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A decomposition procedure based on approximate Newton
directions

Abstract. The efficient solution of large-scale linear and nonlinear optimization problems may require
exploiting any special structure in them in an efficient manner. We describe and analyze some cases in
which this special structure can be used with very little cost to obtain search directions from decomposed
subproblems. We also study how to correct these directions using (decomposable) preconditioned conjugate
gradient methods to ensure local convergence in all cases. The choice of appropriate preconditioners results in
a natural manner from the structure in the problem. Finally, we conduct computational experiments to compare
the resulting procedures with direct methods.

1. Introduction

The optimization literature has been interested in studying and developing procedures
that solve optimization problems with some special structure, by taking advantage of
this structure to improve their performance. Examples of special structures that may be
exploited in the original model are network constraints, integer and continuous variables,
dynamic dependencies, etc. Even in those cases where no special structure is present,
it may be imposed externally to use distributed computation resources for the solution
of very large problems. The growth in the size and complexity of optimization mod-
els during the past years, and the increasing availability of hardware and software for
distributed computation, has led to an expansion of this interest.

The traditional approach to take advantage of these characteristics of the problems
is based on the application of decomposition techniques. Many different decomposi-
tion techniques have been proposed during the past forty years. Early proposals were
based on linear programming and theoretical results from convex analysis, such as the
well-known Dantzig-Wolfe decomposition [10] and its dual variant, Benders decompo-
sition [3]. Another frequently used technique is the Lagrangian Relaxation procedure
[15, 21, 24], based on convex analysis theory and requiring the use of nondifferentiable
optimization procedures to maximize the dual function. Relaxation techniques based on
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Augmented Lagrangian functions [9, 4] allow the use of differentiable techniques and
extensions to nonconvex cases by combining penalization methods with local duality
theory, at the expense of additional problem manipulations to ensure separability [28,
22, 23]. Finally, other decomposition techniques take the structure of the problem into
account to specialize classical optimization procedures, such as [5, 8, 7]. These tech-
niques achieve a high level of efficiency, at the price of being strongly dependent on the
particular form of the problem.

In some cases, these procedures based on relaxation techniques may present draw-
backs: difficulties to converge to an optimal solution (in the absence of convexity
assumptions), and convergence rates that are very sensitive to the choice of values
for the parameters [24, 18]. Moreover, these techniques may require the computation
of a very precise solution of the subproblems resulting from each set of values of the
parameters in each iteration. As a consequence, the computational effort may be quite
high, particularly for large-scale problems.

Our interest in this paper is to derive a general procedure for the solution of large-scale
nonlinear and possibly nonconvex problems, that is able to take advantage of special
structures that may be present in the problem. The recent development of interior-point
techniques for the solution of linear and quadratic problems has implied that these pro-
blems can be efficiently solved by transforming them into nonlinear (although generally
convex) problems. In this sense, the methods that we will describe should be useful for
the solution of general (linear and nonlinear) continuous optimization problems with
special structure.

Our proposal will not follow the traditional decomposition approaches described
above. Instead, it will be based on modifications of the procedure to compute the
Newton directions, that is, the directions of improvement obtained from the solution
of the corresponding KKT systems of linear equations. The proposal will depend cru-
cially on the observation that the special structures of interest will also be apparent both
in the derivatives of the functions and in the coefficient matrices of the KKT systems.

The method we propose is thus a procedure to obtain a modified Newton direction
that is computed from decomposed systems of linear equations. It is based on exploiting
the problem structure present in the KKT systems in an efficient manner to approximate
them by separable linear systems. In this sense, it is related to the many proposals in
the literature for the distributed solution of linear systems of equations, see for example
[26]. The proposed technique is also adapted to the fact that we wish to solve a sequence
of related linear systems, one for each iterate. We do not need a very precise solution
for each one of these systems, as a sufficient approximation to Newton’s direction is
enough to ensure reasonable convergence properties in the algorithm. In this regard, the
proposed procedure is also related to optimization methods based on the inexact solution
of the subproblems, see for example [11].

The resulting decomposition methodology is simple, having very few parameters to
consider, efficient and very well suited for its implementation in a distributed computa-
tion environment. On the other hand, the approximations introduced to decompose the
problem imply that the superlinear rate of convergence of a pure Newton approach will
in general become a linear rate of convergence for the decomposition algorithm. This
reduction in the convergence rate is often in practice more than offset by the compu-
tational gains achieved through the solution of the smaller problems obtained from the
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decomposition. The linear rate of convergence can be improved using a preconditioned
conjugate gradient (PGC) method [17, 16] for the solution of the linear systems of equa-
tions. In particular, we will use a generalized minimal residual (GMRES) procedure [27,
17], as the coefficient matrix of the system of equations will not be positive definite in
general.

Although this approach may seem to be unrelated to traditional decomposition meth-
ods, we will see that it is close to Lagrangian decomposition techniques in that it solves
decomposed subproblems obtained after fixing some of the primal and dual variables in
the Lagrangian function. Nevertheless, the updating rules for these fixed variables differ
from those standard in Lagrangian decomposition methods.

The method will be particularly useful whenever the special structure of the problem
fits one of the two following patterns, that will be used as our references in the remainder
of the paper:

– Complicating constraints. Problems with complicating constraints arise frequently
in numerous applications, including multicommodity network flows (in scheduling
and transportation models), allocation of scarce resources among competing activi-
ties [1], design and management of water supply systems and electric power network
analysis [30], logistics, econometric data fitting and statistics [2], etc. These models
can be written in the general form

minimize f (x1, . . . , xN) (1)

subject to h0(x1, . . . , xN) ≤ 0 (2)

cj (xj ) ≤ 0 j = 1, . . . , N, (3)

where the constraints (2) are referred to as complicating constraints; if they were
removed, the resulting problem would be separable.

– Complicating variables. Problems with complicating variables appear in scenario
analysis and stochastic optimization [25], financial planning under uncertainty [20]
and structural optimization, among others. The corresponding models can be written
as

minimize f (x0, x1, . . . , xN) (4)

subject to hj (x0, xj ) ≤ 0 j = 1, . . . , N (5)

c0(x0) ≤ 0, (6)

where the variables x0 in (4)–(6) are referred to as complicating variables; if they
were fixed to constant values, the resulting problem would be separable.

In both cases xj ∈ R
nj , and f and each hj , cj are smooth functions for j =

0, . . . , N , with f : R
n → R, hj : R

n → R
mhj and cj : R

nj → R
mcj , where

n =∑
j nj .

The remainder of this paper is organized as follows: In Section 2 we will motivate the
proposed procedure as a modified Lagrangian relaxation technique. Section 3 describes
the proposed procedure and studies its local convergence properties. In Section 4 we
present different preconditioner choices for the proposed algorithm. We also describe
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in Section 5 practical implementation details and computational results from the appli-
cation of this procedure to the solution of both nonlinear and linear problems. Finally,
Section 6 states some conclusions.

2. A modified Lagrangian relaxation procedure

In this section, we try to motivate the proposed procedure by considering a particular
implementation of Lagrangian relaxation for the complicating constraints case, (1)–(3).
In Section 3 we will show that this implementation is a particular case of the more
general decomposition procedure we describe in this paper.

To simplify our discussion, we consider the case in which we have only two groups
of variables (N = 2) and additionally all constraints are equality ones. The simplified
problem will have the form

minimize f (x1, x2) (7)

subject to h1(x1, x2) = 0 (8)

h2(x1, x2) = 0 (9)

cj (xj ) = 0 j = 1, 2, (10)

where we have introduced some partition of the constraints h0 into h1 and h2.
The basic Lagrangian procedure applied to this problem considers the auxiliary

problem

minimize f (x1, x2)− λ̄T1 h1(x1, x2)− λ̄T2 h2(x1, x2) (11)

subject to cj (xj ) = 0 j = 1, 2, (12)

defined in terms of multiplier estimates λ̄1 and λ̄2. Problem (11)–(12) can be solved by
fixing the values of some of the variables (x̄2 and x̄1) to obtain the subproblems

minimize f (x1, x̄2)− λ̄T1 h1(x1, x̄2) (13)

subject to c1(x1) = 0,

and

minimize f (x̄1, x2)− λ̄T2 h2(x̄1, x2) (14)

subject to c2(x2) = 0.

Once the solutions for these subproblems have been computed, the multipliers of the
complicating constraints can be updated, using for example a subgradient technique,

(λ̄1)k+1 = (λ̄1)k − αh1(x1, x2), (λ̄2)k+1 = (λ̄2)k − αh2(x1, x2). (15)

Note that the convergence of the procedure requires that the solutions for the subpro-
blems should be computed up to a certain degree of accuracy.

The procedure proposed in this paper follows a similar approach when applied to
problem (7)–(10). As in the preceding case, to decompose problem (11)–(12) we require
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some separable approximation for both f , h1 and h2. We also fix some of the variables
in these functions to their last computed values, to obtain

minimize f (x1, x̄2)− λ̄T2 h2(x1, x̄2)

subject to h1(x1, x̄2) = 0 (16)

c1(x1) = 0,

and

minimize f (x̄1, x2)− λ̄T1 h1(x̄1, x2)

subject to h2(x̄1, x2) = 0 (17)

c2(x2) = 0,

where x̄1 and x̄2 denote the values of the corresponding variables at the last iterate.
To reduce the computational cost, instead of solving the subproblems to optimality we
perform a single Newton step (we compute one search direction and perform one line-
search) for each subproblem. The values of the variables resulting from this step are then
used to update the parameters x̄1 and x̄2.

This procedure is not very different from a standard Lagrangian approach, except
for performing a single iteration for each subproblem, but it presents one significant
advantage: it provides efficient information to update the multiplier estimates λ̄1 and
λ̄2. The multipliers corresponding to the subproblem constraints (16) and (17), �λ1 and
�λ2, have the property that, if the values of x̄1 and x̄2 would be the optimal ones, the
best values for λ1 and λ2 would be given by λ̄1 + �λ1 and λ̄2 + �λ2. These updated
values can be used for the next iteration.

The resulting procedure is very simple to implement, uses few easily updated para-
meters and does work well in practice for certain classes of problems (see Section 5.2).
As a consequence, it seems reasonable to study conditions under which this simplified
Lagrangian decomposition scheme would converge. In the following sections we will
present a decomposition scheme that generalizes the procedure described above to solve
different classes of problems, and we analyze its convergence properties.

3. Proposed algorithm

The algorithm we briefly described in the preceding section uses specific procedures to
update the values of the variables and multipliers from one iteration to the next. In this
section we wish to expand this procedure into a more general decomposition algorithm
that is efficient to implement and requires as few parameters as possible, while preser-
ving the basic schemes introduced in the preceding section, that is, to approximate the
functions in the problem by fixing some of the variables to attain separability.

To simplify our presentation, the description of this algorithm will be based on the
complicating constraints model (1)–(3). At the end of the section we will indicate how
to extend the corresponding results to the complicating variables model (4)–(6).

We will assume that problem (1)–(3) will be solved using interior-point techniques.
These procedures simplify the description of the algorithm by transforming the problem

5



into an equality constrained one; they are also computationally very efficient, particu-
larly for large-scale problems. Thus, the optimization problem will be solved through
a sequence of barrier problems in which the inequality constraints have been rewritten
as equalities using slack variables, and the bounds on the variables have been removed
via the addition of barrier terms to the objective function. For a description of the use of
these techniques in the general nonconvex case see for example [31, 12, 32, 13].

The resulting model, to be used as our reference in the description of the decompo-
sition procedure, will have the general form

minimize f (x1, . . . , xN ;µ) (18)

subject to h(x1, . . . , xN) = 0 (19)

cj (xj ) = 0 j = 1, . . . , N, (20)

where we assume xj ∈ R
nj , f : R

n → R, h : R
n → R

mh , cj : R
nj → R

mcj ,
n =∑

j nj . The function f includes the barrier terms corresponding to the bounds on
the variables, and µ denotes the corresponding barrier parameter. These terms are not
relevant for the description of the decomposition procedure, as in the barrier terms we
take into account only simple bounds on the variables (all other constraints are trans-
formed into equalities), and the resulting terms are trivially separable.

An implicit assumption for decomposition procedures is that the number of com-
plicating constraints is not very large, that is, mh 


∑
j mcj . The description of the

algorithm does not require that this condition holds, but the efficiency of our procedure
will depend on these values, as we will discuss in Section 5.1.

In this paper we are mostly interested in the analysis of the local convergence of the
proposed decomposition procedure. As a consequence, the algorithm introduced in this
section will not consider mechanisms to ensure global convergence, such as line searches
or trust regions. The scheme of this basic algorithm is presented in Figure 1, where the
values σj and λ will denote the multiplier estimates for the constraints cj (xj ) = 0
and h(x) = 0, respectively. We will denote by x the vector of all (primal) variables,

x = (
xT1 , . . . , xTN

)T
, while σ denotes the vector σ = (

σT
1 , . . . , σ T

N

)T
. In Figure 1,

the positive constant ε represents a termination tolerance and the function L denotes the
Lagrangian function of problem (18)–(20).

No explicit procedure is given for the update of the barrier parameter µ. We will
assume that any of the procedures proposed in the literature, see [31, 12] for example, is
used to update this parameter. In this sense, we will be mostly concerned with the (local)
convergence of the procedure for a fixed value of µ.

The decomposition procedure depends crucially on the definition of the inner itera-
tion, that is, the procedure to compute the search direction �k . Our method of reference
for this inner iteration is Newton’s method; in this setting, in each outer iteration k the
search direction is computed by solving the following system of linear equations:


∇

2L(x, σ, λ) ∇cT (x) ∇hT (x)
∇c(x) 0 0
∇h(x) 0 0





 �x

−�σ

−�λ


 = −


∇L(x, σ, λ)c(x)

h(x)


 , (21)
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Choose initial values x0, σ0 and λ0
Let k← 0
while ‖∇L(xk, σk, λk)‖ +

∑
j ‖cj (xjk )‖ + ‖h(xk)‖ > ε

Compute a search direction �k for variables and multipliers, (Inner iteration)

�k =

 �xk
�σk
�λk




Update xk+1 ← xk +�xk
Update σk+1 ← σk +�σk
Update λk+1 ← λk +�λk
k← k + 1

end while

Fig. 1. Basic algorithm

where

∇c(x) =



∇c1(x)

. . .

∇cN(x)


 , (22)

and all quantities are evaluated at the current iterate (the subscript k corresponding to
the iteration has been omitted to simplify the notation).

Observe that, within an interior point framework, this representation would corre-
spond to a primal approach. Primal-dual approaches are considered to be more efficient
than primal ones, but for a primal-dual approach the resulting linear system would be
equivalent to (21), after simplifying the update for the dual variables. Both systems
would only differ in the diagonal terms for the first block of coefficients. Again, this
does not affect the decomposition procedure and we will ignore these details in the
description of the inner iteration.

In Section 2 we introduced an approach for solving problems of this kind, based
on Lagrangian relaxation. That procedure proceeded by fixing the values of some of
the variables to obtain decomposable subproblems, and then used the solutions of these
subproblems to update the fixed variables. This approach is equivalent to replacing the
Newton system of linear equations for problem (18)–(20) by a separable system that
approximates it. In particular, fixing variables in the proposed Lagrangian relaxation
approach is equivalent to approximating the matrix ∇2L in (21) by a block diagonal
matrix, while the matrix ∇h is replaced by a matrix having separable blocks.

To generalize this approach, note that the special structure in the original problem
appears also in the constraints, in the sense that the linear system would be separable
if two conditions were met: i) the constraints h(x) = 0 would be separable (would
have a separable Jacobian matrix) or would not exist; and ii) the matrix ∇2L would be
separable, that is, it would be block diagonal with blocks corresponding to the different
groups of variables; this would be the case if both f and h are separable. In general, these
conditions are not satisfied, although in many practical cases the departures from them
are not large. The proposed method replaces (21) with a related and separable system,
of the form
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
 H ∇cT (x) AT

∇c(x) 0 0
A 0 0





 �x

−�σ

−�λ


 = −


∇L(x, σ, λ)c(x)

h(x)


 , (23)

where H and A are approximations to the Hessian matrix ∇2L and the Jacobian ∇h,
respectively, having the property of being separable in the variables xj . We will use the
abbreviated notation K�N = −g for system (21), and K̄�m = −g for the modified
system (23).

The matrices H and A can be obtained by setting to zero a sufficient number of
elements in the preceding matrices to ensure separability. For example, the terms in∇2L

corresponding to cross derivatives for variables belonging to different blocks could be
replaced by zeros, while the constraints in ∇h could be divided into groups associated
with each block of variables; the nonzero coefficients in each set of constraints not
associated with the corresponding block of variables could then be set to zero. This is
very similar to the approach used in Section 2, where the zeros were introduced by fixing
the values of some of the variables in the subproblems.

We now analyze sufficient conditions (on the search directions) to guarantee the local
convergence of the method shown in Figure 1.

3.1. A simple inner iteration

If system (21) is solved exactly to compute�N , we have the standard Newton algorithm,
that has assured local convergence under certain assumptions on the problem. As system
(21) is not separable, we will not use this approach. Alternatively, consider a simplified
inner iteration where at iteration k we define

�k ≡ �m,k = −K̄−1
k gk. (24)

In some cases�m may be close enough to�N to preserve some of the local convergence
properties of Newton’s method. This will happen if K̄k is sufficiently close in some sense
to Kk , that is, if the modification required in the system to make it separable is small. In
these cases the problem can be directly decomposed by ignoring some of the elements in
∇2L and ∇h in the computation of the search directions, without taking any additional
correction steps and without losing local convergence. We now give a result based on
classical results from the theory of iterative methods for linear systems of equations, see
for example [29], that provides sufficient conditions to ensure local convergence in this
simplified setting.

For the remainder of this section, we will assume that problem (18)–(20) satisfies
the following hypotheses. For a given second-order KKT point of problem (18)–(20),
y∗ = (x∗, σ ∗, λ∗), it holds that:

A.1 The functions f , cj , h have Lipschitz-continuous second derivatives in an open
set containing y∗.

A.2 The Jacobian of the constraints,
(∇cT1 (x1) . . . ∇cTN(xN) ∇hT (x)

)T
, has full row

rank at y∗.
A.3 The sufficient second-order optimality conditions for problem (18)–(20) are satis-

fied at y∗.
We will also require the approximations K̄k to satisfy the following condition:
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C.1 The matrices K̄k are nonsingular for any yk , and the sequence {K̄k}k converges to
a nonsingular matrix K̄∗ as yk → y∗.

This condition is imposed to ensure that the solution of the system (24) should be well
defined at all iterations, and its behavior should be reasonable near the solution. Any
factorization approach that controls the ill-conditioning in the system should ensure its
satisfaction.

In the following theorem K∗ denotes the matrix K evaluated at y∗, and for any given
matrix A, ρ(A) denotes its spectral radius.

Theorem 1. Under assumptionA.1 and conditionC.1, if at the second-order KKT point
y∗ it holds that

ρ∗ = ρ
(
I − (K̄∗)−1K∗

)
< 1, (25)

then the procedure using (24) converges locally to y∗ with linear rate at least equal to
ρ∗.

Proof. Let yk be an iterate that is sufficiently close to y∗ so that assumption A.1 holds
and Kk is bounded. From the corresponding Taylor series expansion,

gk = g∗ +K∗(yk − y∗)+ o(‖yk − y∗‖),
where g∗ = 0. Also, by definition in the algorithm yk+1 = yk+�k and �k = −K̄−1

k gk .
Consequently,

yk+1 − y∗ = yk +�k − y∗ = (I − K̄−1
k K∗)(yk − y∗)+ o(‖yk − y∗‖)

and taking norms

‖yk+1 − y∗‖ ≤ ‖I − K̄−1
k K∗‖‖yk − y∗‖ + o(‖yk − y∗‖).

This result together with the condition on the spectral radius implies that the sequence
{yk − y∗} converges to zero. Dividing by ‖yk − y∗‖ and taking limits, the result on the
rate of convergence follows.

A consequence of this result is that certain problems, even if they are not directly
separable, can be solved efficiently by computing a search direction from a separable
system of equations (the one defined by K̄). In particular, the proposed method based
on the Lagrangian relaxation technique that we described in Section 2 would fit this
framework and would be locally convergent under the conditions of Theorem 1.

Note that the convergence criterion in Theorem 1, ρ∗ < 1, is the classical condition
for the convergence of iterative methods for the solution of systems of linear equations,
such as iterative refinement, Jacobi or Gauss-Seidel. It is not easy in general to check in
advance if this condition will hold for a given problem. But the convergence condition
of the decomposition algorithm and that for the convergence of the iterative refinement
method are the same, and this fact would provide a simple way to check the convergence
condition at a given iteration as the algorithm progresses. If iterative refinement generates
convergent iterates for the KKT system at a sequence of iterations of the decomposition
procedure, then the full algorithm should also converge.
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3.2. A locally convergent algorithm

Our next step will be to develop a decomposition algorithm that is locally convergent,
independently of the satisfaction of condition (25) on the approximating matrix K̄k . To
attain this goal we will use a modification of the simple inner iteration proposed above,
based on adding correction steps to the direction �m,k .

To compute �m,k we need some factorization of the matrix K̄k , and this is a com-
putationally expensive procedure. It would seem reasonable to obtain these correction
steps through procedures that do not require any additional factorizations. A simple way
to do this is to apply an appropriate version of the preconditioned conjugate gradient
(PCG) method (see [17]) to system (21), as the solution of this system has the desired
local convergence properties. A natural choice for the preconditioner is the matrix K̄k ,
whose factors would be already available.As the matrixK is not positive definite (except
perhaps in the unconstrained convex case), we have chosen to use GMRES (see [27]),
a variant of the PCG procedure that does not impose any condition on the coefficient
matrix of the system.

In each (outer) iteration k, the movement direction�k is defined from the inner itera-
tion indicated in Figure 2. In this inner iteration tk denotes a positive termination tolerance
to be specified later on; for the convergence analysis we only require 0 < tk ≤ t̄ < 1 for
all k and some constant t̄ . Note that, within the inner iteration, all systems of equations
have K̄ as their coefficient matrix; in consequence they can be solved in a distributed
manner.

The termination condition for the inner iteration is given in terms of the residu-
als of the system of Newton equations. This criterion has been chosen as it is easy to
implement, it enforces the local convergence of the overall procedure, as we will see
below, and it is efficient in practice. We now study the local convergence of the modified
method. Note first that, as GMRES solves the system of equations Kk�k = −gk , from
the convergence of GMRES and condition C.1, the termination condition for the inner
iteration is satisfied in a finite number of (inner) iterations.

We now establish that, close to a second-order KKT point y∗ for problem (18)–(20),
the method is locally convergent. As a first step, we start by relating the sizes of gk and
�k .

Lemma 1. Under assumptions A.1 to A.3, if yk is close enough to y∗, then there exist
constants r1 and r2 such that

‖gk‖ ≤ r1‖�k‖, ‖gk‖ ≥ r2‖�k‖.

Solve K̄k �m,k = −gk
Let �̃0 ← �m,k and i ← 0
while ‖Kk �̃i + gk‖ > tk‖gk‖

Apply one iteration of GMRES using K̄k as preconditioner
to compute �̃i+1

i ← i + 1
end while
�k ← �̃i

Fig. 2. Inner iteration
10



Also, there exists a constant r3 such that

‖�k‖ ≤ r3‖yk − y∗‖.
Proof. From the termination condition we must have

‖gk +Kk �k‖ ≤ tk‖gk‖. (26)

Also, from assumption A.1 it will hold that ‖Kk‖ ≤ r̄ for some constant r̄ and all yk
close enough to y∗. Consequently, we will have that

tk‖gk‖ ≥ ‖gk‖ − r̄‖�k‖ ⇒ ‖gk‖ ≤ r̄

1− t̄
‖�k‖.

From assumptions A.1 to A.3 it must follow that, for all yk close enough to y∗, the
smallest singular value of Kk is bounded away from zero. Let r̃ > 0 be such a bound.
Then

‖gk +Kk �k‖ ≥ ‖Kk �k‖ − ‖gk‖ ≥ r̃‖�k‖ − ‖gk‖,
and from (26),

(1+ t̄ )‖gk‖ ≥ r̃‖�k‖,
implying the second inequality.

Finally, from this second inequality and

gk = g∗ +O(‖yk − y∗‖) = O(‖yk − y∗‖),
we obtain the third inequality.

We are now ready to prove a local convergence result for this algorithm.

Theorem 2. Under assumptions A.1 to A.3 and condition C.1, the sequence {yk} gen-
erated using the algorithm in Figure 2 converges locally to y∗ with linear rate of con-
vergence no larger than t̄ .

Proof. If yk is close enough to y∗, from Lemma 1 and assumption A.1

gk+1 = gk +Kk(yk+1 − yk)+ o(‖yk+1 − yk‖) = gk +Kk�k + o(‖�k‖).
Taking norms and using the termination condition for the inner iteration (26) and Lemma
1,

‖gk+1‖ ≤ ‖gk +Kk �k‖ + o(‖gk‖) ≤ tk‖gk‖ + o(‖gk‖).
From this inequality it follows that gk → 0, and from Lemma 1 this implies yk → y∗.

Dividing by ‖gk‖ and taking limits it follows from Lemma 1 that the rate of convergence
is at least equal to t̄ .

From this result, the choice of tk should offer a compromise between the rate of con-
vergence of the algorithm, and consequently the number of outer iterations required for
convergence, and the computational cost of each outer iteration. In section 5.1 additional
information will be provided on how to choose tk from a practical point of view.
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3.3. The complicating variables case

The preceding paragraphs have analyzed problems with complicating constraints. We
consider now the complicating variables case (4)–(6) in a similar manner. If we apply a
barrier approach to the solution of this problem, we obtain the resulting model

minimize f (x0, x1, . . . , xN ;µ) (27)

subject to hj (x0, xj ) = 0 j = 1, . . . , N (28)

c0(x0) = 0, (29)

where the objective function includes the relevant barrier terms. If we apply Newton’s
method, the corresponding KKT system of equations (at a given iteration) would have
the form


∇

2L(x, σ, λ) ∇hT (x) ∇cT0 (x0)

∇h(x) 0 0
∇c0(x0) 0 0





 �x

−�σ

−�λ


 = −


∇L(x, σ, λ)h(x)

c0(x0)


 , (30)

where now x = (
xT0 xT1 · · · xTN

)T
, σj denotes the multiplier for hj (x0, xj ), σ =(

σT
1 · · · σT

N

)T
, λ is the multiplier for c0(x0) = 0 and

∇h(x) =



∇x0h1 ∇x1h1

...
. . .

∇x0hN ∇xN hN(x)


 .

The procedures described for problem (18)–(20), and in particular the construction
of the approximate system (23), can be applied in the same manner to approximate this
KKT system, to obtain


 H AT ∇cT0 (x0)

A 0 0
∇c0(x0) 0 0





 �x

−�σ

−�λ


 = −


∇L(x, σ, λ)h(x)

c0(x0)


 , (31)

for some approximations H and A to ∇2L and ∇h respectively. These approximations
should be separable in the variables x0, x1, . . . , xN . For example, the blocks that corre-
spond to the variables x0 in ∇h could be made equal to zero (if that would not imply a
loss of rank), as well as the blocks in ∇2L associated with cross derivatives for x0 and
xi with i �= 0. The algorithms described in Figures 1 and 2 could be applied with only
the obvious modifications to adapt them to (30) and (31).

4. Preconditioning

The efficiency of the procedures described in Section 3 depends crucially on an ap-
propriate choice of the preconditioner K̄k for the KKT system in each iteration of the
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proposed method. More specifically, the convergence of the procedure in Figure 2 will
depend on the proximity of K̄−1

k Kk to the identity matrix I . If we write

K̄−1
k Kk = I + Bk, (32)

then we have two criteria to select a good preconditioner in terms of the properties of
the matrix Bk in (32).

– The matrix Bk has a small spectral radius. From Theorem 1 convergence would
follow if σmax(Bk) < 1, where σmax(Bk) denotes the largest singular value of Bk .
The rate of local convergence would depend on the magnitude of this value, that is,
it would be faster as σmax(Bk) becomes smaller.

– The matrix Bk is a perturbation matrix of small rank. If exact arithmetic is used, the
number of inner (GMRES) iterations required to find the exact solution of the system
of linear equations (the Newton direction) is at most r = rank(Bk) + 1, see [16]
for example; more precisely, it is at most equal to the number of different singular
values of Bk . In practice, if these singular values are clustered in a small number
of groups (for example, if many of them are equal to zero) then the preconditioned
GMRES procedure would behave efficiently. This is the case for example if only a
few of the rows and columns of Kk are modified to obtain K̄k .

Note also that the preconditioner must satisfy condition C.1, and in particular it must be
a full-rank matrix.

Based on these remarks, we now present alternative preconditioner choices for the
algorithm in Figure 2. These choices are based on replacing some of the entries in the
KKT matrix, Kk , by zeros. If these entries are chosen appropriately, the resulting system
can be trivially decomposed.

1. The complicating constraints can be decomposed by introducing zeros in ∇h to
obtain a separable matrix. For example, by partitioning h into two subsets of con-
straints h1 and h2, we could define the matrix A in (23) as (again assuming N = 2
for simplicity)

A =
(∇x1h1 0

0 ∇x2h2

)
.

If this can be done without reducing the rank of A below that of ∇h, then the matrix
K̄−1

k Kk has at most 2mh eigenvalues different from one, and the rest of eigenvalues
are equal to 1. The rank of matrix Bk in (32) is 2mh.
We have found that this procedure works reasonably well for problems with com-
plicating constraints, but it usually leads to reduced-rank preconditioner matrices in
problems with complicating variables.

2. An alternative approach that complements the preceding one if there are difficul-
ties with the rank of the preconditioner, proceeds by replicating the complicating
constraints (19) N times, if the resulting number of equations would not exceed the
number of variables. The KKT matrix, Kk , would have the form (we assume N = 2
for simplicity) (∇2L̃ ∇h̃T

∇h̃ 0

)
,

13



where

∇2L̃ =
( ∇2L ∇cT (x)
∇c(x) 0

)

and

∇h̃ =
(∇x1h ∇x2h 0
∇x1h ∇x2h 0

)
.

The right-hand side would be replicated in a similar manner. The preconditioner, K̄ ,
would have the form

K̄ =
(
H̃ ÃT

Ã 0

)
,

where

Ã =
(
A1 0 0
0 A2 0

)
,

and H̃ , A1 and A2 are approximations to the Hessian ∇2L̃ and the Jacobians ∇x1h and
∇x2h, respectively. It is important to select these matrices, A1 and A2, in such a way that
the resulting preconditioner matrix K̄ has full rank. Observe that the KKT matrix Kk is
singular, but the system is compatible.

If H̃ , A1 and A2 can be chosen to coincide exactly with the previous Hessian and
Jacobian matrices, the matrix K̄−1

k Kk would have 2mh eigenvalues equal to zero, 2mh

eigenvalues equal to 2, and the remaining eigenvalues are equal to one. The resulting
matrix Bk in (32) has rank 4mh.

This approach seems to work well in practice in problems with complicating vari-
ables, but is less adequate for problems with complicating constraints, as we will com-
ment in Section 5.

The local convergence theory of section 3.2 can be extended to this case, even if
assumption A.2 is not satisfied after the constraints are replicated. We still need this
assumption, as well as assumptions A.1 and A.3, to hold for the original problem (18)–
(20). Let �λk = �λ1

k +�λ2
k , where �λ1 and �λ2 denote the multiplier estimates for

each set of replicated constraints. The convergence theory in Lemma 1 and Theorem
2 will hold if we consider the sequences {�xk} and {�λk}, instead of {�xk}, {�λ1

k}
and {�λ2

k} (the sequences generated by the algorithm based on the replication of con-
straints), and Kk and gk refer to the original system of equations, before the duplication
of constraints.

5. Numerical results

In this section we describe the implemented versions of the algorithm, and present nu-
merical results obtained by applying the proposed decomposition algorithm to a set of
test problems.
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5.1. Practical implementation

Several versions of the algorithm (using different preconditioners K̄) have been im-
plemented in Matlab to test its behavior on linear and nonlinear problems with special
structure. The implementation is based on the description in Figures 1 and 2, but it
includes a few additional details that are included in Figure 3.

The following issues are of particular interest:

– The proposed algorithm carries out several iterative refinement iterations, while the
norm of the residuals is decreasing. In practice, this is a cheap way to improve the
quality of the computed direction, and it works quite well in many problems for
which it holds that ρ(K̄−1K) < 1.

– The initial value for the termination tolerance for GMRES, tk , is chosen in terms of
the behavior of the problem in the first iteration.

– The termination tolerance tk is updated dynamically taking into account the rate
of reduction in the residual norm rk . This strategy is very similar to that used in
trust-region methods to adjust the size of the region and works well in practice.

Choose initial values x0, σ0 and λ0
Set r0 = 0 and let k← 0
while ‖∇L(xk, σk, λk)‖ +

∑
j ‖cj (xjk )‖ + ‖h(xk)‖ > ε

Solve K̄k �m = −gk (Inner iteration)
Compute ω0 = ‖gk +Kk �m‖
Solve �̃1 = �m −K

−1
k (gk +Kk �m)

Compute ω1 = ‖gk +Kk �̃1‖
if k = 0
t0 = min(1, ω0/ω1)

end if
Let �̃0 ← �m and j ← 0
while ωj+1 < ωj and j < J

compute �̃j+1 = �̃j −K
−1
k (gk +Kk �̃j )

j ← j + 1
ωj+1 = ‖gk +Kk �̃j‖

end while
Let �̃0 ← �̃j and i ← 0
while ‖K̄−1

k (gk +Kk �̃i)‖ > tk‖K̄−1
k gk‖ = tk‖�m‖

Do one iteration of GMRES, using K̄k as preconditioner, to compute �̃i+1
i ← i + 1

end while
�k ← �̃i

Update xk+1 ← xk +�xk
Update σk+1 ← σk +�σk
Update λk+1 ← λk +�λk
Compute rk = ‖gk +Kk �k‖ and choose tk+1 as

tk+1 =




min{1.25tk, 0.95} if rk−1/rk > 1,
min{0.25tk, 0.95} if rk−1/rk < 0.99,
min{0.75tk, 0.95} otherwise,

k← k + 1
end while

Fig. 3. Decomposition algorithm
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5.2. Test problems and results

We have tested the algorithm on a set of test problems from two models, one linear and
one nonlinear, that present both coupling patterns described in Section 1.

The first set of test problems, having complicating variables, is based on a two-
stage stochastic programming model [6]. This model is a large-scale linear program that
minimizes the cost of first-period decisions plus the expected cost of second-period re-
course decisions, while satisfying some first-period constraints. The stochastic problem
is solved as a deterministic one by considering a discrete distribution with associat-
ed probabilities. Under these approximations, the deterministic equivalent form of the
problem is

minimize
x,y1,... ,yN

cT x +
N∑
i=1

πi (q
T
i yi) (33)

subject to Ax = b (34)

Bkx +Wiyi = hi, for i = 1, 2, . . . , N (35)

x ≥ 0, yi ≥ 0, for i = 1, 2, . . . , N, (36)

where x denotes the first-period variables, yi denotes variables corresponding to sec-
ond-period decisions and (34), (35) are the first-period and second-period constraints,
respectively.

We have also studied a second set of test problems, corresponding to a complicating
constraints case with nonlinear functions. It is based on a multi-area optimal power flow
problem (OPF), whose formulation (for the single-area case) is discussed in [30]. The
resulting problem is a large-scale non-convex optimization problem. A model for this
problem in compact form has the structure given in (1)–(3), where xj would be the
variables for each area j of the global system. Equations (2) represent the power flow
equations and transmission capacity limits for those buses and lines interconnecting dif-
ferent areas. Constraints (3) include the power flow equations and transmission capacity
limits, only for those lines and buses lying within a given area, and limits over dependent
and control variables. The sets of equations (2)–(3) represent both equality and inequal-
ity constraints. In these models, the objective function (1) is the total operation cost for
the system, a quadratic function of xj for all j .

Table 1 shows the most relevant characteristics of the problems in the test sets cor-
responding to each one of the two models. The first column gives the problem name;
the second column indicates the number N of areas/scenarios, that will correspond to
the number of subproblems in the solution algorithm; a third column shows the number
of complicating constraints/variables c; the fourth and fifth columns present the total
number of variables n and functional constraints m, respectively.

The first fifteen problems (the SP problems) correspond to a subset of POSTS, a
portable stochastic programming test set [19]. Detailed descriptions for these problems
and the data used to define them can be obtained from

http://www-personal.umich.edu/∼jrbirge/dholmes/SPProblemsIntro.html

The last ten cases (the MOPF problems) are multi-area OPF models. They correspond
to standard IEEE bus systems and their description can be found in [14].

16



Table 1. Main characteristics of test problems

Case N c n m

SP1 6 188 1820 686
SP2 6 151 2845 1520
SP3 16 188 4540 1726
SP4 16 151 7335 3900
SP5 6 306 8568 3353
SP6 9 306 12699 4937
SP7 32 151 14519 7708
SP8 15 306 20961 8105
SP9 64 151 28887 15324
SP10 30 306 41616 16025
SP11 96 151 43255 22940
SP12 128 151 57623 30556
SP13 45 306 62271 23945
SP14 160 151 71991 38172
SP15 60 306 82926 31865

MOPF1 3 39 72 101
MOPF2 2 15 224 167
MOPF3 2 46 128 191
MOPF4 3 25 336 251
MOPF5 3 50 1032 1344
MOPF6 6 110 2064 2972
MOPF7 6 112 4428 6573
MOPF8 12 238 8856 14649
MOPF9 24 490 17712 35310
MOPF10 50 1032 36900 99212

A primal-dual interior point approach has been used to generate equality constrained
problems, both in the form indicated in (18)–(20), for the MOPF problems, and in an
equivalent form for the complicating variables SP problems. These problems have been
solved using both a direct approach (Newton method) and the decomposition procedure
described in figure 3. Both procedures have been initialized using the same starting
point, and the same termination tolerances have been applied. The algorithms stopped
whenever ‖∇L(x, λ)‖/(1+‖x‖+‖λ‖) ≤ 10−6, where L denotes the Lagrangian func-
tion. The choice of preconditioner for the decomposition procedure has been made to
ensure that the resulting preconditioner satisfies condition C.1 (the preconditioner has
full rank). For problems with complicating constraints, the preconditioner described in
item 2 of Section 4 tends to produce matrices K̄k that are rank deficient; as a conse-
quence, for the MOPF problems we have used the preconditioner described in item 1 of
Section 4. For problems with complicating variables, the situation is the opposite one,
that is, preconditioner 1 tends to yield matrices K̄k that are rank deficient; for the SP
problems we have used the preconditioner described in item 2 of Section 4. The sparse
LU factorizations provided by Matlab were used in the codes: for the SP problems
(problems with complicating variables), an incomplete LU factorization with 0 level of
fill-in was implemented, while for the MOPF problems (problems with complicating
constraints) the code was based on the LU factorization with column minimum degree
permutation. Table 2 presents a comparison of the computational results obtained from
both algorithms on the SP problems, while table 3 presents the corresponding results for
the MOPF problems.

The columns of tables 2 and 3 correspond to the following information:
17



Table 2. Numerical results for the SP problems

Case Ig Id ICG Tg Td

SP1 27 27 145 9.514 100 7.861 100

SP2 20 20 43 3.835 101 2.075 101

SP3 28 28 291 5.801 101 3.704 101

SP4 21 22 58 2.687 102 5.930 101

SP5 30 31 49 2.778 102 1.033 102

SP6 33 33 55 7.043 102 1.837 102

SP7 25 25 65 5.851 102 1.406 102

SP8 38 39 57 2.407 103 4.416 102

SP9 24 26 71 4.182 103 7.048 102

SP10 43 43 93 1.178 104 1.965 103

SP11 29 31 73 1.750 104 2.018 103

SP12 29 29 84 5.174 104 2.514 103

SP13 41 42 97 3.941 104 2.455 103

SP14 32 33 112 9.127 104 4.583 103

SP15 39 39 98 1.252 105 7.118 103

Table 3. Numerical results for the MOPF problems

Case Ig Id ICG Tg Td

MOPF1 22 23 74 2.805 10−1 2.798 10−1

MOPF2 21 21 10 3.129 10−1 2.835 10−1

MOPF3 23 42 391 3.519 10−1 1.341 100

MOPF4 26 26 57 6.119 10−1 6.661 10−1

MOPF5 36 35 15 7.371 100 6.315 100

MOPF6 43 39 9 3.108 101 2.189 101

MOPF7 37 39 27 8.683 101 8.771 101

MOPF8 40 41 22 4.636 102 4.582 102

MOPF9 43 43 12 2.758 103 2.626 103

MOPF10 44 43 10 2.145 104 1.973 104

– The second and third columns indicate the total number of Newton iterations re-
quired by the direct method, Ig , and the decomposition procedure Id , respectively,
for each one of the problems. This value corresponds to the number of times systems
(21) or (23) must be solved in the algorithm.

– The fourth column gives the total number of conjugate-gradient iterations, ICG, per-
formed by the GMRES subroutine. This is also the total number of solves performed
by the decomposed algorithm using the preconditioner matrix K̄ .

– The fifth and sixth columns show the total accumulated CPU time in seconds needed
to solve the problems using both the direct approach, Tg , and the decomposition pro-
cedure, Td , on a single processor. This time includes the linear algebra time and the
time required by the updating of variables and derivative computations in Newton’s
method. The reported times correspond to a Pentium III at 800 MHz with 1 GB of
memory.

The results in Table 2 show a clear advantage of the proposed decomposition ap-
proach over the direct method, even when a single processor is used. It is remarkable
to note that, although the proposed procedure has only linear convergence, the total
number of iterations hardly increases when the decomposition scheme is applied. All
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Fig. 4. Logarithms of total running times for both the direct approach Tg and the proposed algorithm Td , vs.
the logarithm of the number of variables n in the problems of the SP test set

CPU times are lower for the proposed procedure, and this improvement increases with
the size of the problem. These running times have been plotted in figure 4, for both the
direct approach and the proposed algorithm, against the number of variables in each
problem, to emphasize the increase in the improvement with the size of the problem;
note the logarithmic scale in the figure.

Table 3 presents the corresponding results for the MOPF problems. These problems
are much more demanding for the algorithm, particularly in a sequential setting, as they
are nonlinear and 60% of the CPU solution time on the average is devoted to the com-
putation of derivatives (this percentage goes up to 80% for the largest problems). As a
consequence, any increase in the number of Newton iterations, as is the case for problem
MOPF3 for example, has a significant impact on the solution time, while any decreases
due to the computation of the search direction in the proposed approach have a more
limited impact than for the SP problems. Nevertheless, it is interesting to note that the
solution times decrease for seven problems, versus three increases, all of them in smaller
problems. Thus, the proposed procedure might seem quite promising for the solution of
large problems of this class in a distributed computation environment.

The proposed algorithm described in figure 3 is based on the simple inner iteration
described in section 3.1, corresponding to a special case of the Lagrangian decompo-
sition algorithm. This simple iteration is then expanded with a CG iteration to improve
the convergence properties of the algorithm. We were also interested in studying the
relevance of this last modification, and its impact on the efficiency of the resulting
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Table 4. Numerical results using a simple inner iteration. Problems MOPF

Case Id Td

MOPF1 59 3.699 10−1

MOPF2 38 4.590 10−1

MOPF3
MOPF4 58 1.003 100

MOPF5 39 5.314 100

MOPF6 52 2.366 101

MOPF7 49 9.620 101

MOPF8 52 4.477 102

MOPF9 51 2.483 103

MOPF10 48 1.416 104

algorithm. We have conducted a final experiment, reported in table 4, for the set of MOPF
problems, solving these problems by applying the algorithm described in section 3.1.

The second and third columns of table 4 indicate the total number of iterations Id
required by the decomposition procedure and the CPU time in seconds Td needed to
solve the problems, respectively. The blank entry corresponds to a case in which the
algorithm did not converge, as the corresponding problem did not satisfy condition (25).
It is remarkable to note that so many of the MOPF problems did in fact satisfy this
condition, and the simple algorithm was able to obtain solutions for them. Comparing
these results with the CPU times indicated in table 3, the running times are slightly
higher for the smaller problems, due to the larger number of Newton iterations required,
but they are lower for the three larger problems (including a 34% improvement on the
direct solution for the largest one). For the problems in the SP test set the convergence
condition was not satisfied, and no comparable results are available. These results may
suggest the interest of detecting and exploiting property (25) for those large problems
where it may hold.

6. Conclusions

We have discussed an algorithm based on an approximate Newton direction, computed
from an approximation to the KKT system of equations and a preconditioned conju-
gate gradient procedure. This algorithm can also be motivated as a particular case of a
Lagrangian relaxation procedure. The natural choice of preconditioner based on a de-
composable approximation to the system works very well in practice, better than the
direct solution of the system in many cases when this is feasible.

Another important issue we have considered is the termination criterion for the in-
exact computation of the search directions. We propose using a dynamic update of the
termination tolerance based on the quality of the preceding directions. This approach
results in a small number of conjugate gradient iterations, and also in a reduced number
of Newton steps. The resulting procedure seems to have clear advantages over the di-
rect approach whenever the linear algebra cost is the dominant one in the optimization
algorithm, for example in the case of linear programs with special structure. It is also
promising for the distributed computation of both linear and nonlinear problems with
structure.
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