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ABSTRACT 

Three different stainless steel corrugated grades (UNS 520430, 530403 and 532205) were similar welded 
to stainless steel bars with the same composition and dissimilar welded to carbon steel (CS). After deaning 
the welding oxides by sandblasting, the reinforcements were embedded in mortar with chlorides and 
some of the samples were carbonated. Corrosion activity was monitored using corrosion potential (Ecorr) 
el 
ced concrete 

 

and electrochemical impedance spectroscopy(EIS). After 8 years of exposure, the samples were anodically 
polarized. Visual evaluation of the attack was performed after another additional year of exposure. Similar 
welded stainless steels offer a good durability if they have been sandblasted, except for 520430 when it is 
embedded in carbonated mortar with chlorides. Dissimilar welded steels are active since the beginning 
of the exposure for both studied conditions, but sandblasting reduces the corrosion rate of CS compared 
to non-welded CS bars. 
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 steel reinforcements are increasingly being used as an 
o guarantee the durability of concrete structures in cor­
onments. The alkalinity of the solution inside the pores 
rotective nature of the oxides comprised in the passive 
 stainless steels (1-3) and reduces the risk of localized 
 chloride-contaminated environments (4,5). 
ical forming process of corrugated bars causes 
ural transformations in the stainless steels [6,7). The 
ural characteristics of the reinforced bars explains the 
 the corrosion resistance in simulated pore solutions 
en detected for stainless steels when they are corru­
he mechanical strain of the surface causes a negative 
e stoichiometry, composition and protective nature of 
 layer on the stainless steels (9). However. the critical 
els that cause pitting corrosion in corrugated austenitic 
 stainless steels are at least 10 times higher than those 
eel (CS) reinforcements (10), so they are an interesting 
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omical reasons, stainless steel reinforcements are only 
 most exposed areas of new structures. For instance. 

ding author. Fax: +34 91 624 9430. 
ress: mbautist@ing.uc3m.es (A. Bautista). 

contribute 
steel reinfo
the structu
edge about 
reinforceme

The mic
do not enda
However. te
e used in bridge parts like edge beams, expansion joint 
rs and piers tops and bridge deck soffits. That is to say, 
 the environmental chlorides would penetrate, or car­
ould take place in shorter times, as they are close to 
rface. Welding is not the most usual method for joining 
bars. but it can be the only option sometimes. Welded 
rcement of stainless steel are being used extensively, 
 constructions like parking decks etc. but also in repairs 

d concrete (especially when the concrete cover is thin). 
en proved that the simultaneous use of stainless steel 
rcements in the same structure does not imply any risk 

corrosion [ 10-12 ]. Moreover. stainless steel corrugated 
o used to repair corroded structures, as replacements 
aged CS bars [13,14). When stainless steel bars are 
o replace part of corroded CS bars, it is sometimes 

e to weld the stainless steel reinforcements to the rest of 
e. As constructing new concrete infrastructures implies 
unt of C02 emissions, boosting the repair of dam­
te infrastructures is nowadays seen as a new way to 

to sustainable development (15). The use of stainless 
rcement in repairs avoids future restoring actions in 
re. Hence, it is interesting to achieve a good knowl­
the effect of welding on the durability of stainless steel 

nts in concrete. 

rostructural changes in metal bars caused by welding 
nger the mechanical performance of the structure (16). 
sts in alkaline solutions have pointed out that welding 
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ase the corrosion resistance of stainless steels [10–17].
research carried out in simulated pore solutions suggests
adverse effect of weldings can be more or less marked
g on the stainless steel grade: more alloyed stainless steels
e less welding-sensitive [17]. The pH of the alkaline solu-
lso proved to be a key factor to determine the corrosion

e of welded stainless steel [18].
on tests have shown that the decrease in the corrosion
e of stainless steels caused by welding is due to the for-
f heat-tints during the high-temperature exposure that
e welding procedure [4,19]. The causes suggested in the
to justify the adverse effect of the heat-tints on corrosion

are diverse: formation of a Cr-poor layer [4], the chemical
ion of the heat-tints [20], or the structure of the formed
er and the stresses and reticular defects created in the
ide interface [21].
ving welding oxides after welding can improve corro-
tance, but it can unlikely be restored up to levels of a
ed corrugated stainless steel [17]. The comparative effec-

of various methods used for cleaning the welding oxides
reported, and sandblasting has been proposed as the most
method to decrease the adverse effect of welding in cor-

sistance [17].
work, the effect of welding in 3 different corrugated stain-
s in mortar is studied: an austenitic UNS S30403 grade
position with the longest and widest experience about its
in concrete [22,23]), an austenitic UNS S20430 grade (that
considered interesting because of its price and its mod-
osion resistance in synthetic pore solution testing [5,24])
lex UNS S32205 grade (that has shown very high corro-

tance in previous tests [1,25]). The 3 corrugated stainless
re welded to similar materials and to CS bars, their welding
ere cleaned by sandblasting, and then they were embed-
ortar and exposed to high relative humidity (90–93%). A
ontaminated mortar was used, both non-carbonated and
d.

ngth of the tests and the fact that they were carried out
instead of in solution highlight the practical relevance of
s. The process of formation of the passive layer on steel in
pore solutions takes place faster than in mortar [26], so

vation of welded stainless steels can also be slightly dif-
m previous results in solution [17]. Moreover, if corrosion
re are important factors affecting the kinetic of the attack
ot be reproduced in solution tests [27].

imental

es of traditional austenitic S30403, low-Ni austenitic
nd duplex S32205 stainless steels were studied. The
was supplied by Roldan S.A. (Acerinox group, Spain) as
d bars typically used to reinforce concrete structures. All

less steel bars had been formed through a cold working
The chemical composition and diameter of the stainless

can be found in Table 1.
ainless steel corrugated bars were similar welded to bars
me composition (S30403–S30403, S20430–S20430 and
32205) and dissimilar welded to CS bars (S30403-CS,
S and S32205-CS). The diameters of the CS bars were
entical to those of the stainless steel bars they were going
ded to. Their chemical compositions can be seen in Table 1.
hosen welding method was Shielded Metal Arc Weld-
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images corresponding to the surface of S20430 corrugated bar: (a) as-
ndition; (b) after sandblasting.

nitic steels and OK 67.50 (UNS S32209 with a rutile coat-
he duplex steel. The composition of the stainless steel
electrodes and their diameters have also been included
. These welding conditions were similar to those used in
researches in the performance of welded stainless steel
ments [16,17].
welded samples were sandblasted to remove heat-tints.

tment eliminated all the welding oxides formed on the
steel surfaces. However, it clearly modified the original
hy of the bar surface, as can be checked comparing Fig. 1a
1b. Moreover, some sand particles remained embedded in
llic surface, as can also be seen in Fig. 1b.
elded bars were partly immersed in mortar with a

and/water ratio of 1/3/0.6. The water/cement ratio was
is quite usual in experimental tests [13,27–29]. Bearing in

t a good quality concrete can have a water/cement ratio of
, the use of this mortar samples will imply that the volume
f capillary porosity will be about 2 times higher after the
riod than that of good quality material [30], and nearly 3
her after the complete hydration of the cement [30]. How-
type of samples allows to obtain results in a reasonable

time and can reproduce one of the conditions the stainless
forcements are specially advised: light, porous concrete
The cement type used to prepare the mortar was CEM II/B-
The sand was standardized CEN-NORMSAND (according
EN 196-1 standard). All the samples were manufactured

aCl2 in relation to the cement weight.
ma of the samples is shown in Fig. 2. Isolating tape was
revent the interference of undesired, spontaneous car-
of the mortar surface in the tests. The exposed length of
n mortar was always 3 cm and the welding was placed
e middle of the length of the bar exposed to the mortar.

ilar welded reinforcements, the CS region was always
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Table 1
Chemical composition and diameter of the corrugated steels and the welding electrodes used in this research.

Steel Ø (mm) Chemical composition (%)

S C Si Mn Cr Ni Mo N Cu Fe

Corrugated bars S20430 5 0.002 0.05 0.23 8.3 16.1 1.89 – 0.13 2.65 Bal.

S30403 10 0.001 0.02 0.36 1.45 18.3 8.68 0.27 0.05 0.49 Bal.

S32205 12 0.001 0.03 0.39 1.67 22.5 4.72 3.22 0.17 0.24 Bal.

CS 5 0.03 0.25 0.74 1.05 0.23 0.07 0.02 – 0.66 Bal.

10 0.03 0.18 0.40 0.53 0.10 0.11 0.04 – 0.45 Bal.

12 0.04 0.21 0.39 0.0

Welding wires S30803 2.0 0.003 0.01 0.50 0.9

S32209 2.5 0.002 0.02 0.50 0.9

Fig. 2. Schem
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0430 (Fig. 3b). After about 5 years of exposure, the Ecorr
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. However, they are relevant as they allow to assure

welded stainless steels do not suffer any kind of corro-

during the testing period when they are embedded in

ated mortar with chlorides.

issimilar welded stainless steels are embedded in

ated mortar (Fig. 7a), the Rt values are much lower,

active corrosion. All these results are coherent with the

deduced from the Ecorr values in Fig. 3a.

alues corresponding to the welded samples in car-

ortar are plotted in Fig. 7b. S30403–S30403 and

2205 exhibit high Rt values throughout the exposure,

their passivity. On the other hand, a marked decrease

r S20430–S20430 is observed after 60 months, coin-

the Ecorr leaving the passivity region (Fig. 3b). These

es, typical of active state, can be calculated with much

ion as their influence appears in frequency regions of

where experimental data exists.

ar welded steels embedded in carbonated mortar

w Rt values that tend to be slightly lower than those of

inforcements in non-carbonated mortar. This is coher-

higher aggressivity of chlorides in mortars with lower

tion fosters the chloride attack on the CS bars. Anyway,

ointing out that Rt values obtained for dissimilar welded

els (that is to say, for sandblasted CS) are always lower

calculated for corroding S20430–S20430 in carbonated

amples of other data obtained from the EIS spectra of the

ded stainless steel reinforcements are shown in Table 2.

ues shown in Table 2 are similar or very close to the

citances of those associated to a charge transfer step of

l-concrete systems [39,40].

so be seen that Rm and Rpl in Table 2 exhibit values

ers of magnitude lower than Rt (Fig. 7). That is to say,

transfer is the rate-limiting step for passive reinforce-

fact also allows us to identify Rt with the polarization

n the Stern–Geary equation [41] and calculate corrosion

icorr). A Stern–Geary constant (B) value of 48–53 mV has

ined for stainless steel in alkaline media [5]. Then, the

ilar welded stainless steels in non-carbonated mortar

es would be about nA/cm2. It is obvious that these icorr

comply with any durability requirement of reinforced

in spite of the suggested adverse effect of the weldings

ility of the passivity [17].

s of other results different from Rt obtained from the

of the EIS spectra of the dissimilar welded bars can be

e 3, being the impedance results completely dominated

onse of CS. The values obtained from the simulation to

ehavior of the rust layer shows a much higher disper-

hose found for the capacitive behavior of the passive

2). This can be easily understood bearing in mind the

heterogeneous, unstable structure and morphology

t layers should have. The obtained Rr values (Table 3)

an those shown in Table 2 for Rpl, as expected. The high

ndl values are typical of CS corroding at a high rate in

other authors have previously reported [39,42].

3, values for Rr and Rm are lower than Rt (Fig. 7), but

negligible. The influence of the value determined for

development of the corrosion process is not easy to

. The Rm measured is the resistance through the mortar

rrounding the metallic reinforcement (Fig. 2), but the

stance that can cause a decrease in the corrosion rate is
onding to mortar volume existing between the anodes

odes that form the corrosion cells on the reinforcement

an be assumed that this resistance could be lower than

ed Rm. Anyway, the influence of Rr on the calculus of the

sion rate should not be omitted in these cases. Ta
b
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Chloride con

Non-carbon

Carbonated
m2 should be considered as heavy corrosion, following

ecommendations [46].

S20430 in carbonated mortar is active during the last

posure (Figs. 3 b and 7 b). As in this case the �/Rt is
−1/2 (Fig. 8), the influence of the diffusion step on the

ate can be considered as negligible, and the corrosion

rolled by charge transfer step. A polarization resistance

× cm2 has been previously suggested to discriminate

tive and passive CS reinforcements [13]. The values

r this Rt after 5 year of exposure are below this value.

tified to the polarization resistance, the active state of

will be confirmed. Assuming B values about 26 mV, as it

aditionally done for active steel in concrete [40], icorr of

ely 0.5 �A/cm2 could take place. For steel in concrete,

values would correspond to low-moderate corrosion

orrosion rates of S20430–S20430 in carbonated mor-

nd of the exposure are lower than those estimated for

spectra corresponding to the non-welded CS bars are

inated by the resistive behavior of the mortar. More-

cracks appear the mortar, they partially disrupt the

of the electrical signal in some regions and probably

eterogeneities in the development of the corrosion pro-

ocking of the pores by the corrosion products can also

o the anomalies in the electric signal propagation. These

ectra are typical of steels that have been corroding at

for a long time in mortar or concrete [47]. The only

information that can be obtained from them is that the

associated to the corrosion process are lower than Rm

ut 4–7 k� cm2).

a confirm the information suggested in Fig. 4 about the

ffect of welding and sandblasting on the corrosion rate

ormation about the corrosion process can be obtained

S spectra of welded CS but not from non-welded CS.

h of the galvanic couple formed by stainless steel and

r has been reported as negligible [11,12], as mentioned

Moreover, a potentially weak effect of the stainless steel

sion rate of the CS can be masked by the beneficial effect

lasting. Several authors have reported that sandblasted

ibit higher chloride-threshold levels than those in as-

ill-scaled) conditions [48,49]. The presence of mill-scale

e protective characteristics of the passive layer [50] and,

everely pre-rusted, the passivity can be totally inhibited

olarizations are carried out after 8 years of exposure to

tional information about the stability of the aged passive

d in mortar and their protective ability in the tested con-

results of the polarization of the welded reinforcements

as Evans diagrams in Fig. 9. Except S20430–S20430 in

mortar, curves corresponding to similar welded stain-

e defined at low current densities (typical of a passive

g a wide range of potentials. Hence, the existence of a

ctive layer on the surface of these samples is confirmed.

on of Cr(III) in the passive layer to Cr(VI) that takes place

Fig. 9. A
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anodic polarization [25] does not allow to observe the

slopes seen in the polarization curves in other passive

orresponding to S20430–S20430 in carbonated mortar

urves corresponding to dissimilar welded have the typ-

systems stu

densities of

ted in Fig.

[27] with th

ted to simil

the pits after the testing in similar welded stainless steels.

taminated mortar S20430

ated Corrugated bar

Corrugated bar + weld material
polarization curves of the reinforced mortar: (a) non-carbonated

rbonated mortar.

f the anodic branch of the polarization curve of active

is confirms the conclusions about the corrosion activity

the Ecorr results (Fig. 3) and Rt values (Fig. 7) obtained

welded samples at the end of the 8 year exposure.

worth pointing out that the current densities defined at

overpotentials for welded CS in non-carbonated mortar

lower than those defined for the same reinforcements

ed mortar (Fig. 9b), confirming the information sug-

the Rt about the influence of the mortar pH on the

ate (Fig. 7). Moreover, in carbonated mortar and at

lose to Ecorr (Fig. 9b), the curve corresponding to the

30–S20430 is shifted to lower current densities than

orresponding to welded CS. This is coherent with lower

ve S20430–S20430 than for CS welded reinforcements,

ts have suggested.

b, information corresponding to a non-cracked sample

elded CS has been included. The intensities observed for

CS at small anodic polarizations are about one order of

higher than those for welded CS in the same conditions.

to confirm again the positive effect of sandblasting on

n behavior of CS.

to easily visualize the relative stability of the passive
died, the anodic potentials corresponding to current

2 × 10−6 A/cm2 of the curves in Fig. 9 have been plot-

10. This criterion has been used in previous research

e same aim. Results of non-welded materials submit-

ar tests [27,52] have also been included in the figure for

S30403 S32205

Corrugated ba + weld material Weld material

Corrugated bar + weld material Weld material
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