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1 Introduction

Let f = (f1, . . . , fd) be a system of d formal or convergent Taylor expansions about
the origin; that is, for each k = 1, . . . , d , we have

fk(z) =
∞∑

n=0

φn,kz
n, φn,k ∈ C. (1)

Let D = (D1, . . . ,Dd) be a system of domains such that, for each k = 1, . . . , d , fk

is meromorphic in Dk . We say that the point ξ is a pole of f in D of order τ if there
exists an index k ∈ {1, . . . , d} such that ξ ∈ Dk and it is a pole of fk of order τ , and
for j �= k either ξ is a pole of fj of order less than or equal to τ or ξ /∈ Dj . When
D = (D, . . . ,D), we say that ξ is a pole of f in D.

Let R0(f) be the radius of the largest disk D0(f) in which all the expansions fk, k =
1, . . . , d correspond to analytic functions. If R0(f) = 0, we take Dm(f) = ∅,m ∈ Z+;
otherwise, Rm(f) is the radius of the largest disk Dm(f) centered at the origin to
which all the analytic elements (fk,D0(fk)) can be extended so that f has at most
m poles counting multiplicities. The disk Dm(f) constitutes for systems of functions
the analog of the m-th disk of meromorphy defined by J. Hadamard in [9] for d = 1.
Moreover, in that case both definitions coincide.

By Qm(f), we denote the monic polynomial whose zeros are the poles of f in
Dm(f) counting multiplicities. The set of distinct zeros of Qm(f) is denoted by Pm(f).

Definition 1.1 Let f = (f1, . . . , fd) be a system of d formal Taylor expansions as
in (1). Fix a multi-index m = (m1, . . . ,md) ∈ Z

d+ \ {0}, where 0 denotes the zero
vector in Z

d+. Set |m| = m1 + · · · + md . Then, for each n ≥ max{m1, . . . ,md}, there
exist polynomials Q,Pk, k = 1, . . . , d , such that

(a.1) degPk ≤ n − mk, k = 1, . . . , d,degQ ≤ |m|,Q �≡ 0,
(a.2) Q(z)fk(z) − Pk(z) = Akz

n+1 + · · · .

The vector rational function Rn,m = (P1/Q, . . . ,Pd/Q) is called an (n,m) (type II)
Hermite–Padé approximation of f.

This vector rational approximation, in general, is not uniquely determined, and
hereafter we assume that given (n,m), one particular solution is taken. For that solu-
tion, we write

Rn,m = (Rn,m,1, . . . ,Rn,m,d ) = (Pn,m,1, . . . ,Pn,m,d )/Qn,m, (2)

where Qn,m is a monic polynomial that has no common zero simultaneously with all
the Pn,m,k . Sequences {Rn,m} for which |m| remains fixed when n varies are called
row sequences, and when m1 = · · · = md = m, n = (d + 1)m,m ∈ Z+ (or nearby
configurations of multi-indices), diagonal sequences.

There is another construction called type I Hermite–Padé approximation which
is intimately connected with the type II Hermite–Padé approximants we have intro-
duced above, see [18, Chap. 4] for details. However, throughout the paper we restrict
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our attention to the type II and, to abbreviate, we simply call them Hermite–Padé
approximations.

The study of simultaneous Hermite–Padé approximations of systems of functions 
has a long tradition (see [10–13]), and they have been subject to renewed interest in 
the recent past (see, for instance, [5] and the references therein). Many papers deal 
with diagonal sequences and their applications in different fields (number theory, ran-
dom matrices, Brownian motions, Toda lattices, to name a few). At the same time, 
few papers study row sequences. In this second direction, a significant contribution 
is due to Graves-Morris/Saff in [15], where they prove an analog of the Montessus 
de Ballore theorem which plays a central role in the classical theory of Padé approx-
imation. See also [16, 17] for different approaches to the same type of results as well 
as [19] and references therein for least-squares versions.

Before going into details, let us briefly describe the scalar case (d = 1) corre-
sponding to classical Padé approximation, which is well understood. When d = 1,
we write f = f,m = m ∈ N, and Rn,m = Rn,m. Given a compact set K ⊂ C, ‖ · ‖K

denotes the sup norm on K . We summarize what we need in the following statement.

Gonchar’s theorem Let f be a formal Taylor expansion about the origin, and fix
m ∈ N. Then the following two assertions are equivalent:

(a) R0(f ) > 0 and f has exactly m poles in Dm(f ) counting multiplicities.
(b) There is a polynomial Qm of degree m,Qm(0) �= 0, such that the sequence of

denominators {Qn,m}n≥m of the Padé approximations of f satisfies

lim sup
n→∞

‖Qm − Qn,m‖1/n = θ < 1,

where ‖ · ‖ denotes the coefficient norm in the space of polynomials.

Moreover, if either (a) or (b) takes place, then Qm ≡ Qm(f ),

θ = max{|ξ | : ξ ∈ Pm(f )}
Rm(f )

, (3)

and

lim sup
n→∞

‖f − Rn,m‖1/n
K = ‖z‖K

Rm(f )
, (4)

where K is any compact subset of Dm(f ) \ Pm(f ).

From this result, it follows that if ξ is a pole of f in Dm(f ) of order τ , then
for each ε > 0, there exists n0 such that for n ≥ n0, Qn,m has exactly τ zeros in
{z : |z− ξ | < ε}. We say that each pole of f in Dm(f ) attracts as many zeros of Qn,m

as its order when n tends to infinity.
So stated, Gonchar’s theorem first appears as a remark in Sect. 3, Sect. 4, in [6]

(see also [8, Sect. 2]). Under assumptions (a), in [14] Montessus de Ballore proved 
that

lim
n→∞Qn,m = Qm(f ), lim

n→∞Rn,m = f,
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with uniform convergence on compact subsets of Dm(f ) \ Pm(f ) in the second 
limit. In essence, Montessus proved that (a) implies (b) with Qm = 
Qm(f ), s h o w e d  that θ ≤ max{|ξ| : ξ ∈ Pm(f )}/Rm(f ), and proved (4) with 
equality replaced by ≤. These are the so-called direct statements of the theorem. The 
inverse statements, (b) implies (a), θ ≥ max{|ξ| : ξ ∈ Pm(f )}/Rm(f ), and the 
inequality ≥ in (4) a r e  i m - mediate consequences of [7, Theorem 1]. The study 
of inverse problems of Padé approximation was suggested by A.A. Gonchar in [7, 
Sect. 12], where he presented some interesting conjectures. Some of them were 
solved in [20] and [21].

In [15], Graves-Morris and Saff proved an analog of the direct part of Gonchar’s 
theorem for simultaneous approximation with the aid of the concept of polewise in-
dependence of a system of functions.

For each r > 0, set Dr = {z ∈ C : |z| < r}, Γr = {z ∈ C : |z| = r}, and Dr = {z ∈
C : |z| ≤ r}.
Definition 1.2 Let f = (f1, . . . , fd) be a system of meromorphic functions in the
disk Dr and let m = (m1, . . . ,md) ∈ Z

d+ \ {0}. We say that the system f is polewise
independent with respect to m in Dr if there do not exist polynomials p1, . . . , pd , at
least one of which is non-null, such that

(b.1) degpk < mk if mk ≥ 1, k = 1, . . . , d ,
(b.2) pk ≡ 0 if mk = 0, k = 1, . . . , d ,
(b.3)

∑d
k=1 pkfk is analytic on Dr .

Graves-Morris and Saff also established in [15] upper bounds for the convergence 
rates corresponding to (3) and (4). These results were refined and complemented in 
[4, Theorem 4.4] by weakening the assumption of polewise independence, improving 
the upper bound given in [15] for the rate (3), and giving the exact one for (4). Until 
now, results of inverse type for row sequences of Hermite–Padé approximants have 
not been available.

Our purpose is to obtain an analog of Gonchar’s theorem for simultaneous
Hermite–Padé approximants, characterizing the exact rates of convergence of the
Qn,m and Rn,m.

The underlying idea in inverse-type results is that a polynomial which is the limit
of the denominators of the approximants must have as zeros the poles of the function
being approximated, provided that the rate of convergence is geometric. However,
the actual situation in simultaneous approximation may be rather complicated, as the
following example shows. Take f = (f1, f2), where

f1 = 1

1 − 2z
+

∞∑

n=0

zn! + 1

z − 2
, f2 = 1

1 − 2z
+

∞∑

n=0

zn!, (5)

and m = (1, 1). It is clear that the unit circle is a natural boundary of definition for 
both functions f1 and f2, and thus z = 2 cannot be a pole of f in any system of 
domains. However, results contained in [4] show that the denominators Qn,m of the 
simultaneous Hermite–Padé approximants converge with geometric rate to the poly-
nomial (z − 1/2)(z − 2).
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This kind of example leads us to introduce the following concept, which is actually 
inspired by Definition 1.2.

Definition 1.3 Given f = (f1, . . . , fd) and m = (m1, . . . ,md) ∈ Z
d+ \ {0}, we say

that ξ ∈ C \ {0} is a system pole of order τ of f with respect to m if τ is the largest
positive integer such that for each s = 1, . . . , τ , there exists at least one polynomial
combination of the form

d∑

k=1

pkfk, degpk < mk, k = 1, . . . , d, (6)

which is analytic on a neighborhood of D|ξ | except for a pole at z = ξ of exact
order s. If some component mk equals zero, the corresponding polynomial pk is
taken identically equal to zero.

The great advantage of this definition with respect to that of polewise indepen-
dence is that we have liberated it from establishing a priori a region where the prop-
erty should be verified. This turns out to be crucial.

We wish to underline that if some component mk equals zero, that component
places no restriction on Definition 1.1 and does not provide any benefit in finding
system poles; therefore, without loss of generality, we can restrict our attention to
multi-indices m ∈ N

d , and we will do so hereafter, except in reference to the conver-
gence of the approximants themselves.

Notice that the definition of system pole strongly depends on the multi-index m
and that a system f cannot have more than |m| system poles with respect to m count-
ing their order (see Lemma 3.5 below). During the proof of Theorem 1.4 below,
carried out in Sect. 3, we give a procedure for finding in a finite number of steps all
the system poles of f with respect to a multi-index m under appropriate conditions.

It is easy to see that a system pole may not be a pole of f or vice versa. For example,
let f be the system given by (5) and m = (1,1). The point z = 2, which lies beyond
the natural boundary of definition of f1 and f2, is not a pole; however, it is a system
pole of f since f1 − f2 has a pole at z = 2.

On the other hand, take f = (f1, f2), with

f1 = 1

z − 1
+ 1

z − 2
, f2 = 1

z − 3
,

and m = (1,1). Then the points z = 1 and z = 3 are poles and system poles of f but
z = 2 is only a pole because there is no way of eliminating the pole at z = 1 through
linear combinations of f1 and f2 without eliminating the pole at z = 2.

To each system pole ξ of f with respect to m we associate several characteristic
values. Let τ be the order of ξ as a system pole of f. For each s = 1, . . . , τ , denote
by rξ,s(f,m) the largest of all the numbers Rs(g) (the radius of the largest disk con-
taining at most s poles of g), where g is a polynomial combination of type (6) that is
analytic on a neighborhood of D|ξ | except for a pole at z = ξ of order s. Then
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Rξ,s(f,m) = min
k=1,...,s

rξ,k(f,m),

Rξ (f,m) = Rξ,τ (f,m) = min
s=1,...,τ

rξ,s(f,m).

Obviously, if d = 1 and (f,m) = (f,m), system poles and poles in Dm(f ) coin-
cide. Also, Rξ (f,m) = Rm(f ) for each pole ξ of f in Dm(f ).

By Q(f,m), we denote the monic polynomial whose zeros are the system poles of
f with respect to m taking account of their order. The set of distinct zeros of Q(f,m)

is denoted by P (f,m).
The following theorem constitutes our main result.

Theorem 1.4 Let f be a system of formal Taylor expansions as in (1), and fix a multi-
index m ∈ N

d . Then the following two assertions are equivalent:

(a) R0(f) > 0 and f has exactly |m| system poles with respect to m counting multi-
plicities.

(b) The denominators Qn,m, n ≥ |m|, of simultaneous Padé approximations of f are
uniquely determined for all sufficiently large n, and there exists a polynomial
Q|m| of degree |m|,Q|m|(0) �= 0, such that

lim sup
n→∞

‖Q|m| − Qn,m‖1/n = θ < 1.

Moreover, if either (a) or (b) takes place, then Q|m| ≡ Q(f,m) and

θ = max

{ |ξ |
Rξ (f,m)

: ξ ∈ P (f,m)

}
. (7)

If d = 1, Rn,m and Qn,m are uniquely determined. Therefore, Theorem 1.4 im-
plies Gonchar’s theorem except for (4), whose analog will be presented in Sect. 3.2 
to avoid introducing new notation at this stage.

The paper is structured as follows. In Sect. 2, we continue with the study of incom-
plete Padé approximants initiated in [4], proving results of inverse type. Section 3 is 
dedicated to the proof of Theorem 1.4 and the analog of (4).

2 Incomplete Padé Approximants

Let

f (z) =
∞∑

n=0

φnz
n, φn ∈ C, (8)

denote a formal or convergent Taylor expansion about the origin.

Definition 2.1 Let f denote a formal Taylor expansion as in (8). Fix m ≥ m∗ ≥ 1. Let
n ≥ m. We say that the rational function rn,m is an incomplete Padé approximation
of type (n,m,m∗) corresponding to f if rn,m is the quotient of any two polynomials
p and q that verify
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(c.1) degp ≤ n − m∗,degq ≤ m,q �≡ 0,
(c.2) q(z)f (z) − p(z) = Azn+1 + · · · .

Notice that given (n,m,m∗), n ≥ m ≥ m∗, any of the Padé approximants
Rn,m∗ , . . . ,Rn,m can be regarded an incomplete Padé approximation of type
(n,m,m∗) of f . From Definition 1.1 and (2), it follows that Rn,m,k, k = 1, . . . , d ,
is an incomplete Padé approximation of type (n, |m|,mk) with respect to fk .

Hereafter, for each n ≥ m ≥ m∗, we choose one candidate. After canceling out
common factors between q and p, we write rn,m = pn,m/qn,m, where, additionally,
qn,m is normalized to be monic. Suppose that q and p have a common zero at z = 0
of order λn. Notice that 0 ≤ λn ≤ m. From (c.1)–(c.2), it follows that

(c.3) degpn,m ≤ n − m∗ − λn,degqn,m ≤ m − λn, qn,m �≡ 0,
(c.4) qn,m(z)f (z) − pn,m(z) = Azn+1−λn + · · · ,

where A is, in general, a different constant from the one in (c.2).
The first difficulty encountered in dealing with inverse-type results is to justify

in terms of the data that the formal series corresponds to an analytic element which
does not reduce to a polynomial. In our aid comes the next result, which provides
such information in terms of whether the zeros of the polynomials qn,m remain away
or not from 0 and/or ∞ as n grows. Let

Pn,m = {ζn,1, . . . , ζn,mn}, n ≥ m, mn ≤ m,

denote the collection of zeros of qn,m repeated according to their multiplicity, where
degqn,m = mn. Set

S = sup
N≥m

inf
{|ζn,k| : n ≥ N,mn ≥ 1,1 ≤ k ≤ mn

}

and

G = inf
N≥m

sup
{|ζn,k| : n ≥ N,mn ≥ 1,1 ≤ k ≤ mn

}
.

Finally, set

τn = min
{
n − m∗ − λn − degpn,m,m − λn − mn

}
, n ≥ m.

From (c.3), we know that 0 ≤ τn ≤ m,n ≥ m.

Theorem 2.2 Let f be a formal power series as in (8). Fix m ≥ m∗ ≥ 1. The follow-
ing assertions hold:

(i) If |λn − λn−1| ≤ m∗ − 1, n ≥ n0, and S > 0, then R0(f ) > 0.
(ii) If |(mn +λn + τn)− (mn−1 +λn−1 + τn−1)| ≤ m∗ − 1, n ≥ n0, and G < ∞, then

either f is a polynomial or R0(f ) < ∞. If, additionally, there exists a sequence
of indices Λ such that degqn,m ≥ 1, n ∈ Λ, then R0(f ) < ∞.

Proof By definition,

(qn,mf − pn,m)(z) = Azn+1−λn + · · · , (9)

and qn,m(0) �= 0.
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We may suppose that inf{|ζn,k| : n ≥ n0,mn ≥ 1,1 ≤ k ≤ mn} > 0 and |λn −
λn−1| ≤ m∗ − 1, n ≥ n0. Normalize qn,m as follows. If mn ≥ 1, take

qn,m(z) =
mn∏

k=1

(
1 − z

ζn,k

)
= an,0 + an,1z + · · · + an,mnz

mn, an,0 = 1.

Otherwise, qn,m(z) ≡ 1 = an,0.
Using the Vieta formulas connecting the coefficients of a polynomial and its zeros,

it follows that there exists C1 ≥ 1 such that

sup
{|an,k| : 0 ≤ k ≤ mn,n ≥ n0

} ≤ C1 < ∞. (10)

The coefficient corresponding to zk, k  ∈ { n − m∗ − λn + 1, . . . , n  − λn}, i n t h e 
l e f t - hand side of (9) equals

φk + an,1φk−1 + · · · + an,mnφk−mn = 0, (11)

since degpn,m ≤ n − m∗ − λn.
If mn ≥ 1, (10) and (11) imply that

|φk| ≤ C1
(|φk−1| + · · · + |φk−mn |

)
.

Therefore, for each k ∈ {n−m∗−λn+1, . . . , n−λn}, there exists k′ ∈ {k−1, . . . , k−
m} (mn ≤ m) such that

|φk| ≤ C1m|φk′ |. (12)

Should mn = 0, for the same values of k, w e h a v e  φk = 0, and (12) is trivially 
verified. Substituting n by n − 1, we deduce that for each k ∈ { n −m∗ − λn

−1, . . . , n  − λn−1 − 1}, there exists k′ ∈ { k − 1, . . . , k  − m} such that

|φk| ≤ C1m|φk′ |. (13)

As n ≥ n0, we have

n − λn−1 ≥ n − λn − m∗ + 1

and

n − λn−1 − m∗ ≤ n − λn − 1,

because |λn − λn−1| ≤ m∗ − 1. Consequently, the range of values taken by k due to 
relations (12) and (13) are either contiguous or overlapping for n ≥ n0. Since n − λn

tends to ∞ as n goes to ∞, we conclude that for all n ≥ n0, there exists n′ ∈ { n − 
1, . . . , n  − m} such that

|φn| ≤ C1m|φn′ |. (14)

Let Λ be a sequence of indices such that

lim
n∈Λ

|φn|1/n = lim sup
n→∞

|φn|1/n = 1/R0(f ).
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Choose n ∈ Λ. Due to (14), there exist indices n1 > n2 > · · · > nrn, nrn ≤ n0, where
rn ≤ n − n0, such that

|φn| ≤ C1m|φn1 | ≤ · · · ≤ (C1m)rn |φnrn
|.

Consequently,

1/R0(f ) = lim
n∈Λ

|φn|1/n ≤ lim sup
n→∞

(C1m)rn/n ≤ C1m.

Therefore, R0(f ) ≥ (C1m)−1 > 0, which proves (i).
As for (ii), assume that sup{|ζn,k| : n ≥ n0,mn ≥ 1,1 ≤ k ≤ mn} < ∞ and |(mn +

λn + τn) − (mn−1 + λn−1 + τn−1)| ≤ m∗ − 1, n ≥ n0. Set tn(z) = (z − 1)τn . Define
q̃n,m = tnqn,m and p̃n,m = tnpn,m. Normalize q̃n,m as follows. If mn + τn ≥ 1, take

q̃n,m(z) =
mn+τn∏

k=1

(z − ζn,k) = bn,0z
mn+τn + · · · + bn,mn+τn−1z + bn,mn+τn ,

where bn,0 = 1. Should mn + τn = 0, we set q̃n,m ≡ 1 = bn,0. Using the Vieta formu-
las, it follows that there exists C2 ≥ 1 such that

sup
{|bn,k| : 0 ≤ k ≤ mn,n ≥ n0

} ≤ C2 < ∞. (15)

The coefficient corresponding to zk, k  ∈ { n − m∗ − λn + 1, . . . , n  − λn}, i n t h e 
l e f t - hand side of (9) equals

φk−mn−τn + bn,1φk−mn−τn+1 + · · · + bn,mn+τnφk = 0, (16)

since deg p̃n,m ≤ n − m∗ − λn.
Should mn + τn ≥ 1, (15) and (16) imply that

|φk−mn−τn | ≤ C2
(|φk−mn−τn+1| + · · · + |φk|

)
,

or, which is the same, for each k ∈ {n−m∗ −λn −mn −τn +1, . . . , n−λn −mn −τn},
we have

|φk| ≤ C2
(|φk+1| + · · · + |φk+mn+τn |

)
.

Therefore, for each k ∈ {n − m∗ − λn − mn − τn + 1, . . . , n − λn − mn − τn}, there
exists k′ ∈ {k + 1, . . . , k + m} (mn + τn ≤ m) such that

|φk′ | ≥ |φk|
C2m

. (17)

In the case that mn + τn = 0, we have φk = 0 for the same values of k, and (17) i s 
also true.

Using the assumption that |λn + mn + τn − λn−1 − mn−1 − τn−1| ≤ m∗ − 1, it is
easy to check, similarly to the previous case, that the range of values taken by the
parameter k for consecutive values of n are either contiguous or overlapping. Also,
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n − λn − mn − τn tends to ∞ as n goes to ∞. Consequently, from (17), we have that 
for all n ≥ n0, there exists n′ ∈ { n + 1, . . . , n  + m} such that

|φn′ | ≥ |φn|
C2m

. (18)

Using (18), we can find an increasing sequence of indices {ns }s∈Z+ , ns+1 ∈ { ns + 
1, . . . , n s + m} and n1 ∈ { n0, . . . , n 0 + m} such that

|φns+1 | ≥
|φn1 |

(C2m)s
.

Should f be a polynomial, there is nothing to prove. Otherwise, changing the value
of n0 if necessary, without loss of generality, we can assume that φn1 �= 0. Then

lim inf
s→∞ |φns+1 |1/ns+1 ≥ 1

lim sups→∞(C2m)s/ns+1
≥ 1

C2m
,

since

lim sup
s→∞

s

ns+1
≤ lim sup

s→∞
s

n1 + s
= 1.

It follows that

R0(f ) = 1

lim supn→∞ |φn|1/n
≤ 1

lim infs→∞ |φns+1 |1/ns+1
≤ C2m < ∞,

as we needed to prove.
Finally, if f is a polynomial, say of degree N , we would have that for all n ≥ N +

m, f ≡ pn,m/qn,m and qn,m ≡ 1. Consequently, if there exists Λ such that degqn,m ≥
1, n ∈ Λ, f cannot be a polynomial and, therefore, only R0(f ) < ∞ is possible. �

Lemma 2.3 A sufficient condition to have |λn − λn−1| ≤ m∗ − 1 and |(mn + λn +
τn) − (mn−1 + λn−1 + τn−1)| ≤ m∗ − 1 is that

min{mn + τn,mn−1 + τn−1} ≥ m − m∗ + 1.

Proof In fact, for k = n−1 and k = n, if mk +τk ≥ m−m∗ +1, then 0 ≤ λk ≤ m∗ −1
because λk +mk +τk ≤ m, and the first inequality readily follows. On the other hand,

∣∣(mn + λn + τn) − (mn−1 + λn−1 + τn−1)
∣∣

= ∣∣(mn + λn + τn − m + m∗ − 1
) − (

mn−1 + λn−1 + τn−1 − m + m∗ − 1
)∣∣,

and 0 ≤ mk + λk + τk − m + m∗ − 1 ≤ m∗ − 1 for k = n − 1 and k = n. Therefore,
the second inequality also holds. �

Applied to Padé approximation (m∗ = m), Theorem 2.2 and Lemma 2.3 imply 
that if deg Qn,m ≥ 1 and its zeros remain uniformly bounded away from 0 and 
∞, f o r  sufficiently large n, then 0 < R 0(f ) < ∞. This result has not been stated 
elsewhere.
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Let us see some consequences of Theorem 2.2 and Lemma 2.3 on the extendability 
of a formal power series and the location of some of its poles in terms of the behavior 
of the zeros of the approximants. First we call attention to some results from [4].

Let B be a subset of the complex plane C. By U (B), we denote the class of all
coverings of B by at most a numerable set of disks. Set

σ(B) = inf

{ ∞∑

i=1

|Ui | : {Ui} ∈ U (B)

}
,

where |Ui | stands for the radius of the disk Ui . The quantity σ(B) is called the
1-dimensional Hausdorff content of the set B .

Let {ϕn}n∈N be a sequence of functions defined on a domain D ⊂ C and ϕ another
function defined on D. We say that {ϕn}n∈N converges in σ -content to the function ϕ

on compact subsets of D if for each compact subset K of D and for each ε > 0, we
have

lim
n→∞σ

{
z ∈ K : ∣∣ϕn(z) − ϕ(z)

∣∣ > ε
} = 0.

We denote this by writing σ -limn→∞ ϕn = ϕ inside D.
We define the number R∗

m(f ) as the radius of the largest disk centered at the origin
on compact subsets of which the sequence {rn,m}n≥m converges to f in σ -content.
In [4], we gave a formula to produce this number and showed that it depends on the
specific sequence of incomplete Padé approximants considered. Set D∗

m(f ) = {z ∈
C : |z| < R∗

m(f )}.
Among other direct-type results, we proved that

Rm∗(f ) ≤ R∗
m(f ) ≤ Rm(f ), (19)

that R∗
m(f ) > 0 implies R0(f ) > 0, and that each pole of the function f in D∗

m(f ) 
attracts, with geometric rate, at least as many zeros of qn,m as its order (see [4, The-
orem 3.5]). Therefore, Theorem 2.2 and Lemma 2.3 imply:

Corollary 2.4 Let f be a formal power series as in (8). Fix m ≥ m∗ ≥ 1. Assume that
there exists a polynomial qm of degree greater than or equal to m − m∗ + 1, qm(0) �=
0, such that limn→∞ qn,m = qm. Then 0 < R0(f ) < ∞, and the zeros of qm contain
all the poles, counting multiplicities, that f has in D∗

m(f ).

We need a relaxed version of Corollary 2.4 for the proof of Theorem 1.4.

Lemma 2.5 Let f be a formal power series as in (8) that is not a polynomial.
Fix m ≥ m∗ ≥ 1. Let rn,m = p̃n,m/q̃n,m be an incomplete Padé approximant of type
(n,m,m∗) corresponding to f , where p̃n,m and q̃n,m are obtained from Definition 2.1
and common factors between them are allowed. Assume that there exists a polynomial
q̃m of degree m, q̃m(0) �= 0, such that limn→∞ q̃n,m = q̃m. Then 0 < R0(f ) < ∞, and
the zeros of q̃m contain all the poles, counting multiplicities, that f has in D∗

m(f ).

Proof Let us show that the assumptions of Lemma 2.3 are verified for the incomplete
approximant rn,m. Let rn,m = pn,m/qn,m, where the polynomials pn,m and qn,m are

11



relatively prime. Since q̃m(0) �= 0, then q̃n,m(0) �= 0, n ≥ n0. Thus, p̃n,m and q̃n,m do
not have a common zero at z = 0, and λn = 0 for all n ≥ n0. As before, set mn =
degqn,m and

τn = min
{
n − m∗ − degpn,m,m − mn

}
, n ≥ n0.

Notice that τn = m−mn,n ≥ n0, because the polynomials qn,m and pn,m are obtained
eliminating possible common factors between q̃n,m and p̃n,m and by assumption

min
{
n − m∗ − deg p̃n,m,m − deg q̃n,m

} = 0, n ≥ n0.

Therefore, we have

mn + τn = m ≥ m − m∗ + 1, n ≥ n0,

and Lemma 2.3 is applicable.
From Theorem 2.2, we obtain 0 < R0(f ) < ∞. Now, from the fact that each pole

of f in D∗
m(f ) attracts as many zeros of qn,m as its order, it follows that the zeros of

q̃m contain all the poles, counting multiplicities, that f has in D∗
m(f ). �

In the case that there exists R > Rm∗(f ) inside of which f is meromorphic, then
DR contains at least m∗ + 1 poles of f since Dm∗(f ) is the largest disk where f is
meromorphic with at most m∗ poles. We can prove the following inverse-type result.

Theorem 2.6 Fix m ≥ m∗ ≥ 1. Let f be a formal power series as in (8) that is not a
rational function with at most m∗ − 1 poles. Let rn,m = p̃n,m/q̃n,m be an incomplete
Padé approximant of type (n,m,m∗) corresponding to f , where p̃n,m and q̃n,m are
obtained from Definition 2.1 and common factors between them are allowed. Suppose
that there exists a polynomial q̃m, of degree m, q̃m(0) �= 0, such that

lim sup
n→∞

‖q̃n,m − q̃m‖1/n = θ < 1. (20)

Then, either f has exactly m∗ poles in Dm∗(f ), which are zeros of q̃m counting
multiplicities, or R0(q̃mf ) > Rm∗(f ).

Proof From Lemma 2.5, we have R0(f ) > 0. So, f is analytic in a neighborhood of
z = 0. We also know that R0(q̃mf ) ≥ Rm∗(f ) since the zeros of q̃m contain all the
poles that f has in Dm∗(f ). Assume that R0(q̃mf ) = Rm∗(f ). Let us show that then
f has exactly m∗ poles in Dm∗(f ). To the contrary, suppose that f has in Dm∗(f ) at
most m∗ − 1 poles. Then there exists a polynomial qm∗ , with degqm∗ < m∗, such that

R0(qm∗f ) = Rm∗(f ) = R0(qm∗ q̃mf ).

Let

qm∗(z)q̃m(z)f (z) =
∞∑

n=0

anz
n;

12



then

Rm∗(f ) = R0(qm∗ q̃mf ) = 1/ lim sup
n→∞

n
√|an|.

The n-th Taylor coefficient of qm∗ [q̃n,mf − p̃n,m] is equal to zero. Therefore, the n-th
Taylor coefficients of qm∗ q̃mf and qm∗ q̃mf − qm∗ q̃n,mf + qm∗ p̃n,m coincide. Take
0 < r < Rm∗(f ), and recall that Γr = {z ∈ C : |z| = r}. Hence

an = 1

2πi

∫

Γr

[qm∗ q̃mf − qm∗ q̃n,mf + qm∗ p̃n,m](ω)

ωn+1
dω

= 1

2πi

∫

Γr

[q̃m − q̃n,m](ω)qm∗(ω)f (ω)

ωn+1
dω.

Making use of (20), it readily follows that

1

Rm∗(f )
= lim sup

n→∞
n
√|an| ≤ θ

r
.

Letting r tend to Rm∗(f ), we have

1

Rm∗(f )
≤ θ

Rm∗(f )
, θ < 1,

which implies that Rm∗(f ) = ∞. Let us show that this is not possible.
In fact,

[qm∗ q̃n,mf − qm∗ p̃n,m](z) = Anz
n+1 + · · · ,

and degqm∗ p̃n,m ≤ n − 1. It follows that (qm∗ p̃n,m)/q̃n,m = (qm∗pn,m)/qn,m is an
incomplete Padé approximant of the function qm∗f of type (n,m,1), where the poly-
nomials pn,m and qn,m are relatively prime. As q̃n,m(0) �= 0, n ≥ n0, the polynomials
qm∗ p̃n,m and q̃n,m do not have a common zero at z = 0 and λn = 0 for all n ≥ n0.
Again, set mn = degqn,m and

τn = min{n − 1 − degpn,m,m − mn}.
Notice that τn = m − mn,n ≥ n0, because

min{n − 1 − degqm∗ p̃n,m,m − deg q̃n,m} = 0, n ≥ n0.

Thus, mn + τn = m,n ≥ n0. Using Lemma 2.3 (for m∗ = 1) and Theorem 2.2, we
conclude that either R0(qm∗f ) < ∞ or qm∗f is a polynomial. However, the lat-
ter is not possible by hypotheses. On the other hand, R0(qm∗f ) < ∞ contradicts
Rm∗(f ) = ∞. As claimed, f has exactly m∗ poles in Dm∗(f ). �

We wish to underline that the two possibilities stated in the thesis of Theorem 2.6
should not be understood as mutually exclusive. It may well happen that R0(q̃mf ) >

Rm∗(f ) and f has exactly m∗ poles in Dm∗(f ), which are zeros of q̃m counting
multiplicities. A similar remark applies to Corollary 3.4 below.
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3 Simultaneous Approximation

Throughout this section, f = (f1, . . . , fd) denotes a system of formal power expan-
sions as in (1), and m = (m1, . . . ,md) ∈ N

d is a fixed multi-index. We are con-
cerned with the simultaneous approximation of f by sequences of vector rational
functions defined according to Definition 1.1 taking account of (2). That is, for each
n ∈ N, n ≥ |m|, let (Rn,m,1, . . . ,Rn,m,d ) be a Hermite–Padé approximation of type
(n,m) corresponding to f.

As we mentioned earlier, Rn,m,k is an incomplete Padé approximant of type
(n, |m|,mk) with respect to fk, k = 1, . . . , d . Thus, from (19), we have

Dmk
(fk) ⊂ D∗|m|(fk) ⊂ D|m|(fk), k = 1, . . . , d.

Definition 3.1 A vector f = (f1, . . . , fd) of formal power expansions is said to be
polynomially independent with respect to m = (m1, . . . ,md) ∈ N

d if there do not
exist polynomials p1, . . . , pd , at least one of which is non-null, such that

(d.1) degpk < mk, k = 1, . . . , d ,
(d.2)

∑d
k=1 pkfk is a polynomial.

In particular, polynomial independence implies that for each k = 1, . . . , d , fk is
not a rational function with at most mk − 1 poles. Notice that polynomial indepen-
dence may be verified solely in terms of the coefficients of the formal Taylor expan-
sions defining the system f.

Given f = (f1, . . . , fd) and m = (m1, . . . ,md) ∈ N
d , we consider the associated

system f of formal power expansions

f = (
f1, . . . , z

m1−1f1, f2, . . . , z
md−1fd

) = (f̄1, . . . , f̄|m|).

We also define an associated multi-index m given by m = (1,1, . . . ,1) with |m| =
|m|. The systems f and f share most properties. In particular, poles of f and f coincide
and Rm(f) = Rm(f),m ∈ Z+.

From the definition, it readily follows that f is polynomially independent with
respect to m if and only if there do not exist constants ck, k = 1, . . . , |m|, not all zero,
such that

|m|∑

k=1

ckf̄k

is a polynomial. That is, f is polynomially independent with respect to m if and only
if f is polynomially independent with respect to m. By the same token, the system
poles of f with respect to m are the same as the system poles of f with respect to m.

Finally, it is very easy to check that, for all n ≥ |m|, the equations that define the
common denominator Qn,m for (f,m) are the same as those defining Qn,m for (f,m)

and, consequently, both classes of polynomials coincide.

Lemma 3.2 Let f = (f1, . . . , fd) be a system of formal Taylor expansions as in (1),
and fix a multi-index m ∈ N

d . Suppose that for all n ≥ n0, the polynomial Qn,m
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is unique and degQn,m = |m|. Then the system f is polynomially independent with
respect to m.

Proof Because of what was said just before the statement of Lemma 3.2, we can
assume without loss of generality that m = (1,1, . . . ,1) and d = |m|. We argue by
contradiction. Suppose that there exist constants ck, k = 1, . . . , d , not all zero, such
that

∑d
k=1 ckfk is a polynomial. Should d = 1, Qn,m ≡ 1 for all n sufficiently large

and degQn,m < 1 = |m|. If d > 1, without loss of generality, we can assume that
c1 �= 0. Then

f1 = p −
d∑

k=2

ckfk,

where p is a polynomial, say of degree N .
On the other hand, for each n ≥ d − 1, there exist polynomials Qn,Pn,k , k =

2, . . . , d , such that

– degPn,k ≤ n − 1, k = 2, . . . , d,degQn ≤ d − 1,Qn �≡ 0,
– Qn(z)fk(z) − Pn,k(z) = Akz

n+1 + · · · , k = 2, . . . , d.

Therefore,

Qn(z)

(
p(z) −

d∑

k=2

ckfk(z)

)
−

(
Qn(z)p(z) −

d∑

k=2

ckPn,k(z)

)
= Azn+1 + · · ·

and, for n ≥ d + N , the polynomial Pn,1 = Qnp − ∑d
k=2 ckPn,k verifies degPn,1 ≤

n − 1. Thus, for all n sufficiently large, the polynomials Pn,k, k = 1, . . . , d , satisfy
Definition 1.1 with respect to f and m. Naturally, Qn gives rise to a polynomial Qn,m
with degQn,m < d = |m| against our assumption on Qn,m. �

Set

D∗
m(f) = (

D∗|m|(f1), . . . ,D
∗|m|(fd)

)
.

The following corollaries are straightforward consequences of Lemma 2.5 and
Theorem 2.6, respectively, together with the fact that, for each k = 1, . . . , d , Rn,m,k =
Pn,m,k/Qn,m is an incomplete Padé approximant of type (n, |m|,mk) with respect
to fk .

Corollary 3.3 Let f = (f1, . . . , fd) be a system of formal Taylor expansions as in
(1), and fix a multi-index m ∈ N

d . Assume that f is polynomially independent with
respect to m and there exists a polynomial Q|m| of degree |m|,Q|m|(0) �= 0, such
that limn→∞ Qn,m = Q|m|. Then R0(f) > 0, the zeros of Q|m| contain all the poles
that f has in D∗

m(f), and R0(fk) < ∞ for each k = 1, . . . , d .

Corollary 3.4 Let f = (f1, . . . , fd) be a system of formal Taylor expansions as in (1),
and fix a multi-index m = (m1, . . . ,md) ∈ N

d . Assume that f is polynomially indepen-
dent with respect to m and there exists a polynomial Q|m| of degree |m|,Q|m|(0) �= 0,
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such that

lim sup
n→∞

‖Q|m| − Qn,m‖1/n = θ < 1.

Then, for each k = 1, . . . , d , either fk has exactly mk poles in Dmk
(fk) or

R0(Q|m|fk) > Rmk
(fk).

Before proving Theorem 1.4, we wish to describe some properties of system poles.

Lemma 3.5 Given f = (f1, . . . , fd) and m ∈ Z
d+ \ {0}, f can have at most |m| system

poles with respect to m (counting their order). Moreover, if the system has exactly |m|
system poles with respect to m and ξ is a system pole of order τ , then for all s > τ

there can be no polynomial combination of the form (6) analytic on a neighborhood
of D|ξ | except for a pole at z = ξ of exact order s.

Proof Notice that the polynomial combinations of the form (6) generate a vector
space of dimension less than or equal to |m|. On the other hand, the set of functions
which determine the system poles and their order are linearly independent. Conse-
quently, there may be at most |m| such functions. Thus, the number of system poles
counting their order is at most |m|.

Assume that there are exactly |m| system poles with respect to m, and let ξ be one
of them of order τ . Take s > τ . Obviously, for s = τ + 1, there can be no polynomial
combination of the form (6) analytic on a neighborhood of D|ξ | except for a pole at
z = ξ of exact order s because the order of the system pole would be at least τ + 1.
For s ≥ τ + 2, no such combination can exist either because that would give another
function which is linearly independent to the rest of the functions which determine
the system poles and their order, which by assumption are already |m|. �

3.1 Proof of Theorem 1.4

Let us prove first that (b) implies (a). From Lemma 3.2, it follows that f is polyno-
mially independent with respect to m and, in turn, from Corollary 3.3, we know that
R0(f) > 0. So, it is enough to prove that f has exactly |m| system poles with respect
to m and without loss of generality we can assume that m = (1,1, . . . ,1).

We divide the proof into two parts. First, we collect a set of |m| candidates to be
system poles of f and prove that they are the zeros of Q|m|. In the second part we
prove that all these points previously collected are actually system poles of f.

Notice that for each k = 1, . . . , d , by Corollaries 3.4 and 3.3, either the disk
D1(fk) contains exactly one pole of fk and it is a zero of Q|m|, or R0(Q|m|fk) >

R1(fk). Therefore, D0(f) �= C and Q|m| contains as zeros all the poles of fk on the
boundary of D0(fk) counting their order for k = 1, . . . , d = |m|. Moreover, the func-
tions fk cannot have on the boundary of D0(fk) singularities other than poles.

According to this, the poles of f on the boundary of D0(f) are all zeros of Q|m|
counting multiplicities and the boundary contains no other singularity except poles.
Let us call them candidate system poles of f and denote them by a1, . . . , an1 taking
account of their order.

16



Since degQ|m| = |m|, we have n1 ≤ |m|. Should n1 = |m|, we have found all the
candidates we were looking for. Let us assume that n1 < |m|. We can find coefficients
c1, . . . , c|m| such that

|m|∑

k=1

ckfk

is analytic in a neighborhood of D0(f). Finding the coefficients ck reduces to solving
a linear homogeneous system of n1 equations with |m| unknowns. In fact, if z = a is
a candidate system pole of f with multiplicity τ , we obtain τ equations choosing the
coefficients ck so that

∫

|ω−a|=δ

(ω − a)i

( |m|∑

k=1

ckfk(ω)

)
dω = 0, i = 0, . . . , τ − 1, (21)

where δ is sufficiently small. We do the same with each distinct candidate on
the boundary of D0(f). The linear homogeneous system of equations so obtained
has at least |m| − n1 linearly independent solutions, which we denote by c1

j , j =
1, . . . , |m| − n∗

1, where n∗
1 ≤ n1 denotes the rank of the system of equations.

Set

c1
j = (

c1
j,1, . . . , c

1
j,|m|

)
, j = 1, . . . , |m| − n∗

1.

Construct the (|m| − n∗
1) × |m| dimensional matrix

C1 =
⎛

⎜⎝

c1
1
...

c1
|m|−n∗

1

⎞

⎟⎠ .

Define the system g1 of |m| − n∗
1 functions by means of

gt
1 = C1ft = (g1,1, . . . , g1,|m|−n∗

1
)t ,

where (·)t means taking transpose. We have

g1,j =
|m|∑

k=1

c1
j,kfk, j = 1, . . . , |m| − n∗

1.

As the rows of C1 are non-null, none of the functions g1,j are polynomials because
of the polynomial independence of f with respect to m = (1,1, . . . ,1).

Consider the region

D0(g1) =
|m|−n∗

1⋂

j=1

D0(g1,j ).

Obviously, by construction, D0(f) is strictly included in D0(g1).
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It is easy to see that

|m|∑

k=1

c1
j,k

Pn,m,k

Qn,m

is an (n, |m|,1) incomplete Padé approximant of g1,j . Using Theorem 2.6 with m∗ =
1, for each j = 1, . . . , |m| − n∗

1, either the disk D1(g1,j ) contains exactly one pole of
g1,j and it is a zero of Q|m|, or R0(Q|m|g1,j ) > R1(g1,j ). In particular, D0(g1) �= C,
and all the singularities of g1 on the boundary of D0(g1) are poles which are zeros of
Q|m| counting their order. They constitute the next layer of candidate system poles
of f (now, it is possible that some candidates are not poles of f since the functions fk

intervene in the linear combination as we saw in example (5)).
Let us denote these new candidates by an1+1, . . . , an1+n2 . Of course, n1 + n2 ≤

|m|. Should n1 + n2 = |m|, we are done. Otherwise, n2 < |m| − n1 ≤ |m| − n∗
1,

and we can repeat the process. In order to eliminate the n2 poles, we have |m| −
n∗

1 functions which are analytic on D0(g1) and meromorphic on a neighborhood of
D0(g1). The corresponding homogeneous linear system of equations, similar to (21),
has at least |m|−n∗

1 −n2 linearly independent solutions c2
j , j = 1, . . . , |m|−n∗

1 −n∗
2,

where n∗
2 ≤ n2 is the rank of the new system. Set

c2
j = (

c2
j,1, . . . , c

2
j,|m|−n∗

1

)
, j = 1, . . . , |m| − n∗

1 − n∗
2.

Construct the (|m| − n∗
1 − n∗

2) × (|m| − n∗
1) dimensional matrix

C2 =
⎛

⎜⎝

c2
1
...

c2
|m|−n∗

1−n∗
2

⎞

⎟⎠ .

Define the system g2 of |m| − n∗
1 − n∗

2 functions by means of

gt
2 = C2gt

1 = C2C1ft = (g2,1, . . . , g2,|m|−n∗
1−n∗

2
)t .

The rows of C2C1 are of the form c2
jC

1, j = 1, . . . , |m|−n∗
1 −n∗

2, where C1 has rank

|m|−n∗
1 and the vectors c2

k are linearly independent. Therefore, the rows of C2C1 are
linearly independent; in particular, they are non-null. Consequently, the components
of g2 are not polynomials because of the polynomial independence of f with respect
to m = (1,1, . . . ,1). Thus, we can again apply Theorem 2.6. The proof is completed
using finite induction.

Notice that the numbers n1, n2, . . . which arise are greater than or equal to 1, and
on each iteration their sum is less than or equal to |m|. Therefore, in a finite number
of steps, say N −1, their sum must equal |m|. Consequently, the number of candidate
system poles of f in some disk, counting their multiplicities, is exactly equal to |m|,
and they are precisely the zeros of Q|m| as we wanted to prove.

Summarizing, in the N − 1 steps we have taken, we have produced N layers of
candidate system poles. Each layer contains nk candidates, k = 1, . . . ,N . At the same
time, at each step k, k = 1, . . . ,N −1, we have solved a linear system of nk equations,
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of rank n∗
k , with |m|−n∗

1 −· · ·−n∗
k, n

∗
k ≤ nk , linearly independent solutions. We find

ourselves on the N -th layer with nN candidates.
Let us try to eliminate these poles. As before, we write the corresponding system

of linear homogeneous equations as in (21), and we get

nN = |m| − n1 − · · · − nN−1 ≤ |m| − n∗
1 − · · · − n∗

N−1 =: nN

equations with nN unknowns. For each candidate system pole a of multiplicity τ on
the N -th layer, we impose the equations

∫

|ω−a|=δ

(ω − a)i

(
nN∑

k=1

ckgN−1,k(ω)

)
dω = 0, i = 0, . . . , τ − 1, (22)

where δ is sufficiently small and the gN−1,k, k = 1, . . . , nN , are the functions associ-
ated with the linearly independent solutions produced on step N − 1.

Let n∗
N be the rank of this last homogeneous linear system of equations. Assume

that nk∗ < nk for at least one k ∈ {1, . . . ,N}. In this case, there exists at least one
nontrivial solution of the system. The corresponding function g can be written as
a linear combination of the components of f, and it cannot reduce to a polynomial
because f is polynomially independent. Using Theorem 2.6, we obtain that g has on
the boundary of its disk of analyticity a pole which is a zero of Q|m|, but this is
clearly impossible because all the zeros of Q|m| are strictly contained in that disk.
Consequently, nk = n∗

k, k = 1, . . . ,N .
What we have proved implies that in all the N homogeneous systems which we

have solved (including the last one), there are no redundant equations. In turn, this
implies that if in any one of those systems of equations we equate one of its equations
to 1, instead of zero (see (21) or (22)), the corresponding nonhomogeneous linear
system of equations has a solution. Applying the definition of a system pole, this
means that each candidate system pole is a system pole of order at least equal to
its multiplicity as zero of Q|m|. But, as we saw in Lemma 3.5, f can have at most
|m| system poles with respect to m; therefore, all candidate system poles are indeed
system poles, and their order coincides with the multiplicity of that point as a zero
of Q|m|.

Thus, the proof of the inverse-type result is complete, and we have Q|m| = Q(f,m)

as well.
Let us prove now that (a) implies (b). Except for some details related to the num-

bers Rξ (f,m), where ξ is a system pole of f, the arguments are similar to those em-
ployed in [15]. In spite of this, for completeness, we give the entire proof.

For each n ≥ |m|, let qn,m be the polynomial Qn,m normalized so that

|m|∑

k=1

|λn,k| = 1, qn,m(z) =
|m|∑

k=1

λn,kz
k. (23)

Due to this normalization, the polynomials qn,m are uniformly bounded on each com-
pact subset of C.
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Let ξ be a system pole of order τ of f with respect to m. Consider a polynomial
combination g1 of type (6) that is analytic on a neighborhood of D|ξ | except for a
simple pole at z = ξ and verifies that R1(g1) = Rξ,1(f,m)(= rξ,1(f,m)). Then we
have

g1 =
|m|∑

k=1

pk,1fk, degpk,1 < mk, k = 1, . . . , |m|,

and

qn,m(z)h1(z) − (z − ξ)

|m|∑

k=1

pk,1(z)Pn,m,k(z) = Azn+1 + · · · ,

where h1(z) = (z − ξ)g1(z). Hence, the function

qn,m(z)h1(z)

zn+1
− z − ξ

zn+1

|m|∑

k=1

pk,1(z)Pn,m,k(z)

is analytic on D1(g1). Take 0 < r < R1(g1), and set Γr = {z ∈ C : |z| = r}. Using
Cauchy’s formula, we obtain

qn,m(z)h1(z) − (z − ξ)

|m|∑

k=1

pk,1(z)Pn,m,k(z) = 1

2πi

∫

Γr

zn+1

ωn+1

qn,m(ω)h1(ω)

ω − z
dω,

for all z with |z| < r , since deg
∑|m|

k=1 pk,1Pn,m,k < n. In particular, taking z = ξ in
the above formula, we arrive at

qn,m(ξ)h1(ξ) = 1

2πi

∫

Γr

ξn+1

ωn+1

qn,m(ω)h1(ω)

ω − ξ
dω. (24)

Straightforward calculations lead to

lim sup
n→∞

∣∣h1(ξ)qn,m(ξ)
∣∣1/n ≤ |ξ |

r
.

Using that h1(ξ) �= 0 and making r tend to R1(g1), we obtain

lim sup
n→∞

∣∣qn,m(ξ)
∣∣1/n ≤ |ξ |

Rξ,1(f,m)
< 1.

Now, we employ induction. Suppose that

lim sup
n→∞

∣∣q(j)
n,m(ξ)

∣∣1/n ≤ |ξ |
Rξ,j+1(f,m)

, j = 0,1, . . . , s − 2 (25)

(recall that Rξ,j+1(f,m) = mink=1,...,j+1 rξ,k(f,m)), with s ≤ τ , and let us prove that
formula (25) holds for j = s − 1.
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Consider a polynomial combination gs of the type (6) that is analytic on a neigh-
borhood of D|ξ | except for a pole of order s at z = ξ and verifies that Rs(gs) =
rξ,s(f,m). Then we have

gs =
|m|∑

k=1

pk,sfk, degpk,s < mk, k = 1, . . . , |m|.

Set hs(z) = (z − ξ)sgs(z). Reasoning as in the previous case, the function

qn,m(z)hs(z)

zn+1(z − ξ)s−1
− z − ξ

zn+1

|m|∑

k=1

pk,s(z)Pn,m,k(z)

is analytic on Ds(gs) \ {ξ}. Set Ps = ∑|m|
k=1 pk,sPn,m,k . Fix an arbitrary compact set

K ⊂ (Ds(gs) \ {ξ}). Take δ > 0 sufficiently small and 0 < r < Rs(gs) with K ⊂ Dr .
Using Cauchy’s integral formula and the residue theorem, for all z ∈ K , we have

qn,m(z)hs(z)

(z − ξ)s−1
− (z − ξ)Ps(z) = In(z) − Jn(z), (26)

where

In(z) = 1

2πi

∫

Γr

zn+1

ωn+1

qn,m(ω)hs(ω)

(ω − ξ)s−1(ω − z)
dω

and

Jn(z) = 1

2πi

∫

|ω−ξ |=δ

zn+1

ωn+1

qn,m(ω)hs(ω)

(ω − ξ)s−1(ω − z)
dω.

We have used in (26) that degPs < n. The first integral In is estimated as in (24) to
obtain

lim sup
n→∞

∥∥In(z)
∥∥1/n

K
≤ ‖z‖K

Rs(gs)
= ‖z‖K

rξ,s(f,m)
. (27)

As for Jn, write

qn,m(ω) =
|m|∑

j=0

q
(j)
n,m(ξ)

j ! (ω − ξ)j .

Then

Jn(z) =
s−2∑

j=0

1

2πi

∫

|ω−ξ |=δ

zn+1

ωn+1

q
(j)
n,m(ξ)

j !(ω − z)

hs(ω)

(ω − ξ)s−1−j
dω. (28)

Using the inductive hypothesis (25), estimating the integral in (28), and making ε

tend to zero, we obtain

lim sup
n→∞

∥∥Jn(z)
∥∥1/n

K
≤ ‖z‖K

|ξ |
|ξ |

Rξ,s−1(f,m)
= ‖z‖K

Rξ,s−1(f,m)
,
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which, together with (27) and (26), gives

lim sup
n→∞

∥∥qn,m(z)hs(z) − (z − ξ)sPs(z)
∥∥1/n

K
≤ ‖z‖K

Rξ,s(f,m)
. (29)

As the function inside the norm in (29) is analytic in Ds(gs), inequality (29) also
holds for any compact set K ⊂ Ds(gs). Besides, we can differentiate s − 1 times that
function and the inequality still holds true by virtue of Cauchy’s integral formula. So,
taking z = ξ in (29) for the differentiated version, we obtain

lim sup
n→∞

∣∣(qn,mhs)
(s−1)(ξ)

∣∣1/n ≤ |ξ |
Rξ,s(f,m)

.

Using the Leibnitz formula for higher derivatives of a product of two functions and
the induction hypothesis (25), we arrive at

lim sup
n→∞

∣∣q(s−1)
n,m (ξ)

∣∣1/n ≤ |ξ |
Rξ,s(f,m)

,

since hs(ξ) �= 0. This completes the induction.
Let ξ1, . . . , ξp be the distinct system poles of f, and let τi be the order of ξi as a

system pole, i = 1, . . . , p. By assumption, τ1 + · · · + τp = |m|. We have proved that,
for i = 1, . . . , p and j = 0,1, . . . , τi − 1,

lim sup
n→∞

∣∣q(j)
n,m(ξi)

∣∣1/n ≤ |ξi |
Rξi,j+1(f,m)

≤ |ξi |
Rξi

(f,m)
. (30)

Recall that Q(f,m) is the monic polynomial whose zeros are the system poles of f
with respect to m. Denote by Li,j , i = 1, . . . , p; j = 0,1, . . . τi − 1, the fundamental
interpolating polynomials at the zeros of Q(f,m); that is, for each i = 1, . . . , p and
j = 0,1, . . . τi − 1, degLi,j ≤ |m| − 1 and

L
(ν)
i,j (ξκ) = δiκδjν, κ = 1, . . . , p, ν = 0,1, . . . , τi − 1.

Then

qn,m(z) = λn,|m|Q(f,m) +
p∑

i=1

τi−1∑

j=0

q
(j)
n,m(ξi)Li,j (z). (31)

From (30) and (31), it follows that

lim sup
n→∞

∥∥qn,m − λn,|m|Q(f,m)
∥∥1/n

K
≤ θ < 1

for any compact K ⊂ C, where

θ = max

{ |ξ |
Rξ (f,m)

: ξ ∈ P (f,m)

}
. (32)
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As all norms in finite dimensional spaces are equivalent, we obtain

lim sup
n→∞

∥∥qn,m − λn,|m|Q(f,m)
∥∥1/n ≤ θ < 1. (33)

Now, necessarily we have

lim inf
n→∞ |λn,|m|| > 0, (34)

since if there exists a subsequence Λ ⊂ N such that limn∈Λ λn,|m| = 0, then from
(33), we have limn∈Λ ‖qn,m‖ = 0, contradicting (23).

As qn,m = λn,|m|Qn,m, we have proved

lim sup
n→∞

∥∥Qn,m − Q(f,m)
∥∥1/n ≤ θ < 1, (35)

where θ is given by (32). In particular, for n ≥ n0, degQn,m = |m|. The difference
of any two noncollinear solutions Q1 and Q2 of Definition 1.1 with the same degree
and equal leading coefficient produces a new solution of smaller degree, but we have
proved that any solution must have degree |m| for all sufficiently large n. Hence, the
polynomial Qn,m is uniquely determined for all sufficiently large n. With this we
have concluded the proof of the direct result.

Let us prove that the upper bound in (35) actually gives the exact rate of conver-
gence to obtain (7). To the contrary, suppose that

lim sup
n→∞

∥∥Qn,m − Q(f,m)
∥∥1/n = θ ′ < θ. (36)

Let ζ be a system pole of f such that

|ζ |
Rζ (f,m)

= θ = max

{ |ξ |
Rξ (f,m)

: ξ ∈ P (f,m)

}
.

Naturally, if there is inequality in (36), then Rζ (f,m) < ∞.
Choose a polynomial combination

g =
d∑

k=1

pkfk, degpk < mk, k = 1, . . . , d, (37)

that is analytic on a neighborhood of D|ζ | except for a pole of order s at z = ζ

with Rs(g) = Rζ (f,m). On the boundary of Ds(g), the function g must have a
singularity which is not a system pole. In fact, if all the singularities were of this
type we could find a different polynomial combination g1 of type (37) for which
Rs(g1) > Rs(g) = Rζ (f,m) against our definition of Rζ (f,m). For short, write
Q(f,m) = Q|m|. Consequently, the function Q|m|g can be represented as a power
series

∑∞
j=0 cj z

j with radius of convergence Rζ (f,m). So

lim sup
n→∞

n
√|cn| = 1/Rζ (f,m). (38)
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On the other hand, by virtue of (37), we have

Hn(z) := Qn,m(z)g(z) −
d∑

k=1

pk(z)Pn,m,k(z) = Bnz
n+1 + · · · ,

and this function is analytic at least in D|ζ | with a zero of multiplicity at least n + 1
at z = 0. Taking r < |ζ |, we obtain

1

2πi

∫

Γr

Hn(ω)

ωn+1
dω = 0.

Set Pn = ∑d
k=1 pkPn,m,k . Clearly, Q|m|g ≡ (Q|m| − Qn,m)g + Pn + Hn and, since

degPn ≤ n − 1, we arrive at

cn = 1

2πi

∫

Γr

Q|m|(ω)g(ω)

ωn+1
dω = 1

2πi

∫

Γr

[Q|m|(ω) − Qn,m(ω)]g(ω)

ωn+1
dω.

Taking (38) and (36) into consideration, estimating the integral, and letting r tend to
|ζ |, it follows that

1

Rζ (f,m)
= lim sup

n→∞
n
√|cn| ≤ θ ′

|ζ | <
θ

|ζ | = 1

Rζ (f,m)
,

which is absurd. We have completed the proof of Theorem 1.4. �

3.2 Convergence of the Hermite–Padé Approximants

The following result is in some sense the analog of the formula displayed just after
(58) in [7] written in different terms.

Theorem 3.6 Assume that either (a) or (b) in Theorem 1.4 takes place. If ξ is a
system pole of order τ of f with respect to m, then

max
j=0,...,s

lim sup
n→∞

∣∣Q(j)
n,m(ξ)

∣∣1/n = |ξ |
Rξ,s+1(f,m)

, s = 0,1, . . . , τ − 1. (39)

Proof Let ξ be as indicated. From (30) and (34), we have

max
j=0,...,s

lim sup
n→∞

∣∣Q(j)
n,m(ξ)

∣∣1/n ≤ |ξ |
Rξ,s+1(f,m)

, s = 0,1, . . . , τ − 1.

Assume that there is strict inequality for some s ∈ {0, . . . , τ − 1} and fix s.
Choose a polynomial combination

g =
d∑

k=1

pkfk, degpk < mk, k = 1, . . . , d,
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that is analytic on a neighborhood of D|ξ | except for a pole of order s(≤ s + 1) at
z = ξ with Rs(g) = Rξ,s+1(f,m). As before, on the boundary of Ds(g) the function
g must have a singularity which is not a system pole. Set Q(f,m) = Q|m|. Conse-
quently, the function Q|m|g can be represented as a power series

∑∞
j=0 cj z

j with
radius of convergence Rξ,s+1(f,m). So

lim sup
n→∞

n
√|cn| = 1/Rξ,s+1(f,m). (40)

On the other hand, by virtue of (37), we have

Hn(z) := Qn,m(z)g(z) −
d∑

k=1

pk(z)Pn,m,k(z) = Bnz
n+1 + · · · ,

and this function is analytic in Ds(g) \ {ξ}. Take r smaller than but sufficiently close
to Rξ,s+1(f,m) and δ > 0 sufficiently small. Let Γδ,r be the positively oriented curve
determined by γδ = {ω : |ω − ξ | = δ} and Γr . We have

1

2πi

∫

Γδ,r

Hn(ω)

ωn+1
dω = 0.

Set Pn = ∑d
k=1 pkPn,m,k and h(ω) = (ω − ξ)sg(ω). Obviously,

Q|m|g ≡ (Q|m| − Qn,m)g + Pn + Hn,

and, since degPn ≤ n − 1, we obtain

cn = 1

2πi

∫

Γδ,r

Q|m|(ω)g(ω)

ωn+1
dω = 1

2πi

∫

Γδ,r

[Q|m| − Qn,m](ω)h(ω)

(ω − ξ)sωn+1
dω

= 1

2πi

∫

Γr

[Q|m| − Qn,m](ω)h(ω)

(ω − ξ)sωn+1
dω −

|m|∑

ν=0

1

2πi

∫

γδ

[Q(ν)
|m| − Q

(ν)
n,m](ξ)h(ω)

ν!(ω − ξ)s−νωn+1
dω

= 1

2πi

∫

Γr

[Q|m| − Qn,m](ω)h(ω)

(ω − ξ)sωn+1
dω +

s−1∑

ν=0

1

2πi

∫

γδ

Q
(ν)
n,m(ξ)h(ω)

ν!(ω − ξ)s−νωn+1
dω.

Estimating these integrals, using (7) and the temporary assumption that

max
j=0,...,s

lim sup
n→∞

∣∣Q(j)
n,m(ξ)

∣∣1/n = |ξ |
κ

<
|ξ |

Rξ,s+1(f,m)
,

we obtain

lim sup
n→∞

|cn|1/n ≤ max

{
1

κ
,

θ

Rξ,s+1(f,m)

}
<

1

Rξ,s+1(f,m)
,

which contradicts (40). Hence, (39) takes place. �
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Now we are ready to give the analog of (4) for simultaneous approximation. We
need to introduce some notation. Fix k ∈ {1, . . . , d}. Let Dk(f,m) be the largest disk
centered at z = 0 in which all the poles of fk are system poles of f with respect to m,
their order as poles of fk does not exceed their order as system poles, and fk has no
other singularity. By Rk(f,m), we denote the radius of this disk. Let ξ1, . . . , ξN be
the poles of fk in Dk(f,m). For each j = 1, . . . ,N , let τ̃j be the order of ξj as a pole
of fk and τj its order as a system pole. By assumption, τ̃j ≤ τj . Set

R∗
k (f,m) = min

{
Rk(f,m), min

j=1,...,N
Rξj ,̃τj

(f,m)
}
,

and let D∗
k (f,m) be the disk centered at z = 0 with this radius.

Recall that σ(B) stands for the 1-dimensional Hausdorff content of the set B and
D∗|m|(fk) is the largest disk centered at the origin inside of which σ -limn→∞ Rn,m,k =
fk . Its radius is denoted by R∗|m|(fk).

We say that a compact set K ⊂ C is σ -regular if for each z0 ∈ K and for each
δ > 0, it holds that σ {z ∈ K : |z − z0| < δ} > 0.

Theorem 3.7 Let f be a system of formal Taylor expansions as in (1) and fix a multi-
index m ∈ Z

d+ \ {0}. Suppose that either (a) or (b) in Theorem 1.4 takes place. Then

lim sup
n→∞

‖fk − Rn,m,k‖1/n
K ≤ ‖z‖K

R∗|m|(fk)
, k = 1, . . . , d, (41)

where K is any compact subset of D∗|m|(fk)\ P (f,m). If, additionally, K is σ -regular,
then we have equality in (41). Moreover,

R∗|m|(fk) = R∗
k (f,m), k = 1, . . . , d.

Proof Let us fix k ∈ {1, . . . , d} and maintain the notation introduced above. Let K be
a compact subset contained in D∗

k (f,m)\ P (f,m). Take r smaller than but sufficiently
close to R∗

k (f,m), and δ > 0 sufficiently small so that K is in the region bounded by
Γr and the circles {z : |z − ξj | = δ}, j = 1, . . . ,N . Let Γδ,r be the curve with positive
orientation determined by Γr and those circles. On account of Definition 1.1, using
Cauchy’s integral formula, we have

(Qn,mfk − Pn,m,k)(z) = 1

2πi

∫

Γδ,r

zn+1

ωn+1

(Qn,mfk)(ω)

ω − z
dω.

Since limn Qn,m = Q|m|, using (39) and standard arguments, we obtain

lim sup
n→∞

‖fk − Rn,m,k‖1/n
K ≤ ‖z‖K

R∗
k (f,m)

. (42)

This last relation implies that σ -limn→∞ Rn,m,k = fk inside D∗
k (f,m). Since

R∗|m|(fk) is the largest disk inside of which such convergence takes place, it read-
ily follows that R∗

k (f,m) ≤ R∗|m|(fk). Should D∗
k (f,m) contain on its boundary some

singularity which is not a system pole, then necessarily R∗
k (f,m) = R∗|m|(fk) because
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σ -convergence implies that all singularities inside must be zeros of Q|m|, but the ze-
ros of this polynomial are all system poles as we proved in Theorem 1.4. Assume
that R∗|m|(fk) > R∗

k (f,m). Then, we have R∗|m|(fk) > minj=1,...,N Rξj ,̃τj
(f,m). From

the proof of [4, Theorem 3.6], we know that for each pole ξ of order τ̃ of fk inside
D∗

mk
(fk),

lim sup
n→∞

∣∣Q(j)
n,m(ξ)

∣∣1/n ≤ |ξ |
R∗|m|(fk)

, j = 0,1, . . . , τ̃ − 1.

This contradicts (39). Consequently R∗|m|(fk) = R∗
k (f,m) as claimed.

Due to (42), we have also proved (41). In order to show that this formula is exact
for σ -regular compact subsets, one must argue as in the corresponding part of the
proof of [4, Theorem 4.4]. �

As compared with [4, Theorem 4.4], Theorem 3.7 offers weaker assumptions and
a characterization of the values R∗|m|(fk) in terms of the analytic properties of the
functions in the system instead of the coefficients of their Taylor expansion. An open
question is to obtain an analogous characterization when the assumptions of Theo-
rem 3.7 do not take place.

It would be interesting to study inverse problems for row sequences of Hermite–
Padé approximation when only the limit behavior of some of the zeros of the poly-
nomials Qn,m is known, in the spirit of the conjectures proposed by A.A. Gonchar in
[7] (see also Sect. 6.3 of Chap. 1 in [1]).

Acknowledgements The work of B. de la Calle Ysern received support from MINCINN under grant
MTM2009-14668-C02-02 and from UPM through Research Group “Constructive Approximation Theory
and Applications”. The work of J. Cacoq and G. López was supported by Ministerio de Economía y
Competitividad under grants MTM2009-12740-C03-01 and MTM2012-36372-C03-01.

References

1. Aptekarev, A.I., Buslaev, V.I., Martínez-Finkelshtein, A., Suetin, S.P.: Padé approximants, continued
fractions, and orthogonal polynomials. Russ. Math. Surv. 66(6), 37–122 (2011)

2. Aptekarev, A.I., López Lagomasino, G., Saff, E.B., Stahl, H., Totik, V.: Mathematical life of A.A.
Gonchar (on his 80th birthday). Russ. Math. Surv. 66(6), 197–204 (2011)

3. Bolibrukh, A.A., Vitushkin, A.G., Vladimirov, V.S., Mishchenko, E.F., Novikov, S.P., Osipov, Yu.S.,
Sergeev, A.G., Ul’yanov, P.L., Faddeev, L.D., Chirka, E.M.: Andrei Aleksandrovich Gonchar (on his
70th birthday). Russ. Math. Surv. 57(1), 191–198 (2001)

4. Cacoq, J., de la Calle Ysern, B., López Lagomasino, G.: Incomplete Padé approximation and con-
vergence of row sequences of Hermite–Padé approximants. J. Approx. Theory (2012). doi:10.1016/
j.jat.2012.05.005

5. Fidalgo Prieto, U., López Lagomasino, G.: Nikishin systems are perfect. Constr. Approx. 34, 297–356
(2011)

6. Gonchar, A.A.: On convergence of Padé approximants for some classes of meromorphic functions.
Sb. Math. 26, 555–575 (1975)

7. Gonchar, A.A.: Poles of rows of the Padé table and meromorphic continuation of functions. Sb. Math.
43, 527–546 (1982)

8. Gonchar, A.A.: Rational approximation of analytic functions. Proc. Steklov Inst. Math. 272(suppl. 2),
S44–S57 (2011)

27



9. Hadamard, J.: Essai sur l’étude des fonctions données par leur développement de Taylor. J. Math.
Pures Appl. 8, 101–186 (1892)

10. Hermite, Ch.: Sur la fonction exponentielle. C. R. Math. Acad. Sci. Paris 77, 18–24 (1873)
11. Hermite, Ch.: Sur la fonction exponentielle. C. R. Math. Acad. Sci. Paris 77, 74–79 (1873)
12. Hermite, Ch.: Sur la fonction exponentielle. C. R. Math. Acad. Sci. Paris 77, 226–233 (1873)
13. Hermite, Ch.: Sur la fonction exponentielle. C. R. Math. Acad. Sci. Paris 77, 285–293 (1873)
14. de Montessus de Ballore, R.: Sur les fractions continues algébriques. Bull. Soc. Math. Fr. 30, 28–36

(1902)
15. Graves-Morris, P.R., Saff, E.B.: A de Montessus theorem for vector-valued rational interpolants. In:

Lecture Notes in Math., vol. 1105, pp. 227–242. Springer, Berlin (1984)
16. Graves-Morris, P.R., Saff, E.B.: Row convergence theorems for generalized inverse vector-valued

Padé approximants. J. Comput. Appl. Math. 23, 63–85 (1988)
17. Graves-Morris, P.R., Saff, E.B.: An extension of a row convergence theorem for vector Padé approxi-

mants. J. Comput. Appl. Math. 34, 315–324 (1991)
18. Nikishin, E.M., Sorokin, V.N.: Rational Approximations and Orthogonality. Transl. Math. Monogr.,

vol. 92. AMS, Providence (1991)
19. Sidi, A.: A de Montessus type convergence study of a least-squares vector-valued rational interpola-

tion procedure. J. Approx. Theory 155, 75–96 (2008)
20. Suetin, S.P.: On poles of the mth row of a Padé table. Sb. Math. 48, 493–497 (1984)
21. Suetin, S.P.: On an inverse problem for the mth row of the Padé table. Sb. Math. 52, 231–244 (1985)

28




