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Abstract While studies on the emergence of cooperation on structured populations
abound, only few of them have considered real social networks as the substrate on
which individuals interact. As has been shown recently [Lozano et al., PLoS ONE
3(4):e1892, 2008], understanding cooperative behavior on social networks requires
knowledge not only of their global (macroscopic) characteristic, but also a deep insight
on their community (mesoscopic) structure. In this paper, we look at this problem from
the viewpoint of the resilience of cooperation, in particular when there are directed
exogenous attacks (insertion of pure defectors) at key locations in the network. We
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present results of agent-based simulations showing strong evidence that the resilience
of social networks is crucially dependent on their community structure, ranging from
no resilience to robust cooperative behavior. Our results have important implications
for the understanding of how organizations work and can be used as a guide for
organization design.

Keywords Cooperation · Social networks · Community structure · Resilience ·
Prisoner’s dilemma

JEL Classificatio C72 · C73 · L2 · M54

1 Introduction

How cooperation emerges in human groups is one of the most intriguing puzzles of
modern science. Indeed, in a world of rational individuals, cooperation, understood
as helping others at a personal cost, is hard to reconcile with the homo economicus
paradigm, guided only by the goal of maximizing her utility function. Notwithstanding,
the very fact that complex human societies exist, with division of labor and welfare
programs shows that cooperation does take place, hence the exciting challenge of its
explanation.

The roots of cooperative behavior can be traced back to a number of different rea-
sons, ranging from kin selection to group selection through several reciprocity mecha-
nisms (Nowak 2006). In this paper, we will focus on network reciprocity, a mechanism
first suggested by Nowak and May (1992). In this scenario, the individuals of a popu-
lation occupy the vertices of a graph, that in the specific context of human populations
represents the social network of contacts (friendship, work, family, etc.). The edges
determine who interacts with whom. In this setting, cooperators can prevail by forming
network clusters, where they help each other. The term network reciprocity genera-
lizes Nowak and May’s first proposal of representing the social network by a simple
model (a square lattice with next-neighbor and next-nearest-neighbor interaction) to
account for the fact that actual social relationships may be better described by complex
networks (Newman 2003).

Following the original proposal, a great deal of research has been undertaken on
evolutionary game theory on graphs (György and Gábor 2007). However, none of
these studies deals with true social networks, as they are all based on different types
of artificial models reproducing only some of real social networks characteristics. To
our knowledge, the main contribution to the study of the emergence of cooperation in
social networks is a recent work of ours (Lozano et al. 2008), where we have considered
static empirical social networks as a support for the local interactions in the framework
of imitation models. The main conclusion of that work is that cooperation on real
social networks is a complex issue depending on the combination of the effects of
several structural features and, consequently, that any approximation to the evolution
of cooperation in social networks based on the generalization of only one of these
structural features is far too simplistic. The features emerging from our research as
the key to understand cooperative behavior on social networks are the communities,
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or sub-graphs consisting of nodes densely interconnected, which can be considered as
a kind of mesoscopic structure bridging the properties of individual agents with the
global characteristics of the network (e.g., the degree distribution).

In this paper, we go beyond that previous work to consider the resilience of the
observed cooperative behavior. Being formed by human beings, social networks are
certainly vulnerable to external factors that may lead to non-cooperative behavior of
some individuals. In turn, the influence of these individuals may have as a consequence
the loss of the cooperative functioning of the whole network. Therefore, even if in our
previous study we established that cooperators may outperform defectors and give rise
to a very large level of cooperation in an evolutionary setting, it is important to ana-
lyze the resilience of such emergent behavior. As we will see below, our results show
once again that the community structure governs the response of the social network to
external conditioning factors, and that the resilience is very different depending on the
network under consideration. To better present our results, we begin by summarizing
the results in Lozano et al. (2008), introducing alongside the theoretical framework
for our study, namely the most strict social dilemma, prisoner’s dilemma (PD). Buil-
ding on those results, we study the resilience properties by means of an evolutionary
agent based model, and present our results in Sect. 3. In order to understand our com-
puter simulation results, Sect. 4 presents a simple, toy-model calculation that allows
to explain why resilient behavior may or may not arise in terms of the community
structure of the network. Finally, the last section summarizes the work and discusses
its implications.

2 Model and previous results

As already mentioned above, recent work of ours (Lozano et al. 2008) has unco-
vered the key role of the community structure on cooperation on social networks.
Our research program took us from the analysis of cooperative behavior by means of
agent-based simulations of the PD on two real social networks to the modeling and
application of our conclusions through the identification of the most relevant features
of the networks: community interconnectivity and their internal heterogeneity. This
section contains a brief summary of the results reported in Lozano et al. (2008) as rele-
vant background for our research on the resilience of cooperation, which constitutes
the main body of the paper.

2.1 Model

The goal of our research was to study cooperation on social networks and how it
differs from the simulations on artificial models, such as scale-free or small-world
networks. To that end, we used two social datasets obtained by sampling two kinds
of interpersonal relational activities. The first one was extracted from the email traffic
between members of University Rovira i Virgili (Tarragona, Spain; email network
from now on): Nodes represent individual email addresses, and are connected by
(undirected) links when bidirectional communication among them is detected (at least
one email in each direction within a short time period) (Guimerà et al. 2003). Our
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Table 1 Statistical properties of e-mail and PGP networks

Network Reference N 〈k〉 P(k) 〈C〉 C(k) r

Email Guimerà et al. (2003) 1,133 9.62 ∼ exp−k/9.2 0.25 ∼ 0.44 − 0.08 ln(k) 0.078

PGP Boguñá et al. (2004) 10,680 4.55 ∼
{
k−2.63 if k < 40
k−4.0 if k > 40

0.26 ∼ 0.67 − 0.08 ln(k) 0.238

N is the number of nodes of the giant component of the network considering only those links that are
bidirectional (indicating mutual acquaintance between nodes). 〈k〉 and 〈C〉 are the average degree and
clustering coefficient, correspondingly. P(k) is the degree distribution (best fit to the data using least
squares method). C(k) corresponds to the degree-dependent clustering coefficient, that is, the result of
averaging C over vertices of degree k. Finally, r stands for the assortativity coefficient

second social network consists of the users of the “Pretty-Good-Privacy” encryption
algorithm (PGP network, from now on), where links trace trust relationships between
those persons who sign each other’s public keys (Boguñá et al. 2004). These networks
were chosen because they arguably represent social relationships between individuals,
something that may be more difficult to assess in other sets, such as co-authorship of
scientific papers (Newman 2003), where it can even be the case that two co-authors
have never spoken to each other. On the other hand, their statistical properties (see
Table 1 for the data) were similar, in the sense that the two networks exhibited a
typical degree (i.e., they were degree-homogeneous as opposed to scale-free) and
similar global parameters, such as clustering, an important feature of social networks.

In the context of these two networks, we model the social dilemma of coopera-
tion at a personal cost by making the individuals play a PD (Axelrod and Hamilton
1981). The PD embodies a stringent form of social dilemma, namely a situation in
which individuals can benefit from mutual cooperation but they can do even better by
exploiting cooperation of others. To be specific, the two players in the PD can adopt
either one of two strategies: cooperate (C) or defect (D). Mutual cooperation results
in a benefit R for both players, whereas mutual defection yields them P . When a
cooperator meets a defector, the latter receives T , whereas the former gets S. The PD
is completely specified by imposing T > R > P > S. In either case, it is better for
both players to play D, in spite of the fact that mutual cooperation would yield higher
benefits for them, hence the dilemma. The PD is a particularly appropriate choice
because it applies to very many different situations of interactions between human
individuals or collectives (Axelrod 1984; Camerer 2003) and, interestingly, even to
microorganisms (Crespi 2001). For our work, we chose the same parameterization of
the PD as in Nowak and May (1992): T = b > 1, R = 1, S = P = 0. We note that
this choice of payoffs corresponds actually to the boundary between PD and Chicken
(Sugden 2004), although we are discussing it as a PD in what follows, according to
the practice started in the pioneering works (Nowak and May 1992) and most sequels.
We have checked that introducing small negative values for S (which turns the game
into a true PD) does not change qualitatively our results and therefore we have kept
the above values to facilitate comparisons with previous literature.

Our agent-based simulations proceed as follows: We place individuals on the nodes
of our social networks. At every time step, individuals play the game with their nearest
neighbors. After receiving their payoffs according to the PD, all individuals update
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their strategy synchronously for the next round, by imitate-the-best (also called uncon-
ditional imitation) dynamics (Nowak and May 1992): They look in their neighborhood
for players whose payoff is higher than their own and, if there is any, they adopt the
strategy that led to that highest payoff (randomly chosen in case of a tie). We then
repeat the process and let the simulation run until the density of cooperators in the
network reaches an asymptotic average value or else it becomes 0 or 1 (note that these
two states, corresponding to full defection and full cooperation, are absorbing states
of the dynamics because there are not mutations).

2.2 Previous results: the influence of communities

In Lozano et al. (2008), we carried out a thorough simulation program of the above
described model on our two social networks. Our results can be summarized in two
main remarks:

Remark 1 The behavior of the two networks was completely different. The coope-
ration level on the email network was a decreasing function of b, going from values
very close to unanimous cooperation for b � 1 to about a 15% for b close to 2. On
the contrary, the PGP network presented an almost constant cooperation level, with a
variation of a 10% at most in all the range of b values, except for b = 2.

Remark 2 Neither of our two networks seemed to fit in any of the categories previously
reported in the literature for the behavior of the PD (see György and Gábor 2007 and
references therein).

These two remarks, along with the fact that from the macroscopic (global, statis-
tical) viewpoint both networks are very similar, led us to conclude that those global
properties were not determinant for the opposite behaviors observed. On the other
hand, at the individual level the results could not be explained either, and therefore
we were forced to look at a mesoscopic level, i.e., to their community structure. It is
difficult to give a precise definition of community, but for the present purpose we can
understand “communities” as subsets of nodes of the network which are very densely
connected among themselves while their connections to the rest of the network are
more sparse. More rigorous definitions are of course available (see Newman 2003 and
references therein). For our work, we resorted to a community-finding algorithm based
on a divisive procedure proposed by one of the authors, which relies on Extremal Opti-
mization (EO) heuristics (Duch and Arenas 2005). In Fig. 1, we present graphically
the results obtained to facilitate the comparison among the two cases. Careful analysis
of the results led us to identify two features that characterize the community structure
and allow to discriminate between our two networks:

Inter-community connectivity (IC) The results corresponding to this structural fea-
ture are presented at the top of Fig. 1. Each node corresponds to a community, and
a link between two nodes denotes cross-relations. In addition, the size of nodes and
links gives information about community size and number of cross-links, respecti-
vely. It is evident from the plot that communities in the email network are densely
interconnected, and sparsely interconnected in the PGP network.
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Fig. 1 Community structures of the email and PGP networks. Top: Community structures of the email
(left) and PGP (right) networks. Nodes correspond to communities (where size is proportional to their
number of members) and links represent cross-connections (where width corresponds to the number of
inter-connections). Bottom: Typical examples of the communities detected in the email (left) and PGP
(right) networks. Solid links join nodes of the community, dashed links join this community with others.
Reproduced from Lozano et al. (2008) with permission

Intra-community heterogeneity (IH) The internal structure of communities in both
networks also presents important differences. In Fig. 1 (bottom), we plot the aspect
of representative communities of the email and PGP networks, respectively. From
the plot, the differences in the internal structure are clear: the email communities
present a very homogeneous structure when compared with the heterogeneity of PGP
communities. In the following, we will call local hubs the nodes in the PGP networks
responsible for the very high internal heterogeneity.

Taking into account the large differences both at the intra-community heterogeneity
(IH) and the inter-community connectivity (IC) between the e-mail and the PGP net-
works, we formulated an hypothesis: The robustness of cooperation observed in the
PGP network is due to its low IC and high IH, whereas the fact that cooperation only
arises for low b in the email network is caused by its high IC and low IH.

As an additional piece of information on the processes going on the networks,
we have also looked at the time evolution of the cooperation levels. A particularly
illuminating quantity to monitor is the fluctuation of the cooperation level on each
community. This we plot in Fig. 2; we observe that this magnitude shows signifi-
cantly different features for both networks, with a large degree of synchronization in
the email network and non-trivial, desynchronized dynamics in the PGP network,
thus reflecting the different degrees of IC on both systems. Figure 2 also shows
that the cooperation values we report on are average values, in so far as for many
values of b the networks do not reach equilibrium but rather a fraction of the nodes
remain fluctuating between C and D (as has been reported also for model networks
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Fig. 2 Temporal evolution of cooperation within email and PGP communities for different b values. For
each network, we present the fluctuation of cooperator’s density within four sample communities given
three b values: 1.1 (top), 1.5 (middle), 1.9 (bottom). We observe that, in general, communities in email
network present some kind of synchronization, indicating a high degree of interdependence (high IC). On
the contrary, PGP communities show regular behaviors with different periods, revealing a strong influence
of internal structural properties of each community (such as their high IH)

in Poncela et al. 2007). In fact, we have also observed that there are more fluctuating
agents in the email network than on the PGP one, this being related to the existence of
many more nodes forming a boundary between communities in the former case. This,
in turn, is a hint of the structural differences between these two networks.

The key role played by the community structure of these two systems was fur-
ther confirmed in Lozano et al. (2008) where we studied four statistically significant
synthetic test networks with the same number of nodes and the same number of com-
munities, corresponding to four extreme configurations obtained by the combination
of low and high values of the IH and IC. Two of the networks presented the configura-
tion corresponding to the email network (low IH and high IC) and the PGP one (high
IH and low IC). The other two cases, low IH and low IC, and high IH and high IC,
corresponded to intermediate configurations between the former ones. Simulations on
these four synthetic cases reproduced the opposite behaviors observed for the email
and PGP networks, thus supporting our conclusion of the relevance of the community
structure (see Fig. 3).

3 Resilience of cooperation

As we have seen above, from our previous work we have established that differences at
a mesoscopic level among the two empirical networks influence their behavior in terms
of the evolutionary emergence of cooperation. In fact, the model we have developed
to build networks with the desired values of IH and IC exhibits the same behavior and,
therefore, can be used to design collaboration networks that are either very cooperative
for low values of T (the incentive to forgo cooperation) or cooperative for large values
of T or even try to improve performance in both respects. While this is generically
interesting for the design of organization, one particular context where the application
of these ideas can be very fruitful is the management of innovation networks, such as,
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Fig. 3 Evolution of cooperation in four synthetic networks. Cases A and D correspond, respectively, to the
synthetic versions of the PGP and email empirical networks. In case A communities were constructed as
independent scale-free networks (Barabasi-Albert with k0 = 3), and after they were sparsely interconnected
with (pinter = 1.5 × 10−5). Communities in case D were built as Erdos-Renyi random graphs (pintra =
1.5×10−1), and the probability of interconnection between communities (pinter) is 5×10−2. Cases B and
C were obtained from the former ones by increasing or reducing the probability pinter . See Lozano et al.
(2008) for more details on networks construction and simulation performance, and also a deeper analysis
of results

e.g., the case of open innovation (Chesbrough 2003). Therefore, it is worth to deepen on
the role of the mesostructure on this issue. Recent studies have already pointed out the
impact of the community structure on information transfer (Danon et al. 2008). There,
the counter-intuitive observation is that networks with fuzzy community structure are
more efficient in terms of information transfer that those with pronounced community
structure. Our purpose in this paper is to report on new simulation experiments in order
to assess the resilience of our two social networks and, subsequently, the resilience
dependence on our two main control parameters, i.e., IH and IC.

In the literature about complex networks, the concept of resilience has been usually
associated to the network robustness against the removal of their nodes. To be more
precise, resilience has been understood as the capability to preserve large connecti-
vity levels after those removals (Newman 2003; Albert et al. 2000; Fontoura Costa
2004). Consequently, the way to quantify the resilience in that line of research is to
remove nodes (and their links) progressively, either at random (simulating failures of
the connectivity system) or selecting them according to certain criterion such as their
betweenness centrality (a measure of the number of shortest paths traversing a node)
simulating a purposeful exogenous distortion on the network, and calculating the size
of the largest connected component after the removal. In this work, following the wider
understanding of the relationship among resilience and structure discussed in Lozano
and Arenas (2007), we change the focus of our interest from the connectivity robust-
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ness to the quantification and comparison of the resilience of different organizations
(represented by our two empirical social networks) against the (exogenous) introduc-
tion of defection.

The methodology used to perform the experiment, partially inspired on the one
described above, consists of perturbing both networks by introducing a certain quantity
of defectors in a completely cooperative population, i.e., with a maximum cooperation
level. Subsequently, the system is let to evolve according to the evolutionary dynamics
discussed in Sect. 2.1, namely synchronous evolution with strategy update through
unconditional imitation. Evolution proceeds until the system reaches a stationary state,
where we measure the final density of cooperators.

A criterion for choosing the nodes to be modified, i.e., those that will be occupied
by a defector, must be provided. For our present experiment we have chosen their
betweenness centrality. The reason is that this specific characteristic of nodes involves
global knowledge about the structure of the network, and is of fundamental importance
to detect bottlenecks in any diffusion process. Translating this experiment to a real life
example, this defection attack could be seen as an attempt to destabilize an organization
(a company, a public office, etc.) by bribing, blackmailing, or otherwise corrupting
certain individuals occupying key positions. From this point of view, our choice of the
betweenness centrality as our criterion for selecting target nodes is easily understood in
terms of organizational issues such as the communication among groups (Granovetter
1973) and the diffusion and control of information in organizations (Burt 1995). In
the context of the application to innovation networks, these are of course important
factors which would point wrongdoers towards the largest betweenness nodes.

3.1 Results

In Fig. 4, we show the results of applying the methodology proposed in the previous
section to our empirical social networks. We can clearly observe that the PGP network
is much more resilient to the introduction of defectors than the email one. As can be
seen from Fig. 5, for the PGP network a successful attack needs, at least, to convert
to defection a 25% of the whole population, the top quartile of the population ordered
by decreasing betweenness. On the contrary, only one defector located in the most
central position can lead the whole email network to defection. Recalling that the
global characteristics of both networks are similar, we are led once again to conclude
that their community structure is the responsible for such a dramatic difference in
behavior.

A closer look to the results of simulations on the email network reveals an additional
interesting phenomenon. For each value of ND (number of introduced defectors), there
is a minimum value of the incentive to defect, b, beyond which the final density of
cooperators drops down to 0. This is also the case with the PGP network but, as already
stated, for much larger values of ND . The interesting point about the email network
is that minimum value of b does not always decrease with increasing numbers of
affected nodes, but rather it oscillates until a value of ND is reached such that a final
full defection is reached for any value of b.
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Fig. 4 Cooperation resilience in our empirical social networks when nodes are exogenously changed to
defectors as a function of their betweenness. Final density of cooperators as a function of b for different
initial conditions, calculated over the email (top) and PGP (bottom) networks. The equilibrium densities
of cooperators have been obtained by averaging 250 generations, after a transient time of 250 generation
steps. Each point corresponds to an average over 50 independent simulations with the indicated number of
defectors (in a completely cooperative population) as the initial condition

Building on our knowledge of the structural differences among the two networks at
a mesoscopic level, we can advance an explanation of the observed behaviors and their
differences. The community organization of the PGP network (weakly interconnected
and internally stable due to the degree heterogeneity, see Fig. 1), restricts defection
diffusion to a strictly local range (basically, the community where the defection is
initiated). This explains why the final density of cooperators diminishes gradually.
This behavior only changes when the accumulation of small areas affected by defection
influences a population large enough to saturate the whole system. On the contrary,
the mesoscopic structure of the email network makes easier the diffusion of defection
and, therefore, turns the whole network extremely sensitive to perturbations at specific
nodes. However, the picture is not so simple in so far as the most central positions of
the email network are “closer” (in terms of the number of nodes crossed by the shortest
path among them) precisely due to the community structure. This circumstance has
two consequences that can limit the spreading of defection through the network for
a certain initial quantity of defectors. First, if two defectors are direct neighbors they
decrease each others’ payoff, reducing their probability to extend defection among
cooperator neighbors or, even, making them “change their minds” and switch back to
cooperative behavior. Second, as the number of initial defectors increases, it is more
likely that two of them belong to the same community and diffuse defector behaviors
across the same population of cooperator agents, reducing the efficiency of the process
in terms of the ratio number of final defectors over number of initial defectors.

10



1 1.2 1.4 1.6 1.8 2
b

0

0.2

0.4

0.6

0.8

1

D
en

si
ty

 o
f 

co
op

er
at

or
s

1
10
20
50
500
1000
2670 (N / 4)
3005 (N / 3)

Fig. 5 Cooperation resilience in the PGP network when a large percentage of nodes are exogenously
changed to defection as a function of their betweenness. Final density of cooperators as a function of b for
different initial conditions, obtained by averaging 250 generations, after a transient time of 250 generation
steps. Each point corresponds to an average over 50 independent simulations with the indicated number of
defectors (in a completely cooperative population) as the initial condition. PGP’s high resilience is even
more clear in this figure, since a successful perturbation needs to convert to defection, at least, the top
quartile of the population ordered by decreasing betweenness

3.2 Analysis using a toy model

In order to gain some insight on the above ideas about the influence of the community
structure on the diffusion of defection and the phenomenon of “interference” among
defectors, we have performed a simple analysis by means of a toy model, that in spite of
its simplicity captures the main observed features. The model is depicted in Fig. 6. Our
calculation proceeds along the following lines: we consider different initial numbers
of affected nodes and for each one of them we calculate analytically the resulting
effect (in terms of the final density of cooperators). As our update strategy rule in
unconditional imitation, which is purely deterministic, the fate of our toy network can
be easily predicted. The results are as follows:

A single defector at node 1 At the initial time step, the payoff for the defector is
3 × b whereas the defector’s neighbors receive a payoff of 3. At the subsequent step
nodes 2, 3 and 4 switch to defection and spread defection to their communities for any
b > 1.

Two defectors at nodes 1 and 2 At the initial time step, we have that payoff1 = 2×b,
payoff3 =payoff4 = 3 and payoff2 = 3 × b. With these values, at the next time step
we will have a cooperator density of 9/13, 8/13 or 6/13 depending on whether b < 1.5,
b = 1.5 or b > 1.5, respectively. One further time step leads to cooperator densities
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Fig. 6 Structure of the toy model used to study influence of the structure on the diffusion of defection
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Fig. 7 Effect of introducing different amounts of defectors to the toy-model. Final density of cooperators
as a function of b for the initial conditions studied analytically (see text). The counterintuitive behavior
presented by the email in Fig. 4 is reproduced in this simple case. While perturbations affecting 1 or 4 nodes
lead to full defection, intermediate cases (2 and 3 defectors) lead to more cooperative scenarios

of 10/13, 8/13 and 0 in the same cases. This implies a threshold of b = 1.5 beyond
which full defection is the final state.

The same simple calculations lead to conclude that when 3 defectors are placed at
nodes 1, 2 and 3 the final cooperator density is 5/13 for any value of b, whereas if all
four nodes are occupied by defectors full defection is always reached. In Fig. 7, we
show all these results in a graphical way to facilitate the comparison of different cases.
We observe that, despite the simplicity of the structure of the toy model, it presents
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a counter-intuitive cooperation behavior. While one defector at the one most central
position is enough to reach a plenty defection, one additional defector can lead to high
levels of cooperation (for low b values), and two more initial defectors are needed
to get the full defection again. This clearly resembles our observation on the email
network. The case of the PGP network can not be treated this way because, once again
due to its community structure, a large fraction of the population must be changed to
defection for the network to become occupied by defectors only.

As a final check of our ideas, we have carried out the same type of simulations,
namely purposefully perturbing full cooperative networks with defectors located at the
sites with highest betweenness, on our synthetic networks. The results are collected in
Fig. 8, where we can see that qualitatively the agreement is good: email-like networks,
with large IC, are affected quite rapidly by the defectors (bottom panels) whereas the
PGP-like networks, with small IC, are much more resilient and sustain high levels of
cooperation even for large numbers of defectors. Interestingly, when simulations are
carried out with even larger sets of defectors, as shown in Fig. 9, we do not observe
the same abrupt transition to full defection for a given value of b, as we found for
the empirical case (cf. Fig. 5): On the contrary, the cooperation level decays globally,
behaving almost independently of b for all numbers of affected sites. This shows that,
while our model captures most of the features of the empirical networks, it can still be
perfected, either by playing around with the parameters IH and IC or, most likely, by
introducing some additional ingredient that corrects for these less noticeable features.

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2
b

0

0.2

0.4

0.6

0.8

1

 D
en

si
ty

 o
f 

co
op

er
at

or
s

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1 Defector
5 Defectors
10 Defectors
20 Defectors

Fig. 8 Cooperation resilience in our synthetic networks when nodes are attacked as a function of their
betweenness. Final density of cooperators as a function of b for different initial conditions, calculated
over the PGP-like (top) and email-like (bottom) networks. Cases A and D correspond, respectively, to the
synthetic versions of the PGP and email empirical networks. All data and networks are as in Fig. 3. The
equilibrium densities of cooperators have been obtained by averaging 250 generations, after a transient time
of 250 generation steps. Each point corresponds to an average over 50 independent simulations with the
indicated number of defectors (in a completely cooperative population) as the initial condition
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Fig. 9 Cooperation resilience in our synthetic PGP-like network when nodes are attacked as a function of
their betweenness. Final density of cooperators as a function of b for different initial conditions, calculated
over the PGP-like network (case A in Fig. 3) for more values of the number of affected sites. The equilibrium
densities of cooperators have been obtained by averaging 250 generations, after a transient time of 250
generation steps. Each point corresponds to an average over 50 independent simulations with the indicated
number of defectors (in a completely cooperative population) as the initial condition

4 Discussion and conclusions

In this work we have considered the issue of the key role played by the commu-
nity structure on cooperation in populations from the viewpoint of the resilience of
the behavior. Our starting point was our recent work (Lozano et al. 2008), where
we demonstrate that two mesoscopic structural properties (the connectivity between
communities, IC, and their internal heterogeneity, IH) condition the emergence and
stability of cooperation in social networks. Here we report new simulation experiments
and analytic approaches, aimed at studying in greater detail how IC and IH influence
the cooperation robustness of social networks, and have interpreted the results in
terms of organization’s resilience to “defection attacks”. We have adapted the concept
of robustness or resilience to the context of cooperation in human societies by dea-
ling with the ability of the social network under consideration to maintain its global
cooperative behavior after key members stop cooperating and become defectors. Not
surprisingly, we have found that these mesoscopic characteristics again turn out to be
the crucial ones governing the response of the social networks to the appearance of
defectors at relevant places; however, the specific results obtained for our two different
cases are certainly interesting and deserve a discussion in depth.

In the case of the e-mail network, we are studying a social system defined by
exchanges of e-mail among members of the different departments of an organi-
zation (specifically, a University). However, the social network is not imposed, is
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self-generated and in fact, as shown in Guimerà et al. (2003), the corresponding com-
munities do not exactly match the externally organized departments. Such a network
turns out to have large IC, i.e., communities are very well connected, and small IH,
implying that they do not have clear leaders (hubs). Our conclusion in Lozano et al.
(2008) that such a network behaves very well from the collaborative viewpoint but
only for low values of the incentive to defect translates now, via our analysis of the
resilience, into the conclusion that well designed perturbations of a very small group of
selected individuals are able to stop cooperation completely. It is important to realize
that this dramatic effect takes place only for large enough values of the incentive to
defect; however, when the exogenous changes affect to a slightly larger number of
individuals, modifying only a 0.5% of the population leads to full defection for any
value of b.

For our criterion to select target individuals, we have chosen betweenness centrality
because, when studying topological resilience (i.e., the resistance of the network to
become disconnected) those are the nodes that one should remove, as they are the
ones intervening in more shortest paths. Here, where the network is not disconnected
but it is the strategies of the neighbors that are affected, betweenness reveals itself
again as a key property, in so far as it allows for a rapid propagation of the non-
cooperative behavior (which is of course the goal of the external agent). It must be
kept in mind, though, that knowledge of betweenness centrality requires in turn data
on the whole network, as it is associated to a global feature (shortest paths between
nodes). However, the attacker may overcome this problem by using node degree as
a proxy for betweenness: Indeed, these two magnitudes are usually highly correlated
(see Wasserman and Faust 1994 for a review of works comparing different centrality
indicators), whereas knowledge of the degree requires only local information. We
have repeated our simulations choosing degree as the criterion for selecting nodes to
be modified and we have found very similar results to those arising from betweenness.
Therefore, we must conclude that such a distortion is in principle possible and, as
a consequence, that social networks with low IH and large IC are in general very
vulnerable to disruption of the cooperative behavior by forcing a negligible number
of individuals to defect. Interestingly, we have also shown that the perturbation may
be less effective with a larger number of affected nodes also due to the structural
properties of the network, which shows that the evolution subsequent to the attack is
by no means trivial.

On the contrary, the PGP network has proven to be very resilient to this kind of
perturbation. PGP network, being also of an undoubtedly social character, is different
from the email case in so far as it is an informal organization from the very beginning,
as it arises from spontaneous exchanges of passwords and encryption information
between individuals, particularly at specialized conferences. As a result, the network
is characterized by loosely connected communities with clearly differentiated hubs,
which become so probably due to a preferential attachment mechanism acting when
relations are established. As we have seen, this structure supports very resilient beha-
vior, and a considerable fraction of the individuals (over a quarter of the population)
must be corrupted to break down the cooperative behavior of the group as a whole.
This conclusion is clearly related to the fact that scale-free networks have been claimed
to be the best suited structure to support cooperative behavior (Santos et al. 2006).
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Indeed, Poncela et al. (2007) have recently studied the dependence of the observed
cooperative behavior on scale free networks on the initial conditions and found that
high levels of cooperation are the generic outcome of evolution, which is a clear indi-
cation of the robustness of cooperation on those systems. In this context, our results go
beyond the work on model networks in a threefold way: We use real social networks,
we have in mind the role of the mesoscopic structure (absent in the models) and we
study resilience against attacking selecting individuals and not against random initial
conditions.

Interestingly, the key role played by the two magnitudes we are discussing, namely
IH and IC, suggests a connection of the present work to problems where selection acts at
several levels, e.g., individual and group selection, or to situations where geographical
constraints impose low IC and high IH such as in ecosystems on archipelagos, for
instance. In particular, group selection may be dominant in a context in which there
are dense interactions within a group (or on a geographically isolated community, such
as an island) and lower interactions with agents belonging to other groups. Several
works have considered related situations (Sagara and Tanimoto 2007; Chalub et al.
2006). We believe that our empirical networks as well as our synthetic models may
be a good framework to model these situations with controlled parameters. In this
context, it would be very interesting to design simulations of norm models such as
that proposed in Chalub et al. (2006) in order to understand the dependence of the
convergence to common norms on IC.

Finally, our work must be placed in the wider context of organization design. While
it is clear that ours is still a very simplified model, in so far as the PD is a particular
social dilemma and interactions among individuals are much richer, our results point
to a number of caveats that may prove useful for choosing a resilient setup for a group
of individuals that must cooperate towards a common goal. Our main conclusion,
namely that low IC and large IH are the best “firewalls” against exogenous, purposeful
perturbations, allows to use the model proposed in Lozano et al. (2008) to generate
organizational charts tailored to show resilient cooperation. Indeed, as we have seen,
our model gives rise to networks that behave similarly to the empirical ones (except
for the abrupt transition observed in the empirical PGP network as a function of b)
and therefore it is a first and important step towards a tool to help design hierarchies or
structures. In this regard, it is interesting to realize that in our two examples, the one
with the externally imposed social structure (email) performs much worse in terms of
resistance to large incentives to defect and resilient cooperation than the self-organized
network (PGP). We think it is not a coincidence that networks similar to PGP, with
low IC and large IH, i.e., with a somewhat pyramidal structure, are found among
large-scale criminal or terrorist organizations (Kaza et al. 2005). On a brighter note,
our conclusion may also apply to open innovation networks (Chesbrough 2003), that
arise, at least in part, from a volunteer participation mechanism that can yield a global
structure similar to that of the PGP network. If that is the case, our study implies
that the innovative collaboration will be resilient to the presence of individuals that
free-ride on the true contributors to collective intelligence.

To conclude, we have shown that knowledge of the mesoscopic structure of a given
social network is crucial to understand the resilience of the behavior of the individuals
interacting on it. Resilience can be practically zero (such as on the email network)
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or very large (such as on the PGP network). As a consequence, mesoscopic features
must be kept in mind when interpreting observations on social networks or designing
specific-purpose networks. Our work opens the way to a more detailed study of this
issue, which should proceed by considering other dilemmas or social interactions, as
well as other examples of social networks.
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