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1. Introduction

ABSTRACT

The results from a two fluid Eulerian Eulerian three dimensional (3 D) simulation of a cylindrical bed,
filled with Geldart B particles and fluidized with air in the bubbling regime, are compared with
experimental data obtained from pressure and optical probe measurements in a real bed of similar
dimensions and operative conditions. The main objectives of this comparison are to test the validity of
the simulation results and to characterize the bubble behavior and bed dynamics. The fluidized bed is
0.193 m internal diameter and 0.8 m height, and it is filled with silica sand particles, reaching a settle
height of 0.22 m. A frequency domain analysis of absolute and differential pressure signals in both the
measured and the simulated cases shows that the same principal phenomena are reproduced with
similar distributions of peak frequencies in the power spectral density (PSD) and width of the spectrum.
The local dynamic behavior is also studied in the present work by means of the PSD of the simulated
particle fraction and the PSD of the measured optical signal, which reveals as well good agreement
between both the spectra. This work also presents, for the first time, comparative results of the
measured and the simulated bubble size and velocity in a fully 3 D bed configuration. The values of
bubble pierced length and velocity retrieved from the experimental optical signals and from the
simulated particle fraction compare fairly well in different radial and axial positions. Very similar
values are obtained when these bubble parameters are deduced from either simulated pressure signals
or simulated particle volume fraction. In addition, applying the maximum entropy method technique,
bubble size probability density functions are also calculated. All these results indicate that the two fluid
model is able to reproduce the essential dynamics and interaction between bubbles and dense phase in
the 3 D bed studied.

laboratory studies. Therefore in the last years, modeling and numer
ical simulations of fluidized beds have increased interest on them as

Fluidized bed technology is widely used in process industry
and energy production. Gas solid fluidized beds operating in the
bubbling regime, for which high contact efficiency between the
gaseous and the solid phases leads to high conversion and heat
transfer rates, are now broadly commercialized. In this regime,
the bubble flow is of main importance to obtain a good mixing
between gaseous and solid phases, while the dynamic character
istics of the fluidized bed, given by other properties such as
pressure and pressure fluctuations, are relevant for the operation
of the bed under stable conditions. Thus, both bubble flow and
pressure dynamics can be considered major parameters during
the design, operation and scale up of these systems. However, most
of the work is still dependent on expensive pilot scale experiments
along with empirical or semi empirical models obtained from
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a complementary tool to experiments.

Presently, simulation of small and medium scale gas fluidized
beds is commonly undertaken by means of two fluid computational
fluid dynamic (CFD) models, also known as Eulerian Eulerian two
fluid models, which are primarily based on the representation of the
gas phase and the particulate phase as two interpenetrating
continua (Gidaspow, 1994; van Wachem and Almstedt, 2003).
Two fluid models provide information about the macroscopic
hydrodynamics (i.e. velocity and volume fraction) of the two phases,
including the bubble formation and motion. Therefore, these models
are especially suitable for the understanding of fluidized beds
regarding dense phase bulk motion, and gas phase flow including
bubbles. Although two fluid models have been applied in the
literature with satisfactory results to predict the behavior of bubbles
in fluidized beds, there are numerous questions that need further
validation (Grace and Taghipour, 2004). For example, the closure
equations for the particle drag, viscosity and pressure rely on the
granular temperature theory, which is based on the assumption of
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isotropy in rapid granular flows (Gidaspow, 1994). The considera

tion of particles as perfectly spherical is also a simplification that
may deteriorate the accuracy of the simulated interparticle and
interphase stresses. Besides, to make affordable the simulation,
boundary conditions are simplifications of what actually occurs in
beds. For example, the commonly employed boundary condition of
uniform velocity (i.e. spatially homogeneous) for the air inlet at the
bed distributor is a realistic assumption of beds under bubbling
regime. However, small time fluctuations of the air entering the bed
at the distributor might influence the bed dynamics as a result of
the bed sensitivity to small perturbations (Peirano et al., 2002).
A problem always present in fluidized bed simulations is the
influence of the mesh resolution on the accuracy of the large
gradients appearing at the bubble boundary. As bubbles can cross
any point in the bed, the use of very fine meshes covering all the bed
volume is unaffordable in three dimensional simulations. Owing to
all these questions, there is a need of practical validation of two

fluid models, which should be carried out for each particular bed
geometry and regime.

A greater detail in the description of the particle phase can be
obtained using Lagrangian models such as discrete particle
models (Deen et al., 2007) and lattice Boltmann models (Ladd
and Verberg, 2001), which allow the simulation of the individual
motion of each particle. Although great progress has been done in
the last few years in the field of Lagrangian models, their use is
still restricted to a number of particles far below the amount
encountered in fluidized beds of industrial interest.

Most of the comparisons between experiments and two fluid
models presented in the literature account for two dimensional
or quasi two dimensional (2 D) beds. van Wachem et al. (1998)
compared with existing correlations the time averaged bubble
size and velocity obtained with an Eulerian Eulerian multiphase
CFD model of a 2 D square column filled with Geldart B particles
in free bubbling regime. This study was completed in van
Wachem et al. (1999), where the authors presented the dynamic
characteristics of the gas solid behavior and compared it with
published experimental data and correlations. The comparison
included the velocity of pressure and voidage waves, the power
spectra of pressure and voidage fluctuations and the Kolmogorov
entropy, among other results. Taghipour et al. (2005) tested their
model predictions of time averaged solid volume fraction, bed
expansion ratio, pressure drop and qualitative gas solid flow
pattern against experimentally obtained pressure drop data and
local voidage calculations using a reflective optical fiber probe in a
2 D Plexiglas column. The size distribution, rise velocity and
visible flow of bubbles in a freely bubbling fluidized bed for
Geldart B and D particles predicted by the constant viscosity
model and the kinetic theory of granular flow models were
compared by Patil et al. (2005) with correlations and experimen
tal data taken from other authors. Wang et al. (2008) used a two
fluid model in a 2 D domain to study the flow behavior of
particles in a riser; the computed results were compared with
experimental particle distributions, velocities and bed expansion
ratio measurements reported in literature for 2 D systems.
Passalacqua and Marmo (2009) performed a two fluid model
simulation of a 2 D bubbling fluidized bed with and without a
central jet using different frictional stress models. They compared
the equivalent diameter obtained from the area of their simulated
bubbles, with experimental data present in the literature. Most of
these studies show a reasonable agreement between experiments
and simulations regarding the bed dynamics (e.g. pressure signals)
and bubble behavior, but they are restricted to 2 D bubbling beds.

There are also studies on the bed dynamics and bubble
characteristics that use two dimensional numerical domains to
represent three dimensional (3 D) systems. That is the case of
McKeen and Pugsley (2003), who used a 2 D two fluid CFD model

to simulate a 3 D freely bubbling bed of FCC particles. Their
simulations results of time averaged radial voidage profiles,
radially averaged solids volume fraction and bed expansion were
compared to experimental data, extracted from electrical capaci

tance tomography. Johansson et al. (2006) simulated a fluidized
bed operating in the slugging regime. As a validation, they
evaluated their results with the power spectral density distribu

tion of the fluctuating pressure signal and with local bubble
parameters obtained experimentally with capacitance probes
signals provided by other authors. Ahuja and Patwardhan
(2008) compared their simulation and experimental results of
solids hold up in a bubbling fluidized bed and studied the effect
of geometrical parameters such as internals and gas distributor
configuration. In that study, experiments were carried out in a
cylindrical column using gamma ray tomography, whereas the
simulation of the bed was done in a 2 D domain. A cylindrical
laboratory reactor was modeled in two dimensions by Hulme
et al. (2005). These authors conducted a parametric study to
determine the effect of time step, differencing scheme, closing
equations and frictional stress in the simulation. The bubble
properties, such as the average bubble diameter, were determined
from maps of solids fraction using different cut off voidages (0.3,
0.2 and 0.15), which showed that the definition of the cut off is
important to determine the bubble boundary.

However, it is not clear if two dimensional simulations can
always be used as a reliable tool to reproduce the bed dynamics
and bubble behavior in 3 D beds. At this regard, the limit of the
use of 2 D models to study particular implementations of 3 D
systems has been subject of analysis in several works. Peirano
et al. (2001) studied, in a statistically stationary bubbling flui
dized bed of rectangular section (one lateral length much shorter
than the other), the differences between 2 D and 3 D simulations
by comparing their numerical simulations to experimental data
concerning the power spectra of pressure fluctuations, the bed
height and the probability distribution function of the particle
volume fraction. They concluded that there may be significant
differences between 2 D and 3 D simulations, pointing out that
2 D simulations can only be used for sensitivity analysis, and that
quantitative validation must be done in 3 D. Moreover, they
found that only 3 D simulations can predict the bed height and
the pressure spectra of the bed, because of the natural three
dimensionality of the flow. More recently, Xie et al. (2008)
presented the range of validity of 2 D simulations to approximate
both cylindrical and rectangular fluidized beds. The comparison
with full 3 D simulations was focused on the bed height, and the
time averaged values of void fraction and velocity of gas and
solids at different heights in bubbling, slugging and turbulent
regimes, showing that discrepancies can be significant when the
gas superficial velocity is sufficiently high (i.e. U>1.85Uyy) to
produce bubbles of final size comparable to the bed width.

Despite the above commented differences between 2 D and
3 D simulations, two fluid 3 D simulations are comparatively
scarce in the literature, probably because of their computational
cost. Peirano et al. (2002) studied the influence of the air supply
system in a freely bubbling fluidized bed of rectangular section.
They simultaneously used pressure and optical probes at the
same location and capacitance probes. Nevertheless, owing to the
high noise level present in their optical signals, only the results
from the capacitance probes were used for comparison with a
two fluid simulation. In particular, results from the numerical
simulation were validated against measurements of the bed
height, the spatial distribution of solids and the pressure spectra.
Peirano et al. (2002) found some significant differences between
their numerical predictions and these measurements. According
to their results, the probability density function of particle
volume fraction leads to a peak value shifted towards a volume
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fraction equal to 0.5 for the experiments and 0.64 for the computa

tion, and the pressure spectra obtained from simulations and
experiments were markedly different depending on the bubbling
mode, i.e. multiple or single bubbling modes, the first being well
predicted by the simulation. As Peirano et al. (2002) pointed out, the
small pressure drop in the distributor needed in the single bubbling
mode would require the simulation of the entire air supply system
(and not only the plenum and the distributor) as it is strongly
coupled to the bed dynamics. They also concluded that a more
rigorous estimation of the bed characteristics, such as mean dia

meter and frequency of the bubbles, is necessary to analyze the level
of similarity between simulations and experiments. Simulations of
the bubbling fluidization of a Geldart group B material in a 2 D and
3 D rectangular bed were done by Cammarata et al. (2003),
reporting results on bed expansion, bubble size and bubble hold

up. They compared the bubble size with predictions given by the
Darton’s equation, but the methodology used for the bubble volume
calculation at a given height in 3 D simulations was not detailed.
Wang et al. (2010) presented a modification on the drag correlations
to simulate industrial scale bubbling fluidized beds of Geldart B and
D particles with a coarse computational grid. They compared their
simulation results for the axial distribution of solids volume fraction
and the average bed voidage with experimental measurements
found in the literature.

These works reveal that two fluid models can be used as an
efficient tool for the understanding of the hydrodynamics of
fluidized beds. Nevertheless, it is also evident that there are few
simulation studies where both bubble properties and dynamic
characteristics of the bed (pressure) are simultaneously provided.
Furthermore, this kind of combined information is lacking in
the literature for 3 D simulations, although it seems crucial to
simulate the bed in a three dimensional domain in order to
preserve all the degrees of freedom in the bubble and particle
phase motion present in bed columns. For example, a 2 D
simulation based on the axisymmetry hypothesis could neither
satisfactorily reproduce the alternating bubble paths in azimuth
direction nor the coalescence of bubbles coming from two
positions at the same height and radius in a cylindrical bed.
Therefore, as remarked in Peirano et al. (2001), 3 D models should
be used to reproduce realistically the bed dynamics.

The present study performs a two fluid (Eulerian Eulerian) 3 D
simulation of a cylindrical bed containing Geldard B particles flui
dized in bubbling regime. The results from this 3 D simulation are
compared with the ones obtained from pressure and optical probe
measurements for a real bed of similar dimensions and operative
conditions. The ultimate objective of the present comparison is the
characterization of both the dynamics of the bubbling regime and
the bubble behavior in the bed. Sobrino et al. (2009a, 2009b)
experimentally studied the bubble characteristics in a bubbling
fluidized bed, where the bubbles were detected and their sizes were
measured using optical fiber probes and the much more extensively
employed pressure probes. What was experimentally obtained were
the chord lengths of the bubbles, and by means of the maximum
entropy method (MEM), bubble size probability density functions
were calculated. In the present study, as a novelty, the same MEM is
used to compare the experimental and simulation results. By this
way, a comprehensive analysis of both signals, simulated and
measured, is done, allowing a critical description and interpretation
of the bubble behavior within a large fraction of the bed volume.

2. Experimental set-up
Experiments were carried out in a bubbling fluidized bed of

0.193 m internal diameter and 0.8 m height. The superficial gas
velocity for the experiments was Ug=0.57 m/s and the minimum

fluidization velocity of the bed was Up=0.4 m/s. The bed was
filled with Geldart B silica sand particles with a density of
2632.5 kg/m> and particle size distribution of mean diameter
540 pm and standard deviation 75 pm. The settled bed height
was 0.22 m. The column had a perforated plate to distribute the
air through 90 holes of 2 mm diameter laid out in a hexagonal
pitch of 15 mm. The total open area ratio of the distributor was
1%. The distributor to bed pressure drop ratio was 0.5 at the
minimum fluidization velocity and 0.9 at the nominal gas velocity
in the experiment, U, ensuring a stable and homogeneous bubble
generation. Pressure and optical probes were introduced in the
bed in order to detect the bubble passage along the axial and
radial directions. A sketch of the experimental set up can be seen
in Fig. 1.

Optical probe and pressure measurements were performed at
different positions inside the bed, with a duration of 10 minutes
and a sampling frequency of 500 Hz.

The optical probes developed for this study are based on
backscattering principle (Liu et al., 2003). The optical fiber probes
(OFP) were made of two standard step index plastic optical fibers
(emitter and receiver fibers) embedded in a metallic coil of 3 mm
external diameter. The fibers had a diameter of 1 mm with
0.22 dB/m attenuation and 0.47 NA. The propagation delay con
stant of the fiber was 5 ns/m and the whole probe had a length of
about 1 m. The emitter fiber was illuminated by a 650 nm laser
diode with a maximum power of 10 mW (Roithner s6510mg). A
phototransistor was used at the reception as part of a transimpe
dance amplifier, giving an output voltage proportional to the
output optical power. The laser diode and the phototransistor
were encapsulated in ST connectors. A 50/50 passive splitter was
used for splitting the optical power into the emitter fibers of two
probes. In order to measure the pierced length and velocity of the
ascending bubbles, these two probes (op; and op; in Fig. 1) were
placed one above the other 1 cm apart.

Gage pressure measurements were carried out using piezo
resistive differential pressure transducers Omega PX291 (0 5 in
H,0) with a 1% FS accuracy. The high pressure port was connected
to a probe immersed in the bed and the low pressure port was
exposed to the atmosphere.

-~ 5 op1
Eop2

I 1 2

3 Izl

Fig. 1. Experimental set-up: (1) fluidized bed column, (2) distributor plate, (3)
plenum chamber, (4) pressure probes, (5) optical probes and (6) air flow meter.
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Three pressure probes (p;, p> and ps in Fig. 1) of 4 mm external
diameter were placed inside the bed opposed to the flow direc
tion and separated an axial distance of 1 cm from each other.
As shown in Fig. 1, two differential pressure signals can be
recorded employing this configuration pgiri=p1 p2, and a second
one pginp=p2 P3.

3. Two-fluid CFD model

A CFD simulation of the fluidized bed was performed using an
Eulerian description of both the gas and particle phases by means
of a two fluid model (van Wachem and Almstedt, 2003). In
particular, this model makes use of the following equations for
the conservation of mass and momentum in both the gas phase
(g) and particulate or solids phase (p), the last phase treated as a
fluid with effective transport properties (Gidaspow, 1994):

0
&(“gpg)ﬂL V(ocgpg"g) =0 M
0
&(%PPH- V(OCpPpr) =0 2)

0
a (0gPgVe)+V(0gPaVgVg) = g VP+V(0gTg) Kegp(Vg Vp)+0g0,8
3

%(apppvp)+V(ac,,ppvpvp)= opVp Vpp+V(opTy)+Kep(Vg Vp)+0ppp8

4)
where ag+o,=1 and ;= p(Vv;+ VWD) + (4 (2/3)u)(V vyl for
any phase “i”. The viscosity for the particulate phase in 7, is
composed of the collisional, kinematic and frictional viscosity
Up= Up,col+ Upkin+ Up fir-

The mass and momentum equations are solved together with
the differential equation for the transport of granular temperature
O (Gidaspow, 1994):

5 %(ppocp@)+V(ppocp@vp) =( ppl+1p): Vyp

+VkoV O) yo 3KgiO 5)
which is based on the kinetic theory of granular flows and provides
the level of random fluctuation of particle velocity due to collisions.
Notice that the granular temperature is required for the closure
expressions of the drag coefficient Kgp, the solid viscosities yp, and 4y,
and the effective particle pressure p,. The diffusion coefficient of
granular temperature ke and the collision dissipation energy 7 are
also functions of @. For the drag coefficient, the closure equation of
Gidaspow et al. (1992) has been chosen due to its robustness at the
beginning of the simulation sequence, which commences with air
entering the distributor with the bed at rest and particle volume
fraction op,max. Table 1 summarizes these and other closure models
selected for the present study.

The commercial CFD software Fluent 6.3 (Fluent Inc., 2006)
was used for the solution of the system of Egs. (1) (5)ina 3 D
domain comprising all the interior volume of the cylinder where
the fluidized bed is allocated. The dimensions of the cylinder are
equal to the ones of the experimental rig. The domain was
discretized with a boundary fitted mesh of 28,800 hexahedral
cells and 30,805 nodes. The code discretizes each of the equations
with an implicit finite volume technique applied in any of the
cells of the domain (Patankar, 1980). Due to the great complexity
and number of equations involved, a larger amount of cells would
lead to an inadmissible time of computation. However, to
improve the spatial and temporal resolution of the solution,
second order discretization in space and time was selected. After
a sensitivity analysis of the solution, the chosen time step was

Table 1
Summary of closure models.

A. Coefficient of drag between gas and particles (Gidaspow et al., 1992)

Op L, Vp—V,
Kep %CD%%Z“ for og >0.8 A1)
P
o? OgPy |Vp—V,
Ky 1502252 1752Vl os (A2)
ogd? dy

where the drag coefficient is defined as

0687
® ke, [1 +0.15(0gRey) ] (A3)
with
dp|vp—Vv,
Re, M (A4)
He
B. Solids pressure (Lun et al., 1984)
Do UpppO+2p,(1+epp)tbg0ppO (B.1)
where the radial distribution function is
. 137 1
8opp [1— <a—") } (B.2)
p,max
C. Solids stress tensor
2
T oy (VVp+ V) 40, </1p—§up>val (C.1)
where solid bulk viscosity is (Lun et al., 1984)
o\ 172
. 30pp,dpgo,pp(1 +epp)<g) (C2)
and solid shear viscosity is
Ky Hpcot +Hp fr + Hp kin (C3)
which is composed of a kinetic viscosity (Gidaspow et al., 1992):
10p,d,v/OT 4 2
Hokin 5651 +epp o [1+2g0pp2tp(1+epp))] (C4)
a collisional viscosity (Gidaspow et al., 1992):
1/

Hpcot  30p0,dpgopp(1 +epp)<;> [(&=))
and a frictional viscosity (Schaeffer, 1987):

Ppsing 6
Hp fr 2V (C6)

where ¢ is the angle of internal friction, and I>p is the second invariant of the
deviatory stress tensor.
D. Diffusion coefficient of granular temperature (Gidaspow et al., 1992)
150p,dy~/O7 [
384(1 +epp)gopp

(2]
+2ppdpg<p2g0pp(1 +epp)\/; (D.1)

6 2
Ko 1+ gfxngpp(l +epp)J

E. Collisional dissipation of energy (Lun et al., 1984)
12(1—e2,)80,0p

il E.1
dp/1p 03 e*? ED

Yo

equal to 2.5e 4 s with 40 iterations per time step together with
an algebraic multigrid methodology for the solution of the
implicit system equations (Hutchinson and Raithby, 1986). An
effective value of the coefficient of restitution e,,=0.9 has been
chosen to take into account not only the dissipation of kinetic
energy due to inelastic deformation of particles but also due to
frictional losses (Goldschmidt et al. 2001). For the simulation,
particles are assumed spherical and monodispersed with a size
equal to the mean diameter of the particles in the experiment.
Other parameters of the simulation are shown in Table 2.
Regarding the boundary conditions of the computational
domain, shown in Fig. 2, the distributor was modeled as a porous
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Table 2
Main parameters selected for the simulation.

Parameter Value Parameter Value

R (m) 0.0965 op,max(dimensionless) 0.555
H (m) 1 ho (m) 0.22

pg (kg/m?) 1.225 U, (m/s) 0.57

Ug (Pas) 1789 -5 g (m/s?) 9.81

dp (um) 540 Ofic (deg.) 30

pp (kg/m?) 2632.5 At (s) 2.5e—4
epp (dimensionless) 0.9 N; 40

m Top:
P

” Pressure outlet
v 1 atm
I
I
I
i R
I ;
i
| Walls:
H : Non-slip condition for air

; Zero particle-wall shear
i stresses

h0 Fluidized bed

Z
Distributor:

homogenous velocity

Pretteer ™

Air U,
Fig. 2. Computational domain and boundary conditions used in the simulation.

plate placed at the base of the cylinder through which air is
uniformly (in time and space) injected into the fluidized bed.
Particles are not allowed to cross the distributor. The top of the
cylinder is assumed to have a constant static pressure of one
atmosphere, since it is open to the exterior air. A no slip condition
for the gas flow was imposed at the lateral wall of the cylinder.
For the dense phase flow, this condition is relaxed to non
penetration with negligible shear stresses at the lateral walls,
since, in this kind of bed configuration, particles are well fluidized
and do not remain attached to the wall. Hence, in the present
cylindrical bed, the effects of the particle wall shear stresses on
the interior of the bed volume are negligible. Besides, an imposi
tion of other boundary conditions for the particle phase such as
no slip or partial slip conditions would require, to be properly
imposed, a very fine mesh near the lateral walls in order to
estimate the gradients of particle phase velocity needed in these
conditions.

A series of virtual measurement points were defined within
the volume of the bed with the aim of sampling pressure and
particle volume fraction in the exact positions and conditions of
the pressure and optical probes, respectively, that are employed
in the experiments. The simulation covered a long period of real
time in fully bubbling regime after passing the fluidization
startup from the initial conditions. In particular, the pressure

and particle volume fraction signals taken from the virtual
measurement points were acquired for an uninterrupted period
of 60s of real time, ensuring with this that the results were
statistically representative.

4. Signal processing

4.1. Bubble parameters determination from pressure and optical/
particle volume fraction signals

In order to perform an unbiased comparison between the real
bed and the simulated one, their signals should be treated with
equal techniques. Bubble velocity and pierced length (i.e. bubble
chord) can be calculated from the simulated differential pressure
signals (pair1 and pgy in Fig. 1), assuming that the pressure field
around a rising bubble in a fluidized bed is well represented by the
classical Davidson model (Davidson and Harrison, 1963). The bubble
velocity is calculated dividing the vertical distance between the
pressure probes (1 cm) by the time that the bubble takes to travel
from the lower to the upper probe. This time can be approximated
to Ats, which is the mean of offset times between the two
differential pressure signals (see example in Fig. 3):

Ato— At,-JgAto ©)

where Ati=tp tj and At,=t,; t,1, with t; and t, being the time
instants at which the differential pressure crosses the detection
threshold. This procedure is also used by Liu et al. (2010) in the
framework of optical probe signals. In the present work, the
threshold for the differential pressure signals has been selected to
be equal to the mean value of the whole pressure signal. The bubble
pierced length is then calculated multiplying the bubble rise velocity
by the bubble passage time. The bubble passage time is the period
during which a differential pressure signal falls below its average
(Ramayya et al. 1996). Therefore, Ats in Eq. (6) can be also inter
preted as the difference between centers of bubble passage times in
the two probes, Ats=t., t., with t.=(t;+t,)/2 as shown in Fig. 3.
However, due to the fact that the differential pressure signal may be
also perturbed by bubbles not crossing the measurement points,
bubbles rising with a horizontal eccentricity greater than the bubble
radius, i.e. bubbles for which the differential pressure record falls
less than half of its average value, have been rejected (Dent et al.,
1989). This transforms the effective threshold for the detection of

1.6 T

— —
[ o] -

—
T

e
=N

<
~

Normalized differential pressure
=
oo

o
)

L L 1 1

0
1.96 1.98 2 2.02 2.04 2.06 2.08
Time (s)

Fig. 3. Estimation of the bubble passage time using two differential pressure
signals from 3 vertically aligned probes.



bubbles to a conservative figure equal to half the value of the time
average differential pressure.

For the detection of bubbles using the experimental optical
probe, when the signal falls below a threshold voltage, it is
considered that a bubble passage is occurring. However, owing
to the high stochasticity of the backscattered light in the bed, the
threshold for optical signals should be determined by plotting the
probability density function (PDF) of the voltage signal from the
probe. The PDF exhibits a peak corresponding to the emulsion
phase and a tail at lower voltages corresponding to gas bubbles
(Schweitzer et al., 2001). The bubble detection threshold has been
defined as the voltage where the histogram tail begins, i.e. where
the slope of the histogram becomes zero or nearly zero (Sobrino
et al,, 2009a). Once a bubble has been detected in the optical
signals, the bubble passage time is estimated as the local period of
time in which the optical signal falls below the time average
value of the entire signal, as in the case of the differential
pressure. Observe that the time average value of the optical
signal is a robust parameter relatively independent of the random
noise that affects the experimental signal. Following the work of
Liu et al. (2010), the rise velocity of bubbles is calculated dividing
the vertical separation of the lower and the upper optical probes
(op; and op; in Fig. 1) by the time taken by the bubble to travel
from one probe to the other, Ats, calculated as explained pre
viously for the pressure signals.

Optical probe signals and simulated particle fraction signals
are both related to the distribution of the emulsion and the
gaseous phases within the bed. Nevertheless, the detection of a
bubble in the simulated signal is not affected by measurement
noise. In the present work, a particle volume fraction equal to the
time average volume fraction, in each measurement point, has
been directly used as an unrestrictive threshold for the bubble
detection. The bubble pierced length sensitivity to this threshold is
shown in Section 5.3.1. Once the bubble is detected, a procedure
similar to the one described for optical signals has been used to
calculate the bubble velocity and pierced length.

For both the simulation and the experimental signals, the
following criteria are applied to reject erroneous bubble size
measurements: pierced length measurements smaller than the
separation between probes are considered potentially inaccurate,
and pierced lengths larger than the bed radius are treated as
outliers (e.g. coalescent or erroneously detected bubbles) as they
will lead to bubble diameters of the order of the column diameter,
neither observed in the experiment nor in the simulation. By this
way, the contamination of results with erroneous estimations of
the bubble pierced length and velocity is mitigated. Note that the
uncertainties of the velocity and pierced length measurements can
be calculated by propagating the uncertainties of the contributing
parameters (Sobrino et al., 2009a) and they reach a maximum value
of 0.1 m/s and 8 mm respectively for the experimental data and
0.02 m/s and 1 mm respectively for the simulated data.

4.2. Determination of the probability density function of the bubble
pierced length and diameter

Using the bubble pierced length samples obtained from experi
mental and simulation signals, the probability density function of the
bubble size was estimated applying the maximum entropy method
(Santana et al., 2006). This method is employed to obtain the
probability density function of a variable provided the distribution
is subjected to a certain number of constrains that are known, such
as the geometric moments of the variable distribution. For the
bubble pierced length this procedure is straightforward, as the
geometric moments of the pierced length distribution can be directly
estimated using the sampled pierced lengths extracted from the
measured or the simulated signals as explained in the previous

section. The raw moments of the bubble diameter distribution need
to be estimated from the bubble pierced lengths deducing the
equations that relate both magnitudes. The estimation of this relation
entails some assumptions: bubbles are assumed to rise randomly
distributed in a horizontal surface of radius equal to the bubble
radius surrounding the probe, in the sense that the probability of the
bubble to be pierced at any point of its surface is the same (Werther,
1974); the ascending velocity of the bubble is considered vertical,
and the bubble geometry has been modeled as a truncated spheroid,
which is the most general shape adopted by the bubbles in a
fluidized bed. A detailed explanation of the equations applied to
estimate the bubble size distribution using the maximum entropy
method can be found in Sobrino et al. (2009a).

5. Results and discussion
5.1. General dynamics

Pressure signals, taken from the experiments and the simulation
of the fluidized bed for a representative period of time, are shown in
Fig. 4. In the same figure, the resulting optical probe measurements
and the simulated particle volume fraction are also plotted. The
values depicted correspond to the same period of time (i.e. simulta
neous acquisition of differential pressure and optical or particle
fraction signals). In the case of the differential pressure, Fig. 4a and c,
it is the difference between pressures at heights z;=12 cm and
=13 cm, and mid radius r/R=0.5. The optical probe signal and the
simulated particle fraction are plotted in Fig. 4b and d for a point at
z=12 cm and r/R=0.5 in the bed.

Experimental and simulated signals in Fig. 4 are the raw
acquired data. Neither hardware nor digital filtering has been
performed in order to compare the data free of the effect of any
signal conditioning. High frequency oscillation of the optical
signal in Fig. 4b is due to the stochastic character of the light
backscattering at high particle concentration (i.e. outside bub
bles). Notice that, although filtering of the optical signal may
improve its appearance, it is an operation that can also destroy
valuable information regarding the signal spectrum and bubble
size parameters. It is evident from Fig. 4 that the real bed and the
simulated one yield signals of very similar character in both the
differential pressure and the optical signal/particle fraction cases.
The fluctuation amplitude of the differential pressure measured
by the probes compares also well with the simulation results.

Fig. 5 shows a series of snapshots of the instantaneous void
distribution (i.e. bubbles) in the 3 D bed obtained from the two
fluid model simulation. The aim of Fig. 5 is to provide a physical
interpretation of the signal oscillations depicted in Fig. 4. The
snapshots of Fig. 5 correspond to four consecutive instants of
time, named as 1, 2, 3 and 4, which are indicated in Fig. 4c and d.
The bubbles shown in Fig. 5 have been extracted from iso
surfaces of void fraction equal to 0.7, that is, a threshold in
particle volume fraction oy, =0.3. The particle volume fraction
shown in the vertical planes of Fig. 5 indicates that the volume
fraction gradients are very concentrated near the bubbles surface
and in their wake, the rest of the volume outside bubbles having a
homogenous particle volume fraction close to o max of Table 2. As
Fig. 5 illustrates, a bubble laterally crosses the virtual measure
ment points that are placed in the simulation domain at r/R=0.5
and z equal to 12 and 13 cm. This creates a perturbation in the
simulated differential pressure signal (Fig. 4c), which resembles
the theoretical difference pressure obtained with the classical
two phase model around a rising bubble (Davidson and Harrison,
1963). In Fig. 5a the bubble is approaching the virtual measure
ment probes, thus creating an increase of the differential pressure
as Fig. 4c confirms. The differential pressure in Fig. 4c decays from
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point 1 to a minimum in point 3 since the bubble is crossing the
virtual probes (Fig. 5b and c). Finally, the differential pressure is
recovered and reaches a second maximum in Fig. 4c just after the
passing of the bubble, as shown in Fig. 5d. The passing of a bubble
is also clearly detected in Fig. 4d, in which there is a decrease in
the simulated particle fraction in the time interval from point 1 to
point 4. It is to be noticed that the optical or the particle volume
fraction signals are affected only when a bubble crosses the
acquisition point. In contrast, as pressure propagates through
the emulsion phase, pressure signals may be additionally
perturbed by bubbles passing near the acquisition point but not
necessarily crossing it. That explains why the experimental and
simulated differential pressure signals, in Fig. 4a and c, have a
greater number of major oscillations than optical and volume
fraction signals, Fig. 4b and d.

5.2. Frequency analysis

The power spectral densities (PSD) for the pressure, the pre
ssure difference, and the particle volume fraction/optical signals
have been calculated in this work averaging the sub spectral
densities of data sections in order to reduce their variance
(Johnsson et al., 2000). In the present work, an average of the
spectra from 8 consecutive sections of the signal with 50%
overlapping and a Hamming window to smooth the signal at
the section endpoints have been selected. Table 3 contains the
most relevant peak frequencies of the spectra presented in
Figs. 6 and 7.

Examining firstly the PSD of the absolute pressure, solid lines
in Fig. 6, it is evident that the simulation provides a spectrum
whose pattern is similar to the one obtained from experiments. A
frequency shift lower than 1 Hz seems to differentiate both cases,
but the same dynamics of the bed, i.e. distribution of peak
frequencies and width of the spectrum, are clearly reflected.
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Notice that the dominant frequency of absolute pressure, fg, is
in both the simulation and the experiments placed close to the
natural frequency of the bed given by Baskakov et al. (1986):

_1 /2
fe= 2\ /b @

which is 2.1Hz in the case of the bed studied here. The
independence of f, to the measurement point is shown in Fig. 6,
where the simulation results for a point near the distributor, i.e. at
z=7 cm and r/R=0, evidence that f; is preserved regardless the
distance to the distributor.

It is well known that absolute pressure reflects global informa
tion of the bed, whereas the differential pressure measured in a
short spatial interval is more indicative of the local behavior. As
reported in Roy et al. (1990) and Bi (2007), there are significant
differences in both spectra, with a shift to higher frequencies in
the case of the double probe results (i.e. differential pressure).
This frequency shift is corroborated by the power spectral
densities of pressure and differential pressure shown in Fig. 6 in
both the simulated (Fig. 6a) and the experimental (Fig. 6b)
signals. In the simulated case (Fig. 6a) the peak around 3.4 Hz
has disappeared, while in the experimental PSD of pressure
difference (Fig. 6b), this low frequency peak remains, though
now it is not the only principal frequency. Besides another
intensity peak at higher frequencies appears (i.e. fyi1=6.3 Hz in
Table 3), which is coincident with the high amplitude frequency
that comes out in the simulation (fgi; =6.5 Hz). These intensity
peaks of the differential pressure spectra can be attributed to the
local passing of bubbles through the acquisition points as justified
later on. In the experiments, signals are affected by measurement
noise, and this fact could contribute to the high frequency
components of the spectrum, which are enhanced after the
subtraction of signals during the calculation of the differential
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Fig. 5. Simulated 3-D void distribution and maps of particle volume fraction in the vertical plane y 0 for four consecutive instants of time corresponding to the points

marked in Fig. 4: (a) point 1; (b) point 2; (c) point 3 and (d) point 4.

Table 3
Experimental and simulated characteristic frequencies of the PSD for absolute
pressure, differential pressure and optical/volume fraction signals.

Simulation Experiments

Absolute pressure

fa (Hz) 34 2.7
Differential pressure

Jairr (Hz) 6.5 6.3

fd,'ﬂ (Hz) 8.1 4.5
Optical signal or particle volume fraction

fop1 (Hz) 6.4 6.8

fop2 (HZ) 8.0 43

pressure. Nevertheless, the averaging of individual PSD to obtain
the spectra presented in Fig. 6 reduces the effect of measurement
noise at high frequencies.

Fig. 7 compares the resulting power spectral densities of the
simulated solids fraction (Fig. 7a) and the experimental optical
probe signals (Fig. 7b). Both signals are simultaneously taken from
a point in the axis close to the points where pressure signals in Fig. 6
were measured. As bubbles not piercing the measurement points do
not affect the volume fraction and the optical probe signals, the peak
frequencies of these signals should coincide only with the bubble
passing frequency at the measurement points. In the simulation
results, it can be observed that the principal peak frequency of the
particle fraction spectrum, i.e. f,,1=6.4 Hz in Fig.7a, coincides with
the high frequency peak of the differential pressure spectra,
fairr=6.5 Hz in Fig. 6a. In the experiments, also a frequency peak,
fop1=6.8 Hz, can be identified near the value f4 =6.3 Hz taken from
the differential pressure spectrum. In this case the intensity peak of
fop1 1s not as clear as in the simulation.

The second peak in the differential pressure spectrum from the
simulation (fsi»=8.1 Hz in Fig. 6a) has also a good matching in

8



a
14
— Simulation, pressure z=12cm
1.2 Simulation, difference pressure z=12.5¢cm
‘-5' Simulation, pressure z=7cm
g 1 d s difl
(=9
P
=]
a
7
a
=
8
E
S
=z

—— Experiment, pressure z=12cm
12} Experiment, difference pressure z=12.5cm |

Normalized PSD of pressure

15
Frequency (Hz)

10 15
Frequency (Hz)

Fig. 6. Comparison of normalized power spectral densities (PSD) for absolute and differential pressure atz 12 andz 12.5 cm, respectively, in the bed axis: (a) simulation

results and (b) experiment results.

a b
1.5 1.5
.E Simulation Té. Experiment
2 -3
£ :
=2 1 S
2 [ k=S
= =%
g &
o =]
=) [m]
2 5
o
E E
g 2
4
0
0 5 10 15 0 5 10 15
Frequency (Hz) Frequency (Hz)
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the particle fraction PSD (f,p2=8.0 Hz in Fig. 7a). In the experi

mental case, there is also a frequency peak correspondence
(fair=4.5 Hz in Fig. 6b and f,;,,=4.3 Hz in Fig. 7b). Differences
in these last cases between experiments and simulation might be
due, among other reasons, to the fact that the intensity level of
these second peaks is more sensitive to the signals stochasticity
and the measurement noise.

The resulting matching between fyr and f,, corroborates the
hypothesis that most of the higher frequency peaks of the
differential pressure PSD are generated by the local dynamics of
the bed, that is, by bubbles crossing the measurement points.
Note that the intensity of the spectrum for both the simulation
and experiments in Fig.7, increases when the frequency tends to
null values, but this does not occur in Fig. 6. This is perhaps
related to the shape of the optical and particle volume fraction
signals, which may be roughly viewed as square wave signals
alternating two levels (i.e. outside and inside bubble levels).

5.3. Bubble characterization

Optical signals were preferred in the present study to experi
mentally determine the bubble parameters rather than experi
mental pressure measurements because, near the distributor, the
bed pressure probes were less reliable due to the small bubble
size, as explained in Sobrino et al. (2009b). Nevertheless, even in
the case of the small sized optical sensors, the presence of the
probes in the real bed can interfere in the bubble dynamics.
According to Rowe and Masson (1981), horizontally supported
probes tend to decelerate bubbles and may promote splitting.

While experimental signals (Fig. 4a and b) present a charac
teristic noise, intrinsic to the measurement chain, the simulated

signals of pressure and particle fraction (Fig. 4c and d) are noise
free and can both be more easily used for the bubble character
ization. Nevertheless, the detection of the bubbles from the
simulated differential pressure signals is restricted by the bubble
detection threshold. This bubble detection threshold is more
conservative than the one used for the particle volume fraction
in the simulated signals, as explained in Section 4.1. Moreover,
two consecutive differential pressure records are needed to
determine the bubble properties, which means that bubbles have
to cross a distance of 2 cm to be correctly measured, while for the
case of particle fraction this distance is lower (1 cm). Therefore, a
lower probability of detecting bubbles can be expected if differ
ential pressure is considered.

5.3.1. Sensitivity to the bubble detection threshold

There is no consensus in the literature providing a unique
value for the threshold of particle volume fraction which may
define a bubble. In this section, the sensitivity of the simulation
results to this threshold is presented. Cammarata et al., 2003 and
Patil et al.,, 2005 considered a bubble as the coherent region
within the fluidized bed where the solids volume fraction is lower
than 0.15. van Wachem et al., 1998 and McKeen and Pugsley,
2003 assumed that the upper limit for the solids volume fraction
within a bubble is 0.2. Peirano et al., 2001 distinguished between
dense phase, where the particle volume fraction is close to the
maximum packing, and dilute phase with rather small values
(bubbles). In their case, they studied the probability density
function of the solid volume fraction and a limiting value for
the dense region of 0.4 was arbitrary selected. Hulme et al., 2005
varied the volume fraction cut off, in a 2 D simulation from 0.15
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to 0.3, concluding that the definition of the bubble boundary is
important as the bubble size changes with the selected threshold.

Fig. 8 illustrates the dependence of the bubble passing frequency
(i.e. bubble count) and chord length on the particle volume fraction
cut off value. The passing frequency of the detected bubbles was
determined by dividing the number of bubbles at a given position by
the time duration of the bubble sampling. Thresholds for particle
volume fractions, oy, covering the ranges of previous studies
(0.2, 0.3, 0.4) are considered. Results of o, equal to the time
average value of the whole particle fraction signal (i.e. mean of o, )
are also shown. In Fig. 84, it can be seen that the number of bubbles
counted decreases as lower values of thresholds are used. Fewer
bubbles are miscounted using the mean volume fraction than the
rest of thresholds values shown in the figure. When using the
threshold «p+=0.4 and the time average particle volume fraction,
the bubble frequency starts to decrease at a certain height in the
bed. For lower threshold values the bubble count remains almost
constant along the bed height.

Fig. 8b shows a growth of bubble size along the bed height,
although the rate of increase in the cases of a,;=0.2 and 0.3 is
lower than for higher threshold values. Moreover, the mean
bubble pierced length increases as the threshold value increases.
This dependence of the bubble pierced length on the threshold
used indicates that, as shown by Buyevich et al. (1995), there is
not a sudden change from void to emulsion but a region of
varying porosity surrounding the bubbles, as it is also reflected by
the particle volume fraction signals plotted in Fig. 4d.

In the simulation, when very small bubbles cross the acquisi
tion point or the bubbles are laterally pierced, the particle volume
fraction level drop is small due to the mentioned gradual decrease
of porosity in the bubble boundary and the finite resolution of the
computational mesh. Hence, a number of bubbles will not be
detected if a low threshold value is used. According to these
results, it is confirmed that it is difficult to uniquely define the
bubble edge and the threshold selected considerably affects both
the bubble count and the deduced chord length.

The time averaged o, has been chosen as the threshold o, in
the present work, which is calculated for each acquisition point in
the bed. By this way, the threshold is automatically adapted to the
particular conditions of each kind of bed or regime. For example,
oy, €an reflect the spatially varying porosity of the emulsion phase
encountered in fluidized beds under vigorously bubbling regimes.

5.3.2. Experimental and simulated bubble pierced length and
velocity

The bubble pierced lengths and velocities at different radial
and axial positions in the bed were obtained applying the
procedure explained in Section 4.1 and are shown in Fig. 9.
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Fig. 8. Vertical profiles of bubble passing frequency (a), and mean pierced length (b)

volume fraction during the detection of bubbles.

Considering the simulation results first, the signals were
recorded at different axial and radial positions for two different
azimuth positions (0° and 120°) in order to verify the degree of
axisymmetry of the solution. Differences between these two
angular positions are very little and only shown along the radial
direction as an example. Therefore, the simulation results of the
remaining figures are calculated using the signals from both
azimuth positions. By this way, more information for the con
struction of the mean quantities is obtained. In Fig. 9, the pierced
lengths calculated from the simulated pressure records are almost
equal to those from the simulated volume fraction signals, which
demonstrates the coherence of the processing methods. Accord
ing to Fig. 9, the bubble size and velocity profiles are nearly flat
along the radial direction, but they grow with the distance to the
distributor as expected if coalescence is considered.

The bubble pierced length measurements from the optical probe
signals and the values obtained from particle volume fraction and
pressure in the simulation, at different radial positions (Fig. 9a),
differ less than 5% to 10%. In the axis the discrepancy is larger (25%).
Along the bed height (Fig. 9b) the differences found remain almost
constant in the range of 10 15%. Bubble velocities (Fig. 9c and d)
calculated from the simulation are larger than the experimental
values, the higher discrepancy being around 30% near the wall
(r/R=0.8), but less than 10% in other positions.

5.3.3. Experimental and simulated bubble passing frequency

The number of bubbles detected along the radial and axial
directions using the experimental optical probe signals and the
simulated signals of pressure and particle volume fraction are
compared in Fig. 10.

The three profiles in Fig. 10a present lower values near the
wall and the axis. In the experimental case this tendency is more
pronounced. Comparing the number of detected bubbles in the
simulation, it is observed, as previously reasoned, that the particle
count is higher using the particle volume fraction signal than
using the differential pressure signal. Previous results shown in
Fig. 9, in which mean pierced length and velocity of bubbles
calculated from the simulated pressure are in good agreement
with the results from particle volume fraction, seem to indicate
that the uncounted bubbles using differential pressure signals are
equally distributed along all the range of bubble sizes and
velocities. Note that the experimentally counted bubbles from
the optical signals agree within a 30% of difference (in the worst
case) with the bubble frequency obtained from the simulated
pressure.

Fig. 10b shows that the passing frequencies of the detected
bubbles using the optical signals and the signals from the simulated
differential pressure are almost coincident but lower than the count
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given by the signal from the simulated particle volume fraction. As
already stated, the cut off values are more restrictive in the first two
signals than in the third one. Nevertheless, the differences tend to
decrease as the distance to the distributor increases. This is probably
so because at higher positions in the bed, larger bubbles are found
(as seen in Fig. 9b) and therefore the threshold effect is less
pronounced. The same reasoning may be used to explain the gently
growth with height of the bubbles counted with the simulated
differential pressure and the optical probes as larger bubbles are
more easily detected. Besides, this also occurred in the sensitivity
analysis shown in Fig. 8a in which larger threshold values of the
simulated particle fraction lead to a decrease of the bubble passing
frequency along the bed axis, z, whereas small values of the
threshold (more restrictive) lead to a slight increase of bubble
frequency with z. Nonetheless, further experimental results are
required to determine whether the bubble passing frequency

increases due to additional effects such as the redistribution of the
bubbles within the bed.

5.3.4. Bubble pierced length and diameter distributions

In Fig. 11 the probability density functions of pierced length
and volume equivalent diameter calculated using the maximum
entropy method (Santana et al., 2006) over the simulated particle
volume fraction and the experimental optical probe signals are
shown. The minimum value that was measurable with the probes
is limited by their separation, and therefore the obtained density
functions are distributions of pierced lengths larger than 1 cm
(Sobrino et al., 2009a). A very similar shape of the distributions is
found for the simulated and experimental cases with a wider
distribution as long as the measurement point is placed higher in
the bed. In Fig. 11a and b, the bubbles with small chord lengths

1"



a
40 | z=55cm Simulation
z=75cm
35 ——z=95cm
30 ¢
25 ¢
o
A 201
15t
10 ¢
WL
0!
0 5 10 15 20
y (em)
C
25 z=5.5cm Simulation
z=75cm
———z=95cm
20 -
w 151
a
=
10 +
5
0
0 5 10 15 20

Dv (cm)

z=55¢cm

40 Experiment
z=75¢cm
35 ——z=95cm
30
25
a)
/20
15
10
54
0
0
25 - ——z=5.5cm Experiment
z=75cm
——z=9.5cm
20 |
o 15}
[a]
(-9
10 ¢
51
0
0 15 20

Dv (cm)

Fig. 11. PDF of pierced length and volume equivalent diameter at r/R 0.8 and different axial positions obtained from the simulated particle volume fraction and the

experimental optical probe signals.

tend to disappear from the PDF when z increases, whereas
bubbles with large chord lengths increase in number, which
reflects the coalescence phenomenon. The statistical modes of
the simulated case distributions are around 25% higher than the
experimental ones. It should be recalled that use of MEM to
obtain the PDF of bubble pierced length is straightforward as the
PDF is constructed directly from the simulated particle volume
fraction and the optical signal. On the contrary, the estimation of
the bubble diameter distribution (Fig. 11c and d) from pierced
length raw moments had to be inferred, as diameters cannot be
directly measured. In the present case, as could be seen in Fig. 5,
the approximation of the shape of the bubbles to a truncated
spheroid employed for this derivation seems to be somehow
corroborated by the simulation results, although further quanti

tative studies on the bubble shape from the simulated signals are
needed.

The mean values of the distributions of bubble volume
equivalent diameter shown in Fig. 11c and d are plotted in
Fig. 12 against the axial position. The mean bubble diameter
increases with height in harmony with the assumption of the
progressive coalescence between bubbles. Very good agreement
between simulation and experiments is found not only regarding
the mean quantities but also the standard deviation of the
distributions indicated by the vertical bars in Fig. 12. The rate of
increase of the bubble mean diameter with the distance over the
distributor in the simulation is similar to the increase obtained
from the optical probes in the real bed. The simulated mean
diameter is between 10% and 15% higher in the simulation than in
the experiments. In Fig. 12, the expected diameter curves apply
ing Darton et al. (1977) and Argawal (1985) correlations are also
depicted. The prediction due to Darton et al. (1977) correlation
underestimates both the simulation and experimental bubble
diameter in Fig. 12. This is coherent with previously reported
results of 3 D simulations (Cammarata et al., 2003). The
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Fig. 12. Mean volume equivalent diameter along the axial position for r/R 0.8
obtained from the simulated particle volume fraction and the experimental optical
probe signals. The correlation curves due to Darton et al. (1977) and Argawal
(1985) are also included. The bars refer to the range due to one standard deviation
of the results.

correlation of Argawal (1985) also underestimates the mean
bubble diameter but is closer to the simulation and the experi

mental results than the model of Darton et al. (1977). Note that
both correlations have the same trend than the simulation and
the experiment results, and the differences between the Darton
et al. (1977) and Argawal (1985) curves are of the same order of
the differences between the Argawal (1985) correlation and the
curve from the experiments.
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6. Conclusions

The bubble behavior in a cylindrical fluidized bed in bubbling
regime has been characterized in the present work with the
combined aid of experiments and a full 3 D simulation. An
Eulerian Eulerian (CFD) two fluid formulation employing well
known closure models and standard parameters, with no previous
adjustments or parameter tuning, was used for the simulation.
Pressure and optical/volume fraction signals obtained from experi
mental probes in a real bed and from virtual probes in the simulation
were compared and used to describe the essential features of the
bubble behavior and the resulting dynamics of the bed.

A main conclusion derived from the comparison between the
simulation and the experimental results is that the employed two
fluid model is able to reproduce the bubble behavior in the
studied bed with reasonable accuracy. In particular, the results
demonstrate that the experiments and the simulation provide a
similar pattern in the power spectra of pressure. This similarity
was also observed in the spectra of optical/volume fraction.
Besides, the same frequency shift in the differential pressure
spectra, compared to the absolute pressure spectra, was found in
the experiments and in the simulation. The spectral analysis also
showed that the differential pressure spectrum is clearly related
to the particle fraction spectrum, confirming the local character of
the information provided by differential pressure probes. At this
regard, it seems crucial the use of a fully 3 D simulation, as the
bubble coalescence and interaction with the free surface of the
fluidized bed are eminently three dimensional phenomena. The
experimental radial profiles of bubble pierced length and bubble
velocity calculated from optical probes, were in good agreement with
the results calculated from the simulated signals of differential
pressure and volume fraction. The larger differences were around
25% for the pierced length and 30% for the bubble velocity, the
simulated values being higher than the experimental ones. These
differences may be attributed to several causes, including the inter
ference of the optical probe in the real bed and the not totally
equivalent nature of scattered light and volume fraction signals.

Another important conclusion, stemming from the analysis of
the bubble pierce length and passing frequency, is that the
selection of the bubble detection threshold has an impact in the
simulation results that cannot be obviated. The soft transition
between bubbles and dense phase in the volume fraction signals
from the simulation makes difficult to uniquely define the bubble
edge. In the present work, the time average particle volume
fraction is proposed as threshold value for the detection of the
simulated bubbles. For the studied bed, this particular threshold
ensured that the bubble pierced lengths and velocities obtained
from the simulated volume fraction matched those obtained from
the simulated differential pressure.

It is also worth mentioning that the maximum entropy method,
used in this work for the estimation of the probability density
function (PDF) of bubble pierced length and bubble diameter, seems
to corroborate the consistency of the simulated particle volume
fraction with the experimental optical signal. Both the experiments
and the simulation revealed that the density functions of pierced
length, and hence those of bubble diameter, become wider as the
distance to the distributor increases. Besides, the mean bubble
diameter also increases with the distance to the distributor. The
experiments and the simulation provide very similar rates of bubble
growth, although the size of the simulated bubbles was higher (up
to 20%) than the size obtained from the experiments.

Despite the promising results here presented, further experi
mental information together with a dedicated series of simulations
would be required to gain precise knowledge of the sources of the
discrepancies observed between some of the experimental and
simulation results.

Nomenclature

d, particle diameter (m)

D, bubble volume equivalent diameter (m)

epp restitution coefficient (dimensionless)

fe theoretical natural frequency of the bed (Hz)

fa dominant frequency of the pressure spectrum (Hz)

faif characteristic frequency of the differential pressure
spectrum (Hz)

fop characteristic frequency of the optical/particle fraction
spectrum (Hz)

g gravity acceleration (9.81 m/s?)

ho static bed height (m)

H total height of the column (m)

| unit tensor (dimensionless)

ke granular temperature diffusion coefficient (kg/m s)

Kgp gas particle momentum exchange coefficient (kg/m?s)

Np number of bubbles per unit time (s ')

N; number of iterations per time step

p static pressure (Pa)

/R dimensionless radial position
bed internal radius (m)

t time (s)

up bubble velocity (m/s)

Ug superficial gas velocity (m/s)

Unsp minimum fluidization velocity (m/s)

\' velocity vector (m/s)

y bubble pierced length (m)

z vertical distance to the distributor (m)

Greek letters

o volume fraction

At time step (s)

Atjo;s  offset times between signals (s)
Yo collisional dissipation energy (kg/m s3)
A bulk viscosity (Pa s)

u shear viscosity (Pa s)

0 azimuth angle (deg.)

2] granular temperature (m?/s?)
0 density (kg/m?)

T shear stress tensor (Pa)
Subscripts

col collisional

dif differential

fr frictional

g gas phase

kin kinematic

max maximum

op optical

p particle phase

th threshold
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