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It has been reasoned that the structures of strongly cellular flames in very lean mixtures

approach an array of flame balls, each burning as if it were isolated, thereby indicating

a connection between the critical conditions required for existence of steady flame balls and

those necessary for occurrence of self-sustained premixed combustion. This is the starting

assumption of the present study, in which structures of near-limit steady sphericosym-

metrical flame balls are investigated with the objective of providing analytic expressions for

critical combustion conditions in ultra-lean hydrogen-oxygen mixtures diluted with N2 and

water vapor. If attention were restricted to planar premixed flames, then the lean-limit mole

fraction of H2 would be found to be roughly ten percent, more than twice the observed

flammability limits, thereby emphasizing the relevance of the flame-ball phenomena.

Numerical integrations using detailed models for chemistry and radiation show that a one-

step chemical-kinetic reduced mechanism based on steady-state assumptions for all

chemical intermediates, togetherwitha simple, optically thinapproximation forwater-vapor

radiation, can be used to compute near-limit fuel-lean flame balls with excellent accuracy.

The previously developed one-step reaction rate includes a crossover temperature that

determines in the first approximation a chemical-kinetic lean limit belowwhich combustion

cannot occur, with critical conditions achieved when the diffusion-controlled radiation-free

peak temperature, computed with account taken of hydrogen Soret diffusion, is equal to the

crossover temperature. First-order corrections are found by activation-energy asymptotics in

a solution that involves a near-field radiation-free zone surrounding a spherical flame sheet,

together with a far-field radiation-conduction balance for the temperature profile. Different

scalings are found depending onwhether or not the surrounding atmosphere containswater

vapor, leading to different analytic expressions for the critical conditions for flame-ball

existence, which give results in very good agreement with those obtained by detailed

numerical computations. The one-step chemistry employed in the present work, which

involves a non-Arrhenius rate having a cutoff at the crossover temperature, applies with

excellent accuracy to the description of lean premixed hydrogen-air combustion, i.e, for

f(0:5 at atmospheric pressure, and could beused for instance in thenumerical simulationof

thepropagationof curved or cellular flames in ultra-lean reactive atmospheres, of interest for

safety analyses related to the storage, transport, and handling of hydrogen.
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1. Introduction

Although discussions of the utilization of hydrogen for zero-

emission vehicles usually revolve around fuel cells, ultra-

lean combustion in reciprocating engines is potentially

viable for power production at least as cleanly. In designing

such engines, accurate knowledge of the lean flammability

limits is essential. Moreover, especially if exhaust-gas recir-

culation is to be considered, those limits in the presence of

water vapor must be known. Such knowledge is relevant, for

example, to proposed laser-induced spark ignition [1]. Because

of the interest in this application, as well as safety concerns in

explosion prevention, the study reported here addresses

ultra-lean hydrogen flammability limits at different pressures,

temperatures, and water-vapor content, complementing

existing experimental results [2,3,4,5].

Diffusive-thermal instabilities are known to influence

deflagration propagation in very lean hydrogen-air mixtures

[6]. Combustion is enhanced by effects of preferential diffu-

sion, which produce superadiabatic flame temperatures and

enable cellular flames to propagate inmixtures with hydrogen

content well below the flammability limit computed theoret-

ically for steady planar deflagrations. For sufficiently lean

mixtures, the cellular flame breaks up into separate cells,

which propagate as an array, leaving behind a finite amount of

unburnt fuel. In near-limit situations, the cells close upon

themselves to form flame balls with a nearly spherical shape

[7]. Interactions between neighboring flame balls become

weak because of the large separating distance. Under those

conditions, the flame can be envisioned as an ensemble of

isolated flame balls, which propagates with a velocity that can

be determined by adding the individual flame-ball burning

rates, with an additional assumption introduced for the

average inter-flame-ball spacing [8]. This limiting mode of

cellular-flame propagation clearly fails when the conditions

are too lean to support self-sustained flame-ball combustion.

For this reason, analyses of structures of isolated flame balls

can provide limiting flammability conditions for fuel-lean

mixtures of hydrogen and oxygen that may or may not

include inert species such as nitrogen.

The existence of nonpropagating steady spherical flame

balls was first predicted theoretically by Zeldovich [9] and

verified experimentally years later under microgravity condi-

tions [10,11,12,13]. As suggested by Zeldovich [9] (see, also [14]),

radiative heat losses stabilize these otherwise unstable

diffusion-reaction structures. The resulting branch of stable

solutions, corresponding to relatively large flame-ball radii, on

the order of 1 cm, has been investigated theoretically with

a one-step Arrhenius reaction [15,16]. Numerical studies,

including detailed-chemistry mechanisms and different

models for radiation [17,18,19], have shown that radiative heat

losses are very significant, keeping the peak temperature of

hydrogen-air flame balls below 1200 K along the whole branch

of stable solutions. As emphasized recently [20], under those

near-crossover conditions, all chemical intermediates appear

in very small concentrations and obey chemical-kinetic

steady-state approximations. Consequently, a reduced

chemical-kineticmechanism involving a single global reaction

2H2 þ O2 / 2H2O, previously derived for planar deflagrations
near the lean flammability limit [21,22], can be employed to

describe hydrogen-air flame ballswith excellent accuracy. The

corresponding overall rate, given below in [11], involves two

factorswitha strong temperaturedependence, so that it canbe

approximated close to the flammability limit by

ufexp

�
mb

T� Tc

T

��
exp

�
b
T� Tc

T

�
� 1

�
Y2

H2
; (1)

proportional to the square of the hydrogen mass fraction YH2

and involving two activation energies bx10 and mbx7 along

with a crossover temperature Tc such that u ¼ 0 for T ¼ Tc,

with a zero rate u ¼ 0 replacing Eq. (1) for T < Tc. The value of

Tc is determined from the condition, given below in Eq. (17),

that the rate of the branching reaction HþO2#
1
OHþO be

equal to effective rate of H-atom recombination, proportional

to the rate of HþO2 þM/
4f

HO2 þM and involving a compo-

sition-dependent factor a. Because of the very high H2O

chaperon efficiency of this last reaction, the resulting value of

Tc varies with the amount of water vapor, which in turn

depends on the composition of the fresh mixture.

The one-step chemistry, involving the non-Arrhenius rate

displayed above, applies with excellent accuracy to the

description of lean premixed hydrogen-air combustion, i.e, for

values of the equivalence ratio f(0:5 at atmospheric pres-

sure, where

f ¼ 8YH2N

YO2N

(2)

when expressed as a function of the ambientmass fractions of

hydrogen and oxygen. This one-step chemistry could be used

in numerical and theoretical investigations of flame stability

as well as dynamics of cellular fronts, thereby facilitating the

numerical investigation of the intermediate range of flame

structures encountered for decreasing values of the equiva-

lence ratio, from steady planar flames to highly cellular flames

involving an ensemble of flame balls [8]. An example of such

applications include the direct numerical simulation of

propagating flame cells, which becomes computationally

expensive when detailed chemistry is used [23]. Also,

numerical simulations of three-dimensional flame-ball

dynamics, previously attempted with a generic Arrhenius

chemistry model [24,25], could make use of the one-step

H2eO2 reduced mechanism for a more realistic description,

enabling the flame-ball response to be linked directly to the

ambient conditions.

It was seen in [20] that, because of the large value of

b present in the one-step rate, at leading order the flame-ball

size is determined by the condition that radiation removes

enough of the chemical heat for the flame temperature to

remain close to the crossover value. The leading-order

analytic solution computed in this way describes with excel-

lent accuracy the variation of the flame-ball radius rf with

equivalence ratio f along the upper branch of stable solutions,

except near the lean limit, where it fails to give the turning

point of the rf � f curve. The corresponding near-turning-

point analysis, providing the flammability limit below which

no flame ball may exist, is derived in the present work.

The paper begins by using numerical integrations to guide

the selection of the initial conservation equations for the
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analytical development, including simplified models for the

chemistry and radiation. The radiation-free solution is

investigated next to determine the leading-order solution for

the lean flammability limit as well as the characteristic scales

involved in the problem. Activation-energy asymptotics is

then employed to find an analytical solution near the turning

point, which requires scalings that are different depending on

whether the ambient mixture does or does not contain water

vapor. A two-term analytic expressions is then obtained for

the critical hydrogen content at the turning point. The theo-

retical predictions are tested by comparisons with results of

numerical integrations for atmospheric hydrogen-air flame

balls with detailed chemistry and radiation models, showing

excellent agreement for various extents of dilution with water

vapor and nitrogen.
φ
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Fig. 1 e The variation with the equivalence ratio f of the

flame-ball radius as obtained from numerical integrations

with the SNB radiation model and the 21-step chemical

scheme (solid curves), with the SNB radiation model and

the one-step reduced mechanism (circles), and with the

optically thin approximation given in Eq. (18) and the one-

step reduced mechanism (dashed curves); for three

different values of the mass fraction of water vapor in the

ambient atmosphere.
2. Simplifications to the chemistry and
radiation descriptions

The structure of steady, spherically symmetrical flame balls is

determined by integration of the convection-free energy and

species conservation equations written for the temperature T

and mass fractions Yi of species i, including detailed descrip-

tions for the transport, chemistry, and radiation, with

symmetry conditions at the center and ambient values T ¼ TN

and Yi ¼ YiN in the far field [17,18,19]. In fuel-lean hydrogen-

air flame balls, the molecular transport is dominated by the

abundant presence of nitrogen and oxygen, so that the

thermal conductivity and the molecular diffusivities of the

different species can be computed with the simple

temperature-dependent laws suggested in [26] for methane-

air flames. As shown previously [20], Soret diffusion of light

species needs to be included if accurate results are desired.

Besides, the computation requires specification of the

chemical-reaction scheme, an appropriate choice being the

so-called San Diego Mechanism of 21 steps [27,28]. It also

requires taking appropriate account of H2O radiation, with

different levels of complexity being employed in previous

studies. The most elaborate radiation model includes both

emission and absorption, with radiative transport computed

by a Statistical Narrow Band (SNB)- Discrete Ordinate method

[29,30], while the simplest model assumes an optically thin

medium, an approximation used, for instance, in [17,18,19].

We shall see below that the latter description becomes

increasingly accurate as the flame-ball radius decreases near

the lean limit, and it can be used, in particular, to compute the

critical composition at the turning point with reasonably

small errors that, in fact, are entirely negligible when water

vapor is absent in the ambient mixture. As explained by

Ronney [30], larger errors emerge for mixtures diluted with

CO2; for such cases, not considered here, an optically thin

model is never a good approximation.

The results of the integrations for flame balls including

detailed chemistry and an SNB model for radiation are shown

in Figs. 1 and 2. The plots exhibit the variation with equiva-

lence ratio of the flame-ball radius rf, defined as the location

where the rate of hydrogen consumption reaches

amaximum, along with the variation of the peak temperature

Tmax, which is always reached close to r ¼ rf . The
computations are for an ambient hydrogen-air mixture at

pressure p ¼ 1 atm and normal ambient temperature

TN ¼ 300 K, and they also include test cases with water-vapor

dilution corresponding to ambient mass fractions YH2ON
¼ 0:1

and YH2ON
¼ 0:2. As expected, two different solutions are

found for values of f above a critical value fl and no solution

exists for f < fl.

Along with the plots of peak temperature, the computa-

tions for dry air in Fig. 2 include the variation with composi-

tion of the crossover temperature, as defined from Eq. (17). As

can be seen, the resulting peak temperature is not too far

above Tc, with values Tmax � Tcwb�1Tc. Under such low-

temperature conditions, the previously derived one-step

reduced mechanism becomes applicable [21,22], and it is

seen in the comparisons shown in Figs. 1 and 2 that results for

H2-air flame balls computed with the reduced chemistry,

represented by circles, are very accurate. The one-step

formula can therefore be used with confidence as a replace-

ment for the 21-step chemistry to facilitate the analysis.

Simplifications to the SNB description of radiative heat

losses are also needed to enable analytical results to be

developed. Assuming the characteristic absorption length to

be much larger than the characteristic flame-ball size leads to

the well-known optically thin approximation, used in

previous studies [17,18,19,20]. The results obtained with the

one-step approximation for the chemistry combined with the

optically thin approximation for radiation are shown as

dashed curves in Figs. 1 and 2. As can be seen, in the range of f
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Fig. 2 e The variation with the equivalence ratio f of the

peak temperature as obtained from numerical integrations

with the SNB radiation model and the 21-step chemical

scheme (solid curves), with the SNB radiation model and

the one-step reduced mechanism (circles), and with the

optically thin approximation given in Eq. (18) and the one-

step reduced mechanism (dashed curves); for three

different values of the mass fraction of water vapor in the

ambient atmosphere. The dotted curve represent the

variation of the crossover temperature Tc, at which the rate

(11) of the one-step computation with optically-thin

radiation vanishes for dry air, with the solid circle

representing the values obtained at the turning point.
considered, the optically thin approximation yields moderate

errors in flame-ball radii, on the order of 20%, in agreement

with previous numerical investigations [30]. Note, however,

that the accuracy is much better for the computation of

flammability conditions. In particular, for the dry hydrogen-

air mixture, the turning point obtained with the optically

thin approximation is extremely close to that determinedwith

the SNBmodel. More noticeable departures appear with water

vapor in the atmosphere, leading to overpredictions of fl on

the order of 5%. Since these errors are comparable to those

expected from the asymptotic analysis presented below, the

simple radiation law associated with the optically thin

approximation, given below in Eq. (18), will be adopted in the

following development.

Before proceeding with computations of steady flame balls

it is worth commenting briefly on their stability. The solutions

along the branch of small flame-ball radii, with almost negli-

gible radiation, are known to be unstable to one-dimensional

disturbances [15,16], whereas radiation helps stabilize the

solutions along the upper branch in Fig. 1 (i.e., the lower

branch in Fig. 2), which correspond to the large flame balls

found in microgravity experiments [10,11,12,13]. Previous

numerical computations [19] and theoretical analyses [16]

indicate that the critical solution at the turning point is
unstable, with the first stable solution appearing in the upper

branch for an equivalence ratio slightly larger than fl. This

stability characteristic was further verified in the present

work by performing a number of transient computations, with

the steady solution used as initial condition. The results

indicated, in particular, that the instability for the solution

along the upper branch occurs as a subcritical Hopf bifurca-

tion. For the computations with a dry ambient shown in the

figure, the bifurcation occurs for fx0:0753. This value is in fact

very close to the turning-point value fl ¼ 0:0735, so that, for

practical purposes, one may in principle neglect unsteady

effects in defining the critical conditions for flame-ball exis-

tence. For this reason, in the following the flammability limit

will be associated with the turning point of the steady

solution.

Although flame-ball stability and dynamics will no longer

be considered here, it should be noted that the scalings and

flame-ball asymptotic structure identified below could be

employed in future one-dimensional and three-dimensional

stability analyses, the latter affecting the solution when the

mixture becomes sufficiently rich [15,16]. The scalings also

could be employed in bifurcation studies of self-drifting flame

balls [31,32]. Many further investigations thus could be based

on the formulation identified in the present paper.
3. Problem formulation

In the one-step approximation, only three chemical species

(H2, O2 and H2O) need to be considered, so that the solution for

the spherically symmetric, steady flame ball is determined by

integrating

�1
r2

d
dr

�
rDO2

r2
dYO2

dr

�
¼ �WO2

u (3)

�1
r2

d
dr

�
rDH2Or

2dYH2O

dr

�
¼ 2WH2Ou (4)

�1
r2

d
dr

�
rDr2

dY
dr

�
¼ �2WH2

u (5)

and

�1
r2

d
dr

�
lr2

dT
dr

�
¼ �QR þ 2WH2

qu; (6)

with boundary conditions dT=dr ¼ dYi=dr ¼ 0 at r ¼ 0 and

T� TN ¼ Y � YH2N
¼ YO2

� YO2N
¼ YH2O � YH2ON ¼ 0 as r/N.

Here, r is the distance from the flame-ball center, r is the

density of the gas mixture, and Wi is the molecular weight of

species i.

As previously explained, in fuel-lean hydrogen-air flame

balls the thermal conductivity l is dominated by nitrogen and

oxygen, so that the approximate expression

l=cp ¼ 2:58 � 10�5ðT=298Þ0:7kg=ðmsÞ; (7)

suggested in [26] for methane-air flames, also dominated by

these species, can be used with excellent accuracy. The

specific heat at constant pressure cp ¼
P

i cpiYi is evaluated

with use made of NASA polynomial fits for the temperature



dependence of cpi for each species. At the same level of

approximation [26], the molecular diffusivity Di can be

computed as the binary diffusion coefficient of the species i

into nitrogen, according to

rDi ¼ 2:58 � 10�5ðT=298Þ0:7=Li;kg=ðmsÞ; (8)

with Lewis numbers given by Li ¼ ð1:11; 0:30;0:83Þ for

(O2,H2,H2O), respectively. Following [20], to incorporate in Eq.

(5) the thermal diffusion and the molecular diffusion in

a single Fickian-like diffusion equation the formulation

introduces a modified fuel mas fraction

Y ¼ ðT=TNÞaH2YH2
; (9)

and a modified diffusivity

D ¼ ðT=TNÞ�aH2DH2
; (10)

with aH2
¼ �0:29 representing the H2 Soret factor [33]. The rate

u (moles per unit volume per unit time) for the overall reaction

2H2 þ O2 / 2H2O is given by [21]

u ¼ 1
GH

�
k1f

ak4f CM
� 1

�
k2f k3f

k1b

�
rYH2

=WH2

�2
; (11)

where the subscripts f and b denote the forward and backward

specific reaction-rate constants for the steps H þ O#
1

OHþ O,

H2 þ O #
2

OH þ H, H2 þ OH #
3

H2O þ H, and

H þ O2 þM /
4f

HO2 þM, and CM represents the effective third-

body concentration of reaction 4f , which accounts for the

non-unity chaperon efficiencies of H2O and H2, while

G ¼ 1þ g3b

2
þ F
2

nh
1þ 2ð3þ g3bÞ=Fþ ð1þ g3bÞ2=F2

i1=2
�1
o
; (12)

H ¼ 1
2
þ 1
2

�
1þ 4Fk7f�

k5f þ k6f

� k2bk2f

ak1bk3f

�
k1f

ak4f CM
� 1

��1=2
; (13)

and

a ¼ k6f F=
�
k5f þ k6f

�þ G

Fþ G
(14)

are order-unity functions of the composition and temperature

[21] involving the reaction-rate constants of the additional

reactions HO2 þ H /
5f

OH þ OH, HO2 þ H /
6f

H2 þ O2, and

HO2 þ OH /
7f

H2O þ O2, with

F ¼ k5f þ k6f

k7f

k3f

k4f CM

YH2
=WH2

YO2
=WO2

; (15)

and

g3b ¼
k3bYH2O=WH2O

k4f CMYO2
=WO2

(16)

The reaction rate given in Eq. (11) applies for temperatures

larger than a crossover value Tc for which

k1f ¼ ak4f CM; (17)

whereas at temperatures T < Tc the one-step approximation

predicts u ¼ 0 as a consequence of the dissapearance of the

radicals. The value of Tc depends on the local H2 content

through a, which equals unity for YH2
¼ 0 because F ¼ 0 but

decreases toward a ¼ k6f=ðk5f þ k6f Þx1=6 with increasing
hydrogen concentration. The amount of heat released per unit

mass of fuel consumed q, appearing in [6], can be computed

from the enthalpy of formation of water vapor ho
H2O

according

to q ¼ �ho
H2O

=WH2
¼ 1:21� 105 kJ/kg.

The radiant heat loss per unit volume is given by the

familiar approximation

QR ¼ 4kH2Osp
�
W=WH2O

�
YH2O

�
T4 � T4

N

�
; (18)

where W represents the mean molecular weight of the gas

mixture, and s and kH2O denote the StefaneBoltzmann

constant and the Plank-mean absorption coefficient, respec-

tively, with the latter being a function of the local temperature

[34] that in the range of temperatures of interest

(270 < T < 1300 K) can be shown to be accurately represented

by the expression kH2O ¼ 5:72 � 10�4ðT=298Þ�2 s2/kg [20].

As in [20], we shall use the assumption, not strictly

necessary, of equal temperature dependence of the diffusiv-

ities D, DO2 and DH2O, so that the two simple relations

YH2O � YH2ON ¼ 2
WH2O

WO2

DO2

DH2O

�
YO2N

� YO2

� ¼ WH2O

WH2

D
DH2O

�
YH2N

� Y
�

(19)

can be readily obtained by integration of linear combinations

of Eqs. (3)e(5). In this approximation, the effect of thermal

diffusion is incorporated by using in evaluating Eq. (19) an

averaged increased diffusivity D=DH2
¼ 1:154, obtained from

[8] at an average temperature ratio, yielding [20]

YH2Or ¼ YH2ON þWH2O

WH2

D
DH2O

YH2N
¼ YH2ON þ 28:7YH2N

(20)

and

YO2r

YO2N

¼ 1� 1
2
WO2

WH2

D
DO2

YH2N

YO2N

¼ 1� f=0:234; (21)

for the water vapor and oxygen mass fractions in the reaction

zone. With these simplifications, the problem reduces to that

of integrating

1
r2

d
dr

�
rDr2

dY
dr

�
¼ 2WH2

u (22)

and

1
r2

d
dr

�
lr2

dT
dr

�
¼ 4kH2Osp

W
WH2O

YH2O

�
T4 � T4

N

�� 2WH2
qu; (23)

with boundary conditions dT=dr ¼ dY=dr ¼ 0 at r ¼ 0 and

T� TN ¼ Y � YH2N
¼ 0 as r/N. The expressions given in Eqs.

(20) and (21) are to be used in evaluating the reaction rate Eq.

(11). As an additional simplification [20], the specific heat at

constant pressure can be computed from the approximate

formula cp ¼ cpN ðT=TNÞ0:15, where cpN is the value of cp in the

ambient atmosphere; this is very accurate for the lean

conditions considered and yields lfTn and rDfTg with

n ¼ 0:85 and g ¼ 0:99 (24)

for the temperature dependences of the transport coefficients

appearing in Eqs. (22) and (23).

Because of the relatively large activation temperature of

reaction 1f , Ta1f ¼ 8590 K, the overall rate u given in Eq. (11) is



very sensitive to changes in temperature through the term

k1f=ðak4f CMÞ appearing in the cutoff factor. The associated

value of the dimensionless activation energy

b ¼ Ta1f =Tc þ n1f � n4f þ 1; (25)

evaluated at the crossover temperature, with account taken of

the additional algebraic temperature dependences Tn1f and

Tn4f�1 of k1f and k4f CM, where n1f ¼ �0:7 and n4f ¼ �1:4, is found

to be of order 10. The factor r2k2f k3f=k1b in Eq. (11) introduces

a nonnegligible additional temperature dependence, charac-

terized by the dimensionless activation energy

mb ¼
�
Ta2f þ Ta3f � Ta1b

	.
Tc þ n2f þ n3f � n1b � 2x7: (26)

Because of these temperature sensivities, the solution

exhibits a thin reaction layer centered at r ¼ rf with an

apparent peak temperature T ¼ Tf that differs by a small

relative amount of order b�1 from the crossover temperature

Tc along the upper branch of stable solutions [20].
4. The radiation-free solution

As a first step in analyzing the solution near the turning point,

it is necessary to investigate initially the flame-ball solution

that appears in the absence of radiation, the case considered

originally by Zeldovich using Arrhenius kinetics with large

activation energy [9]. Zeldovich found that, because of the

strong temperature dependence of the chemistry, the reaction

is confined to a thin layer centered at r ¼ rf , where the defi-

cient reactant is consumed, separating a central equilibrium

region for r < rf with zero reactant concentration from an

outer region for r > rf where the chemical reaction is frozen.

The corresponding radiation-free analysis will be carried

out here for the one-step reduced mechanism that describes

hydrogen oxidation for temperatures near crossover. Because

of the large temperature sensivities of the reaction, the solu-

tion exhibits also in this case the characteristic thin-reaction-

layer structure found in the Zeldovich analysis. A remarkable

difference with the previous work is that, while the Arrhenius

kinetics employed by Zeldovich provides no flammability

limit, the presence of the factor k1f=ðak4f CMÞ � 1 in the non-

Arrhenius rate (11) introduces a kinetically controlled flam-

mability limit for hydrogen-air combustion, associated with

the limiting mixture conditions for which the peak tempera-

ture equals the crossover temperature Tc.

The analysis with radiation neglected begins by integrating

twice a chemistry-free linear combination of Eqs. (22) and (23)

to yield

LH2
cpNTN

1þ n� g

�
T
TN

�1þn�g

þqY ¼ LH2
cpNTN

1þ n� g
þ qYH2N

; (27)

which can be evaluated at the flame, where Y ¼ 0 to give an

expression determining the flame-ball temperature

�
Tf

TN

�1þn�g

¼ 1þ ð1þ n� gÞqYH2N

LH2
cpNTN

(28)

For r > rf the reaction is frozen and one may integrate Eq.

(22) with boundary conditions Y ¼ 0 at r ¼ rf and Y ¼ YH2N
at
r ¼ N to give the diffusive flux of hydrogen into the reaction

sheet, from

�
dY
dr

�
rfþ

¼ 1þ n� g

1þ n

�
Tf=TN

�1þn�1�
Tf=TN

�gh�
Tf=TN

�1þn�g�1
i YH2N

rf
; (29)

which is consumed according to

ðrDÞf
4WH2

�
dY
dr

�2

rfþ

¼
Z N

0

udY; (30)

obtained from integration of the quasi-planar form of Eq. (22)

across the thin reaction layer after multiplication by dY=dr,

with the value of ðrDÞf evaluated at the flame temperature.

The reaction rate u appearing in the above integral is given in

Eq. (11). In performing the integral, use must be made of Eq.

(27) to give T as a function of Y, while the constant reaction-

sheet values YH2Or and YO2r
given in Eqs. (20) and (21) can be

used to evaluate the water-vapor and oxygen mass fractions.

Equations (29) and (30) determine the flame-ball radius rf once

the peak temperature is obtained from Eq. (28). We shall see

below that this radiation-free analysis provides the leading-

order solution for hydrogen-air flame balls in the double

asymptotic limit of large activation energy and small radiation

losses, to be presented below in dimensionless form, so that,

for instance, Eq. (30) is to be rewritten in Eq. (43) in non-

dimensional form.

The analysis described above fails as the peak temperature

decreases to the crossover value Tc, defined from Eq. (17),

corresponding to a critical value of the fuel mass fraction

Yo
H2Nl

¼
LH2

h
ðTc=TNÞ1þn�g�1

i
ð1þ n� gÞq=�cpNTN

�: (31)

As YH2N
/Yo

H2Nl
the reaction rate u diminishes, resulting in

a vanishing value of ðdY=drÞfþ for YH2N
¼ Yo

H2Nl
as dictated by

Eq. (30) and a corresponding diverging value of rf/N as given

by Eq. (29). Clearly, the expression given in Eq. (31) provides

a first-order estimate of the critical H2 mass fraction at the

flammability limit. In the evaluation, the crossover tempera-

ture Tc ¼ To
c must be computed from

k1f ¼ k4f CM; (32)

obtained from Eq. (17) with a ¼ 1, as corresponds to the van-

ishing H2 concentration found in the reaction layer at the

flammability limit. Since the effective third-body efficiency

[27,28]

CM ¼ p
RoT

�
1þ 15YH2OrW=WH2O

�
(33)

depends on the water-vapor mass fraction, given in Eq. (20) as

a function of YH2N
, Eqs. (31) and (32) are coupled and need to be

solved simultaneously to determine To
c and Yo

H2Nl
.

Note that, because of the small value of the Lewis number

LH2 ¼ 0:3, the peak temperature at the reaction layer given in

Eq. (28) is a factor L�1
H2

larger than the adiabatic flame temper-

ature corresponding to the planar flame. Correspondingly, the

critical H2 content at extinction, given in Eq. (31), is a factor LH2

smaller than its planar-flame counterpart, a consequence of

preferential diffusion first pointed out by Joulin [35]. For



instance, for a H2-air mixture at TN ¼ 300 K and p ¼ 1 atm,

solving Eqs. (31) and (32) yields To
c ¼ 1049 K andYo

H2Nl
¼ 0:00173,

giving at this order fo
l ¼ 0:059 for the equivalence ratio at the

lean flammability limit, to be compared with the value

fl ¼ 0:251 obtained from planar-deflagration computations

[21,22]. Also of interest is that the temperature dependence of

the transport coefficients (including Soret effects) is present in

the solution at this order through thenon-unity factor 1þ n� g

appearing in Eq. (31), needed for increased accuracy. The

appearance of the turning point, as a result of the near-

crossover competition between effects of radiation and

finite-rate kinetics, will next be seen to introduce a correction

to the leading-order prediction given in Eq. (31)
5. Characteristic scales near the turning
point

The characteristic flame-ball size near the turning point can

be estimated by anticipating that the transition between the

two branches of solutions occurs when the peak temperature

differs from the crossover value by a small amount of order

Tf � Tcwb�1Tc, with Ywb�1YH2N in the reaction layer. Since the

diffusive flux of hydrogen is of order dY=drwYH2N=ro, with ro
representing the characteristic flame-ball radius, the reaction-

layer thickness can be expected to be of order b�1ro. Using

these estimates in Eq. (30) with usemade of Eq. (11) to evaluate

u yields

ro ¼
�

b3DcGcHc

2
�
k2f k3f=k1b

�
c

�
rcYH2N

=WH2

��1=2

(34)

for the characteristic flame-ball radius near the turning point,

where the subscript c denotes quantities evaluated at the

crossover temperature To
c , also used in evaluating b from Eq.

(25).

Flame balls near the turning point are sufficiently small for

radiation to be relatively weak, as can be seen by evaluating

the order-of-magnitude ratio OðQRÞ=OðV$ðlVTÞÞ, involving the

characteristic magnitudes of the volumetric heat losses by

radiation and conduction. When the ambient atmosphere is

free from water vapor, it is appropriate to use the character-

istic reaction-layer value YH2Or ¼ 28:7YH2N computed from Eq.

(20) to evaluate Eq. (18), thereby yielding the radiation-to-

conduction ratio

ε ¼ 4kH2Ocsp
�
WN=WH2O

�
YH2Or T

3
c r

2
o=lc: (35)

If water vapor is present in the atmosphere, however, then

the alternative parameter

εW ¼ 4kH2Ocsp
�
WN=WH2O

�
YH2ONT

3
c r

2
o=lc (36)

is a more appropriate measure of the radiation effect. Both ε

and εW typically take on small values. For instance, the

parameter ε, a function of the temperature, gives εx0:05,

independent of YH2N
, when evaluated at Tcx1000 K with the

ambient mean molecular weight WN taken to be equal to that

of air. As a result, radiation is unimportant, at leading order, at

distances of order ro, and it only becomes significant far from

the flame ball, at large distances, of order ε
�1ro for YH2ON ¼ 0

and ε
�1=2
W ro for YH2ONs0. Its effect in the far field is that of
introducing an apparent ambient temperature T�
N for the

description of the temperature field at distances of order ro.
For the values of ε and εW typically encountered, the charac-

teristic values of the corresponding relative temperature

decrements, given by ðTN � T�
NÞ=Tcwεlnðε�1Þ when YH2ON ¼ 0

and by ðTN � T�
NÞ=Tcwε

1=2
W when YH2ONs0, turn out to be of

order b�1, and are therefore large enough to affect the solution

at leading order, modifying the flame-ball radius and enabling

the transition to the upper branch through a turning point in

the rf � f curve to occur. These observations suggest the use of

the distinguished limit bεlnðε�1ÞwOð1Þ (or bε
1=2
W wOð1Þ) for the

asymptotic treatment of the flame-ball problem for b[1 and

ε � 1 (or εW � 1).
6. Solution for b[ 1 with ε � 1 (εW � 1)

6.1. Governing equations

Introducing the dimensionless variables x ¼ r=ro, q ¼ T=Tc, and

y ¼ Y=YH2N , reduces Eqs. (22) and (23) to

1

x2
d
dx

�
qgx2

dy
dx

�
¼ U (37)

and

1

x2
d
dx

�
qnx2

dq
dx

�
¼ ~QR � ~qU; (38)

where

~q ¼ qYH2N

LH2

�
To
c=TN

�1þn�g
cpNTN

; (39)

~QR¼


εð1�yÞ�q4�q4N

��
q2 forYH2ON ¼0

εW

�
1þ28:7

�
YH2N

=YH2ON

�ð1�yÞ
�q4�q4N
��

q2 forYH2ON >0
;

(40)

and

U ¼ b3exp

�
mb

q� 1
q

��
exp

�
b
q� 1
q

�
� 1

�
y2; (41)

for q > 1 while U ¼ 0 for q � 1. Appropriate boundary condi-

tions are dy=dx ¼ dq=dx ¼ 0 at x ¼ 0 and y� 1 ¼ q� qN ¼ 0 as

x/N. It is clear from the above dimensionless problem that in

the limit ε � 1 (i.e., εW � 1) radiation is negligible at distances

of order xwOð1Þ and that the chemical term balances the

diffusion and conduction terms in the reaction layer, of

thickness b�1, where ywb�1 and q� 1wb�1.

6.2. Near-field solution

In the limit b/N the reaction is confined to a thin sheet

located at x ¼ xf , across which the gradients of temperature

and fuel mass fraction are related by the jump condition

�
dq
dx

�
xf�

�
�
dq
dx

�
xfþ

¼ ~qqg�n

f

�
dy
dx

�
xfþ

: (42)

A second equation determining the burning rate at the

flame comes from integrating Eq. (37) across the reaction layer

to give



1
q
g

f

�
dy
�2

¼
Z yc

Udy; (43)

2 dx xfþ 0

the dimensionless counterpart of Eq. (30). Computation of the

integral requires use of qf � q ¼ ~qqg�n

f y to evaluate the reaction

rate U given in Eq. (41), with the condition U ¼ 0 for q � 1

introducing an upper limit of integration

yc ¼
�
qf � 1

���
~qqg�n

f

	
; (44)

associated with the fuel concentration at the location where

q ¼ 1, a quantity of order b�1.

Since ε � 1, the solution in the near field, corresponding to

distances xwOð1Þ, can be determined at leading order with

radiation neglected to obtain results with errors of order ε.

Integration of Eqs. (37) and (38) with the preceding conditions

then yields simply q� qf ¼ y ¼ 0 for x < xf , and

q1þn ¼ q1þn
f �

h
q1þn
f � �q�N�1þn

i�
1� xf

x

�
(45)

and

1� y ¼ q1þn�g � �q�N�1þn�g

q
1þn�g

f � �q�N�1þn�g
(46)

for x > xf . In anticipation of the fact that the effect of radiation

modifies the far-field temperature profile in Eqs. (45) and (46),

an apparent ambient temperature q�N has been introduced to

replace qN as the boundary condition for x/N. Eq. (46) gives

the gradient

�
dy
dx

�
xfþ

¼ �
ð1þ n� gÞqn�g

f

q
1þn�g

f � �q�N�1þn�g

�
dq
dx

�
xfþ

; (47)

where

�
dq
dx

�
xfþ

¼ �q1þn
f � �q�N�1þn

ð1þ nÞqnf xf
(48)

is determined from Eq. (45). Since ðdq=dxÞf� ¼ 0 (i.e., q ¼ qf for

x < xf ), substitution of Eq. (47) into Eq. (42) provides the

relationship

~q ¼
q
1þn�g

f � �q�N�1þn�g

1þ n� g
: (49)

On the other hand, using Eqs. (47) and (48) to express

ðdy=dxÞxfþ reduces Eq. (43) to

1
2qgf

�
1þ n� g

1þ n

�2
 

q1þn
f � �q�N�1þn

q
1þn�g

f � �q�N�1þn�g

!2
1

x2f
¼
Z yc

0

Udy: (50)

The turning point appears for values of YH2N
close to Yo

H2N

and corresponding values of qf close to unity. It is

then appropriate to linearize Eq. (49) for ~q� ð1� q1þn�g
N Þ=

ð1þ n� gÞ � 1 to yield the approximate expression

~q� 1� q1þn�g
N

1þ n� g
¼ �qf � 1

�þ �qN � q�N
�
: (51)

For the description of the turning point in the limit b[1, it

is convenient to introduce the reduced variables
Qf ¼ b
�
qf � 1

�
(52)
and

Q ¼ b

�
~q� 1� q1þn�g

N

1þ n� g

�
: (53)

Note that ð1� q1þn�g
N Þ=ð1þ n� gÞ is the value of ~q evaluated

with the limiting fuel mass fraction Yo
H2Nl

, as can seen from

Eqs. (31) and (39), so that

Q ¼ b
1� q1þn�g

N

1þ n� g

�
YH2N

� Yo
H2Nl

	
Yo

H2Nl

; (54)

can be seen as a reduced equivalence ratio measuring the

departures of the mixture fuel content from the critical value

corresponding to the radiation-free flammability limit. In

terms of Qf and Q the expression given in Eq. (51) reduces to

Q ¼ Qf þ b
�
qN � q�N

�
; (55)

establishing a balance between the non-dimensional heat

release by chemical reaction Q, the non-dimensional

temperature increment Qf, and the non-dimensional far-

field heat losses by radiation, bðqN � q�NÞ. At the same level of

approximation, the reaction-rate integral in Eq. (50) can be

evaluated explicitly, and the result is that Eq. (50) can be

written for near-turning-point conditions in terms of the

normalized radius

Rf ¼ ð1þ nÞð1þ n� gÞ1=2�
1� q1þn

N

��
1� q1þn�g

N

�1=2xf ; (56)

as

1

R2
f

¼4emQf

 
eQf

ðmþ1Þ3�
1
m3

!
þ 2Q2

f

mðmþ1Þþ
4Qf ð1þ2mÞ
m2ðmþ1Þ2 þ4ð3m2þ3mþ1Þ

m3ðmþ1Þ3 :

(57)

In this expansion the value m¼0:7 will be used below for

computational purposes (see the discussion following Eq.

(25)). Note that in the limit of large activation energy consid-

ered here, the dimensionless variables Qf, Q and Rf of order

unity, defined in Eqs. (52), (54), and (56), are appropriately

scaled measures for Tf, f and rf near the turning point.

Correspondingly, the curves to be obtained below for the

variation of Rf and Qf with Q, shown in Fig. 3, are merely an

appropriately rescaled representation near the turning point

of the corresponding dimensional plots shown in Figs. 1 and 2.

Equations (55) and (57) determine Rf andQf for a given value

of bðqN � q�NÞ. This apparent ambient-temperature modifica-

tion is determined from matching the temperature profile

given in Eq. (45), which as x/N takes the form

q� qN ¼ 1� q1þn
N

ð1þ nÞqnN
xf

x
� �qN � q�N

�
; (58)

with the solution in the far-field region, where radiation

enters at leading order in determining the final decay toward

the boundary value qN. The far-field solution is different

depending on whether or not the ambient atmosphere

contains water vapor, leading to different expressions for the

turning-point curves.
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Fig. 3 e The variation of the scaled non-dimensional flame-

ball radius Rf and of the reduced non-dimensional flame-

ball temperature Qf with the appropriate reduced

equivalence ratio Q as obtained from Eqs. (57) and (64) for

values of the relevant non-dimensional radiant heat-loss

parameter (65) D[ð0:1;0:5;1;1:5;2;2:5;3;10Þ.
6.3. The turning point for YH2ON
¼ 0

With the water-vapor concentration decaying in the far field

according to 1� yf1=x, radiation is seen to become compa-

rable to conduction at large distances of order xwε
�1, where

q� qNwε. The solution is obtained by integrating

d
dh

 
h2 d

~q

dh

!
¼Lh~q=xf ;

(
h/0 : h2d~q=dh/�xf

h/N : ~q/0
; (59)

where h¼ εx,

~q ¼ ð1þ nÞqnN
1� q1þn

N

q� qN

ε

(60)

and

L ¼ 4
1þ n� g

1þ n

q1�n�g
N

�
1� q1þn

N

�
�
1� q1þn�g

N

� x2f : (61)

As h/0 the solution of Eq. (59) is seen to be

~q ¼ xf=hþLlnh; (62)

so that matching with the inner solution given in Eq. (58)

provides in this case

qN � q�N ¼ L
�
1� q1þn

N

�
ð1þ nÞqnN

εln
�
ε
�1
�
; (63)

to be substituted into Eq. (55) to yield

Q ¼ Qf þ DR2
f ; (64)
where

D ¼ 4q1�2n�g
N

�
1� q1þn

N

�4
ð1þ nÞ4 bεln

�
ε
�1
�
: (65)

The solution then depends on the radiation parameter, D,

of order unity. Sample plots showing the variations of the

normalized flame-ball radius Rf and the reduced peak

temperature Qf, as functions of the reduced equivalence ratio

Q, obtained from simultaneously solving Eqs. (57) and (64),

are shown in Fig. 3 for different values of D. As can be seen,

two solutions are found for Q > Ql, and no solution exist for

Q < Ql. For Q/N, along the upper branch the radius

increases and the peak temperature approaches crossover

according to RfxðQ=DÞ1=2 and, since the first four terms

vanish in the expansion of Eq. (57) for small Qf, Qfxð6D=QÞ1=4.
The solution therefore evolves to approach that previously

given in [20] for flame balls away from the turning point, with

the flame-ball radius determined by the condition that

radiant heat losses remove enough of the heat released by

chemical reaction at the flame to keep Tf ¼ Tc. On the other

hand, the solution for the Zeldovich lower branch, with

negligible radiation, increasing temperature, and vanishing

radius, reduces to QfxQ and Rfx
1
2
ð1þ mÞ3=2exp½�ð1þ mÞQ=2�.

The numerical computations shown in Figs. 1 and 2 indicate

that this last asymptotic solution fails away from the turning

point, with the temperature eventually decreasing after

reaching a maximum. This failure occurs when rf reaches

small values, indicating that for small flame balls in richer

mixtures the chemical reaction no longer occurs in a thin

layer where the fuel is completely consumed, but rather in

a central region with incomplete hydrogen consumption.
6.4. The turning point for YH2ON
> 0

When water vapor is present in the surrounding atmosphere

radiation losses enter to modify the temperature field at

relative distances of order xwε
�1=2
W , where q� qNwε

1=2
W , so that

ε
1=2
W must replace ε in the definitions of h and ~q. The solution for

the temperature profile, ~q ¼ xfexp½�2qð1�nÞ=2
N h�=h, obtained by

integrating

1

h2

d

dh

 
h2 d

~q

dh

!
¼4q1�n

N
~q;

(
h/0 : h2d~q=dh/�xf

h/N : ~q/0
; (66)

takes the limiting form

~q ¼ xf=h� 2qð1�nÞ=2
N xf (67)

as h/0, so that matching with the inner solution given in Eq.

(58), used already in Eq. (66) when writing the boundary

condition as h/0, provides

qN � q�N ¼ 2
�
1� q1þn

N

�
qð1�3nÞ=2
N

ð1þ nÞ ε
1=2
W xf : (68)

Substitution of this last expression into Eq. (55) yields

Q ¼ Qf þ DWRf ; (69)

with the revised radiation parameter of order unity being
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%H2
DW ¼ 2qð1�3nÞ=2

N

�
1� q1þn

N

�2�
1� q1þn�g

N

�1=2
ð1þ nÞ2ð1þ n� gÞ1=2

bε
1=2
W : (70)

When the ambient atmosphere contains water vapor, the

variation of the normalized flame-ball radius Rf and the reduced

peak temperature Qf, as functions of Q, are obtained by solving

simultaneously Eqs. (57) and (69) for different values of DW. The

solution is qualitatively similar to that depicted in Fig. 3 for dry

ambient conditions, the only difference arising from the linear

functionaldependenceonRf in Eq. (69), rather than thequadratic

dependence inEq. (64).Asbefore, twobranchesof solutionsexist

forQ > Ql, with the solution along thebranchof decreasing radii

away from the turning point approaching the radiation-free

solution Qf ¼ Q and Rf ¼ 1
2
ð1þ mÞ3=2exp½�ð1þ mÞQ=2�, whereas

the branch of increasing radii approaches for Q[1 the asymp-

totic form Rf ¼ Q=DW andQf ¼ 61=4ðDW=QÞ1=2.
f
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Fig. 4 e Predicted dilution effects; the variation with the

enrichment parameter f[YO2N=ðYO2NDYN2N Þ of the limiting

volume percentage of hydrogen for flame-ball existence as

obtained for a hydrogen-oxygen-nitrogen mixture at

p[1 atm and TN[300 K from numerical integrations with

detailed chemistry (solid curve), from the leading-order

prediction given in Eqs. (31) and (32) (dashed curve), and

from the first-order correction given in Eq. (71) (dot-dashed

curve).
7. Limiting conditions for flame-ball
existence

For given conditions of pressure, ambient temperature and

composition, Eqs. (31) and (32) can be used to obtain the values

of To
c and Yo

H2Nl
, with thewater-vapormass fraction given in Eq.

(20) used to evaluate the third-body efficiency present in Eq.

(33). This leading-orderprediction for thecritical conditions can

be improved by using the results of the turning-point analysis,

which, according to the definition given in Eq. (54), yields

YH2Nl
¼ Yo

H2Nl

 
1þ ð1þ n� gÞQl

b
�
1� q1þn�g

N

�
!

(71)

as the first-order correction. Equation (25) and qN ¼ TN=Tc

evaluated with T ¼ Tc ¼ To
c provide the values of b and qN,

whereas Eq. (35) (or Eq. (36) if water is present in the atmo-

sphere) gives the value of ε (or εW), to be used in evaluating D

from Eq. (65) (or DW from Eq. (70)). For instance, for the dry

conditions considered in Figs. 1 and 2 the value To
c ¼ 1049 K

previously computed gives b ¼ 9:9 and qN ¼ 0:286, so that

ε ¼ 0:044 and D ¼ 2:54. This last value could be used when

selecting the curves Rf � Q and Qf � Q in Fig. 3 for the near-

turning-point variation of the flame-ball radius and tempera-

ture (the non-dimensional representation of the curves shown

in Figs. 1 and 2), which in turn determine the critical valueQl ¼
2:3 appearing in Eq. (71), thereby giving YH2Nl

¼ 0:00225

(fl ¼ 0:0774) as a correction to the radiation-free prediction

Yo
H2N

¼ 0:00173 (fo
l ¼ 0:059). In general, the simple expressions

Ql ¼ �0:525þ 2:50D0:13 (72)

and

Ql ¼ �0:609þ 2:83D0:22
W ; (73)

obtained by fitting the numerical solution of Eqs. (57) and (64)

(or Eq. (69) for YH2ON > 0), can be utilized for computational

purposes in evaluating Ql for use in Eq. (71).

These analytic predictions are tested in Figs. 4 and 5. In the

plots, the critical volume percentage of hydrogen

%H2 ¼ 100
YH2Nl

=WH2P
i Yi=Wi

(74)
corresponding to the turning point arising in detailed-

chemistry computations of steady flame balls is compared

with the prediction obtained from the asymptotic analysis at

leading order, associated with the value Yo
H2Nl

, and the corre-

sponding correction, calculated from Eq. (71). The results in

Fig. 4 consider amixture of hydrogen, oxygen, and nitrogen for

different values of the enrichment parameter

f ¼ YO2N

YO2N
þ YN2N

; (75)

which takes thevalue f ¼ 0:232 for ahydrogen-airmixture, and

in terms of which f ¼ ð8=fÞYH2N
=ð1� YH2N

Þ. The agreement

obtained is seen to be very good,with the first-order correction

improving considerably the leading-order prediction all the

way to small values of f, where the system is fuel-rich and the

analysis begins to break down. It is seen that the resulting

flammability limit is largely independent of the degree of

dilution of the oxidizer mixture, with %Hx2:5 for the leading-

orderpredictionand%Hx3 for the correctedpredictionand for

the numerical results. This independence can be anticipated

from the analytical results by noting that variations of YO2N

only affect the leading-order solution bymodifying slightly the

mean molecular weight W, used in Eq. (33) to determine the

third-body concentration, with additional small modifications

emerging in the first-order correction through the weak

oxygen dependence of the overall reaction rate, entering

through the parameters defined in Eqs. (15) and (16).
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Fig. 5 e Predictedhumidityeffects; thevariationwithwater-

vapor content of the limiting percentage of hydrogen for

flame-ball existence as obtained for a H2-air-H2Omixture at

p[1 atm and TN[300 K from numerical integrations with

detailed chemistry (solid curve), from the leading-order

prediction given in Eqs. (31) and (32) (dashed curve), and

fromthefirst-order correctionEq. (71)withQlevaluated from

Eq. (73) (dot-dashed curve); the dot indicates the corrected

value given in Eq. (71) obtained without ambient water

vapor with Ql evaluated from Eq. (72).
A second set of computations, shown in Fig. 5, explores the

accuracy of the theoretical results in the presence of ambient

humidity, characterized by the volume percentage of water

vapor in the ambient mixture

%H2O ¼ 100
YH2ON=WH2OP

i Yi=Wi
: (76)

In the figure, the first-order correction Eq. (71) is computed

for 2 < %H2O < 35withQl evaluated from Eq. (73). A dot is used

to represent the prediction obtained for %H2O ¼ 0 with Ql

evaluated fromEq. (72). Note that neither of the predictions for

Ql given in Eqs. (72) and (73) is strictly valid when the ambient

mass fraction YH2ON is comparable with the value, of order

εYH2Or , that occurs in the far field as a consequence of water-

vapor diffusion from the flame. The solid and dot-dash

curves in Fig. 5 in principle approach the limit of zero water-

vapor content horizontally, but ε is sufficiently small that

this transition occurs over an extremely small range, too small

to be seen in the figure. This transition regime is not investi-

gated further here, because for small values of %H2O both Eqs.

(72) and (73) give sufficiently accurate results, that is, the

reasoning on which Eq. (72) is based provides an excellent

approximation under these conditions.

As can be seen, the resulting value of %H2 in the H2-air-H2O

mixture raises with increasing H2O content, almost linearly,
increasing by about 50% when the water content reaches 35

percent. This is a consequence of two different effects. On one

hand, an increase in the water-vapor concentration increases

the crossover temperature, because of the third-body efficiency

present in Eq. (33), and therefore increases also the minimum

fuel content required to reach Tc, an effect that is captured at

leading order in the radiation-free solution determined from

Eqs. (31)and (32).Ontheotherhand, thepresenceofwatervapor

also enhances radiationand reduces theflame-ball radius at the

turning point, as seen in Fig. 1; this in turn increases the

magnitude of the radiation correction ðYH2N � Yo
H2Nl

Þ. This

second effect is absent at leading order but is described well by

the asymptotic analysis accounting for radiation, through the

correction term appearing in Eq. (71). Even without ambient

water vapor, accounting for radiation through the correction

term in Eq. (71) significantly improves predictions (Fig. 4).
8. Discussion

Lean near-limit spherical flame balls in hydrogen-oxygen-

diluent mixtures are predicted here to exhibit a distinct multi-

zone structure. A central spatially uniform hot region is boun-

ded by a thin reaction zone, outside of which heat conduction

andmolecular diffusion are dominant, over a near-field region

extending to roughly ten flame radii and through which the

temperature decreases nearly to the ambient temperature.

Outside of this region is a far-field region in which radiant heat

loss in water-vapor bands and heat conduction are in balance,

in a transparent gas. Beyond the far field, at radii on the order of

a meter or more, the gas would no longer be optically thin, but

that exerts a negligible influence on the flame-ball structure.

The far-field region itself is, however, important in that for the

near field it produces an effective ambient temperature in

excess of the true ambient temperature, thereby modifying

fluxes from the near field into the reaction zone. This type of

modification reduces the fuel flux, thereby decreasing theheat-

release rate, so that the far-field radiant energy loss detracts

from the heat release and thereby renders the flame ball less

robust, but it also is essential for stabilizing flame balls, which

are known to be unstable in the absence of radiant loss.

Analytical solutions have been derived here for the structures

of each zone of this interacting multi-zone system.

The focus of the study has been on ultra-lean flammability

limits. To accomplish that, in amanner amenable to analytical

solutions and matching for the various zones, a distinguished

limit was identified, in which an effective large non-

dimensional overall activation energy b for the heat-release

rate, given in Eq. (25), scales with small radiation-to-

conduction rate-ratios, defined in Eqs. (35) and (36), in such

away that the relevant controlling parameters of order unity in

the limit can be identified. This scaling serves to produce the

two branches of solutions, for flame-ball radius and tempera-

ture as functions of the equivalence ratio, found in detailed

numerical computations, and it can be used in the future for

addressing the stability of the solutions on these two branches,

one of which is known to be unstable and the other to have

a significant range of stability. The asymptotic development

requires the Zeldovich [9] classical radiation-free solution

based on Arrhenius kinetics to be modified to incorporate our



previous overall reaction rate [21,22], derived for lean

hydrogen-oxygen mixtures. Even though that structure is

entirely unstable, it still provides a reasonable estimate of the

lean flammability limit by taking its limit of infinite flame-ball

radius, namely equating the flame temperature to the cross-

over temperature between the branching and recombination

rates to give Eq. (31). Improved flammability estimates,

however, require development of the next term in the asymp-

totic expansion including radiation, resulting in themulti-zone

structure described above and the two branch solution.

While the flammability limit can be expressed by a simple

formula (31) at leading order in the expansion, and the solu-

tions for the structures of the different zones are analytical at

the following orders, computation of the flammability limit at

the following order entails simultaneous solution of two

equations, Eqs. (57) and (64) or Eq. (69), which does not yield an

explicit formula for Ql. Correlations of solutions, given in Eq.

(72) or Eq. (73), however, facilitate calculations. The resulting

corrections, on the order of ten percent, produce predictions

of flammability limits that are in excellent agreement with

those calculated by full numerical integrations, noticeably

increasing the value of the hydrogen content at the limit

above those predicted at leading order. The results show how

dilution with N2 does not affect significantly the lean flam-

mability limit and how humidity increases the limiting H2

content through both the high chaperon efficiency of water

molecules for recombination and the enhanced radiant

energy loss rate.
9. Conclusions

This study has predicted lean flammability limits for hydrogen.

In dry atmospheres at normal atmospheric pressure and

temperature, the limiting volume percentage of hydrogen is

predicted to be 3, a value that remains approximately constant

regardless of the relative nitrogen-to-oxygen mixture compo-

sition.Thepresenceofwatervapor in theatmosphere,however,

decreases the range of flammability by increasing influences of

radiant energy loss. If, for example, the atmosphere contains 35

percent water vapor by volume, then it is predicted that at least

4.5 percent by volume of H2 would have to be present for the

mixture tobeflammable. Forahydrogen-airmixture, increasing

the pressure to 10 atm is predicted to increase the critical

limiting H2 percentage to 4.2, and doubling the temperature to

600 K is predicted to decrease it to approximately 2, as may be

deduced fromEqs. (31) and (32), for example.These conclusions,

obtained from theoretical analyses of flame-ball structures,

would be worth testing in future experiments. Since the pre-

dicted limits are the ultimate ones that are possible theoreti-

cally, experimental limits are not likely to be quite so broad,

except possibly in spacecraft environments, where perturbing

effects such as buoyancy are minimized.
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One-step reduced kinetics for lean hydrogen-air deflagration.
Combust Flame 2009;156:985e96.



[22] Fernández-Galisteo D, Sánchez AL, Liñán A, Williams FA.
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Nomenclature

cp: specific heat at constant pressure of the gas mixture
cpi: specific heat at constant pressure of species i
CM: effective third-body concentration of reaction 4f given in Eq.

(33)
D: modified fuel diffusivity defined in Eq. (10)
Di: diffusivity of species i
f: enrichment parameter defined in Eq. (75)
F: reaction-rate function defined in Eq. (15)
G: reaction-rate function defined in Eq. (12)
ho
H2O

: enthalpy of formation of water vapor
H: reaction-rate function defined in Eq. (13)
kj: rate constant of reaction j
Li: Lewis number of species i
nj: exponent for the algebraic temperature dependence Tnj of

reaction j
p: pressure
q: amount of heat released per unit mass of fuel consumed
~q: dimensionless heat release defined in Eq. (39)
Q: reduced equivalence ratio defined in Eq. (54)
QR: radiant heat loss per unit volume
~QR: dimensionless radiant heat loss, as defined in Eq. (40)
r: distance from the flame-ball center
rf: flame-ball radius
ro: characteristic flame-ball radius at extinction, defined in Eq. (34)
Rf: normalized flame-ball radius defined in Eq. (56)
Ro: universal gas constant
T: temperature
Taj : activation temperature of reaction j
Tc: crossover temperature
To
c : value of the crossover temperature determined from Eq. (32)

Tf: flame-ball temperature
TN: ambient temperature
T�
N: apparent ambient temperature

y: normalized fuel mass fraction defined above Eq. (37)
yc: normalized fuel mass fraction evaluated at q ¼ 1, as obtained

from Eq. (44)
Y: modified fuel mass fraction defined in Eq. (9)
Yi: mass fraction of species i
Yo
H2Nl

: leading-oreder prediction for the critical value of the
hydrogen mass fraction, as defined in Eq. (31)

YH2Or :water-vapor mass fraction at the reaction zone as defined in
Eq. (20)

YO2r : oxygenmass fractionat the reaction zone asdefined in Eq. (21)
W: mean molecular weight
Wi: molecular weight of species i
%H2: limiting value of the volume percentage of hydrogen of

a flammable mixture as defined in Eq. (74)
%H2O: volume percentage of water vapor in the ambient mixture

as defined in Eq. (76)

Greek symbols

a: reaction-rate function defined in Eq. (14)
aH2 : hydrogen Soret factor
b: dimensionless activation energy defined in Eq. (25)
g: exponent for the power-law temperature dependence rDfTg

given in Eq. (24)
g3b: reaction-rate function defined in Eq. (16)
D: radiation parameter defined in Eq. (65)
DW: revised radiation parameter defined in Eq. (70)
h: far-field coordinate used in writing Eqs. (59) and (66)
ε: radiation-to-conduction ratio, as defined in Eq. (35)
εW: radiation-to-conduction ratio in the presence of ambient

water vapor, as defined in Eq. (36)
kH2O: Plank-mean absorption coefficient of water vapor
l: thermal conductivity
L: dimensionless radiation factor defined in Eq. (61)
mb: dimensionless activation energy defined in Eq. (26)
n: exponent for the power-law temperature dependence lfTn

given in Eq. (24)
u: one-step reaction rate given in Eq. (11)
U: dimensionless fuel-consumption rate defined in Eq. (41)
f: equivalence ratio
fl: leading-order prediction for the critical value of the minimum

equivalence ratio for flame-ball existence
fo
l : critical minimum equivalence ratio for flame-ball existence

r: density
s: StefaneBoltzmann constant
q: dimensionless temperature defined above Eq. (37)
~q: far-field temperature increment
q�N: dimensionless value of the apparent ambient temperature
Qf: reduced temperature defined above Eq. (52)
x: dimensionless radial coordinate defined above Eq. (37)

Subscripts

c: properties evaluated at the crossover temperature
f: properties at r ¼ rf
l: properties at the lean flammability limit
rfþ: properties on the outer side of the reaction sheet
xfþ: dimensionless properties on the outer side of the reaction

sheet
xf�: dimensionless properties on the inner side of the reaction

sheet
N: ambient properties
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