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Abstract. This paper presents an experimental study on pedestrian classification and detection in far infrared (FIR) images. 
The study includes an in-depth evaluation of several combinations of features and classifiers, which include features previously 
used for daylight scenarios, as well as a new descriptor (HOPE - Histograms of Oriented Phase Energy), specifically targeted 
to infrared images, and a new adaptation of a latent variable SVM approach to FIR images. The presented results are validated 
on a new classification and detection dataset of FIR images collected in outdoor environments from a moving vehicle. The 
classification space contains 16152 pedestrians and 65440 background samples evenly selected from several sequences ac-
quired at different temperatures and different illumination conditions. The detection dataset consist on 15224 images with 
ground truth information. The authors are making this dataset public for benchmarking new detectors in the area of intelligent 
vehicles and field robotics applications. 
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1.  Introduction 

Image analysis and computer vision is lately being 
incorporated in civil engineering [29, 48, 14]. The 
applications are plenty and include freeway work 
zone analysis [37, 1, 38], automatic image search 
[35], human detection and modeling [12, 70] and 
face recognition [7]. Object recognition in images 
has become a very important topic in the fields of 
traffic infrastructure and driving assistance system 
[31, 54]. Applications such as traffic signs recogni-
tion [56, 13, 65, 33], obstacle avoidance [20] and 
traffic surveillance [59] have gotten the attention of 
the industry for some time now. The case of people 
detection is an exceptionally relevant case, as it leads 
to a number of important applications, some of which 
strive for saving lives.  

 
Pedestrian recognition in images is geared toward 

a variety of applications, which include safety fo-
cused road infrastructures [36], driver assistance sys-

tems [26] and autonomous robotic vehicles [55]. It is 
also useful in security, be it for automatic surveil-
lance or people counting [63, 69]. Those applications 
can be extended to low visibility conditions by using 
FIR images. Another application that could benefit of 
automatic recognition of people in low light condi-
tions is unmanned aerial vehicles aimed to rescue 
missions [71]. 

Most of the recent research in this topic is based 
on visible light (VL) images. FIR images share some 
key characteristics with their VL images counter-
parts. They both are 2D representations of a scene 
captured by redirecting electromagnetic waves by 
means of a lens, light in the first case and infrared 
radiation, which is proportional to the objects tem-
perature, in the second. Some of the key ideas on 
pedestrian classification in VL images can be extend-
ed to work on FIR images, exploiting common char-
acteristics of both, or adapt them to take benefit of 
the different kinds of information provided by FIR 
images. 
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Regarding pedestrian detection in VL images, 
there exists a reasonable number of benchmark da-
tasets publicly available, such as: MIT [53], CVC 
[27], TUD-det [8], INRIA [16], DC [47], ETH [22] 
and Caltech [18]. For an overview of recent work on 
pedestrian detection on these datasets, the authors 
refer to [26, 63, 19, 21]. In the case of FIR images, 
the authors found a lack of a complete pedestrian 
dataset that could serve as a tool to benchmark new 
features and methods. 

In this paper the authors present an in-depth analy-
sis of several well-known VL pedestrian classifiers 
applied to FIR images: Principal Component Analy-
sis (PCA), Local Binary Patterns (LBP) [49] and His-
togram of Oriented Gradients (HOG) [16]. Moreover, 
experimental results are compared with the proposed 
descriptor specifically targeted to FIR images: Histo-
grams of Oriented Phase Energy (HOPE) [51]. 

The results derived from this study where obtained 
from a new pedestrian dataset, that the authors are 
making public1. Our dataset is divided in two parts, 
classification and detection. The Classification Da-
taset contains a preset of cropped images of positives 
(pedestrians) and negatives (background), rescaled to 
the same dimensions. The Detection Dataset contains 
full size images and labels indicating the position and 
dimensions of each pedestrian. 

In short, there are three main contributions in this 
paper: (i) a new pedestrian dataset in far infrared im-
ages; (ii) an extensive study on the pedestrian de-
scriptors using FIR images, and (iii) an adaptation of 
a latent variable SVM approach [24] to FIR images. 
This paper is structured as follows. Section 2 in-
cludes a brief discussion on pedestrian datasets and 
the relevant state of the art in pedestrian detection. It 
also covers an overview of descriptors and FIR im-
age-based classification methods. Characteristics of 
the FIR image-based pedestrian dataset are discussed 
in sections 3 and 4, including the methodology of 
acquisition and sample selection, as well as useful 
statistics. Section 5 and section 6 focus on the fea-
tures and methods used for classification and detec-
tion performance assessment. In sections 7 and 8 
experiments for pedestrian classification and detec-
tion, respectively, are presented and further discussed 
in section 9. 

                                                           
1 http://www.uc3m.es/islab/repository 

2. Related Work 

2.1. Pedestrian Datasets 

The availability of publicly released datasets for 
pedestrian classification has been a key element that 
helped advances in this area. It provides a way for 
researchers to test and benchmark new classification 
algorithms in a way that can be directly compared 
with other works. It is also useful for replicating ex-
periments performed by other research groups. 

In this domain, datasets are usually divided into 
two types: classification and detection datasets. In the 
first one, a fixed set of cropped windows containing 
pedestrians and background is provided, while detec-
tion datasets consist on full images with annotated 
locations of pedestrians. Usually, a subset of full-
frames, with no positives (pedestrians), is provided 
for negative examples extraction. The method for 
background sample extraction varies from one author 
to the other, so the classifiers are not really trained on 
the same data. 

A classification dataset is useful for approaches 
based on the sliding window paradigm. This detec-
tion technique consists on analyzing an image by 
shifting a fixed sized window in the horizontal and 
vertical axis. This approach can be extended to a 
multi resolution search by incrementally resizing the 
original image. Each window analysis becomes inde-
pendent from all the others and, as such, the detection 
turns into a classification problem. Improving the 
classifier performance would also improve detection 
performance. The classification performance is usu-
ally expressed in terms of miss rate vs. false negative 
rate per window, while per frame is more suitable for 
detection performance. 

In [47] Munder and Gavrila introduced the DC 
classification dataset. It consists of 4000 up-right 
pedestrian and 25000 background samples captured 
in outdoor urban environments. All of them are 
resized to 18×36 pixels. In their work, the authors 
evaluate Haar, Principal Component Analysis (PCA) 
[30] and Local Receptive Fields (LRF) in combina-
tion with neural networks and Support Vector Ma-
chine (SVM) classifiers [15] [41]. From their results 
it can be concluded that the size of the dataset is a 
key element in improving the classification perfor-
mance. For the extraction of a large number of back-
ground images they apply bootstrapping [64] tech-
niques. The dataset is split into 3 train and 2 test sub-
sets, for cross-validation purposes. 
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In [16] Dalal et al. presented the INRIA dataset, 
which is still widely used nowadays. It consists on 
2478 128 × 64 cropped images of people for training, 
and 566 for testing, along with full images for nega-
tive extraction. The images were selected from a col-
lection of photographs acquired in urban and rural 
scenes, and not initially thought to serve as a dataset 
for driving assistance systems. 

More recently, Dollar et. al introduced in [18] the 
Caltech Detection Dataset, as well as a benchmark of 
several pedestrian detection algorithms. Their results 
were further extended in [19]. This dataset contains 
approximately 250k labeled pedestrians within sever-
al video sequences acquired from a moving vehicle 
in urban traffic. In their work, the authors directly 
compare results with other publicly available pedes-
trian datasets, as the Daimler detection dataset [21]. 

2.2. Image Based Descriptors 

In [53] Papageorgiou et al. introduced a sliding 
window detector based on SVM trained with a Haar 
wavelet feature vector. This work inspired Viola and 
Jones face detector, presented in [66], which acceler-
ates the classification step by applying a cascade ap-
proach. 

Along with the INRIA dataset, Dalal et al. intro-
duced the HOG descriptor [16]. It became a bench-
mark for pedestrian classification, due to their excel-
lent results. Since then, there have been many new 
features using local histograms [63], including classi-
fiers targeted to FIR images [51]. 

Color or gray level value has also been exploited 
as a descriptor of the shape of a person. In [12] 
Ciarelli at al. create a live color model with a modi-
fied Mean Shift algorithm. More recently, Self Simi-
larity (SS) has been proposed as a descriptor for pe-
destrian classification in visible light images in [67]. 
This method encodes the distribution of color as rep-
etition across the image. In [46] this approach was 
adapted to work in mono channel images, and tested 
in a FIR pedestrian classification problem. 

2.3. FIR image-based methods 

Given that FIR images represent the heat emitted 
by people, and do not need external illumination, 
some authors have developed classification methods 
based on the temperature distribution of the human 
body. Most systems take advantage of this feature 
and select regions of interest based on the distribu-
tion of the warm parts of the image [9,10]. A review 

of techniques pedestrian automotive infrared detec-
tion can be found in [52]. In these systems, the dis-
criminating feature of pedestrians is the body shape, 
and the regions of interest are validated by correla-
tion with predefined probabilistic models [50]. 

3. Classification Dataset

One of the contributions of this work is our pedes-
trian classification dataset, which consists of FIR 
images collected from a vehicle driven in outdoors 
urban scenarios. The dataset was recorded in Lega-
nés, Spain and Coimbra, Portugal. Images were ac-
quired with an Indigo Omega imager, with a resolu-
tion of 164 × 129 pixels, a grey-level scale of 14 bits, 
and focal length of 318 pixels. The camera was 
mounted on the exterior of the vehicle, to avoid infra-
red filtering of the windshield. 

Recorded images were manually annotated, where 
each pedestrian is labeled as a bounding box. To pre-
vent bias introduced by border artifacts their height is 
subsequently upscaled by 5%. Fig. 1 shows some 
cropped-image examples of positives and negatives 
of the classification dataset. The pedestrians appear 
in an up-right position. In order to not introduce a 
pose bias, some tolerance is allowed. Specifically, 
images where head or torso is at a slant due to the 
normal walking gate are not discarded. 

3.1. Dataset Statistics 

3.1.1. Number of samples 
The dataset comprises 81592 14-bit one-channel 

images, divided in 16152 positives and 65440 nega-
tives. The train set contains 10208 positives and 
43390 negatives, while the test set contains 5944 
positives and 22050 negatives. 

3.1.2. Aspect ratio 
Out of the annotated images, the bounding boxes 

are resized to a constant aspect ratio (w/h) = 0.5 by 
changing their width (w) and height (h) appropriate-
ly. Figure 2 contains histograms for heights, widths 
and areas of positive and negative bounding boxes. 
The height of positive bounding boxes has a mean of 
40 pixels. Those bounding boxes refer to pedestrians 
standing at approximately 10m from the camera as 
seen in the histogram of Fig. 3. However, less fre-
quent cases appear up to 50m. Any bounding box 
below 10 pixels in height is ignored. The remaining 
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bounding boxes are resized to 64×32 pixels using 
bilinear interpolation. 

 

 
Figure 2. Histograms of bounding boxes sizes and areas for posi-
tive and negative samples of the train dataset. X axis represent the 
measure (positive and negative height, width and area) and Y axis 
the number of samples having those value.  

3.1.3. Density 
 
Images were acquired from the usual point of view 

of the driver. As such, pedestrians appear more often 
in the center of the image as shown in Fig 4, which 
represents the logarithmic density of the centers of 
the bounding boxes. In the case of negative samples, 
the bounding boxes are randomly selected, so the 
centers appear all over the image, with less density 
near the borders. 

 
Figure 3. Histograms of pedestrian’s distance to the camera for the 
train and test dataset. 

 

 
Figure 4. Centers of bounding boxes for positives of the train and 
test dataset on a logarithmic scale. Left image: Positives in Train 
Dataset. Right image: Positives in Test Dataset.  

 

4. Detection Dataset 

The detection dataset contains the full frames from 
which the classification dataset was extracted, along 
with manual annotations of the pedestrian’s posi-
tions. 

The detection dataset was acquired in 13 different 
sessions, each containing a varying number of imag-
es. It comprises 15224 14-bit one-channel images, 
with dimension 164×129 pixels. The train set con-
tains 6159 images, and the test set contains 9065 im-
ages. Only non-occluded pedestrians are considered 
for future evaluation, therefore images containing 
pedestrians with more than 20% of the area of the 

Figure 1. Example cropped images of the classification dataset. The upper row contains examples of pedestrians acquired under different 
temperatures and illumination conditions. The lower row contains randomly selected windows from images containing no pedestrians. 

For visualization purposes the contrast has been enhanced. 
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original bounding box occluded behind other obsta-
cles are disregarded. 

Each session occurred at a different location and 
with different illumination and temperature condi-
tions. Out of those sessions 6 were used to compose 
the train set, leaving the remaining 7 for test set. This 
ensures that Train and Test are independent from one 
another. The temperature at which they were shot, 
which in turn affects the grey level and the histogram 
spread, causes the most important difference in ap-
pearance between sequences. Fig. 5 contains the his-
togram of the mean grey level value of the train and 
test detection datasets. 

 

 
Figure 5. Histogram of mean gray level of the images in the Train 
and Test Datasets. X axis all possible values of gray level and Y 
axis the number of pixels having those levels. Left Image: Train 
Dataset. Right Image: Test Dataset. 

5. Image-based features 

In this section the feature selection is discussed, 
along with implementation details. 

 
LBP. Local Binary Patterns (LBP), as introduced 

in [49], represents the image as a similarity vector of 
each pixel with their surroundings. This descriptor 
encodes information as a binary number. For each 
pixel, the neighbors with a gray value higher or equal 
contribute with one in their position in the binary 
number, otherwise with zero. Each sample is divided 
in 3 × 3 pixel non-overlapping cells. 

 
HOG. In this work we have used 5 × 5 pixel non-

overlapping cells. In our 64 × 32 dataset this means 
10 × 4 cells per image, once removed the border 
blocks. Within each cell a 9 bins histogram of orien-
tation between 0 and 2π radians is calculated. 

 
HOPE. Defining the shape of a pedestrian in FIR 

images is challenging using one dimensional point 
derivatives. This is due to the much wider infrared 
spectrum, compared with visible light. Another diffi-
culty is that the sensitivity curve of an uncooled mi-
crobolometer sensor changes very quickly with min-

imum changes of its temperature [32]. To overcome 
these challenges, we proposed in [51] a contrast in-
variant descriptor for pedestrian classification in FIR 
images called HOPE. Basically, the HOPE descriptor 
encodes a grid of local oriented histograms extracted 
from the phase congruency of the images, which is 
computed from a joint of Gabor filters. 

The histograms are calculates in 5 × 5 pixel non- 
overlapping cells with 9 bins of orientation between 
0 and 2π radians, for a total of 10 × 4 cells per image. 
No normalization step is applied. Phase congruency 
was calculated out of a set of 30 complex Gabor fil-
ters, divided in 5 scales ranging between a minimum 
wavelength of 2 pixels and a maximum of 10, and 6 
orientations, ranging from 0 to 2π radians. 

 
PCA. We treat PCA [45, 30] eigenvectors as a 

grey-level feature vector. The initial motivation for 
applying this approach is that PCA tends to disregard 
small details at high frequency, as seen in Fig. 6, 
while FIR images usually have poor levels of detail, 
as they present softness due to motion blur, especial-
ly at low resolutions. We retain the 30 most signifi-
cant eigenvectors, that is, those with the largest ei-
genvalues. 

 

Figure 6. First five eigenpedestrians 

Feature Concatenation. Descriptor fusion is ex-
plored as feature vector concatenation, resulting in a 
new higher dimension feature vector with different 
kinds of complementary information, which can im-
prove the overall performance. 

Selecting those features in the train dataset with a 
higher score in Welch’s t-test shortens high-
dimensional feature vectors. The minimum number 
of features selected is set so that the resulting feature 
vector has an accuracy on the test dataset within 1% 
of the unabridged vector. This usually results in fea-
ture vectors with half the dimensions of the original. 
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Figure 18. Misclassified samples. Upper row. False negatives due 
to low resolution, motion blur and pose variation Lower row: False 
positives in areas with a high vertical symmetry 

9. Conclusions and Discussion 

This paper presents an experimental study on pe-
destrian classification in FIR images. Several combi-
nations of descriptor and classification methods have 
been tested in a new FIR dataset. By our best 
knowledge this is the first complete FIR based pedes-
trian classification and detection dataset publicly 
available for benchmarking. 

From the experimental results reported in the pre-
vious sections it can be concluded that histogram 
based features perform best than LBP or PCA fea-
tures. Among the features, HOPE performs better 
both for classification and detection problems. LBP 
and PCA features get worse overall performance, 
though some gains can be achieved by merging them 
with HOG or HOPE. In terms of classification meth-
ods, SVM achieved the best performance. The RBF 
kernel can significantly reduce misclassifications 
compared with a linear kernel, but is more computa-
tionally demanding. This is a critical factor in com-
puter aided transportation applications. 

Pedestrian resolution has an important impact on 
performance, with all detectors having lower hit rates 
for small pedestrians. For the best performing detec-
tor, the miss rate at 10−3 goes from 50% for Large 
pedestrians to 88% for Small ones. In the case of La-
tent SVM approach, the detectors are not able to de-
tect any pedestrian in the Small subsample. From 
these results it may be concluded that current pedes-
trian detectors in FIR images suffer from the same 
limitations as VL detectors when it comes to detect 
small pedestrians. This is specially relevant in this 

case, as FIR cameras tend to have low resolution 
sensors. 

The results presented in this paper suggests that 
FIR images are a very useful source of information 
for pedestrian classification and detection, having 
similar performance to that found in state of the art in 
VL images, with advantage in low visibility applica-
tions. 
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