Super-roughening as a disorder-dominated flat phase
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Abstract. — We study the phenomenon of super-roughening found on surfaces growing on
disordered substrates. We consider a one-dimensional version of the problem for which the
pure, ordered model exhibits a roughening phase transition. Extensive numerical simulations
combined with analytical approximations indicate that super-roughening is a regime of asymp-
totically flat surfaces with non-trivial, rough short-scale features arising from the competition
between surface tension and disorder. Based on this evidence and on previous simulations of the
two-dimensional random sine-Gordon model (Sénchez et al., Phys. Rev. E, 62 (2000) 3219),
we argue that this scenario is general and explains equally well the hitherto poorly understood
two-dimensional case.

Understanding phase transitions in systems with quenched disorder is a challenging issue,
not only in physics but also in fields ranging from combinatorics to financial market mod-
eling. This is the reason why much effort has been devoted in the last few years to this
subject. However, the progress achieved so far is modest, and clear-cut, definitive results are
rare [1]. In view of this, steps towards providing such results are needed and will be very
helpful for many ongoing investigations. One important instance where the role of disorder
remains unclear is that of roughening transitions of crystal surfaces [2]: At high temperatures,
crystal surfaces are rough (the surface width w increases with the system size L), whereas at
low temperatures they become flat (w is a constant depending only on temperature). When
crystal planes are grown on a disordered substrate, renormalization group calculations for
the two-dimensional (2D) random sine-Gordon model (RsGM, see below) predicted that the
conventional roughening transition was replaced by super-roughening [3], a new phase transi-
tion from the high-temperature rough phase (w ~ vIn L) to a low-temperature rougher phase
(w ~ InL). Subsequent work produced a “myriad of predictions” [4] in a few years, which
gave rise to a controversy about the nature of the super-rough phase (see [5] for a review).
Based mainly on large-scale numerical simulations or exact optimization results [6-14], some
degree of consensus was reached that super-roughening indeed took place and that w ~ In L
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was observed. However, recent numerical evidence from simulations by our group on the 2D
RsGM [15] has cast doubts on the generality of that behavior as the parameters of the model
change, suggesting that the low-temperature phase of the model could even be flat.

With the expectation that the problem would be more amenable both analytically and
numerically, in this letter we study the same problem in a one-dimensional (1D) setting. To
mimic as closely as possible the 2D situation, we need to find a 1D model whose non-random
version exhibits a true roughening transition. The 1D sine-Gordon model does not fulfill this
condition (see [16] for a rigorous proof; see also [17] for additional numerical results) and
therefore we must modify it. To this end, we introduce and study for the first time a new
model, rooted in the work of Burkhardt [18], who proved that the Hamiltonian given by (peri-
odic boundary conditions on a lattice with NNV sites are used) H = Ef\il{e]‘hi.H[ —hi|+U(h)},
with U(x) being a square well potential, U(z) = —Uj for 0 < x < R, U(x) = 0 otherwise, and
with the heights h; restricted to be non-negative (impenetrable substrate) has a roughening
transition (see [19] for analogous discrete models). We stress that this is a true thermody-
namic phase transition, which is perfectly possible in 1D (see [20] for a thorough discussion
of 1D phase transitions). Building on these results, we propose the following Hamiltonian as
our basic model (hereafter called Burkhardt-RsGM or B-RsGM):
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where V(z) = V(1 — cosz) + U(x), hgo) are uncorrelated random variables uniformly dis-

tributed in the range [0, hyax], and the impenetrable substrate restriction now reading hEO) <
h; < co. We note that the original proposal of Burkhardt had a surface tension term given
by |hiy1 — hs|. Instead, model (1) follows the spirit of the RsGM, including surface tension
as the square of a discrete gradient term [21] and a periodic potential favoring multiples of
27 for the heights h;, mimicking the growth of crystal layers. The 1D RsGM is recovered by
setting Uy = 0 and allowing for negative heights.

We have not been able to solve the statistical mechanics of the ordered B-RsGM (i.e.,
hmax = 0) exactly. Therefore, we have resorted to numerical simulations to check whether the
roughening transition in the original Burkhardt model carries over to our modified version. To
this end, we have used parallel tempering Monte Carlo [22,23]. Representative configurations
at a given temperature are generated with a heat bath algorithm [24], full details of which can
be found in [17]. The parallel tempering algorithm then considers simultaneous copies of the
system at different temperatures, allowing exchange of configurations between them. This is
particularly efficient for low-temperature configurations, which are most susceptible to being
trapped in metastable regions, particularly in the disordered case.

The results of our simulations of the B-RsGM without disorder are summarized in fig. 1 for
the specific choice Vy = 1, Uy = 2, R = 27 (to have the same length as the periodicity of the
cosine term), and hpyax = 27 (as in the standard 2D RsGM); other values give qualitatively
the same results. Our systems have sizes in the range between 500 and 2000 sites. As can be
seen from the plot, the specific heat presents a clear jump at a temperature Tﬁrd around 10.3
in our units (the peak at lower temperatures corresponds to a well-known Schottky anomaly,
see, e.g., [15] and references therein). At the same temperature, the width or roughness,
defined as w? = ([h; — (h;)]?) with (---) denoting thermal averages, jumps from values close
to zero to large, system-size-dependent values, indicating the onset of the rough phase. This
is further confirmed by the height difference correlation function, C(r) = (3~,[h; — hitr]?) /N,
as shown in the inset of the left panel of fig. 2. Note that the correlation function is scaled
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Fig. 1 — Specific heat vs. temperature for the B-RsGM for two system sizes, as indicated. Inset:
roughness vs. temperature. Lines with and without symbols correspond to the disordered and ordered
case, respectively. Error bars correspond to the thermal average.

by the temperature, aiming to identify the onset of the rough phase as the point at which the
curves for different temperatures collapse and become simply proportional to r (the position
along the chain). From both plots we locate the transition at Tg'4 = 10.3; actually, there
is a gap in the plot of C(r)/T at Tg™, and for temperatures slightly above this value the
curves go discontinuously to the collapsed, high-temperature one. In this rough phase, the
model behaves effectively as though Uy = V) = 0 (in other words, as the Gaussian model).
All these features are exactly what we expected from the theoretical results of the original
Burkhardt model [18], and make us confident that the B-RsGM presents a roughening phase
transition in the absence of disorder, very much like the 2D RsGM. Further confirmation of
the existence of this phase transition and of Tﬁrd can be obtained by analytical calculations
based on a continuum approach leading to a pseudo-Schrodinger equation (following [25]), as
well as from numerical evaluation of an exact transfer matrix calculation [26].
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Fig. 2 — Height difference correlation function scaled by the temperature T (left panel) and without
scaling (right panel). Temperatures are T' = 10.50 (dot-dashed line), T = 8.84, 8.41, 7.70, 6.17 (solid
lines), T' = 2.13 (dashed line), and T' = 0.301, 0.0986 (dotted lines). Inset: scaled height difference
correlation function without disorder. Temperatures are 7' = 14.0 (dot-dashed line) and 7" = 10.0,
9.34, 8.18, 6.90, 3.99, 0.995, 0.774, and 0.0981 (solid lines). The double-dot—dashed horizontal line
indicates C/(r) for a surface exactly locked to the disorder, C”) (1) (see the text).



Fig. 3 — Heights above the substrate, hi,h£0)7 vs. position along the chain. Temperature is T' = 0.0986,
system size N = 2000.

Having established the existence of a roughening transition in the ordered B-RsGM, we
can now proceed to discuss how the disorder changes this transition. Below, we present results
of single realization simulations; we have checked that these are typical by running several
simulations with different quenched disorder for each case. Figure 1 and the left panel of fig. 2
show that the roughening transition of the ordered model is basically unchanged (although
the Schottky peak is much less pronounced, due to the distortion of kinks by the disorder);
the value of Ty does change, however, and it is now located at Tg = 9.3. Furthermore, as the
temperature is lowered and reaches Tp = 2.1, C(r)/T begins to increase while maintaining a
finite correlation length (that implies a flat phase with roughness independent of the system
size for sizes larger than the correlation length). This increase arises from the fact that, as
seen in the right panel in fig. 2 with the temperature scaling removed, C(r) approaches a
constant function, independent of T', as T' goes to zero, and hence scaling by T leads to an
increase of the function. The 1D character of our model allows us to study large systems and
ensure that C'(r) indeed has finite range. The value of T at which this change of behavior takes
place can be related to the heights taking values close to the disorder ones: In the absence
of surface tension (the height differences term), the minimum of H would be h; = hgo) for
all sites i; the correlation function for such a configuration can be immediately found analyt-
ically, leading to a constant value C9)(r) = 2w? independently of the spatial dimension, with
w? = ((W{™)2) — (h{™)2 = b2 /12 = Cp, being the squared roughness. As can be seen from
fig. 2, the scaled C(r) begins to increase precisely when its asymptotic value coincides with
c) (r). This strongly suggests that at Tp and below, the surface approaches the values of the
disorder, while smoothed at short scales by surface tension. Figure 3 confirms this expectation
by showing that for a majority of sites h; is close to hgo) or to hEO) + 27 (h; is contained within
that range at low temperatures because of Burkhardt’s square well). It is clear that the effect
of surface tension smooths the surface and leads to a global value for the roughness which is
lower than that corresponding to the disorder values. In fact, by analyzing the overdamped
equations of motion for H linearized around the substrate, it is straightforward to show that
C(r) goes asymptotically to a nonzero constant Cy at low temperatures, in agreement with
these numerical simulations (further details will be given elsewhere [27]). Interestingly, at tem-
peratures as low as that in fig. 3, the roughness is slightly larger than at higher temperatures,
as seen in fig. 4. This surprising result arises, in our view, from this competition between
surface tension and disorder, which for almost zero temperatures seems to favor the latter.
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Fig. 4 — Roughness as a function of temperature for the disordered model. Inset: same, but for a
larger range of temperatures.

From the evidence summarized above, we conclude that our 1D model shows no signa-
tures of super-roughening. Instead, the picture that emerges from this work is that of a
usual roughening transition, with temperature Ty lower than the ordered case, followed at
temperatures of the order of or below Tp < Tr by a crossover to a disorder-dominated but
otherwise flat phase. In this last regime, the surface is located close to the values imposed
by the disorder (modulo 27). This behavior leads to a height-difference correlation function,
C(r), that is asymptotically flat, but increasing at short distances due to surface tension,
up to a correlation length of the order of 10-20 lattice units. At larger scales, C(r) is well
described analytically by assuming that the surface height takes values close to the disorder.
Furthermore, as a consequence of the competition between disorder and surface tension, the
width exhibits a non-trivial behavior with a minimum at a low but non-zero temperature.

We believe that our conclusions are relevant in a much broader context than the 1D model
we have described. As our model has a true roughening phase transition, it is reasonable
to consider it in the related context of the 2D problem. In the following, we will discuss
the results on our 1D model we have presented above together with our previous, extensive
numerical work on the 2D RsGM reported in [15]. We encourage the reader to consult [15]
as the plots, results and conclusions in that paper, which would be too lengthy to repeat
here, clearly suggest that our interpretation is consistent with the available facts about the
2D RsGM. Indeed, we believe that the abundant but often contradictory evidence available
regarding the 2D RsGM can be understood within the scheme proposed here. The key point
is that those 2D RsGM simulations [15] are perfectly consistent with our scenario: They show
asymptotically flat correlation functions (with constant value approximately given by Cjp)
and non-monotonic roughness, especially for strong potentials (large values of Vj; cf. fig. 12
in [15]). It is true, however, that for values of V4 of the order of unity a squared logarithm
behavior is found for C(r). In the interpretation stemming from the results reported above,
this could be due to two factors: First, for such values of Vy, Tk 2 Tp, and hence the flat
phase of the ordered model is not observed; instead, in the corresponding C'(r)/T plots in [15]
all that appears is that C(r)/T increases with decreasing T because, as discussed above,
C(r) has become independent of T and governed by the disorder, with the appearance of
super-roughening. Second, in 2D the surface tension influence is much larger than in 1D
because of the increased number of neighbors; as a consequence, the crossover in C(r) from
C(r =0) =0 to C(r — o0) = Cp is much more pronounced and occurs on a longer spatial
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scale. This is in agreement with the observation in [12] that at ' = 0 C(r) also exhibits a finite
correlation length. Our interpretation is also consistent with the result that changes in V4 (also
reported in [4,6,13]) or in the interval of the disorder hp,.x lead to the disappearance of the
super-rough phase [15], replaced by a phenomenology very close to the one we are proposing.
Importantly, we have verified with the results in [15] that the criterion based on comparison
with the tensionless C'(©) (r) discussed above, works equally well to determine the entrance to
the disorder-dominated regime in 2D. We have checked that this is the case by applying the
criterion to our results in [15] (cf. specially figs. 3(b) and 7, in complete agreement with the
1D results). Furthermore, the simulations in [15] yielded non-monotonic behaviors for the
total roughness, as depicted in fig. 4 for the 1D model. Finally, another piece of evidence in
favor of our proposal is that sudden quenches of surfaces in the 2D RsGM lead to long-lived
states with C(r) ~ In®r and other anomalous behaviors [28]. This may be related to the fact
that in a quench only very short-scale rearrangements of the surface are possible, leading to
a shorter correlation length and a shorter interval for C(r) to rise from 0 to Cp.

Based on the above considerations, we believe that our central proposal, namely that super-
roughening is an effective short-scale phenomenon arising from the existence of a roughening
transition and a crossover to a disorder-dominated regime, is very appealing. It would natu-
rally explain the failures of the different theoretical approaches, the predictions of lack of uni-
versality, and the discrepancies among the simulations [5]. Thus, obtaining different numerical
results is generally the case when studying crossover phenomena, as these are very dependent
on the details of the model and even of the simulations. On the other hand, the In?  behavior
for C(r) can indeed be found if the scales analyzed are restricted to a small range, such as
those reported in [6-11], obtained on systems of at most 200 x 200 sites. Our own simulations
on systems of sizes up to 256 x 256 [15] (1024 x 1024 at zero temperature [12]) confirm partly
that result but show indications of a crossover to a flat behavior at larger time scales. Our
proposal is an alternative explanation to the currently available results on the phenomenon of
super-roughening, but cannot be considered as the definitive answer to this problem without
further very large-scale simulations on the 2D problem. One reason for this caveat is that the
nature of the phase transition in our 1D model is not exactly that of the 2D model, and the
models themselves are not identical. We have considered this difficulty, and concluded that the
many analogies between the numerical results reported here and those in [15] lead us to sug-
gest on solid grounds that the mechanism underlying this common phenomenology is basically
the same. Caution must also be taken as it could be argued that our results carry over only to
the 2D B-RsGM and not to the 2D RsGM. In this respect, as the 2D RsGM has a roughening
transition of its own, the additional Burkhardt well would only increase the transition temper-
ature, but not change the general picture, and therefore both models should behave similarly.
Clearly, the scenario proposed here must be subject to further scrutiny before accepting it. In
particular, to confirm that our interpretation carries over to the 2D case, it would be necessary
to carry out large-scale simulations (systems of size at least 1000 x 1000 at finite temperature)
to verify whether C'(r) crosses over, as r increases, to an asymptotic, constant value, signaling a
flat phase. Such simulations are presently beyond our computing capabilities and therefore we
have not been able to verify this prediction. We hope that this work encourages numerical work
along this line to definitively settle this long-standing issue. Progress in this direction would
influence a much broader field, namely phase transitions in disordered systems, hence the rele-
vance and interest of further research on this problem. In this context, we conclude by stressing
the importance of the results presented here. Even if they were only relevant in 1D and the
scenario were not (as we believe it is) applicable to 2D super-roughening, our results consti-
tute an example of a phase transition in a 1D disordered system which can be amenable to
additional analytical work and lead to new insights on the exciting issue of disordered systems.
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