
SVMs for Automatic Speech

Recognition: A Survey

R. Solera-Ureña, J. Padrell-Sendra, D. Mart́ın-Iglesias, A. Gallardo-Antoĺın,
C. Peláez-Moreno and F. Dı́az-de-Maŕıa

Signal Theory and Communications Department

EPS-Universidad Carlos III de Madrid

Avda. de la Universidad, 30, 28911-Leganés (Madrid), SPAIN

Abstract

Hidden Markov Models (HMMs) are, undoubtedly, the most employed
core technique for Automatic Speech Recognition (ASR). Nevertheless,
we are still far from achieving high-performance ASR systems. Some al-
ternative approaches, most of them based on Artificial Neural Networks
(ANNs), were proposed during the late eighties and early nineties. Some
of them tackled the ASR problem using predictive ANNs, while others
proposed hybrid HMM/ANN systems. However, despite some achieve-
ments, nowadays, the preponderance of Markov Models is a fact.

During the last decade, however, a new tool appeared in the field
of machine learning that has proved to be able to cope with hard clas-
sification problems in several fields of application: the Support Vector
Machines (SVMs). The SVMs are effective discriminative classifiers with
several outstanding characteristics, namely: their solution is that with
maximum margin; they are capable to deal with samples of a very higher
dimensionality; and their convergence to the minimum of the associated
cost function is guaranteed.

These characteristics have made SVMs very popular and successful. In
this chapter we discuss their strengths and weakness in the ASR context
and make a review of the current state-of-the-art techniques. We organize
the contributions in two parts: isolated-word recognition and continuous
speech recognition. Within the first part we review several techniques
to produce the fixed-dimension vectors needed for original SVMs. Af-
terwards we explore more sophisticated techniques based on the use of
kernels capable to deal with sequences of different length. Among them is
the DTAK kernel, simple and effective, which rescues an old technique of
speech recognition: Dynamic Time Warping (DTW). Within the second
part, we describe some recent approaches to tackle more complex tasks
like connected digit recognition or continuous speech recognition using
SVMs. Finally we draw some conclusions and outline several ongoing
lines of research.

1

1 Introduction

Hidden Markov Models (HMMs) are, undoubtedly, the most employed core
technique for Automatic Speech Recognition (ASR). During the last decades,
research in HMMs for ASR has brought about significant advances and, con-
sequently, the HMMs are currently very accurately tuned for this application.
Nevertheless, we are still far from achieving high-performance ASR systems.
One of the most relevant problems of the HMM-based ASR technology is the
loss of performance due to the mismatch between training and testing condi-
tions, or, in other words, the design of robust ASR systems.

A lot of research efforts have been dedicated to tackle the mismatch problem;
however, the most successful solution seems to be using larger databases, trying
to embed in the training set all the variability of speech and speakers. At the
same time, speech recognition community is aware of the HMM limitations,
but the few attempts to move toward other paradigms did not work out. In
particular, some alternative approaches, most of them based on Artificial Neural
Networks (ANNs), were proposed during the late eighties and early nineties
([1, 2, 3, 4] are some examples). Some of them dealt with the ASR problem
using predictive ANNs, while others proposed hybrid ANN/HMM approaches.
Nowadays, however, the preponderance of HMMs in practical ASR systems is a
fact.

In this chapter we review some of the new alternative approaches to the ASR
problem; specifically, those based on Support Vector Machines (SVMs) [5, 6].
One of the fundamentals reasons to use SVMs was already highlighted by the
ANN-based proposals: it is well known that HMM are generative models, i.e.,
the acoustic-level decisions are taken based on the likelihood that the currently
evaluated pattern had been generated by each of the models that comprise the
ASR system. Nevertheless, conceptually, these decisions are essentially classifi-
cation problems that could be approached, perhaps more successfully, by means
of discriminative models. Certainly, algorithms for enhancing the discrimina-
tion abilities of HMMs have also been devised. However, the underlying model
keeps being generative.

There are other reasons to propose the use of SVMs for ASR. Some of them
will be discussed later; now, we focus on their excellent capacity of general-
ization, since it might improve the robustness of ASR systems. SVMs rely on
maximizing the distance between the samples and the classification boundary.
Unlike others, such as neural networks or some modifications of the HMMs that
minimize the empirical risk on the training set, SVMs minimize also the struc-
tural risk [7], which results in a better generalization ability. In other words,
given a learning problem and a finite training database, SVMs properly weight
the learning potential of the database and the capacity of the machine.

The maximized distance, known as the margin, is the responsible of the out-
standing generalization properties of the SVMs: the maximum margin solution
allows the SVMs to outperform most nonlinear classifiers in the presence of
noise, which is one of the longstanding problems in ASR. In a noise-free system,
this margin is related to the maximum distance a correctly classified sample

2

should travel to be considered as belonging to the wrong class. In other words,
it indicates the noise that added to the clean samples is allowed into the system.

Nevertheless, the use of SVMs for ASR is not straightforward. In our opinion,
three are the main difficulties to overcome, namely: 1) SVMs are originally static
classifiers and have to be adapted to deal with the variability of duration of
speech utterances; 2) the SVMs were originally formulated as a binary classifier
while the ASR problem is multiclass; and 3) current SVM training algorithms
are not able to manage the huge databases typically used in ASR; in spite of
the appearance of techniques as Sparse SVM, the number of training samples is
still limited to a few thousands.

In this Chapter we will review the solutions that during the last years have
been proposed to solve the mentioned problems. Nowadays, it can be said that
SVMs have been successfully used in simple ASR tasks, especially in presence
of noise. On the other hand, the research work focused on more complex task
is still incipient, though the results are encouraging.

This Chapter is organized as follows. Section 2 briefly reviews the ANN-
and hybrid ANN/HMM-based approaches proposed during the late eighties and
early nineties. First, some of the difficulties of using ANNs for ASR (that
SVMs share) are revealed. Later, as a consequence of the study of the hybrid
systems, some of HMM limitations are illustrated and how ANNs can be used
to complement HMMs is discussed (again the lessons apply to SVMs). Section
3 summarizes the SVM fundamentals, emphasizing those aspects relevant from
the ASR perspective. Section 4 is the core of the Chapter. The expected
advantages of SVMs in ASR are reviewed. The limitations to be overcome are
discussed. The most relevant research works dealing with SVMs for ASR are
briefly described. For that purpose, the different contributions are organized in
two subsections depending on the ASR task complexity: first, isolated-phone,
-letter or -word recognition and after connected-words or continuous speech
recognition. Finally, some conclusions are drawn and future lines of research
are outlined in Section 5.

2 ANNs for ASR

In next paragraphs, we briefly introduce the application of Artificial Neural
Networks (ANNs) to the speech recognition problem. This section does not try
to be an exhaustive review of this matter. On the contrary, its aim is to outline
the main alternatives proposed for the integration of ANNs into ASR systems in
order to illustrate their similarities with the use of SVMs for the same purpose,
especially in the context of hybrid HMM-based ASR systems.

During the last two decades some alternative approaches to HMMs, most of
them based on ANNs, have been proposed for ASR as an attempt to overcome
the limitations of the HMMs. ANNs represent an important class of discrim-
inative techniques, very well suited for classification problems. In particular,
ANNs exhibit several properties that have motivated their application to the
implicit pattern classification problem in ASR, namely [4]:

3

• They learn according to discriminative criteria. Although other classifiers
like HMMs can be trained in a discriminative framework, ANN training
is inherently discriminative.

• ANNs are the universal approximators, i.e., they can approximate any
continuous function with a simple structure.

• ANNs do not require strong assumptions about the underlying statisti-
cal properties of the input data and the functional form of the output
density. On the contrary, HMMs usually assume that successive acoustic
vectors are uncorrelated and follow a Gaussian (or mixture of Gaussians)
distribution.

Despite of the good performance of ANNs on static classification problems,
they present notable limitations to deal with the classification of time sequences
as is the case of speech signals. In fact, this has been one of the fundamental
problems to solve in the application of ANNs to speech recognition tasks.

2.1 ANN-based ASR systems

In order to deal with the time sequence classification problem, the first ANN-
based ASR systems pursued the adaptation of the neural network architecture
to the temporal structure of speech. In this context, two different classes of
neural networks which consider the correlation between the temporal structures
in the speech patterns were proposed: Time-Delay Neural Networks (TDNNs)
[8] and Recurrent Neural Networks (RNNs) [9].

TDNNs can be considered as a special type of the well-known Multilayer
Perceptron (MLP) in which input nodes integrate shift registers (or time delays).
This way, the TDNN training is performed over a time sequence of acoustic
vectors and the network is capable of incorporating a local acoustic context into
the whole process. RNNs are a generalization of the MLP network in which
feedback connections are allowed. As a consequence, the network behavior is
based on its history providing a mechanism to model time sequence patterns.

Although these systems have shown to achieve good results on phoneme or
isolated word recognition tasks, ANNs have not been successful on more complex
tasks as continuous speech recognition. The main reason for this lack of success
has been their inability to model the time variability of the speech signal even
when recurrent structures are used.

2.2 Hybrid ANN/HMM-based ASR systems

To overcome these difficulties, several researchers have proposed the so-called
Hybrid ANN/HMM-based ASR systems. The basic idea underlying these sche-
mes is to combine HMMs and ANNs into a single system to get profit from
the best properties of both approaches: the ability of HMMs to model the
time variability of the speech signal and the discrimination ability provided by
ANNs. Following this principle, different classes of hybrid ANN/HMM systems

4

have been developed. In next paragraphs, we briefly describe some of the most
relevant ones. A complete survey about this subject can be found in [10].

The most common approach to hybrid systems is the initially proposed in
[11, 4] in which an ANN is used to estimate jointly all the HMM state emission
probabilities. Several types of neural networks have been used for this purpose:
MLPs [4], RNNs [12] and even Radial Basis Function (RBF) networks [13].

Other approaches for speech recognition use Predictive Neural Networks, one
per class, to predict a certain acoustic vector given a time window of observations
centered in the current one [2], [3]. This way Predictive Neural Networks capture
the temporal correlations between acoustic vectors.

Finally, in the hybrid ANN/HMM system proposed in [14], ANNs are trained
to estimate phone posterior probabilities and these probabilities are used as fea-
ture vectors for a conventional GMM-HMM recognizer. This approach is called
Tandem Acoustic Modeling and it achieves good results in context-independent
systems.

Numerous studies show that hybrid systems achieve comparable recognition
results than equivalent (with a similar number of parameters) HMM-based sys-
tems or even better in some tasks and conditions. Also, they present a better
behavior when a little amount of training data is available. However, hybrid
ANN/HMM have not been yet widely applied to speech recognition, very likely
because some problems still remain open, for example: the design of optimal
network architectures or the difficulty of designing a joint training scheme for
both, ANNs and HMMs.

3 SVM fundamentals

3.1 SVM formulation

A SVM is essentially a binary nonlinear classifier capable of guessing whether an
input vector x belongs to a class 1 (the desired output would be then y = +1) or
to a class 2 (y = −1). This algorithm was first proposed in [15] in 1992, and it
is a nonlinear version of a much older linear algorithm, the optimal hyperplane
decision rule (also known as the generalized portrait algorithm), which was
introduced in the sixties.

Given a set of separable data, the goal is to find the optimal decision function.
It can be easily seen that there is an infinite number of optimal solutions for
this problem, in the sense that they can separate the training samples with
zero errors. However, since we look for a decision function able to generalize
for unseen samples, we can think on an additional criterion to find the best
solution among those with zero errors. If we knew the probability densities of
the classes, we could apply the maximum a posteriori (MAP) criterion to find
the optimal solution. Unfortunately, in most practical cases this information is
not available, so we can adopt another simpler criteria: among those functions
without training errors, we will choose that with the maximum margin, being
this margin the distance between the closest sample and the decision boundary

5

defined by that function. Of course, optimality in the sense of maximum margin
does not imply necessarily optimality in the sense of minimizing the number of
errors in test, but it is a simple criterion that yields to solutions which, in
practice, turn out to be the best ones for many problems [16].

w

1
1

ξk>1

0≤ξj≤1

rx

φ(xi)

Figure 1: Soft-margin decision

As can be inferred from the Figure 1, the nonlinear discriminant function
f(xi) can be written as:

f(xi) = wT · φ(xi) + b, (1)

where φ(xi) : <n 7→ <n′
, (n << n′), is a nonlinear function which maps the

vector xi into what is called a feature space of higher dimensionality (possibly
infinite) where classes are assumed to be linearly separable. The vector w
represents the separating hyperplane in such a space. It is worth noting that
the meaning of feature space here has nothing to do with the space of the speech
features that within the kernel methods nomenclature belong to the input space.

On the other hand, rx is the distance between the transformed sample φ(xi)
and the separating hyperplane, and ‖ w ‖ the Euclidean norm of w. We call
support vectors those closest to the decision boundary. These vectors define the
margin and are the only samples that are needed to find the solution. Thus, we
have that for every sample xi, rx = f(xi)/ ‖ w ‖. Hence, the goal to find the
optimum classifier is achieved by minimizing ‖ w ‖ with the restriction of all
samples being correctly classified, i.e.:

yi
(
wT · φ(xi) + b

)
≥ 1. (2)

This can be formulated as a problem of quadratic optimization:

min
w,b

1
2
‖ w ‖2,

subject to yi(wT · φ(xi) + b) ≥ 1

6

In order to get a classifier with a better generalization ability and capable
of handling the non-separable case, we should allow a number of misclassified
data. This is accomplished by introducing a penalty term in the function to be
minimized:

min
w,b,ξi

LP =
1
2
‖ w ‖2 + C

N∑
i=1

ξi,

subject to yi(wT · φ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, for i = 1, · · · , N, (3)

where xi ∈ <n (i = 1, . . . , N) are the training vectors corresponding to
the labels yi ∈ {±1}, and the variables ξi are called slack variables and allow a
certain amount of errors that contribute to obtain solutions in the non-separable
case. ξi verifies 0 ≤ ξi ≤ 1 for those samples well classified but inside the
margin, and ξi > 1 for those samples wrongly classified. The C term, on the
other hand, expresses the trade-off between the number of training errors and
the generalization capability.

This problem is usually solved introducing the restrictions in the function
to be optimized using Lagrange multipliers, leading to the maximization of the
Wolfe dual:

max
αi

LD =
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

yiyjαiαjφ
T (xi)φ(xj),

subject to
n∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C. (4)

This problem is quadratic and convex, so its convergence to a global mini-
mum is guaranteed using quadratic programming (QP) schemes. The resulting
decision boundary w will be given by:

w =
N∑
i=1

αiyiφ(xi). (5)

According to (5), only vectors with an associated αi 6= 0 will contribute to
determine the weight vector w and, therefore, the separating boundary. These
are the support vectors that, as we have mentioned before, define the separation
border and the margin.

Generally, the function φ(x) is not explicitly known (in fact, in most of the
cases its evaluation would be impossible as long as the feature space dimension-
ality can be infinite). However, we do not actually need to know it, since we
only need to evaluate the dot products φT (xi) · φ(xj) which, by using what has
been called the kernel trick, can be evaluated using a kernel function K(xi,xj).

7

Many of the SVM implementations compute this function for every pair of input
samples producing a kernel matrix that is stored in memory.

By using this method and replacing w in (1) by the expression in (5), the
form that a SVM finally adopts is the following:

f(x) =
N∑
i=1

αiyiK(xi,x) + b. (6)

The most widely used kernel functions are:

• the simple linear kernel

KL(xi,xj) = xTi · xj ; (7)

• the radial basis function kernel (RBF kernel),

KRBF (xi,xj) = exp
(
−γ ‖xi − xj‖2

)
, (8)

where γ is proportional to the inverse of the variance of the Gaussian
function and whose associated feature space is of infinite dimensionality;
and

• the polynomial kernel

KP (xi,xj) =
(
1 + xTi · xj

)p
, (9)

whose associated feature space are polynomials up to grade p, and

• the sigmoid kernel

KSIG(xi,xj) = tanh
(
axTi · xj + b

)
, (10)

It is worth mentioning that there are some conditions that a function should
accomplish to be used as a kernel. These are often denominated KKT (Karush-
Kuhn-Tucker) conditions [17] and can be reduced to check the kernel matrix is
symmetrical and positive semi-definite.

3.2 Pros and cons of SVMs

The reason that makes SVMs more effective in many applications than other
methods based on linear discriminants is its learning criterion. The goal of any
classifier must be minimizing the number of misclassifications in any possible
set of samples. This is known as Risk Minimization (RM). However, in typical
classification problems we only have a limited number of samples available (in
some cases we can have an unlimited number of samples but, anyway, we only
can deal with a subset), and so, all we can do is trying to minimize the number

8

of misclassifications within the training set. This is known as Empirical Risk
Minimization (ERM), and most classifiers base their learning process on it.

However, having the classifier with the best ERM is not enough (or even
desirable). The complexity of the classifiers normally must be fixed a priori,
and so, we can choose a too simple structure unable to model correctly the
classification boundaries of our problem, or a too complex one, overfitted to
our training set and unable to generalize to unseen samples. This is known as
Structural Risk, and a good classifier must maintain a compromise between the
ERM and the SRM (Structural Risk Minimization).

In SVMs, we do not need to previously fix the complexity of the resultant
machine, but there is a parameter (the C in equation 3) which establishes this
compromise between ERM and SRM. Unfortunately, there is no method to know
a priori the most adequate value for this parameter, so we must find it by means
of a search process.

Other advantages of SVMs are:

• They have a unique solution and its convergence is guaranteed (the so-
lution is found by minimizing a convex function). This is an advantage
compared to other classifiers as ANNs that often fall in local minima or
does not converge to a stable version.

• The solution is that with maximum margin, what makes these machines
robust and, in our opinion, very well suited for applications as ASR in
noisy environments.

• Since in the minimization process only the kernel matrix is involved, they
can deal with input vectors of very high dimensionality, as long as we are
capable of calculating their corresponding kernels. In practice, they can
deal with vectors of thousands of dimensions.

Among the disadvantages, we can highlight the following:

• Most implementations of SVM algorithm require to compute and store in
memory the complete kernel matrix of all the input samples. This task
have a space complexity O(n2), and is one of the main problems of these
algorithms that prevent their application on very large speech databases.
Most implementations allow us to work with some thousands of samples.
However, some modifications of the algorithm are being developed which
would allow us to work with millions of samples [18].

• The optimality of the solution found can depend on the kernel we have
used, and there is not a method to know a priori which will be the best
kernel for a concrete task. Although kernels as RBF are considered uni-
versal, it is still necessary to perform a grid-based search to fix all the
parameters of the SVM.

• As we have mentioned, the best value for the parameter C is also unknown
a priori.

9

• Like ANNs, the input vectors of an SVM with the formulation we have
seen, must have a fixed size. This is a problem in speech recognition where
each sequence to be recognized has a different duration. There are some
solutions to this problem that we will discuss later.

However, despite these troubles, SVMs are attractive enough to be used in
a variety of applications and, specifically, in speech recognition.

4 SVMs for ASR

As already discussed in the Introduction and in the previous section, SVMs are
state-of-the-art tools for solving classification problems that seems to be very
promising from the speech recognition perspective. They offer a discriminative
solution to the pattern classification problem involved in ASR. Furthermore, the
maximum margin SVM solution exhibits an excellent generalization capability,
what might notably improve the robustness of ASR systems.

In fact, the improved discrimination ability of SVMs has attracted the atten-
tion of many speech technologists. Though this paper focuses on speech recog-
nition, it is worth noticing that SVMs have already been employed in speaker
identification [19] and verification [20], or to improve confidence measurements
that can help in dialogue systems [21], among other applications.

However, its application to ASR is by no means straightforward. Here follows
a review of the most important problems that has motivated the structure of
the present section.

• The variable time duration of the speech utterances: The Automatic Speech
Recognition involves the solution of a pattern classification problem. How-
ever, the variable time duration of the speech signals has prevented the
ASR from being approached as a simple static classification problem. In
fact, this has been for many decades one of the fundamental problems
faced by the speech processing community and the main responsible for
the success of the HMMs. The main problem stems from the fact that
conventional kernels can only deal with (sequences of) vectors of fixed
length. Standard parameterization techniques, on the other hand, gen-
erate variable length sequences of feature vectors depending on the time
duration of each speech utterance.

Different approaches have been proposed to deal with the variable time
duration of the acoustic speech units. Basically, solutions can be divided
into three groups: 1) the ones that aim at performing a previous dimen-
sional (time) normalization to fit the SVM input; 2) those that explore
string-related or normalizing kernels [5] to adapt the SVMs to make them
able to use variable dimension vectors as inputs; and 3) those that avoid
this problem by working in a framewise manner. As we will see later in
section 4.2, the latter is specially well suited for continuous speech recog-
nition while the first two are more appropriate for lower complexity tasks
and will be addressed in section 4.1.

10

• Multiclass SVMs: ASR is a multiclass problem, whereas in the original
formulation an SVM is a binary classifier. Although some of the proposed
approaches to multiclass SVMs make a reformulation of the SVM equa-
tions to consider all classes at once, this option is very computationally
expensive. A more usual approach to cope with this limitation involves
combining a number of binary SVMs to achieve the multiclass classifier
by means of a subsequent voting scheme. Two different versions of this
method are usually considered. The first consists of comparing each class
against all the rest (1-vs-all), while in the second each class is confronted
against all the other classes separately (1-vs-1). Although the number of
SVMs is greater for the 1-vs-1 approximation (namely, k(k−1)

2 vs. k SVMs,
with k denoting the number of classes), the size of the training set needed
for each SVM in the 1-vs-1 solution leads to a smaller computational effort
with comparable accuracy rates [22].

• The size of the databases: most SVM implementations do not allow to deal
with the huge databases typically used in medium- and high-complexity
ASR task.

Having reviewed the fundamental challenges we now devote the next sub-
sections to the exposition of the main solutions described in the literature, from
the most simple tasks, such as isolated phonemes, letters or words recognition
(low-complexity ASR tasks) to approaches to connected digits and continuous
speech recognition (medium-complexity ASR tasks).

4.1 Isolated-word recognition

In this subsection we summarize some of the most relevant approaches to iso-
lated unit (phonemes, letters or words) recognition by means of SVMs. We
will distinguish between solutions that involve a preprocessing of the speech
feature sequences and SVM-specific solutions capable of working with samples
of variable dimensionality. The later are most of the times based on what is
called sequence kernels that, in our opinion, show a great potential even for the
their application to more complex task. Therefore, we will provide a more de-
tailed overview of two instances of those kernels, namely, the DTAK and Fisher
kernels.

4.1.1 Preprocessing of the speech feature sequences

When dealing with this type of ASR tasks, the main problem of SVM-based
approaches is the time normalization of the different utterances of the acoustic
units (to get a fixed-dimension input space). On the other hand, the complexity
of the SVM implementation (training or testing) is not a problem because the
lexicon is usually quite limited.

Several authors use different variations of the the so-called triphone model
approach. This model is motivated by the three-state HMMs used in most state-
of-the-art speech recognition systems that amounts to assume that the speech

11

segments (phones or triphones in most cases) can be decomposed into a fixed
number of sections. The first and third sections model the transition into and
out of the segment, whereas the second section models the stable portion. The
main variants of this approach are summarized below:

• In [23] they show significant improvement in performance on a static pat-
tern classification task based on the Deterding vowel data as well as on a
continuous alphadigit one (OGI Alphadigits). The vector resulting from
the concatenation of the three segments corresponding to the triphone
model is augmented with the logarithm of the duration of the phone
instance to explicitly model the variability in duration. The composite
feature vectors are based on the alignments from a baseline three-state
Gaussian-mixture HMM system. SVM classifiers are trained on these
composite vectors, and recognition is also performed using these segment-
level composite vectors. They have also used this model in a large vocab-
ulary conversational speech task (Switchboard) as we will review in next
subsection.

• In [24] they use SVMs for two different tasks, namely: Thai tone and Thai
vowel recognition, using different feature length normalization procedures
for each of them. The first one is Thai tone recognition in which they
try to classify the five different lexical tones in that language: mid, low,
falling, high and rising. A fixed number of measures of the pitch evolution
is chosen in this case. However for the classification of Thai vowels they
also divide each vowel into three regions.

• In [25], the authors evaluate the performance of SVMs showing advan-
tages when compared with GMM (Gaussian Mixture Models) in both
vowel-only and phone classification tasks. It is worth noting that a signif-
icant difference is observed in the problem of length adaptation between
these two tasks. In the vowel case, it is acknowledged that regardless
of the duration of each utterance, the acoustic representations are al-
most constant. Therefore simple features as the formant frequencies or
LPC coefficients corresponding to any time window are representative of
the whole sequence. However, the representation of the variations taking
place in non-vowel utterances is essential for obtaining an adequate input
to SVMs. Thus, again the triphone model approach has been applied in
this case, segmenting the number of frames obtained for each phone into
three regions in the ratio 3-4-3 and subsequently averaging the features
corresponding to the resulting regions.

• Similar distinctions have been observed in [26], where a comparison be-
tween the performance of classical HMMs and SVMs as sub-word units
recognition is assessed for two different languages: 41 monophone units are
classified in a Japanese corpus and 86 consonant-vowel units are consid-
ered for an Indian language. In this case, two different strategies have been
devised to provide the SVMs with a fixed-length input: for the Japanese

12

monophones, a similar technique to that proposed in [25] has been used.
The frames comprising each monophone have been divided into a fixed
number of segments. An averaged feature vector is then obtained for each
segment. Each feature vector is subsequently concatenated to those result-
ing from other segments to form input vector for the SVM classifier. For
the Indian consonant-vowel classification, however, a different approach
has been designed to account for the variations of the acoustic character-
istics of the signal during the consonant-vowel transition. In this case the
fixed length patterns are obtained by linearly elongating or compressing
the feature sequence duration. For both Indian and the previously men-
tioned Japanese tasks the SVMs have shown a better performance than
HMMs with the standard MFCCs (Mel-Frequency Cepstral Coefficients)
[27] plus energy and delta and acceleration coefficients.

In [28] several ways of preprocessing the speech sequence to obtain a fixed
dimension vector are analyzed for a noisy digit recognition task. Two methods
of sequence uniform resampling are assessed performing variations on the size
of the analysis window and the frame period: a variable window size method
that makes it possible to include the whole digit utterance for a given number
of windows per digit by adjusting the size of the window to the digit duration,
and a fixed window size one, that maintains the window size around a fixed
number of analysis instants regardless of the coverage of the digit it does.

In [29] their primary goal is to solve the problem of the computational com-
plexity of the SVM classical formulation by using an alternative Lagrangian
one on the TIMIT database. Their feature representation uses the previously
explained variable window size method using different window lengths based
on the duration of the phoneme being classified. Therefore they concatenate 5
windows of the same size chosen from the set {32, 64, 128, 256, 400} covering
the whole phoneme.

Another possible solution is showed in [28, 30, 31], where the non-uniform
distribution of analysis instants provided by the internal states transitions of an
HMM with a fixed number of states and a Viterbi decoder is used for dimen-
sional normalization. The rationale behind this proposal is that the uniform
resampling methods are produced without any consideration about the infor-
mation (or lack of information) that speech analysis segments were providing.
Selecting the utterance segments in which the signal is changing, it is hoped
that a bigger amount of information is preserved in the feature vector.

Related to the previous approach, in [32] they acknowledge the fact that the
classification error patterns from SVM and HMM classifiers can be different and
thus their combination could result in a gain in performance. They assess this
statement on a classification task of consonant-vowel units of speech in several
Indian languages obtaining a marginal gain by using a sum rule combination
scheme of the two classifiers evidences. As for feature length normalization they
select segments of fixed duration around the vowel onset point, i.e., the instant
at which the consonant ends and the vowel begins.

13

4.1.2 Isolated-digit recognition with DTAK-SVMs

This method was introduced in [33] and [34], and belongs to the family of meth-
ods based on sequence kernels, which try to solve the problem of different length
sequences by adapting the kernel of the SVM to one capable of working with
samples of variable dimensionality. This seems to be a more natural approach
than performing a previous segmentation.

Summarizing, this technique uses as a kernel the score obtained by means
of a Dynamic Time Warping (DTW) algorithm. DTW algorithms were one of
the first techniques used in speech recognition and they were widely used in the
70s [35].

DTW measures the distance between a target signal and a template, expand-
ing or contracting the temporal axis of the target to find the path or warping
function which maximizes the similarity between the two signals (Figure 2).
The distance of the signals is computed at each instant along the warping func-
tion, and the final score given by the algorithm is the accumulated similarity.
Any metric can be used to compute this distance but usually the Euclidean is
employed. In the case of DTAK, the inner product is used and therefore this
distance can be interpreted as a linear kernel that is employed internally for
the computation of the DTAK Kernel. With such an interpretation, it is now
possible to substitute this distance metrics for the one provided by non-linear
kernels such as RBF as we will introduce further on.

m O

Ti
m

e L

H E E L L O O

H

E

L

L

1 i n… …

1

j

…
…

i,j

i,j-1

i-1,j

Time

Figure 2: Dynamic Time Warping

Specifically, for the computation of the linear kernel we use the following
procedure: if X and Y are the two sequences of feature vectors to be compared,
and ψI(k) and ψJ(k) are warping functions which normalize the temporal axis
of the sequences in the instant k, we must find the solution to the new inner
product :

14

KDTA(X,Y) = X ◦ Y = max
ψI ,ψJ

1
Mψ

L∑
k=1

m(k)xTψI(k) · yψJ (k),

subject to 1 ≤ ψI(k) ≤ ψI(k + 1) ≤ |X|,
1 ≤ ψJ(k) ≤ ψJ(k + 1) ≤ |Y |, (11)

where | · | denotes the length of the sequences, Mψ is a normalization factor
which normally has the value Mψ = |X|+ |Y |, L is a normalized length that can
be either |X|, |Y | or arbitrary positive integer, and m(k) is a non negative scale
factor which gives more importance to some particular “steps” in the “path”.

This optimization problem is normally solved by means of dynamic program-
ming, using the following recursive equation:

D(i, j) = max


D(i− 1, j) + xTi · yj ,

D(i− 1, j − 1) + 2xTi · yj ,
D(i, j − 1) + xTi · yj .

(12)

where the scale factor ’2’ favors translations along the diagonal, which should
be the most probable ones. Therefore, the DTA Kernel gets reduced to,

KDTA(X,Y) = X ◦ Y = D(|X| , |Y |)/(|X|+ |Y |) (13)

It is worth mentioning that in contrast with the classical template-based ASR
solutions where the difficulty of finding an appropriate template was the main
drawback that lead to the supremacy of the model based approaches like HMM,
the DTAK solution automatically finds the best reference templates using the
max-margin criterion.

Effectively, if we look at equation (5) in section 3, we see that only those
templates with an associated αi 6= 0 will be relevant and will contribute to
determine the separating boundary. Only a few templates will have a non-zero
αi, and these will be the closest to the decision function. Now, the support
vectors are support sequences or templates.

Furthermore, the algorithm not only selects those appropriate templates
that define the decision boundary but the number of them that minimise the
structural risk, and this is accomplish by giving an appropriate value to the
parameter C in equation (3). Unfortunately, we do not have a method to
calculate the best value for this parameter a priori, so we must resort to cross-
validation.

With the previous formulation it is now easy to consider the generalization
that allows us to find the separating border in a higher dimension space (the
feature space) by means of a non-linear kernel like an RBF. We have said that,
basically, DTAK consists in using DTW as the kernel of an SVM. However, a
generalization consisting in performing the time-warping in the feature space
can be considered. In other words, in equation (11), we could use a kernel
function (for example, an RBF) instead of a conventional dot product and the
DTAK kernel would have the following form:

15

KsDTA(X,Y)

= φ(X) ◦ φ(Y) = max
ψI ,ψJ

1
Mψ

L∑
k=1

m(k)KRBF (xψI(k),yψJ (k)). (14)

Now, we have to demonstrate that KsDTA fulfills the KKT conditions. As
we mentioned in section 3, the only thing we have to prove is that KsDTA is
symmetrical and positive semidefinite. The former is obvious, since the warping
function is the same if we interchange the sequences X and Y . Regarding the
latter, we must demonstrate that:

utKsu ≥ 0 ∀u. (15)

This is easily proved if we consider that DTW is the (weighted) sum of the
inner products (kernels) of the vectors composing the sequences X and Y at the
instants defined by the optimal warping function ψ∗(k). That is (omitting the
scale factors):

Ks = K(1) + · · ·+ K(L), (16)

where K(k) is the kernel at the instant defined by ψ∗(k). So,

utKsu = ut(K(1) + · · ·+ K(L))u

= utK(1)u + · · ·+ utK(L)u

≥ 0, (17)

since K is a valid kernel and, therefore, positive semidefinite.

Experimental Results

Results for the well-known SpeechDat-4000 database are presented in [31].
The whole database is not used: specifically, only the isolated-digit utterances
are used for the experiments. The reported results depend on the noise level: on
the one hand, the DTAK-based system achieves excellent performance, clearly
superior to that achieved by the HMM-based system, for low SNRs; on the other
hand, it incurs in some performance losses for high SNRs. The improvements
due to DTAK (using either linear or RBF kernels) with respect to HMMs are
statistically significant for white noise at 3, 6 and 9 dB and for F16-plane noise
at 3 and 6 dB. On the contrary, the HMM-based system outperforms the DTAK-
based one in clean conditions and several noisy cases at 12 dB. In the remaining
conditions, which correspond to medium SNRs, the system performances do not
exhibit statistically significant differences. Please refer to [31] for more details
about the DTAK-based system and the experimental setup.

In summary, the reported results [31] show that SVMs exhibit a robust be-
haviour, as expected. In particular, the DTAK-based system turns out to be

16

effective in noisy scenarios. In fact, the advantage due to the DTAK algorithm
is higher as the noise conditions worsen. On the other hand, direct applica-
tion of DTAK-based systems to continuous speech recognition is by no means
straightforward, as the length of the sequences in eq. (13) must be known. In
our opinion, some alternative segmentation techniques such as that proposed in
[36], should be revisited to deal with this limitation.

4.1.3 Other types of sequence kernels: the Fisher kernels

DTAK is an instance of the so called sequence kernels that try to solve the
problem of the different duration of the input sequences by looking for kernels
capable of working with vectors of variable dimensionality. In this section we
outline one of the most popular ones: the Fisher kernel and all its derivative
family.

The Fisher kernel was first used in the biology field, in the context of DNA
and protein sequence analysis [37], although there are also some interesting
results in the field of speech recognition. Thus, in [38, 39, 40], this method
is evaluated on a speaker-independent isolated letter task, outperforming the
standard HMMs. Much more promising, however, are the results in speaker
verification. In [41], the presented SVM system outperforms up to 34% the
rates obtained with a GMM model.

The idea behind this method is to use as a kernel a score function computed
by using the a posteriori probabilities of the observations obtained with a gen-
erative model (GMM, HMM...). Therefore the Fisher kernels takes advantage
of the capability of the generative models to work with sequences of different
lengths.

Let P (X | θ) be the a posteriori probability obtained with a generative
model with parameters θ. The set of all the P (X | θ) corresponding to all
the different θ ∈ Θ (being Θ the set of all possible parameters of the model),
forms a Riemann manifold MΘ. In such a space, the inner product is given
by UTXi

F−1UXj
, where F = EX

[
UXU

T
X

]
is the Fisher information matrix, and

UX = ∇θlogP (X | θ) is named the Fisher score .
Summarizing, the steps to calculate the Fisher kernel are:

• Get P (X | θ) from a generative model.

• Calculate UX = ∇θlogP (X | θ). This can be quite complex but the steps
to obtain this expression from an HMM are especified in [39].

• Calculate F = EX
[
UXU

T
X

]
(in some texts, this matrix is approximated

by the identity, or by σ2I therefore implying a conventional inner product
and a Euclidean space).

• K(Xi, Xj) = UTXi
F−1UXj

.

It is easy to demonstrate that K is symmetrical and positive semi-definite
and, hence, a kernel, since F fulfils those conditions.

17

In the same way that in the conventional kernels it is also possible to modify
this kernel to obtain RBF or polynomial kernels. For example, the polynomial
Fisher kernel would be:

K̃ = (1 +K(Xi, Xj))
p (18)

In [37] it is demonstrated that a discriminative classifier based on the Fisher
kernel is at least so good as the Maximum A Posteriori (MAP) classifier of the
generative model associated.

We can further generalize the Fisher kernel by substituting the logarithm
and ∇ operators of the score for other types of operations. For example a
modification specially useful in speaker verification, employs the logarithm of the
ratio between the a posteriori probabilities generated by two different models.

A final remark concerning both types of sequence kernels we have presented
is that the support vectors they compute act as templates against which the
incoming sequences are compared. For DTAK kernels these support vectors
were particular sequences and here they are scores. This templates, however, are
not the most representative instance of a class, as in the conventional template
based pattern recognition but are the smaller set of vectors that we can combine
to define the border between two classes.

However, the main problem that, thought they are capable of comparing
different duration acoustic units, the boundaries of these units must be previ-
ously determined. This is their major drawback that prevents their application
to continuous speech recognition.

4.2 Connected-digit and continuous speech recognition

Either connected-word recognition or continuous speech recognition are obvi-
ously more complex tasks than isolated-word recognition. In particular, the
successful application of SVMs to more complex ASR tasks requires solving
two additional problems. First, neither the time position of each word nor the
number of words to be sought in the utterance are known. And second, the
more complex it is the ASR task, the larger is the speech data base required
for the design of the system; consequently, the size of the databases used in
more complex tasks turns out to be huge compared to the maximum number
of training samples that a SVM can deal with. Nevertheless, the very valuable
characteristics of SVM classifiers have encouraged several authors to try to solve
these problems.

As briefly mentioned in a previous section, some authors [42] have tried to
overcome the problem of the variability of duration of speech utterances using
HMMs to perform a time segmentation prior to classification. Other works
cope with the variability of duration of speech utterances by embedding either
an HMM [38] or a Dynamic Time Warping algorithm [33] in the kernel of the
SVM. It is not easy, however, to apply these last two techniques to the problem
of continuous speech because a previous word (or phoneme) segmentation of
the utterance is still required. Another solution to overcome the mentioned

18

difficulties is proposed in [43]. This method consists in classifying each frame
of voice as belonging to a basic class (a phone) and using the Token Passing
algorithm [44] to go from the classification of each frame to the word chain
recognition. This is a similar approach to that presented in [45] by Cosi. The
main difference is that Cosi uses Neural Networks (NNs) instead of SVMs.

In this section the approaches due to Ganapathiraju [42], who proposed a
hybrid HMM/SVM system, and Padrell [43], who presented a pure SVM-based
ASR system, are explained in detail.

Although it will not be described in this Chapter, it is worth to briefly
mention a segmentation method for continuous speech presented in [46]. In
particular, articulatory features are used to segment speech into broad manner
classes using the probability-like outputs of SVMs to perform the classification
every 5 ms over a 10 ms duration frame. They found that for this task, SVMs
perform significantly better than HMM.

4.2.1 Hybrid HMM/SVM-based continuous speech recognition [42]

In this case the HMMs are used to generate phonetic level alignments that are
treated individually by the SVM to perform phoneme identification. Since each
segment will have a different duration, some method is needed to convert them
to fixed length vectors. These methods were revised in 4.1. Here we illustrate
with some more detail the method proposed in [42] for a continuous speech
recognition task. These authors suggest dividing the segment into three regions
according to a pre-established proportion; thus, the vectors of the parameterized
signal can be split into three groups according to a distribution of 30%-40%-
30%. Then the vectors into every region are averaged and finally concatenated
as depicted in Figure 3.

4.2.2 SVM-based continuous speech recognition [43]

The hybrid HMM/SVM system previously described is not able to fully exploit
the improved generalization capabilities of SVMs due to that SVMs are fed
with a segmentation provided by the HMMs. Consequently, the the potential
effectiveness of the SVMs is limited by the errors committed in the segmentation
stage.

The method suggested in [43] consists in classifying each frame of voice as
belonging to a basic class (a phone). Following this approach the need to locate
each word in time is avoided and its duration becomes unimportant. In order
to go from the classification of each frame to the word chain recognition, The
Token Passing algorithm [44] common in HMM-based speech recognition is used.
LIBSVM [47] was the software chosen to train the SVMs. The reasons were the
following: First, it implements the SMO algorithm [48] that allows a fast SVM
training with a fairly high number of samples. And second, it provides an
estimated probability value for each frame and candidate phone [49, 50], that
will be described later. The main parts of this SVM-based ASR system are
described in the following paragraphs.

19

Fi
xe

d
le

ng
ht

Variable lenght

3

2

1

1 2 3

30% mean

concatenation

40%
30%

HMM Phone Segmentation

to SVM classification

Speech Frames

Figure 3: Example of a vector construction for an HMM/SVMs hybrid system.

SVM-based frame by frame classification. Many of the first articles deal-
ing with speech recognition using SVMs mention the possibility of classi-
fying the voice frames directly as a possible method to solve the problem
of the variability of duration of speech utterances (different length of the
input vectors in the SVM context). This approach was initially rejected
because of its high computational cost. Let us make some coarse cal-
culations to gain insight into the problem. Let us consider 31 phones
to be identified (typical for Spanish), i.e., a classification problem of 32
classes (the silence is the additional one). If the considered task is a
speaker-independent one, the training set should include a high number
of speakers: let us consider 100 speakers, though it is a low number. In
addition, in order to assure that the phones appear in several contexts
and are enough to achieve statistical convergence, we should train with
a few minutes of speech from each speaker, for example 10 minutes per
speaker. This makes a total of 33.3 hours of voice. If we divided them
in frames (computed every 10ms), we would obtain a total of 12.000.000
frames or, in our case, training samples. If we take into account that, in
a typical implementation, the entire matrix should be put in memory for
training (and that a frame requires, for example, 156 bytes), we would
need 1872 GBytes. Furthermore, the CPU time to solve the quadratic
problem with so many points should also be considered. At first sight, it
seems that this is not a feasible solution. Nevertheless, it is worthwhile
to study if the solution is good and, if it was, to worry later about the
memory consumption and the computational cost.

In [43] the SVMs are used on a frame by frame basis in order to determine

20

which class (phone) every frame belongs to. They use as many classes
as phones. In particular, for Spanish digits there are 17 phones plus the
silence, i.e., every individual voice frame is classified as belonging to one
of the 18 classes.

Probability estimations. The SVMs only classify, but they do not give us a
reliable measure of the probability of the correctness of the classification.
Several ways to estimate this probability can be found in the literature.
All of them are based on some kind of mapping between the distances
provided by the SVM and the sought probability. The approach followed
by LIBSVM considers the actual distances as a measure of ”probability”.
Thus, the posterior probability Si(x) that a vector x belongs to class i is
calculated as

Si(x) =
∑
∀j 6=i

fij(x), (19)

where fij(x) is the distance between the vector x and the hyperplane used
to classify between class i and class j. This estimation can be improved
using a softmax function as follows:

Ŝi(x) =
exp(Si(x)/k)∑
j exp(Sj(x)/k)

, (20)

where k is a constant to avoid the function saturation towards 1 or 0.

A more elaborated method makes the assumption that the probability fol-
lows a sigmoid function, whose parameters are estimated from the train-
ing samples. Thus, the probability pi that x belongs to class i considering
classes i and j can be written as follows [49]:

pi(x) =
1

1 + exp(Aijfij(x) +Bij)
, (21)

pj(x) = 1− pi(x), (22)

where in order to avoid severe bias towards the training data, the free
parameters, Aij and Bij are estimated on a cross-validation set.

Finally, the conversion of this two-class probability pij to a multiclass
probability Pi is obtained by means of a variation of the Refregier and
Vallet method [50].

The Token Passing algorithm [44] transforms a stream of acoustic classifi-
cations to a stream of recognized words. Its input is a matrix of probabil-
ities: one row per phone (or subword unit) and one column per frame.

The Token Passing algorithm is an extension of the Viterbi algorithm
typically used in continuous speech recognition devised to manage the un-
certainty about the number of words in a sentence. Figure 4 illustrates the
use of this algorithm for a very simple grammar which allows any concate-
nation of two Spanish words: “uno” and “tres”. Classes are represented

21

by circles, while word-ends are represented by squares. Two columns of
circles are shown corresponding to two consecutive frames, i and j. The
possible transitions allowed by this grammar and explored by the Viterbi
algorithm are represented either by solid or dashed lines (the mean of the
line types is explained later). Each circle and transition could have an
associate cost or probability. Every Viterbi node (circle) has an associ-
ated structure called Token. Each token stores the accumulated cost of
reaching the corresponding node.

MFCCs Streamji

u

n

o o

Token

Link Last Word

+

uno

...

Accumulated Prob.

State Prob.’o’

Tr.Prob.’uno’−’tres’

uno

SVM Classes Topology

tres

s

e

r

t t

Frames (time)

Figure 4: An illustration of the Token Passing Algorithm for a very simple
grammar.

The Token not only stores the accumulated cost but also a Link to the last
recognized word. The Link is only modified when the algorithm passes
through word-ends (squares in Figure 4). The transitions among classes
that modify this Link are represented by solid-lines, while those that do
not modify it are represented by dashed-lines. Proceeding as usually in
the Viterbi algorithm, only the path leading to the highest probability for
every node is kept.

When the Viterbi algorithm has explored all the frames, the Token with
a higher accumulated probability is chosen and its Link to the (sequence

22

of) word-ends provides us the sequence of recognized words.

The number of training samples that the system is able to use becomes
a practical problem for the SVM system, for both training and testing.
In the training process, typically, all the Kernels (or a high percentage
of them) should be allocated in the computer memory. This limits the
number of training samples in function of the available memory. A large
training set also implies a high computational cost from the classification
(test) point of view, since the number of Support Vectors (SV) increases
linearly with the number of training samples.

The Multiclass problem. In order to solve it, the 1 − vs − 1 approach is
used. This method allows to train all the system using a maximum num-
ber of different samples for each class, and to keep limited the use of
computer memory. For 18 classes, this method implies to train and use
18·(18−1)

2 = 153 SVMs, where each SVM classifies each frame between two
of the possible phones, deciding the winning class by voting.

The definition of classes. When each class is a phone the time variation typ-
ically exhibited by actual phones is not taken into account. Some time
variation can be embedded through the delta parameters, but better solu-
tions should be considered; for example: either extending the time-window
covered by the parameterization (for example, considering for each time
instant the concatenation of two or three consecutive features vectors) or
changing the definition of classes considered to deal with parts of phones.

The last alternative has been chosen because it helps to deal with another
SVM-related problem: the practical limitation of the number of samples
for training a single SVM. Increasing the number of classes and maintain-
ing constant the number of samples used to train each SVM, the total
number of samples used to train the whole system is effectively increased.
The natural choice consists in defining a class for the beginning of the
phone, a class for the center of the phone, and finally, a class for the end
of the phone. This new approach transforms the 18 initial classes into
18 · 3 = 54. Therefore, the number of SVM classifiers to perform the
1− vs− 1 multiclass implementation moves from 153 to 1431.

To use these new classes, an allowed-transition matrix should be included
to actually constrain the class transitions allowed during the Viterbi-based
exploration. Furthermore a probability-transition matrix can be used in-
stead of the previously mentioned allowed-transition matrix. The transi-
tion probabilities, aij , can be estimated from the number of transitions
from i to j occurring when considering the samples in the available train-
ing set.

The results using this approach shows that SVMs can become a competitive
alternative to HMMs in continuous speech recognition [43]. With a very
small database, 100 utterances, SVMs improve the recognition accuracy of

23

Left
Class

Central
Class

b)

Class

a)

Right

Phoneme

Phoneme

Class

Figure 5: a) Identifying an SVM class per phone; b) Identifying an SVM class
as a part of a phone: three SVM classes per phone.

HMMs. Furthermore, they also achieve a similar performance with a large
database (100 hours), although at the expense of a huge computational
effort. This last result is very encouraging since, due to current training
limitations, the SVM-based system only uses the 1.5% of the training
database used by HMM-based one.

5 Conclusions and Further Work

In this Chapter we have reviewed the research work dealing with SVMs for
ASR. We have started by reviewing the reasons reported in the literature to
support the use of SVMs for ASR. Thus, we have explained the characteristics
of SVMs that make them valuable from the ASR point of view: first, SVMs are
discriminative models, thus more appropriate for classification problems; second,
as opposed to ANNs, they have the advantage of being capable to deal with
samples of a very higher dimensionality; and third, they exhibit an excellent
generalization ability that makes them especially suitable to deal with noisy
speech.

After motivating the theme of research, we have described the problems
that the attempt to use SVMs in this context has arisen: first, SVMs were
originally formulated to process fixed-dimension input vectors and consequently
it is not straightforward to manage the speech time variability; second, the SVMs
were formerly devised as binary classifiers while the ASR problem is multiclass;
and third current SVM training algorithms are not able to manage the huge
databases typically used in ASR.

The larger Section of the Chapter is dedicated to present an overview of the
solutions that have been proposed to the previously mentioned problems. The
exposition have been organized into two subsections, depending of the complex-
ity of the tackled ASR tasks: low- and medium-complexity ASR tasks.

Within the low-complexity tasks subsection, the most relevant alternatives to
overcome the problem of speech time variability have been described, highlight-
ing the one based on DTAK-SVMs, that is a genuine SVM-based system able to
manage the variable input dimension. The experimental results reveal that the
DTAK clearly outperforms the HMM-based system in moderate to highly noisy

24

environments. In conclusion, we believe that SVMs should be considered as a
promising paradigm for the development of robust speech recognition systems.
The maximum margin solution provided by SVMs, responsible for their good
generalization properties, can be successfully applied to the speech recognition
problem.

On the other hand, however, DTAK-SVMs incurs in some performance losses
for clean speech or high SNRs. The improvement of the DTAK results for high
SNRs remains an open problem for future research: some analysis should be
done to gain more insight into the behavior of the DTAK algorithm.

In contrast to low-complexity tasks, the research work is still incipient in
the case of medium-complexity ASR tasks. However, the results reported in
[43] allow to conclude that the SVMs can be an alternative to the HMMs in
continuous speech recognition. On the hand, with a very small database (100
utterances) the SVMs improve the recognition accuracy of HMMs. In addition,
similar results are achieved for a large database (100 hours), although at the
expense of a huge computational effort. This last result is encouraging since,
due to current limitations, the SVM-based system only has used the 1.5% of the
training database used by HMM-based one.

There are several proposals to overcome the current difficulties that SVM’s
algorithms have for handling effectively very large databases [51, 52, 18, 53].
Mega-GSVCs [53], for example, are capable of training classifiers with millions
of data while keeping under control the complexity of the resulting machines.

Another way to raise the number of frames that can be used for training
is to increase the number of considered classes. For example, different classes
could be defined for different phonetic contexts.

Finally, in order to reduce the CPU time consumed in classification, a tech-
nique like FC-GSVC [54] or some type of Viterbi pruning could be used.

Acknowledgement
This work has been partially supported by the regional grant (Comunidad

Autónoma de Madrid-UC3M) UC3M-TEC-05-059.

References

[1] H. Sakoe, R. Isotani, K. Yoshida, K. Iso, and T. Watanabe. Speaker-
Independent Word Recognition using Dynamic Programming Neural Net-
works. In Proceedings of the International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 439 – 442, Glasgow, Scotland, 1989.

[2] K. Iso and T. Watanabe. Speaker-Independent Word Recognition using a
Neural Prediction Model. In Proceedings of the International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 441–444, Al-
burquerque, New Mexico (USA), 1990.

25

[3] J. Tebelskis, A. Waibel, B. Petek, and O. Schmidbauer. Continuous Speech
Recognition using Predictive Neural Networks. In Proceedings of the Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 61–64, Toronto, Canada, 1991.

[4] H. Bourlard and N. Morgan. Connectionist speech recognition: a hybrid
approach. Boston: Kluwer Academic, Norwell, MA (USA), 1994.

[5] B. Schlkopf and A. Smola. Learning with kernels. MIT Press, Cambridge,
MA (USA), 2002.

[6] V. Vapnik. Statistical Learning Theory. Wiley, Chichester, GB, 1998.

[7] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag,
New York, 1995.

[8] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme
recognition using time-delay neural networks. IEEE Transactions on
Acoustics, Speech and Signal Processing, 37:328–339, 1989.

[9] T. Robinson and F. Fallside. A recurrent error propagation network speech
recognition system. Computer, Speech and Language, 5:259–274, 1991.

[10] E. Trentin and M. Gori. A survey of hybrid ann/hmm models for automatic
speech recognition. Neurocomputing, 37:91–126, 2001.

[11] H. Bourlard and N. Morgan. Continuous speech recognition by connection-
ist statistical methods. IEEE Transactions on Neural Networks, 4:893–909,
1993.

[12] T. Robinson, M. Hochberg, and S. Renals. Automatic Speech and Speaker
Recognition - Advanced Topics, chapter The Use of Recurrent Neural Net-
works in Continuous Speech Recognition (Chapter 19), pages 159–184.
Kluwer Academic Publishers, Norwell, MA (USA), 1995.

[13] W. Reichl and G. Ruske. A hybrid rbf-hmm system for continuous speech
recognition. In Proceedings of the International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 3335–3338, Detroit, MI
(USA), 1995.

[14] D. Ellis, R. Singh, and S. Sivadas. Tandem-acoustic modeling in large-
vocabulary recognition. In Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 517–520, Salt
Lake City, Utah (USA), 2001.

[15] B.E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal
margin classifiers. In Computational Learning Theory, pages 144–152, 1992.

[16] F. Pérez-Cruz and O. Bousquet. Kernel Methods and Their Potential Use
in Signal Processing. IEEE Signal Processing Magazine, 21(3):57–65, 2004.

26

[17] R. Fletcher. Practical Methods of Optimization. Wiley-Interscience, New
York, NY (USA), 1987.

[18] A. Navia-Vázquez, F. Pérez-Cruz, A. Artés-Rodŕıguez, and A.R. Figueiras-
Vidal. Weighted Least Squares Training of Support Vector Classifiers lead-
ing to Compact and Adaptive Schemes. IEEE Transactions on Neural
Networks, 12(5):1047–1059, 2001.

[19] S. Fine, J. Navratil, and R.A. Gopinath. A hybrid gmm/svm approach
to speaker identification. In Proceedings of the International Conference
on Acoustics, Speech and Signal Processing (ICASSP), volume 1, pages
417–420, Salt Lake City, Utah (USA), 2001.

[20] Q. Le and S. Bengio. Client Dependent GMM-SVM Models for Speaker
Verification. In International Conference on Artificial Neural Networks,
ICANN/ICONIP,Springer-Verlag, pages 443–451, 2003.

[21] C. Ma, M.A. Randolph, and J. Drish. A support vector machines-based
rejection technique for speech recognition. In Proceedings of the Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
volume 1, pages 381–384, Salt Lake City, Utah (USA), 2001.

[22] C.W. Hsu and C.J. Lin. A Comparison of Methods for Multi-class Support
Vector Machines. IEEE Transactions on Neural Networks, 13(2):415–425,
2002.

[23] A. Ganapathiraju, J.E. Hamaker, and J. Picone. Applications of support
vector machines to speech recognition. IEEE Transactions on Signal Pro-
cessing, 52:2348–2355, 2004.

[24] N. Thubthong and B. Kijsirikul. Support vector machines for thai
phoneme recognition. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 9:803–13, 2001.

[25] P. Clarkson and P.J. Moreno. On the use of support vector machines
for phonetic classification. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), volume 2, pages 585–588, Phoenix,
Arizona (USA), 1999.

[26] C. Sekhar, W.F. Lee, K. Takeda, and F. Itakura. Acoustic modelling of
subword units using support vector machines. In Workshop on spoken
language processing, Mumbai, India, 2003.

[27] S. Young. HTK-Hidden Markov Model Toolkit (ver 2.1). Cambridge Uni-
versity, 1995.

[28] J.M. Garćıa-Cabellos, C. Peláez-Moreno, A. Gallardo-Antoĺın, F. Pérez-
Cruz, and F. Dı́az-de-Maŕıa. SVM Classifiers for ASR: A Discusion about
Parameterization. In Proceedings of EUSIPCO 2004, pages 2067–2070,
Wien, Austria, 2004.

27

[29] A. Ech-Cherif, M. Kohili, A. Benyettou, and M. Benyettou. Lagrangian
support vector machines for phoneme classification. In Proceedings of the
9th International Conference on Neural Information Processing (ICONIP
’02), volume 5, pages 2507–2511, Singapore, 2002.

[30] D. Mart́ın-Iglesias, J. Bernal-Chaves, C. Peláez-Moreno, A. Gallardo-
Antoĺın, and F. Dı́az-de-Maŕıa. Nonlinear Analyses and Algorithms for
Speech Processing, volume LNAI 3817 of Lecture Notes in Computer Sci-
ence, chapter A Speech Recognizer based on Multiclass SVMs with HMM-
Guided Segmentation, pages 256–266. Springer, 2005.

[31] R. Solera-Ureña, D. Mart́ın-Iglesias, A. Gallardo-Antoĺın, C. Peláez-
Moreno, and F. Dı́az-de-Maŕıa. Robust ASR using Support Vector Ma-
chines. Speech Communication, Elsevier (submitted), 2006.

[32] S.V. Gangashetty, C. Sekhar, and B. Yegnanarayana. Combining evidence
from multiple classifiers for recognition of consonant-vowel units of speech
in multiple languages. In Proceedings of the International Conference on
Intelligent Sensing and Information Processing, pages 387–391, Chennai,
India, 2005.

[33] H. Shimodaira, K.I. Noma, M. Nakai, and S. Sagayama. Support vector
machine with dynamic time-alignment kernel for speech recognition. In
Proceedings of Eurospeech, pages 1841–1844, Aalborg, Denmark, 2001.

[34] H. Shimodaira, K. Noma, and M. Nakai. Advances in Neural Information
Processing Systems 14, volume 2, chapter Dynamic Time-Alignment Kernel
in Support Vector Machine, pages 921–928. MIT Press, Cambridge, MA
(USA), 2002.

[35] L. R. Rabiner, A.E. Rosenberg, and S.E. Levinson. Considerations in Dy-
namic Time Warping Algorithms for Discrete Word Recognition. IEEE
Transactions on Acoustics, Speech and Signal Processing, 26(6):575–582,
1978.

[36] J. R. Glass. A probabilistic framework for segment-based speech recogni-
tion. Computer Speech and Language, 17:137–152, 2003.

[37] T. Jaakkola and D. Haussler. Exploiting generative models in discrimi-
native classifiers. Technical report, Dept. of Computer Science, Univ. of
California, 1998.

[38] N.D. Smith and M.J.F. Gales. Using SVMs and discriminative models for
speech recognition. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), volume 1, pages 77–80, Orlando, Florida
(USA), 2002.

[39] N.D. Smith and M.J.F. Gales. Advances in Neural Information Processing
Systems 14, volume 14, chapter Speech recognition using SVMs, pages
1197–1204. MIT Press, Cambridge, MA (USA), 2002.

28

[40] N.D. Smith and M. Niranjan. Data-dependent Kernels in SVM Classifica-
tion of Speech Patterns. In Proceedings of the International Conference on
Spoken Language Processing (ICSLP), volume 1, pages 297–300, Beijing,
China, 2000.

[41] V. Wan and S. Renals. Speaker verification using sequence discriminant
support vector machines. IEEE Transactions on Speech and Audio Pro-
cessing, 13:203–210, 2005.

[42] A. Ganapathiraju, J. Hamaker, and J. Picone. Hybrid SVM/HMM Archi-
tectures for Speech Recognition. In Proceedings of the 2000 Speech Tran-
scription Workshop, volume 4, pages 504–507, Maryland (USA), May 2000.

[43] J. Padrell-Sendra, D. Mart́ın-Iglesias, and F. Dı́az-de-Maŕıa. Support vec-
tor machines for continuous speech recognition. In Proceedings of the 14th
European Signal Processing Conference, Florence, Italy, 2006.

[44] S. J. Young, N. H. Russell, and J. H. S. Thornton. Token Passing: a
Conceptual Model for Connected Speech Recognition Systems. Technical
report, CUED Cambridge University, 1989.

[45] Piero Cosi. Hybrid HMM-NN architectures for connected digit recognition.
In Proceedings of the International Joint Conference on Neural Networks,
volume 5, pages 85–90, 2000.

[46] A. Juneja and C. Espy-Wilson. Segmentation of continuous speech using
acoustic-phonetic parameters and statistical learning. In Proceedings of the
9th International Conference on Neural Information Processing, (ICONIP
’02), volume 2, pages 726–730, 2002.

[47] Ch. Chih-Chung and L. Chih-Jen. LIBSVM: a library for support vector
machines, 2004.

[48] J. C. Platt. Advances in Kernel Methods: Support Vector Learning, chap-
ter Fast Training of Support Vector Machines Using Sequential Minimal
Optimization, pages 185–208. MIT Press, Cambridge, MA (USA), 1999.

[49] J. C. Platt. Advances in Large Margin Classifiers, chapter Probabilities for
SV Machines, pages 61–74. MIT Press, 1999.

[50] T. F. Wu, C. J. Lin, and R. C. Weng. Probability estimates for multi-
class classification by pairwise coupling. The Journal of Machine Learning
Research, 5:975–1005, 2004.

[51] C.J.C. Burges. Simplified support vector decision rules. In Proceedings of
the Thirteenth International Conference on Machine Learning, pages 71–
77, Bari, Italy, 1996.

[52] E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for
support vector machines. In IEEE Workshop on Neural Networks for Signal
Processing, pages 276–285, Amelia Island, Florida (USA), 1997.

29

[53] D. Gutiérrez, E. Parrado, and A. Navia. Mega-GSVC: Training SVMs
with Millions of Data. In Proceedings of the Learning’04 International
Conference, 2004.

[54] E. Parrado, J. Arenas, I. Mora, A. Figueiras, and A. Navia. Growing Sup-
port Vector Classifiers with Controlled Complexity. Pattern Recognition,
36:1479–1488, 2003.

30

