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Abstract. This paper presents an experimental study on pedestrian classification and detection in far infrared (FIR) images.
The study includes an in-depth evaluation of several combinations of features and classifiers, which include features previously
used for daylight scenarios, as well as a new descriptor (HOPE - Histograms of Oriented Phase Energy), specifically targeted
to infrared images, and a new adaptation of a latent variable SVM approach to FIR images. The presented results are validated
on a new classification and detection dataset of FIR images collected in outdoor environments from a moving vehicle. The
classification space contains 16152 pedestrians and 65440 background samples evenly selected from several sequences ac-
quired at different temperatures and different illumination conditions. The detection dataset consist on 15224 images with
ground truth information. The authors are making this dataset public for benchmarking new detectors in the area of intelligent

vehicles and field robotics applications.
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1. Introduction

Image analysis and computer vision is lately being
incorporated in civil engineering [29, 48, 14]. The
applications are plenty and include freeway work
zone analysis [37, 1, 38], automatic image search
[35], human detection and modeling [12, 70] and
face recognition [7]. Object recognition in images
has become a very important topic in the fields of
traffic infrastructure and driving assistance system
[31, 54]. Applications such as traffic signs recogni-
tion [56, 13, 65, 33], obstacle avoidance [20] and
traffic surveillance [59] have gotten the attention of
the industry for some time now. The case of people
detection is an exceptionally relevant case, as it leads
to a number of important applications, some of which
strive for saving lives.

Pedestrian recognition in images is geared toward
a variety of applications, which include safety fo-
cused road infrastructures [36], driver assistance sys-
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tems [26] and autonomous robotic vehicles [55]. It is
also useful in security, be it for automatic surveil-
lance or people counting [63, 69]. Those applications
can be extended to low visibility conditions by using
FIR images. Another application that could benefit of
automatic recognition of people in low light condi-
tions is unmanned aerial vehicles aimed to rescue
missions [71].

Most of the recent research in this topic is based
on visible light (VL) images. FIR images share some
key characteristics with their VL images counter-
parts. They both are 2D representations of a scene
captured by redirecting electromagnetic waves by
means of a lens, light in the first case and infrared
radiation, which is proportional to the objects tem-
perature, in the second. Some of the key ideas on
pedestrian classification in VL images can be extend-
ed to work on FIR images, exploiting common char-
acteristics of both, or adapt them to take benefit of
the different kinds of information provided by FIR
images.



Regarding pedestrian detection in VL images,
there exists a reasonable number of benchmark da-
tasets publicly available, such as: MIT [53], CVC
[27], TUD-det [8], INRIA [16], DC [47], ETH [22]
and Caltech [18]. For an overview of recent work on
pedestrian detection on these datasets, the authors
refer to [26, 63, 19, 21]. In the case of FIR images,
the authors found a lack of a complete pedestrian
dataset that could serve as a tool to benchmark new
features and methods.

In this paper the authors present an in-depth analy-
sis of several well-known VL pedestrian classifiers
applied to FIR images: Principal Component Analy-
sis (PCA), Local Binary Patterns (LBP) [49] and His-
togram of Oriented Gradients (HOG) [16]. Moreover,
experimental results are compared with the proposed
descriptor specifically targeted to FIR images: Histo-
grams of Oriented Phase Energy (HOPE) [51].

The results derived from this study where obtained
from a new pedestrian dataset, that the authors are
making public'. Our dataset is divided in two parts,
classification and detection. The Classification Da-
taset contains a preset of cropped images of positives
(pedestrians) and negatives (background), rescaled to
the same dimensions. The Detection Dataset contains
full size images and labels indicating the position and
dimensions of each pedestrian.

In short, there are three main contributions in this
paper: (i) a new pedestrian dataset in far infrared im-
ages; (ii) an extensive study on the pedestrian de-
scriptors using FIR images, and (iii) an adaptation of
a latent variable SVM approach [24] to FIR images.
This paper is structured as follows. Section 2 in-
cludes a brief discussion on pedestrian datasets and
the relevant state of the art in pedestrian detection. It
also covers an overview of descriptors and FIR im-
age-based classification methods. Characteristics of
the FIR image-based pedestrian dataset are discussed
in sections 3 and 4, including the methodology of
acquisition and sample selection, as well as useful
statistics. Section 5 and section 6 focus on the fea-
tures and methods used for classification and detec-
tion performance assessment. In sections 7 and 8
experiments for pedestrian classification and detec-
tion, respectively, are presented and further discussed
in section 9.
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2. Related Work
2.1. Pedestrian Datasets

The availability of publicly released datasets for
pedestrian classification has been a key element that
helped advances in this area. It provides a way for
researchers to test and benchmark new classification
algorithms in a way that can be directly compared
with other works. It is also useful for replicating ex-
periments performed by other research groups.

In this domain, datasets are usually divided into
two types: classification and detection datasets. In the
first one, a fixed set of cropped windows containing
pedestrians and background is provided, while detec-
tion datasets consist on full images with annotated
locations of pedestrians. Usually, a subset of full-
frames, with no positives (pedestrians), is provided
for negative examples extraction. The method for
background sample extraction varies from one author
to the other, so the classifiers are not really trained on
the same data.

A classification dataset is useful for approaches
based on the sliding window paradigm. This detec-
tion technique consists on analyzing an image by
shifting a fixed sized window in the horizontal and
vertical axis. This approach can be extended to a
multi resolution search by incrementally resizing the
original image. Each window analysis becomes inde-
pendent from all the others and, as such, the detection
turns into a classification problem. Improving the
classifier performance would also improve detection
performance. The classification performance is usu-
ally expressed in terms of miss rate vs. false negative
rate per window, while per frame is more suitable for
detection performance.

In [47] Munder and Gavrila introduced the DC
classification dataset. It consists of 4000 up-right
pedestrian and 25000 background samples captured
in outdoor urban environments. All of them are
resized to 18%36 pixels. In their work, the authors
evaluate Haar, Principal Component Analysis (PCA)
[30] and Local Receptive Fields (LRF) in combina-
tion with neural networks and Support Vector Ma-
chine (SVM) classifiers [15] [41]. From their results
it can be concluded that the size of the dataset is a
key element in improving the classification perfor-
mance. For the extraction of a large number of back-
ground images they apply bootstrapping [64] tech-
niques. The dataset is split into 3 train and 2 test sub-
sets, for cross-validation purposes.



In [16] Dalal et al. presented the INRIA dataset,
which is still widely used nowadays. It consists on
2478 128 x 64 cropped images of people for training,
and 566 for testing, along with full images for nega-
tive extraction. The images were selected from a col-
lection of photographs acquired in urban and rural
scenes, and not initially thought to serve as a dataset
for driving assistance systems.

More recently, Dollar et. al introduced in [18] the
Caltech Detection Dataset, as well as a benchmark of
several pedestrian detection algorithms. Their results
were further extended in [19]. This dataset contains
approximately 250k labeled pedestrians within sever-
al video sequences acquired from a moving vehicle
in urban traffic. In their work, the authors directly
compare results with other publicly available pedes-
trian datasets, as the Daimler detection dataset [21].

2.2. Image Based Descriptors

In [53] Papageorgiou et al. introduced a sliding
window detector based on SVM trained with a Haar
wavelet feature vector. This work inspired Viola and
Jones face detector, presented in [66], which acceler-
ates the classification step by applying a cascade ap-
proach.

Along with the INRIA dataset, Dalal et al. intro-
duced the HOG descriptor [16]. It became a bench-
mark for pedestrian classification, due to their excel-
lent results. Since then, there have been many new
features using local histograms [63], including classi-
fiers targeted to FIR images [51].

Color or gray level value has also been exploited
as a descriptor of the shape of a person. In [12]
Ciarelli at al. create a live color model with a modi-
fied Mean Shift algorithm. More recently, Self Simi-
larity (SS) has been proposed as a descriptor for pe-
destrian classification in visible light images in [67].
This method encodes the distribution of color as rep-
etition across the image. In [46] this approach was
adapted to work in mono channel images, and tested
in a FIR pedestrian classification problem.

2.3. FIR image-based methods

Given that FIR images represent the heat emitted
by people, and do not need external illumination,
some authors have developed classification methods
based on the temperature distribution of the human
body. Most systems take advantage of this feature
and select regions of interest based on the distribu-
tion of the warm parts of the image [9,10]. A review

of techniques pedestrian automotive infrared detec-
tion can be found in [52]. In these systems, the dis-
criminating feature of pedestrians is the body shape,
and the regions of interest are validated by correla-
tion with predefined probabilistic models [50].

3. Classification Dataset

One of the contributions of this work is our pedes-
trian classification dataset, which consists of FIR
images collected from a vehicle driven in outdoors
urban scenarios. The dataset was recorded in Lega-
nés, Spain and Coimbra, Portugal. Images were ac-
quired with an Indigo Omega imager, with a resolu-
tion of 164 x 129 pixels, a grey-level scale of 14 bits,
and focal length of 318 pixels. The camera was
mounted on the exterior of the vehicle, to avoid infra-
red filtering of the windshield.

Recorded images were manually annotated, where
each pedestrian is labeled as a bounding box. To pre-
vent bias introduced by border artifacts their height is
subsequently upscaled by 5%. Fig. 1 shows some
cropped-image examples of positives and negatives
of the classification dataset. The pedestrians appear
in an up-right position. In order to not introduce a
pose bias, some tolerance is allowed. Specifically,
images where head or torso is at a slant due to the
normal walking gate are not discarded.

3.1. Dataset Statistics

3.1.1. Number of samples

The dataset comprises 81592 14-bit one-channel
images, divided in 16152 positives and 65440 nega-
tives. The train set contains 10208 positives and
43390 negatives, while the test set contains 5944
positives and 22050 negatives.

3.1.2. Aspect ratio

Out of the annotated images, the bounding boxes
are resized to a constant aspect ratio (w/h) = 0.5 by
changing their width (w) and height (h) appropriate-
ly. Figure 2 contains histograms for heights, widths
and areas of positive and negative bounding boxes.
The height of positive bounding boxes has a mean of
40 pixels. Those bounding boxes refer to pedestrians
standing at approximately 10m from the camera as
seen in the histogram of Fig. 3. However, less fre-
quent cases appear up to 50m. Any bounding box
below 10 pixels in height is ignored. The remaining
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Figure 1. Example cropped images of the classification dataset. The upper row contains examples of pedestrians acquired under different
temperatures and illumination conditions. The lower row contains randomly selected windows from images containing no pedestrians.
For visualization purposes the contrast has been enhanced.

bounding boxes are resized to 64x32 pixels using
bilinear interpolation.
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Figure 2. Histograms of bounding boxes sizes and areas for posi-
tive and negative samples of the train dataset. X axis represent the
measure (positive and negative height, width and area) and Y axis
the number of samples having those value.

3.1.3. Density

Images were acquired from the usual point of view
of the driver. As such, pedestrians appear more often
in the center of the image as shown in Fig 4, which
represents the logarithmic density of the centers of
the bounding boxes. In the case of negative samples,
the bounding boxes are randomly selected, so the
centers appear all over the image, with less density
near the borders.

Distauce Histogram

Figure 3. Histograms of pedestrian’s distance to the camera for the

train and test dataset.

Figure 4. Centers of bounding boxes for positives of the train and
test dataset on a logarithmic scale. Left image: Positives in Train
Dataset. Right image: Positives in Test Dataset.

4. Detection Dataset

The detection dataset contains the full frames from
which the classification dataset was extracted, along
with manual annotations of the pedestrian’s posi-
tions.

The detection dataset was acquired in 13 different
sessions, each containing a varying number of imag-
es. It comprises 15224 14-bit one-channel images,
with dimension 164x129 pixels. The train set con-
tains 6159 images, and the test set contains 9065 im-
ages. Only non-occluded pedestrians are considered
for future evaluation, therefore images containing
pedestrians with more than 20% of the area of the



original bounding box occluded behind other obsta-
cles are disregarded.

Each session occurred at a different location and
with different illumination and temperature condi-
tions. Out of those sessions 6 were used to compose
the train set, leaving the remaining 7 for test set. This
ensures that Train and Test are independent from one
another. The temperature at which they were shot,
which in turn affects the grey level and the histogram
spread, causes the most important difference in ap-
pearance between sequences. Fig. 5 contains the his-
togram of the mean grey level value of the train and
test detection datasets.
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(b) Test Database

Figure 5. Histogram of mean gray level of the images in the Train
and Test Datasets. X axis all possible values of gray level and Y
axis the number of pixels having those levels. Left Image: Train
Dataset. Right Image: Test Dataset.
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5. Image-based features

In this section the feature selection is discussed,
along with implementation details.

LBP. Local Binary Patterns (LBP), as introduced
in [49], represents the image as a similarity vector of
each pixel with their surroundings. This descriptor
encodes information as a binary number. For each
pixel, the neighbors with a gray value higher or equal
contribute with one in their position in the binary
number, otherwise with zero. Each sample is divided
in 3 x 3 pixel non-overlapping cells.

HOG. In this work we have used 5 x 5 pixel non-
overlapping cells. In our 64 x 32 dataset this means
10 x 4 cells per image, once removed the border
blocks. Within each cell a 9 bins histogram of orien-
tation between 0 and 2« radians is calculated.

HOPE. Defining the shape of a pedestrian in FIR
images is challenging using one dimensional point
derivatives. This is due to the much wider infrared
spectrum, compared with visible light. Another diffi-
culty is that the sensitivity curve of an uncooled mi-
crobolometer sensor changes very quickly with min-

imum changes of its temperature [32]. To overcome
these challenges, we proposed in [51] a contrast in-
variant descriptor for pedestrian classification in FIR
images called HOPE. Basically, the HOPE descriptor
encodes a grid of local oriented histograms extracted
from the phase congruency of the images, which is
computed from a joint of Gabor filters.

The histograms are calculates in 5 x 5 pixel non-
overlapping cells with 9 bins of orientation between
0 and 2= radians, for a total of 10 x 4 cells per image.
No normalization step is applied. Phase congruency
was calculated out of a set of 30 complex Gabor fil-
ters, divided in 5 scales ranging between a minimum
wavelength of 2 pixels and a maximum of 10, and 6
orientations, ranging from 0 to 2= radians.

PCA. We treat PCA [45, 30] eigenvectors as a
grey-level feature vector. The initial motivation for
applying this approach is that PCA tends to disregard
small details at high frequency, as seen in Fig. 6,
while FIR images usually have poor levels of detail,
as they present softness due to motion blur, especial-
ly at low resolutions. We retain the 30 most signifi-
cant eigenvectors, that is, those with the largest ei-
genvalues.

Figure 6. First five eigenpedestrians

Feature Concatenation. Descriptor fusion is ex-
plored as feature vector concatenation, resulting in a
new higher dimension feature vector with different
kinds of complementary information, which can im-
prove the overall performance.

Selecting those features in the train dataset with a
higher score in Welch’s t-test shortens high-
dimensional feature vectors. The minimum number
of features selected is set so that the resulting feature
vector has an accuracy on the test dataset within 1%
of the unabridged vector. This usually results in fea-
ture vectors with half the dimensions of the original.
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Figure 7. DET curves for each feature vector in the classification dataset. Legend states Miss Rate (MR) at 10* FPPW.

6. Classification Methods

Pedestrian classification is treated as a supervised
pattern  recognition  problem, where the
set X D= {{x,,y,}, -, {X,,¥,}}, is the collection

of manually labeled examples, X € R’ is a feature

vector and ; € {£1} is a binary label. In this section

five kinds of classification methods have been used:
SVM, Naive Bayes Classifier (NBC), Quadratic Dis-
criminant Analysis (QDA), Neural Networks (NN)
and Adaboost. The parameters selected for the differ-
ent classifiers are discussed in the sequel.

Support Vector Machines. Concerning SVM [11],
two different kernels were used for benchmarking: a
linear classifier, hereafter called SVM-Lin, and a
radial basis function kernel (RBF) [2, 42], designated
by SVM-Rbf. In this implementation the radial

Gaussian function kernel K(x, y)=¢ ¥ has a

scale parameter y = 1. Both linear and RBF kernel
have a regularization trade-off parameter C = 0.05.

Naive Bayes Classifier. NBC [40] is a member of
the bayesian classifiers family [57] [39]. It is de-
signed for use when features are independent of one

within each class, but it appears to work well in prac-
tice in other circumstances. Naive Bayes classifica-
tion is based on estimating the conditional probability
of the feature vector given the class.

Discriminant Analysis. Linear Discriminant Anal-
ysis [45, 68, 58] is used as a linear classification
model in terms of dimensionality reduction. Consid-
ering a two-class separation problem the D-
dimensional input vector X can be projected down to

one dimension as y=w'x, where w is the compo-

nents weight vector. Selecting appropriate weights
the projection can be done over the dimension that
maximally separates both classes, avoiding the ex-
ceeding overlapping that can occur due to dimen-
sionality reduction. Over this projection a threshold
W, is selected, where values y<-Ww, are classified

as pedestrians, whereas values y>—W, are classified

as background. In this implementation the coefficient
matrix of the boundary equation is quadratic thus, the
discriminant analysis takes a quadratic form, desig-
nated QDA, assuming normally distributed classes.
The multivariate normal densities are fitted with co-
variance estimates stratified by group.



Neural Network. A neural network pattern recog-
nition scheme [34] is used with a two-layer feed-
forward network, with ten hidden and one output
sigmoid neurons. The network is trained with scaled
conjugate gradient backpropagation. The overall
network function follows equation 1, where o is the
sigmoid function, rnkK is the output ranking, N is the
number of mmputs and M is the maximum number of
linear combinations of the N inputs.

M N
- w)m[z (St wt] (1)

=1 =

Neural Networks are a very popular pattern recog-
nition technique in the field of ITS and infrastructure
engineering [28] [3] [43]. and many wvariations of it
have been developed in these fields [62] [61] [5] [6]
[44].

Adaboost. We use Real AdaBoost as described in
[60]. The key idea is that the combined response of a
set of weak classifiers can build a strong one, im-
proving the performance that a complex classifier
alone would have. Iteratively. Adaboost selects a
threshold that best separates each feature set xi in one
of the classes ¥;, applying a higher weight to mis-
classified samples. In this implementation the maxi-
mum number of iterations is set to 50. The final rank-

N
ing of each feature vector is I‘I]_k:Z_ lxi(fi). In the
=

case of HOG and HOPE. each bin in the orientation
histograms is treated as a weak feature.

7. Evaluation on the classification dataset

In this section we compare the performance of
each feature discussed in section 5 by applying the
classification techniques described in section 6.

The train dataset is used to train the feature-
classifier combinations. Likewise, testing is per-
formed on the whole test dataset. Classification per-
formance is evaluated by means of Detection-Error
Trade-off (DET) curves, which quantify the trade-off
between miss rate and false positive rate.

Results for different ensembles of features and
classifiers are shown in figure 7. From these curves it
can be observed that approaches based on local ori-
entated histograms, such as HOG and HOPE, get
better results than PCA or LBP. The best performing
feature seems to be HOPE, with a miss rate of 0.3%

at 107 false positives (FP) for the SVM-Lin classifi-
er, followed by HOG with a miss rate of 0.38% at
10~ FP. With an RBF kemel performance improves
up to 0.06% miss rate at 10~ FP in the case of
HOPE and 0.25% at 10~ FP in the case of HOG.
DET curves of the SVM-Lin results are shown in

Fig. 8. SVM-RDbf results are plotted in case of a sig-
nificant gain.
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Figure 8. DET curves of the best performing SVM-Lin classifiers.
Results with Rbf kemels are plotted where they represent a
significant gain_ Legend states Miss Rate (MR) at 10~ FPPW.

Regarding feature combination, we have used an
SVM-Lin to assess the impact of the features in the
classification performance. LBP features combined
with HOPE significantly reduce the miss rate, by

18% at 10™* FP. PCA, although getting better results
as an independent classifier than LBP, does not im-
prove significantly classification when merged with
other features. When merged with HOG the miss rate

is reduced by 6% at 10™* FP, while the improvement
of merging it with HOPE is negligible.

Concerning the classification methods, SVM-Rbf
generally has the best performance followed by
SVM-Lin. LDA classifier performs almost as well, or
better than Linear SVM for the HOG and HOPE de-
scriptors. NN showed some promising results, though
performance could be improved by using a robust
training scheme, as the one presented in [4]. The
NBC showed the worst performance, except for LBP
features.

Additionally we performed some experiments to
assess the impact on classification performance by
varying the number of negative examples on the train
set. Fig. 9 shows that, for the HOPE SVM-Rbf classi-
fier, the performance gets significantly better by in-
creasing the number of train negatives and no satura-
tion is appreciated.
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Figure 9. DET curve of the HOPE SVM-Rbf classifier trained with
an increasing number of negatives. Legend states Miss Rate (MR)
at 10—4 FPPW.

7.1. Statistical Significance of the Results

Statistical  significance is assessed with
McNemar’s approximate test [23]. It is used to com-
pare two classifiers at a particular value of bias. To
determine whether classifier (C1) is significantly

better than (C2), the ,1’2 statistic is used (equation 2).

oy — My | =1)
12 — (| 01 n]o | ) (2)
Mo + My

Where Nj,is a number of cases misclassified by
C1 and classified correctly by C2, and Ny, is a num-
ber of cases misclassified by C2 and classified cor-
rectly by C1. The null hypothesis H| states that the
performance of both classifiers is the same. H,
hyphothesis may be rejected if ,1’2 falls below a
probability of 5%, i.e. 2’12,095 23.841. If that is the

case, it can be assumed that one classifier performs
significantly better than the other.

Table 1 contains ZE values for every pair of clas-

sifiers used. The bias of all classifiers has been
b =0, after rescaling, as it is the value that maximal-
ly separates both classes. From these results it can be
concluded that the null hypothesis can be rejected for
all classifier pairs.

8. Performance on the detection dataset

Pedestrian detection resumes on finding the posi-
tion and scale of an a priori unknown number of pe-
destrian on a set of full images. Detection 1s evaluat-
ed by applying the best performing feature-classifier
constructs explained in sections 5 and 6, in a sliding
window approach. For brevity, only best performing
ensembles (HOG and HOPE in combination with
SVM-Lin, SVMRbf and Adaboost) are further dis-
cussed.

For multi-resolution detection purposes the input
image is resized to 6 different scales per octave, with
an average scaling step between scales of ss=1.1.
This results in a scanning window that searches for
pedestrians between 120 and 24 pixels in height. At
each scale, the detection window is moved sideways
so that each one has an 80% overlap with the previ-
ous one. Likewise, it is moved from top to bottom so
that the overlapping is 90% in the vertical axis. This
results in 2377 windows per image.

8.1. Evaluation Methodology

The detection task is evaluated by the Pascal Crite-
ria [15], plotting results in DET curves. Detect ions
are considered true or false positives based on the
area of overlap with ground truth bounding boxes. To
be considered a correct detection. the area of overlap
a, between the predicted bounding box B, and

ground-truth bounding-box B, must exceed 50% by
the equation 3, as depicted in Fig. 10.

Table 1. Results of the McNemar's approximate significance test for every pair of classifiers. The value expressed in the table’s fields is 32,

as stated in equation 2.

HOGLin HOGRbf HOPELin HOPERbf LBP PCA
HOGLin 0 247.1 81.5 342.1 1852.9 1508.6
HOGRbf 247.1 0 51.6 11.5 2825.5 24437
HOPELin 81.5 51.6 0 108.0 2427.6 2056.1
HOPERbf 342.1 11.5 108.0 0 2980.8 2596.7
LPB 1852.9 2825.5 2427.6 2980.8 0 23.8
PCA 1508.6 2443.7 2056.1 2596.7 23.8 0




DET

—NMS Overlap = 0.1 (MR 0.65614)
~— NMS Overlap = 0.2 (MR 0.64272)
~—— NMS Overlap = 0.3 (MR 0.63087)
—— NMS Overlap = 0.4 (MR 0.62258)
0.4f| ——NMS Overlap = 0.5 (MR 0.61587)
— NMS Overlap = 0.6 (MR 0.61429)
— NMS Overlap = 0.7 (MR 0.6214)
- = =NMS Overlap = 0.8 (MR 0.64548)
- “NMS Overlap = 0.9 (MR 0.75049)

—NMS Overiap = 0.1 (MR 0.81208)
~—NMS Overlap = 0.2 (MR 0.80892)
—— NMS Overiap = 0.3 (MR 0.80537)
—— NMS Overiap = 0.4 (MR 0.80497)
o] =——NMS Overlap = 0.5 (MR 0.803)

——NMS Overlap = 0.6 (MR 0.79866)
— NMS Overiap = 0.7 (MR 0.79668)
= = =NMS Overlap = 0.8 (MR 0.80063)
« = NMS Overiap = 0.9 (MR 0.83498)
- = NMS Overlap = 1.0 (MR 0.8638)

False negative rate (miss)
False negative rate (miss)

— NMS Overiap = 0.1 (MR 0.63239)
~—NMS Overiap = 0.2 (MR 0.62057)
—— NMS Overiap = 0.3 (MR 0.60875)
—— NMS Overiap = 0.4 (MR 0.59496)
04f| ——NMS Overlap = 0.5 (MR 0.5855)
— NMS Overiap = 0.6 (MR 0.58038)
— NMS Overlap = 0.7 (MR 0.58471)
= = =NMS Overlap = 0.8 (MR 0.5922)
= = =NMS Overlap = 0.9 (MR 0.74113)
- -« NMS Overlap = 1.0 (MR 0.82309)

False negative rate (miss)

- - ~NMS Overlap = 1.0 (MR 0.8105)
033 -z =) o 03!
10 10° 10 10 07

False positives per image (FPPI)

(a) HogLin

10° 10"
False positives per image (FPPI)

(b) HopeLin

107 10
False positives per image (FPPI)

(c) HogRbf

— NMS Overiap = 0.1 (MR 0.40071)

(MR 0.8109)

— NMS Overlap = 0.1 (MR 0.7651)
~—NMS Overlap = 0.2 (MR 0.76392)
=== NMS Overlap = 0.3 (MR 0.76234)
——NMS Overlap = 0.4 (MR 0.7576)

False negative rate (miss)

= = =NMS Overlap = 1.0 (MR 0.81445)

*([—NMs Overlap = 0.1 (MR 0.77142)

~—NMS Overlap = 0.2 (MR 0.76352)
~— NMS Overlap = 0.3 (MR 0.75878)
—— NMS Overlap = 0.4 (MR 0.74457)
04f| ——NMS Overlap = 0.5 (MR 0.74062)
— NMS Overlap = 0.6 (MR 0.74023)
— NMS Overlap = 0.7 (MR 0.74102)
= = =NMS Overlap = 0.8 (MR 0.75365)
- - = NMS Overiap = 0.9 (MR 0.79629)
= = =NMS Overlap = 1.0 (MR 0.84248)

10° 10"
False positives per image (FPPI)

(d) HopeRbf

10° 10
False positives per image (FPPI)

(e) HogAdaboost

10° 10
False positives per image (FPPI)

(f) HopeAdaboost

Figure 10. DET curves for each feature vector in the detection database. For each non-maximum suppression overlap area threshold, one curve
is plotted. Legend states Miss Rate (MR) at 0.1 FPPL.
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Figure 11. Overlapping area of Ground Truth and Detection.

For each pedestrian, it is usual that many detec-
tions appear in the neighborhood around the ground-
truth bounding-box. If two or more detections match
the same ground-truth bounding-box, only the one
with the higher score would be considered a true pos-
itive. Other overlapping detections are considered
false positives. To minimize the number of repeated
detections, a greedy non-maximum suppression
(NMS) algorithm, pairwise max (PM) suppression
[25], is applied to all bounding boxes. It selects itera-
tively detections with higher scores than their neigh-
borhood, discarding detections with lower scores
over an overlapping percentage. This overlap is again
calculated with equation 3. Fig. 11 shows an example
of multiple detections for the same pedestrians, and
the result after applying the NMS algorithm.

{a) NMS off

(b) NMS on
Figure 12. Example of non maximum suppression of multiple
detections for each pedestrian.

In Fig. 12 one curve is plotted for each overlap-
ping  percentage  tested, in  the  range
8,=1{0.1,...,1.0} for every detector considered. The

legend states Miss Rate at 0.1 FPPI.
8.2. Results

In Fig. 13 the DET curves of the best performing
detectors are plotted. Best results were obtained with
the HOPE-RDf detector, with a 35% miss rate at 0.1
False Positives per Image (FPPI), followed by the
HOGRDbf, with a 58% miss rate at 0.1 FPPI. Using a
linear SVM, the HOG descriptor get an slightly high-
er miss rate of 76% at 0.1 FPPI while for the HOG
feature results degrade up to 80% at 0.1 FPPI. With
an Adaboost approach the miss rates are 76% at 0.1
FPPI for the HOG descriptor and 74% at 0.1 FPPI for
the HOPE descriptor. Based on these results it might
seem that there is a correlation between classification
and detection results. Per image results present a cor-
relation with the per window results.
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Figure 13. Detection DET Curves after applying the PM NMS
algorithm with an overlap threshold of 8,= 0.5. Legend states
Miss Rate (MR) at 0.1 FPPI

8.2.1. Impact of Pedesirian size

Pedestrian size has a big impact on detection re-
sults. Pedestrians located at a long distance from the
vehicle appear at a lower resolution on the image
and, as such, have lower detection rates. Some exper-
iments are performed to assess the impact on detec-
tion performance by subdividing the test set into sev-
eral subsets, i.e. small pedestrians ([10 — 40] pixels in
height), medium ([40 — 80]) and large ([80 — 120]).
While evaluating a subset., ground-truth bounding
boxes not belonging to a given subset are assigned to
class 0. A detection window overlapping any of the
subsets 1s not counted as a true positive or as a false
positive. Likewise, a missed detection of a class 0
bounding box is not counted as a false negative. Fig.

14 shows the miss rate at 10~ FPPI for the six ap-
plied detectors. Higher resolution pedestrians get the
lowest miss rate in all cases.

Scanning the image looking for very small pedes-
trians also have an impact on computational demands
of the algorithm in a sliding window detector.
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Figure 14. Miss rate at 10_3 FPPI for all detectors in the Small,
Medium and Large Test Subsets.

8.3. Latent-SVM HOPE

One of the limitations of classifiers based on dense
histograms of orientations is that performance de-
grades for very small cells [16]. Intuitively., finer
grained descriptors retain more details, so classifica-
tion should benefit from it. However, due to non-
rigid deformations of pedestrians the overall classifi-
cation scores for high-resolution descriptors are low.
To overcome these limitations Felzenszwalb et al.
introduced in [24, 25] their latent SVM detector. This
classification method relies on a set of filters: a low-
resolution root filter and a set of high resolution part
filters that define a hidden or latent structure. The
locations of the parts of the pedestrian that best de-
fine its presence on the image are the latent variables
z. While training, the exact location of the ground-
truth bounding-box of positive examples is also a
latent variable. This allows for auto-correcting mis-
takes made while labeling the dataset.

-\
\.
)
;

|

Figure 15. Latent SVM filters using HOG feature.

The detection is treated as a binary classification
problem in a sliding window approach. Given a train-

ing set D={{X.%}...{X,,¥,}}, where x;, 0 Ry is a
feature vector and X; € {£1} is a binary label, each
region of interest of the image is assigned a score,

fp2(X)= max f-O(x.2) )
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Figure 16. Latent SVM filters using HOPE feature

Where X is the region of interest, Z(x)is the set
of all possible positions of the parts, and f is a vec-

tor of model parameters. The function ®(x, z) is the
feature vector assembled from the root filter and the
best latent parts. B should then minimize equation 5.

1 n
7 I A max(01- ;- f06)

Where K is the number of components in the mod-
el, and the second term determines the softness of the
SVM margin.

To assess the impact on performance of part based
detection, two descriptors have been trained using the
Latent-SVM approach: HOG and HOPE. Detection
performance is evaluated using the same methodolo-
gy explained in section 8.1, except for the following
exception: the minimum overlap threshold between
B, and B is set to a more restrictive value of
a,=0.7.

The latent-SVM models for both the HOG and
HOPE descriptors have been trained using the same
parameters as their standalone counterparts. They
have been initialized for k = 8 latent parts and (6 x 6)
cells. The descriptors are extracted from a feature
pyramid, where the parts filter has double the resolu-
tion as the root filter. Fig. 15 represents the filters
trained with the HOG descriptor and Fig. 16 the fil-
ters trained with the HOPE descriptor.

The latent parts are computed at twice the resolu-
tions as the root filter. In low-resolution images, such
as the ones presented in this database, latent parts are
hard to find in the smallest objects. Because of this
limitation, the following results are based on a sub-
sample of the testing database. Only images in the
Medium and Large subsets are used. For a pedestrian
with less than 40 pixels in height the size of a cell of

the root filter would have (3 x 3) pixels, therefore it
is not possible to construct the part filters at double
that resolution. All other images are previously
resized to double their size in order to satisfy mini-
mum resolution restriction mentioned above.

The DET curves in Fig 17 compares the perfor-
mance of root, latent and parts detectors for the HOG
and HOPE descriptors. Root filters are the original
low-resolution descriptors trained with an extended
set of warped positives. There is a notable decrease
in miss rate when compared with their standalone
counterparts, due to the extended training set, allow-
ing the detector to cope with subtle pose variations.
Introducing latent detections (i.e. automatic estima-
tions of the pedestrians correct position) seems to
degrade slightly the performance. The overall best
results for Large pedestrians derive from searching
for pedestrian parts. This seems to help specially in
the case of semi-occluded pedestrians. As the pedes-
trians get smaller in the images, adding the parts fil-
ter loses it edge, due to greater resolution demands.
For comparing purposes the DET curve of the origi-
nal HOG-Lin tested under the same conditions is also
included in the figure.

DET curves
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Figure 17. Detection DET Curves of Latent-SVM HOG and HOPE
after applying the PM NMS algorithm with an overlap threshold of

8, =0.7. Legend states Miss Rate (MR) at 0.1 FPPL
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Finally, a qualitative inspection of misclassified
samples suggests that ambient temperature has a de-
terminant impact on performance. Sequences collect-
ed at a high environment temperature or under direct
sun light present the most false positives, and also the
highest miss rate. A qualitative evidence of this issue
is shown in Fig.18 where we present examples of
misclassified positives and negatives. Other sources
of misclassification are motion blur, which in FIR
images appear frequently, and pose variation. False
positives appear mostly in negative examples with a
high vertical symmetry.
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Figure 18. Misclassified samples. Upper row. False negatives due
to low resolution, motion blur and pose variation Lower row: False
positives in areas with a high vertical symmetry

9. Conclusions and Discussion

This paper presents an experimental study on pe-
destrian classification in FIR images. Several combi-
nations of descriptor and classification methods have
been tested in a new FIR dataset. By our best
knowledge this is the first complete FIR based pedes-
trian classification and detection dataset publicly
available for benchmarking.

From the experimental results reported in the pre-
vious sections it can be concluded that histogram
based features perform best than LBP or PCA fea-
tures. Among the features, HOPE performs better
both for classification and detection problems. LBP
and PCA features get worse overall performance,
though some gains can be achieved by merging them
with HOG or HOPE. In terms of classification meth-
ods, SVM achieved the best performance. The RBF
kernel can significantly reduce misclassifications
compared with a linear kernel, but is more computa-
tionally demanding. This is a critical factor in com-
puter aided transportation applications.

Pedestrian resolution has an important impact on
performance, with all detectors having lower hit rates
for small pedestrians. For the best performing detec-
tor, the miss rate at 10~ goes from 50% for Large
pedestrians to 88% for Small ones. In the case of La-
tent SVM approach, the detectors are not able to de-
tect any pedestrian in the Small subsample. From
these results it may be concluded that current pedes-
trian detectors in FIR images suffer from the same
limitations as VL detectors when it comes to detect
small pedestrians. This is specially relevant in this

case, as FIR cameras tend to have low resolution
Sensors.

The results presented in this paper suggests that
FIR images are a very useful source of information
for pedestrian classification and detection, having
similar performance to that found in state of the art in
VL images, with advantage in low visibility applica-
tions.
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