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2 Instituto de Ciencias Matemáticas, C/ Nicolás Cabrera, No 13–15, 28049 Madrid, Spain

E-mail: p.tempesta@fis.ucm.es, gaccontra@fis.ucm.es and manuel.manas@ucm.es

Abstract

We study the analytic properties of a matrix discrete system introduced by Cassatella and 
Ma˜nas (2012 Stud. Appl. Math. 128 252–74). The singularity confinement for this system is 
shown to hold generically, i.e. in the whole space of parameters except possibly for algebraic 
subvarieties. This paves the way to a generalization of Painlev´e analysis to discrete matrix 
models.
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1. Introduction

Since the discovery of the Painlevé property for ordinary differential equations at the end of the
19th century [21], the notion of integrability has been related to the local analysis of movable
isolated singularities of solutions of dynamical systems [8]. This approach to integrability
has opened an alternative perspective compared with the standard algebraic approach à la
Liouville, based on the existence of a suitable number of functionally independent integrals
of motion. Both points of view have been extended to the study of evolution equations on a
discrete background.

Integrable discrete systems, for several aspects more fundamental objects than the
continuous ones, are ubiquitous in both pure and applied mathematics, and in theoretical
physics as well. They possess rich algebro-geometric properties [3,5,9,18,25] and are relevant,
for instance, in the regularization of quantum field theories in a lattice and in discrete quantum
gravity [10, 16].
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In particular, the problem of integrability preserving discretizations of partial differential
equations has become a very active research area [23], and has been widely investigated with
both geometrical and algebraic methods [5, 6, 20, 24].

The approach known as singularity confinement, introduced in [13], is the equivalent for
discrete systems of the singularity analysis for continuous dynamical systems. It essentially
relies on the observation that for integrable discrete models, if a singularity appears in some
specific point of the lattice of the independent variable, then it would disappear after making
the system evolve via a finite number of iterations. Alternative, related approaches are based
on the notion of algebraic entropy [4, 17] or on Nevalinna theory [1, 22]. A large class of
difference equations coming from unitary integrals and combinatorics possess the confinement
property [2]. However, observe that singularity confinement, in spite of being extremely useful
in isolating integrability, might not be a sufficient condition for integrability, as was observed
by Hietarinta and Viallet [15].

The purpose of this paper is to start a theoretical study of the singularity confinement
property for matrix integrable systems. Indeed, we hypothesize that the singularity analysis
has the same relevance for matrix systems that it possesses for both discrete and continuous
scalar models.

Apart from its intrinsic mathematical interest, the study of matrix discrete dynamical
systems can also be related, from an applicative point of view, to the theory of complex
networks [19]. Indeed, given a random graph with N vertices, one associates with it the
adjacency matrix, which is a N × N matrix, whose entries aij represent the number of links
associated with the nodes i and j (i, j = 1, . . . , N). The discrete time evolution of the topology
of the network would provide a difference equation for the adjacency matrix, defining a discrete
matrix model.

Hereafter, we shall focus on the singularity confinement of the following discrete matrix
equation

βn+1 = nβ−1
n − βn−1 − βn − α, n = 1, 2, . . . (1)

where βn ∈ C
N×N is a N × N complex matrix.

Equation (1) can be considered a kind of non-Abelian matrix version of the discrete
Painlevé equation (dPI). It was introduced in [7], and soon after studied in [14], and describes the
recursion relation for the matrix coefficients of a class of Freud matrix orthogonal polynomials
with a quartic potential [11] in the context of the associated Riemann–Hilbert problem. In that
paper we also proved the singularity confinement in a simple situation, when the initial data
are triangular matrices up to similarity transformations. The aim of this paper is to extend
this result to the general case. This extension relies heavily on the use of Schur complements,
which appear often in the analysis of non-Abelian systems, see [12]. It should also be remarked
that this proof required deeper understanding and study than in the triangularizable situation.
The difficulty mainly resides in the analysis of the genericness of the result given in theorem 2.

1.1. Preliminary discussion

Let us present here the simplest case of singularity analysis for the matrix model (1), which
parallels the results for the standard discrete Painlevé I equation. We assume that βm−1 do not
depend on ε and that

βm = βm,1ε + βm,2ε
2 + O(ε3), ε → 0, (2)

with det βm,1 �= 0. Observe that we are assuming the leading term for βm is proportional to
ε, we say that we have a ‘zero’. Note also that the leading term coefficient is required, in this
example, to be invertible. This is the only possibility in the scalar case N = 1, but as we will
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discuss later the non-Abelian scenario N � 2 implies a richer situation. Thus, as this approach
will hold hereon, we assume that at some integer m of the lattice a zero appears, while for the
previous one, m − 1, neither a zero nor singularity shows up.

If we introduce condition (2) into (1), we have that

βm+1 = mβ−1
m,1ε

−1 + βm+1,0 + βm+1,1ε + βm+1,2ε
2 + O(ε3), (3)

where

βm+1,0 = − mβ−1
m,1βm,2β

−1
m,1 − βm−1 − α,

βm+1,1 = mβ−1
m,1(βm,2β

−1
m,1βm,2 − βm,3)β

−1
m,1 − βm,1,

βm+1,2 = m
(
βm,2β

−1
m,1(βm,3 − βm,2β

−1
m,1βm,2) + βm,3β

−1
m,1βm,2 − βm,4

)
β−2

m,1 − βm,2.

We observe that a leading term in ε−1 appeared in the asymptotic expansion. This ‘pole
singularity’ will survive still for another step in the sequence

βm+2 = −mβ−1
m,1ε

−1 + βm+2,0 + βm+2,1ε + βm+2,2ε
2 + O(ε3), (4)

where

βm+2,0 = mβ−1
m,1βm,2β

−1
m,1 + βm−1,

βm+2,1 = (m + 1)

m
βm,1 − mβ−1

m,1βm,2β
−1
m,1βm,2β

−1
m,1 + mβ−1

m,1βm,3β
−1
m,1,

βm+2,2 = (m + 1)

m
βm,2 +

(m + 1)

m2
βm,1(βm−1 + α)βm,1

+ mβm,2β
−1
m,1(βm,2β

−1
m,1βm,2β

−2
m,1 − βm,3β

−2
m,1) − mβm,3β

−1
m,1βm,2β

−2
m,1 + mβm,4β

−2
m,1.

We easily check that in the third step the leading term is proportional to ε, this ‘zero’ appears
again

βm+3 = −(m + 3)

m
βm,1ε + βm+3,2ε

2 + O(ε3), (5)

where

βm+3,2 := − (m + 3)

m
βm,2 − (2m + 3)

m2
βm,1βm−1βm,1 − (m + 1)

m2
βm,1αβm,1.

Finally, if we substitute (4) and (5) into (1) we obtain no singularity at all:

βm+4 = m

(m + 3)
βm−1 − 2

(m + 3)
α + O(ε).

Observe that βm+3 = O(ε), βm+4 = O(1) and det βm+4 = O(1) for ε → 0. Thus, unless

det(mβm−1 − 2α) = 0, (6)

we obtain singularities in the step just after the appearance of a zero in βm, with the poles
appearing in the sites m+1, m+2. Then we have a zero for m+3 while we recover the standard
behaviour for m + 4. A crucial point is that this singularity confinement holds whenever (6) is
not satisfied. This observation motivates the definitions proposed in the following discussion.

Definition 1. Whenever the singularity confinement property is satisfied in the whole space S
of parameters except possibly for a set of algebraic subvarieties Wi ∈ S, i = 1, , , j ∈ N, we
shall say that the property is satisfied generically.

In this case we will speak about the genericness of the singularity confinement.
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Definition 2. We shall define the confinement time as the minimum number l ∈ N of iterations
or steps in the lattice, after the appearance of a zero, necessary to recover the form without
poles or zeros.

Thus, in the above case we have generically a singularity confinement with a confinement
time l = 4.

A simple but fundamental observation for the sequel of the paper is the following one.

Lemma 1. The matrix system (1) is invariant under similarity transformations.

Proof. Observe that

Mβn+1M
−1 = nMβ−1

n M−1 − Mβn−1M
−1 − MβnM

−1 − MαM−1.

Therefore, we obtain

φn+1 = nφ−1
n − φn−1 − φn − δ,

where φn:=MβnM
−1 and δ:=MαM−1. �

1.2. Main result

The ideas developed within the previous example will be used in the subsequent considerations
to study the confinement of the singularities of the matrix dPI model (1). In this
noncommutative scenario we must be careful when we talk about zeroes and singularities
associated with asymptotic expansions. For the example discussed above it was just as in the
Abelian case with N = 1 as we assumed that the leading term coefficients of the zero was
an invertible matrix. In general this is just not the case and we need to consider the rank,
rank(βm,0), of the matrix coefficient of the leading term of βm.

As before let us suppose that for some integer m of the lattice a zero appears, while for
(m − 1) neither a zero nor singularity shows up. But now we must carefully explain what we
mean by a zero. We shall assume that βm−1 do not depend on ε and that

βm = βm,0 + βm,1ε + O(ε2), det βm = O(εr), ε → 0, (7)

where βm,i ∈ C
N×N and r ∈ {1, . . . , N}. Consequently, we can distinguish two cases.

• r = N . This is the maximal rank case discussed above; for it we have that

βm,0 = 0, det βm,1 �= 0.

As we have already seen it presents singularity confinement generically.
• r � N − 1. For the non-maximal rank case we instead have

rank(βm,0) = N − r,

det βm = O(εr), ε → 0. (8)

As will be proven later, using the invariance under a similarity transformation, one can assume
that the matrices β will have the form expressed by equation (13). So said, we can state the
main result of the paper as follows.

Theorem 1. If βm−1 do not depend on ε and βm is of the form (7), and the following conditions
for ε → 0 are satisfied

det βm+1 = O(ε−r ), (9)

det βm+2 = O(ε−r ), (10)

det βm+3 = O(εr), (11)

det βm+4 = O(1), (12)

then, there is singularity confinement for the dPI model (1) with confinement time l = 4.
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It is important to remark that conditions (9)–(12) can be proven to hold generically, that
is the content of theorem (2). Therefore, we can state that our system generically has the
singularity confinement property.

2. N × N matrix asymptotic expansions and singularity confinement

In this section we will consider the set of matrix asymptotic expansions

A = C
N×N((ε)) := {

M0 + M1ε + O(ε2), ε → 0, Mi ∈ C
N×N

}
.

This set is a ring with identity, given by the matrix IN . For each possible rank r ∈ {1, . . . , N−1}
we will use the block notation

M :=
(

A B

C D

)
, A ∈ C

r×r , B ∈ C
r×(N−r), C ∈ C

(N−r)×r , D ∈ C
(N−r)×(N−r).

We also introduce two subalgebras of the algebra C
N×N

K :=
{
K =

(
0 0

K21 K22

)
, K21 ∈ C

(N−r)×r , K22 ∈ C
(N−r)×(N−r)

}
,

L := {L =
(

L11 0
L21 0

)
, L11 ∈ C

r×r , L21 ∈ C
(N−r)×r

}
,

and the related subsets of matrix asymptotic expansions

AK := {K ∈ A, K|ε=0 ∈ K}, AL := {L ∈ A, L|ε=0 ∈ L},
which satisfy several important properties.

Proposition 1. The following statements hold.

(1) Both AK and AL are subrings without identity of the ring A.
(2) For K ∈ AK such that det K = O(εr), ε → 0, then K−1 ∈ ε−1AL, and reciprocally if

L ∈ ε−1AL with det L = O(ε−r ), ε → 0, then L−1 ∈ AK.

(3) If K ∈ AK, that is K =
( 0 0
C0 D0

)
+

(A1 B1

C1 D1

)
ε + O(ε2) then

det K = εr det

(
A1 B1

C0 D0

)
+ O(εr+1), ε → 0.

(4) If L ∈ ε−1AL, that is L =
(A0 0
C0 0

)
ε−1 +

(A1 B1

C1 D1

)
+ O(ε) then

det L = ε−r det

(
A0 B1

C0 D1

)
+ O(ε−r+1), ε → 0.

(5) The subrings AK and AL are right and left ideals of A, respectively, i.e. AK · A ⊂ AK

and A · AL ⊂ AL.
(6) The following inclusion holds: ε−1AL · AK ⊂ A.

The proof of the previous statements is direct and left to the reader.
To study the singularity confinement of the matrix equation (1) when βn satisfies conditions

(8), we shall use expressions (7), having applied a similarity transformation to β such that
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βm,0 ∈ K, βm ∈ AK. In other words

βm,0 =




0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0

...
...

...
...

...

βm,0;r+1,1 βm,0;r+1,2 · · · βm,0;r+1,r+1 βm,0;r+1,r+2 · · · βm,0;r+1,N

βm,0;r+2,1 βm,0;r+2,2 · · · βm,0;r+2,r+1 βm,0;r+2,r+2 · · · βm,0;r+2,N

...
...

...
...

...

βm,0;N,1 βm,0;N,2 · · · βm,0;N,r+1 βm,0;N,r+2 · · · βm,0;N,N




, (13)

where m�2, and all the entries that are above the r+1-th row of βm are zero. Notice that βm−1

and βm belong to the rings A and AK, respectively.

2.1. Proof of the theorem 1

Proof. As βm,0 ∈ K, i.e. βm ∈ AK, and by hypothesis det βm = O(εr), ε → 0, proposition 1
implies

β−1
m = (β−1

m )−1ε
−1 + (β−1

m )0 + O(ε), ε → 0, (β−1
m )−1 ∈ L. (14)

If we replace equations (7) and (13) into equation (1) we deduce

βm+1 = mβ−1
m + O(1), ε → 0.

Using the relations (14), (7) and (13), this expression is reduced to

βm+1 = m(β−1
m )−1ε

−1 + O(1), ε → 0. (15)

Since (β−1
m )−1 ∈ L, from (15) we conclude that βm+1 ∈ ε−1AL, showing a simple pole

singularity. Due to the fact that by hypothesis equation (9) holds, proposition 1 implies

β−1
m+1 ∈ AK. (16)

Then we deduce

βm+2 = −m(β−1
m )−1ε

−1 + O(1), ε → 0, βm+2 ∈ AL.

As before, using condition (10), proposition 1 gives

β−1
m+2 ∈ AK.

Now,

βm+3 = βm − (m + 1)β−1
m+1 + (m + 2)β−1

m+2, (17)

where in the rhs we have used twice equation (1) to write βm+2 as a function of βm+1 and βm.
As we have proven that βm, β−1

m+1, β
−1
m+2 ∈ AK, we deduce that

βm+3 ∈ AK.

As a consequence of equation (11) and proposition 1, we obtain

β−1
m+3 ∈ ε−1AL. (18)

Our matrix discrete Painlevé equation (1) gives

βm+4 = (m + 3)β−1
m+3 − βm+2 − βm+3 − α,
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which implies

βm+4 = β−1
m+3A + O(1), ε → 0, A := (m + 3)IN − βm+3βm+2, (19)

where we have taken into account that βm+3 and α are O(1). We study the matrix A, by
applying equation (1) once. We obtain

A = IN + [(m + 1)β−1
m+1 − βm]βm+2

= [(m + 1)β−1
m+1 − βm][(m + 1)β−1

m+1 − βm − α] − mIN + βmβm+1

= [(m + 1)β−1
m+1 − βm][(m + 1)β−1

m+1 − βm − α] − βm(βm + βm−1 + α). (20)

Now, recalling that βm−1 = O(1), βm, β−1
m+1 ∈ AK, and by virtue of proposition 1 we conclude

that

A ∈ AK. (21)

Finally, from equations (18), (19) and (21) we deduce that

βm+4 ∈ A.

By taking into account that det βm+4 = O(1), we have proven that the singularity has
disappeared. Thus, the singularity confinement is ensured with a confinement time l = 4.
�

In order to show the genericness of conditions (9)–(12) we use the block notation

βm−1 =
(

Am−1 Bm−1

Cm−1 Dm−1

)
, α =

(
α11 α12

α21 α22

)
.

and consider the expansion

βm =
(

0 0

Cm,0 Dm,0

)
+

∞∑
i=1

(
Am,i Bm,i

Cm,i Dm,i

)
εi .

Definition 3. We introduce

Z1 := Dm+1,0 + D−1
m,0Cm,0Bm+1,0,

Z2 := Dm+2,0 + D−1
m,0Cm,0Bm+2,0,

Z3 := Dm+3,0.

The genericness of the singularity confinement can be stated as follows.

Theorem 2. (1) If det Dm,0 �= 0, for ε → 0 we have

det βm+1 = O(ε−r ) ⇔ det(Z1) �= 0.

(2) If detDm,0 �= 0 , detZ1 �= 0, we have that for ε → 0

det βm+2 = O(ε−r ) ⇔ det(Z2) �= 0.

(3) If det Dm,0 �=0, detZ1 �=0 and detZ2 �=0, we have that for ε → 0

det βm+3 = O(εr) ⇔ detZ3 �= 0.

(4) If det Dm,0 �= 0, det Z1 �= 0, det Z2 �= 0 and det Z3 �= 0 we have that

det βm+4 = O(1), ε → 0,

generically.
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Proof. See appendix B. �

The matrices Z1, Z2 and Z3 can be expressed in terms of initial conditions as follows.

Proposition 2. The following expressions in terms of initial conditions hold:

Z1 = mD−1
m,0 − Dm−1 − Dm,0 − α22 − D−1

m,0Cm,0(Bm−1 + α12),

Z2 = (m + 1)(mD−1
m,0 − D−1

m,0Cm,0(Bm−1 + α12) − Dm−1 − Dm,0 − α22)
−1

+ D−1
m,0Cm,0Bm−1 − mD−1

m,0 + Dm−1,

Z3 = Dm,0 − (m + 1)Z−1
1 + (m + 2)Z−1

2 .

Proof. Is a byproduct of the proof of theorem 2. �

Appendix A. Schur complements

To show the genericness of the confinement phenomenon in the non- Abelian scenario it is
very convenient to introduce Schur complements.

Definition 4. Given M in the block form as in (13), the Schur complements with respect to D

(if det D �= 0), and to A (if det A �= 0) are defined to be

SD(M) := A − BD−1C, SA(M) := D − CA−1B,

respectively.

In terms of the Schur complements we have the following well-known expressions for the
inverse matrices

M−1 =


(
SD(M)−1 −SD(M)−1BD−1

−D−1CSD(M)−1 D−1(IN−r + CSD(M)−1BD−1)

)
, for det D, det SD(M) �= 0,

(
A−1 + A−1BSA(M)−1CA−1 −A−1BSA(M)−1

−SA(M)−1CA−1 SA(M)−1

)
, for det A, det SA(M) �= 0,

(
SD(M)−1 −SD(M)−1BD−1

−D−1CSD(M)−1 SA(M)−1

)
, for det A, det D, det SD(M),

det SA(M) �= 0,

(22)

and for the determinant of M

det M = det A detSA(M)

= det D detSD(M). (23)

Now, if K = (A B

C D

) = ( 0 0
C0 D0

)
+

(A1 B1

C1 D1

)
ε + O(ε2) ∈ AK then we can write the Schur

complements in the form

SD(K) = A − BD−1C =: SD(K)1ε + SD(K)2ε
2 + O(ε3), ε → 0,

SA(K) = D − CA−1B =: SA(K)0 + SA(K)1ε + O(ε2), ε → 0,
(24)
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where

SD(K)1 = A1 − B1D
−1
0 C0,

SD(K)2 = A2 − B1D
−1
0 C1 − B2D

−1
0 C0 + B1D

−1
0 D1D

−1
0 C0,

SD(K)3 = A3 − B1D
−1
0 C2 + (B1D

−1
0 D1D

−1
0 − B2D

−1
0 )C1

+B1(D
−1
0 D2D

−1
0 − D−1

0 D1D
−1
0 D1D

−1
0 )C0 + B2D

−1
0 D1D

−1
0 C0 − B3D

−1
0 C0,

SD(K)4 = A4 − B1D
−1
0 C3 + B1D

−1
0 D1D

−1
0 C2 − B1D

−1
0 (D1D

−1
0 D1D

−1
0 − D2D

−1
0 )C1

−B1D
−1
0 D2D

−1
0 D1D

−1
0 C0 + B1D

−1
0 D1(D

−1
0 D1D

−1
0 D1D

−1
0 − D−1

0 D2D
−1
0 )C0

+B1D
−1
0 D3D

−1
0 C0 − B2D

−1
0 C2 + B2D

−1
0 D1D

−1
0 C1

−B2D
−1
0 (D1D

−1
0 D1D

−1
0 − D2D

−1
0 )C0 − B3D

−1
0 (C1 − D1D

−1
0 C0) − B4D

−1
0 C0,

SA(K)0 = D0 − C0A
−1
1 B1,

SA(K)1 = D1 − C0A
−1
1 B2 − C1A

−1
1 B1 + C0A

−1
1 A2A

−1
1 B1.

For the determinant det M we just take into account equations (23) and (24) to obtain

det K = εr det(A1 − B1D
−1
0 C0 + O(ε)) det(D0 + O(ε))

= det(A1 − B1D
−1
0 C0) det(D0)ε

r + O(εr+1).

Appendix B. Proof of theorem 2

Lemma 2. (1) Assuming that det Dm,0 �= 0 the following asymptotic holds.

det βm+1 = ε−r

∣∣∣∣∣∣
mSD(βm)−1

1 −mSD(βm)−1
1 Bm,1D

−1
m,0 − Bm−1 − α12

−mD−1
m,0Cm,0SD(βm)−1

1 mD−1
m,0 + mD−1

m,0Cm,0SD(βm)−1
1 Bm,1D

−1
m,0

−Dm−1 − Dm,0 − α22

∣∣∣∣∣∣
+ O(ε−r+1)

for ε → 0, where SD(βm)1 := Am,1 − Bm,1D
−1
m,0Cm,0 ∈ C

r×r .

Proof. From equation (7) we know that

det

(
Am,1 Bm,1

Cm,0 Dm,0

)
�= 0,

hence SD(βm)1 is invertible. Then, from (22) and (24) we deduce

β−1
m =

(
(β−1

m )11,−1 0

(β−1
m )21,−1 0

)
ε−1 +

(
(β−1

m )11,0 (β−1
m )12,0

(β−1
m )21,0 (β−1

m )22,0

)

+

(
(β−1

m )11,1 (β−1
m )12,1

(β−1
m )21,1 (β−1

m )22,1

)
ε + O(ε2), ε → 0,

where the pole coefficients are

(β−1
m )11,−1 := SD(βm)−1

1 , (β−1
m )21,−1 := −D−1

m,0Cm,0SD(βm)−1
1 , (25)

while the regular part coefficients are

(β−1
m )11,0 := − SD(βm)−1

1 SD(βm)2SD(βm)−1
1 ,

(β−1
m )12,0 := − SD(βm)−1

1 Bm,1D
−1
m,0,

(β−1
m )21,0 := D−1

m,0(Cm,0SD(βm)−1
1 SD(βm)2SD(βm)−1

1 − (Cm,1 − Dm,1D
−1
m,0Cm,0)SD(βm)−1

1 ),

(β−1
m )22,0 := D−1

m,0

(
IN−r + Cm,0SD(βm)−1

1 Bm,1D
−1
m,0

)
,
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(β−1
m )11,1 := SD(βm)−1

1 SD(βm)2SD(βm)−1
1 SD(βm)2SD(βm)−1

1 − SD(βm)−1
1 SD(βm)3SD(βm)−1

1 ,

(β−1
m )12,1 := (

SD(βm)−1
1 SD(βm)2SD(βm)−1

1 Bm,1 − SD(βm)−1
1 (Bm,2 − Bm,1D

−1
m,0Dm,1)

)
D−1

m,0,

(β−1
m )21,1 := − D−1

m,0

(
Cm,0[SD(βm)−1

1 SD(βm)2SD(βm)−1
1 SD(βm)2SD(βm)−1

1

− SD(βm)−1
1 SD(βm)3SD(βm)−1

1 ]

− (Cm,1 − Dm,1D
−1
m,0Cm,0)SD(βm)−1

1 SD(βm)2SD(βm)−1
1 +

− (
(Dm,1D

−1
m,0Dm,1 − Dm,2)D

−1
m,0Cm,0 + Cm,2 − Dm,1D

−1
m,0Cm,1

)
SD(βm)−1

1

)
,

(β−1
m )22,1 := D−1

m,0

(− Dm,1+(Cm,1 − Dm,1D
−1
m,0Cm,0−Cm,0SD(βm)−1

1 SD(βm)2)SD(βm)−1
1 Bm,1

+ Cm,0SD(βm)−1
1 (Bm,2 − Bm,1D

−1
m,0Dm,1)

)
D−1

m,0,

(β−1
m )11,2 := SD(βm)−1

1 SD(βm)3SD(βm)−1
1 SD(βm)2SD(βm)−1

1

− SD(βm)−1
1 SD(βm)2SD(βm)−1

1 (SD(βm)2SD(βm)−1
1 SD(βm)2SD(βm)−1

1

− SD(βm)3SD(βm)−1
1 ) − SD(βm)−1

1 SD(βm)4SD(βm)−1
1 ,

(β−1
m )12,2 := SD(βm)−1

1 Bm,1D
−1
m,0(Dm,2D

−1
m,0 − Dm,1D

−1
m,0Dm,1D

−1
m,0) + SD(βm)−1

1 (Bm,2

− SD(βm)2SD(βm)−1
1 Bm,1)D

−1
m,0Dm,1D

−1
m,0

− SD(βm)−1
1 (Bm,3 − SD(βm)2SD(βm)−1

1 Bm,2

+ SD(βm)2SD(βm)−1
1 SD(βm)2SD(βm)−1

1 Bm,1 − SD(βm)3SD(βm)−1
1 Bm,1)D

−1
m,0.

Finally, from equation (1) we deduce

βm+1 =
(

mSD(βm)−1
1 0

−mD−1
m,0Cm,0SD(βm)−1

1 0

)
ε−1 +

(
Am+1,0 Bm+1,0

Cm+1,0 Dm+1,0

)

+

(
Am+1,1 Bm+1,1

Cm+1,1 Dm+1,1

)
ε + O(ε2), ε → 0, (26)

where

Am+1,0 := m(β−1
m )11,0 − Am−1 − α11, Bm+1,0 := m(β−1

m )12,0 − Bm−1 − α12, (27)

Cm+1,0 := m(β−1
m )21,0 − Cm−1 − Cm,0 − α21, Dm+1,0 := m(β−1

m )22,0 − Dm−1−Dm,0 − α22,

(28)

Am+1,1 := m(β−1
m )11,1 − Am−1 − Am,1, Bm+1,1 := m(β−1

m )12,1 − Bm−1 − Bm,1, (29)

Cm+1,1 := m(β−1
m )21,1 − Cm,1, Dm+1,1 := m(β−1

m )22,1 − Dm,1, (30)

Am+1,2 := m(β−1
m )11,2 − Am,2, Bm+1,2 := m(β−1

m )12,2 − Bm,2. (31)

Observing that

det βm+1 =
∣∣∣∣ mSD(βm)−1

1 Bm+1,0

−mD−1
m,0Cm,0SD(βm)−1

1 Dm+1,0

∣∣∣∣ ε−r + O(ε−r+1), ε → 0,

the result follows. �

Now observe that

Z1 := mD−1
m,0 + mD−1

m,0Cm,0SD(βm)−1
1 Bm,1D

−1
m,0 − Dm−1 − Dm,0 − α22

− (−mD−1
m,0Cm,0SD(βm)−1

1 )(mSD(βm)−1
1 )−1(−mSD(βm)−1

1 Bm,1D
−1
m,0 − Bm−1 − α12)

= mD−1
m,0 − Dm−1 − Dm,0 − α22 − D−1

m,0Cm,0(Bm−1 + α12).
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Using the determinant expansion in Schur complements of lemma 2, one observes that∣∣∣∣∣ mSD(βm)−1
1 −mSD(βm)−1

1 Bm,1D
−1
m,0 − Bm−1 − α12

−mD−1
m,0Cm,0SD(βm)−1

1 mD−1
m,0 + mD−1

m,0Cm,0SD(βm)−1
1 Bm,1D

−1
m,0 − Dm−1 − Dm,0 − α22

∣∣∣∣∣
= det

(
mSD(βm)−1

1

)
det Z1.

and the first point of the theorem is proved.
Let us now go one step further in the discrete matrix chain and move to position m + 2.

Lemma 3. Whenever det Dm,0 �= 0 and det Z1 �= 0 the following asymptotic hold.

det βm+2 = ε−r

∣∣∣∣∣∣∣
−mSD(βm)−1

1 mSD(βm)−1
1 Bm,1D

−1
m,0 + Bm−1

mD−1
m,0Cm,0SD(βm)−1

1 (m + 1)Z−1
1 − mD−1

m,0

−mD−1
m,0Cm,0SD(βm)−1

1 Bm,1D
−1
m,0 + Dm−1

∣∣∣∣∣∣∣
+ O(ε−r+1)

for ε → 0.

Proof. As det βm+1 = O(ε−r ), ε → 0, and consequently point (2) of proposition 1 tells us
that β−1

m+1 ∈ AK. Therefore, the following asymptotic expansion for the inverse matrix holds

β−1
m+1 =

(
0 0

(β−1
m+1)21,0 (β−1

m+1)22,0

)
+

(
(β−1

m+1)11,1 (β−1
m+1)12,1

(β−1
m+1)21,1 (β−1

m+1)22,1

)
ε

+

(
(β−1

m+1)11,2 (β−1
m+1)12,2

(β−1
m+1)21,2 (β−1

m+1)22,2

)
ε2 + O(ε3), (32)

for ε → 0. Here the blocks (β−1
m+1)ab,j are to be found from the asymptotic expansion (26).

We conclude

(β−1
m+1)21,0 = Z−1

1 D−1
m,0Cm,0, (β−1

m+1)22,0 = Z−1
1 ,

(β−1
m+1)11,1 = 1

m
SD(βm)1 − 1

m
SD(βm)1Bm+1,0Z

−1
1 D−1

m,0Cm,0,

(β−1
m+1)12,1 = − 1

m
SD(βm)1Bm+1,0Z

−1
1 ,

(β−1
m+1)21,1 = −Z−1

1 D−1
m,0Cm,0 − 1

m
Z−1

1 (Cm+1,0 + D−1
m,0Cm,0Am+1,0)SD(βm)1

×(Ir − Bm+1,0Z
−1
1 D−1

m,0Cm,0),

(β−1
m+1)22,1 = −Z−1

1 +
1

m
Z−1

1 (Cm+1,0 + D−1
m,0Cm,0Am+1,0)SD(βm)1Bm+1,0Z

−1
1 ,

(β−1
m+1)11,2 =− 1

m2
SD(βm)1Am+1,0SD(βm)1 +

1

m2
SD(βm)1Am+1,0SD(βm)1Bm+1,0Z

−1
1 D−1

m,0Cm,0

+
1

m2
SD(βm)1Bm+1,0Z

−1
1 (Cm+1,0 + D−1

m,0Cm,0Am+1,0)SD(βm)1(Ir − Bm+1,0Z
−1
1 D−1

m,0Cm,0),

(β−1
m+1)12,2 = − 1

m2
SD(βm)1Bm+1,0Z

−1
1 (Cm+1,0 + D−1

m,0Cm,0Am+1,0)SD(βm)1Bm+1,0Z
−1
1

+
1

m2
SD(βm)1Am+1,0SD(βm)1Bm+1,0Z

−1
1 .
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If we substitute equations (27)–(31) into equation (1), we have that for ε → 0

βm+2 =
( −mSD(βm)−1

1 0
mD−1

m,0Cm,0SD(βm)−1
1 0

)
ε−1 +

(
Am+2,0 Bm+2,0

Cm+2,0 Dm+2,0

)

+

(
Am+2,1 Bm+2,1

Cm+2,1 Dm+2,1

)
ε + O(ε2), (33)

where

Am+2,0 := −Am+1,0 − α11, Bm+2,0 := −Bm+1,0 − α12,

Cm+2,0 := (m + 1)(β−1
m+1)21,0 − Cm+1,0 − Cm,0 − α21,

Dm+2,0 := (m + 1)(β−1
m+1)22,0 − Dm+1,0 − Dm,0 − α22,

Am+2,1 := (m + 1)(β−1
m+1)11,1 − Am+1,1 − Am,1,

Bm+2,1 := (m + 1)(β−1
m+1)12,1 − Bm+1,1 − Bm,1,

Cm+2,1 := (m + 1)(β−1
m+1)21,1 − Cm+1,1 − Cm,1,

Dm+2,1 := (m + 1)(β−1
m+1)22,1 − Dm+1,1 − Dm,1,

Am+2,2 := (m + 1)(β−1
m+1)11,2 − Am+1,2 − Am,2,

Bm+2,2 := (m + 1)(β−1
m+1)12,2 − Bm+1,2 − Bm,2.

Now, observing that

det βm+2 =
∣∣∣∣ −mSD(βm)−1

1 Bm+2,0

mD−1
m,0Cm,0SD(βm)−1

1 Dm+2,0

∣∣∣∣ ε−r + O(ε−r+1), ε → 0,

the result follows. �
Note that

Z2 := (m + 1)(mD−1
m,0 − D−1

m,0Cm,0(Bm−1 + α12) − Dm−1 − Dm,0 − α22)
−1

+ D−1
m,0Cm,0Bm−1 − mD−1

m,0 + Dm−1.

We expand the determinant according to Schur complements, obtaining∣∣∣∣∣ −mSD(βm)−1
1 mSD(βm)−1

1 Bm,1D
−1
m,0 + Bm−1

mD−1
m,0Cm,0SD(βm)−1

1 (m + 1)Z−1
1 − mD−1

m,0 − mD−1
m,0Cm,0SD(βm)−1

1 Bm,1D
−1
m,0 + Dm−1

∣∣∣∣∣
= det

(
− mSD(βm)−1

1

)
det Z2

from which the second point of the theorem follows immediately.

Lemma 4. Assuming that det Dm,0 �= 0, det Z1 �= 0 and det Z2 �= 0 the following asymptotic
expansion for ε → 0 holds

det βm+3 = εr

∣∣∣∣∣∣∣∣∣

(m + 2)(β−1
m+2)11,1 (m + 2)(β−1

m+2)12,1

−(m + 1)(β−1
m+1)11,1 + Am,1 −(m + 1)(β−1

m+1)12,1 + Bm,1

(m + 2)(β−1
m+2)21,0 (m + 2)(β−1

m+2)22,0

−(m + 1)(β−1
m+1)21,0 + Cm,0 −(m + 1)(β−1

m+1)22,0 + Dm,0

∣∣∣∣∣∣∣∣∣
+ O(εr+1),

where

(β−1
m+2)21,0 := Z−1

2 D−1
m,0Cm,0, (β−1

m+2)22,0 := Z−1
2 ,

(β−1
m+2)11,1 :=− 1

m
SD(βm)1(Ir − Bm+2,0Z

−1
2 D−1

m,0Cm,0), (β−1
m+2)12,1 := 1

m
SD(βm)1Bm+2,0Z

−1
2 ,
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(β−1
m+2)21,1 := −Z−1

2 D−1
m,0Cm,0 +

1

m
Z−1

2 (Cm+2,0 + D−1
m,0Cm,0Am+2,0)SD(βm)1

×(Ir − Bm+2,0Z
−1
2 D−1

m,0Cm,0),

(β−1
m+2)22,1 := −Z−1

2 − 1

m
Z−1

2 (Cm+2,0 + D−1
m,0Cm,0Am+2,0)SD(βm)1Bm+2,0Z

−1
2 ,

(β−1
m+2)11,2 := 1

m2
SD(βm)1Bm+2,0Z

−1
2 (Cm+2,0 + D−1

m,0Cm,0Am+2,0)SD(βm)1

×(Ir − Bm+2,0Z
−1
2 D−1

m,0Cm,0)

− 1

m2
SD(βm)1Am+2,0SD(βm)1(Ir − Bm+2,0Z

−1
2 D−1

m,0Cm,0),

(β−1
m+2)12,2 := 1

m2
SD(βm)1Am+2,0SD(βm)1Bm+2,0Z

−1
2

− 1

m2
SD(βm)1Bm+2,0Z

−1
2 (Cm+2,0 + D−1

m,0Cm,0Am+2,0)SD(βm)1Bm+2,0Z
−1
2 .

Proof. From equation (33) we obtain that βm+2 ∈ L. Therefore, since det Z2 �=0, we have

β−1
m+2 =

(
0 0

(β−1
m+2)21,0 (β−1

m+2)22,0

)
+

(
(β−1

m+2)11,1 (β−1
m+2)12,1

(β−1
m+2)21,1 (β−1

m+2)22,1

)
ε

+

(
(β−1

m+2)11,2 (β−1
m+2)12,2

(β−1
m+2)21,2 (β−1

m+2)22,2

)
ε2 + O(ε3), (34)

where the blocks (β−1
m+2)ab,j are determined by the asymptotic expansion (33). If we substitute

(26), (33) and (34) into the matrix equation (1), we have that

βm+3 =
(

0 0
Cm+3,0 Dm+3,0

)
+

(
Am+3,1 Bm+3,1

Cm+3,1 Dm+3,1

)
ε +

(
Am+3,2 Bm+3,2

Cm+3,2 Dm+3,2

)
ε2 + O(ε3),

where

Cm+3,0 := (m + 2)(β−1
m+2)21,0 − (m + 1)(β−1

m+1)21,0 + Cm,0,

Dm+3,0 := (m + 2)(β−1
m+2)22,0 − (m + 1)(β−1

m+1)22,0 + Dm,0,

Am+3,1 := (m + 2)(β−1
m+2)11,1 − (m + 1)(β−1

m+1)11,1 + Am,1,

Bm+3,1 := (m + 2)(β−1
m+2)12,1 − (m + 1)(β−1

m+1)12,1 + Bm,1,

Cm+3,1 := (m + 2)(β−1
m+2)21,1 − (m + 1)(β−1

m+1)21,1 + Cm,1,

Dm+3,1 := (m + 2)(β−1
m+2)22,1 − (m + 1)(β−1

m+1)22,1 + Dm,1,

Am+3,2 := (m + 2)(β−1
m+2)11,2 − (m + 1)(β−1

m+1)11,2 + Am,2,

Bm+3,2 := (m + 2)(β−1
m+2)12,2 − (m + 1)(β−1

m+1)12,2 + Bm,2.

Then, if we use again proposition 1, we deduce

det βm+3 = εr

∣∣∣∣Am+3,1 Bm+3,1

Cm+3,0 Dm+3,0

∣∣∣∣ + O(εr+1), ε → 0, (35)

and the result follows. �

Note that

Z3 = Dm,0 − (m + 1)Z−1
1 + (m + 2)Z−1

2 .

Note the similarity with equation (17).
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Taking into account that

Cm+3,0 = Z3D
−1
m,0Cm,0, Dm+3,0 = Z3, (36)

we express the determinant in equation (35) as follows:∣∣∣∣Am+3,1 Bm+3,1

Cm+3,0 Dm+3,0

∣∣∣∣ = detZ3 det(Am+3,1 − Bm+3,1D
−1
m,0Cm,0), (37)

where

Am+3,1 − Bm+3,1D
−1
m,0Cm,0 = − (m + 3)

m
SD(βm)1.

This implies that the determinant in equation (35) vanishes if and only if

det Z3 = 0.

Finally, under the previous hypotheses, equations (9)–(11) hold. As a by product of the
proof of theorem 1, we obtain that

βm+4 = β−1
m+3A − βm+3 − α,

where βm+3, A ∈ AK and (βm+3)
−1 ∈ ε−1AL. According to proposition 1 (6), β−1

m+3A ∈ A, so
that we can write

βm+4 = O(1), ε → 0.

We can write the matrix dynamical system (1) as

βn−1 = nβ−1
n − βn+1 − βn − α, (38)

which can be seen as the application of a time reversal symmetry. From βm+4 ∈ A and
βm+3 ∈ AK, understood now as initial conditions, we obtain the quantities βm+2, βm+1, βm and
βm−1. Observe that our initial assumption was precisely that βm−1 ∈ A and βm ∈ AK, see (7).
Hence, the whole forward process, and its conclusions about the asymptotic behaviours, can
be reversed backwards. Consequently, since the assumption that det βm+4,0 = 0 reduces
the number of free parameters from N2 to N2 − 1, we conclude that βm−1 involves at most
N2 − 1 free parameters (if no further constraint is requested). This is in contradiction to our
departing hypothesis that βm−1 has N2 free parameters. Therefore det βm+4 = O(1) as ε → 0
generically.
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[7] Cassatella G A and Mañas M 2012 Riemann–Hilbert problems, matrix orthogonal polynomals, discrete matrix

equations with singularity confinement Stud. Appl. Math. 128 252–74
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