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1 Introduction and Statement of Main Results

This work can be regarded as a continuation of some of the investigations initiated by
the first author and Saff in [13], where greedy energy sequences with respect to general
kernelswere introduced andmanyproperties of these sequenceswere obtained.Greedy
energy sequences are defined in [13] as follows. Let X be a locally compact space
containing infinitely many points, and let k : X × X −→ R ∪ {+∞} be a symmetric
and lower semicontinuous function. The function k is referred to as the kernel. Given
a compact set A ⊂ X , a sequence (an)∞n=0 ⊂ A is called a greedy k-energy sequence
on A if it is generated in the following way:

• The first point a0 is selected arbitrarily on A.
• Assuming that a0, . . . , an have been selected, an+1 is chosen to satisfy

n∑

i=0

k(an+1, ai ) = inf
x∈A

n∑

i=0

k(x, ai ) (1)

for every n ≥ 0.

The existence of a point an+1 satisfying (1) follows from the lower semicontinuity
of k, but of course the choice of an+1 may not be unique in general. As in [13], we
will use here the notation αN := (a0, . . . , aN−1) to denote the first N points of the
sequence (an)∞n=0.

If X = C andwe use the logarithmic kernel k(x, y) = − log |x−y| (here and below
|x − y| indicates the Euclidean distance between x and y), then the above algorithm
generates the classical Leja sequences on compact subsets of the complex plane. If
X = R

p, p ≥ 2, and k(x, y) = |x − y|−s is the Riesz s-kernel with parameter s > 0,
then the sequences obtained are the greedy s-energy sequences on compact subsets of
R

p.
The main interest for the study of greedy energy sequences in [13] was to compare

the asymptotic behavior of the configurations αN with the asymptotic behavior of
optimal energy configurations. The study of the asymptotic properties of optimal
energy configurations has been a leitmotif in the work of Saff, and his efforts have
produced a tremendous advance in the theory of discrete minimal energy problems.
In this work we will be referring frequently to optimal energy configurations and their
asymptotic properties, so we define them next.

Given a set ω = {x1, . . . , xN } of N (N ≥ 2) points in X , not necessarily distinct,
we write card(ω) = N and we define the discrete energy of ω with respect to k by

E(ω) :=
∑

1≤i 	= j≤N

k(xi , x j ) = 2
∑

1≤i< j≤N

k(xi , x j ). (2)

Now assume that A ⊂ X is a compact set and N ≥ 2 is an integer. A set ωN ⊂ A is
an optimal N-point configuration on A if

E(ωN ) = inf{E(ω) : ω ⊂ A, card(ω) = N},

2



that is, ωN has the lowest possible energy among all N -point configurations on A.
Note that the existence of optimal energy configurations is guaranteed by the lower
semicontinuity of k.

Part of the results in [13] were obtained in the context of the unit circle S1 and
the Riesz s-kernel. It was shown in [13] that in terms of first-order asymptotics, there
is a difference in the behavior of greedy s-energy sequences and optimal N -point
configurations when s > 1 (see [13, Prop. 2.6]) which is not present in the case s ≤ 1.
Moreover, this difference takes place in the more general context of rectifiable Jordan
arcs or curves, see [13, Thm. 2.9]. It was also shown in [13] that on S1 and in the
case 0 < s ≤ 1, the second-order asymptotic behavior of greedy s-energy sequences
is no longer the same as that of optimal N -point configurations (see [13, Prop. 2.4,
Prop. 2.7]). These differences will be explained in detail below.

In this paper we investigate more deeply the asymptotic behavior of Leja sequences
and greedy s-energy sequences on S1 from the energy point of view. Consequently,
we are able to refine some of the results in [13] mentioned above. We first describe
the results we obtain for Leja sequences and later for greedy s-energy sequences. The
results we obtain have also motivated some conjectures for general sequences on S1

that we state in Sect. 2.

1.1 Results for Leja Sequences on the Unit Circle

Recall that a Leja sequence (an)∞n=0 on an infinite compact set K ⊂ C is a sequence
that is constructed by choosing an arbitrary a0 ∈ K and selecting each subsequent
an+1 ∈ K such that

n∑

i=0

log
1

|an+1 − ai | = inf
z∈K

n∑

i=0

log
1

|z − ai | , n ≥ 0. (3)

Equivalently, for every n ≥ 0, an+1 maximizes the product
∏n

i=0 |z − ai | on K .
Leja sequences are named after F. Leja in recognition of his work [11], although they
were first introduced by Edrei in [6]. These sequences have attracted some interest
in recent years, especially concerning the study of their interpolation properties, see,
e.g. [1,3,4,18,20]. Not many papers have been devoted to the study of the energy and
distribution of Leja sequences; some of these are [5,7,12,13,15].

Given a configuration ω = {x1, . . . , xN } of N ≥ 2 distinct points in the complex
plane C, we will denote by E0(ω) its logarithmic energy, that is,

E0(ω) :=
∑

1≤i 	= j≤N

log
1

|xi − x j | = 2
∑

1≤i< j≤N

log
1

|xi − x j | ,

see (2).
Let (an)∞n=0 be a Leja sequence on a compact set K ⊂ C, and recall that αN =

(a0, . . . , aN−1) denotes the N -tuple of the first N points of this sequence. A well-
known result in logarithmic potential theory that can be consulted in [19, Thm. V.1.1]
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asserts that if K is non-polar (i.e., K supports a positivemeasurewith finite logarithmic
energy), then

lim
N→∞

E0(αN )

N 2 = inf
μ∈P(K )

∫∫
log

1

|z − w| dμ(w) dμ(z), (4)

whereP(K ) is the set of probabilitymeasures supported on K .Moreover, the sequence
of point configurations αN has as limiting distribution the equilibrium measure on K ,
which is the unique probability measure ν on K satisfying the extremal property

∫∫
log

1

|z − w| dν(w) dν(z) = inf
μ∈P(K )

∫∫
log

1

|z − w| dμ(w) dμ(z). (5)

The asymptotic result (4) was first proved for Fekete sets on K by Fekete and Szegő,
see [17, Thm. 5.5.2]. Fekete sets on K consisting of N ≥ 2 points are exactly opti-
mal N -point configurations on K relative to the logarithmic kernel; that is, they are
configurations ωN ⊂ K satisfying

E0(ωN ) = inf{E0(ω) : ω ⊂ K , card(ω) = N}.

Before we state our results for Leja sequences on S1 we describe some basic proper-
ties of these sequences. First, it is clear that a rotation (by multiplication with ρ ∈ C,
|ρ| = 1) will neither destroy the Leja sequence property (3) nor change the loga-
rithmic energy of the configurations αN . So, it suffices to consider Leja sequences
starting with initial point 1. Following the terminology used in [1,3], we will refer to
the configurations αN as N-Leja sections.

Leja sequences on S1 can be described in detail by the following properties obtained
by Bialas-Ciez and Calvi in [1, Thm. 5], see also [13, Lem. 4.2]. Let us define first the
notation (A, B) = (a0, . . . , aN−1, b0, . . . , bM−1) for an N -tuple A = (a0, . . . , aN−1)

and an M-tuple B = (b0, . . . , bM−1). Then

(1) any 2n-Leja section is formed by the 2n th roots of unity.
(2) Given any 2n+1-Leja section α2n+1 containing the 2n-Leja section α2n as its first

2n points, there exists a 2n th root ρ of −1 and a 2n-Leja section β2n such that
α2n+1 = (α2n , ρ β2n ).

(3) Iterating (2), it is easily seen that for any k-Leja section αk with k = 2n1 + 2n2 +
· · · + 2nt , n1 > n2 > · · · > nt ≥ 0, there exists for each i = 1, . . . , t a 2ni -Leja
section αi

2ni (with initial point 1) such that

αk = (α1
2n1 , ρ1 α2

2n2 , ρ1ρ2 α3
2n3 , . . . ,

(
t−1∏

i=1

ρi

)
αt
2nt ),

for some numbers ρi that are 2ni th roots of −1. In other words, any Leja section
is composed of rotated Leja sections of smaller size.
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Concerning the asymptotic behavior of E0(αN ) for Leja sequences on the unit
circle, the asymptotic formula (4) applied in this context gives

lim
N→∞

E0(αN )

N 2 = 0,

since the equilibrium measure on S1 is the normalized arclength measure and its
logarithmic energy (5) is zero. In this paper we prove the following:

Theorem 1.1 If (an)∞n=0 is a Leja sequence on S1, then for the sequence αN =
(a0, . . . , aN−1) we have

lim
N→∞

E0(αN )

N log N
= −1. (6)

We note that each Fekete set on S1 with N ≥ 2 points is a rotated copy of the N th
roots of unity having logarithmic energy −N log N . Therefore, E0(ω) ≥ −N log N
for any N -point configuration ω on S1. A refinement of (6) is the following second-
order estimate:

Theorem 1.2 Under the same assumptions as in Theorem 1.1, for every N we have

0 ≤ E0(αN ) + N log(N )

N
< log(4/3). (7)

The upper bound in (7) is best possible since

lim sup
N→∞

E0(αN ) + N log N

N
= log(4/3). (8)

Observe that if N is a power of 2, then the lower bound in (7) is attained. The
estimates in (7) imply (6), but we shall provide a direct proof of (6) not using (7).

1.2 Results for Greedy s-Energy Sequences on the Unit Circle

Let s > 0 and let ω = {x1, . . . , xN } ⊂ C be a configuration of N ≥ 2 distinct points.
We denote by Es(ω) the Riesz s-energy of ω, that is,

Es(ω) :=
∑

1≤i 	= j≤N

1

|xi − x j |s = 2
∑

1≤i< j≤N

1

|xi − x j |s .

In this paper we shall also analyze the asymptotic behavior of the Riesz s-energy of
the first N points of a greedy s-energy sequence on S1. Recall that by definition, such
sequences (an)∞n=0 ⊂ S1 are obtained by choosing an arbitrary a0 ∈ S1 and selecting
each subsequent an+1 ∈ S1, n ≥ 0, such that

n∑

i=0

1

|an+1 − ai |s = inf
z∈S1

n∑

i=0

1

|z − ai |s .
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The first important observation we make is that for any s > 0, greedy s-energy
sequences coincide with Leja sequences on S1 due to the symmetry of the circle. This
can be easily deduced from an induction argument that uses Lemmas 4.1 and 4.2 from
[13] which we will omit here.

Also, we emphasize that for any fixed s > 0, if ωN is an optimal N -point configu-
ration on S1 that minimizes the Riesz s-energy, i.e., ωN satisfies

Es(ωN ) = inf{Es(ω) : ω ⊂ S1, card(ω) = N},

then ωN is again formed by N equally spaced points, see [8].
Following the notation used in [2], we will denote by Ls(N ) the Riesz s-energy

(s > 0) of N equally spaced points on the unit circle, i.e.,

Ls(N ) := Es({zk,N }Nk=1), zk,N := exp(2π i(k − 1)/N ), k = 1, . . . , N .

It is easy to see that

Ls(N ) = 2−s N
N−1∑

k=1

(
sin

kπ

N

)−s

, N ≥ 2,

using |eiξ − eiθ | = 2| sin( ξ−θ
2 )|. By convention we set Ls(1) = 0.

If the Riesz parameter s satisfies 0 < s < 1, one can still use potential theory, as
in the logarithmic case, to study the asymptotic behavior of Ls(N ) and the Riesz s-
energy of greedy s-energy configurations. The following first-order asymptotic results
are known and can be proved using the same techniques. We have

lim
N→∞

Ls(N )

N 2 = lim
N→∞

Es(αN )

N 2 = Is(σ ), (9)

where σ is the normalized arc length measure on S1, which minimizes the energy

Is(μ) :=
∫∫

1

|x − y|s dμ(x) dμ(y) (10)

among all probability measures on S1. For a proof of (9), see [10,13]. The limiting
value in (9) is given by

Is(σ ) = 1

2π

2π∫

0

1

|1 − eiφ |s dφ = 2−s �((1 − s)/2)√
π �(1 − s/2)

,

cf. [16, 2.5.3.1].
In terms of second-order asymptotics for the sequence Ls(N ), the following limit

holds (see [2]):

lim
N→∞

Ls(N ) − Is(σ )N 2

N 1+s
= 2ζ(s)

(2π)s
, (11)
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where ζ(s) is the analytic extension of the classical Riemann zeta function. It should
be noted that in the range s ∈ (0, 1) we have ζ(s) < 0. In contrast to (11), it was
shown in [13, Cor. 2.5] that in the case of greedy s-energy sequences on S1 and the
corresponding configurations αN , the sequence

(
Es(αN ) − Is(σ )N 2

N 1+s

)

N

is not convergent. In this paper we look more closely at this sequence.
In order to state our results in the Riesz setting, we need to introduce certain nota-

tions and definitions.

Definition 1.3 Let p ≥ 1 be a fixed integer. We let �p ⊂ [0, 1]p denote the set of all
vectors �θ = (θ1, θ2, . . . , θp) for which there exists an infinite sequenceN of integers
N = 2n1 + 2n2 + · · · + 2n p , n1 > n2 > · · · > n p ≥ 0, satisfying

lim
N∈N

2ni

N
= θi , for all i = 1, . . . , p. (12)

Note that if (θ1, . . . , θp) ∈ �p, then

p∑

i=1

θi = 1. (13)

On �p × [0,∞) we define the following function:

H((θ1, . . . , θp); s) :=
p∑

k=1

θ sk

(
2(2s − 1)

⎛

⎝
p∑

j=k+1

θ j

⎞

⎠ + θk

)
. (14)

It follows from (13) that for any �θ = (θ1, . . . , θp) ∈ �p we have

H(�θ; 0) = H(�θ; 1) = 1.

In Sect. 5 we give some further remarks about the sets�p and the functions H in (14).
The graphs of some functions H associated with three vectors �θ are shown in Fig. 1.

Definition 1.4 Let 0 < s < 1 be fixed. Using the function (14) we introduce the
notations

h p(s) := inf
�θ∈�p

H(�θ; s), p ∈ N, (15)

h(s) := inf
p∈N

h p(s). (16)
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Fig. 1 In increasing order, we show the graphs of the functions (14) associated with the vectors �θ =
(16/21, 4/21, 1/21), �θ = (4/5, 1/5) and �θ = (2/3, 1/3), respectively

Similarly, for s > 1 fixed we define

h p(s) := sup
�θ∈�p

H(�θ; s), p ∈ N, (17)

h(s) := sup
p∈N

h p(s). (18)

Unfortunately we have not found an explicit expression of the functions h(s) and
h(s). Our next result is the following:

Theorem 1.5 Let s ∈ (0, 1) be fixed, and let (an)∞n=0 be a greedy s-energy sequence
on S1. Then, for the sequence of configurations αN = (an)

N−1
n=0 we have

lim sup
N→∞

Es(αN ) − Is(σ )N 2

N 1+s
= h(s)

2ζ(s)

(2π)s
, (19)

where ζ(s) is the analytic extension of the classical Riemann zeta function, and h(s)
is defined in (15)–(16). We also have

lim inf
N→∞

Es(αN ) − Is(σ )N 2

N 1+s
= 2ζ(s)

(2π)s
. (20)

In particular, the sequence Es (αN )−Is (σ )N2

N1+s is not convergent since h(s) < 1 for every
s ∈ (0, 1).

In contrast to the case s ∈ (0, 1), if s ≥ 1 potential-theoretic tools are no longer
available to study the asymptotic behavior of Ls(N ) or Es(αN ). This is due to the fact
that in this case the continuous Riesz s-energy (10) of any probability measure μ on
S1 is infinite.
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As a particular case of a general result for rectifiable Jordan curves in R
d proved

in [14, Thm. 3.2], we know that if s > 1, then

lim
N→∞

Ls(N )

N 1+s
= 2ζ(s)

(2π)s
, (21)

where ζ(s) = ∑∞
n=1 n

−s denotes now the classical Riemann zeta function.
Concerning greedy s-energy sequences, we have the following result, analogous to

Theorem 1.5:

Theorem 1.6 Let s > 1 be fixed, and let (an)∞n=0 be a greedy s-sequence on S
1. Then,

for the sequence of configurations αN = (an)
N−1
n=0 we have

lim sup
N→∞

Es(αN )

N 1+s
= h(s)

2ζ(s)

(2π)s
, (22)

where ζ(s) is the classical Riemann zeta function, and h(s) is defined in (17)–(18).
We also have

lim inf
N→∞

Es(αN )

N 1+s
= 2ζ(s)

(2π)s
. (23)

In particular, the sequence Es (αN )

N1+s is not convergent since h(s) > 1 for every s > 1.

We remark that in [13, Prop. 2.6] it was already shown that the sequence Es (αN )

N1+s is
not convergent. We also want to emphasize that the following result, related with (22),
can be deduced from [13, Thm. 2.9]. If (xn)∞n=0 ⊂ S1 is any sequence of pairwise
distinct points on the unit circle and s > 1, then for the sequence of configurations
ωN = {x0, . . . , xN−1} we have

lim sup
N→∞

Es(ωN )

N 1+s
>

2ζ(s)

(2π)s
.

We finally consider the critical case s = 1. As a corollary of [14, Thm. 3.2] and
[13, Thm. 2.10] we know that

lim
N→∞

L1(N )

N 2 log N
= lim

N→∞
E1(αN )

N 2 log N
= 1

π
,

for any greedy s-energy sequence (s = 1) on S1 and the corresponding configurations
αN . Moreover, we have the following second-order asymptotics (see [2]):

lim
N→∞

L1(N ) − 1
π
N 2 log N

N 2 = 1

π
(γ − log(π/2)), (24)

where γ = limN→∞
(
1 + 1

2 + · · · + 1
N − log N

)
denotes the Euler–Mascheroni con-

stant.
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In our next result we consider the corresponding second-order expression

E1(αN ) − 1
π
N 2 log N

N 2 .

In order to state this result we need some definitions. For �θ = (θ1, . . . , θ) ∈ �p we
let

K (θ1, . . . , θp) := 2 log 2 +
p∑

k=1

θ2k log (θk/4) + 2
p−1∑

k=1

⎛

⎝
p∑

j=k+1

θ j

⎞

⎠ θk log θk, (25)

where if θk = 0, we understand in (25) that θk log θk = 0. Let

κ := sup
p∈N

sup
�θ∈�p

K (�θ). (26)

Theorem 1.7 Let (an)∞n=0 be a greedy s-energy sequence on S1 for s = 1. Then, for
the sequence of configurations αN = (an)

N−1
n=0 we have

lim sup
N→∞

E1(αN ) − 1
π
N 2 log N

N 2 = 1

π
(γ − log(π/2) + κ), (27)

where κ is the constant in (26). We also have

lim inf
N→∞

E1(αN ) − 1
π
N 2 log N

N 2 = 1

π
(γ − log(π/2)). (28)

In particular, the sequence
E1(αN )− 1

π
N2 log N

N2 is not convergent since κ > 0.

We remark that in [13, Cor. 2.8] it was already shown that the sequence
E1(αN )− 1

π
N2 log N

N2 is not convergent.
This paper is organized as follows: in Sect. 2 we formulate some conjectures for

general sequences on the unit circle. In Sect. 3 we prove Theorem 1.1, and in Sect. 4
we prove Theorem 1.2. In Sect. 5 we give the proofs of the results in the Riesz setting.

2 Some Conjectures

From the energy point of view, it is clear that Leja sequences and greedy s-energy
sequences are special within the class of general sequences on the unit circle, as each
point in the sequence is selected in an optimal way. In fact, we can also define the
point an in a greedy s-energy sequence as a point satisfying

Es({a0, . . . , an−1, an}) = inf
x∈S1

Es({a0, . . . , an−1, x}), n ≥ 1.
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Because of this property, it is reasonable to expect that greedy sequences provide the
lowest upper limit for the normalized energy expressions that have been described
above. We state this as a conjecture.

Conjecture 2.1 Let (xn)∞n=0 ⊂ S1 be an arbitrary sequence on S1 such that xi 	= x j
for every i 	= j , and let ωN = {x0, . . . , xN−1}, N ≥ 2. Then

lim sup
N→∞

E0(ωN ) + N log N

N
≥ log(4/3);

for s ∈ (0, 1),

lim sup
N→∞

Es(ωN ) − Is(σ )N 2

N 1+s
≥ h(s)

2ζ(s)

(2π)s
;

for s > 1,

lim sup
N→∞

Es(ωN )

N 1+s
≥ h(s)

2ζ(s)

(2π)s
;

and for s = 1,

lim sup
N→∞

Es(ωN ) − 1
π
N 2 log N

N 2 ≥ 1

π
(γ − log(π/2) + κ),

where the expressions on the right-hand sides of the last three inequalities are the
same as those appearing in (19), (22) and (27).

3 First-Order Asymptotics in the Logarithmic Case

In this section we prove Theorem 1.1, but first we give a preliminary discussion and
prove an auxiliary result.

Let (an)∞n=0 be a Leja sequence on S1. It was shown in [3, Lem. 4] that if k =
2n1 + 2n2 + · · · + 2nt with n1 > n2 > · · · > nt ≥ 0, then

k−1∏

i=0

|ak − ai | = 2t . (29)

Let Uk denote the discrete potential

Uk(z) :=
k−1∑

i=0

log
1

|z − ai | .
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Then

E0(αN ) = 2
∑

0≤i<k≤N−1

log
1

|ai − ak | = 2
N−1∑

k=1

k−1∑

i=0

log
1

|ak − ai | = 2
N−1∑

k=1

Uk(ak).

If τ(k) is the integer with the property

k = 2n1 + 2n2 + · · · + 2nτ (k) , n1 > n2 > · · · > nτ(k) ≥ 0, (30)

then according to (29),

Uk(ak) = − log (2τ(k)),

and, therefore,

E0(αN ) = −2 log(2)
N−1∑

k=1

τ(k). (31)

Note that τ(k) is the number of ones in the binary representation of k, so it satisfies
the following properties:

τ(2n) = 1, n ≥ 0,

and if n1 > n2 > · · · > nk , then

τ(2n1 + 2n2 + · · · + 2nk + m) = k + τ(m), 1 ≤ m ≤ 2nk − 1. (32)

Recall that the logarithmic energy of the configuration formed by N equally spaced
points in S1 equals −N log N . Since the configuration α2n consists of 2n equally
spaced points, we have

E0(α2n ) = −2n log(2n). (33)

In particular, (31) and (33) give

n2n−1 =
2n−1∑

k=1

τ(k). (34)

More generally, we have the following:

Lemma 3.1 Assume that

N = 2n1 + 2n2 + · · · + 2nt , n1 > n2 > · · · > nt ≥ 0. (35)

Then,
N−1∑

k=1

τ(k) =
t∑

i=1

(ni + 2(i − 1)) 2ni−1. (36)

12



Proof The proof is by induction on t . If t = 1 then (36) is exactly (34). Applying (32)
and (34) we obtain

2n1+2n2+···+2nt −1∑

k=2n1+2n2+···+2nt−1

τ(k) = τ(2n1 + 2n2 + · · · + 2nt−1)

+
2nt −1∑

m=1

τ(2n1 + 2n2 + · · · + 2nt−1 + m)

= t − 1 +
2nt −1∑

m=1

(τ (m) + t − 1) = (t − 1) 2nt + nt 2
nt−1.

So (36) now follows easily by induction applying the previous computations and

2n1+2n2+···+2nt −1∑

k=1

τ(k) =
2n1+2n2+···+2nt−1−1∑

k=1

τ(k) +
2n1+2n2+···+2nt −1∑

k=2n1+2n2+···+2nt−1

τ(k).

�
Proof of Theorem 1.1 From (36) and (31) it follows that if N = 2n1+2n2+· · ·+2nτ (N ) ,
with n1 > n2 > · · · > nτ(N ) ≥ 0, then

E0(αN ) = �N ,1 + �N ,2, (37)

where

�N ,1 := − log(2)(n12
n1 + n22

n2 + · · · + nτ(N )2
nτ (N ) ),

�N ,2 := − log(2)(2n2+1 + 2 · 2n3+1 + · · · + (τ (N ) − 1)2nτ (N )+1).

We first justify that

lim
N→∞

�N ,2

N log N
= 0. (38)

Indeed, we have

− 1

2 log(2)

�N ,2

N log N
= 2n2 + 2 · 2n3 + · · · + (τ (N ) − 1)2nτ (N )

(2n1 + 2n2 + · · · + 2nτ (N ) ) log N

= 2n2−n1 + 2 · 2n3−n1 + · · · + (τ (N ) − 1)2nτ (N )−n1

(1 + 2n2−n1 + · · · + 2nτ (N )−n1) log N

≤
1
2 + 2

( 1
2

)2 + · · · + (τ (N ) − 1)
( 1
2

)τ(N )−1

log N
.

The numerator in the last expression is bounded by
∑∞

n=1 n2
−n = 2 and (38) follows.

13



We now show that

lim
N→∞

�N ,1

N log N
= −1; (39)

hence (6) will follow from (37), (38) and (39). We write

− �N ,1

N log N
= log(2)(n12n1 + n22n2 + · · · + nτ(N )2nτ(N ) )

(2n1 + 2n2 + · · · + 2nτ(N ) ) log(2n1 + 2n2 + · · · + 2nτ(N ) )

= log(2)(n1 + n22n2−n1 + · · · + nτ(N )2nτ(N )−n1 )

(1 + 2n2−n1 + · · · + 2nτ(N )−n1 ) log(2n1 (1 + 2n2−n1 + · · · + 2nτ(N )−n1 ))

= log(2)(n1 + n22n2−n1 + · · · + nτ(N )2nτ(N )−n1 )

(1 + 2n2−n1 + · · · + 2nτ(N )−n1 ){n1 log 2 + log(1 + 2n2−n1 + · · · + 2nτ(N )−n1 )} .

(40)

Sincen1 > n2 > · · · > nτ(N ), we have 1+2n2−n1+· · ·+2nτ (N )−n1 <
∑∞

m=0 2
−m = 2.

Therefore,

lim
N→∞

(1 + 2n2−n1 + · · · + 2nτ (N )−n1) log(1 + 2n2−n1 + · · · + 2nτ (N )−n1)

n1 + n22n2−n1 + · · · + nτ(N )2nτ (N )−n1
= 0,

(41)
due to the fact that n1 → ∞ as N → ∞.

Now we write

n1 log(2) (1 + 2n2−n1 + · · · + 2nτ (N )−n1)

log(2) (n1 + n22n2−n1 + · · · + nτ(N )2nτ (N )−n1)

= 1 + 2n2−n1 + · · · + 2nτ (N )−n1

1 + ( n2
n1

)
2n2−n1 + · · · + ( nτ (N )

n1

)
2nτ (N )−n1

=: cN
dN

. (42)

In order to prove that cN/dN → 1 it suffices to show that cN − dN → 0. We have

cN − dN =
(
1 − n2

n1

)
2n2−n1 +

(
1 − n3

n1

)
2n3−n1 + · · · +

(
1 − nτ(N )

n1

)
2nτ (N )−n1 .

One can prove that this expression approaches zero applying Lebesgue’s dominated
convergence theorem. On N = {1, 2, . . .} we define a sequence of functions ( fN )N as
follows:

fN (m) =
{

(1 − ni
n1

) 2ni−n1 if m = n1 − ni for some i, 2 ≤ i ≤ τ(N ),

0 otherwise.

The function fN is well-defined, and clearly

cN − dN =
∞∑

m=1

fN (m).

14



For each fixed m, fN (m) = 0 or fN (m) = (m/n1) 2−m . In any case, since n1 → ∞
we have fN (m) → 0 as N → ∞. Hence Lebesgue’s theorem gives

lim
N→∞ cN − dN =

∞∑

m=1

0 = 0.

Since cN/dN → 1, (39) follows from (40-42). �
Remark 3.2 We would like to emphasize that if (xn)∞n=0 is any sequence of pairwise
distinct points in S1, then it is clear that for the sequence of configurations ωN =
{x0, x1, . . . , xN−1} we have

lim sup
N→∞

E0(ωN )

N log N
≥ −1. (43)

If we have equality in (43), then

lim
N→∞

E0(ωN )

N log N
= −1 (44)

and the sequence (xn)∞n=0 will be asymptotically uniformly distributed; that is, we
have the weak-star convergence

1

N

∑

x∈ωN

δx
∗−−−−→

N→∞ σ, (45)

where σ denotes the normalized arc length measure on S1. Indeed, if (44) holds, then

lim
N→∞

E0(ωN )

N 2 = 0 =
∫∫

log
1

|x − y| dσ(x) dσ(y),

and this implies (45) by a standard argument in potential theory, see [17].

4 Second-Order Estimates in the Logarithmic Case

Proof of Theorem 1.2 The inequality on the left-hand side of (7) is obvious. If N has
the binary representation (35), then in virtue of (31) and (36) we have

E0(αN ) + N log N

N
= − log(2)

∑t
i=1(ni + 2i − 2) 2ni

∑t
i=1 2

ni
+ log

(
t∑

i=1

2ni

)
; (46)

hence the inequality on the right-hand side of (7) is the same as

− log(2)

∑t
i=1(ni + 2i − 2) 2ni

∑t
i=1 2

ni
+ log

(
t∑

i=1

2ni

)
< 2 log 2 − log 3.
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Simplifying we obtain that this is equivalent to

log

(
3

t∑

i=1

2ni

)
< log(2)

∑t
i=1(ni + 2i)2ni

∑t
i=1 2

ni
.

Hence we want to show that

3
t∑

i=1

2ni < 2cN , cN =
∑t

i=1(ni + 2i) 2ni
∑t

i=1 2
ni

. (47)

In order to prove (47) we apply the following inequality, which can be found in [9,
p. 78]: for any collection of positive numbers (bi )ti=1 and (pi )ti=1 we have

∑t
i=1 pi bi∑t
i=1 pi

≤ exp

(∑t
i=1 pi bi log(bi )∑t

i=1 pi bi

)
, (48)

with equality only if all the b’s are equal. The inequality (48) is obtained applying
Jensen’s inequality to the convex function x log x . Taking in (48) the values

pi = 2−2i , bi = 2ni+2i , i = 1, . . . , t,

we obtain after simplification the expression

∑t
i=1 2

ni
∑t

i=1 4
−i

< 2cN ,

which gives (47).
In order to prove (8), it suffices now to show that for the subsequence

N = N (k) =
k∑

j=0

4 j = 4k+1 − 1

3
(49)

one gets

lim
k→∞

E0(αN ) + N log N

N
= log

(
4

3

)
.

For this it is convenient to rewrite (46) as

E0(αN ) + N log N

N
= log(2)

∑t
i=2(n1 − ni + 2 − 2i) 2ni−n1

∑t
i=1 2

ni−n1
+ log

(
t∑

i=1

2ni−n1

)
.

(50)
For the choice (49) of N we have n1 − ni = 2i − 2; hence the first term vanishes,
while the second term approaches log(4/3). �
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Fig. 2 This figure shows the first 4200 points of the sequence (E0(αN ) + N log N )/N )N

An interesting property of the sequence analyzed in Theorem 1.2 is the fact that

E0(αN ) + N log N

N
= E0(α2N ) + 2N log(2N )

2N
, for all N ≥ 1,

which can be easily checked using (50). This property explains the “periodic” behav-

ior of the sequence
(
E0(αN )+N log N

N

)

N
that can be observed in Fig. 2 above, with

increasing “periods” of length 2n .

5 Proofs of Results in the Riesz Setting

We begin with a formula that expresses the Riesz s-energy of the first N points αN of
a greedy s-energy sequence on the unit circle in terms of the binary representation of
N .

Proposition 5.1 Let (an)∞n=0 be a greedy s-energy sequence on S1, and let αN =
(an)

N−1
n=0 . Assume that N has the binary representation (35). Then

Es(αN ) =
t−1∑

k=1

⎛

⎝
t∑

j=k+1

2n j−nk

⎞

⎠Ls(2
nk+1) +

t∑

k=1

⎛

⎝1 −
t∑

j=k+1

2n j−nk+1

⎞

⎠Ls(2
nk ),

(51)
understanding

∑t
t+1 as empty sum.

Proof Theproof of (51) is obtained froma repeated application of the following simple
property: if A and B are two finite sets of points on the unit circle with A ∩ B = ∅,
then

Es(A ∪ B) = Es(A) + Es(B) + 2
∑

y∈B

∑

x∈A

|x − y|−s . (52)

Let (an)∞n=0 be a greedy s-energy sequence on S1. Recall that this sequence also has
the structure of a Leja sequence, and hence the properties (1)–(3) described in Sect. 1
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are also applicable for this sequence. Let A1 denote the set formed by the first 2n1

points of the sequence and B1 denote the next N − 2n1 = 2n2 + · · · + 2nt points of
the sequence, i.e.,

A1 := (an)
2n1−1

n=0 , B1 := (an)
N−1
n=2n1 .

Since the points in A1 are equally spaced, we have Es(A1) = Ls(2n1). Any y ∈ B1
lies in the midpoint of one of the 2n1 arcs determined by the points of A1. So clearly∑

x∈A1
|x−y|−s is independent of y, andwe canwrite this expression as the difference

∑

x∈A1

|x − y|−s = 2−s
2n1+1−1∑

j=1

(
sin

π j

2n1+1

)−s

− 2−s
2n1−1∑

j=1

(
sin

π j

2n1

)−s

= 1

2n1+1 Ls(2
n1+1) − 1

2n1
Ls(2

n1).

We conclude from (52) and the computation above that

Es(αN ) =
⎛

⎝
t∑

j=2

2n j−n1

⎞

⎠Ls(2
n1+1) +

⎛

⎝1 −
t∑

j=2

2n j−n1+1

⎞

⎠Ls(2
n1) + Es(B1).

Now we can apply this argument to the set B1, since this set itself has the structure
of the first N − 2n1 points of a greedy sequence, see [1, Thm. 5] and [13, Lem. 4.2].
In particular, if we make the partition B1 = A2 ∪ B2, where A2 is the set formed by
the first 2n2 points in B1 and B2 is the set formed by the remaining N − 2n1 − 2n2 =
2n3 + · · · + 2nt points in B1, then again we have that A2 is formed by equally spaced
points and any point of B2 lies in the midpoint of one of the 2n2 arcs determined by
the points of A2. Hence as before we get

Es(B1) =
⎛

⎝
t∑

j=3

2n j−n2

⎞

⎠Ls(2
n2+1) +

⎛

⎝1 −
t∑

j=3

2n j−n2+1

⎞

⎠Ls(2
n2) + Es(B2),

and so

Es(αN ) =
2∑

k=1

⎛

⎝
t∑

j=k+1

2n j−nk

⎞

⎠Ls(2
nk+1)

+
2∑

k=1

⎛

⎝1 −
t∑

j=k+1

2n j−nk+1

⎞

⎠Ls(2
nk ) + Es(B2).

Applying this argument repeatedly it is clear that we arrive at (51). �
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Before giving the proofs of the results in the Riesz setting, we make some remarks
concerning the sets �p and the functions H defined in (14).

The reader can easily check that an alternative way to define the set �p is the
following. This set consists of all vectors �θ = (θ1, . . . , θp) that can be written in the
form

�θ =
(
2t1

M
,
2t2

M
, . . . ,

2tr−1

M
,
1

M
, 0, . . . , 0

)
, (53)

where M = 2t1 +2t2 +· · ·+2tr−1 +1 is an odd integer with t1 > t2 > · · · > tr−1 > 0
and 1 ≤ r ≤ p. The number of zeros in (53) is then p− r , if they appear. In particular
we see that the set �p can be regarded as a subset of �p+1, for all p. We preferred
to give the Definition 1.3 for �p instead of the one described here since we are only
going to make use of the limiting property (12).

It follows from (14) that if �θ = (θ1, . . . , θp) satisfies the condition θk ≥
2

∑p
j=k+1 θ j for all k = 1, . . . , p − 1, then H(�θ; s) is convex as a function of s

since in this case we can write it as a positive linear combination of convex functions.

5.1 Second-Order Asymptotics in the Riesz Case for 0 < s < 1

Below we will make use of a fortunate relation between the coefficients appearing in
(51), the arguments of Ls in this formula, and N 2. The reader can easily check that
for N as in (35) we have

N 2 =
t−1∑

k=1

⎛

⎝
t∑

j=k+1

2n j−nk

⎞

⎠ 22(nk+1) +
t∑

k=1

⎛

⎝1 −
t∑

j=k+1

2n j−nk+1

⎞

⎠ 22nk . (54)

So if we introduce the notation

Rs(N ) := Ls(N ) − Is(σ )N 2

N 1+s
, 0 < s < 1, (55)

it follows from (51) and (54) that

Es(αN ) − Is(σ )N 2

N 1+s
=

t−1∑

k=1

(
2nk+1

N

)1+s
⎛

⎝
t∑

j=k+1

2n j−nk

⎞

⎠Rs(2
nk+1)

+
t∑

k=1

(
2nk

N

)1+s
⎛

⎝1 −
t∑

j=k+1

2n j−nk+1

⎞

⎠Rs(2
nk ). (56)

See an illustration of the sequence
(
Es (αN )−Is (σ )N2

N1+s

)

N
in Fig. 3 below.

Proof of Theorem 1.5 We first prove the inequality “≥” in (19), which is straight-
forward. Let p ∈ N be arbitrary and fix a vector �θ = (θ1, . . . , θp) ∈ �p. By
Definition 1.3, there exists an infinite sequence N of integers of the form N =
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Fig. 3 This is a plot of the first 4200 points of the sequence
(
(Es (αN ) − Is (σ )N2)/N1+s

)

N
in the case

s = 1/2

2n1 + 2n2 + · · · + 2n p , n1 > n2 > · · · > np ≥ 0 such that (12) holds. Applying
(56) we have

Es(αN ) − Is(σ )N 2

N 1+s

=
p−1∑

k=1

(
2nk+1

N

)1+s
⎛

⎝
p∑

j=k+1

2n j−nk

⎞

⎠Rs(2
nk+1)

+
p∑

k=1

(
2nk

N

)1+s
⎛

⎝1 −
p∑

j=k+1

2n j−nk+1

⎞

⎠Rs(2
nk )

=
p−1∑

k=1

(
2nk+1

N

)s
⎛

⎝
p∑

j=k+1

2n j+1

N

⎞

⎠Rs(2
nk+1)

+
p∑

k=1

(
2nk

N

)s
⎛

⎝2nk

N
−

p∑

j=k+1

2n j+1

N

⎞

⎠Rs(2
nk ).

Using now (12), (55) and (11), we get

lim
N∈N

Es(αN ) − Is(σ )N 2

N 1+s
=

⎛

⎝
p−1∑

k=1

(2θk)
s

p∑

j=k+1

2θ j +
p∑

k=1

θ sk (θk −
p∑

j=k+1

2θ j )

⎞

⎠ 2ζ(s)

(2π)s
. (57)

Here we have taken into account that if for some particular k = 1, . . . , p, the sequence
2nk does not approach infinity, then 2nk/N approaches θk = 0 and, therefore, we still
have (2nk/N )s Rs(2nk ) → θ sk 2ζ(s)/(2π)s = 0. The first factor on the right-hand
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side of (57) is exactly H(�θ; s), and, therefore,

lim sup
N→∞

Es(αN ) − Is(σ )N 2

N 1+s
≥ H(�θ; s) 2ζ(s)

(2π)s
.

Since p and �θ were arbitrary, we obtain the desired inequality.
Now we prove the converse inequality in (19). Let N ⊂ N be an infinite sequence

for which the sequence
(
Es (αN )−Is (σ )N2

N1+s

)

N∈N converges, and we shall show that

lim
N∈N

Es(αN ) − Is(σ )N 2

N 1+s
≤ h(s)

2ζ(s)

(2π)s
. (58)

Assume first that there exists p ≥ 1 such that an infinite number of integers N ∈ N
satisfy the property τ(N ) = p, cf. (30). Then, taking a subsequence Ñ of N if
necessary, such that the integers N = 2n1 + 2n2 + · · · + 2n p ∈ Ñ satisfy

lim
N∈Ñ

2ni

N
= θi , for all i = 1, . . . , p,

we get

lim
N∈N

Es(αN ) − Is(σ )N 2

N 1+s
= lim

N∈Ñ
Es(αN ) − Is(σ )N 2

N 1+s
= H((θ1, . . . , θp); s) 2ζ(s)

(2π)s
,

and, therefore, (58) holds.
So let us assume now that such an integer p does not exist. This means that we

assume now that τ(N ) → ∞ as N → ∞ in the sequence N . Let us rewrite, for
N = 2n1 + 2n2 + · · · + 2nτ (N ) ∈ N , n1 > n2 > · · · > nτ(N ) ≥ 0, the expression

Es(αN ) − Is(σ )N 2

N 1+s

=
τ(N )∑

k=1

(
2nk

N

)1+s
⎡

⎣2s+1Rs(2
nk+1)

τ(N )∑

j=k+1

2n j−nk

+Rs(2
nk )

⎛

⎝1 −
τ(N )∑

j=k+1

2n j−nk+1

⎞

⎠

⎤

⎦ . (59)

and let us introduce the notation

λN ,k := 2s+1Rs(2
nk+1)

τ(N )∑

j=k+1

2n j−nk + Rs(2
nk )

⎛

⎝1 −
τ(N )∑

j=k+1

2n j−nk+1

⎞

⎠ . (60)
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Since the sequence (Rs(N ))N is bounded, it is evident that there exists an absolute
constant C1 > 0 independent of N , such that

∣∣λN ,k
∣∣ ≤ C1, for all N ∈ N and k = 1, . . . , τ (N ). (61)

On the other hand, we have the following simple estimate for each N = 2n1 + · · · +
2nτ (N ) ∈ N :

2nk

N
≤ 2nk

2n1
= 2nk−n1 ≤ 2−(k−1), k = 1, . . . , τ (N ). (62)

Now let 0 < ε < 1 be fixed. It follows from (62) that there exists M = M(ε) ∈ N

independent of N such that

τ(N )∑

k=M+1

2nk

N
< ε, for all N ∈ N . (63)

Hence (61) and (63) give

τ(N )∑

k=M+1

(
2nk

N

)1+s

|λN ,k | < C1ε, for all N ∈ N . (64)

Applying (59) and (60) we can write

Es(αN ) − Is(σ )N 2

N 1+s
= SN ,M,1 + SN ,M,2, (65)

where

SN ,M,1 :=
M∑

k=1

(
2nk

N

)1+s

λN ,k, SN ,M,2 :=
τ(N )∑

k=M+1

(
2nk

N

)1+s

λN ,k; (66)

hence by (64) we have

|SN ,M,2| ≤ C1ε, for all N ∈ N . (67)

Now we focus on the sum SN ,M,1. First, we rewrite λN ,k in the form

λN ,k = Rs(2
nk ) + 2−nk+1 (2s Rs(2

nk+1) − Rs(2
nk ))

τ(N )∑

j=k+1

2n j

= Rs(2
nk ) + 2−nk+1 (2s Rs(2

nk+1) − Rs(2
nk ))

⎛

⎝
M∑

j=k+1

2n j +
τ(N )∑

j=M+1

2n j

⎞

⎠ .

(68)
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This shows that we can write

SN ,M,1 = DN ,M,1 + DN ,M,2, (69)

where

DN ,M,1 :=
M∑

k=1

(
2nk

N

)1+s
⎡

⎣Rs(2
nk ) + 2−nk+1 (2s Rs(2

nk+1) − Rs(2
nk ))

M∑

j=k+1

2n j

⎤

⎦ , (70)

DN ,M,2 :=
⎛

⎝
τ(N )∑

j=M+1

2n j

⎞

⎠
M∑

k=1

(
2nk

N

)1+s

2−nk+1 (2s Rs(2
nk+1) − Rs(2

nk )). (71)

Let us first estimate the sum (71). We have

DN ,M,2 =
⎛

⎝
τ(N )∑

j=M+1

2n j

N

⎞

⎠
M∑

k=1

(
2nk

N

)s

(2s+1Rs(2
nk+1) − 2Rs(2

nk )).

Using (62) and the boundedness of the sequence (Rs(N ))N , we find that there exists
an absolute constant C2 > 0 such that

∣∣∣∣∣

M∑

k=1

(
2nk

N

)s

(2s+1Rs(2
nk+1) − 2Rs(2

nk ))

∣∣∣∣∣ < C2, for all N ∈ N .

This estimate and (63) show that

|DN ,M,2| < C2ε, for all N ∈ N . (72)

Finally, we analyze the sum (70). Introducing the notation

λ̃N ,k := Rs(2
nk ) + 2−nk+1 (2s Rs(2

nk+1) − Rs(2
nk ))

M∑

j=k+1

2n j ,

we can write

DN ,M,1 =
M∑

k=1

(
2nk

N

)1+s

λ̃N ,k = EN ,M,1 + EN ,M,2, (73)

where

EN ,M,1 :=
M∑

k=1

(
2nk

2n1 + 2n2 + · · · + 2nM

)1+s

λ̃N ,k ,

EN ,M,2 :=
((

2n1 + 2n2 + · · · + 2nM

N

)1+s

− 1

)
M∑

k=1

(
2nk

2n1 + 2n2 + · · · + 2nM

)1+s

λ̃N ,k .
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Again the numbers λ̃N ,k are uniformly bounded and we have

M∑

k=1

(
2nk

2n1 + 2n2 + · · · + 2nM

)1+s

≤
M∑

k=1

2nk

2n1 + 2n2 + · · · + 2nM
= 1,

∣∣∣∣∣

(
2n1 + 2n2 + · · · + 2nM

N

)1+s

− 1

∣∣∣∣∣ ≤ 1 − (1 − ε)1+s,

where in the latter inequality we used (63). We conclude that

|EN ,M,2| ≤ C3 (1 − (1 − ε)1+s), (74)

for some constant C3 > 0.
Note that the expression EN ,M,1 is exactly as in (59) but with N replaced by 2n1 +

· · · + 2nM and τ(N ) replaced by M . Therefore, as before we can find a subsequence
Ñ of N such that

lim
N∈Ñ

2ni

2n1 + · · · + 2nM
= θi , for all i = 1, . . . , M, (75)

and consequently

lim
N∈Ñ

EN ,M,1 = H((θ1, . . . , θM ); s) 2ζ(s)

(2π)s
. (76)

Applying now the relations (65), (69), (73) and the bounds (67), (72), (74) and (76),
we conclude that

lim
N∈N

Es(αN ) − Is(σ )N 2

N 1+s
= lim

N∈Ñ
Es(αN ) − Is(σ )N 2

N 1+s

= lim
N∈Ñ

(
EN ,M,1 + EN ,M,2 + DN ,M,2 + SN ,M,2

)

≤ H((θ1, . . . , θM ); s) 2ζ(s)

(2π)s

+C3(1 − (1 − ε)1+s) + C2ε + C1ε

≤ h(s)
2ζ(s)

(2π)s
+ C3(1 − (1 − ε)1+s) + C2ε + C1ε.

This inequality holds for an arbitrary ε > 0, so we obtain (58). This finishes the proof
of (19).

The asymptotic formula (20) follows from the inequality Es(αN ) ≥ Ls(N ), which
is valid for every N and is an equality for all N of the form N = 2n , and the asymptotic
formula (11). �
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5.2 First-Order Asymptotics in the Riesz Case for s > 1

Proof of Theorem 1.6 The proofs of (22) and (23) are identical to the proofs of the
corresponding formulas in Theorem 1.5. The reader only needs to use, instead of (56),
the formula

Es(αN )

N 1+s
=

t−1∑

k=1

(
2nk+1

N

)1+s
⎛

⎝
t∑

j=k+1

2n j−nk

⎞

⎠ Ls(2nk+1)

(2nk+1)1+s

+
t∑

k=1

(
2nk

N

)1+s
⎛

⎝1 −
t∑

j=k+1

2n j−nk+1

⎞

⎠ Ls(2nk )

(2nk )1+s
,

which follows from (51), and use (21) instead of (11). �

Figure 4 below displays the first 4200 points of the sequence
(
Es(αN )/N 1+s

)
N in

the case s = 2.

5.3 Second-Order asymptotics in the Riesz Case for s = 1

Proof of Theorem 1.7 Below we will use the notation

R1(N ) := L1(N ) − 1
π
N 2 log N

N 2 . (77)

If N = 2n1 + 2n2 + · · · + 2n p in decreasing order of powers, applying (54) we can
write conveniently

Fig. 4 The first 4200 points of the sequence
(
Es (αN )/N1+s

)

N
in the case s = 2
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N 2 log N =
p−1∑

k=1

⎛

⎝
p∑

j=k+1

2n j−nk

⎞

⎠
(
22(nk+1) log

(
2nk+1

)
+ 22(nk+1) log

(
N

2nk+1

))

+
p∑

k=1

⎛

⎝1 −
p∑

j=k+1

2n j−nk+1

⎞

⎠
(
22nk log

(
22nk

)
+ 22nk log

(
N

22nk

))
.

Hence, applying (51) for s = 1 and (77) we obtain

E1(αN ) − 1
π
N 2 log N

N 2 = 1

N 2

p−1∑

k=1

⎛

⎝
p∑

j=k+1

2n j+nk+2

⎞

⎠

×
(
R1

(
2nk+1

)
+ 1

π
log

(
2nk+1

N

))

+ 1

N 2

p∑

k=1

⎛

⎝22nk −
p∑

j=k+1

2n j+nk+1

⎞

⎠

×
(
R1(2

nk ) + 1

π
log

(
2nk

N

))
. (78)

The proof of (27) follows the same rules as the proof of (19). To prove the inequality
“≥” in (27), we take an arbitrary �θ = (θ1, . . . , θp) ∈ �p, and we letN be a sequence
of integers N = 2n1 + · · · + 2n p as in Definition 1.3 satisfying (12). If we call
L = 1

π
(γ − log(π/2)) and apply (12) and (24), it follows from (78) that

lim
N∈N

E1(αN ) − 1
π
N 2 log N

N 2

=
p−1∑

k=1

⎛

⎝
p∑

j=k+1

4θkθ j

⎞

⎠
(
L + 1

π
log(2θk)

)

+
p∑

k=1

(θ2k −
p∑

j=k+1

2θkθ j )

(
L + 1

π
log θk

)

= L

⎛

⎝
p∑

k=1

θ2k + 2
p−1∑

k=1

p∑

j=k+1

θkθ j

⎞

⎠ + 4

π

p−1∑

k=1

⎛

⎝
p∑

j=k+1

θ j

⎞

⎠ θk log(2θk)

+ 1

π

p∑

k=1

(θ2k −
p∑

j=k+1

2θkθ j ) log θk

= L + 1

π
K (θ1, . . . , θp) ≤ L + κ

π
, (79)

where we used the fact that

26



p∑

k=1

θ2k + 2
p−1∑

k=1

p∑

j=k+1

θkθ j = (θ1 + · · · + θp)
2 = 1.

This proves the desired inequality.
The proof of the converse inequality in (27) is similar to the one given for (58), so

we will make reference to that proof below. Let N ⊂ N be an infinite sequence for

which

(
E1(αN )− 1

π
N2 log N

N2

)

N∈N
converges and we shall show that

lim
N∈N

E1(αN ) − 1
π
N 2 log N

N 2 ≤ L + κ

π
. (80)

As in the proof of (58), if there exists p ≥ 1 such that an infinite number of N ∈ N
satisfy τ(N ) = p, then it is clear that (80) holds.

So we assume now that τ(N ) → ∞ as N → ∞ in the sequence N . We have, for
N = ∑τ(N )

k=1 2nk ,

E1(αN ) − 1
π
N 2 log N

N 2 =
τ(N )∑

k=1

(
2nk

N

)2
⎛

⎝R1(2
nk ) + 2−nk+1 (2R1(2

nk+1) − R1(2
nk ))

τ(N )∑

j=k+1

2n j

⎞

⎠

+
τ(N )∑

k=1

(
2nk

N

)2
⎛

⎝r(2nk ) + 2−nk+1 (2 r(2nk+1) − r(2nk ))
τ(N )∑

j=k+1

2n j

⎞

⎠ ,

(81)

where we use the notation

r(2nk ) = 1

π
log(2nk/N ), r(2nk+1) = 1

π
log(2nk+1/N ).

Let ε > 0 be arbitrary, and choose M ∈ N sufficiently large so that (63) holds. Let
λN ,k denote the expression in (68) with s = 1, and let

ρN ,k := r(2nk ) + 2−nk+1 (2 r(2nk+1) − r(2nk ))
τ(N )∑

j=k+1

2n j .

We see from (81) that we can write

E1(αN ) − 1
π
N 2 log N

N 2 = SN ,M,1 + SN ,M,2 + SN ,M,3 + SN ,M,4, (82)

where SN ,M,1 and SN ,M,2 are defined in (66) (taking s = 1), and

SN ,M,3 :=
M∑

k=1

(
2nk

N

)2

ρN ,k, SN ,M,4 :=
τ(N )∑

k=M+1

(
2nk

N

)2

ρN ,k .
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As in (61) we have

|λN ,k | ≤ C1, for all N ∈ N and k = 1, . . . , τ (N ),

for some constant C1 > 0. Therefore, as in (67) we have

|SN ,M,2| < C1ε, for all N ∈ N .

We again write

SN ,M,1 = DN ,M,1 + DN ,M,2

with DN ,M,1 and DN ,M,2 given by (70) and (71), respectively, taking s = 1 in these
formulas. We also have the estimate (72). If we use (73), the bound (74) and the
previous estimates, we conclude that

SN ,M,1 + SN ,M,2 =
M∑

k=1

(
2nk

2n1 + · · · + 2nM

)2

×
⎛

⎝R1(2
nk ) + 2−nk+1 (2R1(2

nk+1) − R1(2
nk ))

M∑

j=k+1

2n j

⎞

⎠ + O(ε). (83)

The analysis for the sum SN ,M,3 + SN ,M,4 follows the same argument, so we will
not reproduce it below. Now we need to take into account the following estimates,
which are easy to check: there exists an absolute constant C > 0, independent of N
and M , such that

∣∣∣∣
2nk

N
ρN ,k

∣∣∣∣ < C, for all N ∈ N and k = 1, . . . , τ (N ),

M∑

k=1

2nk

N

∣∣∣∣log
(
2nk

N

)∣∣∣∣ < C, for all N ∈ N and M < τ(N ).

Using these estimates we find similarly that

SN ,M,3 + SN ,M,4 =
M∑

k=1

(
2nk

2n1 + · · · + 2nM

)2

×
⎛

⎝r̃(2nk ) + 2−nk+1 (2 r̃(2nk+1) − r̃(2nk ))
M∑

j=k+1

2n j

⎞

⎠ + O(ε), (84)

where we use the notation

r̃(2nk ) = 1

π
log

(
2nk

2n1 + · · · + 2nM

)
, r̃(2nk+1) = 1

π
log

(
2nk+1

2n1 + · · · + 2nM

)
.
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Finally, we let Ñ be a subsequence ofN such that the limits (75) hold. Then, as in
(79) we see that along the subsequence Ñ , the first expression on the right-hand side of
(83) converges to L , and the first expression on the right-hand side of (84) converges
to (1/π) K (θ1, . . . , θM ). Therefore, applying (82), (83) and (84), we conclude that

lim
N∈N

E1(αN ) − 1
π
N 2 log N

N 2 = lim
N∈Ñ

E1(αN ) − 1
π
N 2 log N

N 2

= lim
N∈Ñ

(
SN ,M,1 + SN ,M,2 + SN ,M,3 + SN ,M,4

)

≤ L + 1

π
K (θ1, . . . , θM ) + O(ε) ≤ L + κ

π
+ O(ε).

This proves (80) since ε is arbitrary.
The formula (28) follows immediately from (24) and the inequality E1(αN ) ≥

L1(N ), which is an equality for all N of the form N = 2n . �

The following figure shows the first 4200 values of the sequence (
E1(αN )− 1

π
N2 log N

N2 )N :
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