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ABSTRACT 
 

3D printing has revolutionized the manufacturing process reducing costs and time, but only 

when combined with robotics and electronics, this structures could develop their full potential. 

In order to improve the available printable hand designs, a control system based on 

electromyographic (EMG) signals has been implemented, so that different movement patterns 

can be recognized and replicated in the bionic hand in real time. This control system has been 

developed in Matlab/ Simulink comprising EMG signal acquisition, feature extraction, 

dimensionality reduction and pattern recognition through a trained neural-network. Pattern 

recognition depends on the features used, their dimensions and the time spent in signal 

processing. Finding balance between this execution time and the input features of the neural 

network is a crucial step for an optimal classification. 

 

KEY WORDS: EMG, control system, neural networks, pattern recognition, real-time, printable 

robotic hand.  
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CHAPTER 1 

1.  INTRODUCTION 
1.1.  BACKGROUND 

Human-assisting robots and rehabilitation have benefited from 3D printing in the last years. 

The main advantage of 3D printing, is the creation of personalized designs that do not 

compromise the fabrication cost. However, this improvement in design does not provide or 

restore any dexterity without the combination of robotics, electronics and control systems. 

This present study is the second part of a bigger project that comprises both robotic arm 

manufacturing and control system design.  

An efficient human motion tracking system is electromyographic (EMG) that has been 

widely used in human-machine interfaces since the 1960’s. EMG measures the electrical 

activity of the muscles due to neural activation, and thus, desire of movement can be 

detected. The principal advantage of EMG control system with respect to other biosignal-

based control systems, such as electroencephalography (EEG), is the low invasiveness during 

signal acquisition.  

The prosthesis and human-assisting robots developed so far, focused on high precision 

control of user’s motion. This design allows complex movements with several degrees of 

freedom, but is expensive and requires the user to concentrate in the task. The cost and 

difficult control drawbacks, have opened a gap between research and practical world. 

The aim of printable robotic limbs is to bring closer both fields, offering accessible and 

functional devices that adapt to and learn from the costumer. Providing an effective control 

system that is able to detect and identify user’s intentions based on EMG signals to actuate 

a printable robotic hand, is the main goal of this work. 

 

1.2.  MOTIVATION 

The prosthetic technology developed so far has a severe trade-off between control accuracy 

and cost. The motivation of this project, including both robotic arm fabrication and control 

system development, is to provide a low cost alternative for the present commercial 

prosthesis. To achieve this, new technologies like 3D printing, open source designs or 

software and hardware developed in the University, have been used to minimize the prize.  

Once the prosthesis has been assembled, an interface between the user and the device is 

needed to actuate it. This study focuses in the implementation of a neural network-based 

myoelectric control system for the printable robotic hand. However, this control system 

must be consistent with the global motivation of the project, and thus, adjust to a low 

budget. In order to fulfill this requirements, the system has been developed using the 

minimum number of physical components, focusing on the digital domain. Following this 

idea, several tools like a low cost EMG acquisition circuit developed in the University, Rapid 
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Control Prototyping (RCP) methodology and their integration in MATLAB/ Simulink 

processing environment, have been used to implement the neural network classification. 

1.3. OBJECTIVES 

As previously mentioned, the main objective of this study is to develop a control system, 

based on EMG signals, able to detect and interpret different user hand movements to 

operate a printable bionic hand. In order to achieve this, the program must fulfill the 

following aspects: 

1. Acquire and process EMG signals. 

2. Identify the specific movement underneath the processed EMG data. 

3. Be sensitive to changes in position. 

4. Real-time actuation of the five-fingered robotic hand. 

5. Integration of the different elements: robotic hand, EMG circuit and control system. 

6. Low cost 

 

1.4.  STRUCTURE 

The dissertation starts with an overview of the EMG theory and related work done in EMG 

control systems. EMG theory focuses on the physiology (2.1) and acquisition (2.2) of the 

signal. In chapter 3, the state of the art of EMG signal processing is analyzed, including data 

segmentation (3.1), feature extraction (3.2), dimensionality reduction (3.3) and data 

classification (3.4). 

 

Next chapters describe the materials and methods used in program development. The EMG 

acquisition system is assessed in chapter 4, describing the employed circuit (4.1), 

microcontroller (4.2) and acquisition software (4.3). A detail explanation of the control 

system functioning can be followed step by step through: 

 Gesture programming (5.1) 

 EMG acquisition method (5.2) 

 Segmentation and feature extraction (5.3.1) 

 Dimensionality reduction (5.3.2) 

 Generation and training of the Neural Network (5.3.3) 

 Integration of the control system with the printed robotic hand (5.4) 

 

The thesis concludes with the results of the performed tests (chapter 6) and the conclusions 

and future work extracted from their analysis (chapter 7). 
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CHAPTER 2 

2.  EMG SIGNAL 
The aim of this chapter is to give the reader a theoretical background about the biology of the 

EMG signal, from its generation in the human body to its acquisition. 

2.1.  PHYSIOLOGY 

To understand how movement is generated in the body, it is important to know the basic 

structure responsible for it first. Motor units are the smallest functional modules that 

explain muscle contraction through neural control. They are formed by a motor neuron and 

all the skeletal muscle fibers it stimulates. These fibers are intermingled with other motor 

unit muscle fibers without following any distribution pattern. Motor neurons propagate 

electrical stimuli (action potentials) from the central nervous system to the muscle fibers. 

[1][2]  

If muscle fibers are not activated, there is an ionic equilibrium (resting potential) between 

the inner and outer spaces, established at -80 to -90 mV. However, when an action potential 

reaches the axon terminal of a motor neuron, it triggers the release of a neurotransmitter 

at the neuromuscular junction. This neurotransmitter opens Na+ channels, favoring the 

inflow of these cations, increasing the membrane potential up to +30 mV and thus, causing 

the depolarization of the membrane. This condition is immediately compensated by Na+/K+ 

ion pumps that repolarize the membrane to the original value. The effect of the action 

potential is muscle contraction, being an electro-mechanical coupled process [1]. The 

electromagnetic field produced by ion movement, can be detected and recorded with 

electrodes placed near the muscles. 

So far, how a single muscle fiber is stimulated by an action potential has been explained. 

However, a single motor neuron innervates several muscle fibers that contract in unison. 

The spatial-temporal summation of all the individual action potentials that reach these 

muscles, is referred as Motor Unit Action Potential (MAUP) [4]. To maintain muscle 

FIGURE 2.1: MOTOR UNIT ARRANGEMENT [3] 
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contraction, successive activation of motor units is required. This sequence of MUAP form 

the Motor Unit Action Potential Train (MUAPT). As previously mentioned, different motor 

unit fibers assemble muscles. Therefore, movement involves the activation of multiple 

motor units. The recorded EMG signal is the superposition of MUAPTs corresponding to the 

activated motor units. 

 

According to Luca [5] the resulting EMG signal has the following properties: 

1. Stochastic amplitude nature depicted by a Gaussian distribution. 

2. Amplitude range: 0 – 10 mV peak-to-peak or 0-1.5 mV rms 

3. Frequency range: 0-500 Hz with maximum energy at the dominant interval 50-150 Hz 

 

  

FIGURE 2.2: EMG SIGNAL COMPOSITION [2] 
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2.2.  ACQUISITION 

EMG acquisition is a multistage process comprising target muscle identification, electrode 

placement and signal preprocessing. Although there are different acquisition modalities, the 

previously mentioned steps are described focusing on noninvasive forearm-muscle EMG 

acquisition techniques. 

2.2.1. TARGET MUSCLES 

Most of the muscles responsible for hand movement are placed in the forearm [6][7]. 

For the robotic hand programmed actions: open/close hand, extended index, pincer, 

supination/ pronation and a rest position; the muscles of interest are those that 

contribute more to digits, thumb and wrist movement.   

This work has focused on forearm superficial muscles because their accessibility allows 

noninvasive recordings by placing two electrodes longitudinally on the skin covering 

each target muscle.  

Therefore, the EMG signals have been obtained from: 

1. Flexor digitorum superficialis: Superficial anterior muscle in charge of phalanx 

bending.  

2. Flexor carpi ulnaris: superficial anterior muscle responsible for hand flexing.  

3. Brachioradialis: superficial anterior muscle that supinates/pronates the 

forearm. 

4. Extensor digitorum: Superficial posterior muscle that extends the phalanxes. 

 

  

FIGURE 2.4: FOREARM SUPERFICIAL MUSCLES ANTERIOR AND POSTERIOR VIEW [7] 
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2.2.2. ELECTRODES 

Electrodes are transducers that convert the ion current generated by contracting 

muscles into electric current. Depending on the invasiveness, there are two types of 

electrodes: surface or intramuscular (fine-wire or needle electrodes) [1],[2]. 

Intramuscular electrodes provide a high-resolution recording of the precise target 

muscle, but are relatively painful so surface disposable electrodes have been used for 

EMG acquisition. 

2.2.2.1. SKIN PREPARATION  

Surface electrodes require special skin preparation to create a stable contact with 

low skin impedance. For dry skin, the impedance ranges from several kilo to 

megaohms due to movement artifacts, sweat or body fat percentage. These artifacts 

distort the signal so the following arrangements should be taken into account before 

placing the electrodes [2]:  

1. Hair removal: This favors electron adhesion. 

 

2. Skin cleaning: Dead skin cells, dirt and sweat that might be present at the 

recording site, increase the impedance. To remove them, special abrasive, 

find sand paper or alcohol can be applied to the surface. Harm should be 

avoided, just a light red color of the treated skin indicates good impedance.  

2.2.2.2. ELECTRODE TYPES 

Current transduction is produced by an oxidation-reduction chemical reaction inside 

the electrode. Depending on the material used, there are two types of electrodes 

[8]: 

1. Gelled Electrodes: The most common material for the metallic part of the 

electrode is Silver-Silver Cloride (Ag-AgCl). These electrodes improve their 

performance with an electrolytic gel between the skin and the metal 

electrode by increasing the conductivity. Their main advantages are low 

impedance, good adhesion and cheap cost. They are usually disposable 

electrodes. 

 

2. Dry electrodes: These type of electrodes do not require a gel interface at 

the skin-electrode junction. The preferred material is gold (Au), despite its 

high cost, do to their very low impedance. They are very resistant and can 

be reused. 

 In this study the electrodes that have been used are Ag-AgCl ECG surface 

electrodes, model FSTC1 from Skintact, due to their multifunction applications and 

low cost. 

2.2.2.3. ELECTRODE PLACEMENT 

According to Luca, De [5] electrodes should be placed in the belly of the target 

muscle, along the longitudinal middle line of the muscle. This arrangement 

maximizes the number of muscle fibers that can be recorded with the electrodes.  
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It is important to avoid tendon insertions because muscle fibers become thinner and 

closer, reducing signal amplitude and making it more susceptible to crosstalk or non-

target muscle activity interferences. Motor points or innervation zones, should be 

avoided too. These areas have the highest neural density so minimal electrical 

activity causes a perceptible twitch on the muscle surface, altering the stability.  

An extra reference electrode should be located on electrically neutral tissue, like a 

bony prominence, nearby the target area. 

In this case, two Ag-AgCl electrodes have been placed on top of the belly of the 

mentioned target muscles to measure the differential signal, and a reference 

electrode, in the elbow. 

2.2.3. EMG ELECTRONICS AND PREPROCESSING 

Raw EMG signals range from several μV to mV and are subjected to various noise 

sources, therefore they need to be preprocessed (amplification and filtering) so that a 

reliable analysis could be obtained. The main issues in EMG acquisition circuits are [5]: 

1. Differential amplification. The idea of differential amplification is to record EMG 

signals at two close sites, subtract both signals and amplify the difference. 

Powerline noise or cross-talk cannot be filtered as they contribute to the 

dominant energy range of the EMG signal. However, differential amplification 

cancels this common noise while amplifies the changes in the superficial 

muscles. The accuracy of this noise elimination is measured by the Common 

Mode Rejection Ratio, being 90dB the recommended value. The reference 

electrode is the common reference for the differential inputs. 

 

2. High input impedance of the differential amplifier. Input impedance of the pre-

amplifier should be at least 10 times the electrode-skin impedance to avoid 

signal attenuation and distortion. Impedances of both inputs must be balanced. 

 

3. Band pass filtering. The Signal to Noise Ratio (SNR) can be increased by filtering 

the range 20-500 Hz with a roll-off of 40dB/dec. 

 

4. Electrical safety concerns. As the subject is directly connected to the circuit 

through the electrodes, failure of any electrical component may produce 

harmful current passing through the skin into the tissues. To avoid this and 

FIGURE 2.5: DIFFERENTIAL AMPLIFIER CONFIGURATION [3]  
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guarantee user’s safety, the subject must be isolated from power source 

associated connections via optical isolators or transformers. However, 

damaging current hazard is reduced for low-voltage powered circuits (3-15V). 

This linear preprocessing stage aims to preserve maximum amount of information, 

reduce noise contamination and avoid any signal distortion. After this process, the EMG 

signal can be processed to extract relevant features for pattern recognition. 
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CHAPTER 3 

3.  EMG SIGNAL PROCESSING AND 
CLASSIFICATION 

The advances in robotics and prosthetics have developed more complex artificial limbs with 

several degrees of freedom. In the past, basic estimation of the amplitude and rate of 

change of the EMG signal was sufficient to control one function. However, new devices 

require more intricate control systems that aim to provide [2], [9]:  

 Accuracy 

It is essential to reproduce user’s intentions faithfully. To improve it more 

information should be extracted from the EMG signal by increasing the number of 

channels of the recording and by building a feature set that makes the most of the 

obtained data. 

 

 Intuitive interface 

The main problem of the low acceptance rate of myoelectric control systems, is the 

difference between subject’s instinctive motion commands and the required 

knowledge to actually perform that action. The solution is either training the user 

to gain the needed control skills, or develop intelligent user interfaces able to learn 

muscle activation patterns during changing operation conditions.  

 

 Short time response 

The time response of the control system is limited to real-time constrains, so that 

the user does not perceive a delay during manipulation. To achieve this, processing 

the input signals in short segments for further analysis is the most efficient 

approach. 

From these objectives, a classification of the EMG control systems can be derived into: 

patter recognition- and non-pattern recognition-based. In the last type, the mentioned old-

fashioned control systems based on thresholding are included. This section will focus on 

pattern recognition-based approach in which several functions can be identified from signal 

patterns by classifiers. 

 

Figure 3.1 depicts the workflow of pattern recognition based-control systems is divided in: 

data segmentation, feature extraction, dimensionality reduction, classification and 

controller. Each step will be discussed in the next subsections. 

EMG Signal 
Acquisition

Data 
Segmentation

Feature 
Extraction

Dimensionality 
Reduction Classification Controller

FIGURE 3.1: STAGES FOR DEVELOPING MYOELECTRIC CONTROL SYSTEMS 
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3.1.  DATA SEGMENTATION 

Data segmentation is the process of dividing input signals into time slots for further 

processing. There are several segmentation approaches based on window length, signal 

features in the window or signal state. 

One of the main concerns of control systems is a fast time response. Real-time 

considerations have established a maximum lag of 300 ms between muscle contraction 

onset and the corresponding device movement. The larger the segment, the smaller bias 

and feature variance, but the higher the computational load. Thus, segment length must be 

chosen carefully so that all processing steps can be computed within that 300 ms interval.  

According to Oskoei and Hu [10], there are two main windowing techniques: adjacent or 

disjoint segmentation and overlapped segmentation. Disjoint windowing segments data by 

a predefined length, whereas in overlapping windowing, segments slide over each other 

with an increment greater than the processing time and shorter than the segment length, 

as shown in Figure 3.2. Results showed that disjoint segmentation with length of 200 ms, 

yields in high EMG classification performance and time response for real-time applications. 

Overlapped segments of 200 ms with an increment of 50 ms provide a semi-redundant 

classification that also reduce time response without a significant lost in accuracy. 

 

However, not all segmentation procedures are based on length itself; other approaches 

involve thresholding. Christodoulou and Pattichis [11] developed a segmentation algorithm, 

applied over a fixed length window, to calculate a threshold based on maximum and mean 

maximum value of the whole signal. Peaks above the threshold are considered candidate 

segments. On the other hand, Gut and Moschytz [12] employed thresholding over a sliding 

A) 

B) 

FIGURE 3.2: A) DISJOINT SEGMENTATION AND B) OVERLAPPED SEGMENTATION [10] 
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window to detect onset and offset depending on the mean slope and total variation of the 

segment.  

Even more complex segmentation techniques like MAUPs peak identification, determining 

MAUP’s beginning and ending extraction points or Daubechies Wavelet Transform have 

been analyzed by Kaur et al. [13]. These methods process the data for diagnosis of 

neuromuscular disorders, rather than for control systems, by detecting and classifying 

different MAUPs shapes. MAUPs peak identification by thresholding showed the best 

delineation and classification performance (95.90%). 

Apart from segment length and signal characteristic-based windowing, another important 

subject in data segmentation is the state of the signal. EMG signals can be divided into a 

transient state and steady state [14]. Movement initiation from rest is considered as 

transient state, whereas steady state is associated with maintained muscle contractions 

during the action. 

Transient states used to be considered more significant for pattern recognition based- 

control systems as they show user’s intention of movement. Hudgins et al. [15] employed 

windows of 100 ms after muscle onset to successfully classify muscle functions. The major 

drawback of this approach is its inability to switch classes as muscle contraction must be 

initiated from rest.  

Englehart et al. [16] proved that steady-state signal classification is more accurate and less 

sensible to short segment length degradation. Although class transitions are allowed with 

this method, most errors occur during these periods due to an undefined intermediate state 

between classes. To solve this, detection and elimination of transition states is a promising 

technique to create a reliable training data set. 

 

3.2.  FEATURE EXTRACTION 

Feeding a classifier directly with the segmented data is still inefficient. Feature extraction is 

a technique that transforms raw input data into a reduced set of features that highlight the 

encoded relevant information. Success in pattern recognition depends almost exclusively in 

feature selection and extraction. 

As claimed by Zecca et al. [17] features can be classified as: time domain, frequency 

(spectral) domain and time-frequency (time-scale) domain.  

EMG signals should be considered non-stationary due to asynchronous MAUPs summation, 

even during constant contractions where there is no voluntary change. However, for short-

time low-level contractions (20-30% of maximal voluntary contraction, MVC; during 20-40s), 

the signal can be assumed to be wide-sense stationary. This presumption can be held for 

higher contraction levels (50-80% of MVC) during shorter periods (0.5-1.5s) to avoid muscle 

fatigue [18]. Therefore, as stated by Oskoei and Hu [14] the EMG signal can be considered 

stationary in real-time applications. These concepts are significant to assess the main 

limitations of each feature type. 
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3.2.1. TIME DOMAIN 
Time domain features have been widely used in research do to its easy and quick 

calculation. These features are based on signal amplitude, which can be considered as 

the time-varying standard deviation (STD) of the signal, proportional to the number of 

active MUs and their firing rate. The computed features provide information about 

waveform energy, amplitude, duration and frequency. Time domain features are shown 

in Table 3.1. 

 

TABLE 3.1: EMG TIME DOMAIN FEATURES [19] 

Time domain features 

Integrated EMG 
(IEMG) 

𝐼𝐸𝑀𝐺𝑘 = ∑ |𝑥𝑖|
𝑁
𝑖=1   

Root Mean 
Square 
(RMS) 

𝑅𝑀𝑆𝑘 = √
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1   

Mean Absolute 
Value (MAV) 

𝑀𝐴𝑉𝑘 =
1

𝑁
∑ |𝑥𝑖|𝑁

𝑖=1   

Zero 
Crossings 
(ZC) 

ZC is incremented if  
{𝑥𝑖 > 0 𝑎𝑛𝑑 𝑥𝑖+1 < 0} or  
{𝑥𝑖 < 0 𝑎𝑛𝑑 𝑥𝑖+1 > 0}  
and |𝑥𝑖 − 𝑥𝑖−1| ≥ 𝜖 

Modified Mean 
Absolute Value 
1 (MAV1) 

𝑀𝑀𝐴𝑉1𝑘 =
1

𝑁
∑ 𝑤𝑖|𝑥𝑖|

𝑁

𝑖=1

 

 𝑤(𝑖) = {
1, 0.25𝑁 ≤ 𝑖 ≤ 0.75𝑁

0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Slope Sign 
Changes 
(SSC) 

SSC incremented if  
{𝑥𝑖 > 𝑥𝑖−1 𝑎𝑛𝑑 𝑥𝑖 > 𝑥𝑖+1} or  
{𝑥𝑖 < 𝑥𝑖−1 𝑎𝑛𝑑 𝑥𝑖 < 𝑥𝑖+1} and 
|𝑥𝑖 − 𝑥𝑖+1| ≥ 𝜖 or |𝑥𝑖 − 𝑥𝑖−1| ≥ 𝜖  

Modified Mean 
Absolute Value 
2 (MAV2) 

𝑀𝑀𝐴𝑉2𝑘 =
1

𝑁
∑ 𝑤𝑖|𝑥𝑖|𝑁

𝑖=1   

𝑤(𝑖) = {

1, 0.25𝑁 ≤ 𝑖 ≤ 0.75𝑁
4𝑖 𝑁⁄ ,   0.25𝑁 > 𝑖

4(𝑖 − 𝑁) 𝑁⁄ ,   0.75𝑁 < 𝑖
 

Willison 
Amplitude 
(WAMP) 

𝑊𝐴𝑀𝑃𝑘 = ∑ 𝑓(|𝑥𝑖 − 𝑥𝑖+1|𝑁−1
𝑖=1 )  

 𝑓(𝑥) = {
1, 𝑥 > 𝜖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Mean Absolute 
Value Slope 
(MAVS) 

𝑀𝐴𝑉𝑆𝑘 = 𝑀𝐴𝑉𝑘+1 − 𝑀𝐴𝑉𝑘  

Simple 
Square 
Integral (SSI) 

𝑆𝑆𝐼𝑘 = ∑ (|𝑥𝑖
2|𝑁

𝑖=1 )  

Variance (VAR) 𝑉𝐴𝑅𝑘 =
1

𝑁
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1   
Histogram of 
EMG (HEMG) 

HEGM divides the elements in EMG 
signal into b equally spaced 
segments and returns the number 
of elements in each segment 

Waveform 
Length (WL) 

𝑊𝐿𝑘 = ∑ |𝑥𝑖+1 − 𝑥𝑖|𝑁−1
𝑖=1    

Variables of the time domain features 
xi : value of each part of segment k 
N : length of the segment 
𝑥̅ : mean value of segment k 
ϵ : a threshold (not the same for all equations) 

 

 

3.2.2. FREQUENCY DOMAIN 
Frequency domain features are related to the estimated power spectrum density (PSD) 

of the signal, defined for wide-sense stochastic signals, as the Fourier transform of the 

autocorrelation function. Primary information about the spectrum and its change in 

time is represented by frequency mean (FMN) and frequency median (FMD).  
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Frequency domain features can be computed by periodogram or parametric methods. 

In the former method, PSD is calculated by the square of the Fourier transform divided 

by the signal length. According to Oskoei and Hu [14] the weaknesses of periodogram 

are: 1) pre-windowing frequency leakage, 2) frequency resolution of short-time 

segments, 3) large estimation variance and 4) periodicity assumption outside the 

analyzed segment. On the other hand, in parametric methods, autoregressive 

coefficients (AR) are used to estimate PSD. The problems of this procedure are order 

determination and unwanted modelled noise.  

The main disadvantage of frequency domain features compared to time domain 

features is the higher computational load.  

 

3.2.3. TIME-FREQUENCY DOMAIN 
Previous features were computed under the assumption that EMG signals are 

stationary. Nevertheless, these signals are composed of several non-stationary or 

transitory features. Therefore, spectral analysis lose information in time domain as it 

cannot detect when a specific event occurs. Providing energy measurements in both 

time and frequency domains, describes more precisely the physical phenomenon, but 

requires heavy computation.  

The most studied time-frequency features are: Short-time Fourier Transform (STFT), 

Wavelet Transformation (WT) and Wavelet Packet Transformation. Each method divides 

differently the time-frequency plane. STFT has a fixed partitioning ratio in which each 

cell has the same aspect ratio. WT has a variable tiling with an aspect ratio that changes 

frequency resolution proportionally to the center frequency. Although the partitioning 

pattern is not constant, it is still fixed. Finally, WPT provides an adaptive tiling that 

selects the optimal partition pattern among a given set, depending on the application. 

 

  

FIGURE 3.3: TIME-FREQUENCY TILING OF A) STFT, B) WT AND C) WPT [20] 
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Table 3.2 summarizes frequency and time-frequency features. 

TABLE 3.2: FREQUENCY AND TIME-FREQUENCY DOMAIN FEATURES [19] 

Frequency domain features  Time-frequency domain features 

Autoregressive 
Coeafficients (AR) 

𝑥𝑘 = ∑ 𝑎𝑖𝑥𝑘−𝑖 + 𝑒𝑘
𝑁
𝑖=1   

 

Short Time 
Fourier 
Transform 
(STFT) 

𝑆𝑇𝐹𝑇𝑥(𝑡, 𝑤) = ∫ 𝑊∗(𝜏 − 𝑡)𝑥(𝜏)𝑒−𝑗𝜔𝑡 𝑑𝜏  

Frequency 
Median (FMD) 

𝐹𝑀𝐷 =
1

2
∑ 𝑃𝑆𝐷𝑖

𝑀
𝑖=1   

 

Wavelet 
Transform 
(WT) 

𝑊𝑥(𝑎, 𝑏) = ∫ 𝑥(𝑡) (
1

√𝑎
) 𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡  

Frequency Mean 
(FMN) 

𝐹𝑀𝑁 =
∑ 𝑓𝑖𝑃𝑆𝐷𝑖

𝑀
𝑖=1

∑ 𝑃𝑆𝐷𝑖
𝑀
𝑖=1

 

 

𝑓𝑖 =
𝑖·𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

2𝑀
  

 
Wavelet 
Packet 
Transform 
(WPT) 

WPT is a generalized version of the 
continuous wavelet transform and the 
discrete wavelet transform. The basis of 
the WPT is chosen using and entropy-
based cost function 

Modified 
Frequency 
Median (MFMD) 

𝑀𝐹𝑀𝐷 =
1

2
∑ 𝐴𝑗

𝑀
𝑗=1   

 

Modified 
Frequency Mean 
(MFMN) 

𝑀𝐹𝑀𝑁 =
∑ 𝑓𝑗𝐴𝑗

𝑀
𝑗=1

∑ 𝐴𝑗
𝑀
𝑗=1

  

Frequency Ratio 
(FR) 

𝐹𝑅𝑗 =
|𝐹(·)|𝑗 𝑙𝑜𝑤𝑓𝑟𝑒𝑞

|𝐹(·)|𝑗 ℎ𝑖𝑔ℎ𝑓𝑟𝑒𝑞
  

Variables of frequency domain features: 
 
ai : AR coefficients 
ei : White noise or error sequence 
M :  length of the power spectrum 
density 
PSDi : ith line of the power spectrum 
density 
Aj : EMG amplitude spectrum at 
frequency bin j 
fi : frequency of the sectrum at frequency 
bin j 
|𝐹(·)|𝑗 : Fast Fourier transform of EMG 

signal in channel j. lowfreq is the low 
frequency band and highfreq is the high 
frequency band 
 

Variables of time-frequency domain features: 
 
W(t) : Window function 
* : Complex conjugate 
𝜏 : Time 
w: Frequency 
x(t) : Function of the input signal 
𝜓 * : Complex conjugate of the mother wavelet function 

 𝜓∗ (
𝑡−𝑏

𝑎
) : Shifted and scaled version of the wavelet at 

time b and scale a 

 

Several studies have been conducted to compare combinations of time and frequency 

domain features and test their performance in pattern recognition. Phinyomark et al. [21] 

examined the tolerance to white Gaussian noise of time domain (IEMG, MAV, MMAV1, 

MMAV2, MAVS, SSI, VAR, RMS, WL, ZC, SSC, WAMP and HEMG) and frequency domain 

features (AR, FMN, FMD, MFMD and MFMN). The latest proved to be more robust and 

tolerant to noise. Also, MFMN, WAMP and HEMG were tested as pattern recognition inputs, 

resulting in excellent candidates for multi-source feature vector. 
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Most research used special techniques to test the efficiency of each feature set. For 

instance, Huang and Chen [22] evaluated time and frequency domain features with Davies 

Boulding index that measures the overlapping degree between nearest neighboring 

clusters. Features with highest cluster separability (VAR, IEMG and WL in this case) contain 

more relevant information, and were fed with other features into a classifier for pattern 

recognition analysis. Two sets were examined: IEMG, VAR, WL and WAMP against IEMG, 

VAR, WL, WAMP, BZ and AR. The last combination showed better performance in pattern 

recognition.  

 

3.3.  DIMENSIONALITY REDUCTION 

The previous example introduced the Bellman’s so called “curse of dimensionality” [23]. 

Computational efficiency is essential for real-time applications, but the number of 

calculations and training data required for pattern recognition, rise exponentially with the 

increase of feature vector dimensions. 

Dimensionality reduction, also called phenomenological analysis, aims to improve signal 

classification, reducing the dimensions of the feature vector by removing redundant 

information without disrupting the relevant data. According to [2], [17] and [19], there are 

two main strategies: feature subset selection (or just feature selection) and feature 

projection. 

3.3.1. FEATURE SUBSET SELECTION (FSS) 
Feature Subset Selection (FSS) seeks for the optimal subset, with highest classification 

rate, among all existing features. This approach requires a search strategy to select 

candidate subsets, and an objective function that test them and provide feedback to 

new candidate selection. Depending on the evaluation process, objective functions can 

be classified into filters and wrappers. The former assess the candidate subset based on 

their information content (interclass distance, statistical dependence or information-

theoretic measures); whereas the latest are classifiers that evaluate the candidates 

according to their classification accuracy. 

Oskoei and Hu [24] developed a complex algorithm based on FSS. For this study, the 

selected search strategy was Genetic Algorithm that simulates “survival of the fittest” 

evolutionary process. Both classes of objective functions were analyzed in the research: 

Davies Boulding index and Fisher Linear Discriminant Analysis (represent clusters’ 

dispersion comparing to their scatter) as filters, and Linear Discriminant Analysis (LDA) 

as wrapper. LDA employs a discriminant function to divide the feature space into 

different labeled subspaces by the hyperplane decision surface, using a training data set. 

More details about LDA are provided in the next subsection. Time domain (MAV, MAVS, 

RMS, VAR, WL, ZC, SSC and WAMP) and frequency domain features (AR, FMN, FMD and 

FR) were analyzed by FSS and then classified by an Artificial Neural Network. WL showed 

the highest discriminating information for classification, followed by MAV and RMS, and 

AR in the third place. However, all this process requires complex calculations that 

increase the computation time. This approach was therefore presented, as a pre-offline 

training of the classifier to upgrade its performance. 
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3.3.2. FEATURE PROJECTION 
Feature projection creates a new and smaller feature set by identifying the optimal 

combination of the original features. The simplest method employs a linear 

transformation matrix to map the original features into the reduced-dimension space.  

The most popular linear mapping functions are Principal Component Analysis (PCA) and 

Linear Discriminant Analysis (LDA). 

3.3.2.1. PRINCIPAL COMPONENT ANALYSIS (PCA) 

PCA, which is also known as Karhunen-Loéve transform or Singular Value 

Decomposition [17] and [25], creates an uncorrelated reduced-dimension set of 

variables from the original ones. To achieve this, the linear transformation matrix is 

calculated by searching for the directions with higher variations. This implies the 

consideration of those features that provide more variation, so low-order principal 

components are kept while the higher-order ones are discarded. Thus, the main 

limitation of this method is the preliminary assumption that maximum variance 

directions provide maximum discrimination, as no class information like between-

class or within-class scatter is taken into account. In addition, PCA is scale-sensitive 

and some principal components might be obscured by elements with higher 

variances. 

Englehart et al. [9] compared feature projection using PCA, and Euclidean distance 

class separability (CS) as FSS. The tested features were Hudgins’ time domain 

features (TD): MAV, MAVS, ZC, SSC and WL; and time-frequency domain features: 

STFT, WT and WPT. After reducing the dimensions of the previous feature sets, 

classification performance was evaluated by LDA classifier and Multi-Layer 

Perceptron (MLP) classifier. Results show that for dimensionality reduction PCA is 

more effective than CS, especially for time-frequency domain features.  

3.3.2.2. LINEAR DISCRIMINANT ANALYSIS (LDA)  

LDA mapping is based on a classification criterion that maximizes the ratio of 

between-class and within-class variance. As previously seen, LDA can be used as a 

wrapper objective function (FSS) or as a classifier itself, however in this subsection, 

the focus will be its application in dimensionality reduction. 

According to Wang [23] LDA is a twofold process that first defines the discriminant 

functions and then solves the criterion function. Discriminant functions are a series 

of input-output functions generated by the classifier, which relate the input features 

to the parameter set of the class. In dimensionality reduction, this is a prior 

estimation of the feasible reduced features, calculated from a training data set. In 

the second step, these discriminant functions are introduced into the criterion 

function that is based on between-class and within-class covariance. Depending on 

the decision rule implied in the criterion function, the optimal solution will minimize 

(Generalized LDA) or maximize (Fisher’s linear discriminants) the function. 

 

Liu [26] performed a comparative analysis between feature selection and feature projection 

methods for myoelectric pattern recognition applications. Two feature sets were tested: 

time domain (TD) features including MAV, ZC, WL and SSC; and the combination of AR and 

RMS (AR+RMS). Dimensionality reduction was carried out by PCA and ULDA (Uncorrelated 

Linear Discrimination Analysis) as feature projection methods; whereas feature selection 
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approach employed two filter objective functions: Markov Random Field (MRF) and Forward 

Orthogonal Search algorithm (FOS-MOD). MRF selects the candidate subset that maximizes 

between-class distance while minimizing the within-class distance; whereas, FOS-MOD 

maximizes the overall dependency to identify relevant features. Results show that ULDA is 

more efficient than PCA in dimensionality reduction as the projected features condense 

better the relevant information. On the other hand, for feature selection performance, MRF 

and FOS-MOD achieve similar classification accuracy. When comparing feature selection 

(MRF) against feature projection (ULDA), MRF reaches higher accuracies as the number of 

selected features increases. However, for low feature sets (up to eight) ULDA projected 

features provide more significant information yielding in better classification accuracy than 

MRF original feature set, as depicted in Figure 3.4. Finally the study concludes that 

dimensionality reduction is able to preserve classification performance while decreasing the 

number of features. This reduces the computational load and processing time of the 

classifier, allowing real-time applications. 

 

3.4.  CLASSIFICATION 

Once the acquired data have been properly processed to enhance relevant information 

while minimizing the redundant one, the next step in pattern recognition is classification. 

According to Oskoei and Hu [14], the ideal classifier should fulfill the following requirements: 

 Be able to deal with varying patterns optimally (efficient classification of novel 

patterns). 

 Prevent over fitting (noise or random error modelling) 

 Fast classification to meet real-time constrains 

There are several techniques to categorize the reduced feature vector: Bayesian Classifier 

(BC), Neural Networks (NN), Fuzzy Inference Systems (FIS), Support Vector Machines (SVM), 

Hidden Markov Models (HMM) and K-Nearest Neighbor (KNN). Next subsections describe in 

detail each classification procedure. 

FIGURE 3.4: COMPARISON OF THE CLASSIFICATION 

PERFORMANCE OF MRF SELECTION AND ULDA 

TRANSFORMATION [26] 
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3.4.1. BAYESIAN CLASSIFIER (BC) 

Bayesian Classifiers (BC) is a standard statistical classification method that applies Bayes’ 

to sort input data based on a given hypothesis. Therefore, training data creates a 

probabilistic model to classify each input with a probability associated for each feasible 

class [27]: 

𝑃(𝑐|𝐷) =
𝑃(𝐷|𝑐)𝑃(𝑐)

𝑃(𝐷)
 

where P(c) is the prior probability that the input data corresponds to that class, P(D) is 

the prior probability that the training data D will be observed (independently of the class 

hypothesis that is being analyzed), and P(D|c) is the probability of observing data D 

assuming that the hypothesis that D belongs to class c, holds. P(c|D) is the posterior 

probability or confidence classification level that relates input D to class c. 

Bu et al. [28] proposed a Bayesian Network (BN) for motion prediction using EMG 

signals. The presented model comprised BC to forecast motions, in parallel with a 

probabilistic NN called Log-Linearized Gaussian Mixture Network (LLGMN) to calculate 

the probability density functions of the input signals. In BC, motion prediction 

hypothesis was based on hand position and previous motion. The final command was 

determined combining both BC and LLGMN outputs. To demonstrate the feasibility of 

this technique, upper limb motions were analyzed during a cooking task yielding in 

classification rates of 85.1% for LLGMN alone, and 92.9% for the proposed BN. 

3.4.2. NEURAL NETWORKS (NN) 

Neural Networks (NN) are inspired in neurons’ ability to collect, process and disseminate 

action potentials. NN are composed of artificial neurons, information-processing units 

of a set of inputs and weights.  

In the first step of artificial neuron processing, the net is calculated by the arithmetic 

sum of the inputs  and weights, as depicted in Figure 3.5, where n is the total number of 

input units, xi is the input of one unit and wi, its associated weight. The next step 

evaluates the obtained net with an activation function (fact). This function works as a 

logic gate that is activated (output value near +1) or inactivated (output value near 0) 

depending on the input net value. This activation must be nonlinear being the proposed 

activation functions: threshold linear, step, arbitrary step, exponential or sigmoid [29]. 

FIGURE 3.5:  ARTIFICIAL NEURON MODEL [2] 
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The most common NN is the Multilayer Perceptron (MLP) formed by several input units, 

several hidden layers (usually one or two) and a level of output units, as represented in 

Figure 3.6. Each input unit is connected to each unit in the hidden layer with an 

associated weight. Similarly, that hidden layer is connected to the artificial neurons of 

the following hidden or output layer. This layout corresponds to a fully connected 

network, but there are also partially connected networks. 

 

According to [17] and [29], the advantages of NN are based on artificial intelligence 

learning skills, being able to: 

 Learn both linear and non-linear relationships directly from the input data without 

an a priori mathematical model. 

 Adapt to changing conditions. 

 Process corrupted or partial data sets.  

Nevertheless, its learning performance is biased by the provided number of examples. 

This workflow implies a training step to adjust network weights. This introduces the 

concept of back-propagation neural networks (BPNN) in which each unit or neuron 

receives feedback from the following layer to adapt their weights and improve the 

classification performance; see Figure 3.7. Units might even have self-connections. This 

recurrence supplies information about past events working as a short-term memory. 

Ahsan et al. [30] proposed an optimized design of artificial NN to classify four predefine 

hand motions (left, right, up and down) using a back-propagation algorithm. The 

foremost BPNN employed 7 inputs, 10 neurons in the hidden layer and 4 outputs along 

with a back propagation training algorithm called Levenberg-Marquardt (LM) that is 

used to solve non-linear least squares problems [31]. To evaluate NN classification 

performance 70% of the input data was employed for training, 15% for validation and 

15% for testing. The designed NN strcture obtained an average classification rate during 

training of 88.4%. 

FIGURE 3.6: FULLY CONNECTED MLP WITH ONE INPUT LAYER, ONE HIDDEN AND ONE OUTPUT LAYER [2] 
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There are two main learning paradigms [29]: supervised or unsupervised learning. In 

supervised learning, the user provides a series of input-output examples that the BPNN 

uses to compare the output signal to the desired or target output. Therefore, this 

approach propagates the input forward through the network, calculates the error of 

each step until a termination condition is satisfied and finally propagates the calculated 

errors backward to optimize the model. On the other hand, in unsupervised learning, 

there is no target output so the NN must extract statistical information from the input 

and develop new classes automatically. 

Subasi et al. [32] designed a Wavelet Neural Network (WNN) to classify neuromuscular 

disorders based on EMG signals. AR coefficients were calculated from the input data 

representing the target classes: normal, myopathic and neurogenic disorder. The 

proposed WNN design was built by a mono-hidden-layer forward neural network whose 

node activation function was based on dyadic discrete Morlet wavelet basic function. In 

order to test the implemented WNN classification performance, it was compared with 

a BPNN composed by an AR input layer, a fifty-neuron hidden layer and a three-neuron 

output layer. Results showed a success rate of 90.7% for WNN and 88% for BPNN. 

Chu et al. [33] presented a real-time EMG pattern recognition system based on linear-

nonlinear feature projection for a multifunction myolectric hand, using MLP 

classification. Nine hand motions were recorded with a four channel EMG from the 

forearm. The proposed method processed the data by extracting WPT features, reduced 

feature dimensions with PCA and applied Self-Organizing Feature Map (SOFM) to 

transform the PCA-reduced feature set into a new feature space with higher class 

separability. Finally data was classified with a MLP composed of: a) an input layer built 

from the eight outputs of the SOFM for the four EMG channels, b) two nine-neuron 

hidden layers and b) a nine-neuron output layer. Experimental results proved the 

suitability of this technique for real-time applications with an overall processing time 

(including virtual hand control) of 125ms. The obtained MLP average classification 

success rates were 95.795% when only PCA was applied, 97.024% for PCA+SOFM 

combination and 97.785% for SOFM algorithm alone. 

FIGURE 3.7: BACK-PROPAGATION NEURAL NETWORK (BPNN) [2] 
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3.4.3. FUZZY INFERENCE SYSTEMS (FIS)  

Fuzzy logic presents several advantages in bio-signal processing as it is able to handle 

uncertain, imprecise and even contradictory data; detect complex hidden patterns and 

allow experience and empirical information integration in the system to improve 

classification performance [14]. Fuzzy inference systems (FIS) are excellent simulators of 

human decision-making process.  

As explained by Sivanandam et al. [34], fuzzy logic works with fuzzy sets or series of 

linguistic variables that model problems’ uncertainty (i.e. qualitatively: low, medium, 

high; quantitatively: few, several, many; etc.). Therefore numerical inputs must be 

transformed into these fuzzy values by a membership function, whose values range from 

the continuous interval [0, 1] following a trapezoidal, triangular or Gaussian waveform. 

This process is called fuzzification. Once in the fuzzy domain, classification is performed 

according to a predefined set of IF THEN fuzzy rules. The output of this step is another 

fuzzy variable that needs to be converted into a crisp (not fuzzy) quantity again by 

defuzzification. 

Thus FIS comprises fuzzification interface, membership functions database, fuzzy rules 

base, decision-making unit and a defuzzification interface. See Figure 3.8. 

 

Ajiboye and Weir [35] designed a pattern recognition algorithm based on heuristic fuzzy 

logic for multifunctional prosthesis EMG control. The multiinput-single-output fuzzy 

system included: 1) Input membership functions based on the mean and standard 

deviation of the signal to fuzzify the input into OFF, LOW, MED and HIGH; 2)  an inference 

rule base to classify the data by processing the linguistic inputs and 3) a membership 

function to defuzzify the inference rule base linguistic outputs. In addition, a fuzzy c-

mean clustering method was employed for data reduction, and inference rule base 

generation so that clustering performance was optimized. The obtained overall 

classification rates ranged from 94% to 99%. 

3.4.4. LINEAR DISCRIMINANT ANALYSIS (LDA) 

As it has been previously explained, Linear Discriminant Analysis (LDA) is an algorithm 

able to reduce feature dimensions and classify them. Xiong and Cherkassky [36] 

reported that LDA’s primary attractiveness is its ability to interpret “global” 

characteristics of the data to predict the decision boundary. LDA classification searches 

FIGURE 3.8: FUZZY INTERFACE SYSTEM [34] 
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for linear combinations that maximize the distance between classes while minimizing 

the within-class variance. Hence, LDA does not employ any predefined assumption of 

the class distributions, rather estimates them from the data.  

Balakrishnama and Ganapathiraju [37] described two mapping transformations: Class-

dependent transformation that maximizes the ratio of between-class variance to within-

class variance; and class-independent transformation which maximizes the ratio of the 

overall variance to within-class variance. 

Phinyomark et al. [38] studied the behavior of fifty time-domain and frequency-domain 

features to improve myoelectric pattern recognition robustness for ten upper limb 

motions. Feature classification was performed with LDA, obtaining 93.37% average 

classification accuracy with sample entropy, and reaching 98.87% when increasing the 

number of features including sample entropy, fourth order cepstrum coefficients, RMS 

and WL. 

 

3.4.5. SUPPORT VECTOR MACHINE (SMV) CLASSIFIERS 

Support Vector Machine (SVM) is a kernel approach that builds an optimal separating 

hyperplane that maximizes the possible margin between points of k different classes. 

The margin is the perpendicular distance from the hyperplane to a class sample. 

Therefore, this hyperplane can be defined as a linear combination of the informative 

samples of the training data or support vectors that constitute the boundary of the class, 

as illustrated in Figure 3.9. Training data is mapped or classified by a nonlinear kernel 

function like a linear, polynomial, sigmoid or radial basis function [10]. 

Originally, SVM is binary classifier that divides the data into two classes. However, it can 

be implemented for multiclass problems via: one-against-all (OAA) or one-against-one 

(OAO). OAA approach employs k binary classifiers to evaluate the training set for one 

class with respect to the other ones. This method is simple, relatively fast and accurate. 

On the other hand, OAO employs k(k-1) SMV to test for all possible pair of class 

combinations. At the end, the final output is the class that obtains the highest 

contributions of the overall tests. This procedure has the advantage of retrieving a 

probability for each class, yielding in better generalization and certainty [10],[23]. 

FIGURE 3.9: REPRESENTATION OF THE OPTIMAL HYPERPLANE AS CLASS BOUNDARY AND 

ITS RELATION WITH SUPPORT VECTORS. 

Support 

Vectors Margin  

Class 1  

Class 2 
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Oskoei and Hu [10] assessed the application of SVM to classify upper limb motions using 

EMG signals. Four common kernels (radial-basis function, linear, polynomial and 

sigmoid) were evaluated against LDA, MLP with one hidden layer (MLP1) and MLP with 

two hidden layers (MLP2). Signals were collected from the forearm of eleven healthy 

individuals with four-channel EMG to classify six different limb motions. For the 

multifeature set composed of MAV, WL, SSC and ZC, results indicate a similar 

performance of all SVM-based classifiers with an average accuracy of all kernels of       

95.5 ± 3.8%, followed by LDA with 94.5 ± 4.9%. Finally, MLP2 performed similarly to SMV 

and LDA with approximately 95% average accuracy, whereas MLP1’s dropped around 

91%. 

3.4.6. HIDDEN MARKOV MODELS (HMM) 

Hidden Markov Model (HMM) is a probability-based classifier. It is formed by a network 

of states related to each other by state transition probabilities. Each state is associated 

with a probability density function (modelled as a Gaussian mixture) that depicts the 

observed data probabilistic behavior (Observation symbol probability). HMM’s outputs 

account for the probability of each state, being the highest one the final class or pattern. 

Usually, the initial-state occupancy probability and state transition matrix are 

predefined for each model. Therefore training goal is to model the Gaussian probability 

density function of each state via mean vector and covariance matrix calculation [14]. 

 

A) 

B) 

FIGURE 3.10: A) OAA AND B) OAO CONFIGURATIONS 

FIGURE 3.11: COMPONENTS OF HMM [2] 
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HMM benefits include the detection of time-varying signal characteristics, ability to 

model signal dynamics statically, high classification accuracy and low computational 

cost, suitable for real-time applications [2]. 

Chan and Englehart [39] applied HMM to classify six upper limb motions acquired by 

four EMG channels placed at the wrist, forearm and elbow. The proposed HMM was a 

state-driven method in which every motion pattern was associated to a state in the 

model. State transition probabilities were optimize empirically; assuming uniform 

distribution of the initial state and state-switching probabilities, and fixing a high 

probability to remain in a given state. The EMG signal classification of the fully 

connected HMM reached an average accuracy of 94.63%. 

3.4.7. K-NEAREST NEIGHBOR (KNN) 

The basis of this approach is that each sample is classified based on the class of their k 

Nearest Neighbors (KNN). This technique is a twofold process that first identifies the 

nearest neighbors and then classifies the input by majority voting or by distance 

weighted voting [40]. The last method gives more relevance to the nearest neighbors by 

using the inverse or negative exponential of the Euclidean distance as weights. The main 

advantage of KNN is thus, its easy implementation. 

However, KNN require training data during run time to compare the testing samples, 

and large training data sets may diminish real-time performance. Indeed it, is quite 

vulnerable to irrelevant or redundant features, but dimensionality reduction and 

neighbor weighting have efficiently solve this problem.   

Purushothaman and Ray [41] proposed a prosthetic hand motion control using 

continuous EMG signals. Six hand and wrist movements were recorded with four EMG 

channels. Both TD and fourth order AR features were calculated and dimensionally 

reduced by PCA. The study compared pattern recognition performance of KNN and NN 

for both sets. The multilayer NN was built with five input and six output neurons and 

implemented for back-propagation training algorithm. Results revealed a higher average 

classification accuracy for TD features with KNN (84.3%) than with NN (80.8%). On the 

other hand, AR features were not quite accurately classified with neither KNN (59.1%) 

nor NN (63.5%). 

3.4.8. CLASSIFIER COMPARISON 

Several studies have been conducted to compare the performance of different 

classifiers. For instance, Kaufmann et al. [42] compared conventional classifiers with 

Evolvable Hardware (EHW) to recognize eight to eleven hand movement patterns based 

on EMG signals from forearm muscles.  The tested classifiers were: KNN, MLP, SVM, 

Decision Trees (DT, based on fuzzy logic) and EHW. The latest is a new adaptable 

classification method, based on a programmable logic array like-structure that is 

optimize with evolutionary or genetic algorithms. Results of the experiment in which 

five recording sets were used for training and one for testing, show that SVM is the most 

accurate classifier with an average misclassification error of 9%, closely followed by MLP 

and KNN with 10.44% and 10.45%, respectively. 

Radman et al. [43] evaluated various feature combinations and classifiers for pattern 

recognition methods in dynamic myoelectric control systems. The classifiers employed 
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were: KNN, SVM, NN, Fuzzy Clustering (FC or FIS according to the nomenclature of this 

chapter), LDA and Mahalonobis Distance (MD), similar to the Euclidean distance but 

taking onto account correlation in the data. Eight hand motions were recorded changing 

position, orientation and load to recreate more realistic conditions. Results of the 

classification error taking into account each feature set, show an increase in 

performance from FC, MD, KNN, NN, SVM and LDA, see Figure 3.12 .Hence, due to its 

high accuracy and easy implementation, LDA was considered ideal for real-time 

applications.  

 

3.4.9. COMBINATION OF CLASSIFIERS 

The previous methods are the main classifier techniques employed in myoelectric 

pattern recognition. However, some researchers have studied the performance of 

combined classifiers in order to compensate the weaknesses of each method and refine 

their performance. The major approaches in classifier combination are according to [2], 

[44]: 

1. Parallel architecture: individual classifiers are applied independently and their 

outputs are then combined by a combiner to retrieve the final class, based on 

major voting for instance. Fariman et al. [45] designed a hybrid Adaptive 

Resonance Theory (ART)-based neural network to classify upper limb 

myoelectric signals.  ART is a supervised learning method of the NN. The 

proposed hybrid classifier (Best ART) employed four ART-based classification 

methods in parallel. The combiner algorithm is based on the classification 

accuracy of each independent classifier and the maximum rule to select the 

output with highest estimated confidence as final class. [46] Best-ART approach 

classification performance was tested against the four ART-based classifiers 

independently, KNN and LDA. Results show that Best-ART has the highest 

average classification accuracy (89.09%) and best computation time requiring 

less than half of LDA or KNN training and processing time.  

 

2. Cascading architecture: individual classifiers are employed in a linear sequence 

to compensate the errors and refine the accuracy of the preceding classifier. 

Karlik et al. [47] applied this architecture to design a neuro-fuzzy classifier called 

fuzzy clustering network (FCNN). Firstly, this method employs fuzzy clustering 

to divide the data into six overlapping clusters representing six upper limb 

motions. This algorithm estimates the center of each class and assigns input 

FIGURE 3.12: COMPARISON OF THE CLASSIFICATION ERROR AMONG THE TESTED CLASSIFIERS [43] 



Universidad Carlos III de Madrid | BACHELOR THESIS: IMPLEMENTATION OF A NNMCS FOR A PRINTED ROBOTIC HAND 

28 
 

data a certain degree of membership. This clustered data of fuzzy cluster centers 

is used as input to the NN to retrieve a final classification value. The study 

compared classification performance of FCNN, MLP and Conic Section 

Functional Neural Network (CSFNN, variation of MLP that not only takes into 

account open boundaries but also class centers) with four AR parameters and 

signal power as features. Results show a maximum classification accuracy of 

88% for CSFNN, 97% for MLP and 98% for FCNN. In addition, it was proved that 

FCNN required less training time than the other classifiers to obtain reliable 

results. 

 

3. Stacked architecture: Several classifiers are combined so that their outputs 

estimate the possible clusters and then, they are used as training set of the 

stacked classifier. Final classification takes into account a combination of the 

outputs of stacked classifier and individual ones.  Although this architecture 

offers high efficiency and flexibility in class separation, it is seldom used for EMG 

signal classification. An example of this architecture is presented in Xiong and 

Cherkassky [36] who developed a combined SVM with LDA (SVM/LDA). This 

approach can be considered a generalization of SVM that takes into account 

both local and global properties (characteristic of LDA). The SVM/LDA 

classification performance was evaluated against SVM and LDA alone, with a 

synthetically generated twonorm data set (20 dimension for 2 classes with 

normal distribution and unit covariance matrix) [48]. 90% of this data set was 

used for training, while the remaining 10% was employed in testing. Results 

demonstrate that SVM/LDA has the highest performance with an average 

classification accuracy of 98.3%, compared to SVM (95.8%) and LDA (97.4%).  

 

 

To conclude, Figure 3.13 summarizes the content of this chapter, showing the different steps 

involved in pattern recognition of a myoelectric control system, and the associated techniques 

for each step. The present thesis has been developed taking into account these theoretical bases 

to classify user’s motions in order to actuate a robotic hand. The employed methods are in bold 

in Figure 3.13.  
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EMG Acquisition

Data 
Segmentation

•Disjoint segmentation

•Overlapped segmentation

Feature 
Extraction

•Time domain: IEMG, MAV, MAV1, MAV2, MAVS, VAR, WL

•Frequency domain: AR, FMD, FMN, MFMD, MFMN

•Time-Frequency domain: STFT, WT, WPT

Dimensionality 
Reduction

•Feature selcetion

•Feature projection

•Linear Discriminant Analysis (LDA)

•Principal Component Analysis (PCA)

Classification

•Bayesian Classifier (BC)

•Neural Networks (NN)

•Fuzzy Interface Systems (FIS)

•Linear Discriminant Analysis (LDA)

•Support Vector Machine (SVM)

•Hidden Markov Model (HMM)

•K-Nearest Neighbor (KNN)

Controller

FIGURE 3.13: STEPS OF A MYOELECTRIC CONTROL SYSTEM FOR PATTERN RECOGNITION, 
WITH THE EMPLOYED TECHNIQUES IN BOLD 
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CHAPTER 4 

4.  EMG ACQUISITION SYSTEM 
The goal of the present acquisition system is to use the minimum possible number of 

components to collect accurately the EMG signal. Therefore, the system is integrated into 

MATLAB/ Simulink, to benefit from high performance and easy implementation of digital signal 

processing. This chapter describes and explains the advantages of the materials used to acquire 

the EMG signals, focusing on the electronic circuit, microcontroller and acquisition software. 

4.1. EMG ELECTRONIC CIRCUIT 

The employed EMG acquisition circuit has been developed by Ángel García Martín-Engeños 

[50] during his bachelor thesis in this Department of Signal Engineering and Automation. 

The circuit has been implemented according to De Lucas’ specifications [5], minimizing 

electromagnetic noise by maximizing the signal-to-noise ratio (SNR) and common-mode 

rejection ratio (CMRR) [51]. 

The main advantages of this circuit are its effective design and integration in the MATLAB/ 

Simulink environment. This four-channel assembly allows accurate EMG signal acquisition 

using the minimum number of components and thus, reduces the cost. Its compatibility with 

MATLAB/ Simulink offer real-time processing of the obtained signals, including digital 

filtering.  All this features imply a significant improvement from commercial acquisition 

systems that have a trade-off between accuracy and cost. Therefore, the utilization of this 

circuit is consistent with the motivation of the present study. 

The circuit can be divided in three stages represented in Figure 4.1.: fully-differential 

measurement, common mode active feedback and signal digitalization.  

 

1. Fully-differential 

measurement 

stage 

2. Common mode 

active feedback 

3. EMG signal 

digitalization 

FIGURE 4.1: MAIN PARTS OF THE EMG ACQUISITION CIRCUIT [MODIFIED FROM 50] 

Raw EMG signal to 

the microprocessor 
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4.1.1. FULLY-DIFFERENTIAL MEASUREMENT 

This is the first step in EMG signal acquisition, where the signal is measured and 

amplified. Fully-differential amplifiers work effectively with low-voltage systems like this 

one, increasing the immunity to external noise, the dynamic range of the output voltage 

and reducing the even-order harmonics (a measure of signal distortion) [52]. Its 

structure is quite similar to the standard amplifier, but instead of a single- ended output, 

fully-differential amplifiers have a differential output, as shows Figure 4.1. This 

configuration provides an independent control of the common mode signal that will be 

used in the next step to cancel noise. 

In addition, a radiofrequency passive low pass filter has been included in this stage with 

a cut-off frequency of 160 kHz, to improve circuit’s noise tolerance. Circuit’s 

performance is stabilized with another filter that adds a pole at approximately 1600 Hz. 

It is essential that this process is applied to both differential outputs so as to preserve 

the symmetry of the signal. 

The amplification of the input signal is controlled with a multi-turn potentiometer to 

optimize the gain specifically for each user. Finally, a common mode signal collector is 

placed in parallel to the differential output. 

4.1.2. COMMON MODE ACTIVE FEEDBACK 

Common mode signals are noise and artifacts that affect both inputs. Variations of 

electron input impedances, cables, input electronic components or external powerlines 

are some sources of these alterations. The idea of this stage is to collect the common 

mode signal from the user, and return its inverse back to the subject. This noise 

cancellation method is called Driven Right Leg (DRL) and has been widely used in ECG 

recordings. An extra reference electrode is placed along the DRL circuit, to provide a low 

impedance path between the subject and the reference of the amplifier. Therefore, DRL 

reduce several orders of magnitude electrode’s impedance, so that only a small non-

hazarding current flows through the subject while eliminating noise artifacts [53]. In this 

case, the reference electrode is placed in the elbow instead of the right leg, being an 

electrically neutral area near the measured muscles. This technique cancels 50/ 60 Hz 

powerline noise without applying a notch filter, and thus, avoids distortion of the EMG 

bandwidth, which ranges from 20-500 Hz. 

FIGURE 4.2: FULLY-DIFFERENTIAL AMPLIFIER VS STANDARD OPERATIONAL AMPLIFIER [52] 
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4.1.3. SIGNAL DIGITALIZATION 

The measured signals must be sent to the microcontroller for the final processing stage. 

Hence an ADC is required to convert the analog signals into digital ones that can be 

handled by the microcontroller and computer. 

The employed ADC has high delta-sigma resolution with differential input and low noise 

signal. This model uses high number of bits to map the dynamic range of the analog 

signal, and thus is able to accurately digitalize small analog signals, like the measured 

EMG. Delta-sigma ADC architecture also reduces the size and complexity of the circuit, 

as additional filtering and amplification steps can be substituted by a first order anti-

aliasing (low pass) filter. 

Sampling frequency is adjusted with an external oscillator to fulfill Nyquist theorem, 

which states that sampling frequency must be at least two-times original signal’s upper 

frequency bound to be properly recovered after digitalization. In this case, sampling 

frequency must be at least 1 kHz, but is set to 1190 Hz due to commercially available 

components. 

 

The circuit layout has been implemented in a PCB using Through-Hole Technology. Electrodes 

are linked to Jack 3.5 connectors by shielded wires to increase noise resistance. The PCB has five 

female Jack 3.5 plugs for: the four input signals (one from each channel) and the elbow reference 

electrode. On the other hand, a ten pin male connector is used for power supply and output-

microcontroller communication. Figure 4.3 depicts the employed PCB.  

  

 

FIGURE 4.3: PCB OF THE EMG ACQUISITION CIRCUIT 
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4.2.  STM32F4 MICROCONTROLLER 

The microcontroller board is the intermediary between the acquisition circuit and the 

MATLAB/ Simulink environment, where the acquired signals are finally processed. 

Therefore, STM32F4-Discovery has been chosen due to its high compatibility with MATLAB/ 

Simulink and its low cost.  

STM32F4 Discovery is built around STM32F407VGT6 microcontroller with 1 MB of Flash 

memory and 192 KB of RAM. This microcontroller is able to work at 168 MHz/ 210 DIMPS 

(Dhrystone Million Instructions per Second, measure of computer performance) with 

floating numbers; providing an edge in control algorithm execution, code efficiency and 

support for meta-language tools, among other features. Furthermore, STM32F407VGT6 is 

designed for high performance and ultra-fast data transfers, significantly relevant for real-

time control applications. 

The embedded microcontroller is connected to several peripherals (Figure 4.4) that include: 

 ST-LINK/V2 programming and debugging tool 

 2 Pushbuttons (user and reset) 

 LED (LD3 – LD6) 

 CS43L22 audio DAC 

 USB  

 LIS302DL or LIS3DSH accelerometer 

 MP45DT02 microphone 

 Connectors (80 pins)  

The board can be powered by the host PC through the USB cable or by an external 5V 

source. In addition, STM32F4 can be used as a power source delivering 3V and 5V.  

FIGURE 4.4: A) HARDWARE BLOCK DIAGRAM AND B) STM32F4 BOARD [54] 

A) B) 
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More information can be found in the user manual of the manufacturer [54] (including 

datasheet and schematics). 

4.3.  ACQUISITION SOFTWARE 

Along this chapter, great importance has been given to digital signal processing so as to 

develop a robust, flexible and fast acquisition system. In this step, the EMG signals are 

filtered to eliminate undesired frequencies below 20 Hz and above 500 Hz. To achieve this, 

the acquisition system employs a MATLAB/ Simulink Advanced Rapid Control Prototyping 

(ARCP) system implemented by the PhD. Antonio Flores Caballero [55], member of the 

Department of Systems Engineering and Automation.  

4.3.1. SIMULINK RCP METHODOLOGY 

As stated in [55], RCP comprises all software and hardware techniques that shorten 

control systems development and practical application. To achieve this, a high level of 

abstraction is required to handle programing complexity; yielding in an automatic code 

generation, compilation and program loading in the hardware. Visual or graphical 

programming languages like Simulink’s, provide this abstraction level as well as a Model 

Based Design that allows both simulations and RCP systems’ programming, among other 

applications. Therefore, multidisciplinary users without a deep background in 

programing, can benefit from this intuitive technology to avoid low-level configuration 

and work directly with real hardware of control.  

Usually, RCP systems have been utilized for development stages and laboratory 

experimentation; however, the present ARCP, also covers the final implementation and 

validation stages, providing more accurate results. ARCP technology focuses on real-

time applications and digital signal processing, using just one microcontroller for the 

different stages mentioned before. 

Consequently, this combination of Simulink and ARCP, constitute a powerful 

environment to process signals immediately after acquisition for analysis, control or 

simulation purposes. In addition, MATLAB and Simulink integration, enable the 

exportation of Simulink results for further processing with MATLAB algorithms [56].  

4.3.2. SIMULINK ACQUISITION MODELS 

According to García Martín-Engeños [50], two block-models have been developed with 

Simulink and ARCP software. The first one, called Target, is implemented in STM32F4 

Discovery board to acquire and send the data to the second model. The latest is the so 

called Host model, which is executed in the PC, and is in charge of communication with 

the workspace where EMG signals are processed. These models have been developed 

using Simulink own libraries as well as “Waijung blockset” implemented by Aimagin [57] 

and “UC3M ADDONS STM32F4”, by Antonio Flores Caballero. 

4.3.2.1. TARGET MODEL 

This model is implemented in STM32F4 Discovery board and is built with five major 

blocks: Target Setup, SPI Master Setup, ADCx, Data Composer and USB VCP Send 

STM32F4. 
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4.3.2.1.1. TARGET SETUP 

Target Setup configures the hardware, in this case STM32F4 Discovery. 

Several options can be modified like the selected compiler that translates 

Simulink’s block models into board code, or the sampling frequency at 

which the board works. This last parameter should be always equal or 

greater than the sampling frequency of the USB and SPI Simulink blocks, 

compiler model and microcontroller model. 

4.3.2.1.2. SPI MASTER SETUP 

SPI Master Setup configures the parameters of the Serial Peripheral 

Interface (SPI) bus that transmits the digitalized signals from the ADCs of 

the acquisition circuit.  

Some parameters depend on the slave device (the acquisition circuit), like 

data format, baud rate or clock polarity and phase; whereas others are 

specific for the application of the model. The employed configuration 

enables receiving data from the slave (Half-Duplex_Rx direction) and 

reading the four channels simultaneously (Custom slave select mode). 

Custom parameter requires an extra Digital Output block to implement the 

desired selection control, which is integrated in the ADCx block in this 

model. 

4.3.2.1.3. ADCX 

ADCx controls the reception of signals from the circuit. It is formed by three 

sub blocks as illustrated in Figure 4.5, which perform specific functions. The 

model has four ADCx blocks, one for each channel. 

The first sub block called CSx (blue in Figure 4.6) associates the physical 

channel x to the reading port of STM32F4 Discovery. Its internal Digital 

Output block enable the reading of the selected channel x by assigning a 0 

to its pin during the reading time, whereas the non-selected channels have 

a fixed 1 in their corresponding pins.  

Secondly, SPI Device x (green in Figure 4.6) actually reads the data of the 

enabled channel x. Finally the third sub block CS-off (gray in Figure 4.6), 

disconnects all channels digitally, assigning a 1 to their pins, and thus 

stopping the reading process. 

FIGURE 4.5: SPI MASTER SETUP AND SELECTED CONFIGURATION  



Universidad Carlos III de Madrid | BACHELOR THESIS: IMPLEMENTATION OF A NNMCS FOR A PRINTED ROBOTIC HAND 

36 
 

Therefore, all ADCx must work in synchrony to read the four channels 

simultaneously. 

 

4.3.2.1.4. DATA COMPOSER 

Data composer converts the train of digital pulses retrieved from the ADC, 

into int32 format with the algorithm of Figure 4.7. 

ADC1 

CS1 

SPI Device 1 

CS_off 

FIGURE 4.6: ADCX BLOCK AND SUB BLOCKS 

FIGURE 4.7: DATA COMPOSER INTERNAL BLOCK DIAGRAM 
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4.3.2.1.5. EXECUTION TIME PROFILER 

This block measures the execution time of the model in microseconds for 

the STM32F4xx microcontroller family. 

4.3.2.1.6. USB VCP SEND STM32F4 

USB VCP Send STM32F4 block is responsible for the USB communication 

between STM32F4 and PC. It collects the pre-processed EMG data and 

sends them to the Host model for the final processing step. The 

configuration of this block sets the amount of data transferred per packet, 

format, heading, terminator and transfer speed. The sampling frequency 

that determines this last parameter, must be always equal or smaller than 

Target Setup’s.  

 

Figure 4.8 depicts the complete Target model with the blocks explained before and 

their connections. 

  

FIGURE 4.8: SIMULINK TARGET MODEL 
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4.3.2.2. HOST MODEL 

The Host model is implemented in the PC to filter, store and visualize the pre-

processed EMG signals from the Target model. Host model comprises: Host Serial 

Setup, Host Serial Rx, Data Type Conversion, Digital filter design, CHx and To 

Workspace blocks. 

 

4.3.2.2.1. HOST SERIAL SETUP 

This block configures the communication between STM32F4 Discovery and 

the PC through the COM port. Host serial setup determines the USB port 

for data transmission, reading speed (baud rate) and communication 

synchrony.  

4.3.2.2.2. HOST SERIAL RX 

Host Serial Rx receives the data from Target’s USB VCP Send STM32F4 

block, and therefore, their configuration must be identical in terms of 

amount of transferred data, format, header and termination. In addition 

the same COM port as in Host Serial Setup must be selected. 

4.3.2.2.3. DATA TYPE CONVERSION 

This block converts the input signal data into the chosen format, applying 

the selected rounding method. In this case, Data Type Conversion 

transform the int32 input into single format using floor rounding.  

4.3.2.2.4. DIGITAL FILTER DESIGN 

Regarding digital signal processing, the filtering block is the most important 

part of the model. Digital filters are more precise, smaller and cheaper to 

implement than analog filters, with the only drawback of increasing slightly 

the computing time. 

The aim of this filter is to eliminate the frequency bands that do not provide 

myoelectric information. Therefore, a bandpass filter is required to 

eliminate the frequencies below 20 Hz and the ones above 500 Hz. A high 

order (8th) filter is implemented due to its resemblance to the ideal filter.  

Furthermore, Butterworth filter architecture has been chosen due to its 

high performance compared to other filter types, as depicted in Figure 4.9 

 

FIGURE 4.9: COMPARISON OF THE STABILITY PERFORMANCE OF DIFFERENT FILTER TYPES [50] 
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The final filter configuration is indicated in Figure 4.10 

 

4.3.2.2.5. TO WORKSPACE 

To Workspace block saves the processed EMG signals into a MATLAB 

timeseries, array or structure which is sent to MATLAB workspace. In this 

model, the signals are stored in a struct with a time array. 

 

4.3.2.2.6. CHX 

This block is a time scope that displays the processed signal that is saved in 

the workspace.  

 

 

  

FIGURE 4.10: HIGH ORDER BUTTERWORTH BANDPASS FILTER CONFIGURATION 
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Figure 4.11 represent the compete Host model that is implemented in the PC, with 

the blocks explained previously. 

 

 

The following scheme, Figure 4.12, is a review of the content of this chapter, in which each 

device is coupled with its correspondent processing step. The diagram covers the acquisition 

process from the analog circuit up to the final processing step and storage in the computer. 

Dashed lines in Simulink’s models represent the device or process controlled by that block.  

Finally, the obtained signals have been used in this study to develop a training set for the 

employed NN classifier. 

 

FIGURE 4.11: SIMULINK’S HOST MODEL 
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FIGURE 4.12: EMG ACQUISITION SYSTEM 
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CHAPTER 5 

5.  NEURAL NETWORK-BASED MYOELECTRIC 
CONTROL SYSTEM 

This chapter describes the implementation process of the neural network-based myoelectric 

control system (NNMCS). The NNMCS works with a predefined set of gestures recorded with the 

acquisition circuit previously explained. Several features are extracted and dimensionality 

reduced to train the NN. Once the configuration of the NN has finished, it is implemented in a 

Simulink block in order to build the real-time control model. 

5.1.  GESTURES 

The 3D printed robotic hand that has been used as a support for the present control system, 

has 7 pre-programed movements at its low control level. More information is provided in 

the Bachelor Thesis of Esperanza Marín Conde: “Construction of a Robotic Hand for 

Myoeletric Control System Research Applied to Low-Cost Prostheses” [58], which 

corresponds to the first part of this project.  

These gestures comprise: open/ close hand, extended index, pincer movement, pronation/ 

supination and hand’s neutral position, in which all fingers are slightly bent, called rest. The 

user must perform these motions to actuate the printed robotic hand. Therefore, the first 

step in NNMCS development is to record these gestures to train the NN classifier, so that it 

can interpret user’s movement intentions. 

5.2. ACQUISITION PROCEDURE 

To record these gestures, 4 EMG channels have been used (each of them with two Ag-AgCl 

surface electrodes) and a reference electrode in the elbow. As the programmed gestures 

involve mainly the movement of the fingers, two pairs of electrodes have been placed on 

top of Flexor digitorum superficialis and Extensor digitorum muscles. In addition, two more 

pairs of electrodes have been used to record the activity of Flexor carpi ulnaris and 

Brachioradialis responsible for hand flexion and pronation/supination, respectively. Figure 

5.1 shows the electrode pairs location in the forearm. 

  

FIGURE 5.1: TARGET MUSCLES AND ELECTRODE LOCATION 
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Once the electrodes have been placed properly, they are connected to the acquisition 

system explained in Chapter 4, including the EMG acquisition circuit and STM32F4 Discovery 

microcontroller and PC Simulink models. In order to automatize the motion recording 

process, a MATLAB script has been implemented. This program requests the user to perform 

the desired motions in a certain order: 

 

1. Motion 1: Close hand 

2. Motion 2: Open hand 

3. Motion 3: Extended index 

4. Motion 4: Pincer movement 

5. Motion 5: Pronation 

6. Motion 6: Supination 

7. Motion 7: Rest 

 

Each motion is repeated five times, alternating with resting periods. The data acquisition 

program calls Simulink’s Host model, which is connected to the Target model in STM32F4, 

to record signals of 5 s at 1 kHz sampling frequency. The idea of this methodology is to record 

only the static signals, therefore, the first 100 samples are removed to correct small 

transition between rest and the performed motion, as well as filter stabilization.  

 

To save the obtained signals, four matrices (one for each channel) are allocated to each 

motion. Every repetition is stored in a column of its corresponding motion-channel matrix. 

The final outcome of the program are 28 motion-channel matrices of 4900x5. As this data 

set is quite large, the acquired signals are furtherly processed to extract their features and 

reduce their dimensions. 

 

5.3. IMPLEMENTATION OF THE MYOELECTRIC CONTROL SYSTEM 

The main concern of the present work is to provide a real-time control of the prosthetic arm; 

therefore, the most important issue regarding to signal processing is to reduce the 

computational load the maximum possible. 

 

The first measure to achieve this and fulfill real-time constrains, has been the recording of 

the stationary part of the EMG signals. This approach enables precise transitions between 

the different gestures, dividing the data into shorter segment lengths without critically 

compromising classification accuracy, and reduce computational load, as no time-frequency 

domain features are required to describe transitory components. 

 

These advantages have been taken into account to process the acquired data and develop 

the NN classifier. In this section, the generation and training of the NN classifier are 

explained along with the required data segmentation, feature extraction and dimensionality 

reduction. 
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5.3.1. DATA SEGMENTATION AND FEATURE EXTRACTION 

After the acquisition process is completed, each motion-channel matrix is processed 

independently. Firstly, the analyzed matrix is split into disjoint segments of 150 samples, 

which correspond to 150 ms. As previously mentioned, steady-state signals are less 

sensible to misclassification due to short segment length; therefore in the present work, 

this length has been slightly reduced from 200 ms to 150 ms to leave more time for the 

pattern recognition process. 

Once the signal has been segmented, nine time-domain features are computed. This 

feature domain choice is based again on the perspective of reducing the computational 

load. Time-domain features have proven a relatively high classification accuracy and 

computation efficiency when compared to frequency-domain features [21]. Hence, the 

chosen features are: IEMG, MAV, RMS, VAR, WL, ZC, SSC, WAMP and SSI, allocated to 

feature 1-9 respectively. The program in charge of feature extraction, calculates these 

parameters according to the equations of Table 3.1, for each segment of each repetition 

of the corresponding channel of the analyzed motion. A flowchart of the program is 

represented in Figure 5.2. 

  

FIGURE 5.2: FLOWCHART OF THE FEATURE SEGMENTATION AND FEATURE EXTRACTION MATLAB SCRIPT 
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Finally, an m-by-n feature matrix is generated, arranged according the distribution 

scheme depicted in Figure 5.3. 

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑚𝑥𝑛 

 

𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑡𝑖𝑜𝑛𝑠 · 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 · 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 · 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

 

 

  Feature 1 … Feature 9 

  Ch1 … Ch4  Ch1 … Ch4 

Motion 1 
Rep. 1        

…        
Rep. 5        

… …        

Motion 7 
Rep. 1        

…        
Rep. 5        

 

 

 

5.3.2. DIMENSIONALITY REDUCTION 

The obtained feature matrix needs to be reduced to accelerate motion classification. 

The selected technique has been feature projection using LDA, due to its robustness and 

higher classification accuracy of its reduced feature set compared to PCA’s [26]. 

The integration of this technique into MATLAB environment, and thus in the present 

study, has been possible with drtoolbox (Dimensionality Reduction MATLAB toolbox) 

developed by Laurens van der Maaten of Delft University of Technology [59]. The LDA 

function provided by drtoolbox is based on Fisher’s Linear Discriminant criterion 

function, which maximizes the ratio of between-class variance and within-class variance.  

The function receives as inputs: the data to be reduced, a target matrix and the number 

of dimensions of the embedded feature space. The input data matrix must have 

variables (features) in columns and observations (movement repetitions) in rows, which 

is already fixed for the previously constructed feature matrix. The target matrix labels 

each instance of each motion with a specific value. The last input determines the 

dimensions of the embedded space in which the feature matrix is mapped, to create a 

smaller matrix with the optimal combination of original features. In practice, this 

parameter controls the size of the reduced feature matrix; and hence, the degree of 

dimensionality reduction. 

Firstly, the script computes the mean (μ) of the original set and the total covariance (ST). 

With these values, between-class (SB) and within-class (SW) scatter are calculated to set 

out the generalized eigenvalues and eigenvectors problem: 

𝐴 · 𝒗 = 𝜆 · 𝒗 

FIGURE 5.3: DISTRIBUTION OF THE FEATURE MATRIX 
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where = 𝑆𝑤
−1 · 𝑆𝐵 , corresponding to Fisher’s linear discriminants criterion function 

that needs to be maximized; v are the generalized eigenvectors and λ, the eigenvalues. 

The importance of these parameters is that they determine the new LDA subspace. 

Basically, the eigenvectors represent the axis of the new subspace, and the associated 

eigenvalues dictate how informative the new axis are. The higher the eigenvalues, the 

more informative the eigenvectors are, so the ratio of between-class and within-class 

variance increases, yielding in better class separability. Therefore, the eigenvalues and 

eigenvectors are sorted in descending order to construct the linear mapping matrix 

denoted by M. Its column size is limited by the inputted number of dimensions. 

Finally, the function outputs the mapped set (reduced features), as well as the mapping 

information including the mean, mapping matrix M formed by the eigenvectors, and the 

sorted λ eigenvalues.  

The reduced feature set is used to train the NN; whereas the mapping information is fed 

into out_of_sample function of drtoolbox. This function reduces the dimensions of new 

data applying the transformation provided by mapping information. A trained LDA 

dimensionality reduction block is implemented in Simulink’s control model, employing 

both mapping information and out_of_sample function, to reduce feature dimensions 

of the EMG signals in real-time. 

 

5.3.3. NEURAL NETWORK GENERATION AND TRAINING 

The generation of the NN classifier is the crucial step in the implementation of the 

myoelectric control system. MATLAB provides a Neural Network Toolbox with several 

functionalities: Function Approximation and Nonlinear Regression, Pattern Recognition 

Classification, Clustering, Time Series and Dynamic Systems, Neural Network Control 

Systems and Define Neural Network Architectures [60]. For the present work, the utility 

that has been used is Pattern Recognition Classification. 

The workflow of the NN generation comprises: 

1. Data collection 

2. Network creation 

3. Network configuration 

4. Weights and biases initialization 

5. Network training 

6. Network validation (post-training analysis) 

7. Network utilization 

There are two approaches to generate the NN: Neural Pattern Recognition graphical 

user interface (GUI) and command-line functions. nprtool opens the Neural Pattern 

Recognition App, which guides the user through the NN generation steps. Once the NN 

has been created, trained and validated; the GUI can generate a MATLAB script (with 

command-line functions) to reproduce the NN generation steps and configuration 

employed by GUI. This script not only enables a faster NN creation and training with new 

data sets, but also provides advanced configuration parameters, which are not available 

in the GUI. However, it is advisable to use the GUI to firstly implement this script, as it is 

more intuitive than directly programming with NN Toolbox functions.  
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Firstly, the GUI requests the definition of the problem, where the user selects the input 

data that is presented to the NN and the target matrix that indicates the desired NN 

output. These variables must be in the workspace to be loaded. Depending on the 

element arrangement of the input data, it can be classified into matrix columns or row 

columns. Reduced features matrix follows the matrix row configuration, where the 

number of columns determines the number of elements, and the number of rows, the 

samples of the data set. This parameter is important to construct the target matrix, as it 

must have the same structure type as the input data. This matrix works as a switch in 

which 1 means belonging to that class (motion in this case) and 0, no fit in. The target 

matrix arrangement depicted in Figure 5.3, creates a class for each motion, with the 

same sample size as the reduced features matrix. 

𝑡𝑎𝑟𝑔𝑒𝑡_𝑚𝑎𝑡𝑟𝑖𝑥𝑚𝑥𝑛 

 

𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑡𝑖𝑜𝑛𝑠 · 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 · 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑡𝑖𝑜𝑛𝑠 

 

 M1 M2 M3 M4 M5 M6 M7 

M1: (nRep·nSeg)x1 1 0 0 0 0 0 0 
M2: (nRep·nSeg)x1 0 1 0 0 0 0 0 
M3: (nRep·nSeg)x1 0 0 1 0 0 0 0 

M4: (nRep·nSeg)x1 0 0 0 1 0 0 0 
M5: (nRep·nSeg)x1 0 0 0 0 1 0 0 
M6: (nRep·nSeg)x1 0 0 0 0 0 1 0 
M7: (nRep·nSeg)x1 0 0 0 0 0 0 1 

 

The next GUI window, divides the input data into training, validating and testing subsets. 

The training set is presented to the NN to adjust the weights and bias to improve 

classification. The validation step measures the generalization of the NN and halts 

training, when generalization no longer improves. The testing set does not affect 

training, rather provides an independent measure of the NN performance during and 

after training. The default values are 70% for training, 15% for validation and 15% for 

testing. 

This tool also adjusts the NN architecture. Initially, the NN is a two-layer feed forward 

network with one sigmoid hidden layer and one softmax output layer. The number of 

neurons of the hidden layer is determined by the user, whereas the number of neurons 

in the output layer depends on the number of classes established by the target matrix 

(number of columns n in this case). The higher number of neurons in the hidden layer, 

the higher computation, and more tendency to overfitting the data; however, increasing 

this number might solve complex problems more efficiently. Therefore, several hidden 

layer settings are evaluated in this work to provide the best classification and 

generalization performance.  

 

FIGURE 5.4: TARGET MATRIX LAYOUT 
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The remaining process involved in NN generation is NN training (nntraintool), in which 

weights and bias are adjusted so that the computed output data fit the target. The 

training procedure set by default is the scaled conjugate gradient back propagation 

(trainscg) that indicates how far and in which direction the currently computed outputs 

are with respect to the target. The goal of this training approach is to minimize the 

gradient with each epoch or NN processing cycle. Classification performance is 

measured by means of cross entropy (crossentropy). This method penalizes greatly 

misclassified outputs, whereas fairly correct outputs are assigned very little penalty. 

Thus, the smaller the cross entropy is, the better classification performance. Training 

method and performance measure can be modified in the MATLAB script but not in the 

GUI. During training, the GUI displays a new window summarizing the employed 

architecture and algorithms, as illustrated in Figure 5.5. In addition, training progress 

information and several plots measuring the performance are also available.  

 

 

FIGURE 5.5: NEURAL NETWORK GUI TRAINING WINDOW 
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Results of the training process include the number of samples dedicated to training, 

validation and testing, along with cross entropy (CE) and Percent Error (%E) as indicated 

in Figure 5.6.  

If the obtained results are not satisfactory, the application enables retraining, modifying 

NN architecture, import larger data sets and perform additional tests. This last option 

allows the NN testing with new different data sets, calculating also their CE and %E. 

The present work has benefited from the toolbox deployment alternatives to implement 

the generated trained NN into a Simulink diagram. Hence the NN classifier can be 

integrated into the Simulink control model. 

As previously mentioned, the final step in the GUI application allows the creation of a 

MATLAB script implementing the generated NN, in addition to saving the obtained 

MATLAB network object, performance information, outputs and errors in the 

Workspace. 

 

All these offline processing steps (Figure 5.7) generate a trained NN classifier, based on the 

reduced features extracted from the recorded signals, which can be incorporated into 

Simulink’s control environment. 

 

 

 

5.4.  SIMULINK CONTROL MODEL OF THE NNMCS 

Simulink’s graphical programming is a powerful and intuitive tool to develop Model-Based 

design control systems. The integration of all previous steps: EMG acquisition, 

segmentation, feature extraction, LDA dimensionality reduction, NN classifier and hand 

FIGURE 5.6: TRAINING RESULTS OF THE NEURAL NETWORK 

 

Data 
Selection

Network 
Architecture

Training Validation
Simulink Block 

Generation

FIGURE 5.7: STEPS TO GENERATE A TRAINED NN SIMULINK MODEL 
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actuation control; not only improves the robustness of the system but also enable model 

simulation and testing. The implemented system can be considered as a more complex 

signal processing model than the one employed just for EMG signal acquisition. Therefore, 

the EMG Acquisition block of the Host model and the Target model will be the same. Figure 

5.8 depicts the unification of all pattern recognition steps into the Host model. 

Firstly, Host Serial Setup is configured to provide a communication port between the PC and 

the STM32F4 Discovery. In this case, the microcontroller sends the EMG signals to the PC 

Host model and receives the corresponding motion command for hand actuation, yielding 

in a two-direction communication flow. 

As previously mentioned, the EMG Acquisition block has the same internal architecture as 

the model explained in Chapter 4, see Figure 5.9. Target model reads the EMG signals from 

the analog circuit and sends them to the Host model. This data transmission is controlled by 

USB VCP Send STM32F4 and Host Serial Rx, in the Target and Host model respectively. The 

input signals are converted to single data type and filtered digitally with the high-order 

Butterworth bandpass filer implemented in Digital Filter Design block. 

  

FIGURE 5.8: SIMULINK HOST MODEL OF THE NNMCS 

FIGURE 5.9: EMG ACQUISITION BLOCK AND INTERNAL DIAGRAM 
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The next step is signal segmentation; however, the MATLAB methodology used in offline 

training no longer applies for Simulink’s real-time signal processing. In the Simulink model, 

the EMG signals are segmented using a Tapped Delay Line block for each channel. These 

blocks do not output any signal until n number of samples (150, in this case) are collected. 

As MATLAB external functions (feat_extr and feat_reduction) output double precision data, 

a Data Type Conversion block has been added to shortcut this transformation, as 

represented in Figure 5.10. 

The following processing stages are MATLAB function blocks, which generate the 

corresponding MATLAB function embedded code for Simulink environment. Feature 

Extraction block creates a feature vector following the same procedure as in offline training, 

adapting to the new input data size. In Dimensionality Reduction, feat_reduction employs 

the mapping configuration of the NN training data set to reduce the dimension of the 

feature vector, applying out_of_sample drtoolbox function. 

The Trained Neural Network Classifier block is responsible for gesture identification and 

comprises two sub blocks: the trained NN itself and a class identifier; as illustrated in Figure 

5.11. The trained NN is the Simulink block generated with the nprtool GUI/ scrpit. It receives 

the reduced features and outputs a 1x7 vector representing the probability of the analyzed 

signal to be classified in each motion. Therefore, a class identifier is required to detect the 

maximum probability and send the associated gesture number (Maximum block index 

output) to the Hand actuation control. 

 

 

 

FIGURE 5.10: SEGMENTATION BLOCK AND ITS INTERNAL DIAGRAM 

A) TRAINED NN INTERNAL DIAGRAM B) CLASS IDENTIFIER INTERNAL DIAGRAM 

FIGURE 5.11: TRAINED NEURAL NETWORK CLASSIFIER BLOCK AND INTERNAL MODELS 
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The final Hand actuation block belongs to the low-level control of the robotic hand 

developed by E. Marín [58]. The internal diagram (Figure 5.12) is based on a Multiport Switch 

with the same number of data ports as feasible movements. An additional control input 

receives the motion number generated by the Class Identifier of the Trained NN Classifier, 

and outputs the corresponding motion information. The asterisk in Rest motion input, not 

only indicates that it is the default gesture, but also the selected position if an error in 

motion selection occurs. The outputted data comprises the angular positon of each 

servomotor of the robotic hand, which is sent to the STM32F4 for hand actuation with 

another Host Serial Tx block. 

 

This chapter has explained how the pattern recognition steps (signal acquisition, segmentation, 

feature extraction, dimensionality reduction and classification) have been integrated into an 

offline MATLAB training program and the NNMCS in Simulink. The remaining steps in real-time 

control development, involve system simulation and testing. 

CLOSED HAND INTERNAL 

CONFIGURATION 

FIGURE 5.12: HAND ACTUATION BLOCK AND INTERNAL DIAGRAMS 
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CHAPTER 6 

6. TESTS AND RESULTS 
In this chapter several NN and data configurations are tested and discussed. The idea of this 

evaluation is to provide the optimal parameters to implement the NNMCS. Once the best NN 

configuration has been identified and implemented, it has been evaluated for real-time 

application and tested with data sets recorded from different sessions. 

6.1.  OPTIMAL NEURAL NETWORK CONFIGURATION 

To determine the optimal NN, a nprtool script has been generated so that training algorithm 

and performance function can be modified. In addition, the code trains 10 NN and average 

their outputs to increase the generalization of the classifier. In order to evaluate the 

different NN setups, 5 sets of EMG signals have been recorded in the same session with 5 

repetitions of each motion. The tests have focused on: the number of gesture repetitions 

required to train the NN efficiently, the optimal number of LDA reduced dimensions, the 

training algorithm and performance function, and the NN architecture or number of hidden 

neurons. 

6.1.1.  MOTION REPETITIONS OF THE NEURAL NETWORK TRAINING SET 

The main problem of NN classifiers is overfitting, which is characterized by a small error 

in classification accuracy of the training data set, but a significant error increase when 

evaluating the NN with new data sets. To solve this, the generalization of the classifier 

must be improved so that the NN does not memorize the training problem.  To achieve 

this, four training sets with different motion repetitions have been employed in NN 

training. For the present work, the first issue in NN optimization is determining the ideal 

number of gesture repetitions required to generalize pattern identification. 

Five EMG sets are recorded with five repetitions per movement. These sets have been 

combined and processed to produce larger data inputs for NN training: 

 Training Set 5: 5 repetitions 

 Training Set 10: 10 repetitions, combining sets 1 and 2 

 Training Set 15: 15 repetitions, combining sets 1,2 and 3 

 Training Set 20: 20 repetitions, combining sets 1-4 

To test the generated NN independently, the remaining data sets have been used 

yielding in: 

 Testing Set 5: 5 repetitions corresponding to the fifth set 

 Testing Set 10: 10 repetitions after fusing sets 4 and 5. Notice that Training Set 

20 is not tested with this set, as it already includes set 4. 

The next step is determining the dimensions of the LDA dimensionality reduction to 

process these signals. 
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6.1.2.  LDA REDUCED DIMENSIONS 

Dimensionality reduction determines the relevant information to represent a feature 

set, reducing the complexity of the classification problem. Nevertheless, there is a 

tradeoff between the reduced computational load due to this simplification, and the 

quality of the mapping. lda function of drtoolbox, has been employed to assess the 

feasible dimensions in which the feature matrix can be mapped.  

For every NN training set, an LDA mapping is generated for each possible dimension. 

This mapping is inputted into out_of_sample function to dimensionally reduce the 

testing sets. These sets are then fed into the NN to analyze their performance. 

6.1.3.  TRAINING ALGORITHM 

In the performed experiments, two training methods are compared: Scaled Conjugate 

Gradient (trainscg) and Bayesian Regularization (trainbr) backpropagation.  

As previously mentioned, Scaled Congugate Gradient is the default method, which is 

based on the gradient to classify the input data. With this method (trainscg), data is 

divided into different subsets: 75% for training, 15% for validation and 15% for testing. 

This division is especially relevant for early stopping method, which halts the NN training 

when the validation error increases. The performance is evaluated by means of Cross 

Entropy (crossentropy).  

On the other hand, Bayesian Regularization (trainbr) is an automatized regularization 

method that minimizes the linear combination of squared errors and weights to create 

a NN with high generalization. In this case, the performance function is the Mean 

Squared Error (mse). Bayesian regularization takes place within the Levenberg-

Marquardt algorithm, which estimates the quadratic approximation of the problem. This 

process is iteratively refined until convergence, so it is not advisable to divide the data 

and end the training process with early stopping. During testing, the default parameters 

of trainbr have been used, being most relevant ones:  

 Epoch: 1000 

 Performance goal (perf): 0 

 Minimum performance gradient (min_grad): 1e-7 

 Maximum mu (mu_max): 1e10 

Mu is the Marquardt adjustment parameter, which guides the optimization 

process. It changes during each iteration decreasing if the sum of squared errors 

decreases, and increasing otherwise. 

For the present configuration, the training process is halted when one of the following 

conditions is satisfied: 

 Maximum number of epoch is reached. 

 Performance is minimized to the goal (perf). 

 Performance gradient falls below min_grad. 

 Mu exceeds mu_max. 

Therefore, the duration of the offline NN training process is expected to be longer for 

trainbr than trainscg. 



Universidad Carlos III de Madrid | BACHELOR THESIS: IMPLEMENTATION OF A NNMCS FOR A PRINTED ROBOTIC HAND 

55 
 

6.1.4. NUMBER OF HIDDEN NEURONS 

Once the optimal number of movement repetitions required for training and reduced 

dimensions have been assessed, several NN architectures are tested. The evaluated NNs 

are two-layered feedforward networks with varying number of hidden neurons (3, 5, 7, 

10 and 15). For the first part of the testing process the default configuration of 10 hidden 

neurons has been applied. This evaluation aims to simplify the NN the maximum 

possible without compromising its classification accuracy and generalization. The 15 

hidden neuron setup has been also included to increase the flexibility of the network 

and check if there are complex data relationships and how they affect classification 

accuracy and generalization. Higher values of hidden neurons have not been employed 

due to the increase in complexity and the tendency to overfit the data. 

 

6.2.  DIFFERENT SESSION TESTING 

This final testing step aims to quantify the generalization and robustness of the 

implemented NN for testing sets recorded during different sessions. These signals have been 

processed following the same protocol of the previously evaluated sets.  

Two sets of 5 motion repetitions are acquired on two different days to obtain Testing Set 5 

Day 1.a and 1.b, and Testing Set 5 Day 2.a and 2.b. Both signals are dimensionally reduced 

to the optimal number of dimensions using the mapping of the best training set. Finally they 

are inputted into the generated NN to analyze the classification accuracy. 

 

6.3.  EVALUATION FOR REAL-TIME APPLICATION 

Throughout the development of the NNMCS, meeting real-time constrains have been the 

bare essential. After determining the best NN setup for EMG pattern recognition, the 

implemented NN has been evaluated for its suitability for real-time control systems.  

In this test, not only the time spent by the NN in the decision-making process is measured, 

but also the time required to segment the acquired signal, extract the features and reduced 

them to the optimal dimensions. 

This evaluation is performed with MATLAB profile function, which calculates the execution 

time of a MATLAB code and enables tracking the time spent in each child function. In this 

case, each processing step has been implemented in the following functions: segmentation, 

feature_extraction, feature_reduction and NN_classification. The program is fed with just 

one 150-sample segment for each channel of a recorded signal, so the Simulink 

segmentation process is simulated with a delay of 150 ms. The final result is then, compared 

to the real-time constrain of 300 ms. 
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6.4.  RESULTS 

6.4.1. RESULTS OF OPTIMAL NEURAL NETWORK CONFIGURATION 

Tables 6.1 to 6.4 represent the classification accuracy and generalization results 

obtained for the different training sets reducing their dimensions to 2-6 LDA dimensions. 

The reduced features have been analyzed for both trainscg and trainbr algorithms. 

Training sets provide a measure of classification accuracy of the trained NN. 

Generalization is analyzed from the classification accuracy of the testing data sets. The 

higher these percentages are, the better the NN generalizes and fits new data.   

2 3 4 5 6

Training Set 10 (trainscg) 71,7 83,4 85,9 90,1 92,1

Testing Set 5 (trainscg) 41,7 34,5 35,0 39,8 41,0

Testing Set 10 (trainscg) 52,1 45,3 41,7 52,8 50,9

Training Set 10 (trainbr) 73,5 86,8 91,0 94,7 96,7

Testing Set 5 (trainbr) 39,9 33,6 35,5 38,9 36,9

Testing Set 10 (trainbr) 30,0 30,8 31,1 33,9 34,6
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2 3 4 5 6

Training Set 5 (trainscg) 79,6 88,8 91,9 93,5 95,0

Testing Set 5 (trainscg) 29,0 30,4 30,7 33,3 34,6

Testing Set 10 (trainscg) 30,0 30,8 31,1 33,9 34,6

Training Set 5 (trainbr) 82,4 94,9 97,3 98,7 99,5

Testing Set 5 (trainbr) 28,6 31,6 31,2 33,1 35,2

Testing Set 10 (trainbr) 30,2 33,0 31,2 34,3 35,3
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TABLE 6.1: CLASSIFICATION ACCURACY AND GENERALIZATION OF TRAINING SET 5 FOR TRAINSCG AND TRAINBR 

 

TABLE 6.2: CLASSIFICATION ACCURACY AND GENERALIZATION OF TRAINING SET 10 FOR TRAINSCG AND TRAINBR 
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Results confirm that for the same training set, the higher LDA dimensions, the better 

mapping and the higher classification accuracy; reaching a maximum of 99.5 % training 

the NN with Set 5 reduced to 6 dimensions and trainbr algorithm. 

2 3 4 5 6

Training Set 20 (trainscg) 71,8 81,6 84,0 87,6 88,5

Testing Set 5 (trainscg) 64,4 62,1 62,8 67,1 66,5

Training Set 20 (trainbr) 73,4 83,6 86,9 91,1 92,5

Testing Set 5 (trainbr) 60,4 62,7 61,8 65,2 66,2
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2 3 4 5 6

Training Set 15 (trainscg) 70,4 82,0 83,5 87,6 89,4

Testing Set 5 (trainscg) 63,4 74,5 75,4 78,5 77,9

Testing Set 10 (trainscg) 63,0 68,8 68,7 71,9 71,3

Training Set 15 (trainbr) 72,4 84,3 87,2 92,8 94,0

Testing Set 5 (trainbr) 64,5 72,6 76,4 78,1 80,4

Testing Set 10 (trainbr) 61,7 66,1 68,6 71,3 73,2
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TABLE 6.3: CLASSIFICATION ACCURACY AND GENERALIZATION OF TRAINING SET 15 FOR TRAINSCG AND TRAINBR 

TABLE 6.4: CLASSIFICATION ACCURACY AND GENERALIZATION OF TRAINING SET 20 FOR TRAINSCG AND TRAINBR 
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The highest classification percentages are achieved for the smallest training sets (5 and 

10). However, these sets do not recognize motion patterns properly when being tested 

with new data, ranging from 30-52.8% of classification accuracy, showing overfitting and 

poor generalization. 

In general, both training algorithms generalize similarly for the same testing sets when 

applied to the same trained NN; nevertheless, trainbr exhibits higher classification 

accuracy of the training sets. 

The highest generalization is accomplished with Training Set 15. Training algorithm 

trainscg show better performance for 5 LDA dimensions, whereas trainbr behaves 

better with 6 dimensions.  

 

In order to determine the best NN architecture, both training algorithms have been 

analyzed for Training Set 15 reduced to 5 and 6 dimensions, varying the number of 

hidden neurons. The obtained results, depicted in Tables 6.5 and 6.6, do not follow a 

clear pattern when changing the number of hidden neurons. Whereas trainscg 

generalizes better with 10 or 15 hidden neurons for reduced dimensions 5 and 6, 

respectively; the overall best generalization is achieved with trainbr and 5 LDA 

dimensions. This configuration employs one neuron for each input dimension, similarly 

to the matching number of hidden neurons and number of outputs of the output layer. 

 

 

3 5 7 10 15

Training Set 15 (trainscg) 84,7 86,8 87,9 87,6 88,1

Testing Set 5 (trainscg) 77,2 76,0 77,3 78,5 77,1

Testing Set 10 (trainscg) 71,3 71,4 71,8 71,9 71,4

Training Set 15 (trainbr) 85,3 89,4 90,8 92,8 94,2

Testing Set 5 (trainbr) 74,6 80,9 79,6 78,1 76,9

Testing Set 10 (trainbr) 70,1 73,2 72,3 71,6 71,1
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Training Set 15 reduced to 5 dimensions: Comparison between 
trainscg and trainbr varying the number of hidden neurons

TABLE 6.5: TRAINSCG AND TRAINBR COMPARISON FOR TRAINING SET 15 REDUCED TO 5 DIMENSIONS VARYING THE 

NUMBER OF HIDDEN NEURONS 
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6.4.2. RESULTS OF DIFFERENT SESSION TESTING 

Table 6.7 compares the generalization of the optimized NN configuration, 5 hidden 

neurons using Training Set 15 reduced to 5 dimensions and trainbr algorithm, for two 

testing sets recorded on different days. The obtained results show a significant decrease 

in classification accuracy for different session testing sets, ranging from 15.4-53.1 %. This 

poor generalization can be caused by physiological changes or slight differences in 

electrode placement. 

  

3 5 7 10 15

Training Set 15 (trainscg) 86,2 88,6 89,3 89,4 89,8

Testing Set 5 (trainscg) 75,6 77,6 78,0 77,9 78,3

Testing Set 10 (trainscg) 69,9 71,0 71,5 71,3 71,4

Training Set 15 (trainbr) 86,4 90,9 92,6 94,0 96,4

Testing Set 5 (trainbr) 74,4 78,6 80,2 80,4 79,7

Testing Set 10 (trainbr) 69,0 70,9 72,6 73,2 72,6
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1

Overall Accuracy 89,4

Testing Set 5 80,9

 Testing Set Day 1.a 53,1

 Testing Set Day 1.b 26,4

Testing Set Day2.a 17,7

Testing Set Day2.b 15,4
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TABLE 6.6: TRAINSCG AND TRAINBR COMPARISON FOR TRAINING SET 15 REDUCED TO 6 DIMENSIONS VARYING THE 

NUMBER OF HIDDEN NEURONS 

TABLE 6.7: NN GENERALIZATION EVALUATION FOR TESTING SETS OF DIFFERENT SESSIONS 
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6.4.3. RESULTS OF REAL-TIME APPLICATION EVALUATION 

The profile time evaluation depicted in Table 6.8, shows that the system does not meet 

real-time requirements as its total elapsed time is greater than 300 ms, actually being 

527 ms. Although the computational load of feature extraction and dimensionality 

reduction has been efficiently fixed to 73 ms, the time required to classify the gestures 

using the NN consumes almost the real-time limit. 

 

 

The overall evaluation of the performed tests is explained in the next chapter, along with the 

conclusions reached after the development of the control system.  

TABLE 6.8:  EXECUTION TIME OF EACH PROCESSING STEP OF THE NNMCS FOR ONE ITERATION 
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CHAPTER 7 

7.  CONCLUSIONS AND FUTURE WORK 
This section analyzes the performed steps into the implementation of a NNMCS, and discuss its 

suitability for hand motion pattern recognition and robotic hand actuation in real-time. Several 

guidelines, extracted from these conclusions, are also proposed, aiming to help and orient 

further research in this topic.  

7.1.  CONCLUSIONS 

Regarding the initially proposed objectives, most of them have been accomplished, as the 

implemented NNMCS is able to acquire, process and classify EMG signals to reproduce hand 

motions with enough accuracy; integrating the EMG acquisition system, NN pattern 

recognition based control system and robotic hand actuation into just one Simulink model. 

However the designed system fails to satisfy real-time constrains, being the most important 

issue for future work improvements. 

The employed acquisition methodology, which records the stationary components of 

forearm EMG signals using four channels, and divides them into disjoint segments of 150 

ms, not only enables feature extraction to characterize each motion but also transitions 

between gestures. 

Furthermore, the time-domain selected features have proven low computational load, as 

well as the LDA dimensionality reduction algorithm. The elapsed time has been minimized 

during these pre-processing steps to prepare the EMG data for the NN. 

The rationale under the classification of seven hand and wrist movements with a MATALB/ 

Simulink NN has proven to be partially successful. Although it does enable the incorporation 

of all the technology involved in myoelectric pattern recognition and robotic hand actuation; 

it has not been able to adjust to real-time limitations and solve completely the 

generalization problem.  

The optimization of the NN inputs and its internal architecture has been experimentally 

adjusted, depending on the number of motion repetitions employed in NN training, number 

of reduced dimensions, training and performance algorithms and number of neurons in the 

hidden layer. The present study has focused on these parameters to evaluate the behavior 

of the NN for pattern recognition; however, multiple setups can also be modified with a 

deep knowledge in MATLAB Neural Network Toolbox to examine the classification accuracy 

more profoundly. 

The foremost NN configuration employs one neuron per input/ output, yielding in a two-

layered feedforward network with 5 hidden neurons that match the 5 LDA reduced 

dimensions, and 7 output neurons for the 7 possible movements. The implemented NN has 

been trained with Bayesian Regularization (associated to Mean Squared Error performance 

function) for 15 gesture repetitions, yielding in high classification accuracy (89.4%) and 

relative good performance for testing sets recorded on the same session (80.9%). 
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Nevertheless, testing signals acquired on different sessions have shown low and random 

classification performance. This misclassification increase is thought to be caused by the 

stochastic nature of the EMG signals, varying easily from one session to another; not only 

due to physiological changes but also if electrode placement is not exactly the same.  

The analysis of the performed tests reveal a tradeoff between generalization improvement 

and the required time to classify the NN input signal. These are the two key factors in pattern 

recognition, representing the sensitivity and speed of the control system. Results show that 

NN decision making process alone, barely fits real-time restrictions. Although all the 

previous processing steps have been implemented effectively with low computational load; 

the execution time of the system surpasses by 200 ms the real-time constrains.  

Therefore, the principal conclusion elicited from the present work is that MATLAB/ Simulink 

Neural Networks can indeed recognize hand motion patterns based on EMG signals, and be 

integrated into a control system model for the actuation of a printable robotic hand. Still, 

training process is a user specific task that requires manual refinement until the optimal 

setup is found; and execution time must be reduced to overcome the present lag. 

 

7.2.  FUTURE WORK 

The formerly derived conclusions suggest several work lines to improve the present study, 

and bring closer the implementation of this technology in the real world, outside the 

laboratory. 

The first and foremost proposal is to research towards the fulfillment of real-time 

requirements. As previously mentioned, MATLAB Neural Network Toolbox provide an 

extensive set of configuration parameters that can be evaluated to reduce the execution 

time; like the computational features associated to training functions, or applying instead a 

transfer function to map NN input data into their corresponding output. 

However, changing these parameters may affect the classification accuracy and 

generalization of the NN classifier. Hence, further analysis should be carried out to clearly 

assess the crucial parameters, from both input data and NN, involved in NN performance 

and how they affect the elapsed time. Special considerations should be taken into account 

regarding dimensionality reduction algorithms and their generated mappings as they are 

the base of the training process. Once all these specifications have been optimized, the next 

advisable step is their directly implementation into a microcontroller to reduce the 

execution time. 

If none of the mentioned modifications of the NN yield in an improvement of the control 

system, there are other classifiers that can be also examined and are already integrated in 

MATLAB environment like Support Vector Machines (SVM). 

The present work requires EMG signal acquisition and NN training for each session, which 

implies the placement of nine surface electrodes in the precise locations. This arrangement 

is not only tedious for the user but can also produce significant changes in the recorded 

signals, reducing greatly the generalization ability of the classifier. Therefore, developing a 

unified recording system that integrates the nine electrodes and perfectly fits the subject, 
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so that the electrodes are placed correctly and easily regardless the session, could be quite 

advantageous to the system.  

 

To conclude, the present bachelor thesis can be interpreted as the first step towards the 

development of a robust, real-time, neural network-based control system in MATLAB/ Simulink. 

The present work has faced both promising results and severe problems; however the overall 

analysis of this chapter aims to provide a solid base to elucidate the advantages and drawbacks 

of this technology, to guide future work in this field and improve the model.  
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ANNEX 
 

A.1. WORK BREAKDOWN STRUCTURE 

This section explains the different stages involved in the present thesis development and 

planning. Table A.1 summarizes the hours devoted to each phase. The project schedule is 

depicted in the Gantt char of Table A.2 

1. PROJECT PLANNING AND ORIENTATION (5 H) 

Series of meetings to determine topic of the project, the objectives and the 

organization. 

2. DOCUMENTATION (50 H) 

This stage comprises the familiarization with the research on the topic, study of signal 

processing and learning how to use the different employed toolboxes. 

3. MODEL DEVELOPMENT (75 H) 

This period includes the calibration of the EMG acquisition system and control model 

implementation, comprising: signal acquisition, signal processing, NN classification 

and integration in Simulink.  

4. MODEL EVALUATION (40 H) 

Time devoted to test the implemented model and optimize the configuration. 

5. WRITING THE THESIS (150 H) 

Bibliography documentation and writing of the bachelor dissertation. 

 

 

 

 

 

 

Project stages Devoted hours 

Planning and orientation 5 

Documentation 50 

Model development 75 

Model evaluation 40 

Thesis writing 150 

TOTAL 320 

TABLE A.1: BREAKDOWN OF WORK STRUCTURE AND DURATION 

 PROJECT DURATION (WEEKS) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Planning                       

Documentation                    

Development                

Evaluation                    

Thesis writing                

TABLE A.2: GANTT CHART 
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A.2. LIST OF MATERIALS 

The materials employed during the present study include both hardware and software. 

1. HARDWARE 

 PC. 

 STM32F4 Discovery microcontroller. 

 2 USB cables to communicate and power the STM32F4 Discovery. 

 EMG acquisition board. 

 Skintact FSTC1 Ag-AgCl ECG surface electrodes. 

 

2. SOFTWARE 

 Windows® 8.1 OS 

 Mathworks ® MATLAB/ Simulink 

 Mathworks ® Neural Network Toolbox 

 Advanced Rapid Control Prototyping Toolbox for Simulink 

 Waijung Toolbox for Simulink 

 

 

A.3. PROJECT BUDGET 

A.3.1. MATERIALS 

 

 

 

 

 

 

A.3.2. INFORMATICS  

 

 

 

                                                           
1 ARCP Toolbox and Waijung Toolbox are under Creative Commons Licenses. 

Description Units Unitary Price Subtotal Total 

Skintact FSTC1 Ag-AgCl ECG surface 
electrodes 

60 0.12 € 7.30 € 7.30 € 

STM32F4 Discovery 1 14.28 € 14.28 € 14.28 € 

USB cables 2 3.95 € 7.90 € 7.90 € 

EMG acquisition board 1 114.65 € 114.65 € 114.65 € 

TOTAL 144.13 € 

TABLE A.3: COST OF THE MATERIAL 

Description Unitary Price Useful Life Use Cost 

PC 800 € 60 months 6 months 80 € 

MATLAB/ Simulink License 
(student) 

69.00 € 48 months 6 months 8.63 € 

Neural Network Toolbox 
(student add-on) 

7 € 48 months 6 months 0.87 € 

TOTAL1 89.5 € 

TABLE A.4: COST OF THE COMPUTING TOOLS 

 



Universidad Carlos III de Madrid | BACHELOR THESIS: IMPLEMENTATION OF A NNMCS FOR A PRINTED ROBOTIC HAND 

71 
 

A.3.3. LABOR COST  

 

 

 

 

A.3.4. TOTAL BUDGET  

 

 

 

 

 

 

 

 

  

  

 

   

 

Description Labor hours Labor cost/ hour Cost 

Tutor, Engineer 50 45 € 2 250 € 

Director, PhD Engineer 3 50 € 150 € 

Engineering Student 320 20 € 6 400 € 

TOTAL 8 800 € 

TABLE A.5: LABOR COST 

Description Cost 

Materials 144.3 € 

Informatics 89.5 € 

Labor cost 8 800 € 

SUBTOTAL  
9 033.8 € 

Taxes (21% IVA) 1 897.1 € 

TOTAL 10 930.9 € 

TABLE A.6: UNIFIED TOTAL BUDGET 
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