

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

GPU-Based Fast Iterative Reconstruction
of Fully 3-D PET Sinograms

J. L. Herraiz, S. España, R. Cabido, A. S. Montemayor, M. Desco, J. J. Vaquero, and J. M. Udias

Abstract—This work presents a graphics processing unit (GPU)-
based implementation of a fully 3-D PET iterative reconstruction
code, FIRST (Fast Iterative Reconstruction Software for [PET] To-
mography), which was developed by our group. We describe the
main steps followed to convert the FIRST code (which can run on
several CPUs using the message passing interface [MPI] protocol)
into a code where the main time-consuming parts of the reconstruc-
tion process (forward and backward projection) are massively par-
allelized on a GPU. Our objective was to obtain significant ac-
celeration of the reconstruction without compromising the image
quality or the flexibility of the CPU implementation. Therefore,
we implemented a GPU version using an abstraction layer for the
GPU, namely, CUDA C. The code reconstructs images from sino-
gram data, and with the same System Response Matrix obtained
from Monte Carlo simulations than the CPU version. The use of
memory was optimized to ensure good performance in the GPU.
The code was adapted for the VrPET small-animal PET scanner.
The CUDA version is more than 70 times faster than the original
code running in a single core of a high-end CPU, with no loss of
accuracy.

Index Terms—CUDA, graphics processing units, image recon-
struction, positron emission tomography.

I. INTRODUCTION

T OMOGRAPHIC reconstruction is computationally very
demanding, especially when iterative methods based on

realistic models for the emission and detection of radiation are

Manuscript received September 01, 2010; revised December 17, 2010 and
February 06, 2011; accepted April 25, 2011. Date of publication June 23,
2011; date of current version October 12, 2011. This work was supported in
part by AMIT Project funded by CDTI (CENIT Programme), UCM (Grupos
UCM, 910059), CPAN (Consolider-Ingenio 2010, CSPD-2007-00042), RE-
CAVA-RETIC network, Comunidad de Madrid (ARTEMIS S2009/DPI-1802),
Ministerio de Ciencia e Innovación, Spanish Government (ENTEPRASE grant,
PSE-300000-2009-5 and TEC2007-64731/TCM), and European Regional
funds.

J. L. Herraiz and J. M. Udias are with the Grupo de Física Nuclear, De-
partamento Física Atómica, Molecular y Nuclear, Universidad Complutense de
Madrid, Madrid, Spain (e-mail: joaquin@nuclear.fis.ucm.es).

S. España was with the Grupo de Física Nuclear, Universidad Complutense
de Madrid, Madrid, Spain, and is now with the MEDISIP, Department of Elec-
tronics and Information Systems, Ghent University-IBBT-IBiTech, Ghent, Bel-
gium (e-mail: samuel@nuclear.fis.ucm.es).

R. Cabido and A. S. Montemayor are with the Departamento de Ciencias de
la Computación, Universidad Rey Juan Carlos, Madrid, Spain (e-mail: antonio.
sanz@urjc.es).

M. Desco is with the Departamento de Bioingeniería e Ingeniería Aeroespa-
cial, Universidad Carlos III de Madrid, Madrid, Spain, and also with the Unidad
de Medicina y Cirugía Experimental, Hospital General Universitario Gregorio
Marañón, Madrid, Spain (e-mail:desco@mce.hggm.es).

J. J. Vaquero is with the Departamento de Bioingeniería e Ingeniería Aero-
espacial, Universidad Carlos III de Madrid, Madrid, Spain (e-mail: juanjose.
vaquero@uc3m.es).

used [1]. The increasing complexity of scanners implies a large
number of data and reconstructed voxels [2], as well as more so-
phisticated acquisition protocols, such as dynamic studies [3],
which require new approaches to reconstruct images in reason-
able time. Tomographic image reconstruction codes are suitable
for massive parallelization, as their two main time-consuming
parts (forward and backward projection) can be organized as
single instruction multiple data (SIMD) tasks and distributed
among the available processor units [4], [5]. This allows for re-
ducing the elapsed reconstruction time by means of large clus-
ters of computers and multi-core processors

On the other hand, graphics processing units (GPUs) can be
used to alleviate the intense computational demands posed by
many scientific problems [6], including tomographic image re-
construction. The higher the ratio between data computation and
data communication (or arithmetic intensity), the more is the po-
tential gain with the use of GPUs. GPUs can handle large data
sets working in, what NVIDIA and other researchers describe
as single program multiple data (SPMD).

Designing general purpose codes so that they can take full
advantage of GPU features is, however, not an easy task. Good
knowledge of the targeted GPU architecture is required and
new reconstruction algorithms, or at least new implementations
of them, have to be developed. GPUs became easier to pro-
gram with the recent introduction of “abstraction layers”, that is,
higher-level programming tools which are highly independent
on the particular targeted GPU. For instance, CUDA [7], the ap-
plication programming interface (API) developed by NVIDIA,
offers a unified hardware and software solution for parallel com-
puting on CUDA-enabled GPUs. It consists of C language ex-
tensions which allows for easier integration with larger C pro-
grams. Kernels may be coded as C functions which may be
invoked to execute high-performance numerical libraries. This
eases the job of coding complex computational problems on the
GPU. Through CUDA, the GPU can be viewed as a computing
device able to execute a very high number of threads in par-
allel. The GPU capabilities for handling multiple instances of
the same operation on multiple data are accessed transparently.
The CUDA environment also provides with memory manage-
ment functions, which are analogous to the standard C func-
tions. Additionally, CUDA makes it possible for all threads in
a given local group (known as a block of threads) to access a
small pool of fast shared memory. CUDA algorithms can be run
in different GPU models and will run essentially unmodified in
the next generation of CUDA-capable GPUs.

Several iterative tomographic reconstruction codes using
GPUs have already been implemented for CT and PET [8]–[14],
and some of these [13], [14] are also based on CUDA. Never-
theless, in most cases, especially for PET, the codes running in
GPUs make use of a simplified model of the scanner at play, or

1

Cita bibliográfica
Published in: IEEE Transactions on Nuclear Science, vol. 58, n. 5, october 2011. Pp. 2257-2263

of the reconstruction algorithms, different from the optimum
model or algorithm that would have been used for the CPU
reconstruction.

We developed FIRST [1] (Fast Iterative Reconstruction Soft-
ware for [PET] Tomography) using the message passing inter-
face (MPI) protocol [15] to launch parallel tasks on the avail-
able CPUs (or CPU cores) in a cluster of computers. FIRST
is based on a realistic scanner model obtained with the Monte
Carlo simulation code PeneloPET [16]. The accurate scanner
model allows for higher and more uniform resolution along the
FOV. Indeed, FIRST has proven to be a successful implemen-
tation of a tomographic code for high-resolution small-animal
PET scanners [1], [17], in terms of image quality and modest
reconstruction time. One of the key advantages of FIRST with
respect to other codes is the way it fits the large system response
matrix (SRM) in a small amount of RAM, thus improving the
performance of the code [1].

We adapted FIRST to use the efficient computing capabil-
ities of GPUs, calling this new implementation GFIRST. The
main goal was to obtain a significant acceleration of the algo-
rithm without compromising the quality of the reconstructed im-
ages. This would prove that CUDA is powerful enough to trans-
late CPU reconstruction codes into GPU codes, with no essen-
tial modifications and yet achieving optimal performance. We
aimed to speed-ups large enough to compete with the recon-
struction times obtained in a cluster of CPUs. Flexibility of the
code was also an important requisite. We wanted a code with
no GPU-specific optimizations and that would allow for pos-
sible future modifications with no significant additional effort.
We also wanted the GPU code to be as similar as possible to the
CPU code, thus making it easier to handle and debug.

One of our main concerns was that some approximations
needed to adapt the code to the GPU could lead to loss of accu-
racy or artifacts in the final images. Therefore, we avoided ap-
proximations in the forward and backward projection kernels,
and we used the same SRM as in the original CPU code. Fur-
thermore integer conversion of float image values was avoided.
Atomic instructions were avoided altogether, as floating-point
atomic adds were not available in our GPUs. This did not repre-
sent a limitation in our code, as the backward projection kernel
was implemented, as described later, in a voxel-driven fashion.
This means that it was implemented destination-driven and, as
parallelization over the destination avoids thread write locks,
atomic adds were not necessary.

At variance with previously proposed reconstruction codes
for the GPU [8], [19] which dealt with list-mode data, our code
was designed to work with sinograms [18]. Although list-mode
data, for which all the relevant information from each detected
coincidence is stored, might provide optimal images, sinogram
data organization also has some interesting features and advan-
tages. First, sinograms are commonly used in most of the current
commercial scanners [18], and they are often easily available
to the user. Usually, their size is smaller than list-mode files,
so they are easier to handle and store. Furthermore, in a sino-
gram, data are spatially ordered and can thus be accessed in a
simple and ordered way. This allows for very fast backward pro-
jection implementations. Finally, under certain approximations
imposed by the sinogram, the simulated system exhibits many
symmetries, thus reducing the size of the SRM. This is described
in detail in Section II.

The high-resolution small-animal PET scanner VrPET [17]
was chosen as a test bed. This scanner is a good example of
the large fraction of preclinical PET scanners consisting of an
incomplete ring of rotating detectors.

II. MATERIALS AND METHODS

A. Brief Description of the CPU Implementation

For the sake of completeness, we describe the main features
of FIRST. For a more detailed description, the reader is re-
ferred to [1]. FIRST implements a fully 3-D iterative reconstruc-
tion of PET data based on a realistic model of radiation emis-
sion and detection. This model was generated using the Monte
Carlo code PeneloPET [16], which is based on PENELOPE
[20]. PeneloPET simulates PET systems composed of crystal
array blocks coupled to photodetectors. It allows the user to de-
fine radioactive sources, detectors, shielding, and other parts of
the scanner. The acquisition chain is simulated in high detail; for
instance, electronic processing includes pile-up rejection mech-
anisms and time stamping of events. Due to blurring effects in-
volved in emission (positron range, non-collinearity, voxel size)
and detection of radiation in PET scanners (inter-crystal scatter,
crystal size) [21], each line-of-response (LOR) is connected to
a wide region of the field-of-view, commonly known as the
tube-of-response (TOR), instead of a simple geometrical line
connecting a pair of detector elements. The TOR for a LOR

is composed of all voxels with non-zero coefficient ,
which represents the probability that a positron emitted in voxel

is detected in LOR . The coefficients from all the TORs in
the scanner form the SRM. In order to fit the SRM into RAM,
the symmetries present in the system should be exploited. Only
some TORs need to be computed and stored, because symmetri-
cally-equivalent LORs, as shown in Fig. 1, have the same prob-
ability distribution. Even with this approach, for most scanners
the storage needed may exceed the available RAM of standard
computers. This issue was resolved in a previous work [1] using
quasi-symmetries taking advantage of the fact that LORs with a
very similar angle with respect to the scintillator crystal would
contain very similar coefficients [Fig. 1(c)]. Therefore, it suf-
fices to simulate and store just a few TORs taken along selected
LORs (super-LORs) without compromising the quality of the
reconstructed images.

Scatter in the object is not taken into account when simulating
the SRM. Incorporation of scattered photons in the SRM has
been proposed [23], but it makes the SRM much larger and more
difficult to handle. Furthermore, it would make the SRM object-
dependent.

We target the high-resolution small-animal PET scanner
VrPET [17], which is composed of two pairs of rotating plane
detectors in coincidence. Sinograms are organized in 117 radial
and 190 angular bins (180 degrees rotation) for each of the
direct and oblique crystal combinations, making a total of

.
When dealing with sinograms acquired in a continuous ro-

tating scanner such as VrPET, the probability of event detection
does not depend on the co-polar angle , as any possible depen-
dences are averaged out due to the rotation motion. As a result,
rotational and axial symmetries yield an SRM that depends only

2

Fig. 1. Symmetries used to reduce the number of LORs that need to be stored
in memory: (a) in-plane rotations, (b) translations and reflections in the axial
direction, and (c) quasi-symmetries in the axial direction. Coefficients for TORs
in (a), (b), and (c) have identical or very similar values.

TABLE I
SIZE OF THE SYSTEM RESPONSE MATRIX

on the radial distance and the ring-difference of the
LOR:

(1)

Using all the symmetries of this scanner, the number of super-
LORs required is not too large, and the use of quasi-symmetries
is not necessary, as shown in Table I. Each TOR of these super-
LORs is composed of several thousand coefficients. The total
size of the SRM is a few MB, allowing us to store the SRM as
a 3-D texture of the GPU.

In this work, each TOR consists of an array of
coefficients.

In our tests, these values offered a good trade-off between
accuracy and reconstruction time. The width of the TORs was
large enough so that the values beyond the tails which are
cut off were always below 5% of the maximum value. These
maximum values usually appear along the axis of the TOR.

Following other authors [5], [24], we assume that all crystals
in the detector block have the same response, independently of
the row to which they belong. Thus, we did not take into account
edge effects. The impact of this assumption on the reconstructed
images is minimized by the crystal normalization procedure [1].

While in non-rotating scanners the sinogram may have large
gaps [25] of missing data, for a continuous rotating scanner such
as VrPET, there are no missing data due to gaps between de-
tector blocks.

The reconstruction algorithm used in this work was OS-EM
[26]. This algorithm updates the estimation of the image

obtained at iteration by multiplying it by , a weighted av-
erage of a subset of data corrections [(2)]. These corrections
are obtained as the ratio of the measured data and the es-
timated data from the image , with the SRM coefficients
acting as the weighting factors . In this notation, denotes
the LOR index and the voxel index:

(2)

The forward projection operation evaluates the estimated data
and the backward projection operation computes the corre-

sponding image of correction factors . These two steps are,
by far, the most time-consuming parts of the code, accounting
for more than 90% of the reconstruction time.

We sorted oblique sinograms defined by each crystal detector
pair using the axial slice and the ring
difference [27]. The azimuthal angle was
defined as [28], where represents the dis-
tance between detectors. All oblique sinograms are considered,
i.e., no cuts in the maximum ring difference are imposed.

The reordered sinogram data were then divided
into subsets. They were chosen so that all the voxels in each
subset were connected to a similar number of LORs in order
to uniformly span the FOV. This is important to avoid artifacts
derived from the number of chosen subsets [29]. Each subset
was composed of a fraction of the total number of 5700 angular

combinations, each one composed of all the radial and axial
bins.

Using sinograms in fully 3-D mode and wide TORs, the
number of subsets per iteration that can be used without com-
promising the quality of the reconstructed images is large. This
is due to the high number of TORs to which each voxel is
connected. In our tests, 50 subsets per iteration was a reason-
able value (each one with 114 angular combinations). A single
iteration sufficed to obtain valid reconstructions. The number
of voxels in the images was set to .

As the main purpose of our work was to study the perfor-
mance of the GPU implementation [30], data were not corrected
for randoms, attenuation, or scatter in either the GPU or the
CPU reconstructions. Sensitivity normalization of the scanner
was obtained acquiring a blank annulus filled with , as de-
scribed in [17]. Misalignments of the detector blocks were taken
into account when creating the sinogram.

The original code FIRST, written in FORTRAN, was trans-
lated into ANSI C. The code was compiled in both cases with
Intel compilers (v10.1) [31]. The execution speed of both FOR-
TRAN and C versions of FIRST was similar. The CPU C code
was run in a single core of a CPU-Intel Core i7 (2.93 GHz) as a
reference.

B. GPU Description as Exposed by CUDA

In this section, we describe the most relevant characteristics
of the GPU for this work, as seen by NVIDIA CUDA [32]. A
detailed description of CUDA is found in [7]. One of the most3

TABLE II
CLOCK CYCLES REQUIRED TO ACCESS MEMORY IN GPU

Fig. 2. Flowchart of the implementation of the code in the GPU.

important parameters of a GPU is the total number of stream
multiprocessors (SM). Each of these modules has its own re-
sources and, therefore, the total number of threads which can
be executed in parallel is proportional to the number of SM. To
execute a particular kernel, CUDA distributes the computing re-
sources of the GPU into a grid of blocks with up to 512 threads
each. Each SM of the GPUs used can take up to 8 blocks simul-
taneously, with a maximum of 768 threads per SM. The optimal
number of blocks and threads to be defined varies depending on
the available resources of the GPU and the complexity and char-
acteristics of the kernel.

Due to the large number of threads that can be used for par-
allel computation on GPUs, the usual bottlenecks of these im-
plementations are memory access and memory transfers. In our
study, we extensively used texture memory, which resides in de-
vice memory and is cached.

Table II presents an estimation of the number of clock cycles
required to access each type of memory in the GPU [33], [34].
Access to registers and textures is much faster than access to
global memory. Three-dimensional textures became available
in recent versions of CUDA (2.0), thus making the implemen-
tation of our code straightforward.

C. Description of the GPU Implementation of the Algorithm

Since forward and backward projections take up most of the
reconstruction time, only these two steps were implemented as
CUDA kernels called from the main reconstruction C code, run-
ning in the CPU. Fig. 2 shows the data flow between CPU and
GPU. It is convenient to minimize communications between
both devices due to the limited bandwidth (typically 4 GB/s for
PCI Express 1.X interconnections) [35]. We verified that in our
code, the time spent in these transfers is much less than the time
spent in the CUDA kernels.

We defined three 3-D textures, one for the image being recon-
structed, another for the SRM, and a third corresponding to the

TABLE III
DIMENSIONS OF SRM 3-D TEXTURES

Fig. 3. Forward projection of LORs from different angles.

corrections obtained after comparing measured and estimated
data. The dimensions of the 3-D texture that stores the SRM are
shown in Table III. In this work, the size of the SRM is relatively
small, and no size-limitation problems were found. In the case
of larger SRMs, we used quasi-symmetries to reduce their size.

The SRM is uploaded into GPU global memory as a 3-D array
and then attached to a 3-D texture at the start of the program.
As the texture is cacheable, access to these coefficients is much
faster than if they were stored directly in global memory (see
Table II). This texture is kept in the GPU memory and remains
unmodified during the reconstruction.

Forward Projection: In the forward projection kernel, each
thread projects one TOR by adding the contribution from all
voxels connected with it (Fig. 3). The resulting sum is stored by
each thread in a fast-access temporary register. Only the final
total value is stored in global memory as an array of projections.

The forward projection kernel is invoked only once per
subset. Several co-polar and azimuthal angles, with their
corresponding radial and axial bins, are projected in the same
way as in the CPU code. The number of TORs projected is
much greater than the number of threads which can be executed
simultaneously. This way, the code is ready to take advantage
of more powerful GPUs.

Fig. 4 shows the pseudo-code describing schematically the
forward projection step for several TORs, each one evaluated
using different threads. In general, the points sampled by a TOR
do not correspond to the center of the voxels of the image. In
the present study, we used tri-linear interpolation within GPU-
textures, which is very efficient, to obtain the value of the image
at the points sampled by the TORs.

Backward Projection: Ratios between measured data and
projections are computed by the CPU and uploaded into the
GPU, where they are stored as a 3-D texture of corrections
with radial, axial, and angular indexes. In this case, bi-linear
interpolation in radial and axial directions within this texture is
exploited. 4

Fig. 4. Pseudo-code of the forward projection.

Fig. 5. Backward projection in a voxel from several TORs. The 7 � 7 grid
represents the corrections connected to a voxel at each angle pair ��� ��.

Fig. 6. Pseudo-code of the backward projection.

In the backward projection kernel, each thread is responsible
for the back-projection of a given voxel by adding contributions
from all previously projected LORs connected to it (Fig. 5). As
described before, with our SRM, a voxel is connected to 7 7
TORs for each angle pair .

Numerator and denominator required for the backward pro-
jection (2) are obtained by storing in temporary registers all the
contributions from the TORs. At the end of the process, these
accumulated values are stored in global memory as correction
and sensitivity images, respectively. The pseudo-code for this
kernel is shown in Fig. 6. The use of temporal registers instead
of global memory to perform the sums speeds up this kernel
noticeably. This reflects the need for appropriate use of the dif-
ferent memory types available to the GPU.

Code Optimization: NVIDIA CUDA architecture exhibits a
small pool of fast shared memory (Table II) accessible by all
threads in the same block. Nevertheless, shared memory has

Fig. 7. Scheme of the optimization of the forward projection based on shared
memory.

a very limited size and its use requires some recoding of the
algorithm to continuously reallocate small portions of data from
global or texture memory into the shared memory pool.

We have compared the performance of a version of the GPU
code in which shared memory was not used and threads of the
same block were not synchronized [without shared memory op-
timization (WO-SM)] with an optimized version where the for-
ward projection was accelerated by working with synchronized
threads that used shared memory [with shared memory opti-
mization (W-SM)].

Fig. 7 sketches how the sampled values of the image retrieved
from the texture are stored temporarily in shared memory and
later reused by all overlapping TORs, thus reducing the number
of texture access by a factor 7. Some additional zero values
were added at both edges of the shared memory array to ensure
that all threads get the same number of data, avoiding divergent
branches. In Fig. 7, the numbers in each TOR represent the order
in which each thread accesses shared memory values. The size
(16 kB) of the available shared memory in our GPUs and the
limitation on the maximum number of threads in a block im-
posed that values for just one line across the image were stored
at the same time. In our case, this represents 117 values (the
number of threads in our blocks). This could be adapted to more
general configurations, by splitting the data retrieved from the
texture in small subsets.

In order to obtain the best performance from a GPU code, it is
important to consider the SIMD nature of the streaming multi-
processors. Thread divergences as a result of different threads in
a block taking different code branches may cause a significant
loss of performance. In this work we did not expect many thread
divergences, as all the LORs in the forward projection and all the
voxels in the backward projection are connected with the same
number of data, and thus, all threads have to perform the same
number of operations. We verified this with the CUDA Visual
Profiler [36]. We found only a 2% of divergent branches in the
forward projection and a 5% in the backward projection.

D. Performance Evaluation

We compared CPU and GPU codes using simulated data
from a PeneloPET simulation of an image quality (IQ) phantom
filled with as well as real data from a 30-min acquisition
of a 200-g rat injected with FDG. In both cases, we studied
the total processing time required for reconstruction of a
single-bed, single-frame acquisition in single precision. The
CPU where the code was run was among the fastest on the
market at the time of writing. The CPU code was compiled5

Fig. 8. Coronal view (top) and two transverse views (bottom) of the recon-
structed image obtained from a simulated IQ phantom using CPU and GPU
codes. Transverse views correspond to the slices marked with a line in the top
figure.

Fig. 9. Image reconstructed from a real acquisition both in CPU and GPU.
Coronal view (top) and transverse view (bottom) of the reconstructed image of
a 200-g rat FDG acquisition. Transverse views correspond to the slice marked
with a line in the upper figure.

with the Intel C compiler (v10.1) [31] with-fast optimization
option that includes loop-unrolling. As mentioned above, the
time required for reconstructing one image using one core of a
multi-core CPU is taken as reference. The reconstruction time
required in a cluster of computers is easily estimated, as good
parallelization has been reported elsewhere [1]. The CUDA
code we propose here was run in different GPUs to study the
performance for several number of stream processors.

Differences between the image reconstructed by the CPU
and the GPU were evaluated from the root

mean square (rms) deviation (3) using the total number of
voxels J:

(3)

III. RESULTS

The reconstructed images obtained using both the CPU and
the GPU codes are compared in Figs. 8 and 9. A coronal view of
the reconstructed image of the simulated IQ phantom is shown
in Fig. 8. The differences between the images are visually neg-
ligible. The deviation is .

Fig. 9 shows coronal and transverse views of the image of
the 200-g rat injected with FDG. The difference between both
images is also very small, with a .

TABLE IV
RECONSTRUCTION TIME FOR ONE IMAGE (ONE BED, ONE-FRAME

ACQUISITION, ONE FULL ITERATION) FOR DIFFERENT ARCHITECTURES

Table IV shows the total time, including overheads, required
to reconstruct the simulated IQ phantom in different hard-
ware architectures. The GPU code includes the optimization
described in Section II. It is noteworthy that the same CUDA
code running on different GPUs shows significant performance
differences, even by one order of magnitude. Reconstruction
time in the GPU decreases almost linearly with the number of
available SMs.

We verified that the time spent in data transfers between the
CPU and the GPU is much less than the time spent in the for-
ward and backward projection kernels. According to the CUDA
Visual Profiler [36], these transfers only amount to 0.5% of the
reconstruction time.

The reconstruction time of the WO-SM and W-SM codes in
our fastest GPU, a TESLA C1060, was 72 and 49 s, respectively.
Thus, the reconstruction time is reduced by a factor of 1.5 with
shared memory optimization, and the same images are obtained.
This speed-up factor is almost the same for other GPUs.

IV. DISCUSSION AND CONCLUSIONS

A fast fully 3-D reconstruction code based on sinograms and
a realistic SRM is of great interest. PET studies requiring many
frames will benefit enormously from fast reconstructions. We
successfully implemented the iterative fully 3-D reconstruction
software FIRST in CUDA. CUDA allowed for a straightforward
GPU implementation (GFIRST) that was to a large extent inde-
pendent of the version of the NVIDIA GPU card running the
code. Furthermore, when memory allocation and access were
looked over to avoid slow memory access, the slightly recoded
GPU version ran 50% faster than the non-optimized one. Im-
ages reconstructed with GFIRST and FIRST were essentially
identical, with rms deviations of 0.09% or less.

We achieved a very significant improvement in reconstruc-
tion time (with a speed-up factor of up to 72) for the fastest GPU
compared to a single core of a high-end CPU. This is remark-
able, as FIRST had already been shown to be a highly optimized
reconstruction code.

Furthermore, GFIRST running on different GPUs obtains
speed-ups that are approximately proportional to the number
of SMs of each GPU card, thus hinting to the scalability of the
code for different GPUs with no need to re-code. This shows
the benefit of implementing applications based on abstraction
schemes such as CUDA (or also eventually Khronos’ OpenCL
for heterogeneous computing [37]), which will make it possible
to benefit fully from GPUs with more streaming processors.

GFIRST has been tested with sinograms from the small-an-
imal PET scanner VrPET, which is a relatively simple device
with a few detectors. Nevertheless, the methods described in this
work are flexible enough to be easily adapted to other scanners.6

The extension of this work to other PET systems is currently
under development.

The code includes a method to speed up the forward projec-
tion, as described in this work, but further optimizations are still
possible. For instance, the number of divergent branches could
be reduced or avoided with some modifications, and the number
of voxels of the reconstructed images could be changed to better
fit with the characteristics of the GPU. This will be explored in
a future work.

Our results highlight the need of image reconstruction codes
to adapt to the current paradigm shift in computer architecture,
which is moving from a single, fast execution unit with a large
memory to several execution units with a small local memory
and more power-efficient execution. Nowadays, even con-
sumer-level systems commonly possess multi-core processors.
These less power-consuming, high-performance multi-core
systems are successfully replacing more power-consuming
desktop computers, and the industry predicts that future com-
puting systems will increasingly rely on scalable technology
[38]. Reconstruction software implemented with CUDA or
other abstraction layers, such as the one described in this work,
will immediately benefit from the next generation of GPUs.

REFERENCES

[1] J. L. Herraiz et al., “FIRST: Fast iterative reconstruction software for
(PET) tomography,” Phys. Med. Biol., vol. 51, no. 18, pp. 4547–4565,
Sep. 2006.

[2] D. Brasse, P. E. Kinahan, R. Clackdoyle, M. Defrise, C. Comtat,
and D. Townsend, “Fast fully 3D image reconstruction in PET using
planograms,” IEEE Trans. Med. Imag., vol. 23, no. 4, pp. 413–425,
Apr. 2004.

[3] P. Dupont and J. Warwick, “Kinetic modelling in small animal imaging
with PET,” Methods, vol. 48, no. 2, pp. 98–103, Jun. 2009.

[4] M. D. Jones and R. Yao, “Parallel programming for OSEM reconstruc-
tion with MPI, OpenMP, and Hybrid MPI-OpenMP,” in Proc. IEEE
Nuclear Science Symp. Med. Imag. Conf., 2004, pp. 3036–3042.

[5] I. K. Hong et al., “Ultra fast symmetry and SIMD-based projection-
backprojection (SSP) algorithm for 3-D PET image reconstruction,”
IEEE Trans. Med. Imag., vol. 26, no. 6, pp. 789–803, Jun. 2007.

[6] General-Purpose computing on Graphics Processing Units Repository.
[Online]. Available: http://www.gpgpu.org.

[7] NVIDIA CUDA Programming Guide v.2.3.1, NVIDIA Corp., 2009.
[Online]. Available: http://www.nvidia.com/object/cuda_home.html.

[8] G. Pratx, G. Chinn, P. D. Olcott, and C. S. Levin, “Fast, accurate and
shift-varying line projections for iterative reconstruction using the
GPU,” IEEE Trans. Med. Imag., vol. 28, no. 3, pp. 435–445, Mar.
2009.

[9] V. B. Bhat, “High-speed reconstruction of low dose CT using iterative
techniques for image-guided interventions,” Ph.D. dissertation, Dept.
Elect. Eng., Univ. Maryland, College Park, MD, 2008.

[10] B. Keck et al., “High resolution iterative CT reconstruction using
graphics hardware,” in Proc. IEEE Nuclear Science Symp. and Medical
Imaging Conf., 2009, pp. 4035–4040.

[11] F. Xu and K. Mueller, “Real-time 3D computed tomographic recon-
struction using commodity graphics hardware,” Phys. Med. Bol., vol.
51, pp. 3405–3419, 2007.

[12] X. Jia, Y. F. Lou, and R. J. Li, “GPU-based fast cone beam CT recon-
struction from undersampled and noisy projection data via total varia-
tion,” Med. Phys., vol. 37, pp. 1757–1760, 2010.

[13] S. Schaetz and M. Kucera, “Integration of GPGPU methods into a PET
reconstruction system,” in Proc. Parallel and Distributed Computing
and Networks Conf., Mar. 2010.

[14] W. Craig, S. Thada, and W. Dieckmann, “A GPU-accelerated im-
plementation of the MOLAR PET reconstruction package,” in Proc.
IEEE Nuclear Science Symp. and Medical Imaging Conf., 2009, pp.
4114–4119.

[15] W. Gropp, E. Lusk, and A. Skjellum, MPI Using MPI: Portable Par-
allel Programming With the Message-Passing Interface. Cambridge,
MA: MIT Press, 1999.

[16] E. España et al., “PeneloPET, a Monte Carlo PET simulation toolkit
based on PENELOPE: Features and validation,” Phys. Med. Biol., vol.
54, no. 6, pp. 1723–1742, Mar. 2009.

[17] E. Lage et al., “Design and performance evaluation of a coplanar mul-
timodality scanner for rodents imaging,” Phys. Med. Biol., vol. 54, no.
18, pp. 5427–5441, Sep. 2009.

[18] F. H. Fahey, “Data acquisition in PET imaging,” J. Nucl. Med. Technol.,
vol. 30, no. 2, pp. 39–49, Jun. 2002.

[19] A. Reader et al., “One-pass list-mode EM algorithm for high-resolution
3-D PET image reconstruction into large arrays,” IEEE Trans. Nucl.
Sci., vol. 49, no. 3, pp. 693–699, Jun. 2002.

[20] J. Baró et al., “PENELOPE: An algorithm for Monte Carlo simulation
of the penetration and energy loss of electrons and positrons in matter,”
Nucl. Instrum.. Meth. Phys. Res. B, vol. 100, pp. 31–46, May 1995.

[21] J. R. Stickel and S. R. Cherry, “High-resolution PET detector design:
Modeling components of intrinsic spatial resolution,” Phys. Med. Biol.,
vol. 50, no. 2, pp. 179–195, 2005.

[22] J. L. Herraiz, S. España, E. Vicente, J. J. Vaquero, M. Desco, and J. M.
Udías, “Noise and physical limits to maximum resolution of PET im-
ages,” Nucl. Instrum.. Meth. Phys. Res. A, vol. 580, no. 2, pp. 934–937,
Oct. 2007.

[23] P. J. Markiewicz, M. Tamal, P. J. Julyan, D. L. Hastings, and A. J.
Reader, “High accuracy multiple scatter modelling for 3D whole body
PET,” Phys. Med. Biol., vol. 52, pp. 829–847, 2007.

[24] C. A. Johnson and A. Sofer, in Proc. 7th Symp. on the Frontiers of Mas-
sively Parallel Computation, Los Alamitos, CA, 1999, pp. 126–137,
IEEE Computer Society Press.

[25] J. L. Herraiz, S. España, E. Vicente, E. Herranz, J. J. Vaquero, M.
Desco, and J. M. Udías, “Frequency selective signal extrapolation for
compensation of missing data in sinograms,” in Proc. IEEE Nuclear
Science Symp. and Medical Imaging Conf., 2008, pp. 4299–4302.

[26] H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction
using ordered subsets of projection data,” IEEE Trans. Med. Imag., vol.
13, no. 4, pp. 601–609, Dec. 1994.

[27] M. Defrise and P. E. Kinahan, “Data acquisition and image reconstruc-
tion for 3D PET,” in Theory and Practice of 3D PET. Dordrecht, The
Netherlands: Kuwer, 1999.

[28] M. Takahashi and I. Ogawa, “Selection of projection set and the order
of calculation in ordered subsets expectation maximization method,” in
Proc. IEEE Nuclear Science Symp. and Medical Imaging Conf., 1997.

[29] M. Defrise, P. E. Kinahan, D. W. Townsend, C. Michel, M. Sibomana,
and D. F. Newport, “Exact and approximate rebinning algorithms for
3-D PET data,” IEEE Trans. Med. Imag., vol. 16, no. 2, pp. 145–158,
Feb. 1997.

[30] J. L. Herraiz, S. España, S. Garcia, R. Cabido, A. S. Montemayor, M.
Desco, J. J. Vaquero, and J. M. Udias, “GPU acceleration of a fully
3D iterative reconstruction software for PET using CUDA,” in Proc.
IEEE Nuclear Science Symp. and Medical Imaging Conf., 2009, pp.
4064–4067.

[31] [Online]. Available: http://software.intel.com/en-us/intel-compilers.
[32] CUDA Version 2.3 With NVIDIA Drivers Version 191.07.
[33] D. Kirk and W. W. Hwu, The CUDA Memory Model, ECE 498 AL:

Applied Parallel Programming Course, 2007–2009.
[34] S. Ryoo et al., “Optimization principles and application performance

evaluation of a multithreaded GPU using CUDA,” Proc. 13th ACM
SIGPLAN Symp. Principles and Practice of Parallel Programming, pp.
73–82, 2008.

[35] Peripheral Component Interconnect Special Interest Group (PCI-SIG),
PCI Express 2.0 Specification, Jan. 2007.

[36] [Online]. Available: http://www.nvidia.com/object/cuda_program-
ming_tools.html.

[37] Khronos OpenCL Working Group, The OpenCL Specification (Ver-
sion: 1.0), 2009.

[38] K. Asanovic et al., The landscape of parallel computing research: A
view from Berkeley Tech. Report Elect. Eng. Comput. Sci. Dept., Univ.
California, Berkeley, Dec. 2006.

7

