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a b s t r a c t

We obtain a matrix characterization of semiclassical orthogonal polynomials 
in terms of the Jacobi matrix associated with the multiplication operator in 
the basis of orthogonal polynomials, and the lower triangular matrix that 
represents the orthogonal polynomials in terms of the monomial basis of 
polynomials. We also provide a m aracterization for coherent pairs of 
linear functionals.

ear space P of polynomials with complex coefficients. A
1. Introduction

Let us consider a linear functional U : P! C defined on the lin
of
n P

wh
se
re
corresponding probability measures are the Beta, Gamma and normal distrib
atrix ch
. The existence of a SMOP can be char
0, are called the moments associated
sequence of monic polynomials PnðxÞf gnP0 such that

degðPnðxÞÞ n and U; PnðxÞPmðxÞh i kndn;m with kn – 0; n;m P 0;

is said to be the sequence of monic orthogonal polynomials (SMOP) associated with U

acterized in terms of the infinite Hankel matrix H ½uiþj�i;iP0, where un U; xnh i;n P
with U. Indeed, PnðxÞf gnP0 exists if and only if the leading principal submatrices

Hn ½uiþj�ni;j 0; n P 0;
[3]. On the other hand, if for every
ion

R. Assuming u0 1, the most familiar

re and Hermite polynomials. They cor

l axis, and E R, respectively, and the
H are nonsingular. In this situation, U is said to be a quasi definite or regular
0;det Hn > 0;U is said to be positive definite and it has the integral representat

U; qðxÞh i
Z

E
qðxÞdlðxÞ;

ere l is a nontrivial positive Borel measure supported on some infinite subset E �
quences of orthogonal polynomials are the so called classical families: Jacobi, Laguer
spond to the cases when E has bounded support (E ½ 1;1�), E is the positive rea
utions. There are several ways to characterize
differential equation, as polynomials
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expressed by a Rodrigues formula, and as the only sequences of orthogonal polynomials whose derivatives also constitute an
orthogonal family.

One of the most important properties of orthogonal polynomials is that they satisfy the three term recurrence relation

xPnðxÞ Pnþ1ðxÞ þ bnPnðxÞ þ anPn 1ðxÞ; n P 0; ð1Þ

where P 1ðxÞ : 0; bn 2 R;n P 0, and an – 0;n P 1. If U is positive definite, we have an > 0;n P 1. In a matrix form,

xPðxÞ JPðxÞ;

where PðxÞ ½P0ðxÞ; P1ðxÞ; . . .�T and J is the tridiagonal infinite matrix

J

b0 1 0 . . .

a1 b1 1 . .
.

0 a2 b2
. .

.

..

. . .
. . .

. . .
.

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð2Þ

called the monic Jacobi matrix associated with PnðxÞf gnP0. It is straightforward to see that the zeros of Pn are the eigenvalues
of Jn, the n� n principal leading submatrix of J. On the other hand, given arbitrary sequences fbngnP0 and fangnP1, with bn 2 R

and an – 0, you can define J as in (2) and construct fPnðxÞgnP0 by using (1). Then, fPnðxÞgnP0 is orthogonal with respect to
some linear functional U. This relevant fact is known in the literature as Favard’s theorem (see [3]).

as introduced. Let write
Recently, in [20], a matrix characterization for classical orthogonal polynomials w

PnðxÞ
Xn

an;jx j; n P 0;

j 0
erwise. Notice that A is a lower trian
lynomial with respect to the canonical
and let define the infinite matrix A with entries an;j, for 0 6 j 6 n;n P 0, and zero oth
gular matrix whose nth row contains the coefficients of the nth degree orthogonal po
refore, A is nonsingular. We say that A
basis fxngnP0. Furthermore, since Pn is monic, the diagonal entries are an;n 1 and, the

l, we will say that A is classical.
if there exists an integer m such that
is the matrix associated with the sequence fPnðxÞgnP0. If the polynomials are classica
Following the notation used in [20], we say that a matrix B is a lower semi matrix
on zero, we say that B has index m,
the mth diagonal, also if all the entries
Þ banded if there exists a pair of inte
dices n and m. It is easy to see that the
t the inverse of a banded matrix might
bi;j 0 whenever i j < m. The entry bi;j is in the mth diagonal i j m. If B is n
indðBÞ m, if m is the minimum integer such that B has at least one nonzero entry in
in its diagonal of index m are equal to 1;B is called monic. Finally, B is said to be ðn;m
gers ðn;mÞ with n 6 m and all the nonzero entries of B lie between the diagonals of in
set of banded matrices is closed under addition and multiplication, despite the fact tha
not be banded.

Let define the matrices
0 . . .

0 . . .

1 . . .

.

2 3
777777777;
D

0 0 0 0 . . .

1 0 0 0 . . .

0 2 0 0 . . .

2
666666666

3
777777777
; D̂

0 1 0 0 . . .

0 0 1=2 0 . . .

0 0 0 1=3 . . .

2
666666666

3
777777777
; X

0 1 0

0 0 1

0 0 0

666666666

0 . .

. .
. . .

.

775
0 0 3 0 . . .

..

. ..
. ..

. . .
. . .

.

64 75 0 0 0 0 . . .

..

. ..
. ..

. . .
. . .

.

64 75 0 0 0

..

. ..
. ..

.

664

e of polynomials.

atrix. Then, the sequence fPnðxÞgnP0 is
ed matrix whose entries in the diagonals

theorem, and the entries of J, i.e., the
from the matrix A. On the other hand,
orresponds to the derivative of PkðxÞ.
with the sequence fP½1�n ðxÞgnP0, where
s classical if and only if the sequence
ical polynomials is also given in [20].
then we get the following matrix characterization for the orthogonality of a sequenc

Theorem 1. Let fPnðxÞgnP0 be a monic polynomial sequence and let A be its associated m
orthogonal with respect to some linear functional if and only if J AXA�1 is a ð 1;1Þ band
of indices 1 and 1 are all nonzero.

The proof can be found in [20]. Notice that this is a matrix version of the Favard’s
coefficients of the recurrence relation for the orthogonal polynomials, can be obtained
AD has index 1 and its kth row is the vector ½ak;1;2ak;2;3ak;3; . . . ; kak;k; 0; . . .�, which c
Therefore the matrix A D̂AD is a monic matrix of index zero and it is associated
P½1�n ðxÞ P0nþ1ðxÞ=ðnþ 1Þ. Using the fact that a sequence of orthogonal polynomials i
of their derivatives is also orthogonal, the following matrix characterization for class
if AA�1 is a (0,2) banded monic matrix.

2

Theorem 2. Let A be the matrix associated with fPnðxÞgnP0. Then A is classical if and only



2. A matrix characterization for semiclassical polynomials

Let /ðxÞ atxt þ þ a0;wðxÞ blxl þ þ b0 be non zero polynomials such that atbl – 0; t P 0; l P 1. ð/;wÞ is called an
admissible pair if either t 1 – l or, t 1 l and nalþ1 þ bl – 0;n P 0. A quasi definite linear functional U is said to be semi
classical if there exists an admissible pair ð/;wÞ such that U satisfies

Dð/UÞ wU; ð3Þ

where D denotes the distributional derivative. The corresponding sequence of orthogonal polynomials is called
semiclassical.

The class of a semiclassical linear functional is the non negative integer

s min maxfdegð/Þ 2;degðwÞ 1g : ð/;wÞis an admissible pairf g:

The class of a semiclassical SMOP has been characterized as follows.

Proposition 3 [18]. Let U a semiclassical linear functional given by (3). The class of U is s if and only if one of the following
statements holds

i. The polynomials /ðxÞ and wðxÞ /0ðxÞ are coprime.
ii. If c is a common zero of /ðxÞ and wðxÞ /0ðxÞ, then

U; ~wcðxÞ þ /0cðxÞ
D E

– 0;
where

/ðxÞ ðx cÞ/cðxÞ and wðxÞ /0ðxÞ ðx cÞ~wcðxÞ:

The previous conditions can be written as
Y
0 ~ 0

D E�� ��� �

wðcÞ / ðcÞj j þ U;w ðxÞ þ / ðxÞ > 0;
fc2C:/ðcÞ 0g
c c� �

or, equivalently,Y � �� �� �

fc2C:/ðcÞ 0g

wðcÞ /0ðcÞj j þ U; hcwðxÞ h2
c /ðxÞ� � > 0;
ms of the so called structure relations.

rresponding SMOP. Then, the following
where hcpðxÞ pðxÞ pðcÞ
x c , for p 2 P.

There are several characterizations of semiclassical orthogonal polynomials in ter
Some of them are listed in the following theorem.

Theorem 4. Let U be a quasi definite linear functional and let fPnðxÞgnP0 be its co
statements are equivalent
(3) holds.
n;kg such that fPnðxÞgnP0 satisfies

ð4Þ
� There exist non zero polynomials /;w of degrees t P 0; l P 1, respectively, such that
� [18] (First structure relation) There exist a polynomial / of degree t and sequences fa

/ðxÞP½1�n ðxÞ
Xnþt

an;kPkðxÞ; n P s; an;n s – 0;n P sþ 1;

k n s
where s is a positive integer such that t 6 sþ 2.
fan;kg; fbn;kg, such that
� [17] (Second structure relation) There exist non negative integers t; s, and sequences

Xnþs

~a P ðxÞ
Xnþs

~b P½1�ðxÞ; n P maxfs; tg;

k n s

n;k k
k n t

n;k k
xÞgnP0 satisfies the structure relation

holds, where an;nþs bn;nþs 1;n P maxfs; t þ 1g,
� [2] There exist a non negative integer s and sequences fbn;jg and fcn;jg such that fPnð
ð5Þ

ð6Þ
Xs

j 0

bn;n jPn jðxÞ
Xsþ2

j 0

cn;n jP
½1�
n jðxÞ; bn;n cn;n 1; n P sþ 1:

Notice that (5) can be expressed in matrix form as

BA C~A;
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where B is a ð0; sÞ banded monic matrix, and C is a ð0; sþ 2Þ banded monic matrix. Indeed, the entries on the jth diagonal of
B (resp. C) are the coefficients bn;n j (resp. cn;n j), for 0 6 j 6 s (resp. sþ 2). Thus, the previous theorem means that fPnðxÞgnP0

is semiclassical (of class at most s) if and only if there exist those matrices B and C such that (6) holds.
On the other hand, if fPnðxÞgnP0 is semiclassical of class at most s, it follows from (6) that BAA 1 is a ð0; sþ 2Þ banded

monic matrix. Conversely, if there exists a ð0; sÞ banded monic matrix B such that BAA 1 is a ð0; sþ 2Þ banded monic
matrix, then (6) holds, and therefore, fPnðxÞgnP0 is semiclassical. As a consequence, we have the following straightforward
generalization of Theorem 2 for semiclassical polynomials.

Theorem 5. Let fPnðxÞgnP0 be a SMOP with respect to some linear functional U. Then, U is semiclassical of class at most s if and
only if there exists a semi infinite ð0; sÞ banded monic matrix B such that BAA�1 is a ð0; sþ 2Þ banded monic matrix.

Remark 6. In the classical case, i.e., s 0, we get that B is a ð0;0Þ banded monic matrix, i.e., B is the identity matrix. Hence,
fPnðxÞgnP0 is classical if and only if BAA 1 AA 1 is a ð0;2Þ banded monic matrix (result obtained in [20]) or, equivalently,
fPnðxÞgnP0 satisfies the following structure relation (proved in [11])

PnðxÞ P½1�n ðxÞ þ cn;n 1P½1�n 1ðxÞ þ cn;n 2P½1�n 2ðxÞ; n P 1:

Now, let assume that the linear functional U in (3) is positive definite, and it has an associated absolutely continuous
positive measure l supported in ½a; b� � R, which can be expressed as dlðxÞ xðxÞdx, with the weight x satisfying
limx!aþ/ðxÞxðxÞ limx!b /ðxÞxðxÞ 0. The Pearson Eq. (3) can be expressed in terms of the weight as

ð/xÞ0 wx:

he corresponding Jacobi matrix is the

ð7Þ
In such a case, there exists a sequence of orthonormal polynomials fpnðxÞgnP0, and t
symmetric matrix

~J

b0 a1 0 . . .

a1 b1 a2
. .

.

0 a2 b2
. .

.

..

. . .
. . .

. . .
.

0
BBBBBB@

1
CCCCCCA
;

satisfying xpðxÞ JpðxÞ; with pðxÞ p0ðxÞ p1ðxÞð ÞT .

In this context, the first structure relation for semiclassical polynomials given in (4) also holds for the corresponding

functional U and can be expressed in

ð8Þ
sequence of orthonormal polynomials fpnðxÞgnP0 associated with the semiclassical
a matrix form as

/ðxÞp0ðxÞ XT ~HpðxÞ;
coefficients appearing in (4) given in
where H is a ð t; sÞ banded matrix whose elements, starting from the row s, are the

elation between H and J.

nd let H be the ð t; sÞ banded matrix
terms of fpnðxÞgnP0, and p0ðxÞ ½p00ðxÞ; p01ðxÞ; . . .�T . The following result establishes a r

Theorem 7. Let fpnðxÞgnP0 be a semiclassical sequence of orthonormal polynomials a
associated with the first structure relation (8). Then, we have
T
(i) ½ J;X H� /ð JÞ,
(ii) H þ HT wð JÞ,
ation.
where ½J;XT H� JXT H XT HJ and /;w are the polynomials appearing in the Pearson equ

Proof. Notice that taking the derivative with respect to the variable x in (7), we get

xp0ðxÞ þ pðxÞ ~Jp0ðxÞ:
Multiplying by /ðxÞ and using (8), we obtain

xXT ~HpðxÞ þ /ðxÞpðxÞ ~JXT ~HpðxÞ:

Taking into account (7), we get

XT ~H~JpðxÞ þ /ð~JÞpðxÞ ~JXT ~HpðxÞ:
Therefore, ðiÞ follows. In order to prove ðiiÞ, from the Pearson equation we haveZ b

a
pnðxÞpmðxÞð/xÞ0ðxÞdx

Z b

a
pnðxÞpmðxÞwðxÞxðxÞdx;
4



and after integration by parts we getZ b

a
pnðxÞpmðxÞwðxÞxðxÞdx pnðxÞpmðxÞð/xÞðxÞjx b

x a

Z b

a
/ðxÞp0nðxÞpmðxÞxðxÞdx

Z b

a
/ðxÞp0mðxÞpnðxÞxðxÞdx:

Notice that the first term in the right hand side vanishes, and the second and third terms are the entries n;m and m;n of H,
respectively. Furthermore, the integral in the left hand side is the m;n entry of wðJÞ. As a consequence, ðiiÞ follows. h

Remark 8. Let us remember the symmetric and skew symmetric components of a matrix M, i.e., M1 ðM þMTÞ=2 and
M2 ðM MTÞ=2, respectively, so M M1 þM2. Then,

� ðiiÞ becomes

~H1
1
2

wð~JÞ:

� If Ĥ XT H, then from ðiÞ we get

~JĤ1 Ĥ1
~J

1
2

/ð~JÞ /ð~JÞT
h i

0;

and JĤ1 is a symmetric matrix. On the other hand,

~JĤ Ĥ ~J
1

/ð~JÞ þ /ð~JÞT
h i

/ð~JÞ:
2 2 2
Y . Then, multiplying by /ðxÞ and using
ain
Finally, taking into account that PðxÞ AY with Y ð1; x; x2; . . .ÞT , we get P0ðxÞ AD
(4) in a matrix form as (8), this is /ðxÞP0ðxÞ XT HPðxÞ or/ðxÞXP0ðxÞ HPðxÞ

� �
, we obt
XT HAY AD/ðxÞY or HAY XAD/ðxÞYð Þ:Pdegð/Þ k
If /ðxÞ k 0 ckx , then
/ðxÞY
Xdegð/Þ

k 0

ckxk

!
Y

Xdegð/Þ

k 0

ckðxk; xkþ1; . . .ÞT
Xdegð/Þ

k 0

ckXkY /ðXÞY:

As a consequence, we have the following result.
H is the matrix associated with the first
Proposition 9. Let fPnðxÞgnP0 be a semiclassical SMOP with associated matrix A. Then, if

structure relation (4), we have

T 1 1
� �
X H AD/ðXÞA or H XAD/ðXÞA :
3. A matrix characterization for the coherence of orthogonal polynomials
oherent pair of order m, with k;m 2 N0
We say that two non trivial probability measures, dl0 and dl1, constitute a ðk;0Þ c

pressed as a linear combination of the
concept of coherence was introduced
gular linear functionals ðU;VÞ in the

air of order 1, or simply ð1;0Þ coherent
fixed constants, if for each n 2 N, the monic orthogonal polynomial Pnð ; dl1Þ can be ex
set PðmÞnþmð ; dl0Þ; . . . ; PðmÞnþm kð ; dl0Þ. The coherence is classified in terms of k and m. The
by Iserles et al. in [9] and deeply analyzed in [10]. They established that a pair of re
linear space of polynomials with complex coefficients is said to be a ð1;0Þ coherent p
tion
pair, if their corresponding SMOP fPnðxÞgnP0 and fQ nðxÞgnP0 satisfy the structure rela
ð9Þ
P½1�n ðxÞ þ cnP½1�n 1ðxÞ Q nðxÞ; n P 0;
where

P½1�n ðxÞ
P0nþ1ðxÞ ;
e parameter. In this context, they also
symmetric and the subscripts in (9)

ondition for the existence of a relation
nþ 1

fcngnP0 is a sequence of complex numbers such that cn – 0 for n P 1, and c0 is a fre
introduced the concept of symmetrically coherent pair, when the two measures are
are changed appropriately.

The main reason why they studied these relations, was that (9) gives a sufficient c
ð10Þ
P ðxÞ þ nþ 1
c P ðxÞ S ðx; kÞ þ c S ðx; kÞ; n P 1;
nþ1 n n n nþ1 n;k n

5



where fcn;kgnP1 are rational functions in k > 0 and fSnðx; kÞgnP0 is the SMOP associated with the Sobolev inner product

pðxÞ; rðxÞh ik
Z 1

1
pðxÞrðxÞdl0ðxÞ þ k

Z 1

1
p0ðxÞr0ðxÞdl1ðxÞ; k > 0;

where pðxÞ and rðxÞ are polynomials with real coefficients. They studied the case when the first measure dl0 is either the
Gamma or the Beta distribution, whose corresponding sequences of orthogonal polynomials are the Laguerre and Jacobi
SMOP, respectively.

They implemented an algorithm to compute the Fourier Sobolev coefficients ff nðkÞ=snðkÞgnP0 with

f nðkÞ f ðxÞ; Snðx; kÞh ik; and snðkÞ Snðx; kÞ; Snðx; kÞh ik; n P 0;

for the Fourier expansion

f ðxÞ �
X1
n 0

f nðkÞ
snðkÞ

Snðx; kÞ;

for a smooth function f ðxÞ in the Sobolev space

W1;2 I;l0;l1

	 

f : I ! Rjf 2 L2

l0
ðIÞ; f 0 2 L2

l1
ðIÞ

n o
;

where I is an open interval of R. It is important to mention that this algorithm does not need the explicit expressions of the
Sobolev orthogonal polynomials Snðx; kÞ; n P 0. The authors in [9] have tested the algorithm for a comparison between the
Legendre Fourier expansion and Legendre Sobolev Fourier expansion and their behavior at the ends of the interval for a

ne and thus you have a better under
atives. From the point of view of appli
smooth function. It reveals that Gibbs phenomenon does not appear in the second o
standing how the Fourier expansion reflects the behavior of the function and its deriv
n you consider spectral (Galerkin and
ions whose potentials are related with
cations, the potential interest of such Sobolev orthogonal polynomials appears whe
collocation) methods for boundary value problems associated with Schrödinger equat
ar functionals. He proved that at least
r, he showed that there exist non zero
r functionals U and V are related by
such coherent pairs.
In 1997, in [19], Meijer determined all (1,0) coherent pairs ðU;VÞ of regular line

one of the linear functionals (U or V) must be classical (Laguerre or Jacobi). Moreove
polynomials rðxÞ and .ðxÞ, with degðrðxÞÞ 	 2 and degð.ðxÞÞ 1, such that the linea
rðxÞU .ðxÞV:
r to generalized coherent pairs (we call
Later on, in 2005, Delgado and Marcellán [8] extended the notion of coherent pai
them (1,1) coherent pairs) studying the relation
P½1�n ðxÞ þ cnP½1�n 1ðxÞ QnðxÞ þ bnQ n 1ðxÞ; cn – 0; n P 1:
also determined all the (1,1) coherent
ar linear functionals must be semiclas
They proved that this is a necessary and sufficient condition for the relation (10). They
pairs of linear functionals (bn can be zero). They showed that at least one of the regul
irs. In addition, they showed that the
.ðxÞ non zero polynomials such that
sical of class at most 1, generalizing the results by H. G. Meijer for (1,0) coherent pa
linear functionals U and V satisfy the relation rðxÞU .ðxÞV, where rðxÞ and
e was characterized. They studied the

e natural conditions. That relation was
nals U and V are semiclassical, when
lso generalized the obtained results in
nt pairs, considering the Sobolev inner
degðrðxÞÞ 	 3 and degð.ðxÞÞ 1.
Finally, in a recent work by de Jesús et al. [5], the more general case for coherenc

structure relation

XM

i 0

ci;nPðmÞnþm iðxÞ
XN

i 0

bi;nQ ðkÞnþk iðxÞ; n P 0;

where, M;N;m; k are non negative integers and the constants fci;ng; fbi;ng satisfy som
called ðM;NÞ coherence of order ðm; kÞ. They concluded that the corresponding functio
ever m – k, and they are related by an expression of rational type. When k 0, they a
the framework of Sobolev orthogonal polynomials and their connections with cohere
product
 Z 1 Z 1

ðmÞ ðmÞ
 ð11Þ

pretation of ðM;NÞ coherence of order
pðxÞ; rðxÞh ik;m
1

pðxÞrðxÞdl0ðxÞ þ k
1

p ðxÞr ðxÞdl1ðxÞ; k > 0:

On the other hand, in [15], Marcellán and Pinzón Cortés considered a matrix inter

coherent pairs of linear functionals of
m. They established a relation between the Jacobi matrices associated with ðM;NÞ

rms of the basis of monic polynomials

rs of measures and to show with some
atrices involved therein.
order m and the Hessenberg matrix associated with the multiplication operator in te
orthogonal with respect to the Sobolev inner product (11).

The aim of our contribution is to provide a matrix characterization of coherent pai
illustrative examples how you can implement, from a numerical point of view, the m
6



3.1. (1,0) Coherence

In [19], a complete classification of ð1;0Þ coherent pairs of regular linear functionals was given. However, the ð1;0Þ
coherent pairs have been also studied in [1,12 14].

We can establish a relation between the matrices corresponding to sequences of orthogonal polynomials associated with
a coherent pair of linear functionals, i.e., that satisfy (9).

Lemma 10. If fPnðxÞgnP0 and fQnðxÞgnP0 are SMOP with associated matrices A and Q, respectively, then

~AX~A 1
� �2

~AQ 1 ~AQ 1N2 ð12Þ

holds, where A D̂AD and N is the Jacobi matrix associated with Q.

Proof. From Theorem 1 we can see that QX NQ holds, hence X Q 1NQ and, as a consequence, X2 Q 1NQQ 1

NQ Q 1N2Q . Thus AX2Q 1 AQ 1N2, or equivalently

~AX~A 1
� �2

~AQ 1 ~AQ 1N2:

Theorem 11. Let fPnðxÞgnP0 and fQ nðxÞgnP0 be SMOP with associated matrices A and Q, respectively. Then fPnðxÞgnP0 and
fQ nðxÞgnP0 constitute a ð1;0Þ Coherent pair if and only if QA 1 is lower bidiagonal with ones in the main diagonal and nonzero

ð13Þ

matrix form as
entries in the subdiagonal.

Proof. Assume ðfPnðxÞgnP0; fQnðxÞgnP0Þ is a ð1;0Þ coherent pair, i.e., the relation

P½1�n ðxÞ þ cnP½1�n 1ðxÞ Q nðxÞ; cn – 0; n P 0;

holds. Since A is the matrix associated with fP½1�n ðxÞgnP0, then (13) can be written in

~Aþ CXT ~A Q ;
where C diagðc0; c1; . . .Þ. Another way to write the above equation is� �

I þ CXT ~A Q ;
and, since A is nonsingular,
I þ CXT Q ~A 1:
the subdiagonal, since cn – 0;n P 0.
zero elements in the subdiagonal, then
So QA 1 is clearly lower bidiagonal with ones in the diagonal and non zero entries in
For the converse, if QA�1 T is bidiagonal with ones in the main diagonal and non
T~A Q ;

½1�
n o
so fPnðxÞgnP0 and fQnðxÞgnP0 constitute a ð1;0Þ Coherent pair of SMOP.
Remark 12. Notice that, in the particular case when fPnðxÞgnP0 is an orthogonal classical family, then PnðxÞ nP0
is also

onic normalization). In this situation
orthogonal (and classical), and it has an associated Jacobi matrix M AXA 1 (after m

(12) becomes

2 2
M T TN 0;
efficients cn can be obtained using the
which is a particular case of a Sylvester equation. As a consequence, the coherence co
Bartels Stewart algorithm.
Remark 13. Notice that T QA 1 is a ð0;1Þ banded matrix.
�:5 �:5

Example 14. (1,0) Coherence example
1jð1 xÞ ð1þ xÞ dx and dl2
ials with parameters a b :5 for
As an illustrative example, we consider the coherent measures dl1 jx
ð1 xÞ:5ð1þ xÞ:5dx and the corresponding SMOP, a perturbation of Jacobi polynom
explicit expresions for the perturbed
dl1 and the Jacobi polynomials with parameters a b :5 for dl2. We obtained the
polynomials by using the formula in [3].
gnP0,
We construct the A and Q matrices with the coefficients of fPnðxÞgnP0 and fQnðxÞ
7



A

1:0000 0 0 0 0 0 0 0 0 0

1:2500 1:0000 0 0 0 0 0 0 0 0

0:6786 2:1429 1:0000 0 0 0 0 0 0 0

0:3413 2:5385 3:1346 1:0000 0 0 0 0 0 0

0:1707 2:3402 5:4201 4:1340 1:0000 0 0 0 0 0

0:0854 1:8760 6:9762 9:3039 5:1340 1:0000 0 0 0 0

0:0427 1:3763 7:4971 15:2463 14:1877 6:1340 1:0000 0 0 0

0:0213 0:9500 7:1295 20:4177 28:1510 20:0718 7:1340 1:0000 0 0

0:0107 0:6273 6:2052 23:7353 45:0212 46:6892 26:9559 8:1340 1:0000 0

0:0053 0:4005 5:0501 24:8362 61:7192 86:6923 71:8613 34:8398 9:1340 1:0000

2
666666666666666666666666664

3
777777777777777777777777775

;

1:0000 0 0 0 0 0 0 0 0 0

1:0000 1:0000 0 0 0 0 0 0 0 0

0:7500 2:0000 1:0000 0 0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

:0000 0 0

:0000 1:0000 0

:0000 9:0000 1:0000

2
66666666

3
777777777777777777777777775

;

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

2 1 0 0

0:1191 1 0

0 0:1206 1

3
7777777777777777777777777775

;

he diagonals.
Q

0:5000 2:5000 3:0000 1:0000 0 0 0

0:3125 2:5000 5:2500 4:0000 1:0000 0 0

0:1875 2:1875 7:0000 9:0000 5:0000 1:0000 0

0:1094 1:7500 7:8750 15:0000 13:7500 6:0000 1:0000

0:0625 1:3125 7:8750 20:6250 27:5000 19:5000 7:0000 1

0:0352 0:9375 7:2188 24:7500 44:6876 45:5000 26:2500 8

0:0195 0:6445 6:1875 26:8125 62:5625 85:3125 69:9999 34

6666666666666666664
with this, we compute the matrix T

T

1 0 0 0 0 0 0

0:0714 1 0 0 0 0 0

0 0:0897 1 0 0 0 0

0 0 0:1005 1 0 0 0

0 0 0 0:1072 1 0 0

0 0 0 0 0:1116 1 0

0 0 0 0 0 0:1148 1

0 0 0 0 0 0 0:117

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2
6666666666666666666666666664

and we can see that it is an (0,1) banded matrix with the coherence coefficients in t
3.2. (1,0) Coherence of order m
ws. A pair of regular linear functionals
ð1;0Þ coherent pair of order m, if their
nðxÞgnP0 satisfy the structure relation

ð14Þ

8

The notion of coherence can be generalized for higher order of derivatives as follo
ðU;VÞ in the linear space of polynomials P with complex coefficients is said to be a
corresponding sequences of monic orthogonal polynomials (SMOP) fPnðxÞgnP0 and fQ

P½m�n ðxÞ þ cnP½m�n 1ðxÞ QnðxÞ; n P 0;



where fcngnP0 is a sequence of complex numbers such that cn – 0 for n P 1; c0 is a free parameter, P 1ðxÞ 0, and P½m�n ðxÞ
denotes the monic polynomial of degree n

P½m�n ðxÞ
PðmÞnþmðxÞ
ðnþ 1Þm

; n P 0;

where ðnþ 1Þm is the Pochhammer symbol defined by ðaÞn aðaþ 1Þ ðaþ n 1Þ; n P 1, and ðaÞ0 1.
A particular case of higher order derivatives was studied by Branquinho and Rebocho in [2], where they consider m 2.

The general case was studied by Marcellán and Pinzón Cortés in [16], where they characterized the (1,0) coherence of order
m, and deduced the connection with Sobolev orthogonal polynomials (which depends on m), the relations between these
functionals and their corresponding formal Stieltjes series.

To see the structure relation (14) from a matrix point of view, we define Dm : Dm, and D̂m : D̂m, they are the diagonal
matrices of index m and index m,

Dm

0 0 0 0 . . .

..

.
0 0 0 . . .

ðnþ 1Þm ..
.

0 0 . . .

0 ðnÞm ..
.

0 . . .

..

. ..
. . .

. ..
. . .

.

2
6666666664

3
7777777775
; D̂m

0 . . . 1=ðnþ 1Þm 0 . . .

0 0 . . . 1=ðnÞm . .
.

0 0 0 . . . . .
.

0 0 0 0 . . .

..

. ..
. ..

. . .
. . .

.

2
6666666664

3
7777777775
;

symbol and then, using the same argu
respectively, where ðaÞn aðaþ 1Þ ðaþ n 1Þ;n P 1; ðaÞ0 1 is the Pochhammer
ment as before, we obtain the following results.
respectively, then
Lemma 15. If fPnðxÞgnP0 and fQnðxÞgnP0 are SMOP with associated matrices A and Q,

½m� ½m� 1
� �2 ½m� 1 ½m� 1 2
is the Jacobi matrix associated with Q.

d Q, respectively. Then fPnðxÞgnP0 and

iagonal with ones on the main diagonal
A XA A Q A Q N

holds, where A½m� D̂mADm is the matrix associated with the sequence fP½m�n ðxÞgnP0 and N

Theorem 16. Let fPnðxÞgnP0 and fQ nðxÞgnP0 be SMOP with associated matrices A an

fQ nðxÞgnP0 constitute a ð1;0Þ coherent pair of order m if and only if QA½m�
1

is lower bid
and nonzero entries in the subdiagonal.
wing structure relation

ð15Þ

efficients equal to n. We can represent
Example 17. (1,0) Coherence of order m; ðm 4Þ
In this example we consider the monic Laguerre polynomials that satisfy the follo

1
ðnþ 4Þðnþ 3Þðnþ 2Þðnþ 1Þ

d4

dx4 Laþ1
nþ4ðxÞ þ nLaþ1

nþ3ðxÞ
� �

Laþ4
n ðxÞ; n P 0:

Notice that we are in presence of a ð1;0Þ coherent pair of order 4 with coherence co

(15) in a matrix form as

ional software Mathematica and, thus,
C~A½4� Q :

We calculate the explicit monic Laguerre polynomials in (15) by using the computat
construct their associated matrices A½4� and Q
0 0 0 0
3
7
1 0 0 0 0

2
6

0 0 0 07777
8 1 0 0 06666
 72 18 1 0 0 0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

66 7777777777
;
~A½4�

720 270 30 1 0

7920 3960 660 44 1

95040 59400 13200 1320 60

66666666

78 1 0 0

3822 98 1 0

66 7777775

1235520 926640 257400 34320 2340

17297280 15135120 5045040 840840 76440

66664

152880 5880 120 1
259459200 259459200 100900800 20180160 2293200
9



Q

1 0 0 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0

56 16 1 0 0 0 0 0 0
504 216 27 1 0 0 0 0 0

5040 2880 540 40 1 0 0 0 0
55440 39600 99000 1100 55 1 0 0 0

665280 570240 178200 26400 1980 72 1 0 0
8648640 8648640 3243240 600600 60060 3276 91 1 0

121080960 138378240 60540480 13453440 1681680 122304 5096 112 1

2
66666666666666664

3
77777777777777775

:

Finally we compute the matrix C QA ½4�

C

1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0
0 0 3 1 0 0 0 0 0
0 0 0 4 1 0 0 0 0
0 0 0 0 5 1 0 0 0
0 0 0 0 0 6 1 0 0

2
666666666666666

3
777777777777777

iagonal that turn out to be exactly n as

nite number of terms on the left hand
0 0 0 0 0 0 7 1 0
0 0 0 0 0 0 0 8 1

64 75
which is monic lower bidiagonal and contains the coherence coefficients in the sub d
in the structure relation formula (15).

3.3. (M,0) Coherence

Another generalization of the notion of coherence can be obtained by adding a fi

;0Þ coherent pair. Indeed, their corre
gnP0 satisfy the structure relation
side of (13). In this case, the pair of regular linear functionals ðU;VÞ is said to be a ðM
sponding sequences of monic orthogonal polynomials (SMOP) fPnðxÞgnP0 and fQnðxÞ
ð16Þ

P M and ci;n 0 if i > n. This case has
n the following result.

nd Q, respectively. Then fPnðxÞgnP0 and
ones on the main diagonal.
XM

i 0

ci;nP½1�n iðxÞ Q nðxÞ; n P 0;

where fci;ngnP0;0 6 i 6 M, is a sequence of complex numbers such that cM;n – 0 if n
been studied in [2,4 7]. We characterize this relation in a matrix form as is shown i

Theorem 18. Let fPnðxÞgnP0 and fQnðxÞgnP0 be the SMOP with associated matrices A a
fQnðxÞgnP0 constitute a ðM;0Þ Coherent pair if and only if QA�1 is ð0;MÞ banded with
(16) holds. Since A is the matrix asso
Proof. Let assume ðfPnðxÞgnP0; fQ nðxÞgnP0Þ is a ðM;0Þ coherent pair, i.e., the relation
ciated with fP½1�n ðxÞgnP0, then (16) can be written in a matrix form as

~Aþ Y ~A Q ;
2 M

h i

where Y C1XT þ C2XT þ . . .þ CMXT and Ci is a diagonal matrix of index 0 with entries cnþi;n;n P 0;1 6 i 6 M. Another

way to write the above equation is

ðI þ YÞ~A Q ;

and, since A is nonsingular,

ðI þ YÞ Q ~A 1;
l, we have

so, QA 1 is clearly ð0;MÞ banded.

For the converse, since QA�1 T is ð0;MÞ banded with ones in the main diagona
T~A Q ;

so fPnðxÞgnP0 and fQ nðxÞgnP0 are ð1; 0Þ Coherent.
10



Example 19. (M,0) Coherence example (M = 2)
For this example we consider M 2 and, following Remark 6, we use the monic Jacobi polynomials with parameters

a b 0:5 and its corresponding derivatives. The matrix equation then is Q CQ , with

Q

1:0000 0 0 0 0 0 0 0 0
1:0000 1:0000 0 0 0 0 0 0 0
0:7500 2:0000 1:0000 0 0 0 0 0 0
0:5000 2:5000 3:0000 1:0000 0 0 0 0 0
0:3125 2:5000 5:2500 4:0000 1:0000 0 0 0 0
0:1875 2:1875 7:0000 9:0000 5:0000 1:0000 0 0 0
0:1094 1:7500 7:8750 15:0000 13:7500 6:0000 1:0000 0 0
0:0625 1:3125 7:8750 20:6250 27:5000 19:5000 7:0000 1:0000 0
0:0352 0:9375 7:2188 24:7500 44:6876 45:5000 26:2500 8:0000 1:0000

2
66666666666666664

3
77777777777777775

and

1:0000 0 0 0 0 0 0 0 0
1:0000 1:0000 0 0 0 0 0 0 0
0:8333 2:0000 1:0000 0 0 0 0 0 0
0:6250 2:6250 3:0000 1:0000 0 0 0 0 0

0 0
0 0
0 0

2
66666666

3
777777777777777
;
~Q 0:4375 2:8000 5:4000 4:0000 1:0000 0 0

0:2916 2:6250 7:5000 9:1666 5:0000 1:0000 0
0:1875 2:2500 8:8392 15:7143 13:9286 6:0000 1:0000

6666666

0000 0
0000 1:0000

75

0
0
0
0
0
0

3
777777777777
:

0:1171 1:8047 9:2812 22:3438 28:4375 19:6875 7:0000 1:
0:0716 1:3750 8:9375 27:8056 47:3958 46:6666 26:4444 8:

64
from where we can easily obtain C QQ 1 by using Mathematica to compute it

C

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0:0833 0 1 0 0 0 0 0
0 2:6250 0 1 0 0 0 0
0 0 0:1500 0 1 0 0 0
0 0 0 0:1666 0 1 0 0

2
666666666666
0
777
0 0 0 0 0:1786 0 1 0

666

0
1

75
in the coherence coefficients from the
0 0 0 0 0 0:1875 0 1
0 0 0 0 0 0 :1944 0

64
We can see that this is a ð0;2Þ banded matrix as it should and we can explicitly obta
entries of the matrix.

3.4. (M,0) Coherence of order m

The case when we take m derivatives for ðM;0Þ coherence, i. e.

XM

c P½m� ðxÞ Q ðxÞ; n P 0;

i 0

i;n n i n
al. in [5 7]. They show that the linear
elated by a rational factor.
;0Þ coherence of order m in a matrix

nd Q, respectively. Then fPnðxÞgnP0 and
banded with ones on the main diagonal.

g structure relation
with P½m�n defined as in Section 3.2. This case of coherence is considered by de Jesús et
functionals associated with the corresponding SMOP are semiclassical and they are r

Following the notation used in Section 3.2, we establish the following result for ðM
form.

Theorem 20. Let fPnðxÞgnP0 and fQnðxÞgnP0 be the SMOP with associated matrices A a
fQnðxÞgnP0 constitute a ðM;0Þ Coherent pair of order m if, and only if QA½m�

1
is ð0;MÞ

The proof uses the same arguments as in Theorem 16.

Example 21. (M,0) Coherence of order m; ðM 2;m 2Þ
In this case we consider the monic Laguerre polynomials that satisfy the followin
11



1
ðnþ 2Þðnþ 1Þ

d2

dx2 Laþ2
nþ2ðxÞ þ ci;nLaþ2

nþ1ðxÞ þ ci;n 1Laþ2
n ðxÞ

� �
Laþ2

n ðxÞ; n P 0; ð17Þ

where fci;ngnP0 are the coherence coefficients for this ð2;0Þ coherent pair of order 2. We can express (17) in a matrix form as

C~A½2� A;

where A is the lower triangular matrix associated with the monic Laguerre polynomials fLaþ2
n ðxÞgnP0 and A½2� is defined as in

Section 3.2.
Using Mathematica we compute explicitly the monic Laguerre polynomials and construct the matrices A and A½2�,

A

1 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0

20 10 1 0 0 0 0 0 0
120 90 18 1 0 0 0 0 0

840 840 252 28 1 0 0 0 0
6720 8400 3360 560 40 1 0 0 0

60480 90720 45360 10080 1080 54 1 0 0
604800 1058400 635040 176400 25200 1890 70 1 0

6652800 13305600 9313920 3104640 554400 55440 3080 88 1

2
66666666666666664

3
77777777777777775

;

0 0 0
0 0 0

2 3
777
1 0 0 0 0 0
6 1 0 0 0 0666
0 0 0
0 0 0

7777

42 14 1 0 0 0
336 168 24 1 0 0

6666

0 0 0

777
~A½2� 3024 2016 432 36 1 0
666
0 0 0
1 0 0
84 1 0

7777775

30240 25200 7200 900 50 1

332640 332640 118800 19800 1650 66
3991680 4656960 1995840 415800 46200 2772

6666664

6 4368 104 1

tains the coherence coefficients in the

ón Pública of México and the Mexican
Ciencia y Tecnología of México, Grant

igación Científica y Técnica, Ministerio
51891840 69189120 34594560 8648640 1201200 9609

and, in a straightforward way, we obtain C AA ½2�

C

1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
2 4 1 0 0 0 0 0 0
0 6 6 1 0 0 0 0 0
0 0 12 8 1 0 0 0 0
0 0 0 20 10 1 0 0 0
0 0 0 0 30 12 1 0 0
0 0 0 0 0 42 14 1 0
0 0 0 0 0 0 56 16 1

2
66666666666666664

3
77777777777777775

;

which is a ð0;2Þ banded matrix with ones in the main diagonal as expected and con
sub diagonals.
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