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In this paper we fuse together the Landscapes of Knowledge of Wille’s and Exploratory Data Analysis by

leveraging Formal Concept Analysis (FCA) to support data-induced scientific enquiry and discovery.

We use extended FCA first by allowing K-valued entries in the incidence to accommodate other, non-binary
types of data, and second with different modes of creating formal concepts to accommodate diverse concep-

tualizing phenomena.

With these extensions we demonstrate the versatility of the Landscapes of Knowledge metaphor to help in

creating new scientific and engineering knowledge by providing several successful use cases of our tech-

niques that support scientific hypothesis-making and discovery in a range of domains: semiring theory, per-

ceptual studies, natural language semantics, and gene expression data analysis.

While doing so, we also capture the affordances that justify the use of FCA and its extensions in scientific

discovery.
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1. Introduction

Formal Concept Analysis (FCA) can be understood as an unsuper-

vised analysis technique for matrices with boolean entries (Ganter &

Wille, 1999). The underlying theoretical construct is a Galois Connec-

tion induced by a relation I⊆2G × M between a set of objects G and a

set of attributes M1. In this case, the Galois connections adopts the

guise of a pair of functions, the polars, induced by the relation trans-

forming sets of objects into sets of attributes and vice versa: pairs of

sets of objects and attributes that aremutually transformed are called

formal concepts and the inclusion order of object sets (dually, that of

attribute sets) turns out to be a complete lattice, providing an excel-

lent canvas against which to castmany of the properties hidden in the

data. A lightweight introduction to FCA can be found in Section 2.1.

In spite of the width of the work trying to make FCA a sound

echnique for the exploratory analysis of knowledge, as reviewed,
∗ Corresponding author. Tel.: +34 916248771; fax: +34 916248749.

E-mail addresses: fva@lsi.uned.es (F.J. Valverde-Albacete), melopsitaco@gmail.com

(J.M. González-Calabozo), anselmo@lsi.uned.es (A. Peñas), carmen@tsc.uc3m.es

(C. Peláez-Moreno).
1 G for German Gegenstunde “object” and M for German Merkmale “attribute” are

customary in FCA theory.
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or instance in Poelmans, Kuznetsov, Ignatov, and Dedene (2013b),

oelmans, Ignatov, Kuznetsov, and Dedene (2013a), it has found but a

eeble echo in the Statistical and Machine Learning communities.

Tukey was the figure who crystallized the cry for exploratory,

iscovery-driven methods in the Statistics community. He called his

roposal Exploratory Data Analysis (EDA) and advocated a comple-

entary curriculum for Statisticians balancing EDA against Statisti-

al Hypothesis Testing (that he called Confirmatory Data Analysis)

Tukey, 1980). At present, EDA is standard practice of good statistics,

t is taught at basic statistics courses in academia (Tukey, 1977), and

upported by widely-used data processing software (Matlab, 2012; R

ore Team, 2014).

FCA falls under the definition of an EDA technique for boolean

atrices, yet very few work in the FCA community or otherwise,

ighlights this fact. Furthermore, extensions to FCA exist that allow

t to work with more quantitative data like FCA in a fuzzy setting

Bělohlávek, 2002) or K-FCA (Valverde-Albacete & Peláez-Moreno,

006) where the numeric data take values in different kinds of

emirings.

.1. (Formal Conceptual) Landscapes of Knowledge

One of the founders of FCA, Wille, a mathematician and

hilosopher, developed in the late 1990s a program for knowledge
1



Table 1

The activities supporting the Landscape of Knowledge metaphor, their descriptions (from (Wille, 1999)) and some aliases that we use for them. The last two rows are

our proposal for inclusion in the list.

Activity Description Aliases

Focusing Selecting what one wants to look into. contextualizing

Exploring “...looking for something of which one only has a vague idea...” browsing

Searching “...looking for something which one can more or less specify but not localize...”

Recognizing “...perceiving clearly circumstances and relationships...” Clarifying

Identifying “...determining the taxonomic position of an object within a given classification...” categorizing, placing in a taxonomy

Analyzing “...examining data in their relationships while guided by the theoretical views and declared purposes...”

Investigating “...study by close examination and systematic enquiry...”

Deciding “...resolving a situation of uncertainty by an order...”a

Improving “...enhancement in quality and value. ...” distilling, valorizing

Restructuring “...to reshape a given structure, which, within the scope of our discussion, is conceptual in its nature...”

Memorizing “...a process of committing and reproducing what has been learned and retained. ...” committing to memory

Hypothesizing Abducing facts and relationships based on data. forming an opinion

Indexing Indexing other knowledge resources using concepts, objects or attributes interfacing resources

a There is a possible ambiguity here in the meaning of order, in spite of Wille’s being an order mathematicianwe have decided to understand here command.
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iscovery based in FCA. He baptized it the “Conceptual Landscapes of

nowledge Paradigm” (LofK) but we believe it can be better under-

tood as ametaphor in the spirit of Lakoff and Johnson (1996).

Metaphorical interpretation eases the comprehension of an unfa-

iliar domain of knowledge in terms of an already-known domain:

he entities and issues in the new domain are mapped onto the well-

nown domain to make them more apprehensible. For a review of

enets and notation in metaphor theory see Lakoff (1987), Lakoff and

ohnson (1996).

The basic metaphor in LofK seems to be

etaphor 1. Undiscovered knowledge is uncharted territory.

and is founded in the analogy between the investigation of

itherto unknown knowledge and the physical exploration of non-

apped terrain. The analogy is reinforced by a series of subsidiary

etaphors like

ubmetaphor 2. The intricacies of knowledge are features of the

andscape.

This emphasizes that navigating the nitty-gritty details of knowl-

dge is like exploring difficult to access places.

Once the initial identification of knowledge and terrain is ac-

epted, Wille proposes that FCA can help in fleshing out this

etaphor by providing a physical embodiment for knowledge that

an be acted upon as if it were a map of the terrain. The first step of

his exploration is to explicitly highlight the data being considered

y forming a formal context which is a two-mode relation between

bjects and attributes. This action is called contextualizing:

etaphor 3. Building a formal context is setting yourself on a

antage point on the knowledge landscape.

At the same time, contextualizing sets the limits of the knowledge

ou can see, since you choose to concentrate on some information

o the detriment of some other. This is further emphasized by the

ontext-lattice duality of FCA and the following

etaphor 4. A concept lattice is a map of the knowledge land-

cape.

The different operations on the formal context would subse-

uently represent acting on the territory being charted, with the idea

f using the concept lattice to explore the unknown territory until it

ecomes tame.

Table 1 lists the knowledge-exploring activities supported by

hese metaphors. Most of these activities are expressed in either the

ain or the secondary domain of the metaphor, like “browsing” in

he physical domain, and “analyzing” in the cognitive domain. Note
hat these metaphors have already been put to the test in the build-

ng of semantic file systems (Martin, 2004; Martin & Eklund, 2005)

nd Logical Information Systems (Ferré, 2007; Ferré & Ridoux, 2001)

s Information Retrieval systems. A thorough review of the use of FCA

omodel knowledge is Poelmans et al. (2013b), while applications are

etailed in Poelmans et al. (2013a).

In later work, Wille has concentrated in developing these

etaphors with a view towards making them actionable by provid-

ng epistemic interpretation for the constructs of FCA (Wille, 2006).

ut even his early papers show usage of the actions enunciated in

able 1 or precursors of them.

.2. FCA as an instance of Exploratory Data Analysis

We believe that the followingmetaphor captures one of the tenets

f exploratory analysis:

etaphor 5. Knowledge is an exhibit

We refer here to “exhibit” much as in a work of art in a museum or

n item in a shop. The idea is that knowledge can be taken “out in the

pen” to be shared, subjected to public scrutiny and commentary.

In our experience, FCA is a method of EDA (Tukey, 1977)

hat supports the knowledge-as-exhibit metaphor through two

ubmetaphors:

ubmetaphor 6. Knowledge can be visualized.

This is achieved through the Hasse diagram of the concept lattice,

hile

ubmetaphor 7. Knowledge can be (bodily) manipulated.

is achieved through (a) the polars that enable the transformation

f objects and attributes into formal concepts, and (b) the operations

etween formal concepts allowing us to obtain more general or more

pecific ones.

A summary of metaphors to be fleshed out can be consulted in

able 2.

The first endeavor of this paper is to show how FCA as interpreted

n the LofKmetaphors can be leveraged as an EDA technique for scien-

ific and engineering discovery by helping with the elicitation, struc-

uring and manipulation of knowledge. The first result of this en-

eavor in this paper is a methodology to carry out exploratory analysis

f two-mode data with (extended, generalized) FCA, which we put to

he test and exemplify in Section 3.

.3. Extensions to Formal Concept Analysis

Unfortunately, the fact that standard FCA can only deal with

oolean incidences often prevents scientists with other type of data
2



Table 2

Summary of the metaphors in LofK considered in this paper. Sub-metaphors are further indented.

Metaphor number Statement

1 Undiscovered knowledge is uncharted territory.

2 The intricacies of knowledge are features of the landscape.

3 Building a formal context is setting yourself on a vantage point on the knowledge landscape.

4 A concept lattice is a map of the knowledge landscape.

5 Knowledge is an exhibit.

6 Knowledge can be visualized.

7 Knowledge can be (bodily) manipulated.
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from resorting to these techniques. First and foremost it must be

stated that many-valued extensions to FCA have existed for some

20+ years. A review of extensions can be found in Poelmans et al.

(2013a,b).

In this paper we are using both standard FCA and K-Formal
Concept Analysis, an analysis technique for matrices with K-valued
entries where K is an idempotent semifield (Valverde-Albacete &

Peláez-Moreno, 2011), a type of structure that is well-known from

Morphological Processing (morphological calculus), Artificial intel-

ligence (path algebras) and Graph Theory (the Viterbi algorithm).

K-FCA has already been successfully used for the analysis of con-

fusion matrices (Peláez-Moreno, García-Moral, & Valverde-Albacete,

2010), Gene Expression Data (GED) (González-Calabozo, Peláez-

Moreno, & Valverde-Albacete, 2011) and to model the batch retrieval

task in Information Retrieval (Pedraza-Jiménez, Valverde-Albacete, &

Navia-Vázquez, 2006).

Some concern may be raised as to how FCA provides a biased

manner of eliciting and manipulating knowledge: the formal con-

cepts spoken of so far aggregate objects and attributes “in the pos-

itive”, meaning they capture incidence of objects onto attributes an

vice-versa. But there are other modes of incidence, for instance ob-

jects that lack some attributes or attributes that lack some objects. In

Valverde-Albacete and Peláez-Moreno (2011) the standard modes of

conceptualization of FCA in the multi-valued setting have been for-

malized and examined to show that they share many of the desirable

properties of standard FCA.

A second endeavor of this paper is to show how multi-valued and

non-standard extensions of FCA dovetail into the standard theory to

complement and eradicate its shortcomings on multi-valued or special

dataset instances. To this purpose we provide extensive evidence in

Section 3.

1.4. Reading guide

In Section 2.1 we first revisit the basics of FCA, and then its multi-

valued and generalized conceptualization mode-enabled extensions

in Sections 2.2 and 2.3, respectively.

In Section 3 we present our main contributions:

• An analysis and listing of the main affordances of extended, gen-

eralized, multi-valued FCA as an embodiment of LofK for EDA sup-

port in scientific discovery.
• Amethodology for using FCA in many numeric or boolean knowl-

edge EDA, instantiated and proven over a number of tasks.

We end the paper with a Discussion and some Conclusions.

2. Materials and methods

2.1. A crash course on Formal Concept Analysis

FCA is a procedure to render lattice theory more concrete andma-

nipulative (Ganter & Wille, 1999). It stems from the realization that

a binary relation between two sets I ∈ 2G × M—where G and M are

conventionally called the set of objects and attributes, respectively—

defines a Galois connection between the powersets X ≡ 2G and Y ≡
M endowed with the inclusion order (Erné, Koslowski, Melton, &

trecker, 1993). The triple K = (G,M, I) is called a formal context and

he pair of maps that build the connection are called the polars (of the

ontext):

∀A ∈ 2G,A↑ = {m ∈ M | ∀g ∈ A, gIm} (1)

B ∈ 2M,B↓ = {g ∈ G | ∀m ∈ B, gIm}.
Pairs of sets of objects and attributes that map to each other are

alled formal concepts and the set of formal concepts is denoted by

(G,M, I ) = {(A,B) ∈ 2G × 2M | A↑ = B ∧ A = B↓}.
The set of objects of a concept is called its extent while the set of

attributes is called its intent. Formal concepts are partially ordered by

he inclusion (resp. reverse inclusion) of extents (resp. intents)

1 = (x1, y1), c2 = (x2, y2) ∈ B(G,M, I ) c1 ≤ c2 ⇔ x1 ⊆ x2

⇔ y1 ⊇ y2 (2)

With the concept order, the set of formal concepts 〈B(G,M, I ), ≤〉
s actually a complete lattice called the concept lattice B(G,M, I ) of

he formal context (G,M, I ).
Most concept lattice-building algorithms available output Hasse

iagrams developed to easily describe partial orders. Concept lattices

an profitably be represented and grasped in such form: nodes in the

iagram represent concepts, and the links between them the hierar-

hical partial order between immediate neighbors. For instance, Fig. 1

s an example of concept lattice where the objects are algebraic struc-

ures and the attributes the properties they fulfill.

For the purpose of reading extents and intents off the lattice di-

gram, concepts could be annotated graphically with a complete la-

eling, by listing for each concept the set of object labels in the con-

ept extent and the set of attribute labels in the concept intent. But

ince this implies repeating many times each object and attribute

hroughout the lattice the following, reduced labeling is preferred:

e put the label of each attribute only in the highest (most abstract)

oncept it appears, and the label of each object only in the lowest

most specific) concept it appears. Attribute labels usually appear

ust above the corresponding concept and object labels appear just

elow and each only once for the whole lattice, diminishing the vi-

ual clutter. This is quite straightforward to accomplish if we con-

ider mappings γ : G → B(K ) and μ : M → B(K ) obtaining object

and attribute concepts, respectively: we put each object and attribute

label in the concept obtained bymeans of thesemaps. This is the type

of labeling shown throughout the paper and the most usual, though

different lattice-building tools use variations of it.

The following notions can also be read straightforwardly from the

Hasse diagram of the concept lattice:

• The order between concepts described in Eq. (2) is consistent with

the inclusion of extents and the reverse inclusion of intents.

The intuition behind this order is that a concept (A, B) is “less de-

fined” than another concept (C, D), equivalently higher in the di-

agram, if it has more objects in its extent or less attributes (read

properties) in its intent, in complete agreement with traditional

extensional-intensional distinctions in logic.
3



Fig. 1. (Color online) Concept lattice of dioids in the context of commutative semirings. Each node is a concept of abstract algebra: its properties are obtained from the gray labels

in nodes upwards, and its structures from the white labels in nodes downwards. The picture is related to the chosen sets of properties and algebras and does not fully reflect the

structure of the class of semirings .
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• A top concept, � = (G,G↑), whose extent includes all objects and
whose intent includes all attributes predicable of all objects (the

most general concept).
• A bottom concept ⊥ = (M↓,M), whose intent includes all at-

tributes and whose extent includes all objects which enjoy all at-

tributes (the least general concept).
• The two total binary operations making the set a lattice can be

calculated from the diagram:

– The join of two concepts, c1∨c2, by following the links upwards

from them to find the lowest concept which is more abstract

than either, their lowest upper bound.

– The meet of two concepts, c1∧c2, by following the links down-

wards starting from them to find the highest concept which

is less abstract than either of them, that is their highest lower

bound.

– The set of join-irreducibles, that is the set of concepts which

can be join-ed to obtain all other concepts. These are normally

depicted as nodes bottom-half filled in black.

– The set of meet-irreducibles, that is, the set of concepts which

can bemeet-ed to obtain all other concepts. These are normally

depicted as nodes top-half filled in blue.

These two procedures can be generalized to any number of con-

cepts, given that the lattice is complete.

Besides the information given by its Hasse diagram as a generic or-

ered set, the diagram of a concept lattice offers the following items

f information:

• It equates the order expressed by the lattice with the order of

generalization between concepts. Hence the top is the most gen-

eral concept, while the bottom is the least general concept. Essen-

tially, by navigating the diagram links we are generalizing formal

concepts when going upwards and specializing them when going

downwards.
• It equates every element in the lattice (node in the Hasse diagram)

with a formal concept, (A, B) whose intent and extent are easily ac-

cessible: the extent is found accumulating all the object labels in

all walks from the concept node to the bottom, while the intent is

found by accumulating all attribute labels from the concept node

to the top.
• Finally, for a concept lattice, the distribution of crosses in I essen-

tially imposes the shape of the lattice B(G,M, I) while the sets of
objects and attributes (and the intuitivemeaning of the incidence,

of course) allow us to interpret the lattice as referring to properties

(attributes) of some entities (objects)2.

2.2. K-Formal Concept Analysis

K-FCA (Valverde-Albacete & Peláez-Moreno, 2006; 2007a; 2011)

is an extension of FCA for relations or matrices with non-boolean en-

tries. Consider the K-formal context (G,M,R )K where the incidence

matrix relating objects and attributes R ∈ KG × M has entries in a spe-

cial kind of algebraK, an idempotent semifield3.While in FCA an object

is either incident or not with a given attribute, in K-FCA an object i

has an attribute j to a certain degree Rij . Examples of such algebras

include the (completed) max-plus and min-plus semirings—denoted

Rmax,+ and Rmax,+ in Fig. 1—as discussed in Section 3.2.1.

In this setting, it is better to think of sets of objects and attributes

as vectors in object- and attribute-vector spaces over the idempotent

semifield X ≡ KG
and Y ≡ KM

. The crucial technical condition for

the existence of a Galois connection (Erné et al., 1993) that induces
2 There is also a nice duality which allows to reify attributes and convert objects to

properties.
3 The main peculiarity in idempotent semifields (in idempotent semirings, in gen-

eral), is that addition is idempotent, thereby ruling out additive inverses.
he concept lattices in this setting is the existence of a dot prod-

ct 〈x | R | y〉 = xt ⊗ R ⊗ y between left and right vector spaces over

(Cohen, Gaubert, & Quadrat, 2004). Then Valverde-Albacete and

eláez-Moreno (2011) describes how the polar (functions) induce a

alois connection between the vector spaces: [( · )↑R,ϕ , ( · )↓R,ϕ] : K
G

⇀↼

M
:

(x)
↑
R,ϕ =

∨{ y ∈ Y | 〈x | R | y〉 ≤ ϕ }
y)

↓
R,ϕ =

∨{ x ∈ X | 〈x | R | y〉 ≤ ϕ }
Analogously to FCA, for object- and attribute-vectors a and b, the

-formal concept (a, b)ϕ is a pair such that (a)↑R,ϕ = b and (b)↓R,ϕ =
awith a the ϕ-extent and b the ϕ-intent. As usual, ϕ-concepts can be
ordered by extents or dually by intents

a1, b1) ≤ (a2, b2) ⇔ a1 ≤ a2 ⇔ b1 ≤d b2 (3)

nd the set of ϕ-concepts with this order is actually a lattice, the ϕ-
oncept lattice. It is easy to see the analogues of the top and bottom

oncepts and the join and meet operations in these lattices.

The parameter ϕ ∈ K is called the threshold of existence and it

an be proven to describe a maximum degree value allowed for pairs

a, b) ∈ KG × KM
to be considered as members of the ϕ-formal con-

ept latticeBϕ(G,M,R )K . It can also be interpreted as a focusing level:
the higher, the coarsest the ϕ-concepts appear, the lower, the finest.
Therefore, to take an overall view of the information in the formal

context, it seems necessary to calculate the concept lattices for the

different ϕ threshold values. We call this process lattice exploration,

n instance of which is described in Section 3.2.5. For an in-depth

xplanation of the issues involved see Valverde-Albacete and Peláez-

oreno (2007b; 2011).

We can also change the type of FCA carried out by changing the

nderlying semifield in which the formal context is interpreted: for

nstance, by inverting all the elements and their order in the semi-

eld, instead of exploring in the concepts with maximum degree of

xistence, we would be exploring those withminimum degree of exis-

ence. This is taken up in Sections 3.2.2 and 3.2.5.

.3. Extended Formal Concept Analysis

In Valverde-Albacete and Peláez-Moreno (2011) the FCA formal-

sm was systematically augmented to consider different modes of

onceptualization by changing the basic dual isomorphism in a

odal-logic motivated way. This was actually the systematization of

imilar work laid out in Düntsch and Gediga (2002; 2003) and cre-

tes three new types of concepts and lattices of extended FCA, viz.

he lattice of neighborhood of objects, the lattice of neighborhood of at-

ributes and the lattice of unrelatedness. Note that extensions for fuzzy

CA also exist for some of these (Konecny, 2011), and that these types

f Galois connections appear in a much wider setting in Erné et al.

1993).

The basic technique is to compose the basic (antitone) Galois

onnections of Sections 2.1 and 2.2 with order- and dual order-

somorphisms, or anti-isomorphism:

• We take the type oo Galois connection to be a basic adjunction

composed with an even number of anti-isomorphisms on the do-

main and range orders. These generate the lattices of neighborhood

of objects.
• To obtain a type oi Galois connection, we compose a basic adjunc-

tionwith an odd number of anti-isomorphisms on the range. These

are the standard concept lattices of FCA.
• To get a type io Galois connection, we compose a basic adjunction

with an odd number of anti-isomorphisms on the domain. These

connections generate the lattices of neighborhood of attributes.
• Finally, a type ii Galois connection is a basic adjunction with an

odd number of anti-isomorphisms composed on both the domain
5
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4 This adds insult to injury in the case of the evaluation of non-supervised learning

tasks, like concept-lattice inferencing.
and range. These are the lattices of unrelatedness between objects

and attributes, and they will not be used in this paper.

Such alternate modes of conceptualization can be implemented

y negation operations on contexts and sets in standard FCA, and by

he inversion of vectors and relations in K-FCA, whereby the con-

tructions of the lattices of these new connections can be reduced

o the original type oi Galois connection. The rather mathematical

etails can be found in Valverde-Albacete and Peláez-Moreno (2011).

. Results

Since the explanation of the metaphor of LofK is summarized in

ection 1 and detailed elsewhere (Wille, 1999; 2006), what we con-

ribute here is, first, our analysis of the affordances of such ametaphor

s embodied in knowledge-intensive tasks (Section 3.1), and second,

methodology that leverages FCA as a framework capable of support-

ng the enterprise of scientific and engineering enquiry (Section 3.2).

.1. Generic affordances of Formal Concept Analysis as Landscapes of

nowledge for Exploratory Data Analysis

First we will introduce some generic affordances available across

ll applications and then specific cases to exemplify particular

nstances.

.1.1. Formal, domain-independent and ubiquitous modeling

The first idea that we want to put forward is that

ffordance 1. The formal quality of FCA makes it an optimal tech-

ique for domain-independent data analysis.

This is a mixture of the abstract or formal quality of FCA al-

eady mentioned, that is interpretation-independent, and the ubiquity

f two-mode binary relations as data for all scientific domains. Of

ourse, this is the result of a dedicated and painstaking effort on the

art of the developers of FCA to present a well-founded theory and

ractice of formal contexts and concept lattices.

The second affordance stems from the duality of contexts and lat-

ices and empowers FCA as an EDA technique,

ffordance 2. Visualization andmanipulation of data in table format

nd hierarchical format are mutually warranted.

That this is one of is its greatest strengths can be seen from the

ain theorem of FCA—stating that up to isomorphism, every com-

lete lattice emerges as the concept lattice of some formal context

nd vice-versa—the many different types of information that emerge

rom either representation of the data—hierarchical order, implica-

ions, attribute and object reduction,—, and the many manipulative

echniques to extend, restrict or combine formal contexts and con-

ept lattices: essentially, there is a whole algebra of contexts and lat-

ices that allows partitioning and aggregating interesting data in dif-

erent ways under either guise (see Deiters and Erné, 2009; Ganter

nd Wille, 1999, Chaps. 3–7).

.1.2. Setting the board

FCA is limited in the data it can analyze by its own stage-setting.

he next affordance describes exactly what it can do,

ffordance 3. Standard Formal Concept Analysis provides a generic

ramework to deal with two-mode data in a homogeneously mean-

ngful, contextualized way.

By “homogeneously meaningful” we mean that it provides the

ame kind of manipulations and interpretations over the whole set

f application domains. By “contextualized” we mean that building

formal context exactly sets the board of the investigation to be

ddressed.
To wit, the standard version of FCA described in Section 2.1 rests

eavily on the binary nature of the incidence relation. In fact, a formal

ontext is another name for a binary relation where the elements of

he carrier sets have been “contextualized” by giving them names and

nterpretations as objects and attributes. Building the context itself

upports the scientific activity of “setting the board” before a prob-

em is attacked. The context frames the relevant entities and their

roperties and grants them names to support some sort of semantic

rounding for discursive rationality. Nothing more, and nothing less

han the objects, their attributes and the incidence relationship can

ppear in questions about the data. Note that if the previous affor-

ances were missing, this would be a very stringent limitation.

.1.3. Analyzing

Co-clustering of objects and attributes and their hierarchic orga-

izations is a straightforward affordance of FCA.

ffordance 4. A concept lattice describes a hierarchical, non-

artitional co-clustering between sets of objects and attributes.

Non-partitional means that although there is a covering for ei-

her set of objects and attributes, the sets in the covering are not in-

ompatible. Note that there are no widely accepted measures—and,

ndeed, very few used measures at all—for the assessment of non-

artitional clustering at present (Mirkin, 1996; 2005)4.

Sometimes, there are readily observable subsystems in the data.

he identification of adjoint sub-lattices as independent sources of

tructuring and the analysis of their corresponding sub-contexts is a

aluable contribution to help formulating hypothesis. This affordance

s particularly made evident in the applications of Sections 3.2.2

nd 3.2.3.

ffordance 5. Adjoint sublattices provide qualitatively and quantita-

ively different behaviors for associated sets of objects and attributes.

K-FCA’s free parameter ϕ is a useful tool for exploring degrees of

ncidence at various levels of detail, from the big picture where only

he most remarkable structures appear to the most detailed where

ven the tiniest confusions appear. Observing several concept lattices

t different ϕ is a good starting point when one has only a vague idea

f the phenomenon under study. This affordance will be specially de-

eloped in Sections 3.2.2 and 3.2.5.

ffordance 6. K-Formal Concept Analysis allows the exploration of
ulti-valued data at different levels of detail modulating the ϕ pa-

ameter.

.2. A methodology for LofK based in FCA based on use cases

The following analysis cases have a three-fold purpose: they fo-

us on a basic affordance, they demonstrate the affordance, and they

upport the abduction of scientific or engineering hypotheses.

.2.1. Use case: extending FCA theory itself

In this use case, we show how to organize formal knowledge using

CA so that new research hypotheses suggest themselves upon lattice

rowsing.

ffordance 7. Standard Formal Concept Analysis supports postulat-

ng new research hypotheses.

xample. For instance, consider the theory of semirings as compiled

n Golan (1999), a rather specialized branch of abstract algebra. To

escribe what a semiring is, the author starts with an abstract de-

cription of what constitutes a semiring, then proceeds to define prop-

rties through which semirings can be studied, and to induce better
6
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segment position
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C down right
D down
E down left
F up left
G mid

(b)
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(c)
Fig. 2. 7-segment numeral schematics (a) image fromWikipedia Commons, (b) mapping to themnemonics used in this paper, and (c) heatmap of human confusions in recognizing

the 10 numerals.
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grasping of the material intersperses concrete examples that show the

roperties.

It so happens that the type of “algebras” that allow a matrix with

ntries in those algebras to display the behavior of FCA seems to be

ntimately tied up to semirings:

• The Boolean algebra that allows us to define the polars of FCA is

itself a semiring.
• The most widespread multi-valued extension to FCA, FCA in a

fuzzy setting (Bělohlávek, 2002; Burusco & Fuentes-González,

1994) is based on fuzzy-algebras, a kind of incline, also a semir-

ing.
• Another extension is K-FCA (Valverde-Albacete & Peláez-Moreno,
2006; 2011), based on the concept of a complete idempotent semi-

field, also a semiring.

Given these data, the research question an FCA practitioner

should ponder is whether other kinds of multi-valued extensions are

possible.

One method to explore this question with FCA suggests itself

readily:

1. Contextualizing: Gather all abstract and concrete algebras as ob-

jects and the properties of semirings as attributes. Build the for-

mal context where an algebra is incident to a property if that al-

gebra has the property .

2. Data preparation: In this case, use data as is, even keeping dupli-

cates and null columns and rows.

3. Visualizing & Identifying: Obtain the concept lattice of this con-

text and represent it, as in Fig. 1.

4. Exploring the data: Locate the Boolean algebra (a concrete

structure), inclines and idempotent semifields–two abstract

structures—in this lattice: they aremarkedwith a bottom, left and

right red arrows in the Figure, respectively. Check that the Boolean

algebra is an instance of both abstract algebras by finding their

meet and the Boolean algebra in its extent. This is easy to do in

the lattice and indeed the Boolean algebra is an instance of both

these concepts.

5. Abstracting the question: Locate the join of the formal concepts

to which inclines and idempotent semifields belong in Fig. 1,

marked with red arrow near the top. We see that this node (un-

named) is a meet of other concepts namely the object concept for

“dioid” and the object concept for “information algebra”.

We look into dioids to find that they are semirings that have a

“natural order” within them and that they are as “far away” as

can be from “usual” rings. To this, information algebras add the

property of being entire, e.g. having no zero divisors, and being

complete in the order.
Browsing downwards from the unnamed node we find that some

peculiar concrete structures are actually complete entire dioids,

like the positive reals R+
0
and rationals Q+

0
.

6. Abducting hypotheses: We posit that complete dioids are actu-

ally those semirings capable of inducing the Galois connection

structure that we know as FCA.

Result: We should find a construction for such Galois connec-

ions that puts into play the specific features of these two (non-

dempotent) semifields R+
0
and Q+

0
and possibly others. �

3.2.2. Use case: the analysis of contingency or confusion matrices

Confusion matrices are a long-standing technique to quantify

the performance of multiclass classifiers. They are devices to mea-

sure the performance of any type of classifier—whether embodied or

artificial—by means of tallying the errors and successes of iterated

acts of classification.

A detailed confusion matrix is often presented in the form of

heatmaps—see Fig. 2(c)—or numerically (Congalton & Green, 1999).

Also, behavioral sciences frequently choose this type of represen-

tation to illustrate the results of perceptual experiments (Miller &

Nicely, 1955). The purpose of displaying the confusions either way

is to provide a more friendly representation of the phenomenon un-

der study (be it biologically or machine-originated) that allows the

elicitation of knowledge.

We contend that the inclusion order of confusions between input

and output responses in a CM is more efficiently represented by con-

cept lattices and it is more convenient for knowledge discovery.

Affordance 8. K-Formal Concept Analysis supports the detection of
regularities in the structure of the data that have theoretical signifi-

cance.

Example. For this example and that in Section 3.2.3 we use the data

on human confusions of segmented numerals collected in Keren and

Baggen (1981). Note that this task is also used in Mirkin (2005) to ex-

emplify a number of unsupervised data analysis methods facilitating

a comparison with our results.

In this visual acuity task k = 10 seven-segment numerals of dig-

ital displays were presented to human testers under different con-

ditions designed to guarantee that confusions would appear. Fig. 2

shows the schematics of these numerals in terms of their segments,

some mnemonics for later reference, and a heatmap representation

of human confusions in the task.

Next we apply our methodology and discuss its associated

affordances:

1. Contextualizing: Let VX = {xi}ki=1 be an input alphabet and VY =
{y j}k′j=1 an output alphabet. When we consider experiments in hu-

man performance in perceptual tasks, we model stimuli as input
7



(a) At ϕ = 0.05. (b) At ϕ = −0.43.

Fig. 3. Concept lattices of the segmented digits confusion matrix at different ϕ . Stimuli are labeled in white and responses in gray.
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symbols and responses as output symbols. For observational pur-

poses, the basic experiment is: “presenting a stimulus xi to ob-

tain a response yj from the subject,” (X = xi,Y = y j). The process
of classification is enacted by a sequence of m independent ex-

periments (Xm = xi,Ym = y j),whose results are tallied and aggre-
gated into a (count) confusion matrix NXY ∈ NVX×VY where

NXY (xi,Yj) =
∑

m

δXmYm(xi, yj) (4)

gives the count that yj was returned as a response to xi. A con-

fusion matrix NXY, then, is a particular kind of contingency table

for a classification process (Mirkin, 2005, p.51), the “contingency”

being that input stimuli get confused with output responses. In-

deed all contingency tables with comparable rows and columns

are susceptible of the same treatment.

2. Data preparation: To cast absolute frequencies onto an

idempotent-semiring we obtained the pointwise mutual in-

formation matrix (Fano, 1961): Call ni j = NX,Y (xi, y j), ni· = ∑
j ni j

and n· j = ∑
i ni j . Note that in our setting5, m = ∑

i j ni j . From the

count matrix of (4), we can estimate the empirical estimate or

maximum-likelihood estimator of the joint probability distribu-

tion between inputs and outputs as P̂X,Y (xi, y j) = ni j
m . Whence the

(empirical pointwise) mutual information6 ÎXY (xi, y j) between X

and Y (Fano, 1961, Section 2.3) is

ÎXY (xi, yj) = log
P̂XY (xi, yj)

P̂X(xi) · P̂Y (yj)
= log

ni j · m
ni· · n· j

. (5)

3. Visualizing & identifying:We explored the multi-valued context

with the technique of Section 2.2. Fig. 3(a) and (b) are examples of

two such structural lattices for the data.

Note that, in this case, both inputs and outputs have the same de-

nominations. To distinguish them in the lattice we will use white

boxes for the former and gray for the latter. In the text, the inputs

will be denoted with boldface characters. For instance, in Fig. 3(a)

the object concept for object 5 is γ (5) = ({3,5,9}, {9}) = μ(9)
which is also the attribute conceptμ(9), therefore the concept lat-
tice is labeled on the node directly below the top and to the right

of it with a “5” on white denoting an object and a “9” on gray,

denoting an attribute.

4. Restructuring: In the example of Fig. 3(a) we can clearly observe

three differentiated groups as adjunct sub-lattices, namely:
• Right sub-lattice: stimuli “1”, “4” and “7” (white label) are per-

ceived as “1” (gray label),
5 In the context of machine learning it is customary to have m as the number of

eature vectors to be classified and n as their dimension. In a statistical context n is

ften taken to mean a count frequency.
6 Also called the transinformation in the context of communication channels.
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• Center sub-lattice: stimuli “3” and “9” (white label) are per-

ceived as “3” and “9” (reading the gray labels from the node

upwards) and also stimuli “5” (white label) is perceived as “9”

(gray label) and
• Left sub-lattice: stimulus “8” (white label) is (wrongly) per-

ceived as “0” and (correctly) as “8” (gray label) whilst for

stimulus “0” (white label) we get the correct response “0” (gray

label) and for stimulus “6” (white label) we get the wrong re-

sponse “8” again. In this case, we can assert that stimulus “8”

is more generic than “0” and “6” since, the former is confused

with both the latter whilst the latter are only taken as a sin-

gle response. These are therefore more specific and we can see

them appearing in upper nodes of the lattice.

5. Analyzing: The digit proximities denoted by these three sub-

lattices also agree to a certain extent with another representation,

the directed threshold graph, proposed in (Mirkin, 2005, p.52), that

provides the following interpretation: in the case of the right sub-

lattice, its stimuli share the fact that the lowest segment of the

representation is missing. For the center sub-lattice, a distinctive

characteristic is the absence of the lower-left segment. Finally, for

the left sublattice, the number of common present segments is

very high (both “0” and “8”, on the one hand and “6” and “8” share

6 out of the 7 possible segments).

Fig. 3(b) allows us to zoom in some of the

confusions. For example, “5” and “6” are both mutually con-

fused. Also, “9” is more specific than “3” since the former is taken

for “5”, the latter and itself while “3” is only taken for “9” and

itself. This is the reason for the node with the white label “9” to

appear lower in the lattice than “3”.

6. Abducting hypotheses: In view of the previous analysis we can

abduct the following interpretation: in the case of the right sub-

lattice, its stimuli share the fact that the lowest segment of the

representation is missing. For the center sub-lattice, a distinctive

characteristic is the absence of the lower-left segment7. Finally,

for the left sublattice, the number of common present segments

is very high.

Result: We found three perceptual sublattices that embodied

n different ways similarities and differences between stimuli and

esponses. �

This procedure was also employed for the analysis of human

nd machine phonetic confusions in Peláez-Moreno, García-Moral,

nd Valverde-Albacete (2009) Peláez-Moreno et al. (2010) Valverde-

lbacete (2010). In Peláez-Moreno et al. (2010) we analyzed the ad-

oint sublattices appearing at different ϕ in the human phonetic
7 A similar interpretation, from a different point of view will also be presented in

ection 3.2.3.
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(a) Type OO (left adjunction). (b) Type OI (Galois connection).

Fig. 4. (Color online) Concept lattices of the encoding of segmented digits in terms of their present or absent segments. Digits are labeled in white and the segments present (b) or

absent (a) in gray.
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confusions of (Miller & Nicely, 1955) corroborating some of the con-

clusions of themost influential papers on Human Speech Recognition

(HSR) to date. The original authors hadmanually clustered the sounds

under analysis determining that phone recognition is grounded on hi-

erarchical categorical discrimination, that is, English consonant sounds

form groups identified in terms of hierarchical clusters of articulatory

features. Furthermore, they introduced the notion of virtual articula-

ory communication channels, identifying five of them: voicing, nasal-

ty, affrication, duration and place.

In our analysis with concept lattices we were capable of clearly

bserving the appearance of nasality as the most outstanding chan-

el, closely followed by voicing but then, the hierarchy of the channels

iffers for unvoiced consonants, where the most distinctive feature is

riction followed by manner (and a glimpse of duration) and voiced

ones, where the place of articulation is more relevant.

In this case the analysis with K-FCA corroborated analyses done

ecades ago that were being questioned at present, whence we con-

lude,

ffordance 9. K-FCA analyses can lend support to hypotheses inde-

pendently obtained.

The same analysis conducted on HSR to identify Miller & Nicely’s

articulatory channels described in Section 3.1.3 was carried out on an

Automatic Speech Recognizer (ASR) (Peláez-Moreno et al., 2010), the

most striking conclusion being that the former’s most salient feature,

nasality, was not clearly observed. This leads us to hypothesize that,

either the feature extraction mechanisms or the acoustic models of

the machine recognizer are not adequate for representing this char-

acteristic of speech, apparently the easiest for humans. Further work

to improve those mechanisms should help reduce the gap between

HSR and ASR.

Affordance 10. By rendering data to a common, comparable form,

FCA is capable of comparing performances across different data do-

mains, when the data setting are compatible.

This is the case with human- and machine-induced acoustical

confusions.

3.2.3. Use case: extended FCA analysis of confusion matrices

By using the techniques in Section 2.3 we can sometimes enrich

certain kinds of analyses by catering to more phenomena than those

observable through standard FCA.

Affordance 11. Extended, generalized FCA can analyze data to find a

wider array of phenomena than FCA.
Example. In this Sectionwe enrich the analysis of confusionmatrices

ketched above by providing evidence for perceptions that take into

onsideration the absence of certain parts of stimuli.We use the same

ata setting and processing.

1. Contextualizing: Fig. 4 shows two instances of the first and sec-

ond types of extended conceptual lattices for the incidence ma-

trix of segmented numerals (Keren & Baggen, 1981) specifying for

each digit—the objects—every segment activated to delineate it—

the attributes (see Table 2(b)). Note that this is a mere boolean

description of the composition of the numerals in terms of their

segments and it does not include any information about human

confusions as those of Fig. 2(c) in Section 3.2.2.

In the lattice to the left, the object concepts are read with negative

attributes, that is “number 2 does not have the up-left or down-

right segments”, while in that to the right they are read in the

positive, that is “number 2 has segments up, down, mid, down-

left, and up-right”.

2. Visualizing & identifying and analyzing: The comparison of the

two concept lattices evidences the usefulness of type oo exten-

sions: while Fig. 3(b) is a highly complex lattice where the recog-

nition or analysis of any relationship, clustering or organization

in the geometry of the task is hardest, Fig. 3(a) is a less complex

description.

3. Abducting hypotheses: Following Occam’s razor, we choose the

left lattice as a more accurate representation of the underlying

phenomena (confusions) and we posit the hypothesis is that the

absence of segments explains better some of the errors in seg-

ment perception.

Note how observing this lattice we can formulate a hypothesis to

explain the right and center adjoint sublattices of Fig. 3(a) but it

cannot provide a clear account for the left sublattice. �

Result: In concrete dataset analyses it pays to consider non-usual

ersions of concepts and standard concept lattices side-by-side. �

.2.4. Use case: structuring open-domain relation extraction

Relation Extraction is the task of obtaining relation instances, triples

f two entities and a (reified) pre-specified relation between them.

pen Relation Extraction (Fader, Soderland, & Etzioni, 2011; Yates et al.,

007) aims at automatically extracting relation instances, where the

elation is directly mined from texts instead of using a pre-specified

et. Given a set of extracted instances the question arises whether

hey show any relationship between them and what such relation-

hip might be:

ffordance 12. FCA allows us to elicit hierarchical structure from ap-

arently unstructured domains.
9



(a) High WPMI-induced structural concept lattice, wPMIRP (r, p) ≥ 0.002854

(b) Low WPMI-induced structural concept lattice, wPMIRP (r, p) ≥ 0.000598

Fig. 5. Illustration of the structure of high wPMIRP-induced concept lattices. The attributes (patterns) are not shown to lessen the visual clutter. The little structure that there is

seems to be semantically-motivated, but the reciprocal relations (prefixed with “R:”) are never clustered close to their direct counterparts.
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xample. Next we show how the use of FCA helps to bring hierarchi-

al structure to a domain as long as it can be captured by a two-mode

ata matrix.

1. Contextualizing: In spite of the data for this task being three-

moded, and since the theoretical development and software for

triadic concept analysis is so scarce (Wille, 1995), we can use FCA

by encoding the pairs of entities as if they were attributes predi-

cated of relations. Here relations are objects and pairs of entities

are attributes8.

2. Data preparation: To build the dataset of relation candidate pat-

terns over which we will perform our analyses, we aligned rela-

tion tuples extracted from a Linked Data base and very general

lexical-syntactic patterns mined from a large document collec-

tion. Then we transformed the data to a format amenable to FCA

processing and carried out the exploration. The data sources used

in these experiments were:
• A large open-domain document collection: the source data

from the TAC 2010 Knowledge Base Population Evaluation.

This data release consists of 1 777 888 files, from which over

1.2M are newswire and around 490K are Web documents (Ji,

Grishman, & Dang, 2011).
• A Linked Data base: we downloaded a full data dump of Free-

base, dated May 26th, 2013 (Google, 2013). This dataset con-

tains 585 million RDF-serialized assertions.

After the linguistic processing, we transformed the clustered pat-

tern sequences into (complex) pattern expressions thus obtaining

a count-valued context (R, P, NRP), where R is the set of relations,

P is the set of such (complex) patterns and NRP ⊆ NR×P is the N-
valued relation of occurrence counts.

8 In fact, they are tags for classes of entities as detected by a Named-Entity Recogni-

ion algorithm, but we want to concentrate on relations for this application.
Using these counts of relation-patterns we estimated the empiri-

cal joint probability PRP(r, p) between relation names and patterns

and calculated theweighted point-wise mutual information (wPMI),

using the following formula where IRP(r, p) is the PMI of (5),

wPMIRP(r, p) = PRP(r, p) · IRP(r, p)

to create an exploration formal context (R, P, wPMIRP).

3. Exploring: Next we carried out the exploration of this context as

described in Section 2.2. Since the cardinal was high, we sampled

a 20% of the total number of values in the range of ϕ to reduce

the computation time. Later, when we chose some of these mea-

sures to carry out the structuring task, we noticed that interesting

lattices were already in the sample.

4. Analyzing: In Fig. 5 we present two concept lattices obtained by

min-plus analysis exploration of the context (cfr. Section 3.2.5).

Note that the complex patterns are not represented to pre-

vent visual clutter. The first outstanding result is that even

at high positive thresholds as in Fig. 5(a) there are some

semantically-motivated hierarchical relations, for instance

per:place_of_birth, per:place_of_death and

per:place_of_residence, although at that point most of

the relations are either not captured—the big extent of the top

concept—or completely disjoint from each other—like the many

nodes only related through top and bottom.

At lower thresholds, as in Fig. 5(b), there is an increase in hi-

erarchy height. But relations and their reciprocals are still not

placed in the same cluster—see, for instance the two clusters

on right and left around org:founded_by and its reciprocal

R:org:founded_by, respectively. We believe this to be pro-

duced by the different valencies of relations and their reciprocals:

the complex patterns are ordered pairs of entities and the reci-

procity inverts it.
10
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Results: This exploration reveals that there is very little structure

in the set of relations extracted with these particular techniques from

the Freebase data and documents we used9.

When there is, the proposed scheme is capable of detecting struc-

ture induced by apparent semantic proximity of the relations, bar-

ring reciprocity. Since from the names of the relations it is evident

that they are semantically related, the initial data extraction is a good

candidate for improvement.

Note also that when the data is originally very much related, the

extraction of structure is much more apparent as made evident for

FrameNet data in Valverde-Albacete (2008). �

3.2.5. Use case: the analysis of overexpression and underexpression in

Gene Expression Data

Grouping genes by means of gene expression similarity data has

been the goal of many researchers for well over the past 20 years as

a way to induce the proteins being synthesized in a sample of cells

for each precise condition under study. Under- or over-expression

of genes offers information about the co-regulation underlying ex-

pressionmechanisms. This co-regulation process is not exempt of the

problems of high variability due to the unreliability of the measure-

ments. Currently the most popular technique to obtain gene expres-

sion profiles is still using gene micro-arrays, but in recent years there

have been some advances in next generation sequencing techniques

making it possible to obtain gene expression profiles with a higher

quality (Metzker, 2010; Xie, Wu, Tang, Luo, Patterson, Liu, Huang, He,

Gu, Li, Zhou, Li, Xu, Wong, & Wang, 2014).

In both cases, Gene Expression Data (GED) must be explored to

various ends: to recognize relationships between the probesets under

different empirical conditions, to identify the biological functions of

genes yet unknown, to investigate the role of measurement errors in

the diversity found in different instances of the same experiment and

finally to provide friendlier visual representations to human cogni-

tion and memorization that make this tool interactive and helpful for

decision making.

FCA multivalued extensions are essential for this task: since a

gene is considered to be under-expressed (resp. over-expressed) un-

der some particular conditions with respect to some reference condi-

tion if its m-RNA concentration level is lower (resp. higher) for those

particular conditions than for the reference case, we can employ two

opposite semifields, for instance max-plus and min-plus, to explore

both phenomena under the K-FCA framework (González-Calabozo

et al., 2011; 2012).

Affordance 13. Changing the underlying semifield in K-Formal Con-
cept Analysis allows us to measure processes of opposite polarities.

Example. To illustrate how to realize this affordance with Web-

GeneKFCA (González-Calabozo, Peláez-Moreno, & Valverde-Albacete,

2012), a tool for GED analysis10, we present here an example of anal-

ysis intended as a guide through the exploratory process designed to

iscover the relationships among genes belonging to different human

issues11.

1. Contextualizing: Five different human muscles were consid-

ered: vastus lateralis, quadriceps, deltoid and vascular smooth mus-

cle. Samples were downloaded from the NCBI gene expression

database (Edgar, Domrachev, & Lash, 2002), from different exper-

iments and analyzed with the HG-U133-Plus Affymetrix micro-

array chip, whose heterogeneity intends tomake evident clear-cut

distinctions to demonstrate the applicability of the tools.
9 We also checked these results with plain joint probability PRP and PMI IRP . wPMI

and joint probability provided the best results.
10 Available at http://webgenekfca.com
11 This particular instance of analysis is available at https://webgenekfca.com/

webgenekfca/kfcaresultses/4. Other results on Arabidopsis Thaliana are also available

in (González-Calabozo et al., 2011).
• Vastus lateralis: Two samples from the quadriceps extracted

from healthy women used as a control group for a polycystic

ovary syndrome study.
• Quadriceps: Two samples from an unspecified muscle that

prior to sample extractionwas deprived of bloodwith a tourni-

quet applied to the lower limb after the administration of

spinal anesthesia, as per the normal protocol for knee arthro-

plasty surgery.
• Deltoid: Two samples from a much bigger study with 622

samples collected for the characterization of several human

tissues.
• Vascular smooth muscle: Two samples extracted from a

healthy control group to analyse muscle cells infected with

Trypanosoma cruzi.

Note that we have intentionally selected quite disparate samples

so that the outcomes of the analysis are well-known and falsifi-

able.

Robust Multichip Average (RMA) summarization was performed

using the Affymetrix Power Tools (Affymetrix, 2013a) resulting

on a G = 54675 by M = 8 matrix containing an expression of a

single probeset per row. The correspondence between genes and

probesets is given by the Affymetrix Annotation file, but most of

the probesets identify a single gene unequivocally (Affymetrix,

2013b).

2. Data preparation: Prior to starting the K-FCA exploration we

need to perform some preprocessing to allow the comparison of

the expression of different probesets. Since these have different

ranges of expression, a normalization is necessary. Several alter-

natives are implemented in WebGeneKFCA (González-Calabozo

et al., 2011) and here we have chosen to apply the natural loga-

rithm of each probeset i for the condition j divided by the arith-

metic mean of the gene expression over all considered conditions

as it better agrees to the nature of the quantities (m-RNA logarith-

mic concentration) being considered12.

3. Exploring: the evolution of the number of concepts An im-

portant feature of the sequence of concept lattices produced in

the exploration is the evolution of the number of concepts along

the ϕ—the threshold of existence for max-plus exploration cap-

turing under-expression—, and φ axes—for min-plus exploration

to capture over-expression. It provides an indication of the size

and complexity of the concept lattice: if the absolute value of

the threshold of existence is large, then large absolute values of

the gene concentrations will be required for the concepts to ex-

ist, meaning that the lattice will only show the most salient re-

lationships or co-clusters. On the contrary, if the absolute values

required for existence are low, many nodes of the lattice appear—

sometimes showing spurious relations due to the uncertainty in

data collection or measurement noise. The graphical interface of

WebGeneKFCA, as an interactive tool for analysis and decision, al-

lows the user to navigate along this parameter, zooming in and

out to observe rougher or finer groupings.

Fig. 6 is a depiction of this evolution for the data described pre-

viously. Since ϕ ∈ ( − ∞,0] and φ ∈ [0, ∞) the left part of the

curve corresponds to the analysis of co-regulated gene under-

expression while the right one represents the analysis of over-

expression. The maximum number of concepts 2M = 256 is at-

tained at ϕ = φ = 0.0. We can observe that the overall negative

slope of theRmin,+ part is higher and smoother than that ofRmax,+
which lead us to think that the over-expressed genes are fewer

than under-expressed ones. Sudden changes in the slope reveal

values of the threshold of existencewhere the lattice changes sub-

stantially and therefore are interesting to look into.
12 These data are available from https://webgenekfca.com/webgenekfca/

datamatrices/4 including heatmaps of gene expression levels.
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Fig. 6. (Color online) Number of concepts vs. ϕ (light blue, to the left of 0.0) and number of concepts vs. φ (drab yellow, to the right of 0.0) for the context being explored. The

positions of this curve can be explored in an interactive way at https://webgenekfca.com/webgenekfca/kfcaresultses/4.

13 The reader is encouraged to explore the lattices using the on-line application We-

bGeneKFCA as the labels of the nodes appear when selected by the click of the mouse.
4. Exploring: biclustering of genes. The way to present the concept

lattice in a tool designed as an aid for knowledge exploration is

crucial. Even more so if we take into account the size of the con-

texts analyzed. There are many different available algorithms to

visualize a concept lattice, each with its advantages and disad-

vantages (Eklund & Villerd, 2010).

Since the use of K-FCA requires the visualization of a sequence of

concept lattices as a function ofϕ orφ, in González-Calabozo et al.
(2012) we proposed a scheme having the distinctive feature that

the formal concepts with the same intent belonging to different

concept lattices (CL(ϕ) or CL(φ)) are always plotted in the same

spatial position. This means that as the user explores the values of

ϕ or φ, she will easily see how the extent of each concept evolves,

increasing or decreasing in size. They might even disappear.

In our particular example, with M = 8 samples, this silhouette

will exhibit 9 levels of rows including the top and bottom (see

Figs. 7–9). The intents of these 8 concepts of the second row

will have a single element: each of the samples. The second row

will be composed of up to (82) 2-combinations of the previous

row concepts’ intents, the third, up to (83) 3-combinations, and
so on.

Thus, we say that the higher in the lattice a concept appears, the

more specific the co-cluster so profiled is, since the set of genes

that comprise the extent apply to fewer samples and therefore are

the ones that make it distinct. Conversely, the lower the concept,

the more generic the cluster is, since the genes enumerated in its

extent apply to a larger number of samples and hence are more

common.

Next, a few examples of the analysis afforded at particular points

of the graph in Fig. 6 will be presented.

5. Analyzing gene under-expression: According to the observations

made in point 3 we choose the concept lattice at ϕ = −0.4 since

it seems to be an inflection point in Fig. 6. The concept lattice for

thisϕ is shown in 7. In this position a large co-cluster can be found

(highlighted in blue), whose genes are under-expressed or down-

regulated in both vascular smooth muscles’ probes. Since all the

concept lattices are plotted over the silhouette of a boolean con-

cept lattice, the concept with this extent always appears in the

second row to the right, connecting the last two concepts of the

previous row that correspond to the last (vascular2) and last but
 F
one (vascular2) probes13. The 721 genes of its extent profile these

two probes (at this particular ϕ = −0.4).

This information will allow us to navigate the gene ontologies

indexed by WebGeneKFCA in search of an explanation for this

grouping as explained in Section 3.2.6.

The researcher can now identify the most under-expressed genes

in this cluster, and shewill find that the analysis seems reasonable

since in this experiment the only smoothmuscles are the two vas-

cular ones: the rest are striated. These under-expressed genes in

smooth muscles are over-expressed in striatedmuscles.

Moving on to a lower value, ϕ = −0.22,we find another change of

slope in the number of concepts of Fig. 8. The vascular co-cluster

described above persists (with 1748 new genes) and three new

salient co-clusters are added, related to the quadriceps samples.

The two co-clusters in the second row specify the genes privative

to each of the two samples whilst the one in the third, lists the

genes in common.

Another very populated cluster appears in the third row formed

by the probesets which belong to under-expressed quadriceps

genes (displayed as a blue circle in the concept lattice of Fig. 8). A

priori, we should expect little difference between the smooth vas-

tus lateralis samples and those of the quadriceps, but in this case

the differences are due to the conditions in which these probe-

sets have been collected: a tourniquet applied to the quadriceps

deprives it from some oxygen and nutrients, so we hypothesize

that this is the reason why this co-cluster becomes salient. On a

more detailed analysis we find under-expressed genes (like EPOR)

with functions related to red blood cell survival that have a di-

rect relation with the tourniquet applied and the lack of enough

blood. Note that to draw these conclusions we used the aid of

the interface to gene ontologies the tool provides, explained in

Section 3.2.6.

6. Analyzing gene over-expression: The same exploration can

now be applied using min-plus analysis to discover information

about over-expression. For example the concept lattice appearing

around φ = 0.15 is shown in Fig. 9. It shows clearly the vascular
igs. 7–9 can hardly approximate the wealth of information in the interactive tool.
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Fig. 7. (Color online) Gene under-expression lattice for ϕ = −0.4. This lattice can be explored in an interactive way at https://webgenekfca.com/webgenekfca/kfcaresultses/4.

Fig. 8. (Color online) Gene under-expression lattice for ϕ = −0.22. This lattice can be explored in an interactive way at https://webgenekfca.com/webgenekfca/kfcaresultses/4.
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Fig. 9. (Color online) Gene over-expression lattice for φ = 0.15. This lattice can be explored in an interactive way at https://webgenekfca.com/webgenekfca/kfcaresultses/4.
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Fig. 10. An interpretation of the interaction between FCA, K-FCA and external re-

sources. In the example, gene ontologies are indexed by FCA.
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14 http://www.ncbi.nlm.nih.gov/gene
15 http://amigo.geneontology.org/amigo/
16 http://www.genome.jp/kegg/
smoothmuscle co-cluster (big right blue circle) and the quadriceps

co-cluster (big left red circle) both in the second row. The clus-

ter of over-expressed striated muscles is identified as the small

red dot at the bottom on the left part of the lattice (eighth row,

left). There are more than 4 000 over-expressed probesets in the

vascular smooth muscle and again an analysis of the most over-

expressed genes can be carried out.

Result: The use of max-plus analysis and min-plus anal-

sis is an effective mechanism for exploring the phenom-

na of under-expression and over-expression in GED data,

espectively. �

.2.6. Use case: interfacing other resources

In this section we analyze an affordance that does not issue di-

ectly from the LofK metaphor by Wille. It comes from the work of

odin and collaborators (Godin, Gecsel, & Pichet, 1989; Godin, Saun-

ers, & Gecsei, 1986) who very early realized that a concept lattice

an be turned into an indexing device for an Information Retrieval

ystem,

ffordance 14. A concept lattice is a content-based indexing device

nto other knowledge resources.

xample. Recall the WebgeneKFCA tool introduced in Section 3.2.5.

1. Indexing: A very abstract scheme of interaction of the tool is

drawn in Fig. 10. In there we see how WebGeneKFCA takes its in-

puts from a database manager of expression profiles for particu-

lar Genomes. By reading the meta-data from this DataBase Man-

ager System (DBMS), WebGeneKFCA provides a brief description

for each gene selected from a cluster. This description has refer-
ences to the NCBI gene database14 to ease the access to the latest

online description of that gene.

There are also references to each of the Gene Ontologies15 the

gene belongs to, with one link to each ontology description.

Finally WebGeneKFCA shows if the gene is known to belong to a

pathway and provides a link to KEGG pathway database 16.

Result: Concept lattices can be used to support interaction with

ther knowledgemanagement tools like ontologies by indexing these

ased in extents and intents.
pathway.html
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Although using different extensions that K-FCA, the semantic file
systems of Ferré (2007) Martin (2004) Martin and Eklund (2005), and

the post-retrieval clustering results of Carpineto and Romano (2004)

2005) are also proof of this. Examples of the use of FCA for the biblio-

graphic analysis of different domains can be found in Poelmans et al.

(2013a) Poelmans et al. (2013b). A more in-depth analysis of affor-

dances of FCA for the analysis and synthesis of Information Retrieval

systems is Valverde-Albacete and Peláez-Moreno (2013). �

4. Discussion

4.1. Other frameworks for EDA within Data Analysis

To analyze the suitability of LofK for EDAwewill compare to other

methods of EDA previously proposed. For this purpose, we believe

that an explanation of conceptual frameworks for overall Data Anal-

ysis (DA), including both EDA and Confirmatory Data Analysis (CDA)

is necessary. Note that the issue of what questions can DA answer is

still being debated (Leek & Peng, 2015).

To make this comparison manageable we will use very basic

Metaphor Theory (Lakoff, 1987) to make evident the metaphors un-

derlying these frameworks. For other approaches to characterize DA,

see, e.g. Džeroski (2007) Mannila (2000).

4.1.1. The Classical Approach of Data Analysis

The classical framework of EDA was originally proposed as

a hypothesis-inducing stage of the whole data analysis process

achieved through exploring the data with as wide an array of tools

as possible (Tukey, 1977). We believe it is a blend of three metaphors

(Behrens, 1997; Tukey, 1977)17:

• Data Analysis is Trial-by-jury

• Data Analysis is an Interaction

• EDA Tools are Back-of-the-Envelope Calculations

We briefly sketch these metaphors.

Data Analysis is Trial-by-jury. The “trial-by-jury” is a construct of

the Anglo-Saxon culture that seems to have heavily influenced Statis-

tics from its inception. This metaphor assigns different “legal roles”

to the participants in the DA process: the suspects are the hypothe-

ses issued from the data, the practitioner is a detective or prosecu-

tor depending on the phase of the analysis, exploratory analyses and

plots are exhibits to be presented as evidence in the trial, where

statistical orthodoxy and practice is the judge, test statistics are the

jury, and significance is the verdict.

In this metaphor, EDA is about indicting, CDA is about convict-

ing. It is made explicit in different submetaphors: EDA is detective

work (Tukey, 1977, p. 1), CDA is Prosecutor Work (directing de-

tectives to collect evidence) (Behrens, 1997, p.132), and Final CDA

is the trial Jury and Judge Work (Behrens, 1997). Interestingly, this

metaphor is still productive in the sense thatmodern authors still talk

of building tools as if they were a lineup (Buja et al., 2009)18.

Standard statistical practice has learned to break away from this

metaphor, by insisting that the data for EDA, the training data, be dif-

ferent to those for final CDA, the test data. It is also interesting to see

how difficult this code of conduct is to grasp for new practitioners.

A very interesting variation of this framework is explained at

length in Buja et al. (2009). They see two problemswith classical EDA:

the confirmation of purported “discoveries” and the control of over-

interpretation of data. Since these seem to align with the traditional

purposes of CDA they suggest to use visual analogues of the tools and
17 But see also Data is a Data table below for a fourth metaphor that we believe is

acting in this model.
18 A legal procedure where a witness is requested to pick a suspect from a set of

otherwise random people
rocedures of CDA in the metaphor Visual EDA is Inferential Anal-

sis.

This framework could be stated as follows: EDA is Inferential

Analysis, Plots are Test Statistics, Human Cognition is Statisti-

cal Testing, Hypothesis Discovery is Contrasting Collected Data

Plots vis-a-vis Random Data Plots, Discoveries are Rejections of

Null Hypotheses. To avoid the over-interpretation of data, they de-

velop the data analyst’s ability to detect novelty with methods de-

signed to offset cognitive biases in the analyses, Calibration of the

Discovery Process is Control of False Positives.

This comes from statisticians whose education has endowed them

with the Inferential Analysis framework for DA, hence grounding EDA

into CDA seems natural to them. But in fact the methods and tools of

CDA are alien to the “default” human interpretation of data, the rea-

son they were developed in the first place. And the question remains

whether this is necessary for the EDA, born precisely as a reaction to

the strictures of CDA.

Data Analysis is an Interaction. This legal metaphor may be clash-

ing against another: it is a tenet of this type of trial-by-jury that no

man can be judged twice for the same crime19, but standard EDA

practice seems to imply that there is a form of interaction between

ifferent stages of EDA and CDA. In this metaphor, an initial, rough

DAwill be followed by a quick CDA, followed by afiner EDA and so

on until thefinal CDA concludes the process. This is the kernel of the

DA is an Interaction metaphor where EDA supplies the hypotheses

and CDA accepts them or suggests they be revised (Tukey, 1980). In

this metaphor there seems to be an implicit quantity that is accru-

ing or refining, perhaps the validity of the analysis. Note that this

interaction could also be conceived as a conversation.

Explicit consideration of this quantity as accruing, leads to an en-

riched metaphor DA is an Opening spiral where the interaction is

actually used to accrue be it evidence, knowledge of the data, in-

formation, etc. We find no trace of the enriched metaphor in the

first Tukey (Tukey, 1977), but the Analysis of Variance (ANOVA) has

this flavor and the later Tukey considers it as crucial for EDA (Tukey,

1993). In there, the quantity accruing is the explained variance, but

in modern incarnations of this metaphor the quantity may also be

decreasing, like uncertainty in De Bie (2011).

EDA tools are back-of-the-envelope calculations. This metaphor

is explicitly invoked by (Tukey, 1977, p. 1) but later modulated to in-

clude the possibility of (at the time scarce) computer aids (Tukey,

1977, ch. 20). From an initial emphasis on “pen-and-paper” it soon

migrated to “procedure-based” view (Tukey, 1993)which fostered the

advent of computer-supported toolsets and environments.

The embodiment of this classical framework seems to be that of a

statistical operating system, that is a console onto a Read-Eval-Print-

Loop (REPL)—in the spirit of LISP—and quick prototyping—perhaps

with a customized user interface—and a plethora of different ex-

ploration tools available. The user environment of languages like S

(Becker, Chambers, & Wilks, 1988), R (Ihaka & Gentleman, 1996)

or Octave all agree with this description, and embrace open source

and social software development practices—extensibility by means

of packages, code repositories, community blogs, etc., although other

software adopts the guise of standalone libraries or rapid prototyping

environments. The analysis of the environments, user interfaces, and

workflow types allowed by such tools would warrant a paper of its

own.

Note that with complex graphic toolsets a price is paid: every plot

needs a learning exercise on the part of the user, so they cannot be

used profusely in communicating data analysis to a lay audience.
19 Without new evidence accruing, the finer point asserts.
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.1.2. The approach of Data Mining

The more modern field of Data Mining (DM) has also recognized

he dichotomy between Exploratory Data Mining and Confirmatory

ata Mining20, but is also leaning towards Predictive Data Mining.

his has to be understood in the context of the different questions

hat can be posed with a data analysis procedure (Leek & Peng, 2015).

Data Mining seems to be supported, at least, in the following

etaphors:

• Knowledge extracted from data is gold

• Data is a Data table

• Data Analysis is an Interaction

The third metaphor is similar to that explained above, so we will

oncentrate in the other two.

nowledge extracted from data is Gold. This metaphor inspires

he name of “Data Mining” as well as frames the activity: Data An-

lyzing is Mining for gold, so A (data) Pattern is a Gold nugget,

nd the Interestingness of a pattern is the Value of the gold in

he nugget.

ata is a Data table. This is a metaphor that is induced by the

tandard representation of data in the Database community—where

he Knowledge Discovery in Databases community originated—who

oined the expression “Data Mining”. DM post-dates DA and many of

ts practitioners are trained in Statistics and DA, as well as Computer

cience. To them, embodying data in a table that follows Codd’s Re-

ational Algebra (RA) (Codd, 1970) is as natural as considering Data

nalysis an Interaction.

We will consider that a metaphor backed up by a Mathematical

ormalism becomes a model that can be implemented, e.g. as RA is

mbodied into Relational Database Management Systems (RDBMS).

nce the practitioner is knowledgeable with the implementation,

his model makes operating with data extremely easy. So adopting

he Data is a Data table model provides the ability to implement

M systems within RDBMS, which might explain the success of the

M community. Notice that this is an advantage that modern Sta-

istical environments tend to adopt, e.g. the dplyr package within R

Wickham & Francois, 2015).

.1.3. Towards a mixing of metaphors

Blending, mixing and actually identifying terms in a metaphor

s natural for humans and a major mode of conceptualization and

earning (Lakoff & Johnson, 1996). It is no wonder that there is a

ermeation of the metaphors of the most successful data analysis

ramework, DM towards classical (statistical) DA, acknowledging that

tatistical DA first informed DM.

For instance, modern embodiments of the statistical environ-

ents, embracing the back-of-envelope metaphor, have adopted

echnologies from Computer Science—like RA for data tables or incre-

ental and open source toolset construction as in the CRAN mecha-

ism for the R language—, Information Visualization—like the gram-

ar of graphics inspired in the visual discipline promoted by Tufte

1992)—, and Machine Learning, like interactive plots with regression

ines.

In another instance, the Data as a Data tablemodel is to be con-

rasted to Data is an iid
21

Sample from a joint probability distribu-

ion of Classical Statistics and Machine Learning (Murphy, 2012): the

athematical apparatus backing up the latter is well-founded, but

equires a longer training than RA to become proficient at, and can

e very easily misused, which is why CDA was developed. Indeed we
20 We will still refer to them as EDA and CDA, respectively for the reasons explained

n the text.
21 “Independent and Identically Distributed”.

s

l

o

t

avewaited until the DMmetaphors were explained to introduce this

odel/metaphor, because Data is a Data table seems to be the more

uccessful metaphor (in the number of practitioners) so far. On the

ontrary, using Data is an iid Sample from a joint probability dis-

ribution provides a unique advantage in solving questions of Predic-

ive Data Analysis, and this is why Machine Learning, that embraces

his model is flourishing.

That these models can be blended to advantage can be seen in the

ork by De Bie and co-authors (De Bie, 2011; De Bie & Spyropoulou,

008). They have developed information-theoretic EDA in a num-

er of papers tackling association rules, clustering, bi-clustering and

ther unsupervisedmachine learning tasks for which EDA is specially

uitable. Their fundamental tenet is that the interestingness of pat-

erns comes from the subjective knowledge state of the user, clearly

n instance of the Data is Goldmetaphor. The different types of data

hat they address suggest that they are using the Data is a Data

able model. But they resort to Information-Theory and the Max-

mum Entropy Principle to iteratively induce joint distributions for

he users preconceptions about the data, and this suggest that Data

s an iid Sample of a distribution model. They concentrate in pat-

erns that provide high compression rates vs. low descriptive com-

lexity, to guide an iterative, and possibly interactive process of un-

ertainty reduction, like “sifting” through the information in the data.

his manner of proceeding hints also that established metaphors can

e improved upon and transformed into models very easily by means

f different ways of understanding DA. And this is a meta-process

f DA on the metaphors—exploratory and rough— and the models—

onfirmatory and final.

.2. A comparison of Landscapes of Knowledge to other EDA

rameworks

In this section we include both a comparison of LofK to other EDA

rameworks and a critical analysis of the affordances of K-FCA as a

ool for EDA.

.2.1. Challenges for K-FCA as a tool for EDA

There are many techniques of EDA in the mainstream of DA, like

unsupervised) clustering (Mirkin, 1996), latent semantic analysis

Landauer, McNamara, Dennis, & Kintsch, 2007), multidimensional

caling, principal component analysis (Murphy, 2012), etc. Despite

ts privileged relation to association rule extraction (Ganter & Wille,

999), FCA is not counted amongst them at present and in this section

e provide our take in this matter.

First, note that standard Machine Learning libraries and envi-

onments, like Weka (Hall, Frank, Holmes, Pfahringer, Reutemann,

Witten, 2009), or languages, like R (Ihaka & Gentleman, 1996),

o not have FCA facilities. Nor do FCA environments, like ConExp

Yevtushenko, 2000), include other standard unsupervised machine

earning techniques, apart from association rule extraction. This lack

f an open-source, standard toolkit is acknowledged and often regret-

ed in the FCA community, and further efforts are needed to address

t.

In our opinion, one feature that often misleads novel practitioners

f FCA is its “formal” qualification. Although results obtaining from

uch lattices are often called “conceptual”—such as “conceptual clus-

ering” or “conceptual search”—they should rather be read as “formal

onceptual”, that is, as pairings of sets of abstract objects and abstract

ttributes. “Abstract” in the previous sentence should be read in the

ame sense as in “abstract algebra”: indeed, any pair of sets can be

sed instead of objects and attributes, even sets that are formally the

ame.

For instance, when documents are taken as objects and words or

emmas are taken as attributes one is tempted to declare the intents

f formal concepts—that in this instance take the form of sets of such

erms related to sets of documents—as a conceptual description in
16
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the usual epistemological sense22. To the best of our knowledge, this

has not been granted by any research.

As soon as one becomes used to different instances of object-

attribute pairs—and Section 3 presents many—this illusion of captur-

ing “epistemological concepts” is dispelled. But it must account for a

lot of people being attracted to FCA and getting equally disillusioned

with it shortly afterwards. Since Science is essentially a sociological

phenomenon, thismight help explainwhy FCA in spite of having been

available for the past thirty years has not been adopted inmainstream

DA.

On the positive side, FCA is quite remarkable in the depth and

number of results that it lays at the disposal of the practitioner when

the data are binary and of high quality, as shown in Section 2.1. We

have tried to make this evident in the use case of Section 3.2.1. On the

negative, to the best of our knowledge, FCA has been so far unable

to incorporate effectively a notion of noise in incidences. Our hope is

that multi-valued extensions will eventually be able to bring noise

into the picture to widen the range of applicability of the extended

techniques. The difficulty here is rethinking the concept of noise in

complete idempotent semifields, or semirings.

Clearly, FCA adheres to the Data is a Data tablemodel, and a for-

mal context, as a two-mode incidence relation with names on rows

and columns is but another name for a matrix. As a boon, this is well-

known to be a crypto-morphism of bipartite graphs and related to

bi-clustering (co-clustering) (Hartigan, 1972; Mirkin, 1996). For DA, a

matrix like a contingency table is a type of wide data table, to be con-

trasted to the long data table that normal forms of RA require (Codd,

1970), but modern data languages are endowed with primitives to

transfer between the two, e.g reshape in R.
Furthermore, FCA adheres to the Visual Inferential Analysis

metaphor: concept lattices provide exhibits for the analysis to pro-

ceed and the duality of contexts and lattices allows to transform the

visual hypotheses into data hypotheses.

What seems to be missing from FCA practice is a serious at-

tempt at formalizing the iterative process in the DA is an interaction

metaphor. This is a consequence of the FCA formalism not having any

free parameters susceptible of adjustment. The only actual freedom

of analysis available in FCA is which of the four modes in Section 2.3

to consider for eliciting the lattice, and this changes the interpretation

of the data. Note that the alternate modes of analysis are not frequent

even in FCA practice.

However, K-FCA has the ϕ free parameter which we have used to

define a flavor of exploratory analysis: changing this value the level

of detail at which the context is being explored varies, entailing dif-

ferences in the concept lattice. Indeed, Fig. 6 is an exploratory plot of

he consequences of varying such parameter in the particular case of

nalyzing gene expression.

.2.2. Challenges for LofK as a DA framework

Clearly, LofK is a metaphor comparable to the DA is a Trial-by-

ury and DA is Mining for gold metaphors. We believe that it is

ore natural and suggestive, as a metaphor, for the average practi-

ioner than DA is a Trial-by-jury, if it is made to work as effectively.

lso, metaphors carry with them not only good associations, but also

he bad. We believe that for some time the Data is Gold impinged

ubconsciously in many data providers, and this may have delayed

he arrival of the Open Data and Open Science movements.

The adoption of FCA and its variants clearly indicates that theData

s a Data table (of the wide variety) is blended to it, and the fact

hat FCA is well-formalized seems to bid well for the uptake of LofK.

ut the lack of support for FCA as an EDA tool is a burden: analysts

ust rely on discipline and ingenuity to carry it out, and this entails
22 In this case, related to the choice of documents and terms, the data instances as

evinced in the incidence, etc.

m

i

p

S

he same sort of difficulty as adhering to the DA is a Trial-by-jury

etaphor.

We believe that a considerable amount of use cases have still to

rop up before an attempt at giving support to LofK is successful. A

amut of such use cases are selected in this paper aimed at covering

everal issues ranging from the purely abstract and theoretical exam-

le of Section 3.2.1, to the simple and well-know perceptual task of

egmented numerals—chosen for the availability of other published

olutions to validate against—, to the as yet insufficiently explored

roblem of relation extraction, to the complexity of GED analysis and

ts wealth of K-FCA exploratory affordances as demonstrated in a

Web application.

Perhaps the most daunting task for FCA and its generalizations is

to provide effective and efficient ways to use it as a tool in Confirma-

tory and Predictive Data Analysis. This would allow, among others,

blending the DA as interaction metaphor into LofK, that is, we be-

lieve, the common divisor of all DA techniques. Barring this we be-

lieve FCA and LofK will be doomed to a niche tool in binary relation

visualization.

4.3. Future research directions

The analyses in the previous sections suggest the following re-

search directions:

• Developing FCA-implementing tool sets for mainstream libraries

and languages, perhaps using the paradigm of Open Science, to

increase the chance of mainstream acceptance for FCA.
• Strengthening the exploratory capabilities of FCA by developing

a hierarchy of visualization alternatives for concept lattices that

address the specific requirements of the meso- and macro-scale.
• Developing the geometry of semimodules over semirings, lead-

ing to new techniques of unsupervised and supervised analysis,

for instance, those stemming from spectral and singular value

decompositions that mimic the same techniques in conventional

vector spaces. This and the previous research direction would en-

hance the uses of FCA for EDA.
• Developing Confirmatory and Predictive Analysis tools based in

FCA that enable, for instance the blending of the DA as an inter-

action with Landscapes of Knowledge. This will probably entail

heavy research in the line below.
• Providing a satisfactory treatment of noise in semifields or semir-

ings, that leads to models of contexts or lattice capable of accept-

ing effect + noise decompositions. Combined with the previous

capabilities this would blend all the affordances of DA is an Open-

ing spiralwith Landscapes of Knowledge, and would make it an

alternative to DA is trial-by-jury and DA is Mining Gold.

5. Conclusions

Our analysis shows that Wille’s metaphor of the Landscapes of

Knowledge, as embodied in Formal Concept Analysis also seems to

mbody the metaphors implied by Tukey’s proposals for Exploratory

ata Analysis. The formalization of data inherent in formal context

ormation and its transformation into the concept lattice provide the

asis to apply the Landscapes of Knowledge metaphor on scientific

ata as a kind of exploratory analysis.

This metaphor is well-aligned with Exploratory Data Analysis in

he sense that concept lattice visualization andmanipulation support

range of the activities related to scientific enquiry associated with

nowledge elicitation and manipulation, and such procedures can be

arried out on two-mode (matrix) data in whatever data-driven do-

ain of knowledge. In this form, standard Formal Concept Analysis

s capable of structuring and visualizing scientific knowledge to the

oint where it allows us to carry out even hypothesis formation (cfr.

ection 3.2.1).
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Fig. 11. Concept lattice describing the sections and the techniques and affordances of FCA and some of its extensions.

a

F

e

a

S

(

l

t

u

o

e

t

f

s

s

s

M

A

S

b

T

R

A

a

B

B

B

B

B

C

R

C

C

(

D

D

D

D

D

D

E

E

.

F

F

F

F

G

As a matter of fact, Fig. 11 summarizes the content of this paper in

very schematic way: by listing, for each section, what affordances of

CA and the extensions mentioned in the paper are treated therein.

The use of K-Formal Concept Analysis allows the practitioner to
ncompass a wider range of datasets, including, for instance, prob-

bilities or pointwise mutual information and variants thereof (cfr.

ection 3.2.2) as well as (gene expression product) concentrations

cfr. Section 3.2.5). The idiosyncrasies of idempotent semifields al-

ows them to model the increase or decrease of cost or concen-

ration data, making them well-matched for exploring over- and

nder-expression in GED (cfr. Section 3.2.5). Furthermore, the use

f extended FCA allows us to investigate different types of phenom-

na conceptualization: not only association between objects and at-

ributes, but also rejection or negative evidence (cfr. Section 3.2.3).

In providing such an overarching grasp on data, we believe that

ormal concept analysis is on a par with vector spaces or coordinate

paces as ametaphor for extracting, visualizing andmanipulation the

cientific knowledge embodied in data. Parallel research to that pre-

ented here also points in this direction (Valverde-Albacete & Peláez-

oreno, 2008).
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