the
visualization.

Finally, the obstacle must be introduced in the environment so that it is taken into
account by the leader and the followers in the formation. This is done by applying
equation 2.10 among the voxels of the local map of the obstacle and the corresponding

2.3. Robot Formation planning with FM2 23

voxels around its position Pi in the velocities map (first step of FM2) of the environ-
ment. This results into areas around the obstacles that have a velocity value close to
zero where the obstacle is located, which are then avoided with the use of the FM2

path planning method.

Wj = min(Wj, obstacle) (2.10)

where j corresponds to the voxels where the function is applied.

Figure 2.11: Computation of the distance based model of an obstacle with different
uncertainty value. Top left - Local 3D map with a punctual obstacle. Top right
- Central slices of the 3D grid representing the distance transform function of the
obstacle. Bottom images: final result for different uncertainties, left U = 0.3 and
right U = 0.6. It is important to note that the furthest positions in the grey scale
images should be white, but they have been plotted in black to help the visualization.

2.3.4 Formation planning algorithm

In previous sections the low-level modules of the proposed framework have been de-
tailed. Next, these steps are put together into a high-level algorithm, depicted in
figure 2.12. This algorithm assumes that the following information is available at the
beginning: a voxelized binary model of the environment; the initial and goal positions

24 Chapter 2. 3D Robot Formations

of the leader; the default shape of the formation; the size, uncertainty value, initial
position and velocity along the simulation (or the full path) of the mobile obstacles
in the environment. It is important to note that a static goal is being considered.
For dynamic goals, a simple replanning approach would not be enough since goal
modifications could require the formation to carry out complex maneuvers. Once all
the data is provided, it is processed following the steps shown in figure 2.12, which
are explained next:

(a) The environment map W0 is read as a binary map, in which 1 means that the
position is occupied by an obstacle and 0 means it is free space. This map is
common for all the robots in the formation (both the leader and followers).

(b) The first potential W (distance or slowness map) is calculated applying the FMM
to the binary map W0, according to the FMM 1st step of the FM2. This potential
is also shared by all the robots.

(c) The second potential T is calculated applying the FMM on the potential W from
the goal point to the leader’s initial position.

(d) A path for the leader is calculated applying gradient descent on the potential T,
according to the FM2 method. In the case of static environments, this path never
changes.

(e) Once the leader of the formation has its path to the goal position, a control loop
for the formation is executed while the leader covers this path. In this loop, each
cycle represents a step of the robots’ movement. For every cycle, new partial
goals are computed for each follower. It consists of the next steps:

I Since we may have mobile obstacles, for each cycle t the position of every
obstacle is updated both in the binary map W0, for visualization purposes,
and in the first potential W, so that they are taken into account by the
robots in the formation, as explained in section 2.3.3.

II The second potential T is updated, so that the changes in W are taken into
account.

III A new path for the leader is calculated applying gradient descent on the
new potential T, according to the FM2 method. Since the environment is
dynamic, the previous path that was computed for the leader of the formation
may not be safe any more, and so it needs to be recomputed every time any
of the obstacles move. Since the full path is only computed for one robot, it
can be done online.

2.3. Robot Formation planning with FM2 25

Figure 2.12: Robot formation path planning algorithm using FM2.

26 Chapter 2. 3D Robot Formations

IV According to the new pose of the leader and the default formation geometry,
the partial goal (xgf , ygf , zgf) is calculated for each follower f (where f repre-
sents each follower in the formation). Initial partial goals are computed with
the predefined geometry referenced to the Frenet’s trihedron, as explained in
section 2.3.2.

V The level in the distance map, W, of the partial goal position of each fol-
lower f is used in order to recompute its goal, as detailed in section 2.3.1.
Therefore, the shape of the formation is deformed so that the robots move
further from obstacles.

VI The second potential Tt
i is locally calculated for each follower f , applying

the FMM to velocities map W. The goal point each follower uses is their
partial goal computed on the previous step. The low computational cost of
FM2 allows us to do this without compromising the refresh rate.

VII The path is calculated for each follower f . This path is the one with the
minimum distance with the metrics Wt

i and it is obtained applying gradient
descent on the potential Tt

i.

VIII All the robots move forward following their paths until a new iteration is
completed.

This algorithm, together with the formation coordination and the obstacle mod-
elling approaches, allow us to significantly reduce the complexity of the path planning
problem of a multi-robot formation. As remarks, it is important to keep in mind that
the full path planning is only done for the leader, without taking into account the
follower robots, reducing the time consumption of the process. Then, while the path
is being covered, the formation is able to adapt to the local characteristics of the
environment.

2.4 Results

According to the previously introduced algorithm, different simulations have been
carried out in order to prove the validity of the proposed method. All of them
are based on Matlab R© implementations of the algorithm running on a Linux-based
operating system in a 2.2 GHz dual-core PC (only one core was used). Simulations
perform only kinematic simulation, meaning that we do not consider any specific
dynamic model of the UAVs, and that a perfect path following algorithm is assumed
for all the UAVs. In all the cases, the map of the environment is known in advance.
Besides, both the initial and the final points of the trajectory are given, and the paths
are calculated with the FM2 algorithm. To calculate the partial goals of the followers,
a default pyramid shape is previously set, as shown before. This shape evolves by

2.4. Results 27

modifying height of the pyramid and the size of the base. In very narrow situations, in
which making the size of the base really small could lead to dangerous situations, the
followers will evolve into a convoy-like formation increasing the safety. These changes
are produced as a function of the distance to obstacles value of the position of the
followers, as explained in section 2.3.2. In the case of the moving obstacles, both
the initial positions and their velocity are also known, although some uncertainty is
introduced as explained in section 2.3.3.

While in previous works, only visual results of the simulation were given, in this
research a quantitative analysis of the performance of the formation planning algo-
rithm is shown. Two different criteria have been proposed: first, the distance of
each robot to the closest obstacle along all the path is evaluated. This is a common
criteria used in mobile robotics planning and gives us an idea of how safe is a path
with respect to the distance to the obstacles in the environment. In the simulations,
it is important to study the safety of the results since the algorithms are tested in
very narrow environments and with dynamic obstacles. The second metric measures
how much the shape of the formation changes with respect to the initial geometry. It
consists on evaluating the average displacement of the robots in the formation, from
their default relative position to their final pose, determined by the shape deformation
algorithm introduced in this chapter. It is computed using equation 2.11:

E =
1

N

N∑
i=1

dist(pi, d pi) (2.11)

where N is the number of follower robots, dist corresponds to the Euclidean distance
in 3D, pi is the computed position for follower i and d pi is the predefined position of
the same robot.

The first simulation environment is shown in figure 2.13. It consists of two rooms
connected by means of a very narrow passage in which the formation does not fit
without some amount of shrinking. In this example, we can see how the concept of
priorities is inserted in the algorithm since the formation evolves towards a convoy-
like geometry in which the followers are assigned with a different priority value. This
is done by modifying the height of the pyramid (distance in the tangential direction)
with a different value for each robot, so that it is possible to get extra space between
followers. At the same time, the size of the base changes in a way that makes the
followers to almost converge into a straight line.

28 Chapter 2. 3D Robot Formations

Figure 2.13: Example of a motion sequence in a narrow corridor, leveraging the
priorities introduced in the algorithm. Top: 3D view. Bottom: top-view which
allows to see how the robots change their relative position in the direction of the
motion.

Besides, quantitative analysis according to the metrics aforementioned is shown
in figure 2.14. The top image shows the distance to the closest obstacle for each
robot. Although there is a legend in the image, the colour of each line is the same
as the colour assigned for the robot in figure 2.13, and the leader’s information is
plotted in blue. Horizontal axis corresponds to the steps of the path, being 0 and 64
the start and final pose respectively. Vertical axis shows the distance to the closest
obstacle. This value is normalised, meaning that a 0 value corresponds to a collision
with an obstacle, and a 1 value means the maximum clearance a robot can have in
the whole environment. We can observe that, at the beginning, the robots move to a
more open space (clearance grows) which corresponds to the movement towards the
centre of the first room. Then, the distance gets smaller while the robots approach to

2.4. Results 29

the passage, and reaches a minimum value while moving through it. Finally it grows
again while entering in the second room, and becomes smaller when approaching to
the goal, which is close to the wall. In terms of deformation (figure 2.14 bottom), we
can see how its evolut ion is inversely proportional to the distance to the obstacles.
This means that when the space in narrower, the shape needs to be deformed in order
to fit in the space, which is the expected behaviour.

0.2a

E
Q) lo 7
u
~ 6
V,

'5
Q) 5
Cl

"' Q) 4

~

10

- 1eader - follower1 - follower2 - follower3 - follower4

20 30 40 70
Iteration of the algorithm

,~---~---~---~---~---~----~--~
0 10 20 30 40 50 60 70

Iteration of the algorithm

Figure 2.14: Quantitative analysis of scenario 1. Top: distance to the closest obstacle.
Bottom: average displacement of the formation with respect to the default shape of
the formation .

Figure 2.15 depicts the results of the same algorithm run in a map of one of the
laboratories of our university, in order to show that the proposed algorithm performs
well in realistic environments. In this case, the formation is composed by two followers
placed in parallel along the normal vector to the leader. Therefore, the formation
is actually the 2 robots navigating with the leader placed in the straight line that

30 Chapter 2. 3D Robot Formations

connects the followers. In this case, the leader is considered virtual in order to show
the flexibility of the approach. The only deformation allowed is along the normal
vector.

Figure 2.15: Example of a motion sequence in a map of one of our laboratories. Two
robots (blue and red) move in parallel to a virtual leader (green).

The corresponding quantitative results are shown in figure 2.16. The distances
between robots and obstacles are safe and there is not any collision. This performance
is remarkable given how cluttered the scenario is.

The next scenario is shown in figure 2.17. In this case a sequence of positions
along the path can be seen. The environment is composed by two big empty rooms
connected by a narrow window. Moreover, in the second room there are two mobile
obstacles, represented by black balls. These obstacles are located in the same point of
the XY plane (floor plane), but at different heights. They move parallel to the floor
towards the wall between the rooms. As we can see in the sequence, as explained in
section 2.3.3, the path is different for each step since a new one is calculated at the
beginning of it. One can appreciate how during the firsts steps, the path surrounds
the obstacles using the space on the left side (from the robots point of view), however,
after the robots have passed through the window, at which the formation shrinks in
the same way as in the passage in the previous environment, the obstacles move
forward and come closer to the wall. This implies that there is more free space on
the right side of the obstacles, so the path of the leader changes the side the robots

2.4. Results 31

0 5 10 15 20 25 30 35 40 45

0.4

0.5

0.6

0.7

0.8

0.9

1
Di

sta
nc

et
ot

he
clo

se
st

ob
sta

cle
leader follower1 follower2

Iteration of the algortihm

0 5 10 15 20 25 30 35 40 45
1

2

3

4

5

6

7

8

Iteration of the algorithm

Av
er

ag
ed

isp
lac

em
en

t

Figure 2.16: Quantitative analysis of scenario 2. Top: distance to the closest obstacle.
Bottom: average displacement of the formation with respect to the default shape of
the formation.

use to avoid the obstacles. Nevertheless, even though the leader eludes the obstacles
because of this change, the followers still have to skip the collision. As one can see
from the 5th to the 8th images in figure 2.17, the follower plotted in light blue can
avoid the moving obstacles just by following the same shape deformation algorithm
used for static environments. This happens because the obstacles are included in the
velocities map as explained in section 2.3.3, so that they cause the same behaviour
as static obstacles. It is important to note, that in the 7th image, although the light
blue follower seems to collide with the obstacle, it is just a matter of the perspective
used in the visualization.

32 Chapter 2. 3D Robot Formations

Figure 2.17: Environment with mobile obstacles. The temporal evolution starts in
the top-left image and ends in the bottom-right image.

2.4. Results 33

Moreover, the same quantitative analysis has been applied to this scenario and it
is shown in figure 2.18. As before, the colours in the figure correspond to the same
colour of the robots in the simulations. In the case of the distance to obstacles, it can
be seen that the value of all the robots decreases towards O when they go through
the window, and increases afterwards. The obstacles do not affect significantly to
this values because of the change in the path and the shape deformation movement.
In the case of the shape deformation result, it can be seen that there is a very big
change in the shape when the robots go through the window and a slight one when
they need to avoid the obstacles and arrive to the goal, which is close to the walls of
the environment.

0.9
(I)

&i 0 .8
:§ o 0.7

j 0 .6
.Q
o 0.5
(I) = £ 0.4

~ 0.3
C

.~ 0 .2
a

0 .1

7

2

10 20

10 20

- leader - follower1 - follower2 - tollower3 - tollower4

30 40 50 60 70
Iteration of the algortihm

30 40 50 60 70
Iteration of the algorithm

Figure 2.18: Quantitative analysis of scenario 3. Top: distance to the closest obstacle.
Bottom: average displacement of the formation with respect to the default shape of
the formation .

34 Chapter 2. 3D Robot Formations

Finally, table 2.1 shows the mean computation times µ and their standard devi-
ation σ for the three previous experiments. For all the experiments, the average and
standard deviation have been computed over ten different runs of the algorithm. The
first column shows the time elapsed in leader’s path computations. These times de-
pend on the environment chosen, specially on the amount of obstacles in them. They
are the most time consuming part of the algorithm. The second column includes the
formation algorithm times per iteration, which are really fast and could be run in real
time with frequencies higher than 1000Hz. Third column contains the times elapsed
for all the followers to compute the path to its partial objectives per iteration. It
depends on the number of followers, but one can see that for 4 followers the compu-
tation time is still around 500ms, so it can be computed online. Note that this can
be easily parallelised since every follower computes its own path. Be aware that the
first and third columns are expressed in seconds, while the second is in milliseconds.
Also note that the algorithm is completely deterministic, which means that the com-
putations times suffer low variation among runs. Another important remark is that
iteration times for experiments 1 and 2 are practically the same, despite the fact that
experiment 1 includes 4 followers and experiment 2 only 2. However, experiment 3
needs more time per iteration since the mobile obstacles have to be taken into account
as explained in section 2.3.3. Again, this process could be easily parallelised for every
follower reducing considerably the required time.

Table 2.1: Computation times for the leader’s paths, formation algorithm iterations
and followers’ paths.

Leader’s times (s) Iteration times (ms) Followers’ times (s)
µ σ µ σ µ σ

Exp. 1 0.47 0.01 0.22 0.09 0.49 0.03
Exp. 2 0.99 0.1 0.25 0.09 0.44 0.04
Exp. 3 0.65 0.04 10 2 0.52 0.02

2.5 Conclusions

This research broadens previous works presented by adapting the formation shape
control scheme to 3D environments, and includes the necessary changes to apply the
algorithm to non-static environments. Besides, it introduces a novel approach to
model mobile obstacles in the environment in a way that they are, later on, easily
treated by the obstacle avoidance algorithm explained. Finally, quantitative analysis
of this approach has been carried out. The results explain how the formation evolves
avoiding obstacles while covering the planned path. The tests show that the proposed

2.5. Conclusions 35

shape deformation method, in combination with the FM2 path planner, is robust
enough to manage autonomous movements through an indoor static and dynamic 3D
environment.

It is important to note that the algorithm is both conceptually and mathemati-
cally very simple since it relies on basic natural behaviours such as light movement.
Furthermore, the same method is applied in the planning phase for both the leader
and the followers. Besides, the deformation schema for the geometry of the robot
formation is based on basic 3D translations and rotations which can be computed
very fast using standard algebraic tools.

Results show that the proposed algorithm is able to manage difficult environments,
modifying the formation when it is necessary. In addition, this approach allows us to
include any number of robots in the formation, by only setting the desired position
with respect to the leader or the other robots. The introduction of function-based
geometry deformation is very powerful since it permits setting complex behaviours to
the followers by simply modifying these functions. As an example of this, the use of
priorities in the formation is showed. These functions can be modified dynamically,
an important property that is worthy to explore in the future.

Dealing with 3D robot formations, future work using FM2 is also related to testing
this method with other type of formations in which, for example, the leader is not
always in front of the team. Also, future simulation should include dynamics in order
to prove that the computed paths are smooth enough to be applied to real robots.
Besides, the possibility of a goal position change should be included in the high-level
formation algorithm, so that the algorithm allows to have dynamic goals and the
replanning is able to compute the necessary maneuvers to achieve them.

In general, it is shown that it is possible to decouple a high dimensional path plan-
ning problem into two simpler ones: 3D path planning for one robot and formation
control and coordination for the others. This idea is the ground for the construction
of next chapter, which seeks to find an answer to the following question: Is it possible
to do the same for an hand-arm system when performing the grasping action?

Chapter 3

From Robot Formations to
Grasping Control

37

38 Chapter 3. From Robot Formations to Grasping Control

3.1 Introduction

A common use of robotic assistants, whether at home, factories or in space, will not
be realized without the ability to grasp typical objects in human environments. The
human hand, the most versatile end-effector known, is capable of performing a wide
range of tasks with an impressive dexterity. In an attempt to match its abilities, a
wide variety of anthropomorphic robotic hand designs with at least four fingers have
been proposed over the last years. Examples include: the Utah/MIT Hand [53], the
Robonaut hand [54], the Gifu Hand [55], the Shadow Hand [56], the DLR Hand [57] or
the MA-I Hand [58]. Several discussions on the designs have already been presented
[59, 60].

These models often include human-like kinematics and simplified motor or tendon
based actuation. However, the increase in potential capabilities has come at the cost
of similar increase in the complexity of usage. As the number of degrees of freedom of
a robotic hand approaches the human hand, effective autonomous algorithms that can
handle high-dimensional configuration spaces are required in order to take advantage
of the new designs [61]. Therefore, despite the advanced features of these mechanical
hands, one of the remaining problems in order to obtain a good outcome from them
is the autonomous determination of their movements.

3.1.1 Grasp Synthesis

When a robot is about to grasp a given object, the first decision to be taken is
where to position the fingers on the object so that the object is grasped safely. This
problem is called grasp synthesis. The variety of approaches used to solve it often
differ on how to compute the grasp positions, or on how to measure the quality of
those positions. Recent reviews [62, 63] establish two different methodologies to solve
this problem: analytic and empirical. Analytic methods are those which attempt to
construct force-closure grasps with a multi-fingered robotic hand, usually formulated
as a constrained optimization problem over criteria that measure equilibrium, stability
and the possibility to exhibit a certain dynamic behaviour [64]. A grasp is then
defined by the grasp map that transforms the forces exerted at a set of contact points
to object wrenches [65]. The criteria used to compute this grasp map can be based
on geometric, kinematic or dynamic formulations. A review on analytic techniques
towards grasp synthesis can be found in [66]. Empirical approaches rely on sampling
grasp candidates for an object and ranking them according to a specific metric. The
sampling process is usually based on some existing grasp experience generated by a
human operator, in simulation or on a real robot. For this reason these methods are
also called knowledge-based approaches.

3.1. Introduction 39

It has been recognised that classical metrics based on analytic formulations, such
as the widely used ε-metric proposed in Ferrari and Canny [67], do not cope well with
real scenarios. This metric is very widely used because is implemented in simulators
such as GraspIt! [68] and OpenRave [69]. However, different studies have shown that:
the grasps synthesized using this metrics are commonly fragile [70], under-perform
significantly when compared to grasps planned by humans and transferred to a robot
[71], or, under object pose error, perform specially poorly when grasping large objects
[72]. Although grasp closure is often wrongly equated with stability, actually, these
results are not unexpected, since force closure states the existence of equilibrium,
which is a necessary but not sufficient condition. Therefore, these results suggest
that there is a large gap between reality and the computational models for grasping
that are currently available.

This gap is one of the reasons for the attention knowledge-based grasp synthesis
has received during the last decade. In these schemes, a grasp is usually defined by
[73, 74]:

• a point on the object with which the tool centre point is aligned,

• the wrist orientation of the robotic hand at this point,

• an initial finger configuration,

• and sometimes also an approach vector to perform the last movement of the
hand.

Empirical approaches differ in how the set of grasp candidates is sampled and how
the grasp quality is estimated. Besides, they commonly stress the efforts on the object
representation and the perceptual processing, e.g., feature extraction, similarity met-
rics, object recognition or classification and pose estimation. This information is then
used to sample and evaluate the grasps using some previous knowledge. Since the
parameterization of the grasp is less specific, they accommodate better for uncertain-
ties in perception and execution. However, these methods cannot provide guarantees
regarding properties such us dexterity, stability or dynamic behaviour [64], since they
can only be verified empirically.

3.1.2 Motion Planning for Hand-Arm Systems

Once a grasping position has been computed, it is necessary to determine how the
robotic hand-arm system can perform the given grasp. This problem can be formu-
lated as a well-known motion planning problem, but in a very large dimensional space.
Planning collision-free motions for robots with a high number of DOFs is known to
be a P-space hard problem [75]. Thus, some new approaches are still necessary in

40 Chapter 3. From Robot Formations to Grasping Control

order to find solutions in a faster way so that they can be implemented and used in
practice. Besides, it would be desirable, yet not necessary, to perform the movements
in a natural manner.

A classical approach to reduce this complexity is to decouple the grasping problem
by planning separately for the end-effector and the manipulator. Therefore, it is com-
mon to use offline calculated grasping poses for which the inverse kinematics solutions
are searched during the planning process [76, 77, 78, 79]. When looking for these so-
lutions, if complete algorithms are used, it is possible to suffer from low performance,
mainly caused by the complex task of computing the part of the configuration space
(C-space) whose configurations do not lead to collisions in the workspace. Probabilis-
tic algorithms may be used to avoid the time-consuming computation of the boundary
of the collision free space. RRT-based approaches are widely used in the context of
planning reaching and grasping motions for humanoid robots. The general theory for
planning collision-free motions with RRT methods can be found in [80, 81].

This approach can result in computational bottlenecks, unreliable grasps and sub-
optimal manipulator motions in realistic application settings [82, 83]. For example,
in cluttered environments, the grasp database needs to be densely populated with
many diverse end-effector postures. On the other hand, when this database is very
big, many of the pre-planned grasps are infeasible at runtime: either due to collisions
between the robot and the environment, or because they are kinematically invalid.
Therefore, selecting a good grasp out of the database can be time consuming. In
order to minimize this problem, some application-specific heuristics can be formulated
[76]. Other common problem is that both, objects and the end-effector, usually have
symmetries, which leads to equally good grasps over a large region of the task space,
making it more difficult to make a decision.

Another common approach to solve these problems addresses the reduction of the
dimension of the search space. This technique is based on the knowledge of the way
the hand is controlled by the brain. Actually, a large part of the human cortex is
dedicated to grasping and manipulation, and it would seem reasonable to assume
that all of this cognitive machinery is dedicated to finely controlling individual joints
and generating highly flexible hand postures. However, results in both, robotics and
neuroscience research, point to the contrary, suggesting that a majority of the human
hand control during common grasping tasks lacks of individuation in finger movements
[84, 85]. A typical example of this situation is the last two joints of each finger. In
general, they cannot be moved independently, so it is common to fix this correlation
either by the mechanical structure of the hand, or by the controlling software.

From the software point of view, several initiatives have been presented in order
to reduce the search space. In [61], the use of a low-dimensional subspace of the
hand configuration space for finding hand postures for a given task is proposed. The
subspace, called eigengrasp, is derived from user studies on human grasping and

3.1. Introduction 41

mapped empirically to robot hand kinematics. The eigengrasps are then used for
finding a small number of optimized pre-grasps in the low-dimensional eigengrasp
subspace, then, the final grasping positions are calculated and processed to compute
the quality of grasps. In a related work [15], the search space reduction is done in
a similar manner, by looking for a representative subspace of the hand configuration
space, although this subspace is named as Principal Motion Directions (PMDs). This
subspace is built by capturing a number of samples of human hand postures using
a sensorised glove and then mapping them to the mechanical hand configuration
space. These samples are analyzed using principal component analysis (PCA) to find
the direction with largest dispersion. Then, by selecting the first n vectors of the
new space base and choosing a bounding area around these vectors, a good bounded
approximation of the hand workspace is found. Finally, a sampling based algorithm
is used to search around the search space to connect the initial and final configuration
of the grasping action. One of the problems using this technique is that many valid
solutions in the original space might not be included in the final subspace. A proper
selection of this subspace is still an open problem. In a posterior work [86], the search
is even more reduced by considering virtual motion geometric constraints. These
constraints satisfy certain needs in terms of orientation of the hand with respect to
the object to be grasped (e.g. the normal of palm of the hand should be pointing
towards the object). Then, a probabilistic road map (PRM) is used to plan natural
motions for a hand-arm system. In [87], a similar approach also based on PRM
is presented. The planner relies on a topological property that characterizes the
existence of solutions in a specific manifold of the configuration space. This property
leads to reduce the problem by structuring the search-space directly capturing in a
probabilistic roadmap the connectivity of sub-dimensional manifolds of the composite
configuration space.

In this context, one of the most repeated concepts in the literature is synergy.
The notion of motor synergies, or high-level control knobs that have distributed ac-
tion over sets of low-level actuators, arose in the context of motor coordination [88]
and has remained a central topic in discussions of motor control theory, but also in
neuroscience and mechanical design of artificial hands. One of the problems around
the concept of synergy, is that it has evolved to get a different meaning to many people
[89], although dimensionality reduction is generally accepted as the key of synergistic
control. Therefore, it is not clear the distinction between this concept and the previ-
ously presented eigengrasps and PMDs. In the robotics field, the first relevant work
in this line is that of Santello et al. [84], that determined a two-dimensional grasp
subspace from a set of hand configurations obtained when several subjects where
asked to grasp several objects. Following studies have demonstrated that the set of
experimentally observed postures, or muscle activation patterns, spans only a small
subspace of the available multi-dimensional space both during the reach-to-grasp and

42 Chapter 3. From Robot Formations to Grasping Control

the grasping phase [90, 91, 92]. Two important conclusions of their research are:
synergies are clearly task dependant, and also that it is not clear how to generalize
them for different persons. Vinjamuri et al. [93] analysed temporal postural synergies
which they defined as profiles of postural synergies varying over time during rapid
grasping movements.

The application of the concept of synergies in the literature is quite heterogeneous.
In [94, 95], the synergies are considered perfectly stiff and the actual joint variables
are a linear combination of synergies. In [96] a synergy-based impedance controller
has been derived and implemented on the DLR hand. The problem of computing
internal force distribution for controlling object movements by acting on synergies
has been studied in [97]. Mapping synergies from the human hand to the robot hand
has been addressed in [98]. Their work is based on the use of a virtual sphere for
mapping the synergies in the task space. This approach has the advantages to be
independent from the robotic hand in use. In [99] a dimensionality reduction for
manipulation tasks based on the Unsupervised Kernel Regression (UKR) method is
applied to the problem of turning a bottle cap. Zarubin et. al [100] introduced the
concept of topological synergies, a low dimensional coordinate representation used
to address the grasp transfer problem between kinematically different hands and for
the motion planning in configuration space leading a final grasp. In [101], a spatio-
temporal model of the lower dimensional manifold of human hand motions during
object grasping spatial is presented. In general, the dimensionality reduction shown
in these works is based on non-linear techniques. A comparison among several non-
linear approaches is discussed in [102], showing that varying the reduction method
can potentially reveal different manifold structures of the same data.

3.1.3 Grasping Framework

There are several solutions in the literature covering the topics presented before,
however, not many of them address them together. Some grasp planners, like those
proposed by [74, 76, 103, 104] rely on very different concepts and therefore is hard to
compare them in any other feature but time, with solutions often varying from 0.5 to
10 seconds. This variability often comes from the disparity in the assumptions made
through out the phases of a complete grasp planning. Examples of this assumptions
include: availability of grasp database, guarantee of reachability of a grasp pose,
quasi-static scenarios or the intervention of a human operator.

In the next sections, a framework to face the challenge of object grasping is pre-
sented. Both topics introduced before, grasp synthesis and high-dimensional motion
planning for hand-arm systems are addressed in this framework. On-the-table sce-
narios are treated assuming some a priori knowledge: the pose of the objects on the
table and an approximation of their 3D model. Then, geometric characteristics of the

3.2. Grasping Approach based on FM2 43

object to be grasped and the arm are used to select a pose for the wrist of the hand
from which the grasping is done, using a simple empirical approach. Finally, motion
planning is performed based on FM2 . The proposed solution presents a combination
between hand-arm decoupling plus a reduction of the dimensionality of the problem
as the system is treated as a robot formation.

3.2 Grasping Approach based on FM2

The work presented in this chapter defines a cont inuous grasping approach covering
from perception to grasp execution. The main steps followed through this framework
can be seen in figure 3.1. As stated in chapter 1, the visual perception process used
has not been developed during this t hesis, but it is rather based on previous work
by [10]. Therefore, next sections cover the different methodologies used in the other
parts, which can be summarize in: environment modelling, grasp pose selection and
motion planning for grasping.

f ·················-~-~---~~-~~~-P..!~-~-~----·-···-····---··1
f Environment Modelling j
'•-•····•···••·••·· ••••·· •·••••• •••• ··••• ••• o•••·•·••··•·•••··••· ·••··••··•••·•··••·•··••• ••,'

(_______________ G ra s_p ___ Planning ________ __ ____ _J

L ~-~!-~-~-~---~-~~-~-~-~~-~-------- -- ---.J

Figure 3.1: General computation pipeline for grasping objects.

3.2.1 Environment Modelling

The necessary model of the environment is highly influenced by the motion planning
algorithm explained in sect ion 2.2, since this step is based on FM2 , which is being
applied in scenarios modelled as a 3-Dimensional occupancy grid. This grid estab-
lishes a binary representation of the world, in which occupied cells are represented
by 1 and free space is represented by 0. For the grasping application addressed here,
on-the-table scenarios are going to be used for real tests. In this context, the visual
perception process provides the following information:

44 Chapter 3. From Robot Formations to Grasping Control

1. The 3D pose transformation from the camera frame to the arm frame repre-
sented as a transformation matrix, cTa.

2. The table pose estimation, which is defined by its height, ht, and its limits in
the XY plane, Xmax, Xmin, Ymax, Ymin.

3. The pose estimation of objects on the table, Ti, being i the ieth object.

4. A model of the objects on the table. We distinguish between two different kind
of object models, which can be seen in figure 3.2.

• When the visual perception is able to recognise the object, a 3D CAD
model from a data base is provided.

• When a positive recognition is not achieved, the bounding box (BB) of the
object, aligned with the world axis, is used as an approximate representa-
tion of the object.

The difference on the information provided by the vision system can be seen in
figure 3.2. Obviously, the complete 3D models are a more accurate representation of
the information in the scene.

The information provided by the vision system is sufficient to create a 3D occu-
pancy grid, Wo. For the generation of the grid, two main variables must be defined:
the size in each dimension and the resolution of the grid. The resolution is user
defined. Obviously, the higher resolution (voxel size is smaller) the more precision
is achieved on grasp pose selection and motion planning. However, the more num-
ber of voxels usually leads to more computation time in motion planning, so a good
compromise is needed.

The size is mainly defined by the workspace of the hand-arm system, which is
attached to a mobile robot platform, as shown in figure 3.3. Although the workspace
of the manipulator with rotational articulation can theoretically be a complete sphere,
this is never true because the joints have limits in the rotation they can achieve.
Anyway, if a sphere, centred in the attachment between the arm and the base, and
with radius equal to the arm length, is considered, only a frontal-lower eighth (from
the point of view of the base of the robot) of this sphere is selected to be the actual
workspace. In the left picture of figure 3.3 the theoretical sphere we are considering
is shown. The reduction of this workspace is based on the following reasons:

• The upper half is eliminated because it is very unlikely to need to perform
grasping actions at this height in table top scenes.

• The posterior part of the sphere is also rejected since the sensor system is
positioned so that there is more information on the frontal side. The central
picture of figure 3.3 highlights (in green) the frontal part of the workspace.

3.2. Grasping Approach based on FM2 45

Figure 3.2: At the top, a scene with several objects lying on a surface. Below,
the cloud of the non-recognised objects extracted from the scene after Euclidean
segmentation is applied. In the third row, besides the cloud of the object , several
views of the corresponding 3D model of a recognised object can be seen.

46 Chapter 3. From Robot Formations to Grasping Control

• Finally, from the frontal part, the half situated in the opposite side of the
attachment of the arm is not considered since it is very likely to provoke a
collision between the arm and the mobile base. The right picture of figure 3.3
shows the lower part of the workspace in the side of the robot where collisions
are less likely to happen.

Figure 3.3: From left to right: the total workspace of the arm forms a sphere around
the initial point. In the middle, the arm is attached to the robot base with which
it collides. The green cone shows frontal area of the workspace. On the right, the
fourth of the workspace which does not collide with the mobile base, only the frontal
part of it is actually considered for manipulation.

Then, in figure 3.4, a posterior view of the considered workspace and its 3D grid
representation can be seen. Besides, the arm start reference frame (in the up-right
corner) and the hand starting position (blue palm and green phalanges) are also
shown. Finally, a box-like grid representing the used workspace is created. This
occupancy grid includes voxels which are not reachable for the arm. In order to avoid
the planner to consider voxels out of the real arm workspace, those cells are considered
as occupied. In figure 3.4. Reachable cells are plotted in grey, white areas are nor
reachable by the arm. In this environment, the table plane is added by assuming as
occupied all the voxels under the provided height and between its limits in the XY
plane, which can be also appreciated in figure 3.4, just on top of it, there is the model
of a jug.

3.2. Grasping Approach based on FM2 47

Figure 3.4: On the left, the rear view of the considered workspace of the arm. On the
right, the workspace in modelled in an occupation matrix, the arm coordinate frame
is in the top right corner of the image and the start position of the hand can also be
seen. The workspace of the arm can be seen in grey, it can be appreciated that the
space under the object (a jug) is also marked as occupied as that is the table plane.

Object Voxelization

Being the chosen spatial representation an occupancy grid, information of the objects
on the table retrieved by the camera has to be adapted to such a representation to
be included in the environment. Depending on whether the visual system is able to
recognise the objects or not, two different situations are faced: bounding boxes or 3D
meshes.

In the case of receiving a bounding box as a representation of the object, since its
axis are aligned with the world axis, it is as simple as dividing its volume in voxels
of the same resolution as the environment and then include it in the 3D grid.

In the case of using a 3D model, a voxelization process is also needed. The
proposed approach uses a ray-tracing intersection method which is similar to the
one described in [105]. There is an important requirement with the mesh: it has to
be watertight. This implies that it cannot be used with typical incomplete object
models retrieved by 2.5D sensors with only one view of an object, but instead a full
3D model is needed. The output of the algorithm is a binary matrix in 3 dimensions
whose voxels are cubic in shape and aligned with the Cartesian coordinate system.

The different steps of the process used for the voxelization of the 3D mesh can
be seen in figure 3.5, represented in 2D for clearness. Essentially, it converts a solid

48 Chapter 3. From Robot Formations to Grasping Control

model represented by a set of contiguous triangular facets modelling the object’s
surface. The algorithm uses OBJ 3D model format as an input, although any other
format which includes vertices and facets information could be used instead. It starts
by reading the coordinates for each facet, resulting in a N × 3× 3 array, where N is
the number of facets of the model, each of which has 3 vertices whose positions has
3 dimensions.

With the coordinates of each facet, the bounding box of the model is determined
by looking at the maximum and minimum value of the vertices of each facet for
every axis. Then, voxel size is computed by dividing the maximum dimension of the
bounding box by the desired resolution. Therefore, the total number of voxels needed
to represent a 3D model is given by:

size X = max X −min X

X axis = d(size X

resolution
)e

total voxels = X axis ∗ Y axis ∗ Z axis

(3.1)

where size X is the size of the X axis, X axis is the number of voxels in the X axis,
and total voxels is the number of total voxels which will be checked. Note that only
the expressions for the X axis have been included, buy they are the same for all of
them. The resolution term is introduced by the user, however, it should be the same
resolution as the one used to create the occupancy grid of the environment.

The voxelization process consists on ray-tracing in every axis direction and finding
intersections with the facets. The user can specify if the ray-tracing is done along all
the axes or only in some of them. Besides, since watertight models are being used,
the number of intersections for any ray with the object has to be even if the 3D model
is free of errors and the ray completely traverses the 3D model.

The ray-tracing starts at point given by:

X start = X min+
voxel size

2

Y start = Y min+
voxel size

2

Z start = Z min+
voxel size

2

(3.2)

which corresponds to the centre of the voxel with smallest Cartesian coordinates.
Subsequent points are computed by moving in the X direction at a distance equal
to the voxel size until the final voxel in this direction is found, these points are the
red dots in figure 3.5. Then, the loop iterates over the other two coordinates. For

3.2. Grasping Approach based on FM2 49

Figure 3.5: Steps of the voxelization of a 3D mesh. From left to right: first, a grid
that covers the object size and using the desired resolution is made; then, the ray-
tracing starts creating samples of the grid (red dots). Finally, the samples which
are considered to be part of the object (blue dots), those pixels (voxels in 3D) are
considered as occupied in the world representation.

each new the point of the ray-tracing, it is checked whether the ray crosses a facet
or not. In order to improve computation time, the facets of the mesh which might
be passed through by this ray iteration are filtered. Note that the start position,
moving direction and voxel size are enough information to filter these facets. In order
to check whether the ray crosses the facet or not, a general solution is:

1. For every facet, take one edge at a time.

2. For the edge, find the position of the opposing vertex relative to that edge.

3. Find the position of the ray relative to that edge.

4. Check if the ray is on the same side of the edge as the opposing vertex.

If the last verification holds true for the three edges, then the ray definitely passes
through the facet. When doing this, two special cases may occur: the ray crosses
exactly on an edge or on a vertex. In both cases, it is counted as crossing the facet.
When the final voxel is reached, voxels lying between an odd and the next even
found intersection are considered as occupied (the ray could enter into and out of the
object several times in one ray-tracing), these points are represented with blue dots in
figure 3.5. This process is repeated step by step from the minimum to the maximum
coordinates in all axis of the model.

Possible errors in the voxelization can be caused by: (a) missing thin sections,
(b) odd number of intersections caused by the presence of sections thinner than voxel

50 Chapter 3. From Robot Formations to Grasping Control

size, and (c) discretisation inherent to voxel models. Some of these errors can be
identified and treated. For example, every voxel which is considered as occupied
when ray-tracing along one axis, should be assign as occupied when ray-tracing along
the other axes. If this is not accomplish, the voxel is identified as inconsistent and
may be further analyzed with a lower resolution. Anyway, the easiest manner to
overcome the discretisation errors is by increasing the voxel resolution. Note that the
maximum possible error will be half of the voxel size.

Figure 3.6 shows the voxelization of the same mesh with a resolution of 1.25 mm
when the ray-tracing is done in only one dimension. Although the difference in the
resulting occupancy grid is not easily perceived (specially in a 2D image), the number
of occupied voxels in the grid decreases by an average of 5.64%, the computation time
decreases to only 0.951 s. Besides, figure 3.7 shows the resulting voxelization of a 3D
mesh at different resolutions. From left to right and top to bottom: 10 mm, 5 mm,
2.5 mm, 1.25 mm and 0.625 mm of resolution. The last image corresponds with the
original mesh, it has 208353 vertices and 69451 facets. The size in each axis is: 15.12,
9.2 and 15.5 mm respectively. In all cases, the ray-tracing was done in the three
dimensions. Table 3.1 shows the average computation time for the voxelization of the
same mesh at different resolutions over 20 trials.

Figure 3.6: A frontal view of the bunny 3D mesh voxelized at a resolution of 1.25mm.
In this case, the voxelization has only been done in on dimension, X, Y and Z re-
spectively.

Table 3.1: Computation time for the voxelization of the same mesh at different reso-
lutions over 20 trials.

Resolution (mm) 10 5 2.5 1.25 0.625 0.3125
Time (s) 0.092 0.284 0.752 2.102 5.84 14.54

3.2. Grasping Approach based on FM2 51

Figure 3.7: A frontal view of 3D mesh of a bunny voxelized at different resolutions.

3.2.2 Grasp Pose Selection

Although grasp synthesis itself is not a key point of research of the thesis, it is
obvious that, along the grasping process, it is needed to compute a pose for the hand
from which the object can be grasped. Therefore, a simple empirical algorithm has
been developed for grasp selection, which is inspired by human general habits when
grasping objects. In this case, computing the final positions of fingertips on the object
is not a goal, but instead, the focus is on where to position the hand with respect to
the object in order to perform the grasp.

An important aspect when generating samples of possible grasp poses is how to
relate the hand with respect the object. In this work, this relation is given by the
grasp centre frame (GCF). GCF is a virtual frame, fG, which represents a reference
for the grasps to be planned. For simplicity, this frame has the same orientation
as the origin of the hand, fH , and therefore it is defined as a translation from it.
Figure 3.8 shows the reference frame of this point over the workspace of the fingers
of Gifu Hand III. The location of the GCF has been set at the centre of mass of the

52 Chapter 3. From Robot Formations to Grasping Control

workspaces of all the fingers.

Figure 3.8: Gifu Hand III with the workspaces of its fingers (in green) and the
workspace of the thumb (in red). Besides, the reference frame of the origin of the
hand (H) and the reference frame of the GCF (G) are shown.

Then, if we take a look at the literature, neuroscientists have found to simple ideas
commonly followed by humans when grasping objects:

• Human grasp locations are influenced by centre of mass (COM) location on the
object and tend to draw the grasp position towards COM location [106].

• Humans tend to grasp objects by aligning their hand with the principal com-
ponents of the target object [71].

Obviously, these two rules represent only a small quota among the information
humans use to choose a grasp, however, these two simple ideas are a sufficient basis
to build a grasp synthesis algorithm.

Therefore, objects to be grasped need to be studied to obtain the geometric prop-
erties just mentioned. It is important to note that when applying these rules to the
objects, no difference is made in the treatment of the object’s modelled by a bounding
box or by a 3D mesh. Therefore, the variation in modelling only leads to a difference
in the accuracy of the object’s properties.

• Centre of Mass (COM). In both cases, BB or 3D mesh, it is computed as
the geometrical centre of the object, assuming that its mass is uniform along
its volume. In the first case, it is determined by the half point in each axis. In
the second, it is calculated as the arithmetic mean, following:

axisx =
1

n

n∑
i=1

xi (3.3)

3.2. Grasping Approach based on FM2 53

being x each of the three Cartesian coordinates axis and n the number of points
in the mesh. Figure 3.9 shows a point cloud and a full 3D model of the same
object. The centre of mass of the BB of the point cloud has a displacement of:
X = 2.15, Y = 0.46, Z = 5.8 millimetres. The higher value in the Z axis is due
to the fact that lower points of the point cloud of the object are taken out when
the plane is segmented.

• Principal axis. In the case of the bounding box, axis are aligned to the world
frame and then named after them, also, the principal corresponds to the longest
axis. When treating a 3D mesh, it is aimed to compute a local, object-centric
coordinate system. Principal Component Analysis (PCA) is used to compute
the axes of minimum and maximum variance in the horizontal plane, assigning
them to the local x- and y-axis respectively. Besides, since we assume that
objects are resting on a surface, the vertical direction (relative to gravity) can
directly be assigned to the local z-axis. Then the biggest one is taken as the
principal one. Note that z-axis is then always parallel to gravity. Objects in
figure 3.9 have an difference in the angular displacement of 2.6 degrees around
the Y axis.

• Besides, the ratio between the two main axes is measured. Objects are consid-
ered to be long when this ratio is larger than 1.5. This property affects on how
the samples are created.

Figure 3.9: A full 3D model of an object, and the point cloud captured by a depth
sensor in a frontal view. In this case, the centre of mass of the point cloud has a
displacement of: X = 2.15, Y = 0.46, Z = 1.8 millimetres with the one of the 3D
model. Besides, the main axis of the point cloud has an angular displacement of 2.6
degrees around the Y axis.

54 Chapter 3. From Robot Formations to Grasping Control

The developed approach is mainly based on [68], and the generation of possible
grasps is based on the imitation oh human grasping attending to the geometrical
properties of the object to be grasped. There are two types of possible grasps samples:
top grasps, in which the palm of the hand faces the table plane, and side grasps, In
which the palm surface is orthogonal to the table surface. Furthermore, two different
type of grasps are considered: fingertip and power grasps. The former is commonly
named as precision grasps, and only implies contacts on the fingertips. However,
precision is not used here because no computation on where these contacts occur is
made. The latter, intends to use the whole hand surface to make contact on the
object. In practical terms, the difference between them is just the distance, from the
object to the palm surface, from which the fingers are closed. Attending to all these
characteristics, the grasp candidates are obtained by:

• The hand is placed at a distance so that the GCF matches the COM of the
object.

• The local Y-axis of the GCF of the hand (normal to the palm surface) is placed
in the perpendicular direction with respect to the principal axis of the object.
Then, if this direction is parallel to world Z-axis (gravity), it is considered a top
grasp, otherwise a it is a side grasp.

– Side Grasp: The hand’s X-axis is placed pointing against the tables’ plane
normal in order to keep the thumb pointing up, as humans do. Multiple
grasps are then generated by rotating around the world’s Z-axis creating
a circle. The number of generated grasps depends on the divisions made
along this circle. An example the side grasps sampling is shown in figure
3.10, in which samples are generated every 90o.

Figure 3.10: The hand positioned at different samples of possible a side grasps.

3.2. Grasping Approach based on FM2 55

– Top Grasp: When the object is considered to be long, grasps are sampled
as side grasps, considering both possible directions of the hand’s X-axis.
Otherwise, grasps are generated by rotating around the world’s Z-axis.
An example the top grasps sampling, for an object which is not considered
long, is shown in figure 3.11.

Figure 3.11: Examples of top grasped sampled by rotating around the world’s Z-axis,
there is one sample every 45o.

• Finally, both fingertip and power grasps are considered. When power grasps
are used, the starting position is the one of the fingertip grasp, then the hand
approaches the object moving in a straight line towards the COM of the object
until a collision between the palm and the object is detected. Then, the grasp
can be executed.

At this point, several grasp possibilities have been computed. In order to choose
only one of them, we check whether they are physically feasible or not. This is done
by looking at arm capabilities and environment restrictions. The first sample which
fulfils these conditions, will be chosen to be executed. Two different conditions have
to be met:

• Collision checking. The voxels which correspond to the volume of the hand
are set as occupied and checked for a collision with the environment. For this
purpose, the object to be grasped is considered part of the environment, meaning
that the hand located in a grasp location is not allowed to collide with the

56 Chapter 3. From Robot Formations to Grasping Control

object. This is performed for every grasp candidate location, discarding the
ones in which a collision is detected. Two examples of the application of the
collision checking are shown in figure 3.12. In the left one, the hand is positioned
in a side grasp and the fingertip of the little finger is in collision with the table
surface, so this candidate is discarded. The hand model on the right picture is
located for performing a top grasp and is not colliding with any object, so it is
a valid sample.

Figure 3.12: Collision checking examples in a top and side grasp pose candidates.

• Reachability. After collision checking is performed, several possible grasp poses
may still be available. The last step before performing the grasp consists on
checking whether the grasp poses are reachable by the arm. Therefore, the in-
verse kinematics (IK) problem has to be solved, which consists on finding the
values of the joints of the arm which lead to the desired Cartesian pose. The
first sample for which IK is solved, is the one to be executed. Since there is not
an analytical solution for the IK problem of the arm attached to ManfredV2, an
adaptative evolutionary strategy, detailed in [11] and therefore previously avail-
able in the laboratory, is used. The optimization is done using the Differential
Evolution algorithm [107]. It mainly consists on a local-search optimization of
pre-taught joint positions for finding the desired IK solution. Therefore, this
method requires an offline creation of a database which contains joint positions
of the arm, which lead to Cartesian poses from which on-the-table grasping is
possible to be performed. The bigger the database and the more different the
arm positions saved, the more likelihood to find the IK solution for a given
reachable pose.

3.2. Grasping Approach based on FM2 57

3.2.3 Motion Planning and Control based on FM2

Once the final grasp pose has been selected, a motion plan for the hand-arm sys-
tem has to be computed. In this case, the robotic system to be used is the robot
ManfredV2, which is described in appendix B. Its hand-arm system has 22 degrees
of freedom. As mentioned in section 3.1.2, such a complex system requires a special
approach to find feasible solutions in a reasonable amount of time. The approach
explained in this section is based on a dimensionality reduction of the problem. The
solution is built on the next idea: treating the hand-arm system as a leader-follower
robot formation. As explained in chapter 2, this idea allows as to convert a complex
multi-robot path-planning problem into a much simpler coordination control. In the
case of the hand-arm system, the grasp centre point is considered as the leader of the
formation, for which a 3D Cartesian path is computed with FM2, and the followers
are the fingertips of the hand. While covering the path, both the orientation and the
hand opening/closing are controlled to accomplish the grasp. Therefore, throughout
the process, the hand acts as a functional unit [85]. Besides, since the path planning
is only done in 3D, it is a much easier process and computation time is saved.

Geometry of the hand as a robot formation

In order to treat the hand as a robot formation and perform the necessary compu-
tations, the Gifu Hand III kinematic chain characteristics are modelled as shown in
figure 3.13. This is the hand attached to the arm in ManfredV2, as detailed in ap-
pendix B. In this structure, the lengths of the links between different joints (palm,
finger separation and proximal/inter/distal phalanges) are constant, while the angles
between these links (α, β and γ) are variable. These angles are limited by software
following the specifications of the Gifu Hand III [108]. It is important to notice that,
as in a human hand, the distal joint of each finger engages linearly with the proximal
joint [109]. The same idea is applied for the thumb, although in the real robotic hand
these joints are independent. In order to consider the hand as a robot formation, mo-
bile robots are virtually located at the position of the fingertips of the hand (followers)
and the grasp centre point (leader). The hand is then considered as a leader-followers
formation in which the followers change their location while performing the grasping
process depending on their position in the environment. The main difference with
the robot formation described in chapter 2 is that in this case, the potential position
of the follower robots (fingertips) is highly limited by the mechanical design on the
hand.

58 Chapter 3. From Robot Formations to Grasping Control

Figure 3.13: Kinematic model of the Gifu Hand III.

Path planning for the hand as a robot formation

In order to perform a given grasp, the grasping action can be divided into two phases:
reach (often called pre-grasp) and grasp (110, 111]. In the reach phase the hand
moves towards the object and stops at the grasping point from which the grasp is
performed. For this movement to be done, a path from the start position towards the
object is calculated using FM2 path planning algorithm. While covering the path, the
configuration of the hand evolves imitating human movements. The main objective
of this evolution is to open the hand to ensure that the grasping can be accomplished,
later a flexion of the hand (finger closure) may occur in order to anticipate the object
contact [84, 112, 113]. Although it is clear that the preparation of the shape of the
hand begins well in advance in the reach phase (85], this process occurs differently
depending on the experiment setup [114]. For example, in (85], subjects were asked to
grasp objects several times. In each trial, the time used for visual recognition of the
scene was different. The experiment showed that subjects with more time for scene
recognition, perform a more advanced preshape preparation. In the grasp phase, the
grasp has to be executed. If exact grasp positions on the object were available, a path
from each fingertip to these positions could be easily computed using FM2 . These
paths would then be covered by moving the fingers of the hand while the palm remains
in the same pose. If no grasp positions are available , then the fingers must converge
towards the object's surface in order to finish the grasp. Next sections explain how
to handle both phases considering the hand as a robot formation.

3.2. Grasping Approach based on FM2 59

Reach phase: approaching the object to be grasped

As stated before, the first phase of the algorithm consists of an approaching movement
towards the object to be grasped. In order to perform this approximation, the concept
of robot formation planning based on FM2 [17, 40] is used to select the different
configurations adopted by the structure of the robotic hand.

At this point, the voxel-based occupancy map of the environment has already been
built, and the object is included. Besides, a grasp pose has been selected. The hand
is placed at the starting pose with a certain configuration, and then the robots of the
formation are located at their positions using forward kinematics. Then, a path is
computed from the leader’s start point to the grasping point. As in chapter 2, the
resulting path is a 3D vector of goal positions which has the main characteristics of
FM2: safeness and smoothness. This path is then covered in an iterative loop. For
each iteration, the value of the joints of the kinematic model of the hand is updated,
therefore the position of the followers in the formation changes. This approach allows
us to control the 3D pose of the fifteen DOFs of the robotic hand calculating only
one 3D path.

Figure 3.14, left, shows an example of a simple scenario in which the object to be
grasped is a cube that is floating in space, as well as the hand, and they are both
located in free space. The path towards the object is shown in blue. On the right
side, a 3D view of the velocities map of the scenario is shown. The different colours
indicate the distance to the closest obstacle, being the dark blue the closest one while
dark red areas are the farthest ones. Note the blue circle created around the area
where the cube is located. Then, at the bottom, a 2D projection of the path on
the centre slice of the map of velocities, parallel to the XZ plane, is shown. Let’s
keep in mind that the velocities map can also be interpreted as a distance field, so it
can be used to know when the hand is approaching to an obstacle or to free space.
In order to have a good preshape of the hand when the grasping point is reached,
the evolution of the hand geometry is divided into two different phases. These two
phases, are highlighted in different colours in the bottom picture of figure 3.14. Blue
and green areas around the path are the two phases of the reaching evolution. The
blue area corresponds to the part of the path where the leader is moving towards free
space, which is characterized by a positive gradient of the velocities map. Since this
indicates that the hand is getting far from obstacles, the purpose in this phase is to
evolve to an open configuration of the hand which ensures that the grasping points
can be reached afterwards, which occurs following equations (3.4) and (3.5).

αi,j = max(αi−1,j, distance leader × αj,max) (3.4)

βi,j = max(βi−1,j, distance leader × βj,max) (3.5)

60 Chapter 3. From Robot Formations to Grasping Control

_ Leader's path
(center of the palm).

Approaching 1" phase
(opening hand) .

.., Approaching 2"" phase
(closing hand).

~ Destination areas of the
fingerprints.

Figure 3.14: Simple scenario in which the object to be grasped is a cube floating in
space, located on the right. The hand, on the left , is not attached to any arm, and
they are both located in free space.

where j indicates the finger, i corresponds to the iteration and distance_level is
the value of the map of velocities in the position where the leader is located in
the environment. Note that maximum opening of the hand is obtained for values:
ai,max = O°, /3i ,max = 90° and ii,max = ±10°, all of them are expressed in degrees.
Figure 3.15 shows the evolution of these angles for the simple scenario presented be-
fore. The hand,s palm is drawn in blue, while the phalanges of the fingers are plotted
in green. The small black dots are the joints of the hand and the green cross in front
of the palm indicates the positions of the virtual leader of the formation, note that
this time it differs from the GCF. The path of the leader is divided into two areas.
The red one corresponds to the part that the leader has ah-eady covered, while t he
blue one is the part that it has not been covered yet . While the hand approaches
the object , the dark grey cube on the right, the hand evolves to an open configuration.

It is also important to note the green area in the bottom part of figure 3.14, which
corresponds to the moment in which hand is getting close to the object , which makes
the value of the map of velocities become smaller. Therefore, the sign of the gradient
for consecutive posit ions of the leader becomes negative, which allows for an easy

3.2. Grasping Approach based on FM2 61

Figure 3.15: Evolution of the hand towards an open configuration.

detection of the change of the phase. In this stage we try to close the fingers so that
the position of each fingertip gets as close as possible to its local maximum in the
map of velocities, which are indicated by the top and bottom red ellipses in the right
picture of figure 3.14. This way, we ensure that the position of every fingertip is as
safe as possible, and at the same time make the grasping phase shorter since part of
the movement is already done. To detect when the local maximum has been reached,
the gradient value of the map of velocities for the fingertips is checked. Figure 3.16
shows the evolution of the geometry in this stage. The update of the angles of the
joints follows equations 3.6 and 3.7.

αi,j = αi−1,j +K1 × grad distance leveli,j (3.6)

βi,j = βi−1,j +K2 × grad distance leveli,j (3.7)

where K1 and K2 are constants that define the speed of the closing movement, and
grad distance level is the difference in the distance value between two consecutive
positions. K1 and K2 have to be set experimentally, specially because this movement
depends on the change in the distance values, which depends on the resolution chosen.

Figure 3.16: Second phase of the approaching step, while getting close to the object,
the hand starts closing.

62 Chapter 3. From Robot Formations to Grasping Control

However, the proposed scenario in figure 3.14 is not realistic since objects are
floating. Besides, the hand orientation does not change through the path, which also
makes it easier to control. Normally, the start pose of the hand is assumed to be as
shown in figure 3.17, which is the one in which the arm is in a relaxed configuration
with no power in the motors. Note in the figure the configuration adopted by the
fingers, the hand is completely closed, otherwise it would collide against the base.
This makes the opening phase to be even more critical.

Figure 3.17: Starting configuration of the hand to avoid a collision with the base.

Furthermore, it is obvious that the orientation of the hand needs to change in
order to be able to perform the grasp. The change in orientation is also controlled
while the hand is moving along the path, although in contrast with robot formations,
this cannot be done using the Frenet thriedron, since this reference depends on the
path but does not take into account the pose of the object in the environment. In this
case, the orientation is controlled using the spherical linear interpolation, commonly
known as slerp algorithm [115]. This algorithm computes a constant-speed motion
along a unit-radius great circle arc, given the two ends of the arc and an interpolation
parameter between 0 and 1. The geometrical equation for slerp is as follows:

Slerp(q0; q1; t) =
sin[(1− t)Ω]

sin(Ω)
× q0 +

sin[t× Ω]

sin(Ω)
× q1 (3.8)

where q0 and q1 are the start and end rotation, and t is the interpolation parameter.
The geometrical interpretation can be seen in figure 3.18.

3.2. Grasping Approach based on FM2 63

Figure 3.18: Geometrical representation of the slerp formulation.

When slerp is applied to unit quaternions, the resulting path is a 3D rotation with
uniform angular velocity around a fixed rotation axis. Slerp is specially interesting
because it gives a straightest and shortest path between its quaternion start and end
points, and maps to a rotation through an angle of 2Ω, being Ω the angle between
q0 and q1. However, because the mathematical definition of a quaternion shows that
q and −q map to the same rotation, the given rotation path may turn either the
”short way” (less than 180◦) or the ”long way” (more than 180◦). In order to prevent
computing long paths, one of the orientations can be negated when the dot product,
cos(Ω), is negative, thus ensuring that −90◦ ≤ Ω ≤ 90◦.

Figure 3.19 shows the environment modelled with the techniques previously in-
dicated. Arm and hand start poses are indicated. The workspace of the arm is
presented as a grey eighth of sphere. The table is also modelled and on top of it
there is the model of a jug. On the right, the distances/velocities map of this scene is
shown sliced around the object position. The voxels which are occupied, or very close
to an obstacle, are shown in red. They correspond to the areas out of the workspace
of the arm (or close to its virtual wall) and the voxels around the object. Then, while
voxels are located further from any obstacle, their colour changes to yellow, green,
blue and purple progressively.

Using the environment shown in figure 3.19, an example of a side and a top
grasps are computed. In the case of the side one, the resulting path and evolution
of the movement of the hand are shown in figure 3.20. The path can be seen as a
red line. Although the virtual leader is located at the GCF, the resulting path is
shown referenced to the wrist frame, since otherwise the visualization is much worse
because the information would be overlayed. While covering the path, the hand
evolves towards the grasp configuration by opening and the fingers and changing its
orientation.

64 Chapter 3. From Robot Formations to Grasping Control

Figure 3.19: On the left, an object in an on-the-table scene modelled with the tech-
niques explained through this chapter. On the right, the velocities map of the scene
sliced around the object position drawn over the scene.

Figure 3.20: Different views of the evolution of the hand while performing the reaching
phase of a side grasp. The hand starts completely closed and opens while approaching
the object. The orientation of the hand changes linearly from initial to final pose.

3.2. Grasping Approach based on FM2 65

Then, figure 3.21 shows the reaching phase behaviour over the path computed
for the top grasp example. It can be appreciated that both the opening and the
orientation evolve while the hand is covering the path. In the lower picture of the
figure, which shows a view from the top, it is interesting to see how the path first
moves towards the centre of the workspace of the arm and later turns towards the
object. This is a natural behaviour in FM2, since the central area of the workspace
permits higher velocities.

Figure 3.21: Different views of the hand while moving towards a top grasp pose. The
hand starts completely closed, opens while approaching the object and, at the same
time, the orientation of the hand changes linearly along the movement.

Grasp phase: fingers close on the object

The reach phase ends when the leader of the formation reaches the grasping position,
which means that the computed grasping pose has been reached. Next, in the grasp

66 Chapter 3. From Robot Formations to Grasping Control

phase, the fingers have to move towards the object and grasp it.

If the grasp synthesis process computes grasping points on the objects, they would
need to be reached by the fingertips of the hand. If we go back to the simple example
of the floating cube, we could very easily compute some grasping points on the cube
just by imitating a human grasp, as shown in figure 3.22 on the left side. Then, paths
from each fingertip to their respective goal could be computed by FM2 and then
executed using inverse kinematics of the chain formed by each finger. The centre
picture figure 3.22 shows an example the case of the floating cube, while the right
side shows the final configuration of the hand when the grasping points are reached.

Figure 3.22: Left: a human hand holding a cube. Centre: in red, the paths computed
with FM2 from the initial position of the fingertips to their goal locations on the
objects. Right: Final configuration of the hand grasping the object.

However, the grasp synthesis process presented in this chapter does not compute
exact grasp locations on the object, but just the position from which the grasping
action has to be executed. In order to close the fingers and grasp the object, again the
velocities map (first potential of FM2) is going to be used. Figure 3.23 shows a close
look of the object on the table and the slices of X, Y and Z planes of the velocities
map around the object. Occupied cells are drawn in dark blue and the colour changes
from blue to orange as the voxel is further from any obstacle. Then, in figure 3.24 the
same slices are drawn separately, and the gradient vectors are included. Note that
the gradient vectors point towards the object’s external surface in a perpendicular
way in all cases. Besides, since the value of each voxel has also a distance meaning,
it becomes smaller when approaching an obstacle.

3.2. Grasping Approach based on FM2 67

Figure 3.23: A close look of the object on the table and the slices of X, Y and Z
planes of the velocities map around the object.

Figure 3.24: X, Y and Z slices of the velocities map respectively. The vectors indicate
the direction of the gradient of these velocities.

68 Chapter 3. From Robot Formations to Grasping Control

This information is used to generate desired velocities for the fingertips, which
generates an error as indicated by equation 3.9:

ė = ẋd − ẋ = ẋd − ẋf (3.9)

where ė is the difference between the desired and actual velocities of the fingertips.
Cartesian velocity of the fingertip is computed as:

ẋf = JA(q)q̇ (3.10)

However, the control of movement of the fingers requires joint velocity references.
Let’s assume the analytic jacobian of the finger is squared and non-singular, then
equation 3.11 is a equivalent lineal system [116].

q̇ = J−1
A (q)(ẋd +Ke) (3.11)

which fulfils

ė+Ke = 0 (3.12)

It is known that when K is a positive matrix (normally diagonal) the system is
asymptotically stable and the error tends to disappear as the trajectory is performed.
Therefore, the trajectories generated for the fingertips lead them towards the surface
of the object. Since it is assumed that the modelled environment might contain
errors, if no contact is detected when the last desired velocity has been commanded,
this velocity is kept until a contact is detected. When the contact between a fingertip
and the object is produced, a constant velocity is kept so that the object can be
hold. This velocity mainly depends on the object’s weight and the friction between
the hand and the object. The computation of this velocity is out of the scope of this
thesis, therefore, for the experimental results it has been set empirically.

3.3 Evaluation with ManfredV2

The pipeline for grasp selection and the framework for planning and execution of the
selected grasp explained throughout this chapter is evaluated in a real scenario. The
robotic system in use is ManfredV2, described in detail in appendix B. The scene
in which the tests are performed can be seen in figure 3.25. It is a table top scene
in which the objects are placed on the table by an operator, at any pose, and then
commands the robot to start the grasping pipeline. An important assumption is done
in these tests: the objects can be grasped by the hand, meaning that it is not too big
or small for being grasped by the hand.

3.3. Evaluation with ManfredV2 69

Figure 3.25: Scene for grasp testing. Objects are positioned on the table for the robot
to grasp them.

The selected objects can be seen in figure 3.26, they are presented in a ’standing’
position (left) and ’lying down’ on a surface (right). Both the cuboid and cylinder are
symmetrical objects which, in a ’standing’ position can be grasped from a top or side
directions. Besides, a mug is also used. This object presents a handle, which makes
it more difficult to success since it is not considered as a special case by the explained
framework. Furthermore, the mug is small in comparison with the hand size, which
forces to use a top approach direction for grasping to avoid collision with the table.
The same happens when the objects are lying on the table and a side grasp is tried.
After, collision and reachablility checking, the grasping possibilities of the objects are
summarised in table 3.2. The boxes are filled with the grasps for which at least one
sample is feasible. Then, F/P stands for ’Fingertip’ and ’Power’ grasps respectively
and an X means that none of the possibilities were feasible.

Table 3.2: Grasping possibilities of the objects used.
Standing Lying

Side Top Side Top
Cylinder F/P F/P X F/P

Box F/P F/P X F/P
Mug X F/P X F/P

Then, for every object, the feasible solution found is tried out with the robot. This

70 Chapter 3. From Robot Formations to Grasping Control

Figure 3.26: Objects used to test the grasping framework in standing (left) and lying
poses (right).

is repeated 10 times for every object in which the operator chooses different poses for
the object on the table. Although the parts of the pipeline developed for this thesis
(environment modelling, grasp pose selection and motion planning for grasping) are
deterministic, meaning that given the same input (object, table and robot poses)
the same output is computed (grasp and motion planning), both the perception and
execution parts are not. Besides, out of the tries, in half of them the perception
algorithm is forced to recognise the object, therefore a full 3D model is used in the
framework, while the other half will be performed using the point cloud of the object
as an input. Finally, the parameters used among the different components of the
pipeline are:

• Resolution of the world model and the voxelization of objects is 1cm.

• Grasp candidates are computed every 30o.

The results of this set of experiments are summarized in Table 3.3. For each of
the objects we report the success rate Besides, PC stands for point cloud and model
means that the object is recognised and its 3D model is used. A grasp is set as
successful if, after the arm lifts the object, it is still holded by the hand.

These results allow to extract the next conclusions. First, it is clear that power
grasps perform better than fingertip grasps, specially under non-recognition of the
object, when the point cloud is used in the computation of the grasp. Also, it is
important to note that, when the objects are lying on the table and a power grasp
is tried, although the grasp pose does not lead to a collision, the fingers collide with
the table while closing. This was tried once for every object and happened for all of
them, so it was not tried any more, but it is the reason for not having any 100% in
any case.

3.4. Conclusions 71

Table 3.3: Success grasping rate in the different objects under the situations tested.
Power Fingertip

PC Model PC Model

Cylinder
80% 80% 40% 60% Side
60% 60% 40% 60% Top

Box
60% 80% 60% 80% Side
60% 80% 40% 60% Top

Mug 40% 60% 40% 60% Top

Among the objects, the cylinder can performs better with power grasps, since the
fingers adapt better to the round shape of the cylinder. On the other hand, the box
has better results when fingertip grasps are used because of its planar facets. Actually,
fingertip grasp fails easily in the cylinder can when the computed centre of mass is
not very close to the real one. Also, the mug is clearly the object which has a worst
success rate. This is due to several factors: the handle provokes a displacement of the
centre of mass and also it is difficult to get stable contacts on the handle. Besides,
the material of the mug has made the object to slip from the hand twice.

Between the two types of modelling possibilities, as expected, using a full 3D
model leads to better results than using the visible point cloud. This result is not
surprising since it is obvious that the point cloud introduces bigger errors in both the
centre of mass and axes computation.

Finally, figure 3.27 shows the final finger positions in different successful grasps of
the different objects. On the left, the box lying on the table is grasped using a figertip
grasp. In the middle, the mug is grasped from the top, this time, the fingertips did
not slip over the mug surface and ring finger stabilised on the handle. On the right,
the cylinder can is grasped from the side using a power grasp. Besides, figures 3.28
and 3.29 show the movement of the hand-arm system while moving from the starting
pose to the grasp pose. In the fist case, the hand moves towards a top grasp of the
box lying on the table , while in the second, the goal pose corresponds to a side grasp
of the cylindrical can standing on the table.

3.4 Conclusions

This chapter presents a complete framework for object grasping: starting with how
to model the environment, followed by grasp synthesis and path planning, and ending
with a control scheme for treating a hand-arm system imitating a robot formation,
for simplifying and high-dimensional problem. While for the first two phases use
common approaches found in the literature, the application of the concept of a robot
formation based control algorithm for the hand-arm system is completely new.

72 Chapter 3. From Robot Formations to Grasping Control

Figure 3.27: Examples of finger positioning in successful grasps.

The necessary movements of the hand to evolve, from the starting pose to the
computed pre-grasp configuration, are controlled by treating the hand as a robot
formation. This methodology is based on the algorithm introduced in chapter 2 and
based on the FM2 path planning method.

The use of FM2 determines the need of an occupancy grid to model the envi-
ronment, which then influences the choice of the algorithms used throughout the
framework. When building an occupancy grid, it is important to pay special atten-
tion to the selection of the resolution. A high resolution implies a more accurate
model of the environment, but it comes with larger computation needs in: object
voxelizing, path planning and collision detection.

Simulations, carried out with Matlab, show examples of the use of the concept
of robot formation based path planning an control in the case of both, side and top
grasps. Then, test in real on-the-table scenarios have been performed. Although
simple scenarios are used, it is always challenging performing real world grasping
tests.

Results of the real tests show that it is possible to perform grasping actions ex-
ecuted under the robot formation concept presented. However, it is obviously not a
final and perfect solution, with the majority of failures caused by the errors occurred
in the object modelling phase, which are then propagated to grasp synthesis and path
planning.

From the grasping results, two main improvements are suggested. When visible
point clouds are used to model the objects, the grasping selection should be probably
focused on the known parts of the point cloud. Otherwise, inference mechanisms to
improve the point cloud are advised. Also, in the case of using fingertip grasping, it

3.4. Conclusions 73

would be interesting to compute approximate grasp positions and take into account
the local shape around them to avoid slippery of the objects.

It is important to note that when a successful grasp is achieved, this approach does
not guarantee any certain object pose in the hand. This is the reason that motivates
the work presented in chapter 4.

74 Chapter 3. From Robot Formations to Grasping Control

Figure 3.28: Movement of the hand-arm system towards a top grasp of the box lying
on the table.

3.4. Conclusions 75

Figure 3.29: Movement of the hand-arm system towards a side grasp of the cylinder
standing on the table.

Chapter 4

In-hand Object Pose Estimation

77

78 Chapter 4. In-hand Object Pose Estimation

4.1 Introduction

Despite some uncertainties in the sensing, modelling, planning or execution phases,
actually the grasping action often succeeds. However, for further manipulation ac-
tions, different than just pick and place, boolean success/fail is usually not enough
information, since it is very hard to plan any further action if the pose of the object
inside the hand is unknown, this is an important piece of information to retrieve.

In-hand object’s pose estimation is a natural cognitive process made online by
humans while grasping or manipulating objects. Several types of information are
commonly used through this process: action, vision, tactile and semantic systems
are linked in a dynamic and interactive manner [117]. When the object is inside
the hand, tactile sensing is specially important since vision may be partial or totally
occluded. In fact, experiments have shown that even humans fail to perform accurate
manipulation tasks when their sense of touch is impaired [118].

The problem of finding an object’s pose when it is grasped by a robot hand, ei-
ther relying on vision, tactile sensing or a combination of both has been extensively
researched. The most common combination of these modalities starts with a vision
based pose estimation, which is later improved or corrected with the information pro-
vided by the tactile sensors. Nevertheless, several different approaches can be found
in the literature. In [119], the vision estimate is refined by minimising the distance
from the object’s point cloud to the contact locations in the hand. Honda et al
[120] used a combination of tactile and vision sensing to estimate an object’s pose
assuming that the object is composed of plain and quadratic surfaces. A different
approach uses a description of the object’s facets that is done offline and, during
runtime, finds possible combinations of facets that match the current sensor mea-
surements [121]. The authors in [122] include the idea of preventing the estimation
of physically unfeasible solutions avoiding collisions between the object and the hand
parts, the estimation process is made using a Particle Filter. In [123], also a Particle
Filter is used to locate an object when it is being pushed with the hand in order to
separate objects in cluttered environments. In [124], an approach that uses tactile
sensors arrays to allow the recognition of the object and its 6D pose, by means of
exploring the object’s surface and edges using Iterative Closest Point combined with
a particle filter, is presented. Object pose uncertainty can also be reduced by gaining
tactile information from attempted grasps and replanning the grasp to increase the
chances of success [125]. Estimation of an object’s pose combining stereo vision and
a force-torque sensor mounted on the wrist of a robot was reported by Hebert et al
[126], who also used the joint position to estimate the location of the fingers with
respect to the object’s faces, an idea which similarly used in [127].

Other similar works can be found around these modalities. [128] addresses the
problem of a global localization problem of the object, however, instead of directly

4.2. Problem Description 79

looking at the full 6D pose, Scaling Series is used together with a Bayesian Monte
Carlo technique to iteratively refine the solution by increasing the granularity of the
search region. In [129], a particle filter approach is used to estimate a tube’s pose us-
ing both positive and negative contact information. Another approach was to model
discrete states that contain the possible combinatorial arrangements between fingers
and object surfaces using an hybrid systems estimator, estimating these discrete con-
tact modes as well as continuous state variables, the object’s pose [126]. Prats et al
[130] combined tactile, force and vision information to locate and open a door handle
and compared the performance under different sensing settings (only force, force and
vision and tactile, force and vision), where the combination of the three modalities
proved to outperform the other two, which is analogue to the previously mentioned
results of Rothwell et al [118].

This chapter introduces a tactile based in-hand object’s pose estimation. Reflex
Takktile hand by RightHand Robotics [131], equipped with pressure based tactile
sensors [132] and described in appendix B.5 is used. The methodology and algorithms
used are explained along the next sections.

4.2 Problem Description

The method proposed in this research followes the one used in the work by Chalon
[122]. In general terms, the used workflow included in a grasping framework would be:
an initial object’s pose estimation is provided by a vision based system (any other
system used would also be valid). This estimation is used to compute a grasping
pose, which is later executed and, hopefully, reached by a robotic arm. Once the
arm has stopped, a reference frame located at the wrist joint, the one that connects
the arm and the hand, does not move while the grasp is being executed. Therefore,
the initial pose estimation can be transformed into the reference frame of the wrist,
providing an initial guess of the pose of the object with respect to the base of hand.
The parameters which define this estimation are shown in equation 4.1:

x = [q, t]T

x = [qx, qy, qz, qw, tx, ty, tz]
T

(4.1)

where q corresponds to a rotation expressed in quaternion form and t corresponds to a
translation vector. The quaternion representation was chosen to describe the rotations
for its advantages in terms of computational efficiency. Furthermore, quaternions
allow smoother interpolation when compared to other rotation conventions [133, 134].

Then, the fingers start closing towards the object and the tactile sensory system in
the hand is used to detect when the fingers are in touch with the object. This event

80 Chapter 4. In-hand Object Pose Estimation

makes the object pose estimation starts. The problem of finding an object’s pose
with respect to the base of the hand can be formulated as finding a set of parameters
that define a transformation (a translation and a rotation, as in equation 4.1) that
matches the current tactile and proprioceptive information.

The robotic hand used, ReFlex TakkTile Hand, is equipped with two types of
sensors: pressure sensors located along the fingers and in the palm, and magnetic
encoders in the proximal joint and the spool of the tendon that moves the fingers, as
can be seen in figure 4.1. Pressure sensors are located along the fingers, while the hole
in the proximal joint contains the encoder. The encoders provide the joint angular
position allowing for the location of the proximal and distal phalanges, and therefore
the pressure sensors, with respect to the wrist of the hand. Also the normals of the
surface of the finger at sensor positions are known. Besides, pressure sensors deliver
force measurements in each of the sensors based on the pressure produced on the
rubber that covers the fingers and the palm. With the force readings, contact values
are computed based on a force threshold. However, since the pressure flows through
the rubber of the sensors, one single contact of an object with a finger often causes
positive contact readings on consecutive sensors. When this situation occurs, a linear
combination of the reading is performed to compute the actual contact as:

si = [xi, fi]

xi = [qi, ti]
T

ci = ti + |(1− fi
fi + fi+1

)| × (ti+1 − ti)
(4.2)

being si the known information from each sensor: xi the pose transformation and fi
the force reading of sensor i. Then ci the computed contact location.

Figure 4.1: Overview of the pressure sensors in the fingers of the ReFlex TakkTile
Hand.

4.2. Problem Description 81

With the information provided by the sensors, the search of a solution to this
problem is done by combining the next general ideas:

• When a positive contact is detected by a sensor, the estimated position of the
object must produce a contact at the same location. Figure 4.2 shows one
example of this situation. The 3D models that correspond to the palm and
the proximal and distal links of Reflex Takktile Hand are represented in green.
Red dots on the models indicate the locations of the pressure sensors. The red
arrows reveal the force reading of the sensors. Finally, the model of the object
which is being grasped is presented in dark red. This figure illustrates a case in
which two sensors are detecting a contact, however, the estimated pose of the
object is far from producing the same contacts. This is an undesired situation.

Figure 4.2: A positive contact is detected but the estimated pose of the object is far
from producing a contact at the sensor location.

• The estimated position of the object should not be in collision with the hand,
note the difference between contact and collision. Besides, the object cannot be
floating in the air, not contacting with the hand at all. Figure 4.3 shows one
example in which the fingers are in collision with the object (left), and other
one in which there is no contact between the fingers and the object (right), both
are undesired results.

Figure 4.3: Examples of the fingers in collision with the object, and an object floating.

82 Chapter 4. In-hand Object Pose Estimation

• The grasp execution is assumed to be successful, therefore, the normal of the
surface of the object where the contact occurs and the normal of the contact
locations in the hand should be close to parallel and pointing in opposite di-
rections. The maximum deviation from being parallel depends on the friction
produced between the object and hand materials, which is not known. In order
to generalise, this angle is aimed to be as close to 0 as possible.

• The pose estimation is started when any of the fingers contacts with the object,
therefore, if the fingers move, the object will be moved by the fingers. In figure
4.4, left image, the left fingers have made contact with the object and it is
detected by the sensors (see the red arrows). Then, in the central image, the
fingers have moved forward but the object stays at the same pose, this is not
feasible. In the right image, the pose of the object is updated following the
fingers’ movement.

Figure 4.4: When the fingers are in contact with the object and move, the object
should move with them.

Besides, two important assumptions are made before starting the object’s pose
estimation.

1. An initial pose estimation with respect to the hand is provided before starting.
In this case, this corresponds to the object’s pose detected by a vision system
with respect to the pose of the base of the hand.

2. Geometric shape descriptions of the object and the hand are available. 3D
models defined by vertex points and normals are used, as the ones shown in the
previous figures.

Based on this information, a particle filter is used to generate new estimations of
the object pose.

4.3. Bayesian Filtering 83

4.3 Bayesian Filtering

Bayesian filtering is a general probabilistic approach for estimating, recursively, an
unknown probability density function over time using incoming measurements and
a mathematical process model. One of the most popular methods for performing
Bayesian filtering is the Kalman Filter. The Kalman filter can be applied to optimally
solve a linear and Gaussian dynamic model [135]. When the linearity or Gaussian
conditions do not hold, its variants, the extended Kalman filter and the unscented
Kalman filter, can be used. However, for highly non-linear and non-Gaussian prob-
lems they fail to provide a reasonable estimate [136]. Besides, Kalman filters (regular
or extended) perform better with an analytic description of the measurement model
[122].

The proposed estimation method is also based on a Bayesian Filtering algorithm,
the Bootstrap Particle Filter, a type of Sequential Monte Carlo method (SMC). These
are a set of simulation-based methods which provide a convenient approach to com-
puting posterior distributions sequentially. They avoid making linearity or normality
assumptions required by related methods such as the Kalman filter. Importance
sampling is used to approximate the distribution with a set of discrete values, usually
known as particles, each with a corresponding weight.

In order to mathematically define how the Bayesian filtering works, let us start
by defining two sets of random (vector) processes:

Xt := x(0), ..., x(t)

Yt := y(0), ..., y(t)
(4.3)

where Xt is a set of random variables of interest and Yt is a set of measurements of the
process of interest. Bayes’ theorem for the conditional distribution can be expressed
as

Pr(Xt|Yt) =
Pr(Yt|Xt)× Pr(Xt)

Pr(Yt)
. (4.4)

Equation 4.4 shows how the posterior distribution, Pr(Xt|Yt), can be decomposed in
terms of the prior distribution, Pr(Xt), its likelihood , Pr(Yt|Xt), and the normalizing
constant or evidence Pr(Yt). Furthermore, if the system is assumed to be Markovian,
the distribution can be sequentially espressed as

Pr(Xt|Yt) = W (t, t− 1)× Pr(Xt−1|Yt−1) (4.5)

and the weight is defined by

W (t, t− 1) :=

[
Pr(y(t)|x(t))× Pr(x(t)|x(t− 1))

Pr(y(t)|Yt−1)

]
(4.6)

84 Chapter 4. In-hand Object Pose Estimation

This means that knowing the posterior distribution at the previous stage, t −
1, scaled by the weighting factor, is sufficient in order to sequentially propagate
the posterior to the next stage. However, this solution is not realisable unless the
distributions are known in closed form and the underlying multiple integrals or sums
can be analytically determined [137]. In fact, a more useful solution is the marginal
posterior distribution [136] given by the update recursion as

Pr(Xt|Yt) =
Pr(y(t)|x(t))× Pr(x(t)|Yt−1)

Pr(y(t)|Yt−1)
(4.7)

where the update distribution can be considered as a weighting of the prediction
distribution as

Pr(x(t)|Yt) = W (t, t− 1)× Pr(x(t)|Yt−1) (4.8)

where the weighting factor is defined by

W (t, t− 1) :=
Pr(y(t)|x(t))

Pr(y(t)|Yt−1)
(4.9)

4.3.1 Monte Carlo Approach

Monte Carlo (MC) methods, initially proposed by [138], are stochastic computational
algorithms capable of efficiently simulating highly complex systems. They offer an al-
ternative for solving classical numerical integration and optimization problems using
Markov chain theory as its underlying foundation. Thus, under certain assumptions,
the chain converges to the desired posterior distribution through proper random sam-
pling as the number of samples become large [139], a crucial property.

The principal idea under MC techniques is representing a probability distribution
as a set of samples from this distribution. The more samples taken from the distri-
bution, the better representation is achieved. For example, let us define a function
f(X) with a probability distribution Pr(X) so that the expectation can be defined
as

EX{f(X)} =

∫
f(X)Pr(X)dX. (4.10)

Then MC integration evaluates equation 4.10 by drawing samples, X(i) from
Pr(X). Assuming perfect sampling, this produces the estimated distribution given
by the following probability mass distribution

P̂ r(X) ≈ 1

N

N∑
i=1

δ(X −X(i)) (4.11)

4.3. Bayesian Filtering 85

which used for substituting in equation 4.10 results in

EX{f(X)} =

∫
f(X)P̂ r(X)dX ≈ 1

N

N∑
i=1

f(X(i)) ≡ f̄ (4.12)

where f̄ is a MC estimate of EX{f(X)}.
Typically, it is impossible to get such samples since Pr(X) is multivariate, known

only up to a constant of proportionality and non-standard. Markov chain Monte
Carlo methods may be used in similar situations, but they are not well-suited to
recursive problems. Alternatively, importance sampling can be used. Let us define

I =

∫
X

p(x)dx =

∫
X

(
p(x)

q(x)

)
× q(x)dx

for

∫
q(x)dx = 1

(4.13)

where q(x) is the importance sampling distribution. It samples the target distribution
p(x) non-uniformly so that some values of p(x) have more importance than others,
overlapping the support region of the samples of p(x). The key in importance sampling
is choosing the distribution q(x) which approximates best the target distribution p(x).

Besides, we can use importance sampling to draw from the posterior distribution
Pr(Xt|Yt) indirectly using an importance sampling density q(Xt|Yt) and a correspond-
ing importance weight for each draw, as

f̂(t) := E{f(Xt)} =

∫
f(Xt)

[
Pr(Xt|Yt)
q(Xt|Yt)

]
× q(Xt|Yt)dXt

W̃ (t) :=
Pr(Xt|Yt)
q(Xt|Yt)

=
Pr(Xt|Yt)× Pr(Xt)

Pr(Yt)× q(Xt|Yt)

(4.14)

Unfortunately, W̃ (t) is not useful because it requires knowledge of the evidence
Pr(Yt), which is usually not available. However, it can be demonstrated [137] that
the expectation E{f(Xt)} can be approximated drawing samples from the proposal
Xt(i) ∼ q(Xt|Yt) and defining normalized weights as

q̂(Xt|Yt) ≈
1

N

N∑
i=1

δ(Xt −Xt(i))

Wi(t) =
Pr(Yt|Xt(i))× Pr(Xt(i))

q(Xt(i)|Yt)

(4.15)

86 Chapter 4. In-hand Object Pose Estimation

and the final estimate is

f̂(t) ≈
N∑
i=1

Wi(t)× f(Xt(i)) (4.16)

The importance estimator asymptotically converges to the true statistic and the
central limit theorem holds [139]. However, this approach is still not well-suited
for recursive problems. This is why Sequential Importance Sampling (SIS) is used, in
order to be able to compute an estimate of P̂ r(Xt|Yt) using the past simulated samples
Xt−1(i) ∼ q(Xt−1|Yt−1). In order to do this, the importance distribution q(Xt|Yt) must
admit a marginal distribution q(Xt−1|Yt−1), implying a Bayesian factorization like in
equation 4.17

q(Xt|Yt) = q(x(t), Xt−1|Yt) (4.17)

which leads to the desired sequential solution [140]. The sequential update of the
weight at each time-step can be written as:

W (t) = W (t− 1)× Pr(y(t)|x(t))× Pr(x(t)|x(t− 1))

q(x(t)|Xt−1, Yt)
(4.18)

which enables us to formulate a generic Bayesian Sequential Importance Sampling
algorithm, a constrained version of importance sampling. As pointed out for equation
4.13, the selection of the importance sampling distribution is also crucial in equation
4.18. Several alternatives can be used here, being one of the most popular the use
of the prior distribution as the importance proposal [136]. Unfortunately, it is well
known that importance sampling is usually inefficient in high-dimensional spaces [141,
142] since as t increases, the weight of the particles degenerates, meaning that the
number of particles with a weight value of 0 increases. Consequently, the particles with
meaningful information of the posterior decreases and fail to represent the posterior
distribution of interest.

A solution to this problem is proposed in the commonly named Bootstrap Particle
Filter. It introduces a new step, resampling, which is intended to eliminate particles
with low importance weights. Therefore, the fundamental concept in resampling
theory is to preserve particles with large weights (large probabilities) while discarding
those with small weights [143]. The overall strategy, when used with importance
sampling, is called Sequential Importance Resampling (SIR) [136]. In order to apply
it, a measure of the degeneracy of the particles has to be defined. A commonly used
term is the effective particle sample size [139] defined by

Neff (t) :=
1∑Np

i=1W
2(t)

(4.19)

4.3. Bayesian Filtering 87

which evaluates the effectiveness of the actual samples by looking at their weights, so
that a smaller Neff means a larger variance for the weights, hence more degeneracy.
Therefore, resampling is performed if the effective sample size, Neff , drops below a
certain threshold, Nthresh, as in [139]:

N̂ eff (t) =

{
Resample ≤ Nthresh

Accept > Nthresh
(4.20)

Note that resampling is done so that a particle with a large weight is likely to be
drawn multiple times and, conversely, particles with small weights are not likely to
be drawn at all. Besides, the weights of the new particles are all set to be equal to
1/N . Therefore, the resulting samples are uniform such that the sampling induces
the mapping of

xi(t),Wi(t)→ x̂i(t), Ŵ i(t)

Ŵ i(t) =
1

N
∀i

(4.21)

There are four commonly used resampling schemes within particle filtering litera-
ture, summarised in [144, 145]. All of them are unbiased, have O(n) implementation
and are based on a resampling of N particles (with replacement) from the original
particle set of particles in which the probability of selecting a particle is equal to its
weight [145]. The selected method to perform this step is the multinomial resampling,
the simplest one among them. This resampling is achieved by repeated uses of the
inversion method following these two simple steps:

• Generate N ordered uniform random numbers, uk on the interval (0, 1].

• Use them to select x̂i(t) according to the multinomial distribution. That is,

x̂k(t) = x(F−1(uk))

uk ∈

 i−1∑
s=1

ws,

i∑
s=1

ws

 (4.22)

where F−1 denotes the generalised inverse of the cumulative probability distri-
bution of the normalised particle weights.

Graphically, if we draw a circle with the size if the perimeter assigned to the
different particles in such a way that the length of the perimeter associated to each

88 Chapter 4. In-hand Object Pose Estimation

Figure 4.5: A circle whose perimeter is assigned to the particles in such a way that
the length of the perimeter associated to each particle is proportional to its weight.

particle is proportional to its weight, as shown in figure 4.5, this method consists of
picking N independent random directions from the centre of the circle and taking the
pointed particle.

To sum up, the Bootstrap Particle Filter is implemented as shown in algorithm 1.

Algorithm 1 Bootstrap Particle Filter

1: procedure BPF(Np, prior estimation)
Initialization:

2: xi(0) ∼ Pr(x(0)) Wi(0) = 1
Np

. Sample the prior

Importance Sampling:
3: xi(t)← system model(xi(t− 1), inputt) . State transition
4: wi ∼ Pr(wi(t))

Weight Update:
5: Wi(t) = Wi(t− 1)×measurement(y(t)|xi(t))

Weight Normalization:
6: Wi(t) = Wi(t)∑Np

i=1 Wi(t)

Resampling:
7: if N̂ eff (t) ≤ Nthresh, then x̂i(t)⇒ xj(t) . Posterior

4.4. Implementation 89

4.4 Implementation

Once the theoretical framework has been presented, the actual implementation of
each of its parts is explained.

4.4.1 System Model

The system model relates the state at time i which respect to the state at time i− 1
and the input to the system at time i. In this case, since the state is the object’s
pose, this relation is given by the displacement. In order to compute the object’s
displacement based on finger movements, only the location of sensors which detect
contact is taken into account. Let

si = [xi, fi > contact threshold] (4.23)

be a sensor location with positive contact. Then

∆xi = [∆qi,∆ti]
T (4.24)

is the displacement and rotation of sensor i between two consecutive readings. Then
the total object movement is computed as the average translation and rotation, ∆xia,
among the sensors in which a contact is detected.

4.4.2 Measurement Model

The measurement model gives to each of the particles in the filter a weight that
means how similar is, the state expressed by that particle, to the truth. This value
is given based on the measurements provided by the sensors in the hand. In order
to compare these data to the object’s pose encoded by each particle, a simulation
of the spatial relationships between the object and the hand is done. Since the 3D
models of the object and the links of the hands are available, they are used to compute
collisions between the object’s pose encoded in each particle and the hand. These
collisions are checked using the Flexible Collision Library (FCL) [146]. Using this
library, the objects are modelled as bounding volume hierarchies (BVH) [147] and
therefore fast queries on collision and smallest distance between the objects can be
obtained. Consequently, it is used to compute a shortest distance (no collision) or
deepest penetration (in collision) between each sensor and the object. The distance
from each sensor position to the object surface, doi , is negative if the bodies are
colliding and positive if there is no collision.

Furthermore, kinematic data provided by the joint sensors of the hand, allows the
calculation of the poses of the hand links, and therefore the positions of the force

90 Chapter 4. In-hand Object Pose Estimation

sensors. Then, using real and simulation-based data and in the context of in-hand
object localization, three kind of measurements are considered:

• For every sensor in which no collision is detected in the real hand, a probability
value of the object’s pose defined by each particle is computed based in its
distance to the object by:

pnc,i(d
o
i) = 0.5 ∗

(
1 + erf

(
doi√
2σd

))
(4.25)

where σd is a standard deviation value that can be adjusted to match the inac-
curacy of the measurements, and erf corresponds to the error function. This
function is chosen to assign high weight values to positive distances and small
values to negative distances. The resulting function can be seen in figure 4.6
for σd = 0.01m (left) and σd = 0.005m (right).

Figure 4.6: Function used in the case no contact is detected. In left picture, σd =
0.01m, in right one, σd = 0.005m.

• In the case of sensors in which contact is detected, measurements from tactile
sensors are incorporated in a similar way. For each of them, the distance to the
object represented by a particle is computed, doi . Then, the probability for that
measurement is computed as:

pc,i(d
o
i) = e

−0.5

(
doi
σc

)2

(4.26)

4.4. Implementation 91

where σc is a standard deviation of the distribution that can be adjusted to
account for the uncertainty in the force measurement. This function assigns
high weights to values that are close to zero, so being close to contact. The
resulting function can be seen in figure 4.7 for σc = 0.01m (left) and σc = 0.005m
(right).

Figure 4.7: Function used in the case a contact is detected. In left picture, σc = 0.01m,
in right one, σc = 0.005m.

• Since the obtained grasp is assumed to be stable, the contact surfaces in the
object and the hand should be almost parallel. Therefore, for the sensors de-
tecting contact, the angle (αi) between the normals’ surfaces is computed and
evaluated by the next function:

pa,i(α) = e
−0.5

(
αi
σa

)2
(4.27)

where σa is a standard deviation of the distribution that can be adjusted to
account for the uncertainty in the pose of the sensors. This function assigns
high weights to values that are close to zero.

Under the next assumption: the weighting factors computed are independent from
each other, a combined weight for each particle (wp) can be expressed as:

wp =
Nm∏
k=1

pnc,i ∗ pc,i ∗ pa,i (4.28)

92 Chapter 4. In-hand Object Pose Estimation

where Nm is the number of measurements in each particle. This results in a weight
calculated for every particle during the update step:

Wp =
{
w[1]

p , w
[2]
p , ..., w

[Np]
p

}
(4.29)

where Np is the number of particles.

4.4.3 Inference of the best estimate

The objective of the in-hand localisation is to provide a best estimate E(xt) of the
object pose among the set of particles. Assuming that the posterior of the particle
filter represents a probability density function, similar to a Gaussian distribution, of
the actual in-hand pose of the object, the expected value at each time step is the
weighted average of this posterior. Let us recall that the object’s pose is defined, as
stated in equation 4.1, by a translation vector and a quaternion. Whereas for the
translation, the weighted average is a straightforward computation:

x̂t =

∑Np
p=1 wptp∑Np
p=1 wp

(4.30)

where N is the number of particles, wi is the weight of each particle and xi is the
3D translation vector. However, the weighted mean of a set of quaternions is not so
intuitive. If a similar simple procedure as for the translation is performed:

q̂t =

∑N
p=1 wpqp∑N
p=1 wp

(4.31)

the given solution has two problems. The first one is that q̂t is not a unit quaternion,
thus it does not represent a rotation. This can be easily fixed by dividing q̂t by its
norm. The second problem comes from a property of quaternions when represent-
ing rotations which states that: q and −q represent the same rotation, so that the
quaternions provide a 2:1 mapping of the rotation group [148]. Therefore, if the sign
of any quaternion qp is changed, the resulting average should not change. However,
it is clear that equation 4.31 does not have this property.

It is important to note that the goal is to average a rotation and not a quaternion.
Following this observation and defining the vector and scalar parts of a quaternion
as q = [%T q4], which obbey the normalization condition ‖%‖2 + q4 = qT q = 1. Then,
[149] proves that a 4× 4 matrix M can be computed as:

M =
N∑
p=1

wpqpq
T
p (4.32)

4.5. Experimental Setup 93

so that the average quaternion can be found following the next maximization proce-
dure:

q̂ = arg max(qTMq) (4.33)

The solution to this maximization problem is known [150] and it can be found as the
eigenvector of M corresponding to the maximum eigenvalue. This solution avoids
both of the problems presented in equation 4.31. The eigenvector is chosen to have
unit norm to avoid the first one. The second is avoided because changing the sign
of any qp does not change the value of M . Besides, the averaging procedure only
determines q up to a sign, which is consistent with the 2:1 nature of the quaternion
representation.

4.5 Experimental Setup

ReFlex TakkTile Hand has been used for real tests of the work presented in this
chapter, which has been done in a research visit at the Institute of Robotics and
Mechatronics of the German Aerospace Centre (DLR).

Although the robotic hand is made to be attached to a robotics arm for grasping
purposes, this could not be possible to do because of technical issues, which could
not be solved in the period of the visit to DLR. This makes impossible to solve the
problem exactly as described in section 4.2, in which a common grasping pipeline
(object pose estimation, grasping synthesis and execution) is performed. However,
since the pose estimation is meant to be done with respect to the base of the hand, it
is possible to perform the necessary tests while the robotic hand is held by a human
operator, as can be seen in figure 4.8, left image. In the image, it is important to note
the tag the hand has on the cover of the electronics and the one located on the object.
Both of them are Apriltags [151], which are used to compute the ground truth pose
of the hand and the object. Since the tag is located in the cover of the hand and
not in its base point, a further transformation relating the tag on the cover to the
base of the hand is needed. This transformation is extracted from the right picture
in figure 4.8. Finally, the estimated pose of the object pose is related to its centre
of mass, and not the one in which the tag is positioned, therefore, a transformation
which relates the tag of the object and its centre of mass is calculated based on the
size of the object.

94 Chapter 4. In-hand Object Pose Estimation

Figure 4.8: On the left, the robotic hand lies on the table ready to perform a grasp.
On the right, the tags needed to locate the reference frame for the pose estimation of
the base of the hand.

Once the frame, from which the object’s pose is computed, is available, the grasp-
ing is done as follows:

• Both the hand and the object are placed on a table surface. A camera is
positioned so that the scene is recorded, extracting 640x480 pictures at a rate
of 25Hz1. The Apriltags on the object and the hand cover are both visible,
which allow for a ground truth computation at post-processing.

• The data recoding is started, then an operator grabs the hand from its base
(while keeping the tag visible) and positions the hand at place from where a
grasp can be done. 10 seconds after the recording started, the fingers close
towards the object. Once all of them are in contact, a constant velocity is kept
to make the grasp stable.

• At the moment the grasp seems completed to the operator, the object is lifted
so that the grasp is proved to be stable, then the object is again put on top of
the surface and the fingers open.

When applying the particle filter presented before for the pose estimation of the
object inside the hand, one important question arises: when should the filtering start.
There are two main possibilities:

• Waiting until the grasp is stable, and then look for the actual pose from the
initial pose estimate before any contact was performed.

1All the images of the real scene in this chapter are taken from the colour sensor of an ASUS
Xtion Pro Live.

4.5. Experimental Setup 95

• Start when any finger contacts with the objects. In this case, if the finger in
contact moves, the object is assumed to be pushed and moved by it.

The first one depends on how much the object has moved from the first touch of
the fingers to the moment the grasp is stable. If this movement is big, it might be
difficult to have a particle representing a similar pose. Besides, it is not so clear how
to determine that the grasp is stable. The latter is, in principle, more likely to be
able to find a good solution if the movement towards the stabilization of the grasp is
big. Therefore, the second one is used during the tests.

One important issue when using a particle filter is to decide the number of particles
to use. It has to be a compromise between having a very big population, which
increases the likelihood of obtaining a good estimate at the cost of increasing the
computation effort, and having a small number which augments the frequency of the
estimation but decreases the probability of having a good outcome. In order to choose
the number of particles, both properties have been taken into account.

In order to choose the number of particles, tests have been performed using the
scenario 1, which can be seen in figure 4.8, left image. The main characteristics of this
scenario is that the hand lies on the table when executing the grasp. While performing
the pose estimation, the period of time needed for a new result is computed against
the number of particles. Since the whole grasping process (from the moment fingers
start closing to the moment they open again) lasts for a few seconds (around 10
seconds), at least 1 new estimation per second is needed. 5 tests have been done
using 100, 600 and 1000 particles. Computation times are shown in table 4.1. Time
grows almost proportionally with the number of particles, but only the time for 100
particles is smaller than 1 second.

Table 4.1: The average time used to compute a new prediction and the number of
particles.

Particles Time (s)
100 0.3170
600 1.8772
1000 2.9871

Further tests are performed for different number of particles which would lead to
update periods lower than 1 second: 100, 150, 200, 250 and 300 particles. This time,
the results are analised in two different ways: again the time used for each update
and the standard deviation of the posterior. Tests are repeated 10 times and results
are averaged over the different the repetitions. The former can be seen in the left
picture of figure 4.9, the green line shows the average time used among the trials,
while the red area shows the standard deviation. In all cases the needed time is lower

96 Chapter 4. In-hand Object Pose Estimation

than one second, which meets the set requirement, and there is a small difference
among the trials. The latter is shown in the right picture of figure 4.9. Blue line is
the standard deviation in the position estimation, while the red line is the orientation
one. Theoretically, as the number of particles grows, the estimation of the particle
filter is more accurate and therefore the standard deviation of the estimations should
be smaller. Results show a tendency, which is that the estimations get better until
200 particles. Results are not very conclusive, since the values are really small and
very similar among them (the number of particles changes very little), but in the case
of the position, the standard deviation does not get any better for values higher than
200. Based on these results, 200 particles are chosen to be used in the rest of the
tests.

1 - Average 4 x 10·3
Standard deviation - Pos ition variance

0.8 - Orientation variance - 3 !/) -c. Q)
Q) u
ii) 0.6 C

.~ 2
Q) '-
E ro >
~ 0.4 1

0·foo 0
150 200 250 300 100 150 200 250 300

Number of particles Number of particles

Figure 4.9: On the left, the average and standard deviation if the time used by the
filter in each iteration against the number of particles. On the right, the standard
deviation of the estimated pose against the number of particles.

Then, the pose estimation tests are performed, as described before, while grasping
three different objects selected from the YCB database [152]. Figure 4.10 shows the
real objects (on the top row) used and their corresponding 3D models (on bottom
row) , as provided in the database, used in the measurement system, table 4.2 shows
their size and weight. It is possible to appreciate that the 3D models include errors,
specially in the edges and the texture, although texture is not used in this project.

4.5. Experimental Setup 97

Table 4.2: Characteristics of the objects used for pose estimation.
Object Size (mm) Weight (kg)
Cheez-it 60 x 160 x 230 0.453
Pringles 75 x 250 0.205
Jell-o 35 x 110 x 89 0.187

Figure 4.10: On the top row, pictures of the real objects used in for testing of the
system. On bottom row, the 3D models provided in the YCB database.

Furthermore, the values used for parameters explained through this chapter are
summarised in table 4.3. For the input to the system (displacement between itera-
tions), a Gaussian noise, with 0 mean, is added to both position and rotation. To
the contrary, no noise is added to the measurements, since the data provided by the
sensors is quite noisy itself, so no artificial one is included. For the weighting function,
values have been chosen empirically. Specially, σd and σc were tried to be 0.5 mm,
but this made all the particles to have a weight value of 0 in most of the iterations,
which is completely useless.

98 Chapter 4. In-hand Object Pose Estimation

Table 4.3: Parameters used for the pose estimation with the proposed filter.

Input Noise

Position Mean 0
Position Standard Deviation 0.7 mm
Rotation Mean 0
Rotation Standard Deviation 0.35o

Measurement Noise Mean 0
Standard Deviation 0

Weighting Function
σd 1 mm
σc 1 mm
σa 8o

4.5.1 Results

The pose estimation for each of the object has been performed 10 times. The results
shown next are an average of all of them. In all the cases, the pose estimation is
started when the first contact between the object and the hand occurs, and it is
stopped when the hand is commanded to open. For all the tests, results show the
estimation of the position (cm) in the three axes and the rotation (o) around each
of them. Since the estimation is made with respect to the base of the hand, the
orientation of the axes of this frame is always indicated, in the first image of the
figure that shows pictures of the real scenario, to help understanding the results. All
the results show the ground truth computed using the AprilTags (GT) in a red line.
Also, the best particle of the population at each iteration is drawn in a purple line.
Besides, the mean of the posterior and its standard deviation are plotted as a blue line
and a shaded green area respectively. Note that the scale of the graphics is different
among them images on the results. Also, it is important to keep in mind that all the
given data are poses of the centre of mass of the object with respect to the base of
the hand.

Pringles can

Tests on the pringles can have been done twice. In the first scenario, the hand lies on
the table while grasping the object In the second one it is held by the operator and
the object is grasped around the middle of the height of the cylinder.

Figure 4.11, shows images of the whole process of grasping for the first case.
The sequence of images is ordered column-wise, meaning that the first four images
correspond to the first column, then from the fifth to the eight correspond to the
second column. Its main characteristic is that the hand performs the grasp while
lying on the table surface, and no operator is needed. In the first image, the starting
pose of the object and the hand are presented. Besides, in the lower corner of the left

4.5. Experimental Setup 99

side of the picture, there is the reference frame which is associated to the base of the
hand. In the second image, the fingers already started moving towards the object. In
the third one, a contact between the proximal link and the object is produced, then
the fingers keep closing and in the fourth image a new contact is made with the distal
link. Note how, in the fifth and sixth images, due to the force applied by the fingers
to stabilise the grasp, the object moves towards the palm, which corresponds to the
direction of -Z axis. Besides, although it is difficult to appreciate visually, the object
also in the direction of the -X axis. This movement happens because the two fingers
in the same side of the can, at the top of the image, perform larger force than the
one that actuates in the opposite direction. The last two images correspond to the
opening movement.

Results of the pose estimation can be seen in figure 4.12. The left column shows
the estimation of the position in X, Y and Z axis respectively, while the right column
shows the estimation in rotation around each axis. The main two displacements are
produced when the hand grasps the object, which is moved towards the palm, around
1 cm, and in the -X direction, around 8 mm. Both movements are well detected in
the ground truth measurements (GT) and in the estimation by the filter. However,
the changes in the estimation are slower. Note how the GT also moves in the Y
axis, around 5 mm in total, although this is not possible since the base of the can
never moves from the table. Measurements in this axis are a little noisy in all the
experiments, which are intrinsic errors of the pose estimation provided by the tags. It
is also interesting that the estimation of the movement in the Y axis is very similar,
although the filter does not have any measurement in the Y axis and therefore it is
not possible to establish at what height the object is being grasped. This movement
is likely to be caused by the noise introduced in the update of the system. Note that
the standard deviation is much smaller in the case of the X axis, due to a higher
constraints produces by the fingers. Among the rotations, GT does not detect almost
any movement, and the filter estimates small turns of the object which would not
produce an unfeasible situation.

It is important to note how the particle with highest weight, drawn in purple, is
much more unstable the solution provided by the mean of the posterior.

100 Chapter 4. In-hand Object Pose Estimation

Figure 4.11: Scenario 1, a Pringles can grasped while the hand lies on the surface of
the table.

4.5. Experimental Setup 101

0.8 g 10 r g 5 T
t

T
t

~ 0.6 ;--E
.,!,

X X 0.4 C: 0 C .Q C:::::: -0 i :E
Ill 0
0 0.2 a: c..

-5
0

-0.2 -10
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Time(s) Time (s)

11 1.5 r
10.5 g g

T
t

T
t

E 10
.3. ~0.5 ~ >- 9.5 C: jo~~ 0 :§

9 c..

8.5 -0.5

8 -1
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Time(s) Time (s)

18 4

17.5 g 3 g
T

t
2 T

t

1 17 ;--

N
;::;1

~
===

5 16.5 C
0

:;::; 0
~ ~ ?1 0 16 c.. -1

15.5 -2

15 -3
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Time (s) Time (s)

Figure 4.12: Results of scenario 1, the hand on the table grasping a Pringles can. Left
column corresponds to the position in X, Y , and Z axes. Right one is the rotation
around the same axes.

102 Chapter 4. In-hand Object Pose Estimation

Figure 4.13 shows the grasping process in the second experiment performed with
the Pringles can. Again, the sequence is ordered column-wise. In the first image, the
starting pose of the object and the hand are presented, on the left, note the hand of
the operator holding the robotic hand. In the second one, the proximal link of the
fingers have made contact with the object, the fingers keep closing until the distal
link also makes contacts, as shown in the third image. Note how the can has turned
around Y axis (parallel to the normal of the table plane) from the second to the
third image. In the fourth and fifth images, the hand is lifted and turned towards
the camera, and the object does the same because there is a stable grasp. However,
since the computed pose is referenced to the base of the hand, this movement does
not affect the actual pose of the object in the hand. Then, in the next images, the
hand is moved down and the object is put back on the table and the fingers open.

Figure 4.14 shows the results of the pose estimation for this scenario. Both the
ground truth and the estimation show slight movements in X and Y axis, but they
are not very relevant. The one in the Y axis can be considered as noise, since is has a
range of less than 1 mm. The one in the X axis is likely to be caused by the different
moments the fingers contact the object and the force made for the stabilisation of the
grasp, as also happens in the Z axis. In fact, results are very similar to scenario 1,
although in this case the estimation provided by the filter is more accurate. So the
introduction of an operator holding the hand instead of using a robotic arm seems to
be useful to test this algorithm.

In a similar way as happened in scenario 1, ground truth does not detect almost
any rotation at all, but the estimations show slight variations around 0o. Note that
the rotations around Y axis make the cylinder rotate around its axis of revolution.
From a textureless 3D model point of view, these rotations do not make any difference,
which still fulfills the physical constraints of the real object being grasped.

4.5. Experimental Setup 103

Figure 4.13: Scenario 2, a Pringles can grasped from the side while the hand is held
by an operator.

104 Chapter 4. In-hand Object Pose Estimation

0.2 8

6 - µ
{J

0.1 4

2
E 0 .,?.

0 0
X X

C: -2 C: 0 0
~ ~ -0.1
~

-4
0 a.. -6

-0.2 -8

-10

2 4 6 8 10 12
-12

0 2 4 6 8 10 12
Time (s) Time (s)

-3.92 1.6 r
-3.94

1.4
-3 .96

i-3.98 ~1 .2
>->- -4 C:

C: 0 ,g .,,
~ 1 -~ -4.02 ft_ a..

-4.04
0.8

-4.06

-4.08 0.6
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Time (s) Time (s)

15.8 4

15.6 g 2 g
T

t
0 T

t

- 15.4
E ;;---
~ N -2
N
5 15.2 C:

0

~ ~ -4
0 0 15 a: a.. -6

14.8 -8

14.6 -10
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Time (s) Time (s)

Figure 4.14: Results of scenario 2, the hand on the table grasping a Pringles can. Left
column corresponds to the position in X, Y , and Z axes. Right one is the rotation
around the same axes.

4.5. Experimental Setup 105

Cheez-it box

The Cheez-it box is a heavy and big object for the hand with a slippery surface.
A side grasp has been chosen to lift it since in case of slippage, the palm of the
hand might contribute to holding the object. The resulting grasp and the lifting and
turning processes can be seen in figure 4.15. As in the previous cases, the sequence is
ordered column-wise. In the first image, the starting pose of the object and the hand
are presented, besides, in the lower-right corner of the picture, there is the reference
frame which is associated to the base of the hand. In the second and third pictures,
the proximal and distal links make contact with the object respectively. Next, the
lifting and rotation of the hand are shown, which provokes the same movement on
the object. Then the box in left again on the table and the fingers open.

Figure 4.16 shows the results of the pose estimation for this scenario. In all the
cases of displacements and rotations, ground truth only measures really small move-
ments, less than 1 cm and 1o respectively. Looking at the images of the scenario, it
is possible to think that there is an evident rotation around the Y axis, and the dis-
placement towards the palm (-Z axis) between the 2nd and 3rd/4th images. However,
due to the weight of the box, the operator provokes these movements, not affecting
the hand-object pose. Rotation estimations are very stable, but have a big standard
deviation.

The estimations behave in a similar way, although more noisy. It is of special
interest the results in the Z axis, more precisely, the standard deviation in this axis,
which is quite high. The problem is that it is very likely that the pressure sensors only
detect a contact between the fingertips and the surface of the box. So, when there
are not additional contacts with the palm or the proximal phalanges, the fingertip
contacts could be produced anywhere along the surface of the box, as long as the box
does not collide with the palm. This allows the particles to have the same weight
although their position in the Z axis changes.

106 Chapter 4. In-hand Object Pose Estimation

Figure 4.15: Scenario 3, a cereals heavy box grasped from the side while the hand is
held by an operator.

4.5. Experimental Setup 107

0.9 15 r g g 0.8 10

T
t

T
t

~0.7 5
E 0

.!:?. X
X 06 C: 0 § . .Q

"" 19 ·v; 0
~ 0.5 a: -5

0.4 -10

0.3 -15
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Time(s) Time (s)

-1 .1 15 r
-1.2 g g 10
-1.3 T

t
T

t

E -1.4 ;;-- 5
~

~

>-
~ -1 .5 C: 0 0 a .,
:~ -1.6 23
0.. fi. -5

-1 .7
-10

-1 .8

-1 .9 -15
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Time(s) Time (s)

23
15 r

22 g g 10
21 T

t
T

t

°E20
5 ;;--

~ N
';'.' 19 C: 0 a a "is ~ 18 0 a a: -5 0..

17
-10

16

15 -15
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Time (s) Time (s)

Figure 4.16: Results of scenario 3, the hand on the table grasping a Pringles can. Left
column corresponds to the position in X, Y , and Z axes. Right one is the rotation
around the same axes.

108 Chapter 4. In-hand Object Pose Estimation

Jell-o box

Finally, a chocolate powder box is used. In this case, the object lies on the table so
that it is only possible to grasp it from the top. The grasping and lifting processes can
be seen in figure 4.17, which are organised column-wise. Note that the orientation
of the reference frame of the base of the hand changes with respect to the previous
tests. Nevertheless, it is depicted in the lower-left corner of the first picture.

The first image presents the starting pose of the object and the hand. In the
second one, only two fingers have moved and made contact with the object. This
is due to a false positive contact measurement in the pressure sensors of the third
finger as if it had already contacted with the object. After that, when more force
is applied on the object by the fingers (to stabilise the grasp), the finger on the left
starts closing, while the fingers on the right provoke a movement of the box towards
the left of the image, -X axis direction. This can be appreciated in the 2nd and 3rd

images. This movement stops when the left finger makes contact (4th image). Finally,
next images show how the box is lifted with the hand and put back down on the table
before the fingers open.

Figure 4.18 shows the results of the pose estimation for this scenario. There are
two main displacements which can be visually appreciated in the pictures, towards
-X (as explained before) and -Z axis. The second one is produced when all the fingers
are making force against the object. Note the difference in the orientation of the
fingertips among 3rd, 4th and 5th images, which provokes the displacement. Both
movements are well detected by the fingers. In the case of the rotations, none are
detected by the ground truth, and only very slight movements estimated in the filter.

4.5. Experimental Setup 109

Figure 4.17: Scenario 4, a small chocolate powder box grasped from the top while
the hand is held by an operator.

110

0.5

0

-0.5

E
.,?. -1
X
C: :2 -1.5
·;;;
0
a.. -2

-2.5

-3 ~----~---~~---~
0 5 10 15

Time (s)

0.2

0.15

0.05

o~----~---~~---~

19

18.5

- 18
E
~
N
5 17.5

~
~ 17

16.5

0 5 10 15
Time (s)

16 ~----~----~----
0 5 10 15

Time (s)

Chapter 4. In-hand Object Pose Estimation

-1 -

-1 .2

- -1.4 .
X
§ -1 .6

--µ
0

--Best
...----1--GT

I ~ ~~~~~~~
0 5 10 15

Time (s)

o.4 r

0.2

-0.4

-0.6 ~----~----~---~
0 5 10 15

Time (s)

4

-4

-6 ~----~----~---~
0 5 10 15

Time (s)

Figure 4.18: Results of scenario 4, the hand on the table grasping a Pringles can. Left
column corresponds to the position in X, Y , and Z axes. Right one is the rotation
around the same axes.

4.6. Conclusions 111

4.6 Conclusions

In this chapter, an in-hand pose estimation algorithm is proposed to detect the move-
ment of the object that occurs from the first contact between the hand and the object,
until the moment the grasp becomes stable. A Bootstrap particle filter is selected for
the estimation mainly because of its flexibility in the measurement system.

The proposed estimation process is based on the measurements provided by the
sensors of the hand: tactile sensors for contact detection and joint encoders for pro-
prioceptive information. The measurement model proposed for the filter is based on a
simulation of the position of 3D models of the hand and the object. Then, a collision
detection library is used to compare real measurements with simulation based ones.
Two new characteristics have been include in the measurement system: the actual
force detected by the sensors is used to compute more accurate contact locations.
Besides, the orientation of the surfaces in contact is taken into account.

The algorithm is tested in real grasping scenarios with three different objects.
Results show that the main movements produced while stabilising the grasp can be
estimated.

The main problem arises in the deviation of the estimations in the degrees of free-
dom in which there is not measurement update. Results may improve by introducing
a new measurement term which penalises movements higher then those used in the
input of the system. However, increasing the number of variables in the measurement
computation makes it harder to predict its behaviour. A more straightforward solu-
tion would be decreasing the search space to those axes in which a measurement is
not provided. However, it is important to avoid introducing case-specific restrictions,
but instead it could be a combination of object characteristics extraction (such as
symmetries) and how to relate them to the selected grasp pose.

In my opinion, the most promising manner of improving this system is its combi-
nation with a visual based pose estimation. Although, in general, after the grasping
has been executed, the visual information is likely to be occluded (at least partially),
it would be probably very useful to provide insights on the degrees of freedom that
cannot be detected with tactile sense.

Chapter 5

General Conclusions

113

114 Chapter 5. General Conclusions

This Thesis shows a complete scheme to perform grasping actions in on-the-table
situations. Besides, an in-hand pose estimation scheme is introduced in order to close
the control loop after the grasping is executed. In my opinion, having a continu-
ous action-sensing loop is a key factor for the success of robots performing complex
manipulation tasks.

In chapter 2 , previous works are extended by adapting the formation shape con-
trol scheme to 3D environments, and includes the necessary changes to apply the
algorithm to non-static environments. Besides, it introduces a novel approach to
model mobile obstacles in the environment in a way that they are, later on, easily
treated by the obstacle avoidance algorithm explained. Finally, quantitative anal-
ysis of this approach has been carried out. The results explain how the formation
evolves avoiding obstacles while covering the planned path. The tests show that the
proposed shape deformation method, in combination with the FM2 path planner,
is robust enough to manage autonomous movements through an indoor static and
dynamic 3D environment.

The Fast Marching Square method has been used along the first 2 chapters as a
basis for the algorithms built on top of it. First, it has been shown how to make
improvements to the control scheme for robot formations to adapt it to its use in 3D
environments. The key factors of this control method are its simplicity and flexibility,
since it is easy to implement and adapt to different amount of robots or geometri-
cal formations, since the deformation schema is based on basic 3D translations and
rotations which are be computed very fast using standard algebraic tools. The in-
troduction of function-based geometry deformation is very powerful since it permits
setting complex behaviours to the followers by simply modifying these functions. As
an example of this, the use of priorities in the formation is showed. These functions
can be modified dynamically, an important property that is worthy to explore in the
future.

In general, it is shown that it is possible to decouple a high dimensional path plan-
ning problem into two simpler ones: 3D path planning for one robot and formation
control and coordination for the others. On top of this idea, next chapter proposes
the use of a formation-like modelling of a robotic hand-arm system. To the author’s
knowledge, an adaptation of mobile robots formation control schemes to hand control
was never proposed before. Using this idea, the intrinsic high-dimensional space of
the hand-arm system is simplified so that the path planning phase is performed in 3
dimensions, and the control scheme solves the orientation-related dimensions.

Chapter 3 presents a complete framework for object grasping: starting with how
to model the environment, followed by grasp synthesis and path planning, and ending
with a control scheme for treating a hand-arm system imitating a robot formation,
for simplifying and high-dimensional problem.

5.1. Future Work 115

The use of FM2 determines the need of an occupancy grid to model the envi-
ronment, which then influences the choice of the algorithms used throughout the
framework. When building an occupancy grid, it is important to pay special atten-
tion to the selection of the resolution. A high resolution implies a more accurate
model of the environment, but it comes with larger computation needs in: object
voxelizing, path planning and collision detection.

In order to test the concept, simulations are carried out with Matlab, showing
examples of the use of the robot formation based path planning and control in the
case of both, side and top grasps. Then, test in real on-the-table scenarios have been
performed. Although simple scenarios are used, it is always challenging performing
real world grasping tests. Results of the real tests show that it is possible to perform
grasping actions executed under the robot formation concept presented. However,
it is obviously not a final and perfect solution, with the majority of failures caused
by the errors occurred in the object modelling phase, which are then propagated to
grasp synthesis, path planning and execution.

Finally, chapter 4 an in-hand pose estimation algorithm is proposed to detect the
movement of the object that occurs from the first contact between the hand and the
object, until the moment the grasp becomes stable. In the case further manipulation
actions are required, the final grasp state needs to be known. A Bootstrap particle
filter is proposed for the estimation of the pose of the object inside the hand. The
estimation process is based on the measurements provided by the sensors of the
hand: tactile and proprioceptive information. The measurement model proposed for
the filter is based on a simulation of the position of 3D models of the hand and the
object. Then, a collision detection library is used to compare real measurements with
simulation based ones.

The algorithm is tested in real grasping scenarios. Results show that the main
movements produced can be detected by the estimation scheme. However, the esti-
mation is done in 6D, but the sensors in the hand can only measure movements in
4D. This causes that the estimation in unmeasured axes to have a larger variance.

5.1 Future Work

Nevertheless, the methods proposed have gaps for improvement, therefore some in-
teresting future works are now introduced.

Since the works presented in the first two chapters are based on the Fast Marching
Method, they suffer from the curse of dimensionality. Although its use in this work is
constrained to 3 dimensions, it would be not efficient to use it in the case of very big
environments or the need of a very high resolution. When using grid based models for
the environment, octomaps can be used to reduce the amount of information needed,

116 Chapter 5. General Conclusions

however, the Fast Marching Method is not designed to work with multi-resolution
maps, so an adaptation of this method would be needed.

Dealing with 3D robot formations, future work is also related to getting the simu-
lations as close as possible to the use of real unmanned aerial vehicles. This requires
to include dynamics of the vehicles in use in order to prove that the computed paths
are smooth enough. From the formations point of view, it would be interesting to
test formations in which, for example, the leader is not always in front of the team.
Also, allowing dynamic goals for the formation would be an interesting improvement,
taking into account the maneuvers needed when drastic pose changes are required to
achieve the new goals.

The experimental evaluation using an on-the-table scenario allows for a proof of
the concept of the formation-based control of the hand-arm system, however, in the
case of cluttered environments, the use of the 3D path computed with FM2 might
not be safe enough, since the arm configuration is not included in the computations
and therefore collisions might appear. The use of geometrically constrained path
planning [153] or forcing certain configurations for the elbow joint when solving the
inverse kinematics problem could be possible solutions.

The grasping synthesys method built for chapter 2 can be clearly improved. Re-
sults suggest it would be useful to treat fingertip and power grasps in a different way,
paying special attention to the contact points in fingertip grasping. Similarly, point
cloud modelling requires more sophisticated algorithm to treat the data than the one
used in this thesis.

From the grasping results, two main improvements are suggested. When visible
point clouds are used to model the objects, the grasping selection should be probably
focused on the known parts of the point cloud. Otherwise, inference mechanisms to
improve the point cloud are advised. Also, in the case of using fingertip grasping, it
would be interesting to compute approximate grasp positions and take into account
the local shape around them to avoid slippery of the objects.

In-hand pose estimation is mainly based on joint encoders and pressure sensors
of the hand. While the former are quite robust and have a repetitive performance,
the latter very commonly activate under no contact and their response changes over
time under similar contacts [154]. Therefore, a filtering process is needed after data
gathering. Obviously, an improvement of pressure/contact sensing capabilities would
also be desired. Furthermore, it is obvious that human do not only rely on tactile
information, but it is often fused with visual feedback. I believe fusing these two types
of information is a key factor for a better performance of an in-hand pose estimator,
because in this case, measurement on all the degrees of freedom would be available.
Finally, once the pose estimation is improved, it would be interesting to use it to close
the loop with the grasping system, so that the resulting hand-object configuration is
more stable.

Appendix A

Fast Marching and Path Planning

117

118 Appendix A. Fast Marching and Path Planning

Appendix A.1: Introduction

The Fast Marching Method (FMM) has been extensively applied since it was firstly
proposed in 1995 [155] as a solution to isotropic control problems using first-order
semi-Langragian discretisations on Cartesians grids. Their main field of application
are robotics [6, 156, 157] and computer vision [158], mainly medical image segmenta-
tion [159, 160]. However, it has proven to be useful in many other applications such
as tomography [161] or seismology [162].

The first approach was proposed by Tsitsiklis [155], but the most popular solution
was given few months later by Sethian [43] using first-order upwind-finite differences
in the context of isotropic front propagation. Differences and similarities between
both works can be found in [163].

FMM was originally proposed to simulate a wavefront propagation through a
regular discretisation of the space. However, many different approaches have been
proposed, extending these methods to other discretisations and formulations. For a
more detailed history of Fast Marching methods, interested readers are referred to
[164].

This Appendix introduces FMM, its formulation and its application to path plan-
ning. In particular, next section provides an intuitive explanation to FMM. Then,
section A.3 details the formulation and how to solve the Eikonal equation in n-
dimensions. Section A.4 details the FMM and, finally, section A.5 outlines how the
FMM can be applied to path planning.

Appendix A.2: Introduction to Fast Marching Meth-

ods

The FMM can be intuitively understood considering the expansion of a wave. If a
stone is thrown into a pond a wavefront is originated, and this wave expands with
a circle shape around the point where the stone fell. In this example the fluid is
always water, thus the wave expansion velocity is always the same, and thus the
wavefront is circular. Instead, if this experiment is repeated mixing water and oil,
it would be observed that the wave expands at different speeds in each medium. As
a consequence, the wavefront will not be circular anymore. If another point on the
fluid is considered (a target point), the wavefront will arrive to that point after a
certain time. The path that the wavefront has followed from the origin to the target
point will be the shortest path (in terms of time), considering that the traveling speed
along the path is the expansion velocity of the wavefront (which differs depending
on the fluid). This path can be computed by using gradient descent (following the
direction of maximum change) from any given point. The smoother the variations are

A.2. Introduction to Fast Marching Methods 119

in the wave propagation velocities, the smoother the path will be. T hese concepts are
plotted in figure A.1. In few words , FMM computes the arrival times of the wavefront
from a starting point to all the points of the reachable space.

- Wavefront paths * Wave source point

relat ive veloci ty = 1

Figure A.1: Examples of a wave propagation through media with different velocities.

The FMM is a particular case of Level Set Methods, initially developed by Osher
and Sethian [45]. The FMM assumes that the wave propagation velocity is always
non-negative, and thus the wavefront will never contract. Usually, propagation ve-
locities are defined by the environment or by higher-level algorithmic layers so that
it is easy to satisfy this assumption. Therefore, if only one wave source is used FMM
ensures that the time of arrival map will have only one minimum (both local and
global) at the start point. Section A.5 details how FMM deals when obstacles are
present in the environment.

Many different wave sources can be set. In that case, there will be as many minima
as starting points , each one of them located at these wave sources. An example is
shown in figure A.2 with a 3D interpretation of the arrival t imes represented in the
Z axis.

From a high-level perspective, FMM computes the arrival t ime for one point at
every iteration. This is done efficiently by selecting the non-visited points with lower
value calculated so far. When evaluating a point, its value is increased taking into
account current propagation velocity and only the neighbors with lower times in each
dimension. As velocities are always non-negative current value will be at least as high

120 Appendix A. Fast Marching and Path Planning

(a) One wave source (b) Two wave sources

Figure A.2: 3D representation of the FMM output in a 2D grid. The arrival time is
shown in the Z axis .

as the neighbor with lower value, and thus no local minima can appear. However,
saddle points are possible but they are not a problem as gradient descent (used to
compute the paths) will be able to continue without problems. In this case, it means
that two solution with the same propagation time are possible and which one is chosen
uniquely depends on the gradient descent implementation.

Appendix A.3: Problem Formulation

Formally, FMM is built to solve the nonlinear boundary value problem1. That is,
given a domain X and a velocity field function F : X → R+ which represents the
local speed of the motion, drive a system from a starting set Xs ⊂ X to a goal set
Xgoal ⊂ X through the fastest possible path. The Eikonal equation computes the
minimum time of arrival function T (x) as follows:∣∣∇T (x)

∣∣F (x) = 1, X ⊂ RN

T (x) = 0,x ⊂ Xs
(A.1)

Once solved, T (x) represents a distance (time of arrival) field containing the time
it takes to go from any point x to the closest point in Xs following the velocities on
F (x).

1This problem formulation closely follows [165]

A.3. Problem Formulation 121

It is assumed, without loss of generality, that the domain is a unit hypercube of
N dimensions: X = [0, 1]N . The domain is represented with a rectangular Cartesian
grid X ⊂ RN , containing the discretisations of the functions F (x) and T (x), F and
T respectively. The grid points xij = (xi, yi),xij ∈ X represents the point x = (x, y)
in the space corresponding to a cell (i, j) of the grid (for the 2D case). For notation
simplicity, Tij = T (xij) ≈ T (x), Tij ∈ T , that is, Tij represents an approximation to
the real value of the function T (x). Analogously, Fij = F (xij) ≈ F (x), Fij ∈ F . The
set of Von-Neumann neighbors (4-connectivity in 2D) of grid point xij is denoted as
N (xij). For a general grid of N -dimensions, cells will be referred by their indices (or
keys) i as xi, since a flat representation is more efficient for such datastructure.

A.3.1 n-Dimensional Discrete Eikonal Equation

In this section the most common first-order discretisation of the Eikonal equation is
detailed. There exist many other first-order and higher-order approaches on grids,
meshes and manifolds [166, 167, 168, 169].

The discrete Eikonal equation is derived in 2D for better understanding. The most
common first-order discretisation is given in [45], which uses an upwind-difference
scheme to approximate partial derivatives of T (x) (D±xij represents the one-sided
partial difference operator in direction ±x and ∆x and ∆y are the grid spacing in the
x and y directions):

Tx(x) ≈ D±xij T =
Ti±1,j−Tij

±∆x

Ty(x) ≈ D±yij T =
Ti,j±1−Tij

±∆y

(A.2)

{
max(D−xij T, 0)2 + min(D+x

ij T, 0)2+

max(D−yij T, 0)2 + min(D+y
ij T, 0)2

}
=

1

F 2
ij

(A.3)

Simpler but less accurate solution to equation A.3 is proposed in [170]:{
max(D−xij T,−D+x

ij T, 0)2+

max(D−yij T,−D
+y
ij T, 0)2

}
=

1

F 2
ij

(A.4)

Replacing equation A.2 in equation A.4 and letting

T = Ti,j
Tx = min(Ti−1,j, Ti+1,j)
Ty = min(Ti,j−1, Ti,j+1)

(A.5)

122 Appendix A. Fast Marching and Path Planning

the Eikonal equation can be rewritten for a discrete 2D space as:

max

(
T − Tx

∆x

, 0

)2

+ max

(
T − Ty

∆y

, 0

)2

=
1

F 2
ij

(A.6)

Since it is assumed that the speed of the front is positive (F > 0), T must be
greater than Tx and Ty whenever the front wave has not already visited the point at
coordinates (i, j). Therefore, it is safe to simplify equation A.6 to:

(
T − Tx

∆x

)2

+

(
T − Ty

∆y

)2

=
1

F 2
ij

(A.7)

Equation A.7 is a regular quadratic equation of the form aT 2 + bT + c = 0, where:

a = ∆2
x + ∆2

y

b = −2(∆2
yTx + ∆2

xTy)

c = ∆2
yT

2
x + ∆2

xT
2
y −

∆2
x∆2

y

F 2
ij

(A.8)

In order to simplify the notation for the n-dimensional case, let us assume that
the grid is composed by (hyper)cubic cells, that is, ∆x = ∆y = ∆z = · · · = h. Let us
denote Td as the generalization of Tx or Ty for dimension d, up to N dimensions. F
denotes the propagation velocity for point with coordinates (i, j, k, . . .). Operating
and simplifying terms, the discretisation of the Eikonal is a quadratic equation with
parameters:

a = N

b = −2
N∑
d=1

Td

c = (
N∑
d=1

T 2
d)− h2

F 2

(A.9)

A.3.2 Solving the nD discrete Eikonal equation

Wavefront propagation follows causality. That is, in order to reach a point with
higher time of arrival, it should firstly travel through neighbors of such point with
smaller values. The opposite would imply a jump in time continuity and therefore
the solutions would be erroneous.

The proposed Eikonal solution (quadratic equation with parameters of equation
A.9) does not guarantee the causality of the resulting distance map, as F and h can

A.3. Problem Formulation 123

have arbitrary values. Therefore, before accepting a solution as valid its causality has
to be checked. For instance, in 2D the Eikonal is solved as:

T =
Tx + Ty

2
+

1

2

√
2h2

F 2
−
(
Tx − Ty

)2
(A.10)

called the two-sided update, as both parents Tx and Ty are taken into account. The
solution is only accepted if T ≥ max

(
Tx, Ty

)
. The upwind condition [164] shows that:

T ≥ max
(
Tx, Ty

)
⇐⇒

∣∣Tx − Ty

∣∣ ≤ h

F
(A.11)

If this condition fails, the one-sided update is applied instead:

T = min
(
Tx, Ty

)
+
h

F
(A.12)

This is a top-down approach: the parents are iteratively discarded until a causal
solution is found. To generalize equation A.11 is complex. Therefore, a bottom-up
approach is chosen: equation A.12 is solved and parents are iteratively included until
the time of the next parent is higher than the current solution: Tk > T . The procedure
is detailed in algorithms 2 and 3. The MinTDim() function returns the minimum
time of the neighbors in a given dimension (left and right for dim = 1, bottom and
top for dim = 2, etc.). The experiments found this approach more robust for 3 or
more dimensions with negligible impact on the computational performance.

Algorithm 2 Solve Eikonal equation

1: procedure SolveEikonal(xi, T ,F)
2: a← N
3: for dim = 1 : N do
4: minT ←MinTDim(dim)
5: if minT 6=∞ and minT < Ti then
6: Tvalues.push(minT)
7: else
8: a← a− 1

9: if a = 0 then . Fast Sweeping Method can cause this situation.
10: return ∞
11: Tvalues ← Sort(Tvalues)
12: for dim = 1 : a do
13: T̃i ← SolveNDims(xi, dim, Tvalues,F)

14: if dim = a or T̃i < Tvalues,dim+1 then
15: break
16: return T̃i

124 Appendix A. Fast Marching and Path Planning

Algorithm 3 Solve Eikonal for n dimensions

1: procedure SolveNDims(xi, dim, Tvalues,F)
2: if dim = 1 then
3: return Tvalues,1 + h

Fi

4: sumT ←
dim∑
i=1

Tvalues,i

5: sumT 2 ←
dim∑
i=1

T 2
values,i

6: a← dim
7: b← −2sumT
8: c← sumT 2 − h2

Fi

9: q ← b2 − 4ac
10: if q < 0 then . Non-causal solution
11: return ∞
12: else
13: return −b+sqrt(q)

2a

Appendix A.4: Fast Marching Method

The Fast Marching Method (FMM) [43] is the most common Eikonal solver. It
can be classified as a label-setting, Dijkstra-like algorithm [171]. It uses a first-
order upwind-finite difference scheme to simulate an isotropic front propagation. The
main difference with Dijkstra’s algorithm is the operation carried out on every node.
Dijkstra’s algorithm is designed to work on graphs. Therefore, the value for every
node xi only depends on one parent xj, following the Bellman’s optimality principle
[172]:

Ti = min
xi∈N (xi)

(cij + Tj) (A.13)

In other words, a node xi is connected to the parent xj in its neighborhood N (xi)
which minimizes (or maximizes) the function value (in this case Ti) composed by the
value of Tj plus the addition of the cost of traveling from xj to xi, represented as cij.

The FMM follows Bellman’s optimality principle but the value for every node is
computed following first-order upwind discretisation of the Eikonal equation, which
is described in detail in section A.3. This discretisation takes into account the spa-
tial representation (i.e. a rectangular grid) and the value of all the causal upwind
neighbors. Thus, the time-of-arrival field computed by FMM is more accurate than
Dijkstra’s.

The algorithm labels the cells in three different sets: 1) Frozen: those cells which

A.5. Path planning with the Fast Marching Method 125

value is computed and cannot change, 2) Unknown: cells with no value assigned, to
be evaluated, and 3) Narrow band (or just Narrow): frontier between Frozen and
Unknown containing those cells with a value assigned that can be improved. These
sets are mutually exclusive, that is, a cell cannot belong to more than one of them at
the same time. The implementation of the Narrow set is a critical aspect of FMM. A
detailed discussion on different implementations can be found in [173, 174].

The procedure is detailed in algorithm 4. Initially, all points2 in the grid belong
to the Unknown set with infinite arrival time. The initial points (wave sources) are
assigned a value 0 and introduced in Frozen (lines 2-7). Then, the main FMM loop
starts by choosing the element with minimum arrival time from Narrow (line 9). All
its non-Frozen neighbors are evaluated: for each of them the Eikonal is solved and
the new arrival time value is kept if it is improved. In case the cell is in Unknown, it is
transferred to Narrow (lines 10-16). Finally, the previously chosen point from Narrow

is transferred to Frozen (lines 17 and 18) and a new iteration starts until the Narrow

set is empty. The arrival times map T is returned as the result of the procedure.

Appendix A.5: Path planning with the Fast March-

ing Method

Analyzing the FMM formulation given in section A.3, it can be seen that there are
many common components with the path planning problem formulation detailed by
LaValle in [81]. Therefore, it is possible to solve the path planning method with
FMM.

The configuration space X corresponds with the domain X of the FMM (reason
why they are named the same). Xobs corresponds to the subset of X and represents
those points in the space in which the wave cannot propagate. Although theoretically
obstacles and zero-velocity cells are different, in practice they are treated the same as
they output the same infinite value as the wave never reach such point. Consequently,
Xfree contains the rest of the cells.

For path planning, it is assumed that a Xgoal ⊂ Xfree occupies at least one cell of
the configuration space discretisation. In other words, a well-behaved goal set will be
in practice at least of the size of a cell. Analogously, the start set Xs ⊂ Xfree is also
represented by at least one cell.

In order to compute the path, the wave is propagated from Xs to Xgoal, obtaining
a time-of-arrival map T . Applying gradient descent over T from Xgoal, it is satisfied
that σ(1) ∈ cl(Xgoal). Gradient descent will compute the path to the unique minimum
of T and therefore σ(0) = Xs. In terms of implementation, this will actually return
the path inverted, as its waypoints will travel from Xgoal to Xs. Thus the wave is

2From now on, point, cell or node will indistinctly used to refer to each element of the grid.

126 Appendix A. Fast Marching and Path Planning

Algorithm 4 Fast Marching Method

1: procedure FMM(X , T ,F ,Xs)
Initialization:

2: Unknown← X , Narrow← ∅, Frozen← ∅
3: Ti ←∞ ∀xi ∈ X
4: for xi ∈ Xs do
5: Ti ← 0
6: Unknown← Unknown\{xi}
7: Narrow← Narrow ∪ {xi}

Propagation:
8: while Narrow 6= ∅ do
9: xmin ← arg minxi∈Narrow {Ti} . Narrow top operation.
10: for xi ∈ (N (xmin) ∩ X\Frozen) do . For all neighbors not in Frozen.

11: T̃i ← SolveEikonal(xi, T ,F)

12: if T̃i < Ti then
13: Ti ← T̃i . Narrow increase operation if xi ∈ Narrow.

14: if xi ∈ Unknown then . Narrow push operation.
15: Narrow← Narrow ∪ {xi}
16: Unknown← Unknown\{xi}
17: Narrow← Narrow\{xmin} . Narrow pop operation: add to Frozen.
18: Frozen← Frozen ∪ {xmin}
19: return T

A.5. Path planning with the Fast Marching Method 127

often propagated from Xgoal or the path is inverted. However, this has no effect in
the path, as isotropic FMM are being considered.

Regarding optimality, the cost function is defined as c = T . That is, the time of
arrival of each cell actually represents its cost from the start point. FMM guarantees
that the path returned by gradient descent are optimal, as every cell has the lowest
possible value Ti assigned, and therefore there is not better alternative to reach that
cell.

Concretely, the maximum gradient direction is computed applying the Sobel op-
erator over the grid map.

gradx =

−1 0 1
−2 0 2
−1 0 1

 ? T grady =

 1 2 1
0 0 0
−1 −2 −1

 ? T (A.14)

For tracing the path between the initial and the goal points the maximum gradi-
ent direction has to be follown starting at the initial point. The path is computed
iteratively. gradix and gradiy are computed at every point pi. From pi is computed
pi+1 (equation A.15) successively until the minimum is reached. The step size (step)
is user-defined. Thus one advantage of FMM is that the extracted paths have a large
number of points, a useful feature when implementing path following on a real robot.
As the goal point is located at the global minima it is always reached (whenever there
is path).

modi =
√
grad2

ix + grad2
iy

alphai = arctan(
gradiy
gradix

)

p(i+1)x = pix + step · cos(alphai)
p(i+1)y = piy + step · sin(alphai)

(A.15)

Figure A.3 shows an example of a path planning problem solved with FMM in
2D. The velocity map F is a binary map: every cell in Xfree has velocity 1 (white)
and Xobs is represented with cells with zero velocity (black). Usually, obstacles are
dilated in order to provide minimum safety guarantees, but this is very application
dependent.

128 Appendix A. Fast Marching and Path Planning

Time-of-arrival map

ir _,
/'A~ ... 1

r, i
1 r-

0 I- Path X Start X Goal I
Figure A.3: Example of a path planning problem solved with Fast Marching.

The main drawbacks of Fast Marching-based planning methods are: 1) robot
dimensions are not explicitly taken into account, and 2) kinematic constraints are
not taken into account. 1) is partially solved in practice by obstacle dilation as shown
in figure A.3. Sometimes, if enough computation resources are available, the obstacle
set in the grid already takes the shape of the robot into account, commonly by using
the maximum radius of the robot projection on the ground or by including a third
dimension to the configuration space in order to represent the yaw (heading angle) of
the robot. However, 2) is still an open issue. Some approaches to include kinodynamic
constraints have been proposed. For instance, [175] uses a two-step approach which
first computes a geodesic-based path initialization (Fast Marching can be thought as a
geodesic finder) and then an optimization procedure based on Bezier curves is applied
to satisfy robot's kinodynamic constraints. Or [176] which samples the space mixing a
wavefront-propagation schema and forward-simulation of the system's kinematics and
dynamics. However , these approaches represent a mixture of problems and further
testing is required before using them in real robotic applications.

Appendix B

Experimental Platforms

129

131

The experimental platform ManfredV2, fully developed at the Robotics Lab of
the Carlos III University of Madrid, is presented in this appendix. Most of this
information and figures have been taken from the work by Álvarez [177].

The mobile robot ManfredV2 is a mobile manipulator whose purpose is to serve
as experimental platform for R&D in the mobile robots area.

One of the main objectives of this research is to build an autonomous robot for an
indoor office area. In other words, ManfredV2 must be able to navigate autonomously
in an environment typically composed of a corridor and offices. For example, one
specific task that the robot must perform is to move from one room to another by
opening a door.

This robot has been built because it is necessary to have an experimental platform
with a robust and reliable hardware that allows researchers to focus on the real
problem: the implementation of an artificial intelligence that allows the robot to be
autonomous and perform multiple tasks.

The robot design is inspired by planetary rovers and communications satellites.
These systems are composed of several subsystems that need to be interconnected
to make the whole system work. These subsystems are: onboard computer, power
distribution system, sensors, drive system, etc. More instruments to explore the
surroundings, such as articulated arms, can also be implemented depending on its
application, but it is necessary to distinguish between the mobile platform and the
inserted accessories. One important characteristic is that the subsystems are designed
as independent units or boxes that are interconnected to each other by an internal
wiring.

Summarising, the design of ManfredV2 is based on independent units that are in-
terconnected to each other by using electric and mechanical interfaces. This modular
concept facilitates the integration, repair, and future expansion of the robot.

ManfredV2 is presented in figure B.1. It has eight DOFs, divided in a differential-
type mobile base with two DOFs and ananthropomorphic light arm with six DOFs.
It is able to perform several tasks such as: opening and passing through doors, ob-
stacle avoidance, and picking up and manipulating objects. In order to do that, the
robot needs all the basic capabilities to move safely and independently around the
environment, motor coordination between the base and manipulator, and sensory
coordination to manipulate objects.

As it was previously said in this appendix, any robotic system consists of a set
of subsystems that enable (through networking) meeting the objectives for which it
was designed. These modules use the environment information to generate data that
is used to develop the movement skills in the robot’s base and the robotic arm. The
main components of the systems that constitute the mobile manipulator are described
in the following sections.

132 Appendix B. Experimental Platforms

Figure B.1: ManfredV2, mobile manipulator with robotic arm.

Appendix B.1: Mechanical Design - Robot Struc-

ture

The design of the mobile robot must meet the following specifications: high mobility,
mechanical and electrical robustness, high repeatability in its movements, and easy
integration and repairing (modular concept).

A brief description of the mechanical design of ManfredV2 and a breakdown of
the most important elements are given in this section. The mechanical design of the
robot’s base is also based on the robustness and reliability that must satisfy the robot
when it is performing a task. It is crucial that the robot movement does not cause
instability or inaccuracy.

B.1. Mechanical Design - Robot Structure 133

The base has also been designed following a modular philosophy which has two
important advantages: it is easy to access to all elements of the mobile robot, and
the change of elements due to repairs or improvements is immediate.

The general design also focuses on the improvement of the structure rigidity.
The force distribution is more balanced than the distribution of the previous version
(ManfredV2). The location of the base elements has been optimized in order to
counterbalance when the robotic arm is executing critical tasks, which means that
the distribution of the elements in the robot’s base gives stability to the mobile robot.

Some mechanical characteristics and their associated advantages are given below.
Some of them are compared to the previous version of the mobile robot.

• When the arm is at rest, it does not collide neither interfere with the base. If
the system runs out of power, the arm can fall freely without damage to itself
or to the base.

• The gravity centre of the base has been moved closer to the ground. This implies
an improvement in the stability.

• The main mast has been extended to the bottom plate and more columns have
been placed between the plates. These changes give more rigidity to the system.

• It has independent carcasses that are easy to remove and place. It is easier to
access to any component of the mobile robot.

• An internal communication system from the mast to the bottom plate has been
designed. This system is simple and facilitates the changes or incorporation of
new elements.

• All switches, buttons, and safety mushrooms are located in a single panel. This
allows an easy and fast access to each element of the control and security sys-
tems.

• A second robotic arm that will be added to the robot has been taken into
account, trying to make its future implementation as simple as possible.

• A height adjustment system for the drive wheels has been designed. This allows
an accurate calibration.

The robot’s weight and the weight of each one of its components are shown in
table B.1. It is important to remark that most of the weight is concentrated in the
bottom part, which benefits the stability.

ManfredV2 is formed by a metal structure that can integrate all the components
needed for operation (figure B.2). It can be divided into three parts:

134 Appendix B. Experimental Platforms

Table B.1: ManfredV2’s weight.
Element Unit weight (kg) Total weight (kg)
Batteries 15.40 61.60
Aluminum structure 29.00 29.00
Drivers 0.68 5.44
Computer 5.00 5.00
Electronic devices 2.75 2.75
DC-DC Converters 2.00 2.00
Carcasses 2.50 2.50
Caster wheels 0.42 1.26
Drive wheels 7.00 14.00
Wiring 6.00 6.00

Total 129.55

Figure B.2: ManfredV2, lateral view.

• Mobile base:

The robot’s base is composed of two steel platforms with a diameter of 61 cm

B.1. Mechanical Design - Robot Structure 135

Figure B.3: Power supply system.

and a height around 65 cm. It is equipped with wheels that allow movement.
The battery system that generates the power to operate autonomously is also
stored in the base.

The motion system is included in the base. It has five wheels: three of them are
support wheels to improve the stability and facilitate the movement, and the
other two are drive wheels with brushless motors and their corresponding servo-
amplifiers. The drive wheels generate a differential displacement that allows the
robot to turn around its axis.

The power supply system that gives autonomy to the robot consists of batteries
that are located in the base. There are four batteries of 12 V connected in series
that provide a voltage of 48 V. The selected batteries are Power-Sonic PS-12450
B (figure B.3), which provide an output voltage of 12 V and a capacity of 45
Ah.

In addition, as a security system, the robot has a monitoring system through a
PIC16F818 microcontroller that measures the voltage provided by the batteries
and the current flowing through them. This system can continuously commu-
nicate the power status to the control computer, as well as stopping the motors
in a controlled way in case of low voltage or too high current.

• Body:

136 Appendix B. Experimental Platforms

An structure that forms the robot body and holds multiple components has been
mounted on the base. The body contains all the wiring for connecting several
subsystems: arm to computer, power from battery to motors, and external
sensors. It has also the servo amplifiers associated with the arm.

This structure serves as dock for the robotic arm, the laser sensor, and the
computer vision cameras. The onboard computer that is responsible for add
intelligence to the robot is also inside this part of the robot. This computer
has the PMAC2-PCI card installed, which is a controller card that can control
jointly the eight DOFs corresponding to the base and the manipulator arm.

• Robotic arm:

The manipulator arm LWR-UC3M-1 is an essential element of the robot. It is
composed of rigid elements connected by revolution joints. Each joint gives an
additional DOF to the robot. The total number of DOFs is six for the arm. It
has been designed to provide a remarkable flexibility to perform manipulation
tasks (grasping and and movement of objects) by combining the available DOFs.

The robotic arm that is presented in figure B.4 has been fully developed by the
Robotics Lab of the Carlos III University of Madrid. Its main characteristics
are:

1. Kinematic redundancy similar to the human arm.

2. Weight: 18 kg.

3. Maximum load capacity: 4.5 kg at the end of the arm.

4. Load/weight ratio: between 1 : 3 and 1 : 4.

5. Range: around 955 mm.

The developed arm is mounted on the lateral side of the mobile robot in such a
way that the computer vision and the laser telemetry systems are not obstructed
by the arm. The arm joints are composed of DC brushless motors and Harmonic
Drives that reduce the speed and increase the torque.

Since the installed encoders obtain relative information (they provide informa-
tion about the motor current position with respect to an initial or home posi-
tion), an initial home function must be executed in order to fix the robotic arm
initial position. This facilitates the conversion between relative and absolute
positions. This function has been designed using the programming language
of the PMAC2-PCI. It establishes that the initial position of the robotic arm
is that one in which it is pointing straight to the ground. This position has
been chosen because it requires a low energy consumption because most of the
engines are not doing any work.

B.1. Mechanical Design - Robot Structure 137

Figure B.4: LWR-UC3M-1(robotic arm).

• End-effector: Gifu Hand III

138 Appendix B. Experimental Platforms

Gifu Hand III consists of a thumb and four fingers. The thumb and fingers are
articulated at each joint and can move independently. The thumb has four joints
with four DOFs, and each of the fingers has four joints with 3-DOFs. The fourth
joint is linked to the their third one via a planar four-bar linkage mechanism,
which generates 1:1 movement. Thus one hand contains a total number of
twenty joints, encompassing 16-DOFs. These functions closely approximate to
the motion of a human hand.

Figure B.5 shows the workspaces of the fingers and the thumb. One of the most
important characteristics of the hand is the high degree of opposability of the
thumb. This means that the workspace of the thumb is highly overlapped with
the workspaces of the fingers, making it suitable for object manipulation [108].

Figure B.5: Virtual workspaces of the fingers (green) and the thumb (red) in frontal
and lateral view.

The structure of the hand is made of aluminium and the motors are built-in
the mechanical design. The total weight of the hand is 1.40kg. It also includes
relative encoders in each of the joints. The hand is powered by an external
power box which also provides current measurements for indirect force control.
Both the hand and the control box can be seen in figure B.6.

Appendix B.2: Sensory System

The sensory system can transform the physical variables that characterize the environ-
ment into a data set that will be processed by other modules, such as the localization
system, the security system, and the motion planner, in order to increase the robot
intelligence and be able to execute certain tasks. This information will be provided
by the robot’s sensory system, which consists of the following elements:

B.2. Sensory System 139

Figure B.6: Gifu Hand III and its control and power supply box.

• Laser telemetry subsystem:

Its aim is to provide the robot with information about its surrounding environ-
ment by measuring the distance to objects. This information is primarily used
in navigation and localization in order to model the workspace.

It is possible to use 2D or 3D data depending on the task characteristics and
the complexity and degree of occupancy of the workspace.

This subsystem is composed of the following laser range finders:

1. Hokuyo UTM-30LX with 270 opening degrees (figure B.7) located in the
rear of the vehicle. It has a detection range that varies from 100 mm to 30 m
and a 25 ms period. Its angular resolution is equal to 0.25◦. It is connected
to the computer through a USB2.0 interface. Its power consumption is 700
mA and 12 V, which makes it suitable for battery-powered systems such
as ManfredV2.

2. SICK PLS with 180 opening degrees (figure B.8). The original measure-
ments are 2D, but we have added a motor that lets it rotate up and down
(±45◦), being able to obtain 3D measurements (it can also be observed in
the figure). The technical characteristics are summarized in table B.2.

The 2D telemetry (horizontal plane parallel to the ground) can be used
during navigation around environments with few obstacles to safe compu-
tational time.

This sensor records 361 measurements in a planar sweep with medium
resolution (separation between measurements equal to 0.5◦). The SICK

140 Appendix B. Experimental Platforms

Figure B.7: Hokuyo UTM-30LX (laser range finder).

Figure B.8: SICK PLS (laser range finder) .

PLS measurement error is lower than 20 mm. This error is influenced by
two parameters: the measuring distance and the angle of the laser beam
shot (from 0° to 180°).

• Computer vision subsystem:

This subsystem helps in the manipulation of objects in 3D environments, which
is one of the abilities of ManfredV2. In order to do this, it is necessary to
recognise the object to be manipulated, estimate its position and orientation
relative to the mobile manipulator, and determine the grasping point. It also
facilitates other tasks, such as opening doors, navigation, and localization.

B.2. Sensory System 141

Table B.2: SICK PLS technical characteristics.

Maximum range 80 m
Angular resolution 0.25◦ - 0.5◦ - 1◦ (variable)
Time response 26 ms
Distance resolution 10 mm
Transfer rate 500 kbaud
Power requirements 24 V - 6 A

Figure B.9: Colour cameras. Left: SONY EVI-D100. Right: SONY B/N XC-
ES50CE.

The computer vision subsystem is composed of the following elements:

1. Colour camera: SONY EVI-D100 (figure B.9). This camera is employed
to recognise objects and estimate their positions relative to the robot. It
is located in the front of the mobile robot body.

2. Colour camera: SONY B/N XC-ES50CE (figure B.9). This is a mini-
camera that is situated on the wrist of the robotic arm. It is used in
manipulation tasks when the extreme of the arm is close to the object to
be manipulated and the field of vision of the other camera is obstructed
by the arm.

3. Time-of-flight camera (Kinect): the robot also incorporates a camera with
time-of-flight technology (figure B.10) that obtains a 3D image composed
of an array of distances to different objects and colour information. This
information can be fused with the data of the other cameras in order to
improve the manipulation capabilities.

142 Appendix B. Experimental Platforms

Figure B.10: Time-of-flight camera: Kinect.

Figure B.11: JR3 67M25A-U560 (force/torque sensor).

• Force/torque sensor:

ManfredV2 has a JR3 force/torque sensor (model 67M25A-U560, figure B.11)
at the end of the robotic arm. Its purpose is to interact with the environment
in manipulation tasks. This sensor is situated between the end of the arm and
the clamp or terminal element.

This device has the following features:

- Maximum load capacity: 11 kg.

- Weight: 175 gr.

- Maximum operating frequency: 8 kHz.

The JR3 sensor provides force and torque data in three axes that can be used in
the force control loop of the mobile manipulator. It is based on a strain gauge
system and a Digital Signal Processor (DSP) acquisition system that allow
measurements with high bandwidth and signal-noise ratio. The main purpose
of this sensor is to perform manipulation tasks based on force or torque control,
such as opening doors , pulsation of switches, manipulating objects , etc.

• Motion sensors:

B.3. Control System 143

Figure B.12: PMAC2-PCI (controller card).

The main function of these sensors is to obtain information about the robot
location and the arm posture. This information is obtained by encoders that
are mainly coupled to the rotation axes of the motors. The relative or absolute
position of each motor is computed by using this information. The motion
sensors are high-resolution optical encoders of the HP company with reference
HEDS550.

These motion sensors are complemented by inductive sensors that perform an
initial routine that is usually named as home in order to establish the absolute
position of each joint of the arm. This routine improves the safety and minimizes
the power consumption. The inductive sensors have a diameter equal to 3 mm
and a detection distance equal to 1 mm. Their basic principle is based on the
inductive detection of ferromagnetic materials by flux variation caused by their
presence near the sensor’s detection area.

Appendix B.3: Control System

ManfredV2 has eight different motors to move its base (2) and its robotic arm (6). It
is necessary to have a continuous control of these engines when the robot is navigating
or it is moving its arm. This control is carried out by the PMAC2-PCI controller card
(figure B.12).

The PMAC2-PCI is a Programmable Multi-Axis Controller card developed by

144 Appendix B. Experimental Platforms

Figure B.13: ACC-8E. Interface between the PMAC2-PCI and the devices.

Delta Tau Data Systems1. It is a high performance device that can simultaneously
control up to eight axes with high precision. It has a high performance/price ratio,
with more than 1000 configuration variables and the high computing capacity of its
DSP. The DSP that is incorporated in the PMAC2-PCI is the DSP56002 of 24 bits
and operation frequency of 40 MHz.

This card offers multiple ways to control the motors. However, it has not been
designed to be connected directly to the devices. There is a set of additional cards
that can be used as interfaces . These cards are also offered by Delta Tau Data
Systems.

In the case of ManfredV2, the additional card is the ACC-8E (figure B.13). Since
each card can interact with two motors, it is necessary to implement four of them.
Each ACC-8E card is connected to the PMAC2-PCI through a 100-pin bus that
is called JMACH. Each ACC-8E card has four 18-bit Digital-to-Analog Converters
(DAC) that command two analog input drivers and must be fed with 15 V. It has also
two inputs to read the encoders and five inputs per axis that capture different types
of events: error signal, home signal (starting position), motor limits (two signals),
and user-defined signal (external events for a specific application).

The configuration of the PMAC2-PCI is a very laborious and tough task. There
are two available manuals, the “Software reference manual” and the “PMAC2 user
manual”, together with a program provided by the manufacturer, the “PEWIN32
PRO”, which runs under Windows. This software offers a set of tools to modify all
the configuration parameters of the PMAC2-PCI. Some of these tools are:

1. Terminal: it sends commands to the card in ASCII coding.

2. Watch window: it is a window where it is possible to view the variable values
in real time.

1http://www.deltatau.com

B.4. Software 145

3. Tunning Pro: it configures the PMAC2-PCI parameters, such as: PID con-
trollers, filters, DAC calibration, and so on.

4. Position window: it displays the position of the motors, in counts of encoder,
and also their speed and tracking errors.

Finally, the controller card allows different types of programs:

• Motion programs: the most common task of the controller card is to move
the motors according to a particular sequence of commands. These programs
are executed line by line by the controller card. They are called by a specific
command and, after that, they are executed once. It is possible to make a call
to another program or terminal commands. The controller card can store and
execute up to 256 motion programs.

• Programmable Logic Controller (PLC): the PLC programs exist because there
are some programs that must be executed continuously. For example, there is
a PLC program that computes the robot’s position given the encoders informa-
tion. These programs are written in the same way that the motion programs,
except that they are defined as PLC in their title. They are called and executed
in each cycle of the controller card.

• Motion commands: it is possible to send motion commands to the PMAC2-PCI
through the terminal. They are simple commands that allow the motion of each
motor. These commands were initially implemented to test the controller card,
but they can perform simple movements in a motion program.

Appendix B.4: Software

B.4.1 MATLAB

MATLAB (abbreviation of MATrix LABoratory)2 is a numerical computing environ-
ment developed by MathWorks. It is oriented to projects that imply high computation
resources and graphical display. It allows multiple actions, such as: manipulation of
matrix and vectors, handling and plotting of functions and data, implementation of
algorithms, creation of graphical interfaces, and interfacing with programs in other
languages (C, C++, Java, and Fortran).

One additional advantage of this tool is that it is very easy to learn, not being
necessary to study a new language because the solutions are expressed by an easy
syntax (similar to C).

2More information can be found in http://www.mathworks.es/products/matlab/.

146 Appendix B. Experimental Platforms

MATLAB includes a wide range of pre-built functions called “toolboxes”. These
toolboxes perform multiple operations of multiple areas of engineering and simulation,
such as: signal processing, control, statistics, financial analysis, symbolic mathemat-
ics, neural networks, fuzzy logic, system identification, dynamic systems simulation,
and so on. An additional package called “Simulink” offers a graphical interface for
these toolboxes. It allows the simulation of dynamic models.

This tool is widespread in engineering, science, and economics. It has been re-
ported that it had around one million users in 2004. It is also widely used in academic
and research institutions.

All these features make MATLAB a suitable tool to be used for our purposes. All
the algorithms developed in this work have been implemented in MATLAB.

B.4.2 ROS

ROS (Robot Operating System)3 is an open source operating system for robotic
platforms formerly developed by Willow Garage. Nowadays it is maintained and
improved by the Open Source Robotics Foundation. As it is said in its website, ’it
provides libraries and tools to help software developers create robot applications. It
provides hardware abstraction, device drivers, libraries, visualizers, message-passing,
package management, and more. ROS is licensed under an open source, BSD license
(Berkeley Software Distribution, family of permissive free software licenses)’.

ROS is based on a set of processes or nodes that are individually executed and
linked by a communication infrastructure provided by ROS. This communication
can be synchronous (client-server) or asynchronous (continuous data sending). The
different data can be grouped into packages that are shared allowing a distributed
collaboration.

The most remarkable characteristics are the following: light and easy to integrate
with other systems(outside modules such as: OpenRAVE, Orocos, Gazebo and Player
have been integrated in the ROS framework), programming language independent (it
can be implemented in the most common languages, such as C++ and Python), easy
error correction (because it has a testing unit), and appropriate in big systems with
multiple modules.

It currently only works with Unix-based platforms. It has been extensively tested
on Ubuntu (operating system of ManfredV2). Most of the software in ManfredV2 has
been implemented using the ROS framework. All modules developed for the robot
must follow its guidelines.

3More information can be found in http://www.ros.org/wiki/.

B.5. ReFlex TakkTile Hand 147

Appendix B.5: ReFlex TakkTile Hand

Since the work presented in chapter 4 has been developed in colaboration with the
Insitute of Robotics and Mechatronich of the German Aerospace Centre (DLR), a
different robotic platform, ReFlex TakkTile Hand, has been used. Next, a detailed
description of the hardware is presented:

B.5.1 Mechanical System

The ReFlex hand consists of three modular finger assemblies and a central chassis
assembly that includes all actuators, the preshape transmission, the palm electronics,
and the interface electronics. The fingers are mechanically and electrically inter-
changeable so they can be easily replaced or upgraded. On the left of figure B.14,
the hand is lying on its palm without the electronics cover. On the right, the outer
appearance of the Reflex TakkTile Hand.

Figure B.14: Electromechanical system of Reflex TakkTile Hand.

There are two transmission systems in the ReFlex hand, the preshape and spool
transmissions. For the preshape joints, a flat enclosed gear train is driven to spin two
fingers at the same time.

The fingers are driven by a tendon and spool system. Each finger has a Spectra
tendon running down the back, which is wrapped and secured around a pulley on
the motor. This pulley can be easily be removed and reattached when installing or
rethreading tendons. The tendon cable sometimes stretches over time but can be
easily recalibrated. The tendon passes directly from the back of finger down through
the knuckle to where it meets the spool, cutting down on both friction and tendon
wear over time.

148 Appendix B. Experimental Platforms

The ReFlex hand uses the Robotis Dynamixel MX-28T high-performance servo-
motor for all 4 actuators. In addition to providing servo capabilities, Dynamixels
will report back speed, position, torque, temperature, and voltage data, which can
be accessed through the ReFlex interface.

In order to allow better cooling of the dynamixel motors, we’ve removed the back
plate. If you remove them from the chassis, be careful to avoid pulling the motor
apart and scattering the gear train.

B.5.2 Degrees of freedom

Each finger is controlled by a single actuator that drives a tendon spanning both the
proximal and distal joint. This allows the fingers to passively shape themselves to the
shape of the object. Note that the distal joint does not actuate until the proximal
phalange encounters an obstacle. A fourth actuator controls a coupled preshape
degree of freedom, for a total of seven joints including the fingers.

The proximal revolute joint connects the proximal link to the knuckles, and rotates
around the knuckle axle. The range goes from 0 radians (finger flat and fully open)
to nearly π radians, when fully closed and resting against the palm. The angle of the
proximal joint is directly measured by a 14-bit magnetic hall effect encoder in the
knuckle. The distal flexure joint connects the distal link to the proximal link, and
flexes around the cast urethane joint. The range goes from 0 radians (finger flat and
fully open) to nearly 7π/8 radians when fully closed and resting against the proximal
link. The distal joint cannot be commanded directly because it is coupled to the
proximal joint. The angle of the distal joint is calculated from the difference between
the tendon spool encoder and the proximal joint encoder, and is less accurate than the
proximal joint measurement because of that. The limits of the proximal and distal
joints of the hand are represented in figure B.15.

The preshape joint changes the angle of the two fingers that are located in the
same side of the palmand the are directly coupled together. The fingers can be closed
(0 radians, aligned with the opposite finger) or opened (π/2 radians, perpendicular to
the opposite finger) according to the type of object to be gripped. Both configurations
can be seen in figure B.16.

B.5. ReFlex TakkTile Hand 149

Figure B.15: Angular limits of the joints of the fingers of Reflex TakkTile Hand.

Figure B.16: Angular limits of the preshape joint of Reflex TakkTile Hand.

150 Appendix B. Experimental Platforms

B.5.3 Sensors

The ReFlex hand has thirty-eight MEMS barometer pressure sensors built into it,
which are both sensitive and robust. Each finger has nine sensors, five in the proximal
link and four in the distal link, including 1 in the fingertip which points along the
length of the finger, as can be appreciated in figure B.17.

Figure B.17: Pressure sensors configuration along a finger.

Bibliography

[1] S. Kadhim, D. Blanco and L. Moreno, “MANFRED: Robot antropomórfico de
servicio fiable y seguro para operar en entornos humanos,” Revista Iberoameri-
cana de Ingenieŕıa Mecánica, vol. 9, no. 3, pp. 33–48, 2005.

[2] T. Mouri and H. Kawasaki, “A Novel Anthropomorphic Robot Hand and its
Master Slave System,” InTech, 2007.

[3] F. Mart́ın, S. Garrido, D. Blanco and L. Moreno, “High-Accuracy Global Lo-
calization Filter for Three-Dimensional Environments,” Robotica, vol. 30, no. 3,
pp. 363–378, 2012.

[4] F. Mart́ın, L. Moreno, S. Garrido and D. Blanco, “Kullback-Leibler Divergence-
Based Differential Evolution Markov Chain Filter for Global Localization of Mo-
bile Robots,” Sensors, vol. 15, pp. 23431–23458, 2015.

[5] A. Valero-Gómez, J. Gómez, S. Garrido and L. Moreno, “The Path to Efficiency:
Fast Marching Method for Safer, More Efficient Mobile Robot Trajectories,”
IEEE Robotics and Automation Magazine, vol. 20, no. 4, pp. 111–120, 2013.

[6] J. V. Gómez, “Advanced Applications of the Fast Marching Square Planning
Method,” Master’s thesis, Carlos III University, 2012.

[7] S. Garrido, L. Moreno, M. Abderrahim and D. Blanco, “FM2: A Real-time
Sensor-based Feedback Controller for Mobile Robots,” IEEE Transactions on
Automatic Control, vol. 24, no. 1, pp. 3169–3192, 2009.

[8] M. Muñoz, S. Garrido, D. Blanco and L. Moreno, “Sensor-based global planning
for mobile robot navigation,” Robotica, vol. 25, no. 2, pp. 189–199, 2007.

[9] N. Burrus, J. Bueno, M. Abderrahim and L. Moreno, “Histograms of oriented
gradients for human detection,” in IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, vol. 1, pp. 886–893, 2010.

151

152 Bibliography

[10] J. Bueno, M. González-Fierro, L. Moreno and C. Balaguer, “Distinguishing be-
tween Similar Objects based on Geometrical Features in 3D Perception,” 2013.

[11] C. A. Arismendi, D. Álvarez, S. Garrido and L. Moreno, “Adaptive evolving
strategy for dextrous robotic manipulation,” Evolving Systems, vol. 2, no. 1,
pp. 65–72, 2013.

[12] J. V. Gómez, D. Álvarez, S. Garrido and L. Moreno, “Fast Marching-based
globally stable motion learning,” Soft Computing, pp. 1 – 14, 2015.

[13] K. Pauwels and D. Kragic, “SimTrack: A Simulation-based Framework for Scal-
able Real-time Object Pose Detection and Tracking,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1300–1307, 2015.

[14] E. Marchand, F. Spindler and F. Chaumette, “ViSP for visual servoing: a generic
software platform with a wide class of robot control skills,” IEEE Robotics and
Automation Magazine, vol. 12, pp. 40–52, December 2005.

[15] J. Rosell, R. Suárez, C. Rosales and A. Pérez, “Autonomous motion planning
of a hand-arm robotic system based on captured human-like hand postures,”
Autonomous Robots, vol. 31, no. 1, pp. 87–102, 2011.

[16] S. Garrido, L. Moreno, J. V. Gómez and P. Lima, “General Path Planning
Methodology for Leader-Followers based Robot Formations,” International Jour-
nal of Advanced Robotic Systems, vol. 10, no. 64, pp. 1–10, 2012.

[17] J. V. Gómez, A. Lumbier, S. Garrido and L. Moreno, “Planning Robot Forma-
tions with Fast Marching Square including Uncertainty Conditions,” Robotics
and Autonomous Systems, vol. 61, no. 2, pp. 137–152, 2012.

[18] M. Martin, P. Klupar, S. Kilberg and J. Winter, “TechSat 21 and Revolution-
izing Space Missions Using Microsatellites,” in Proceedings of the AIAA/USU
Conference on Small Satellites, 2001.

[19] A. Dewan, A. Mahendran, N. Soni and K. Krishna, “Heterogeneous UGV-MAV
exploration using integer programming,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 4144–4149, 2013.

[20] S. Hauert, J. Zufferey and D. Floreano, “Reverse-engineering of Artificially
Evolved Controllers for Swarms of Robots,” in IEEE Congress on Evolution-
ary Computation, pp. 55–61, 2009.

[21] J. Acevedo, B. Arrue, I. Maza and A. Ollero, “Cooperative Large Area Surveil-
lance with a Team of Aerial Mobile Robots for Long Endurance Missions,” Jour-
nal of Intelligent and Robotic System, vol. 70, no. 1–4, pp. 329–345, 2013.

Bibliography 153

[22] M. Likhachev, J. Keller, V. Kumar, V. Dobrokhodov, K. Jones, W. J. and
I. Kaminer, “Planning for Opportunistic Surveillance with Multiple Robots,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 5750–5757, 2013.

[23] S. Bouabdallah, Design and Control of Quadrotors with Applicationto Au-
tonomous Flying. PhD thesis, Feb 2007.

[24] S. Hrabar, “Reactive Obstacle Avoidance for Rotorcraft UAVs,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 4967–4974,
2011.

[25] S. Shen, N. Michael and V. Kumar, “3D Estimation and Control for Autonomous
Flight with Constrained Computation,” in Proceedings of the IEEE Conference
on Robotics and Automation, 2011.

[26] T. Hino, “Simple Formation Control Scheme Tolerant to Communication Failures
for Small Unmanned Air Vehicles,” in Congress of the Aeronautical Sciences,
no. 6.4.4, 2010.

[27] T. Balch and R. C. Arkin, “Behavior-based Formation Control for Multirobot
Systems,” IEEE Transactions on Robotics and Automation, vol. 14, no. 12,
pp. 926–939, 1998.

[28] D. Naffin and G. Sukhatme, “Negotiated Formations,” in Proceedings of the
IEEE Conference on Robotics and Automation, pp. 181–190, 2004.

[29] J. Fredslund and M. Matari, “A general algorithm for robot formations using
local sensing and minimal communication,” IEEE Transactions on Robotics and
Automation, vol. 18, no. 5, pp. 837–846, 2002.

[30] M. Lemay, F. Michaud, D. Létourneau and J. Valin, “Autonomous Initialization
of Robot Formations,” in Proceedings of the IEEE Conference on Robotics and
Automation, vol. 3, pp. 3018–3023, 2004.

[31] P. Ogren, M. Egerstedt and X. Hu, “A control Lyapunov function approach
to multiagent coordination,” IEEE Transactions on Robotics and Automation,
vol. 18, no. 5, pp. 847–851, 2002.

[32] M. Zhang, Y. Shen, Q. Wang and Y. Wang, “Dynamic artificial potential field
based multi-robot formation control,” in IEEE Instrumentation and Measure-
ment Technology Conference, pp. 1530–1534, 2004.

154 Bibliography

[33] Z. Cao, L. Xie, B. Zhang, S. Wang and M. Tan, “Formation constrained multi-
robot system in unknown environments,” in Proceedings of the IEEE Conference
on Robotics and Automation, vol. 1, pp. 735–740, 2003.

[34] K. Tan and M. Lewis, “Virtual Structures for High-Precision Cooperative Mobile
Robotic Control,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, vol. 1, pp. 132–139, 1996.

[35] W. Ren and R. Beard, “Decentralized Scheme for Spacecraft Formation Flying
via the Virtual Structure Approach,” AIAA Journal of Guidance, Control and
Dynamics, vol. 1, no. 1, pp. 73–82, 2004.

[36] A. Ahmad, T. Nascimento, A. Conceiçao, A. Moreira and P. Lima, “Perception-
Driven Multi-Robot Formation Control,” in Proceedings of the IEEE Conference
on Robotics and Automation, pp. 1851–1856, 2013.

[37] K. Kanjanawanishkul and A. Zell, “A model-predictive approach to formation
control of omnidirectional mobile robots,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 2771–2776, 2008.

[38] D. Álvarez, J. V. Gómez, S. Garrido and L. Moreno, “3D Robot Formations
Planning with Fast Marching Square,” in IEEE International Conference on
Autonomous Robot Systems and Competitions, 2014.

[39] W. Yu, G. Chen and M. Cao, “Distributed leader follower flocking control for
multi-agent dynamical systems with time-varying velocities,” Systems and Con-
trol Letters, vol. 59, no. 9, pp. 543–552, 2010.

[40] S. Garrido, L. Moreno and P. Lima, “Robot Formation Motion Planning using
Fast Marching,” Robotics and Autonomous Systems, vol. 59, no. 9, pp. 675–683,
2011.

[41] D. Álvarez, A. Lumbier, J. V. Gómez, S. Garrido and L. Moreno, “Preci-
sion Grasp Planning with Gifu Hand III based on Fast Marching Square,” in
IEEE/RSJ International Conference on Intelligent Robots & Systems, 2013.

[42] J. V. Gómez, S. Garrido and L. Moreno, “Adaptive Robot Formations using Fast
Marching Square working under Uncertainty Conditions,” in IEEE Workshop on
Advanced Robotics and its Social Impacts, pp. 68–71, 2012.

[43] J. A. Sethian, “A Fast Marching Level Set Method for Monotonically Advanc-
ing Fronts,” Proceedings of the National Academy of Sciences, vol. 93, no. 4,
pp. 1591–1595, 1996.

Bibliography 155

[44] R. P. Feynman, “Space-Time Approach to Non-Relativistic Quantum Mechan-
ics,” Reviews of Modern Physics, vol. 20, no. 2, pp. 367–387, 1948.

[45] S. Osher and J. A. Sethian, “Fronts Propagating with Curvature Dependent
Speed: Algorithms based on Hamilton-Jacobi Formulations,” Journal of Com-
putational Physics, vol. 79, no. 1, pp. 12–49, 1988.

[46] L. Yatziv, A. Bartesaghi and G. Sapiro, “O(N) Implementation of the Fast
Marching Algorithm,” Journal of Computational Physics, vol. 212, pp. 393–399,
2005.

[47] F. Frenet, “Sur les Courbes à Double Courbure,” Journal de Mathématiques
Pures et Appliquées, vol. 1, no. 17, pp. 437–447, 1852.

[48] J. A. Serret, “Sur Quelques Formules Relatives à la Théorie des Courbes à Dou-
ble Courbure,” Journal de Mathématiques Pures et Appliquées, vol. 1, no. 16,
pp. 193–207, 1851.

[49] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, vol. 1, pp. 886–893, 2005.

[50] P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan, “Object detection
with discriminatively trained part-based models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2009.

[51] R. Volpe, P. Khosla, D. McAllester and D. Ramanan, “Manipulator Control
with Superquadric Artificial Potential Functions: Theory and Experiments,”
IEEE Transactions on Transactions on Systems, Man, and Cybernetics, vol. 20,
pp. 1423–1436, 1990.

[52] S. El-Khoury and A. Sahbani, “A new strategy combining empirical and ana-
lytical approaches for grasping unknown 3d objects,” Journal of Robotics and
Autonomous Systems, vol. 58, no. 5, pp. 497–507, 2010.

[53] S. C. Jacobsen, J. E. Wood, D. F. Knutti and K. B. Biggers, “The UTAH/M.I.T.
dextrous hand: work in progress,” The International Journal of Robotics Re-
search, vol. 3, no. 4, pp. 21–50, 1984.

[54] C. S. Lovchik and M. A. Diftler, “The robonaut hand: a dexterous robot hand
for space,” in Proceedings of the IEEE Conference on Robotics and Automation,
vol. 2, pp.907–912, 1999.

156 Bibliography

[55] H. Kawasaki, T. Komatsu and K. Uchiyama, “Dexterous anthropomorphic robot
hand with distributed tactile sensor: Gifu hand II,” IEEE/ASME Transactions
on Mechatronics, vol. 7, no. 3, pp. 296–303, 2002.

[56] Shadow Robot Company, “Design of a dextrous hand for advanced clawar ap-
plications,” in Climbing and walking robots and the supporting technologies for
mobile machines, pp.691–698, 2003.

[57] J. Butterfass, M. Fischer, M. Grebenstein, S. Haidacher and G. Hirzinger, “De-
sign and experiences with DLR hand II,” in Proceedings of the World Automation
Congress, vol. 15, pp.105–110, 2004.

[58] R. Suárez and P. Grosch, “Mechanical hand MA-I as experimental system for
grasping and manipulation,” in Video Proceedings of the IEEE Conference on
Robotics and Automation, 2005.

[59] L. Biagiotti, F. Lotti, C. Melchiorri and G. Vassura, How far is the human hand?
A review on anthropomorphic robotic end-effectors. Technical Report, University
of Bologna, 2004.

[60] A. Bicchi, “Hands for dexterous manipulation and robust grasping: a difficult
road toward simplicity,” IEEE Transactions on Robotics and Automation, vol. 16,
no. 6, pp. 652–662, 2000.

[61] M. T. Ciocarlie and K. A. Peter, “Hand Posture Subspaces for Dexterous
Robotic Grasping,” The International Journal of Robotics Research, vol. 28,
no. 7, pp. 851–867, 2009.

[62] J. Bohg, A. Morales, T. Asfour and D. Kragic, “Data-Driven Grasp Synthesis: A
Survey,” IEEE Transactions on Robotics and Automation, vol. 30, no. 2, pp. 289–
309, 2014.

[63] A. Sahbani, S. El-Khoury and P. Bidaud, “An overview of 3D object grasp
synthesis algorithms,” Robotics and Autonomous Systems, vol. 60, no. 3, pp. 326–
336, 2012.

[64] K. Shimoga, “Hand Robot Grasp Synthesis Algorithms: A Survey,” The Inter-
national Journal of Robotics Research, vol. 15, no. 3, pp. 230–266, 1996.

[65] R. N. Murray, Z. Li and S. Sastry, A Mathematical Introduction to Robotics
Manipulation. CRC Press, 1994.

[66] A. Bicchi and V. Kumar, “Robotic grasping and contact,” in Proceedings of the
IEEE Conference on Robotics and Automation, invited paper, 2000.

Bibliography 157

[67] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proceedings of the IEEE
Conference on Robotics and Automation, vol. 3, pp. 2290–2295, 1992.

[68] A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic grasping,”
IEEE Robotics and Automation Magazine, vol. 11, no. 4, pp. 110–122, 2004.

[69] R. Diankov and J. Kuffner, Openrave: A planning architecture for autonomous
robotics. Technical Report, Robotics Institute, Pittsburgh, 2004.

[70] R. Diankov, Automated construction of robotic manipulation programs. PhD
thesis, Carnegie Mellon University, Robotics Institute, 2010.

[71] R. Balasubramanian, L. Xu, P.D. Brook, J. R. Smith and Y. Matsuoka, “Physical
human interactive guidance: Identifying grasping principles from human-planned
grasps,” IEEE Transactions on Robotics and Automation, vol. 28, no. 4, pp. 899–
910, 2012.

[72] J. Weisz and P. K. Allen, “Pose Error Robust Grasping from Contact Wrench
Space Metrics,” in Proceedings of the IEEE Conference on Robotics and Automa-
tion, pp. 557–562, 2012.

[73] S. Ekvall and D. Kragic, “Learning and Evaluation of the Approach Vector
for Automatic Grasp Generation and Planning,” in Proceedings of the IEEE
Conference on Robotics and Automation, pp. 4715–4720, 2007.

[74] A. Morales, T. Asfour, P. Azad, S. Knoop and R. Dillmann, “Integrated Grasp
Planning and Visual Object Localization For a Humanoid Robot with Five-
Fingered Hands,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 5663–5668, 2006.

[75] J. H. Reif, “Complexity of the mover’s problem and generalizations,” in Annual
Symposium on Foundations of Computer Science, pp. 421–427, 1979.

[76] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami and J. Kuffner, “Grasp plan-
ning in complex scenes,” in Proceedings of the IEEE Conference on Humanoid
Robots, pp. 42–48, 2007.

[77] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. Collet, R. Diankov, G.
Gallagher, G. Hollinger, J. Kuffner and M. VandeWeghe, “Herb: A home explor-
ing robotic butler,” Autonomous Robots, vol. 28, no. 1, pp. 5–20, 2010.

[78] E. Drumwright and V. Ng-Thow-Hing, “Toward interactive reaching in static
environments for humanoid robots,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 846–851, 2006.

158 Bibliography

[79] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner and R. Dillmann, “Hu-
manoid motion planning for dual-arm manipulation and re-grasping tasks,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2464–2470, 2009.

[80] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to single-query
path planning,” in Proceedings of the IEEE Conference on Robotics and Automa-
tion, pp. 995–1001, 2000.

[81] S. M. LaValle, Planning Algorithms. Cambridge, U.K., Cambridge University
Press, Cambridge, 2006.

[82] R. Krug, T. Stoyanov, M. Bonilla, V. Tincani, N. Vaskevicius, G. Fantoni, A.
Birk, A. J. Lilienthal and A. Bicchi, “Velvet fingers: Grasp planning and exe-
cution for an underactuated gripper with active surfaces,” in Proceedings of the
IEEE Conference on Robotics and Automation, pp. 3669–3675, 2014.

[83] T. Stoyanov, N. Vaskevicius, C. Müller, et al, “No more heavy lift-
ing: Robotic solutions to the container unloading problem,” IEEE
Robotics and Automation Magazine, 2016, to appear. Downloaded from:
www.aass.oru.se/Research/mro/publications/RobLog.pdf .

[84] M. Santello, M. Flanders and J. F. Soechting, “Postural hand synergies for tool
use,” Journal of Neuroscience, vol. 18, no. 23, pp. 10150–10115, 1998.

[85] C. R. Mason, J. E. Gomez and T. J. Ebner, “Hand Synergies During Reach-to-
Grasp,” Journal of Neurophysiology, vol. 86, no. 6, pp. 2896–2910, 2001.

[86] J. Rosell, R. Suárez, A. Pérez and C. Rosales, “Including virtual constraints
in motion planning for anthropomorphic hands,” in Proceedings of the IEEE
International Symposium on Assembly and Manufacturing, pp. 1–6, 2011.

[87] J. P. Saut and A. Sahbani and V. Perdereau, “A Global Approach for Dexterous
Manipulation Planning Using Paths in n-fingers Grasp Subspace,” in Proceedings
of the International Conference on Control, Automation, Robotics and Vision,
pp. 1–6, 2006.

[88] N. I. Bernstein, The Coordination and Regulation of Movements. Pergamon
Press, Oxford, 1967.

[89] M. L. Latash, On the evolution of the notion of synergy. In Motor Control, G.
Gantchev et al. (eds.). Academic Publishing House, Sofia, 1999.

Bibliography 159

[90] A. D’Avella, P. Saltiel and E. Bizzi, “Combinations of muscle synergies in the
construction of a natural motor behavior,” Nature Neuroscience, vol. 6, pp. 300–
308, 2003.

[91] Y.P. Ivanenko, et al., “Temporal components of the motor patterns expressed
by the human spinal cord reflect foot kinematics,” Journal of Neurophysiology,
vol. 90, pp. 3555–3565, 2003.

[92] E. Todorov and Z. Ghahramani, “Analysis of the synergies underlying complex
hand manipulation,” in Proceedings of Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pp. 4637–4640, 2004.

[93] R. Vinjamuri, M. Sun, C. C. Chang, H. N. Lee, R. J. Sclabassi and Z. H. Mao,
“Temporal Postural Synergies of the Hand in Rapid Grasping Tasks,” IEEE
Transactions on Information Technology in Biomedicine, vol. 14, pp. 986–994,
2010.

[94] C. Y. Brown and H. H. Asada, “Inter-finger coordination and postural synergies
in robot hands via mechanical implementation of principal components analy-
sis,” in IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2877–2882, 2007.

[95] M. Ciocarlie, C. Goldfeder and P. Allen, “Dimensionality reduction for hand-
independent dexterous robotic grasping,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3270–3275, 2007.

[96] T. Wimboeck, B. Jan and G. Hirzinger, “Synergy-level impedance control for
a multifingered hand,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 973–979, 2011.

[97] D. Prattichizzo, M. Malvezzi and A. Bicchi, “On motion and force controllability
of grasping hands with postural synergies,” in Proceedings of Robotics: Science
and Systems, 2010.

[98] G. Gioioso, G. Salvietti, M. Malvezzi and P. Prattichizzo, “Mapping synergies
from human to robotic hands with dissimilar kinematics: an object based ap-
proach,” in Workshop on Manipulation Under Uncertainty, IEEE Conference on
Robotics and Automation, pp. 3669–3675, 2011.

[99] J. Steffen, R. Haschke and H. Ritter, “Towards dextrous manipulation using
manipulation manifolds,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2877–2882, 2008.

160 Bibliography

[100] D. Zarubin, F. T. Pokorny, D. Song, M. Toussaint and D. Kragic, “Topolog-
ical Synergies for Grasp Transfer,” in Workshop on on Hand synergies, IEEE
Conference on Robotics and Automation, pp. 3669–3675, 2013.

[101] J. Romero, T. Feix, H. Kjellstrom and D. Kragic, “Spatio-temporal modelling of
grasping actions,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 2103–2108, 2010.

[102] A. Tsoli and O. Jenkins, “2d subspaces for user-driven robot grasping,” in
Workshop on Robot Manipulation: Sensing and Adapting to the Real World,
Robotics: Science and Systems, 2007.

[103] N. Vahrenkamp, T. Asfour and R. Dillmann, “Simultaneous Grasp and Motion
Planning: Humanoid Robot ARMAR-III,” IEEE Robotics Automation Maga-
zine, vol. 19, no. 2, pp. 43–57, 2012.

[104] K. Harada, K. Kaneko and F. Kanehiro, “Fast grasp planning for hand/arm
systems based on convex model,” in Proceedings of the IEEE Conference on
Robotics and Automation, pp. 1162–1168, 2008.

[105] S. Patil and B. Ravi, “Voxel-based representation, display and thickness anal-
ysis of intricate shapes,” in Ninth International Conference on Computer Aided
Design and Computer Graphics, pp.1–6, 2005.

[106] L. Desanghere and J. J. Marotta, “The influence of object shape and center of
mass on grasp and gaze,” Journal of Frontiers in Physiology, vol. 6, 2015.

[107] K. Price, R.M. Storn and J.A. Lampinen Differential evolution: a practical ap-
proach to global optimization. Natural computing series. Springer-Verlag Berlin,
2005.

[108] T. Mouri, H. Kawasaki, K. Yoshikawa, J. Takai and S. Ito, “Anthropomorphic
Robot Hand: Gifu Hand III,” in International Conference on Control, Automa-
tion and Systems, pp. 296–303, 2002.

[109] H. Kawasaki, T. Komatsu, M. Suda and K. Uchiyama, “Development of an
Anthropomorphic Robot Hand Driven by Built-in Servo-motors,” in Proceedings
of the International Conference on Advanced Manufacturing, pp. 215–220, 1998.

[110] N. Hendrich and A. Bernardino, “Dexterous Postural Synergies from Teleoper-
ation of the Shadow Robot Hand,” in Workshop on on Hand synergies, IEEE
Conference on Robotics and Automation, 2013.

Bibliography 161

[111] Z. Xue, P. Woerner, J. M. Zoellner and R. Dillmann, “Efficient grasp planning
using continuous collision detection,” in International Conference on Mechatron-
ics and Automation, pp. 2752–2758, 2009.

[112] Y. Paulignan, C. MacKenzie, R. Marteniuk and M. Jeannerod, “The coupling
of arm and finger movements during prehension,” Journal of Experimental Brain
Research, vol. 79, no. 2, pp. 431–435, 1990.

[113] M. Jeannerod, “The Timing of Natural Prehension Movements,” Journal of
Motor Behavior, vol. 16, no. 3, pp. 235–254, 1984.

[114] M. Jeannerod and B. Biguer, “Visuomotor mechanisms in reaching within
extrapersonal space,” Journal of Advances in the analysis of visual behaviour,
pp. 387–409, Bonton: MIT Press, 1984.

[115] K. Shoemake, “Animating rotation with quaternion curves,” Newsletter of ACM
SIGGRAPH Computer Graphics, vol. 19, is. 3, pp. 245–254, 1985.

[116] L. Sciavicco and B. Siciliano, Modelling and control of robot manipulators.
Springer-Verlag London Limited, 2005.

[117] Z. Macura, A. Cangelosi, R. Ellis, D. Bugmann, M. H. Fischer and A. Myachyko,
“A Cognitive Robotic Model of Grasping,” in Proceedings of the International
Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic
Systems, pp. 89–96, 2009. Editors: L. Cañamero, P.Y. Oudeyer and C. Balkenius.

[118] J. C. Rothwell, M. M. Traub, B. L. Day, J. A. Obeso, P. K. Thomas and C. D.
Marsden,“Manual motor performance in a deafferented man,” Brain, vol. 105,
pp. 515–542, 1982.

[119] J. Bimbo, L. D. Seneviratne, K. Althoefer, H. Liu and H. Liu, “Combin-
ing touch and vision for the estimation of an object’s pose during manipula-
tion,” in IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 4021–4026, 2013.

[120] K. Honda, T. Hasegawa, T. Kiriki and T. Matsuoka, “Real-time pose estimation
of an object manipulated by multi-fingered hand using 3D stereo vision and
tactile sensing,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, vol. 3, pp. 1814–1819, 1998.

[121] S. Haidacher and G. Hirzinger, “Estimating Finger Contact Location and Ob-
ject Pose from Contact Measurements in 3-D Grasping,” in Proceedings of the
IEEE Conference on Robotics and Automation, pp. 1805–1810, 2003.

162 Bibliography

[122] M. Chalon, J. Reinecke and M. Pfanne, “Online in-hand object localiza-
tion,” in IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2977–2984, 2013.

[123] M. C. Koval, M. R. Dogar, N. S. Pollard and S. S. Srinivasa, “Pose estimation for
contact manipulation with manifold particle filters,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4541–4548, 2013.

[124] A. Aggarwal and F. Kirchner,“Object recognition and localization: The role of
tactile sensors,” Sensors, vol. 14, pp. 3227–3266, 2014.

[125] C. Zito, M. S. Kopicki, R. Stolkin, C. Borst, F. Schmidt, M. A. Roa and J.
L. Wyatt, “Sequential Trajectory Replanning with Tactile Information Gain
for Dexterous Grasping under Object-pose Uncertainty,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 4013–4020, 2013.

[126] P. Hebert, N. Hudson, J. Ma and J. Burdick, “Fusion of stereo vision, force-
torque, and joint sensors for estimation of in-hand object location,” in Proceed-
ings of the IEEE Conference on Robotics and Automation, pp. 5935–5941, 2011.

[127] J. Bimbo, P. Kormushev, K. Althoefer and H. Liu,“Global estimation of an
object’s pose using tactile sensing,” Advanced Robotic Systems, vol. 29, pp. 37–
41, 2015.

[128] A. Petrovskaya and O. Khatib, “Global localization of objects via touch,” IEEE
Transactions on Robotics and Automation, vol. 27, no. 3, pp. 569–585, 2011.

[129] C. Corcoran, R. Platt, “A measurement model for tracking hand-object state
during dexterous manipulation,” in Proceedings of the IEEE Conference on
Robotics and Automation, pp. 4302–4308, 2010.

[130] M. Prats, P. J. Sanz, A. P. del Pobil, “Vision-tactile-force integration and robot
physical interaction,” in Proceedings of the IEEE Conference on Robotics and
Automation, pp. 3975–3980, 2009.

[131] Web: http://www.labs.righthandrobotics.com/!reflex-hand-1/svmm4. Last
visit in July, 2016.

[132] Y. Tenzer, L. P. Jentoft, R. D. Howe, “The Feel of MEMS Barometers: In-
expensive and Easily Customized Tactile Array Sensors,” IEEE Robotics and
Automation Magazine, vol. 21, is. 3, pp. 89–95, 2014.

[133] E. Salamin, Application of quaternions to computation with rotations. Technical
Report, Stanford University Artificial Intelligence Laboratory, 1995.

Bibliography 163

[134] J. Funda, R. Taylor and R. Paul, “On homogeneous transforms, quaternions,
and computational efficiency,” IEEE Transactions on Robotics and Automation,
vol. 6, no. 3, pp. 382–388, 1990.

[135] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Prob-
lems,” Transactions of the ASME–Journal of Basic Engineering, no. 82 (Series
D), pp. 35–45, 1960.

[136] A. Doucet, N. de Freitas and N. Gordon, “An Introduction to Sequential Monte
Carlo Methods,” in Sequential Monte Carlo Methods in Practice, pp. 3–14, 2001.
Editors: A. Doucet, N. de Freitas and N. Gordon, Springer New York .

[137] J. V. Candy, “Bootstrap Particle Filtering,” IEEE Signal Processing Magazine,
vol. 24, no. 4, pp. 73–85, 2007.

[138] N. Metropolis and S. Ulam, “The Monte Carlo Method,” Journal of the Amer-
ican Statistical Association, vol. 44, no. 247, pp. 335–341, 1949.

[139] J. Liu, “Monte Carlo Strategies in Scientific Computing,” New York: Springer-
Verlag, 2001.

[140] B. Ristic, S. Arulampalam and N. Gordon, “Beyond the Kalman Filter: Particle
Filters for Tracking Applications,” Norwood, MA: Artech House, 2004.

[141] W. R. Gilks and G. O. Roberts, “Improving MCMC mixing,” Markov Chain
Monte Carlo in Practice, eds. W R. Gilks, S. Richardson and D. J. Spiegelhalter,
London: Chapman and Hall, 1996.

[142] C. Robert and G. Casella, “A Short History of Markov Chain Monte Carlo: Sub-
jective Recollections from Incomplete Data,” Statistical Science, vol. 26, no. 1,
pp. 102–115, 2011.

[143] N. J. Gordon, D. J. Salmond and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” in EE Proceedings F - Radar
and Signal Processing, vol. 140, no. 2, pp. 107–113, 1993.

[144] R. Douc and O. Cappe, “Comparison of resampling schemes for particle filter-
ing,” in Proceedings of the 4th International Symposium on Image and Signal
Processing and Analysis, pp. 64–69, 2005.

[145] J. Hol, T. Schon and F. Gustafsson, “On Resampling Algorithms for Particle
Filters,” in IEEE Nonlinear Statistical Signal Processing Workshop, pp. 79–82,
2006.

164 Bibliography

[146] J. Pan, S. Chitta and D. Manocha, “FCL: A general purpose library for collision
and proximity queries,” in Proceedings of the IEEE Conference on Robotics and
Automation, pp. 3859–3866, 2012.

[147] E. Larsen, S. Gottschalk, M. C. Lin and D. Manocha, “Fast distance queries
with rectangular swept sphere volumes,” in Proceedings of the IEEE Conference
on Robotics and Automation, pp. 3719–3726, 2000.

[148] M. D. Shuster, “A Survey of Attitude Representations,” Journal of the Astro-
nautical Sciences, vol. 41, no. 4, pp. 439–517, 1993.

[149] F. L. Markley, Y. Cheng, J. L. Crassidis and Y. Oshman, “Averaging Quater-
nions,” Journal of Guidance, Control, and Dynamics, vol. 30, no. 4, pp. 1193–
1197, 2007.

[150] G. M. Lerner, Three-Axis Attitude Determination. In Spacecraft Attitude De-
termination and Control, J. R. Wertz (ed.). Kluwer Academic Publishers, The
Netherlands, 1978.

[151] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in Pro-
ceedings of the IEEE Conference on Robotics and Automation, pp. 3400–3407,
2011.

[152] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel and A. M. Dollar,
“The YCB object and model set: Towards common benchmarks for manipula-
tion research,” in Proceedings of the IEEE International Conference of Advanced
Robotics, pp. 510–517, 2015.

[153] D. Alvarez, J. V. Gomez, S. Garrido and L. Moreno, “Geometrically Con-
strained Path Planning with Fast Marching Square,” in Mediterranean Confer-
ence on Control and Automation, pp. 1014–1019, 2015.

[154] Q. Wan, R. P. Adams, R. D. Howe, “Variability and predictability in tactile
sensing during grasping,” in Proceedings of the IEEE Conference on Robotics
and Automation, to be published, 2016.

[155] J. N. Tsitsiklis, “Efficient Algorithms for Globally Optimal Trajectories,” IEEE
Transactions on Automatic Control, vol. 40, no. 9, pp. 1528–1538, 1995.

[156] Q. Do, S. Mita and K. Yoneda, “Narrow passage path planning using fast
marching method and support vector machine,” in IEEE Intelligent Vehicles
Symposium Proceedings, pp. 630–635, 2014.

Bibliography 165

[157] Y. Liu, W. Liu, R. Song and R. Bucknall, “Predictive Navigation of Un-
manned Surface Vehicles in a Dynamic Maritime Environment when using the
Fast Marching Method,” International Journal of Adaptive Control and Signal
Processing, pp. 1099–1115, 2015.

[158] N. Forcadel, C. Le Guyader and C. Gout, “Generalized Fast Marching Method:
Applications to Image Segmentation,” Numerical Algorithms, vol. 48, no. 1–3,
pp. 189–211, 2008.

[159] S. Basu and D. Racoceanu, “Reconstructing neuronal morphology from mi-
croscopy stacks using fast marching,” in IEEE International Conference on Im-
age Processing, pp. 3597–3601, 2014.

[160] N. Al Zaben, N. Madusanka, A. Al Shdefat and H. Choi, “Comparison of Active
Contour and Fast Marching Methods of Hippocampus Segmentation,” in 6th
International Conference on Information and Communication Systems, pp. 106–
110, 2015.

[161] X. Qu, S. Liu and F. Wang, “A New Ray Tracing Technique for Crosshole
Radar Traveltime Tomography based on Multistencils Fast Marching Method
and the Steepest Descend Method,” in 15th International Conference on Ground
Penetrating Radar, pp. 503–508, 2014.

[162] X. Zhang and R. Bording, “Fast Marching Method Seismic Traveltimes with
Reconfigurable Field Programmable Gate Arrays,” Canadian Journal of Explo-
ration Geophysics, vol. 36, no. 1, pp. 60–68, 2011.

[163] J. A. Sethian and A. Vladimirsky, “Ordered upwind methods for static
Hamilton-Jacobi equations: theory and algorithms,” SIAM Journal on Numeri-
cal Analysis, vol. 41, no. 1, pp. 325–363, 2003.

[164] A. Chacon, Eikonal Equations: New Two-scale Algorithms and Error Analysis.
PhD thesis, Cornell Univeristy, 1 2014.

[165] J. A. Sethian, “Fast Marching Methods,” SIAM Review, vol. 41, no. 2, pp. 199–
235, 1999.

[166] R. Kimmel and J. A. Sethian, “Computing Geodesic Paths on Manifolds,”
Proceedings of the National Academy of Sciences, vol. 95, no. 15, pp. 8431–8435,
1998.

[167] J. A. Sethian and A. Vladimirsky, “Fast Methods for the Eikonal and related
Hamilton-Jacobi equations on unstructured meshes,” Proceedings of the National
Academy of Sciences, vol. 97, no. 11, pp. 5699–5703, 2000.

166 Bibliography

[168] S. Ahmed, S. Bak, J. McLaughlin and D. Renzi, “A Third Order Accurate Fast
Marching Method for the Eikonal Equation in Two Dimensions,” SIAM Journal
on Scientific Computing, vol. 33, no. 5, pp. 2402–2420, 2011.

[169] S. Luo, “High-order Factorizations and High-order Schemes for Point-source
Eikonal Equations,” SIAM Journal on Numerical Analysis, vol. 52, no. 1, pp. 23–
44, 2014.

[170] J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving In-
terfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. No. 3, Cambridge University Press, 1999.

[171] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Nu-
merische Mathematik, vol. 1, pp. 269–271, 1959.

[172] R. Bellman, Dynamic Programming. Princeton, NJ: Princeton University Press,
1957.

[173] J. V. Gómez, D. Álvarez, S. Garrido and L. Moreno, Fast Meth-
ods for Eikonal Equations: an Experimental Survey. Available at
http://arxiv.org/abs/1506.03771.

[174] J. V. Gómez, Fast Marching Methods in path and motion planning: improve-
ments and high-level applications. PhD thesis, Carlos III University of Madrid,
RoboticsLab, 2015.

[175] I. Arvanitakis, A. Tzes and M. Thanou, “Geodesic Motion Planning on 3D-
terrains Satisfying the Robots’s Kinodynamic Constraints,” in Annual Confer-
ence of the IEEE Industrial Electronics Society, pp. 4144–4149, 2013.

[176] D. Ogay and E. Kim, “Kinodynamic Motion Planning with Artificial Wave-
front Propagation,” Journal of Information and Communications Convergence
Engineering, vol. 11, no. 4, pp. 274–281, 2013.

[177] D. Álvarez, “Cartesian controller for the LWR-UC3M-1 robotic arm in MAN-
FREDV2,” Master’s thesis, Carlos III University of Madrid, Nov 2011.

