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Abstract In this paper, a novel and practical transmission scheme for a Multiple Input
Multiple Output—Orthogonal Frequency Division Multiple Access (MIMO-OFDMA) relay-
based network is proposed and evaluated. We coin the term Virtual MaximumRatio Transmis-
sion (VMRT) for the scheme which obtains diversity and array gain at both links in a two-hop
transmission, while keeping the complexity low. Besides, the requirements of Channel State
Information needed at the different network elements such as the Base Station, Relay Station
or User Terminals are also limited, and so the feedback. The obtained global performance by
using proposed VMRT outperforms other schemes. Diversity gains larger than 6 can be easily
obtained with a reduced number of relays. For this reason, VMRT is a good candidate to
achieve high speed transmission or increase coverage and reliability in slow varying channels
for relay-based networks.

Keywords MIMO-OFDMA - Beamforming - Virtual STBC -
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1 Introduction

The rapid growth in wireless access and its applications have generated a high demand
to provide data rate, coverage and reliability. Multiple-Input Multiple-Output (MIMO)
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technology has proven that it is a good approach to increase capacity [1,2]. Jointly with
Orthogonal Frequency Division Multiplexing (OFDM) [3] or Orthogonal Frequency Divi-
sion Multiple-Access (OFDMA) [4] it can also provide reliability. Additionally, the idea of
increasing coverage, capacity and reliability in future wireless networks by using cooperative
single-antenna relays has recently attracted much attention [5-20].

Relay schemes can be categorized into three different groups: Amplify-and-Forward (AF)
[7,8,12,15-18], Compress-and-Forward (CF) [21,9] and Decode-and-Forward (DF) [5-7,
10,11,13,20]. In the AF schemes, relays amplify (and sometimes transform [8]) the received
signal and broadcast it to the destination. These schemes can be used to extend coverage or
cancel out attenuation faced by receivers. Besides, some spatial diversity can be provided
[5,10]. In the CF, also denoted Estimate-and-Forward, Observe-and-Forward or Quantize-
and-Forward, each relay transmits a quantized and compressed version of the received signal
to the destination, and the destination decodes the signal by combining it with its own received
signal. These schemes may exploit the redundancy between source and destination, and they
assume that the source is able to reach the destination. In the last group, relays in the DF strat-
egy decode the received signal and re-encode (and possibly transform/adapt) the information
and send it to destinations. In this paper we are adopting this last strategy for our design since
it is able to provide better performance. Besides, we are assuming that the source or Base
Station (BS) is not able to reach the destination (user terminals) directly but only by using
the relays, and these relays have some computational capabilities.

In [12] it is shown that the conventional Maximum Ratio Combining (MRC) is the opti-
mum detection scheme for the AF strategy. Besides it can also achieve full diversity order
of K 4 1, where K is the number of relays. For the DF strategy, the optimum scheme is
the Maximum Likelihood (ML) detector [5,13]. As recognized in [5], performance analysis
and implementation of such detector are quite complicated and thus, a suboptimum com-
biner termed as A-MRC was derived. Another suboptimum detector is the Cooperative MRC
(C-MRC) [15] and Link Adaptive Regeneration (LAR) [16]. In these works, the collaboration
is performed at the destination, i.e., the receiver treats the relays as a multiple-source transmit-
ter and tries to combine the multiple received signals to obtain the best performance. If we take
relays also in the design, we can improve the throughput and lower the outage probability by
selecting the best relays to transmit from [17, 18], for the AF strategy, and [11,20], for the DF.

Going further, we can consider the relays as a virtual multiple-input transceiver, if cooper-
ation is used, and thus, improve and increase the destination (user) performance and through-
put. In[19] the relays are used as a beamformer where full or partial Channel State Information
(CSI) is needed on all the elements of the network—i.e., CSI at the Transmitter (CSI-T) and
CSI at the Receiver (CSI-R)—and a joint optimization is made to obtain the best performance
at the destination. However, in a practical scenario, the knowledge at the source of CSI (even
partial) from all the network elements is not possible.

In this paper, we propose and analyze a practical transmission scheme in a DF strategy
configurin the relays as a virtual multiple-input beamformer using OFDMA-based trans-
missions. By combining the MIMO-OFDMA technology with relays, coding and diversity
gains jointly with an increase in coverage, reliability and throughput can be easily obtained
with a limited impact on system complexity. Besides, the proposed scheme does not need
CSI-T neither at the BS nor at the relays. The main differences with respect to the previous
work in the literature are:

— In the virtual Maximum Ratio Transmission (VMRT) scheme (see Sect. 3.2), the relays
are used as a virtual multiple-input transmitter as in [19] or [22] but no CSI is needed
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neither at the Base Station nor at the relays since the calculation of the beamforming
weights is performed at the user’s terminals.

— Relays and user’s terminals are DF-based instead of AF as in [17-19], and so, better
performance can be achieved.

— The optimization is made in the last hop, i.e., from relays to users instead of in the whole
link as in [19], and thus, less complexity and feedback information is needed.

— Our scenario is more general since we consider a source (Base Station) with several
transmit antennas, whereas the others only use 1 antenna for the source.

— A multi-user OFDMA-based transmission is used instead of a single-user single-carrier.
The OFDMA obtains at the same time robustness against multi-path effects and multi-user
diversity [23,24].

Our contributions in this paper are:

— The comparison of different practical transmission schemes in a MIMO-OFDMA -relay-
based network with several transmit antennas at the Base Station, using Decode-and-
Forward strategy and keeping the complexity and the amount of feedback reduced.

— A proposal for the transmission over this network—the VMRT (see Sect. 3.2)—that
obtains diversity and array gain at the users’ terminals with the increase on system per-
formance and reliability. Besides, it does not need CSI neither at the Base Station nor at
the relays, and the complexity is low.

— The evaluation of the effects of quantization of the beamforming weights on the perfor-
mance.

The rest of this paper is organized as follows. First in Sect. 2, a description of the sce-
nario and the system model is presented. Then in Sect. 3, the different evaluated schemes are
described. Those transmission schemes are evaluated by simulation and results for the vari-
ation of the different parameters and the quantization of weights, are summarized in Sect. 4.
Finally, some conclusions are drawn in Sect. 5.

Notations: Through the paper the following notation will be used. Bold Capitals and bold
faced for matrices and vectors, respectively. Ey{X} denotes expectation of X over Y, |k| and
|| k|| account for the absolute vale and the square of the 2-norm of &, respectively. The square
of this norm will be denoted in the paper as gain (k" k). I'y is the identity matrix of size N
and diag{x} is a diagonal matrix containing x in its diagonal and 0 elsewhere.

2 Description of the Scenario and System Model

The reference scenario is shown in Fig. 1 and is based on a Base Station (BS) with N; trans-
mit antennas, Nrs Relay Stations (RS), each one with only one antenna for transmission and
reception, and Ny User’s Terminals (UT), also with one receive antenna each. We assume
that the users can not be reached by the BS directly. The used strategy is the Decode-and-
Forward in a half-duplex transmission, i.c., in phase I the BS transmits and RSs receive—
firs link/hop—, and in phase II, the relays transmit and UTs receive—second link/hop. Some
assumptions are made, namely, the CSI, when needed, is perfect and instantaneous; We will
see that several schemes do not need CSI. The system is OFDMA-based with N sub-carriers
to be allocated to different users, i.e., different UTs use disjoint sets of N; orthogonal subcar-
riers. We assume, for simplicity and without loss of generality, that the sub-carriers used in
the link BS-RS are the same as in the link RS-UT. The algorithm or policy for the scheduler
to assign sub-carriers is out of the scope of the paper. We will consider the transmission of
Ns OFDMA symbols as a block, and denote a packet as a group of several blocks. In general
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Fig. 1 Scenario used in the paper

Ns can take any value. However, for the Space Time Block Code (STBC)-based schemes that
we are proposing, necessarily, the block size must equal the number of transmit antennas,
i.e., Ns = N;. This is because we are proposing the use of full-rate STBC.

The frequency-domain transmitted signal from the BS is

xk=vck (1)

where XX € CNt*Ns i the transmitted signal from the Nt antennas at k-th sub-carrier during
the Ns OFDMA symbols, V € CN*Ns is a generic pre-coding vector and C K g cNsxNs
are the complex base band data to be sent on k-th sub-carrier by all the transmit antennas—
assumed here to be M-QAM or M-PSK modulated without loss of generality. It should be
noted that V is the same for all the sub-carriers in order to reduce feedback and complexity.

Then, the frequency-domain received signal at i -th relay on K-th sub-carrier after Discrete
Fourier Transform (DFT) and discarding the Cyclic Prefi (CP) can be written as

¥ =X 4+ gk @)

where yik e C'Ns js the received signal by relay i at sub-carrier k, h:‘ e C*MNt s the
channel frequency response for relay i at sub-carrier k from all the transmit antennas (N;)
and 1/rk e C*Ns s the zero-mean Additive White Gaussian Noise (AWGN) vector, each
component (K) with variance aiz. We can arrange the signal received by all the relays in a
matrix form as

YK = H*X* 4+ wk (3)

where YK € CNrs*Ns js the received signal by all the relays at k-th sub-carrier during a block
of Ns OFDMA symbols, the matrix H ke CcNrsxNe — [h‘fh'; . h’Z‘VRS] accounts for the
channel frequency response on k-th sub-carrier, and wk e CNesxNs contains the zero-mean
AWGN. The Kk-th sub-carrier can be assigned to any user by the scheduler.

For the second hop, i.e., from RS to UT, the frequency-domain joint transmitted signal is'

zk = wi )

! It should be noted that each relay transmits one of the rows of the joint matrix Z K Thus, the pre-coding matrix
W must be diagonal, otherwise, relays should share transmission information, and therefore the complexity
would increase, which is not the case.



where ZK € CNrs*Ns s the transmitted signal by relays at k-th sub-carrier during the block
of Ns OFDMA symbols, W € CNrs*NRs js a new generic pre-coding vector for the second
hop and X K is the estimated and re-encoded transmitted signal XX from received YX. This
yields the following frequency-domain received signal at the user’s terminal u

s = bKZK + ok (5)

where sk € C!'*MNs is the received signal for user U at k-th sub-carrier during Ns OFDM
symbols, hlkj € C'*Nrs js the channel frequency response for user U from the Ngs relays at
k-th sub-carrier and qSE € C'*Ns is a second AWGN noise vector for sub-carrier k with each
component of variance 0(12. Again, grouping all the received signals by users into a matrix
yields

Sk = HKZK + ok (©6)

being §K e CNuxNs the received signal at all the users on subcarrier k during a block of N,
the matrix HK e CNuxNrs the channel frequency response from relays to users at k-th sub-
carrier and ®% € CNoXNs 3 second AWGN matrix. Note that since the system uses OFDMA,
at reception, each UT selects the sub-carriers with data allocated to it among all the received
sub-carriers.

In order to evaluate the performance of the different schemes, we are using the Bit Error
Rate (BER) as a measurement over different Signal to Noise Ratios (SNR). Since there are
two different links, one from BS to RS and another from RS to UT, we defin the SNR for
each link. Besides, since the system is MIMO-OFDMA-based, there will exist N; different
channels (in the firs link) over N different sub-carriers. For this reason, the average SNR
per link is define as

s | 1xE? k=0...N—1,
SNR_E"{E'[ o2 © o i=0...N—1 )

As it can be noticed in Eq. 7, the SNR is evaluated averaging over the transmit antennas
and the sub-carriers. This way, we obtain a single-value per link to associate with the per-
formance obtained in a given scenario. When transmitting from relays, we will have Ngrg
different channels and in Eq. 7, Nt should be replaced by the number of transmitting relays
for the scheme (Ngs) and o by o,

It should be noted here that the SNR is used as a way of describing different scenarios
for evaluation purposes, but it is not a parameter that needs to be estimated to perform the
transmission.

2.1 A no CSI-T Scheme: 2-Hop Space-Time Block Code (2h-STBC)

Although our proposal does not need CSI-T at the relays since the UTs compute the beam-
forming weights (see Sect. 3.2), the selected terminal must send its weights to the relays
sometimes. In order to compare the proposed scheme with the case where no CSI-T is
needed, a 2-hop Space-Time Block Code is used, denoted as 2h-STBC throughout the paper;
This encoding scheme uses, on both links, the following STBC codes. In phase I, the BS
transmits using Alamouti to the RS. It should be pointed out here that, although maximum
diversity and orthogonality can only be achieved by transmitting with 2 antennas [25], there
exist some STBC for 4 and 8 transmit antennas [26,27] that, although they do not obtain
maximum diversity, they are orthogonal and do not decrease the data rate, what is denoted
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as “ Alamoutitation” in [27]. In this paper, these codes for 2 (Alamouti), 4 and 8 transmit
antennas are used. For this scheme, the pre-coding matrix in Eq. 1 is V = Iy, and the
number of OFDMA symbols per block (Ns) is set to N¢. Thus the transmitted signal can be
written as
x| =ck 8
srpe - Ce (®)

with @ = 2,4, 8 when Ng = 2, 4 or 8 respectively, and being
M~k K 5%
k _ | () —c*(2)
C2 - _Ck(Z) Ck(l)* ’ (9)
[k @) KB)r k@)

@) —c()* @ —c3)

k _
C4_ Ck(3) Ck(4)* —Ck(l)* _Ck(z) s (10)
| @) —ck@3)* —ck@)* k)
and
Tek() k@) KB k@) K©S)* K@) KT K®)F T
ck@2) —c(D)* cK@* —ck@3) k) —ck(5) cK@®) —ckn*
ck@3) K@ —c)F —ck@) ck* KE®) —ck(5) —ck(6)*
k= | C@ = =@ () c®)F —c (D) —C(6) —c ) |
871 KBy o)t K K8 —ck()* —ck(@2) —ck(3) —ck@)* |’

ck(6) cKB)*  ck®)F —ck(7) —ck@)* K1) —ck@) K3)
(M) K®)F —c (5)* —c(6) —c“B)* —c(4) ‘(1) —c“@)*
| cK(8) —ck(7)* —ck(6)* cK(5) —ck@* c*3) k@) —ck)* |

the matrices containing the data to be sent. Ck(n) are the data on sub-carrier kK at OFDMA
symbol n(n =1--- Ng).

Since all the relays receive the signal and are able to decode it (Multiple Input Single
Output-MISO reception and decoding), i.e., yik in Eq. 2, if we group all the received signal
by all the relays as in Eq. 3, it yields

YK = H* XX + Wk, (12)
STBC STBC
Therefore a Virtual STBC transmission can be carried out from RS in phase II, assuming
that the RS are numbered and perfectly synchronized. Now, each relay—or a group of Nr»
relays—acts as an antenna re-encoding the received signal yik into x:‘ Again, in the general
expression of Eq. 4, the pre-coding matrix is W = I\, and thus, arranging into a matrix
form all the transmitted signals from the relays, we obtain

k
A =X 13
‘thsTBC B (13)
with 8 = 2,4, 8 for Nry = 2, 4 or 8 respectively, and
M sk ok %
.k XE(1) —XK(2)
X, = k(2 sK(1)* (14)
| @) K@)
CRE(D) XK@ KKB)F KK ()
g _ | B@ =KD L@ —6) s
4 — --k3 "k4*_'-k1*_--k2 s ( )
RX(3) R&@* —xE)* —xK©2)
L %K) =K@ —xk@)* %K)
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and

B L<1> x1k<2)* L(3>* % (4) L(S)* % (6) Lm % <8)* 7
—X2 —X —X2 —X

ﬁ(2) K(h* % (4)* ﬁ(3) ﬁ(6)* (5) %(®) ﬁ(7)*
?‘6) x3k(4>* ?‘(1)* —x3<2) i(7)* x3(8> _Xi(S) _Xi((’)*
R5(4) —x4(3>* Q" X (1) @) - RK(7) —%X(6) % ()"
a(5) %K6)* % im* k(8) _ﬁ(l)* —xk<2> _Xi(3) K@ |
ﬁ(6) xﬁ(5>* (8)* —xﬁm ?((2)* xﬁ(l) X4 x2(3>*
l(7) )(7(8)4< _Xl(S)* _X7(6) 1(3)* (4) XK(I) _Xl(z)*
KE(8) —XE () —%£(6)F KK(5) —%&(4)* xg(s) %$(2) —XE()*

o X

(16)

being )'('ik(n) the re-encoded transmitted signal by the RS i at n-th OFDMA symbol (n =
1--- Ns). Some remarks should be pointed out here. The firs one is that different number
of transmit elements can be used on each link, i.e., N; can be different from Ngrg and Ngr»;
In fact, usually Nrg, Nr2 > Nt. And the second one is that the transmitted information by
relays may not be orthogonal anymore because each relay decodes the received data and
some errors can appear. Thus, some degradation in the performance can be expected at the
user’s end. If some misalignments may exist between RS (not perfectly synchronized), some
extra degradation will appear, but this consideration is out of the scope of this paper. This
scheme is the simplest method to obtain diversity from both links, so we will use it as a
reference. Besides it can be remarked that no CSI-T is needed but only CSI-R for coherent
demodulation at both links.

2.2 Selection Criteria

When describing the Maximum Ratio Transmission (MRT) [28], the transmitter beamforms
the signal to the receiver with the largest channel gain (A k) by using the beamforming
weights

[1hi-]|

i * = arg max {hiHhi} ) (17)

This way, the link is used by the user with the best channel. In the proposed schemes in
Sect. 3, either in phase I or phase II, this best channel must be selected in order to beamform
the transmission to it. In a single carrier system, it is easy to select the best channel, i.e.,
the one which has largest gain (A" k) or the one which minimizes the BER. However, in
multi-antenna multi-carrier systems, this criterion is not as simple as that because we have
several channels per user. The trivial extension is to calculate a different weight vector for
each sub-carrier. However, this is not practical since the feedback per user is increased N
times, and so implementation complexity increases [29]. In order to keep the feedback to
one scalar per user, it would be convenient to use a single quality parameter that represents
a reliable measurement for all the sub-carriers taking into account that the beamforming
weights are the same for all of them, minimizing this way the implementation cost [29].
Since our performance measurement is the BER for uncoded signals, we expect that a crite-
ria involving the BER will obtain the best results, although we also evaluate criteria which
are capacity-related. Thus, each terminal i transmits the quality ¢j and the transmitter selects
the best (i *-th) according to different criteria:



— CI: Mean:
- qizEk{h:‘“h}‘],k:1...N
— I* = arg max (
- 0=Ex{hi}.k=1---N
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-
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- G_h
— C5: min BER mean:
- g =E{BER}, k=1---N
k* = arg E, {BERK}
- I*—argmmq|
- 9_h

)] Ke1.. N

where BE Rik is the estimated? BER at sub-carrier k for i -th terminal. Thus, the weights are
computed at the receiver side using

0
el

Thus, we obtain the best weights valid for all the sub-carriers. Those weights might not
be optimal for a specifi sub-carrier, but they are the best possible for the whole set.

In Fig. 2, the performance of phase I using Maximum Ratio Transmission (MRT) (to be
explained in Sect. 3) is plotted for the different criteria, taking into account that the weights
will be the same for all the sub-carriers. The BER is the average BER over all the relays. This
Fig. 2 illustrates how important is the adequate criteria selection. Moreover, it highlights that
it is possible to obtain gains using the same beamforming weights for all the sub-carriers.

(18)

2 For example, for BPSK modulation, BER at sub-carrier K for i-th terminal (BERik) can be estimated

/302
as %erfc (,/ai hkhE(H), whereas for 64-QAM, BER can be estimated as ierfc( Z‘h%‘h%‘H). Where

erfc(X) = >0 _tz dt.
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Those above criteria have been compared to the optimum (a posteriori).> It can be seen
that the criterion that is closest to the optimum is the minimax BER as it could be expected.
The explanation is because the BER follows an erfc function and it is dominated by the worst
case. Thus, the one that minimizes the maximum BER on a sub-carrier across the antennas
leads to the best performance. Another conclusion is that the selection of the criterion can
vary significantly the whole performance in the system, especially for high SNR; There are
2 dB between the optimum and the Capacity max criterion. In the following, the minimax
BER criterion has been used for the evaluation of schemes, when applicable. This way,
with a feedback of only one scalar per user it is enough to obtain beamforming gain and a
performance close to the optimum.

3 Transmission Schemes

In this section, two transmission schemes are proposed and evaluated:

— Maximum Ratio Transmission-Single Link
— Virtual Maximum Ratio Transmission

3.1 Maximum Ratio Transmission-Single Link (MRT-SL)

In [11], an optimized transmission scheme based on relays is proposed. The BS uses a sin-
gle-antenna and selects the best relay to transmit to. Next, from this relay, the signal is
forwarded to the destination. Adapting [11] to be used with multiple antennas at the BS, we
have the Maximum Ratio Transmission-Single Link (MRT-SL). In this scheme, the BS, based
on the channel state information in the link BS-RS, selects the best relay to transmit to and

3 Once all the relays have received the signal, it is decoded and BER is calculated. The one which obtains
the best performance is selected. This is not possible in practical scenarios, but it is used as a baseline for
comparison purposes.



beamforms the transmission to it according to the maximum ratio transmission criterion [28].
Thus, transmitted signal can be written as

XX = V]yrr_g C¥ 19
MRT-SL |MRT SL MRT-SL ( )

with C"|MRT_SL e CMNxNs — (j ag{ck}, P (a column vector with the Ng data to be sent in
this block on sub-carrier k), and V|yrr_g; € CNt*Ns is the matrix formed by the repetition

of Ng times vector v € CNt*! which are the beamforming weights according to the minimax
BER criterion (see Sect. 2.2), calculated as Eq. 18 with criterion C4.

(20)

i=1---Ngs’

h|k: i* = argmin; {max {kBERik}} k=1---N
Ikf]" K = argmaxy {BER}

Again, Nt = Ns. This way, only the i-th relay is able to decode the data. Next, from this
relay, data are sent to the users in a Single Input Single Output (SISO) link, i.e., W in Eq. 4
iswje=0,Vj #i,LF#iandwjj =1.

This scheme follows [11] but adapted for a scenario with multiple transmit antennas and
without MRC performed at the destination. As it will be seen later, this scheme does not
exploit diversity on the second hop. Indeed, the best relay from the point of view of BS
might not be the best one to reach users. As it will be seen in Sect. 4, this scheme offers poor
performance. It has the advantage with respect to [19] that CSI-T is needed at the BS only
for the link BS-RS, instead of the whole link CSI-T.

3.2 Virtual Maximum Ratio Transmission (VMRT)

In order to obtain diversity in both links without complexity and reduced CSI in all the ele-
ments in the network, the following scheme is proposed. We coin the term Virtual Maximum
Ratio Transmission since the relays are used as a virtual beamformer. In this scheme, the BS
uses STBC (2, 4 or 8 scheme) to reach relays (firs hop) as in the 2h-STBC scheme. Therefore,
the signal model is the same until the firs hop as in 2h-STBC. In the second hop, instead of
using again a STBC, here, the relays are configure as a virtual beamformer, and they will
appropriately format the signal to the user with the best channel quality. All the relays or a
group of Nymrr relays can be used. In order to reduce the complexity at the relays and the
CSI requirements, we use an approach similar to the one in [30]: user’s terminals estimate
the channel matrix and compute the MRT weights. Next, each UT computes the link quality
(gi) only over its sub-carriers, according to the minimax BER criterion. As it was shown
in Sect. 2.2, this metric is the one which obtains the closest performance to the optimum.
UTs send this quality to RS, this value is a scalar. All RS receive these values from each UT
and the one with the minimum maximum BER—best quality according to minimax BER
criterion—is scheduled to transmit, i.e., if qualities are sorted out in descending order so that
g < < -+ < O, the UT with gy is selected. One RS can act as coordinator and informs
the selected UT. After that, the selected user sends to relays the pre-coding weights vector
to obtain the already calculated fed-back quality, and each RS uses the adequate weight to
perform the cooperative virtual maximum ratio transmission, i.e., Eq. 20, is used but channel
frequency response corresponds to transmit from RS to UT. Thus, transmitted signal Z¥ in
(4) will use (12) with W = diag{w}, calculated similar as in (20)
f)‘fz j* = arg min; {maxk{BEle‘}} k=1---N
67«1 k*:argmaxk{BERj} i=1---Ngs
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Tablel VMRT. Description of the procedure to beamform signal from relay to users

RS uT

1 Each UT estimates the channel from all the
relays (bik).
2 Each UT calculates the quality of its channel.
3 Each UT feeds back to RS a scalar
representing its quality.
4 Coordinator selects the best UT according to a
criterion.
5 Coordinator informs selected terminal.
6 Selected terminal feeds back the beamforming
weights (w) to obtain the quality.
7 Since all the relays receive the beamforming weights
w sent by the selected user, each RS uses the adequate
weight, based on its number, to perform the
cooperative virtual MIMO transmission.

Statistically, on average, all the terminals will exhibit similar performance since all of them
will experiment the best quality channel sometimes on the average. By using this scheme,
diversity is exploited in both links, including the second one, what is specially interesting
since usually, the number of RS is higher than the number of transmit antennas. A summary
of the procedure is depicted in Table 1.

A couple of practical comments are in order. Although transmission from relays is beam-
formed to the user which presents the best link quality, all of them are able to decode the
data because they listen to the transmitted pre-coding weights (sent by the selected UT) and
so, they can decode the amount of data addressed to them in other sub-carriers, with a BER
penalty though. Besides, in order to reduce even more the feedback, the beamforming weights
are not changed until the quality of the current selected UT q; raises above  or until another
UT obtains a quality below (. This way, for a slow varying channel, which is generally the
case in high speed data transfer scenarios, the feedback is reduced. In this approach, some
computational load is moved to the user’s terminals—calculate the pre-coding weights, —but
it is limited. It should be pointed out that this scheme exploits more diversity from RS to
UT than from BS to RS as mentioned above, what is good for dense relays networks where
there exist a large number of relays, whereas having large number of antennas, even at the
BS, is not possible in general. In this scheme, Nrg can be arbitrarily large and does not have
the constraint of being 2, 4 or 8 as in the 2h-STBC scheme. Besides, this scheme does not
need CSI-T neither at BS side nor at relays, only CSI-R for coherent demodulation, since
the weights’ calculation is performed at the UT. As it will be shown on Sect. 4, this scheme
obtains the best performance over the whole range of SNR.

3.2.1 Complexity and Feedback Requirements

Our proposed approach, the VMRT, is characterized by its low complexity and low feedback
requirements. The complexity at the BS is reduced since it only needs to encode data across
antennas using the specifi full rate STBC mentioned in previous section. The relays need to
be numbered in order to know which antenna they represent in the virtual MIMO transmis-
sion scheme. This issue is easily accomplished at the time of starting up each relay. One of
the relays acts as coordinator, what means that it selects the user with minimum quality factor
(that corresponds to the highest quality according to our definitions). As explained before, all
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the relays will receive the quality from all the UTs. Regarding the User Terminals, they need
to estimate the channel from each relay and compute the quality according to criterion C4 in
Sect. 2.2. The channel estimation is also needed for coherent demodulation, so there is no
extra computation in this step. Next, only the selected user calculates the weights according
to criterion C4 and Eq. 18.

One of the most important advantages of the VMRT is its low feedback requirements.
First, the feedback is only needed between UTs and RS, so we do not have the two hop
delay, and the feedback is reduced. And second, this feedback is only one scalar—the quality
gi—per user. Moreover, this feedback is not continuous but needs only be sent when large
channel changes occur, as explained in the implementation comments in previous section.
Only the selected user feeds back its weights once, and they are received by all the RS.
This yields to a feedback of Ny x NBq + Nrs x NB,, bits—when needed—, where N By
is the number of bits needeed for encoding the quality and N B,, is the number of bits to
encode the weights. Compared to the 2h-STBC which does not require any feedback, the
amount of information fed-back is very reduced and the obtained gains are large. Compared
to other already existing methods as in [11] adapted to the MIMO scheme and OFDMA,
which requires to feed-back the channel coefficient from all the relays and all the users to
the BS: Nrs x N B¢ x Nt + Ny x N B¢ x NRrg bits continuously, where N Bg is the number of
bits to encode the channel coefficients Assuming that NB,, = N B, for moderate to large
number of relays, the reduction of VMRT is approximately of 1/(N¢ + Ny) compared to the
MIMO-OFDMA version of [11].

4 Simulation Results

Several simulations have been carried out using Monte Carlo methodology to obtain results
and compare the performance of the schemes. All simulations use N = 64 sub-carriers and
a Cyclic Prefi of 16 samples over a SUI-3 channel model [31]. Different parameters have
been evaluated such as the number of transmit antennas at the BS (Nt ), the number of relays
(NRrs) and the number of relays in the VMRT scheme (Nyyrr) for different modulation
schemes: BPSK and 64-QAM. The number of users was fi ed to 2.

First, a reduced scenario with small number of transmit antennas (N; = 2) and relays
(Nrs = 4) has been simulated to evaluate the performance of different schemes in relatively
equal conditions. It can be seen in Figs. 3 and 4, for BPSK and 64-QAM respectively, that
the VMRT scheme offers the best performance over the whole range of SNR. The diversity
order® of this scheme is about 2, the same as schemes 2h-STBC 2 x 1 (Nrs2 = 2) and
2h-STBC 4 x 1 (Nrs2 = 4) because both use the same number of transmitting elements.
However, VMRT exhibits an array gain due to the beamforming about 3 dB, and thus, its
global performance is better than that of the other schemes. Besides, it can be observed that
schemes using single link transmission on the second hop have diversity 1 and present similar
performance. In Figs. 5 and 6, the results for a dense scenario with larger number of relays
(Nrs = 16) and transmit antennas (N; = 4) for BPSK modulation are shown. It can be
seen that, since 2h-STBC scheme uses the same transmission’s elements as in Figs. 3 and
4, the diversity gain is the same (around 1.5) although the number of transmit antennas at
the BS (Nt) is twice. However, the VMRT scheme obtains a diversity close to 3 when the
number of relays used for VMRT is Nyyrt = 8 and close to 3.5 when is Nyyrt = 16. Since

4 The diversity order d is define asd = — limp_, o 1::1—’?39, where Pe is the average error probability and P
is the total transmit power.
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part of this diversity is due to the second hop, where the number of relays—transmission’s
elements—can be arbitrarily large, it can be increased with low cost. Thus, this scheme can
be used to improve system throughput in an already deployed network or even to extend
coverage. Next, in Figs. 7 and 8, the results for the same system’s setup, but with the SNR
fi ed to 20dB in the firs link, are presented. It can be observed that, again, the larger the
number of relays in the beamformer the higher coding gains. For the the VMRT, gains around
6 and 7dB with respect to the Figs. 5 and 6 can be noticed, respectively. Moreover, from
these figures it can be concluded that more diversity is exploited on the second link, as stated

before.
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4.1 Effect of the Number of Relays (Nyurr)

In order to evaluate the effect of the number of relays for the VMRT, in Fig. 9, results
increasing the number of relays are shown. It can be observed that diversity increases as the
number of relays does, i.e., it is 4.4, 4.7, 5 and 6.25 for NymrT = 16, 32, 64, 128, respec-
tively. Besides, some additional array gain can be noticed due to the use of large number of

transmission elements on the virtual beamformer.
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4.2 Effect of the Feedback Quantization

Another important aspect is the number of bits needed for the quantization of weights. In
Fig. 10, the effect of the number of bits in a fi ed point feedback is shown. It can be observed
that if the number of bits is too low there exists a degradation on the performance, even an
error floo may appear, but once the number of bits reaches a moderate value, the system
performs almost equal as if using full precision. Besides, it can also be appreciated that the
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degradation decreases with large number of relays. The reason is because when increasing
the number of relays, quantization errors may compensate each other.

5 Conclusions

In this paper, a transmission scheme for a MIMO OFDMA-relay-based network has been
proposed and evaluated. It has been shown that VMRT is able to obtain diversity at the users’
end with low complexity, minimum CSI requirements and good performance. Moreover, this
scheme offers diversity and array gains and those can be tuned by increasing/decreasing the
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number of involved relays. This is very interesting because keeping the number of receiver
antennas to 1, we can obtain diversity by means of relays, whose number can be large. We
have also shown that the scheme is robust against quantization/feedback errors of the beam-
forming weights. Thus, the VMRT is a transmission scheme that can increase coverage and
system throughput without increasing users’ hardware and complexity.
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