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Abstract

The salient feature in the quasi one-dimensional differential equation for annular fins of uniform thickness is without question the presence of the
variable coefficient 1/r multiplying the first order derivative, dT /dr . A good-natured manipulation of the variable coefficient 1/r is the principal
objective of the present work. Specifically, the manipulation applies the mean value theorem for integration to 1/r in the proper fin domain
extending from the inner radius r1 to the outer radius r2. It is demonstrated that approximate analytic temperature profiles and heat transfer rates
of good quality are easily obtainable without resorting to the exact analytic temperature distribution and heat transfer rate embodying modified
Bessel functions. For enhanced visualization, the computed temperature profiles, tip temperatures and fin efficiencies of approximate nature are
graphed and tabulated for realistic combinations of the normalized radii ratio c and the thermo-geometric fin parameter ξ of interest in thermal
engineering applications.
1. Introduction

Thermal designers face two fundamental questions when
dealing with a bundle of annular fins of uniform thickness to be
attached to a round tube or a solid rod at a temperature higher
than the surrounding fluid. The two fundamental questions are:
(1) What is the heat transfer rate from a single annular fin to
the fluid and (2) what is the tip temperature of such a fin that
complies with safety standards?

Under the classical one-dimensional formulation, the tem-
perature descend along an annular fin with uniform thickness
is governed by a differential equation of second order having a
variable coefficient of intricate form, 1/r , that accompanies the
first order derivative dT /dr . By means of a temperature excess
related to the dependent variable, the differential equation can
be homogenized resulting in a modified Bessel equation of zero
order. In the homogeneous differential equation, the variable
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coefficient 1/r is troublesome and may be viewed as a hyper-
bola segment inside the fin domain that extends from the inner
radius r1 to the outer radius r2.

Previous efforts aimed at simplifying the modified Bessel
equation for annular fins with uniform thickness by analytic
means are nonexistent in the specialized literature. However,
some marginal attempts linked to heat transfer estimates are
worth mentioning. Harper and Brown [1] suggested that the
hyperbolic function based efficiency for longitudinal fins of
uniform thickness is suitable to approximate the efficiency of
annular fins with uniform thickness provided that the radii ra-
tio c is close to unity. This ‘longitudinal fin approximation’
was extended to intermediate c values by Schmidt [2] substi-
tuting the fin height by an equivalent height. This is perhaps the
best known analytic simplification for the annular fin efficiency.
Other recent works by Hong and Webb [3] and Perrotin and
Clodic [4] added terms to the solution presented by Schmidt,
but at the price of increasing its complexity and restricting the
betterment of the results to a certain thermo-geometric region.
It should be emphasized that the above-mentioned analytic ap-
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Nomenclature

Bi transversal Biot number, ht/k

c normalized radii ratio, r1/r2
EBi enlarged Biot number, ξ2

Eη relative error of the approximate η

Et relative error of the approximate θ(1)

h mean convection coefficient . . . . . . . . W m−2 K−1

Iv modified Bessel function of first kind and order v

k fin thermal conductivity . . . . . . . . . . . . W m−1 K−1

Kv modified Bessel function of second kind and order v

L fin length, r2 − r1 . . . . . . . . . . . . . . . . . . . . . . . . . . . m
m parameter related to the efficiency of the longitudi-

nal fin in Table 3
Mf 1 mean value of the function 1/R in [c,1]
Mf 2 1/R

Mf 3 mixed mean, 1
2 (Mf 1 + Mf 2)

n parameter related to the efficiency of the longitudi-
nal fin in Table 3

Q heat transfer rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . W
Qi ideal heat transfer rate . . . . . . . . . . . . . . . . . . . . . . . W
r radial coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
r1 inner radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
r2 outer radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

R normalized r, r/r2

R̄ mean value of the function R in [c,1]
t semi-thickness of the annular fin . . . . . . . . . . . . . . m
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Tb base temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T∞ fluid temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

Greek letters

β dimensional thermo-geometric fin parameter,
(h/kt)1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m−1

γ dimensionless group, ξ/(1 − c)

η fin efficiency or dimensionless Q,Q/Qi

θ normalized T , (T − T∞)/(Tb − T∞)

λ1,2 roots of the auxiliary equation (14)
ξ dimensionless thermo-geometric fin parameter,

β · L
Subscripts

b base
i ideal
t tip
∞ surrounding fluid
proximations are unrelated to the temperature solution of the
modified Bessel equation.

In order to generate uncomplicated and powerful tempera-
ture profiles and heat transfer rates for annular fins of uniform
thickness, the present study pursues a new analytic methodol-
ogy. It embraces the concept of the mean value theorem artic-
ulated with the simplicity inherent to the standard longitudinal
fin of uniform thickness. Thereby, the idea is to replace the cum-
bersome variable coefficient 1/r in the fin equation governing
an annular fin of uniform thickness with a constant coefficient
thanks to the mean value theorem for integration. In the imple-
mentation of the mean value theorem, one viable possibility is
to substitute 1/r by the mean value of f (r) = 1/r in the proper
fin domain [r1, r2]. Another attempt is to multiply the differen-
tial equation by the independent variable r , so that it contains
two variable coefficients r , one accompanies the second order
derivative dT 2/dr2 in the first term and the other accompanies
T in the third term. Thereby, the troublesome variable coef-
ficient r is just a straight line segment inside the fin domain
[r1, r2], so that r is substituted by the mean radius.

A direct consequence of replacing the variable coefficient
1/r by the mean value of the function f (r) = 1/r , or the vari-
able coefficient r by the mean value of the function g(r) = r

is that the two transformed differential equations hold constant
coefficients and are no longer of Bessel type. It is envisioned
that the two computational procedures may facilitate the deter-
mination of the approximate analytic temperature distribution
and heat transfer rate for annular fins of uniform thickness in
terms of the two controlling parameters, one the normalized
radii ratio c and the other the dimensionless thermo-geometric
Fig. 1. Schematic of an annular fin of uniform thickness.

parameter ξ . Undoubtedly, the main objective for undertaking
this work is to bypass the evaluation of the pair Iv and Kv ; the
modified Bessel functions of first kind and second kind of or-
der v. Even with contemporary numerical and symbolic algebra
codes, like Mathematica, Maple and Matlab, these evaluations
are elaborate and tedious.

2. Formulation of the problem

An annular fin of constant thickness 2t , inner radius r1 and
outer radius r2 dissipating heat by convection to a surrounding
fluid is shown in Fig. 1. In the modeling, the most common
Murray–Gardner assumptions (Murray [5], Gardner [6] and
Kraus [7]) are adopted: steadiness in heat flow; constant thermal
conductivity k; uniform heat transfer coefficient h; unvarying
fluid temperature T∞; prescribed fin base temperature Tb; pre-
ponderance of radial temperature gradients over those in the
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transversal direction; negligible heat transfer at the outermost
fin section (i.e., adiabatic fin tip); and null heat sources or sinks.
In harmony with the classical formulation, the normalized tem-
perature θ(R) along the radial direction obeys the following
quasi one-dimensional fin equation in cylindrical coordinates
(Incropera and DeWitt [8], Schneider [9]):

d2θ

dR2
+ 1

R

dθ

dR
− ξ2

(1 − c)2
θ = 0 in c � R � 1 (1)

This second-order ordinary differential equation is classified as
a modified Bessel equation of zero order. It possesses constant
coefficients in the first and third terms and a variable coeffi-
cient 1/R of awkward form in the second term. Certainly, the
presence of the variable coefficient complicates the analytic so-
lution.

The boundary conditions for prescribed temperature at the
base R = c and zero heat loss at the tip R = 1 are:

θ(c) = 1 and
dθ(1)

dR
= 0 (2)

In the preceding trio of equations, θ is the normalized temper-
ature (T − T∞)/(Tb − T∞),R is the normalized radius r/r2,
c is the normalized radii ratio r1/r2, and ξ is the dimensionless
thermo-geometric fin parameter βL = (hr2

2 (1 − c)2/(kt))1/2;
a quantity of relevance in the study of fin heat transfer [9].
Using the transversal Biot number Bi = ht/k as an adequate
reference parameter, ξ2 is called the enlarged Biot number
EBi = (ht/k)((r2 − r1)/t)2, which accounts for the fin length
L = r2 − r1 instead of the inner radius r1 chosen by Ullmann
and Kalman [10].

The indirect route for determining the heat transfer rate Q

from straight fins of tapered profile and nonstraight fins of
any profile to a neighboring fluid has been conveniently chan-
neled through the dimensionless heat transfer or fin efficiency
η = Q/Qi . In this ratio proposed originally by Gardner [6],
Q is the actual heat transfer rate and Qi is an ideal heat transfer
rate from an identical reference fin, but having infinite thermal
conductivity k → ∞. Thereby, the computation of η for the an-
nular fin of constant thickness may be carried out in two ways:
(1) differentiating θ(R) at the fin base R = c:

η1 = − 1

ξ2

[
2c(1 − c)

1 + c

]
dθ(c)

dR
(3a)

or (2) integrating θ(R) over the dimensionless fin length from
the base R = c to the tip R = 1:

η2 = 2

1 − c2

1∫
c

θ(R)R dR (3b)

3. Exact analytic procedure

The exact analytic solution of Eq. (1) satisfying Eq. (2) can
be found in [8,9], among other heat transfer textbooks. It pro-
vides the dimensionless temperature distribution θ(R) involv-
ing modified Bessel functions:

θ(R) = I1(γ )K0(γR) + I0(γR)K1(γ )
(4)
I1(γ )K0(γ c) + I0(γ c)K1(γ )
where for conciseness γ designates the dimensionless group
ξ/(1 − c). Here, Iv(·) is the modified Bessel function of first
kind and Kv(·) is the modified Bessel function of second kind,
both of order v.

When an exact θ(R) is secured from Eq. (4), the two pos-
sible η-avenues in Eqs. (3a) and (3b) coalesce into the exact
dimensionless heat transfer or fin efficiency,

η = 1

ξ

2c

1 + c

I1(γ )K1(γ c) − I1(γ c)K1(γ )

I1(γ )K0(γ c) + I0(γ c)K1(γ )
(5)

because the heat loss from the fin tip is zero1. In this regard,
Arpaci [11] has stated that whenever θ(R) is approximate, the
integration approach η2 should be preferred over the differenti-
ation approach η1.

4. Approximate analytic procedures

Option 1: Let us isolate the disturbing variable coefficient
1/R in Eq. (1) and consider it as a function f (R) = 1/R out-
lining a hyperbola segment in the closed interval c � R � 1 in
which R operates. Upon applying the mean value theorem for
integration to this function, the end result is

Mf 1 = 1

1 − c

1∫
c

1

R
dR = ln c

c − 1
(6)

where Mf 1 designating the functional mean of 1/R depends
solely on the radii ratio c. Therefore, replacing 1/R with Mf 1

in Eq. (1), the descriptive fin equation is transformed to

d2θ

dR2
+ Mf 1

dθ

dR
− ξ2

(1 − c)2
θ = 0 in c � R � 1 (7)

Option 2: An alternative functional mean thorough the optic
of R is plausible rewriting Eq. (1) as:

R
d2θ

dR2
+ dθ

dR
− ξ2

(1 − c)2
Rθ = 0 in c � R � 1 (8)

Let us isolate the variable coefficient R in Eq. (8) and consider
it as a function outlining a straight line segment in the closed
interval c � R � 1. Owing to the mean value theorem for inte-
gration, the mean radius R leads to

R = 1

1 − c

1∫
c

R dR = 1 + c

2
(9)

which depends on c only. Subsequently, upon defining Mf 2 =
1
R

= 2
1+c

to preserve uniformity, Eq. (8) is converted to:

d2θ

dR2
+ Mf 2

dθ

dR
− ξ2

(1 − c)2
θ = 0 in c � R � 1 (10)

1 Although the objective of this work is framed in the context of common heat
dissipative fins, the calculation procedure applies equally well to the opposite
situation dealing with heat absorbing fins.
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Table 1
Dependence of the mean values Mf on the radii ratio c

c Mf 1 Mf 2 Mf 3

0.2 2.01 1.67 1.84
0.4 1.53 1.43 1.48
0.6 1.28 1.25 1.26
0.8 1.12 1.11 1.11
1.0 1.00 1.00 1.00

Option 3: The mixed mean of the two previous functional
means Mf 1 and Mf 2 may be conceived as a compromise be-
tween Option 1 and Option 2. That is,

Mf 3 = Mf 1 + Mf 2

2
= ln(c)

2(c − 1)
+ 1

1 + c
(11)

which is placed as the coefficient of the first order temperature
derivative dT /dr , like in Eq. (7).

For the sake of generality, the fin equation (1) can be re-
expressed as

d2θ

dR2
+ Mf

dθ

dR
− ξ2

(1 − c)2
θ = 0 in c � R � 1 (12)

where the generic mean Mf equates to Mf 1,Mf 2 or Mf 3.
Pausing here for a moment, it can be seen that Eq. (12) owns
three constant coefficients, in contrast to the original equa-
tion (1) holding mixed coefficients; that is, two constant co-
efficients and a variable coefficient 1/R.

The general solution of Eq. (12) is (Boyce and DiPrima
[12]):

θ(R) = C1e
λ1R + C2e

λ2R (13)

where the roots of the auxiliary equation are

λ1, λ2 =
−Mf ±

√
M2

f + 4ξ2

(1−c)2

2
(14)

The combination of Eqs. (13), (14) and (2) culminates in the
particular solution:

θ(R) = λ2e
λ1(R−1) − λ1e

λ2(R−1)

λ2eλ1(c−1) − λ1eλ2(c−1)
(15)

Unquestionably, this approximate analytic temperature distri-
bution of compact form constitutes the centerpiece of the
present work. Hence, it is reasonable to contrast the complex
Bessel structure of the exact temperature distribution given by
Eq. (4) against the simple exponential structure of the approxi-
mate temperature distribution given by Eq. (15).

On the other hand, inspection of the fin efficiency diagram
for annular fins of uniform thickness in [8,9] reveals that the
radii ratio c is commonly placed inside the interval 0.2 � c � 1.
In this regard, the emerging three Mf magnitudes are listed in
Table 1 for selected radii ratios c. Correspondingly, the approx-
imate fin efficiency relations through the tandem of Eqs. (3)
are readily obtained from Eq. (15). Therefore, the fin efficiency
reads:
(1) by differentiation of θ(R),

η1 = 2c

2

eλ1(c−1) − eλ2(c−1)

λ (c−1) λ (c−1)
(16a)
1 − c λ2e 1 − λ1e 2
Fig. 2. Comparison between the approximate and exact temperature profiles for
c = 0.2 and different dimensionless fin parameters ξ .

or (2) by integration of θ(R),

η2 = 2

1 − c2

{
λ3

2

[
λ1 − 1 + (1 − cλ1)e

λ1(c−1)
]

− λ3
1

[
λ2 − 1 + (1 − cλ2)e

λ2(c−1)
]}{

λ2
1λ

2
2

[
λ2e

λ1(c−1)

− λ1e
λ2(c−1)

]}−1 (16b)

In fact, it should be anticipated that the differentiation approach
of the fin efficiency, Eq. (16a), may produce results that are dif-
ferent than those of the integral approach, Eq. (16b). This is
so because the approximate temperature distribution, Eq. (15),
does not satisfy exactly the descriptive fin equation, Eq. (1). As
a result, the heat transported by conduction at the fin base and
the heat dissipated by convection could have unequal values.

Lastly, important issues related to the safe-touch tempera-
tures of solid objects were discussed by Arthur and Ander-
son [13]. In this framework, the outermost parts of an array of
annular fins around R = 1 are prone to be accidentally touched
by technical personnel in plant environments. Accordingly, the
fin tip temperature θ(1) is considered a parameter of relevance
for safety precautions. From Eq. (4), the exact dimensionless
tip temperature is

θ(1) = I1(γ )K0(γ ) + I0(γ )K1(γ )

I1(γ )K0(γ c) + I0(γ c)K1(γ )
(17)

By virtue of Eq. (15), the approximate dimensionless tip tem-
perature turns out to be

θ(1) = λ2 − λ1

λ2eλ1(c−1) − λ1eλ2(c−1)
(18)

5. Presentation of approximate analytic results

Fig. 2 displays the exact dimensionless temperature profiles
calculated with the modified Bessel functions, Eq. (4), and with
the approximate analytic temperature distribution in Eq. (15)
4



Table 2
Comparison of the computed fin efficiencies

Procedure c ξ Approximate (relative error Eη) Exact

Mf 1 Mf 2 Mf 3 Schmidt [2] Hong and Webb [3] Perrotin and Clodic [4]

derivative 0.2 3 −1.62e−1 −1.99e−1 −1.81e−1 2.40e−1 1.06e−1 −2.04e−2 0.1720
integral 0.2 3 3.50e−2 9.54e−2 6.49e−2 0.1720
derivative 0.2 1.5 −1.83e−1 −2.48e−1 −2.16e−1 4.16e−2 1.31e−2 −6.61e−3 0.4020
integral 0.2 1.5 −1.25e−3 6.12e−2 3.00e−2 0.4020
derivative 0.2 0.5 −1.77e−1 −2.91e−1 −2.36e−1 −1.27e−2 −1.57e−2 −6.36e−3 0.8470
integral 0.2 0.5 −4.37e−3 1.39e−2 5.07e−3 0.8470
derivative 0.8 3 −2.88e−3 −3.03e−3 −2.96e−3 4.55e−3 −4.75e−2 −3.05e−2 0.3068
integral 0.8 3 8.43e−4 9.77e−4 9.10e−4 0.3068
derivative 0.8 1.5 −3.69e−3 −3.97e−3 −3.83e−3 −7.87e−3 −2.08e−2 −1.13e−2 0.5760
integral 0.8 1.5 3.34e−4 4.57e−4 3.96e−4 0.5760
derivative 0.8 0.5 −4.08e−3 −4.51e−3 −4.30e−3 −3.00e−3 −4.45e−3 −2.58e−3 0.9160
integral 0.8 0.5 4.08e−5 6.99e−5 5.53e−5 0.9160
deduced in this work. The smallest radii ratio of magnitude
c = 0.2 (i.e., r2 = 5r1) reported in the fin efficiency diagram
in [8,9] has been chosen as a critical case in order to ana-
lyze the totality of the results. The three implementations of
the mean value theorem, namely Mf 1, Mf 2 and Mf 3 have
been encapsulated in Eq. (15) for a representative value of the
thermo-geometric fin parameter, ξ = 2, in the mid-curve of
the family of curves. As Fig. 2 reveals, the mean value Mf 1
from Eq. (6) provides the most accurate results for small and
medium R. The mean value Mf 2 from Eq. (9) furnishes tem-
perature profiles that separate from the actual fin behavior in
a larger extent. However, Mf 3 being the average between Mf 1
and Mf 2 in Eq. (11) supplies the best temperature profiles when
R is close to the fin tip. This can be explained noting that the ap-
proximation obtained with the mean Mf 3 produces temperature
profiles that are situated between the other two temperature ap-
proximations. Therefore, the underpredictive nature of the Mf 1
approximation at the fin tip is compensated by the overpredic-
tive nature of Mf 2. This same trend prevails for other values
of the fin parameter ξ . Fig. 2 also includes curves for small
ξ = 0.5 and large ξ = 10, but to preserve clarity the graph only
contrasts the exact temperatures against the approximate tem-
peratures using the mean Mf 1. The approximate temperature
profile does not degenerate for large ξ , whichever Mf is se-
lected, because the analytic temperature distribution of Eq. (15)
is physically consistent. In other words, it tends to zero when
ξ → ∞ and R > c.

The fin efficiency estimated with the approximate analytic
temperature distribution united with the integral approach η2
in Eq. (16b), furnishes very satisfactory results as can be con-
firmed in Fig. 3 and Table 2. In the table, the relative error in
predicting the efficiency Eη is defined as:

Eη = ηapprox. − ηexact

ηexact
(19)

It should be stressed that high accuracy is retained for a broad
range of radii ratios c. Again, the best η2 results correspond to
the mean Mf 1 because the temperature profile obtained using
this mean does not deviate significantly from the exact temper-
ature profile along the radial direction of the fin. Concerning η2
results for the mean Mf 1, the largest relative error Eη that ap-
Fig. 3. Comparison between the approximate and exact fin efficiencies with the
dimensionless fin parameter ξ for different radii ratios c.

pears in Table 2 corresponds to 3.5% of the exact efficiency for
the pair c = 0.2 and ξ = 3. In spite of its exactness circa R = 1,
the mixed mean Mf 3 cannot surpass the accuracy inherent to
Mf 1, since close to the fin tip the temperature decreases and its
contribution in the heat dissipation is weaker that in other radial
positions.

In the items of Table 2 it is observable that the differences be-
tween the integral-based η2 results for the three approximations
are not significant. For this reason, the efficiency comparison
shown in Fig. 3 has been restricted to the mean Mf 1 only. In
contrast, inadmissible underpredictions appear when c is low
and the derivative approach for the fin efficiency η1 is calcu-
lated, Eq. (16a). This is illustrated in Fig. 3 for the smallest
radii ratio under study, i.e., c = 0.2, where the discrepancies
between η2 and η1 are most pronounced. The efficiency η1 re-
lies on the temperature derivative at a single point, i.e., the fin
base R = c, whose value always underpredicts (in module) the
real one. This is in accord with the tendency manifested in the
curves in Fig. 2 and the negative relative error in Table 2. A fur-
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Table 3
Parameters for the longitudinal fin based approximations of annular fin effi-
ciency

Approach m n

Schmidt 0 1 + 0.35 · ln

(
1

c

)

Hong and Webb 0.1 1 + 0.35 · ln

(
1

c

)

Perrotin and Clodic 0.1 1 + ln

(
1

c

)[
0.3 +

(
0.26

c0.3
− 0.3

)(
ξ

2.5

)1.5− 1
12c

]

ther explanation of this underprediction can be conceived taking
into consideration that Mf also underestimates the value of 1/R

at small R. This translates into lowering the second and first
derivative of the approximate solution in the simplified equa-
tion (12). In contrast, Mf overestimates 1/R when R is close
to unity. As a result, the differences between the exact and the
approximate temperature profiles at small R are partially rec-
tified from the mid radius to the fin tip. This enlightens why
the integral-based fin efficiency, η2, relying on the whole tem-
perature profile, from the base to the fin tip (and not only on
the gradient at the fin base) delivers improved results over the
differential-based approach η1.

As the numbers listed in Table 2 demonstrate, the differences
between the efficiency results based on the integral and deriva-
tive approach diminish for large c. In fact, in the limiting case
dictated by c = 1, both the approximate and the exact predic-
tions coincide, thus collapsing to:

ηc=1 = tanh(ξ)

ξ
(20)

This expression can be easily deduced from the approximate
Eqs. (16) taking into account that the roots of the simplified
Bessel equation confirm that λ1,2(1 − c) → ±ξ when c → 1.
It should be noted that Eq. (20) supplies also the fin efficiency
for a longitudinal fin of uniform thickness [9] and the same ξ ,
which is a logical similitude owing to the null curvature in the
annular fin when c tends to unity and L is maintained constant.

Existing expressions of the annular fin efficiency based on
the longitudinal fin approximation [2–4] have been included
in Table 2 for comparison purposes. Table 3 summarizes these
expressions, which can be conveniently channeled through the
following relation:

η = tanh(ξn)

ξn
cos(ξnm) (21)

The longitudinal fin based approximations of the efficiency re-
lation, Eq. (21), are plotted in Fig. 4 along with the integral-
based efficiency η2 from Eq. (16b) for an intermediate radii
ratio c = 0.4.

Although the efficiency approximations by Schmidt [2],
Hong and Webb [3], and Perrotin and Clodic [4] may grant
high accuracy for certain combinations of ξ and c, their fin ef-
ficiency predictions deteriorate out of the range in which these
approximation were adjusted. This assertion can be observed in
Table 2 in which the Schmidt [2] as well as Hong and Webb [3]
approximations yield accurate results for large values of the
Fig. 4. Comparison between the different approximations for the fin efficiency
varying with ξ for a fixed c = 0.4.

radii ratio. In contrast, the efficiency calculated with the Per-
rotin and Clodic approximation [4] delivers better results when
c is small. If Mf 1 and the integral-based efficiency η2 are se-
lected, the mean value theorem approximation performs always
better than the classical efficiency estimation due to Schmidt
[2] and the Hong and Webb approximation [3]. The Perrotin
and Clodic approximation [4] slightly surpasses in precision the
mean value results Mf 1 of η2 for smaller c and medium ξ . For
instance, given c = 0.2 and ξ = 3, the mean Mf 1 when articu-
lated with η2 supplies a 3.5% relative error while the Perrotin
and Clodic [4] is conducive to 2.04%. Those are remarkably
precise values when compared to the large 24% relative error
of the Schmidt approximation. However, for large radii ratio,
e.g., c = 0.8, in combination with a high thermo-geometric fin
parameter, ξ = 3, the relative error of the Perrotin and Clodic
approximation [4] increases over the error associated with the
Schmidt approach, being the η2 estimation with the mean Mf 1
the most accurate method.

The predicted behavior at the fin tip temperature, Eq. (18),
has been already explained when commenting the θ profiles.
Curves for the tip temperature are presented in Fig. 5 while
some examples of the relative error Et for the three approxi-
mation approaches are included in Table 4. Similar to Eq. (19),
Et has been calculated with the following expression:

Et = θ(1)approx. − θ(1)exact

θ(1)exact
(22)

According to the numbers that appear in Table 4, good re-
sults are expected for θ(1) when using any of the three ap-
proximate mean avenues, provided that the radii ratio c is not
extremely small. As previously indicated, the mean Mf 3 pro-
duces the best tip temperatures. This is particularly obvious in-
specting Fig. 5 and Table 4 concurrently, where the unreal value
c = 0.02 (i.e., r2 = 50r1) has been included intentionally. It is
surprising to see that for this very low radii ratio the accuracy
6



Fig. 5. Comparison between the approximate and exact tip temperatures with
the dimensionless fin parameter ξ for different radii ratios c.

Table 4
Comparison of the computed fin tip temperatures

c ξ Approximate (relative error Et ) Exact

Mf 1 Mf 2 Mf 3

0.02 3 −3.53e−1 7.57e−1 9.57e−2 0.0268
0.02 1.5 −3.44e−1 5.31e−1 4.62e−2 0.1669
0.02 0.5 −1.7e−1 1.45e−1 1.21e−2 0.6870
0.2 3 −3.65e−2 8.16e−2 2.14e−2 0.0559
0.2 1.5 −3.04e−2 5.41e−2 1.17e−2 0.2918
0.2 0.5 −8.35e−3 1.30e−2 2.61e−3 0.8159
0.8 3 −1.02e−4 2.18e−4 5.81e−5 0.0921
0.8 1.5 −7.18e−5 1.24e−4 2.59e−5 0.4061
0.8 0.5 −1.50e−5 2.37e−5 4.36e−6 0.8790

of the approximate mixed mean Mf 3 continues to be less than
a 10% error. Whenever c � 0.2, the results that emanate from
the three mean approximations in Table 4 tend to be more sim-
ilar, especially for Mf 1 and Mf 3. For instance, fixing c = 0.2,
the largest inaccuracies in the estimation of θ(1) are encoun-
tered in Table 4 when ξ = 3; being in the worst case less than
8.2% with Mf 2 and in the best 2.14% with Mf 3. For the sake
of clarity, Fig. 5 only includes the approximation connected to
the mean Mf 1 when c � 0.2. Notice that the efficiency approx-
imations by Schmidt [2], Hong and Webb [3], and Perrotin and
Clodic [4] cannot provide the fin tip temperature.

If c tends to unity while maintaining L constant, the approx-
imate equation (18) for the tip temperature simplifies to

θc=1(1) = 1

cosh(ξ)
(23)

This outcome is also included in Fig. 5 and clearly coincides
with the tip temperature of a basic longitudinal fin of uniform
thickness. Differences between the approximate and exact 1-D
tip temperatures are literally null if c = 1.

In general, the approximate results for both θ(1) and η dete-
riorate when the radii ratio c decreases because the differences
between the constant mean values Mf and the variable coef-
ficient 1/R of the descriptive fin equation turn out to be more
pronounced. The influence of the thermo-geometric fin param-
eter ξ is subtle and obscure regarding the relative accuracy of
the approximate fin efficiency. An increment in ξ usually el-
evates Eη. As far as the tip fin temperature is concerned, the
relative error Et increases with ξ , but this is not the case for the
absolute error in the tip temperature prediction, which experi-
ences a reduction.

Finally, Tables 5 and 6 collectively gather the minimum radii
ratio c that can be handled with the mean value procedure if a
pre-set relative error cannot be surpassed in the estimation of
the fin efficiency and the tip temperature. Obviously, in har-
mony with the previous explanations in this subsection, the
minimum c increases with the imposed accuracy. For a given
relative error in the fin efficiency, the mismatches between the
three Mf approximations are not significant, being the mean
Mf 1 the best choice consistently, as reflected in Table 5. Ow-
ing to the nonlinear dependence on c in Eq. (15), this trend is
broken when both the thermo-geometric fin parameter is small
and the pre-set accuracy is not demanding. For example, if a
stiff 1% relative error in estimating η2 is required, all the ap-
Table 5
Minimum c for a pre-set accuracy in approximating the integration-based fin efficiency η2

Accuracy ξ Minimum c

|Eη| Mf 1 Mf 2 Mf 3 Schmidt [2] Hong and Webb [3] Perrotin and Clodic [4]

0.001 0.5 0.302 0.524 0.438 0.931 – –
0.01 0.5 0.143 0.237 0.117 0.380 0.493 0.154
0.1 0.5 2.97e−2 3.66e−2 6.52e−4 1.45e−6 1.90e−5 6.71e−2
0.001 1.5 0.666 0.729 0.707 0.978 (0.243–0.252)* –
0.01 1.5 0.144 0.443 0.371 0.709 (0.210–0.300)* (0.182–0.665)*

0.1 1.5 4.17e−2 0.144 5.36e−2 0.106 6.62e−2 8.40e−2
0.001 3 0.784 0.798 0.792 0.888 (0.396–0.403)* –
0.01 3 0.455 0.529 0.500 0.726 (0.369–0.436)* (0.240–0.527)*

0.1 3 1.43e−3 0.194 0.141 0.366 0.207 0.102
0.001 10 0.792 0.797 0.795 1 – –
0.01 10 0.499 0.519 0.510 0.917 – –
0.1 10 0.147 0.179 0.164 0.590 – –

* The limited interval of c values for which the cases comply with the pre-set accuracy is indicated in brackets.
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Table 6
Minimum c for a pre-set accuracy in approximating the fin tip temperature

Accuracy ξ Minimum c

|Et | Mf 1 Mf 2 Mf 3

0.001 0.5 0.428 0.484 0.306
0.01 0.5 0.183 0.227 6.41e−2
0.1 0.5 3.58e−2 3.58e−2 1.05e−3
0.001 1.5 0.589 0.645 0.491
0.01 1.5 0.327 0.398 0.219
0.1 1.5 8.95e−2 0.136 1.79e−3
0.001 3 0.620 0.692 0.569
0.01 3 0.356 0.456 0.296
0.1 3 9.89e−2 0.177 1.01e−3
0.001 10 0.574 0.729 0.653
0.01 10 0.296 0.505 0.394
0.1 10 6.41e−2 0.219 0.108

proximations based on the mean value theorem are valid for
the combinations: c � 0.237 if ξ = 0.5 and c � 0.529 if ξ = 3.
Moreover, the smallest radii ratio c required for the Schmidt [2],
Hong and Webb [3], and Perrotin and Clodic [4] approxima-
tions is always higher than the c required for the mean value
theorem Mf 1, except in the case encompassing both ξ = 0.5
and a not demanding accuracy of Eη = 0.1.

Observe that the Perrotin and Clodic approximation [4] is
unable to provide results with |Eη| � 0.001 for any combina-
tion of ξ and c presented in Table 5. This aspect has been indi-
cated in Table 5 with a dash line. Regarding the Hong and Webb
approximation [3], it can reach accuracies with |Eη| � 0.01 but
usually in a restricted interval, if any. For example, if ξ = 1.5
the relative error is below 1% only when 0.21 � c � 0.3. In
contrast, using the mean Mf 1 the approximation of the fin ef-
ficiency does not exceed this error provided c � 0.144. Notice
also that the Hong and Webb [3] and Perrotin and Clodic [4]
approximations are incapable of reaching any of the pre-set ac-
curacies in the items of Table 5 if ξ = 10.

Turning the attention to the fin tip temperature, the mixed
mean Mf 3 reduces the minimum allowable c, sometimes by an
order of magnitude, when compared to the other two mean ap-
proximations. Assigning a relative error limit of 1% for ξ = 0.5,
the tip temperature estimate using Mf 1 is adequate if c � 0.183,
but this limit diminishes markedly to a trivial c � 0.0641 (a fac-
tor of three) when Mf 3 is applied. However, despite the stun-
ning Mf 3 results, it should be pointed out that practical engi-
neering applications rarely involve very small radii ratios of c

less than 0.2. It is for this reason that the Mf 1 avenue can be
considered excellent in the determination of the tip fin temper-
ature.

6. Conclusions

In calculating the temperature variation in annular fins of
uniform thickness, the use of the mean value theorem for sim-
plifying the modified Bessel differential equation gives way
to approximate temperature solutions endowed with an unsur-
passed combination of accuracy and easiness. Certainly, it can
be inferred that the mean value theorem constitutes an inter-
esting computational avenue for practical thermal engineering
applications. It has been demonstrated that the mean Mf 1 in
the descriptive differential equation with a variable coefficient
1/R delivers the most accurate results for fin efficiency predic-
tion. On the other hand, in the case of the fin tip temperature the
precise estimates are usually obtained by the mixed mean Mf 3.
Regardless of the mean value approach employed, the fin ef-
ficiency conveyed through the integral-based η furnishes more
accurate results than the alternate derivative-based η. This last
statement harmonizes with the recommendations made in [11].
Differences between the analytic temperature approximation
developed in the present work and the exact analytic tempera-
ture distribution relying on Bessel functions are probably below
the level of inaccuracy introduced by the Murray–Gardner as-
sumptions on both exact and approximate temperatures.

In contrast to the common expressions for the annular fin
efficiency estimates based on the longitudinal fin equivalence,
the mean value theorem approach provides simultaneous pre-
dictions of the fin efficiency and temperature distribution, in-
cluding the fin tip temperature. As an additional validation, the
approximate analytic solution retain consistency relative to the
exact solution in the limiting case c = 1. The computational
methodology described in this work may find application in a
broad class of fins of variable cross section, such as longitudinal
and annular fins of triangular, parabolic or hyperbolic profile.
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