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Purpose: A fully three-dimensional (3D) massively parallelizable list-mode ordered-subsets 
expectation-maximization (LM-OSEM) reconstruction algorithm has been developed for high-
resolution PET cameras. System response probabilities are calculated online from a set of parameters 
derived from Monte Carlo simulations. The shape of a system response for a given line of response 
(LOR) has been shown to be asymmetrical around the LOR. This work has been focused on the de-
velopment of efficien  region-search techniques to sample the system response probabilities, which 
are suitable for asymmetric kernel models, including elliptical Gaussian models that allow for high 
accuracy and high parallelization efficien y. The novel region-search scheme using variable kernel 
models is applied in the proposed PET reconstruction algorithm.
Methods: A novel region-search technique has been used to sample the probability density func-
tion in correspondence with a small dynamic subset of the fiel  of view that constitutes the region 
of response (ROR). The ROR is identifie  around the LOR by searching for any voxel within a dy-
namically calculated contour. The contour condition is currently define  as a fi ed threshold over the 
posterior probability, and arbitrary kernel models can be applied using a numerical approach. The 
processing of the LORs is distributed in batches among the available computing devices, then, indi-
vidual LORs are processed within different processing units. In this way, both multicore and multiple 
many-core processing units can be efficientl  exploited. Tests have been conducted with probability 
models that take into account the noncolinearity, positron range, and crystal penetration effects, that 
produced tubes of response with varying elliptical sections whose axes were a function of the crystal’s 
thickness and angle of incidence of the given LOR. The algorithm treats the probability model as a 
3D scalar fiel  define  within a reference system aligned with the ideal LOR.
Results: This new technique provides superior image quality in terms of signal-to-noise ratio as 
compared with the histogram-mode method based on precomputed system matrices available for a 
commercial small animal scanner. Reconstruction times can be kept low with the use of multicore, 
many-core architectures, including multiple graphic processing units.
Conclusions: A highly parallelizable LM reconstruction method has been proposed based on Monte 
Carlo simulations and new parallelization techniques aimed at improving the reconstruction speed 
and the image signal-to-noise of a given OSEM algorithm. The method has been validated using 
simulated and real phantoms. A special advantage of the new method is the possibility of definin  
dynamically the cut-off threshold over the calculated probabilities thus allowing for a direct control 
on the trade-off between speed and quality during the reconstruction. 
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I. INTRODUCTION

List-mode (LM) reconstruction has long been a promising
method for PET imaging.1–3 In high-resolution tomographs,
especially in dynamic PET studies with low-statistics three-
dimensional (3D) scans, the number of events acquired in
a histogram set may be less than the number of response
bins used in histogram mode (HM) reconstruction and, there-
fore, LM reconstruction can, in principle, be performed more
quickly and efficientl . Another advantage of LM reconstruc-
tion comes from the ease of including additional information
acquired by the PET scanner (i.e., photon energy, arrival time,
or full detector readout), which increases the accuracy of the
system model used in the reconstruction process. Thus, the
image signal-to-noise ratio can be improved significantl if
the reconstruction algorithm uses a per-event energy4 or time-
of-fligh (TOF) information.5–7

A PET system response is described using a system ma-
trix (SM) that maps the relationships between the 3D radionu-
clide distribution and the acquired data.8 An enormous effort
has been expended to provide accurate estimations of statis-
tical and physical effects involved in the system response.
Many effects involved are object dependent, such as attenua-
tion and scatter effects, positron range, and gamma-rays non-
collinearity, while other effects are system dependent, and can
be characterized based on the PET scanner geometry, detec-
tion physics, and associated electronics. The methods used
to obtain accurate estimations of the system response include
Monte Carlo (MC) simulations of the acquisition process,9–12
point source measurements,13, 14 theoretical models,15–18 or
hybrid solutions.19

When the SM is calculated using MC methods, real mea-
surements, or complex numerical approximations, it must
be precomputed and stored off line to keep the reconstruc-
tion time low, thus requiring enormous storage space for
3D PET imaging. Size reduction is provided by histogram
compression, axial and rotational symmetries,20, 21 polar-
voxel symmetries,22, 23 quasi-symmetries,8 axial mashing,24
and factorization as a product of sparse matrices.25

It has been shown that MC calculated SM can be stored in
programmable graphic processing units (GPUs), which have
typically very limited memory resources. One possibility is
to use approximated symmetries,26 so as to reduce the size
of the SM by two orders of magnitudes. A different approach
has been also proposed,27 that factorizes the system response
into geometrical, voxel blurring, and detector blurring compo-
nents. However, compression can still be insufficien for LM
reconstruction in GPUs, where part of the memory must be
dedicated to the input LOR dataset, and when the SM must
take into account both timing and energy information.

In addition to this, the histogram compression technique
reduces the SM dimensionality. This drawback implies that
the SM factorization scheme can only be performed in the
image space and not in the projection space. Thus, SM factor-
ization suffers from accuracy limits in modeling projection-
dependent blurring effects when applied to LM data.15

For system matrices calculated on the fl , several tech-
niques have been adopted to reduce the computational com-

plexity, ranging from Siddon’s ray-tracing model28 to tube-
shaped kernels29 and volumes of response.18 Recently, it has
been shown that, using GPUs, it is possible to achieve good
results with the Gaussian blurring approximation for times
compatible with practical environments,30 by using the con-
cept of the symmetric blurring kernel.2, 31, 32 Kernels represent
the functions that associate a projection weight to a voxel for
a given line of response (LOR), based on the relative posi-
tion of the voxel with respect to the LOR, the crystal’s ef-
ficien y, the photon’s energy, the depth of interaction, and
TOF information.7 A symmetric Gaussian kernel was used in
the work cited above.7 Although more complex kernel mod-
els have been proposed, the inherent reconstruction architec-
ture has been specially optimized for circular tubes of re-
sponse (TORs). However, the shape of a system response for
a given LOR has been shown to be asymmetrical around the
LOR. Its transversal profil can be better approximated as a
two-dimensional (2D) Gaussian function, with the two stan-
dard deviation variables of the crystal’s thickness and angle
of incidence.16,17 More accurate image-based approximations
can be achieved using nonstationary and non-Gaussian blur-
ring functions in the image domain.15,33

In this work, we introduce a LM reconstruction method
that is especially optimized for PET scanners composed of
parallel planar detectors34–36 that is able to use kernel models
with an elliptical section based on MC simulations.

Processing parallelization was the main area of study with
this work. This is because replacing circular kernels with el-
liptical kernels hampers the efficien utilization of the tech-
niques previously used to accelerate the calculation of the
system probabilities. Therefore, a new scheme had to be im-
plemented to increase the parallelization efficien y.

II. MATERIALS AND METHODS

II.A. The reconstruction algorithm

The LM 3D-ordered-subsets expectation-maximization
(OSEM) algorithm used in this work is based on that de-
scribed in Ref. 37. It consists of the following iterative
process:

λk+1
j = λk

j

sj

∑
i∈Ln

aij

ri + ti + ∑
j ′ aij ′λk

j ′
. (1)

All the observed coincidence events, or LORs, are divided
into N subsets Ln; λk

j is the estimated intensity of voxel j at
subiteration k = hN + n, where n is the subset number and h
is the iteration number; s is the sensitivity of the image, and
aij is the likelihood that an emission from voxel j is detected
by LOR i.

In the current implementation, random coincidences es-
timates (ri) and scatter estimates (ti) are neglected. To pre-
vent reconstruction biases, LM subsets were composed by
sampling uniformly the entire acquired dataset with offsets
n ∈ [0, N − 1]. The sensitivity image s was obtained
by projecting all possible LORs. In the case of rotational
geometries, the computation can be relatively time con-
suming, but nonuniform sampling techniques,38 rotational

2



′ ′ ′

= x + y + z
′ = x ′ ′ + y ′ ′ + z′ ′ ′

′
′ ′ ′

σ

aij = A

(
− dij

σ

)
,

′ ′ ′ ′

σ

σ

ϕ

aij = A

(
− dij

σi

)
,

′ ′ ′ = x + y + z
′ = x′ ′+ y′ ′+ z′ ′ φ

σi,x ′ σi,y ′ ϕ

aij = A

(
− x ′

σi,x ′
− y ′

σi,y ′

)
,

′ ′

ϕ

ϕ

− −



σi,x′ σi,y′
ϕ

′
′ − ′

′

σi,x ′ σi,y ′
′

σi,x ′

ϕ σi,y ′

σi = √
σi,x ′σi,y ′

σ

× ×



λk+
j =

∑
i∈Ln

λk
j

sj

aij

ri + ti + ∑
j ′ aij ′λk

j ′

=
�−∑
p=

∑
i∈Ln,p

λk
j

sj

aij

ri + ti + ∑
j ′ aij ′λk

j ′
=

�−∑
p=

λk+
j,p ,

� λk+
j,p

λk+
j,p ∈ � −

�

λk+
j,p



× × ×

μ

◦

×

.





× ×



= =

×
×



that does not produce any sensible effect with the above
threshold.

The method was validated using simulated and real NEMA
2008 image quality phantoms, Derenzo phantoms and a real
Na22 point source. The results were compared with a spe-
cifi commercial histogram-mode OSEM algorithm based on
a precalculated system matrix. It was shown how the LM re-
construction improves considerably the image quality with re-
spect to the previous SM-based algorithm (Fig. 6). The main
reason for this difference is attributed to the full-angle cov-
erage adopted by the LM version, while the SM version is
limited by the adopted symmetries. Thus, the number of co-
incidence events used in the reconstruction process for the
same acquisition is larger in the LM method, which results
in a lower noise level. Another reason for the relatively low
noise is that the MC simulation of the SM scheme adds statis-
tical noise, which is not present in the numerical fitte model
used in the LM method. Finally, the binning and interpola-
tion process involved in the histogram-mode reconstruction is
subject to approximation errors.

Figure 7 shows how the 2D provides a better image qual-
ity than do 0D and 1D kernels, although the difference with
respect to the 1D version is limited. The 2D kernel model
performs only slightly better than the 1D model, even if it
is more accurate in principle. The rotational symmetry of the
scanner used in the experiments, as well as the symmetries
in the NEMA phantom, could be the cause of the small dif-
ference between the outcomes of 1D and 2D models. More
research would be needed in this field However, given that
the 2D kernel model is also slightly faster than the 1D ver-
sion, it represents in any case the best option for both quality
and speed.

The cut-off value has a clear impact on the quality of the
results. As can be seen in Fig. 10, all models reconstruct at
almost half the speed if the cut-off value is changed from 10%
of the Gaussian peak to 1% of the Gaussian peak. The effect
of changing the threshold was evaluated quantitatively and is
summarized in Fig. 9.

Multicore and many-core parallelized implementations
have been realized and characterized. For a given model, the
images obtained with the different implementations are com-
pletely equivalent. Reconstruction speed was evaluated for
both CPU- and GPU-based implementations, demonstrating
that the reconstruction could be accelerated by about 80%
of the number of processors used on the same CPU archi-
tecture. Conversely, GPU cores perform at 40% the speed of
CPU cores, but then the computation time decreases identi-
cally with the number of GPUs.
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